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™T PR b oph i mY:

"One should practice what one considers to be
one's duty, guided by reasons, instead of
blindly following the practices of the world."
- Tuladhara the merchant, the Mahabharata Book of Peace.
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Abstract

The aim of this work was to design and test new kinds of consolidants for archaeological
wood as well as figure out what avenues of research seem promising for future
investigations. The need for new consolidants is exemplified by the severely degraded state
of several parts of the Oseberg find — the most richly ornamented Viking Age find in the
world — which is undergoing active degradation due to being extremely acidic as a result of
the original treatment with alum salt (KAI(SO4),-12H,0).

Previously tested consolidants often fail at penetrating sufficiently deep into the wood,
offering the required mechanical support, or leaving treated artefacts re-treatable. As
nothing lasts forever, re-treatability is an essential ethical requirement when working with
cultural heritage. Since reversibility is difficult to achieve, the way to ensure re-treatability
is to leave most of the pores naturally occurring in wood open, thus leaving canals for future
treatments. Finding a very stable consolidant (to postpone re-treatment for as long as
possible) is also important, so compounds with ether or ester bonds should probably be
avoided as oxygen is likely to degrade them.

Initial tests were carried out on acid-catalysed phenol-formaldehyde (PF). The cured
polymer is resistant to acid and chemically similar to lignin (the compound in
archaeological wood which usually takes the longest to decay). Acid catalysis leaves less
oxygen in the structure of the polymer than base catalysis (which was the route chosen in
Bakelite production). Tests showed that the polymer changed look depending upon which
solvent is used to dissolve pre-polymer molecules (acetone gives a dark red or brown result
while propan-2-ol results in a lighter and more yellow product). The polymer can eventually
cure under water and did not become powdery after being kept in an oven at 70°C for more
than a year. Unfortunately the bright reddish colour means it cannot be used for the surface
treatment of archaeological finds and since both phenol and formaldehyde are toxic, it will
be difficult to treat items already on display with PF. On the other hand, the phase separation
which happens during polymerisation seems to naturally preserve the structure of
archaeological wood by leaving the watery phase in the voids. Unfortunately, some heavily
degraded material from the Oseberg find lost its shape during treatment as the alum crystals

dissolved in water and further tests are required to develop a protocol for such items.
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The field of biomimetics (adapting materials and solutions inspired by nature) may be an
important source of future wood conservation. Most naturally occurring polymers are non-
toxic and many are water-soluble. Tests began on cellulose crystals (or 'whiskers') which are
resistant to acid and occur naturally in wood. While cellulose attaches to the surface of
wood, the whiskers agglomerate during the impregnation of archaeological wood and the
high ion content in archaeological material makes it tricky to keep the whiskers separated
long enough to allow a proper impregnation. It may be possible to inject cellulose whiskers
into larger cracks and voids in archaeological material to construct a kind of 'scaffolding' for
other consolidants to adhere to, however.

Testing moved on to chitosan which has the advantage of being cellulose-like but can be
dissolved in monovalent acids. Tests showed that acetic acid was more efficient than
hydrochloric acid and a 2%"/ chitosan solution in 1 M acetic acid had a pH value of about 5
which is ideal for archaeological wood. In two weeks, the solution penetrated into small test
pieces (roughly 0.5x0.5x2 cm) of Viking Age wood and reached an even distribution. After
freeze-drying, the pieces had a similar hue to the unimpregnated wood but were
considerably more coherent and easier to cut with a razor blade. Hopefully, the anti-
fungal/bacterial properties of chitosan, along with its ability to chelate metal ions, will make

it an even more suitable consolidant.
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Opsummering

Malet med dette arbejde har veret at forsege at udvikle nye former for midler til
bevaring af arkaologisk tree samt at forsege at give eksempler pd gode metoder man ber
forske pa i fremtiden. Behovet for disse understreges af dele Osebergfundets nedbrudte
tilstand, som er et resultat af syre dannet pa grund af den oprindelige behandling med alun
(KAI(SO4),- 12H,0). Tidligere afprovede midler til at forsteerke arkaeologisk tra treenger ofte
ikke tilstreekkeligt langt ind i treeet, forsterker det ikke tilstraekkeligt, eller efterlader traeet
blokeret sa det ikke kan genbehandles i fremtiden. Eftersom intet varer evigt er det essentielt
fra et etisk standpunkt at kunne genbevare kulturelle fund. Da reversibilitet normalt er
umulig at opnd i praksis, sikres genbehandling bedst ved at efterlade porer og lumen i treeet
abne, sa der er plads til at tilfoje mere materiale i fremtiden. Det er ogsa vigtigt at finde et
stabilt stof s& genbevaring kan udsattes leengst mulig tid og i denne sammenhang er ater-
eller ester-bindinger et problem da ilt fra luften nedbryder dem.

De forste undersogelser blev foretaget pd syre-katalyseret fenolformaldehyd (PF).
Polymeren er resistent overfor syre og minder rent kemisk om lignin (der er det stof i
arkaologisk tree som er mest resistent overfor nedbrydning). Syrekatalyse efterlader mindre
ilt 1 polymerens struktur end basekatalyse (som typisk blev anvendt til produktion af
Bakelit). Det viste sig at polymeren endrer udseende afhengig af hvilket solvent
prepolymere molekyler blev oplest i (acetone giver en meget merk redbrun hvor propan-2-
ol giver et lysere gulligt produkt). Polymeren kan, givet tilstraekkelig tid, heerde under vand
og blev ikke spred eller smuldrede efter at veere opbevaret mere end et ar i en 70°C varm
ovn. Desvarre betyder den dybe rede farve at polymeren ikke kan anvendes til at
konservere overfladen af museumsgenstande og eftersom bade fenol og formaldehyd er
giftige er de ikke ideelle til at genkonservere genstande som allerede er udstillet og er
vanskelige at flytte. P4 den anden side gor faseseparationen som sker under
polymerisationen at den organiske fase binder sig til treeet hvorimod vandet tvinges ud i
porer og bibeholder trestrukturen. Beklageligvis mistede yderst nedbrudt materiale fra
Osebergfundet sin form under behandling da den vandbaserede blanding opleste
alunkrystallerne som holdt pd traeets facon, sa andre solventer ma udvikles hvis metoden
skal benyttes pa sddanne fund.

Biomimetik (at tilpasse materialer eller design som findes i naturen) kan vare en

lovende for konserveringsvidenskab. De fleste polymerer i naturen er ikke giftige og mange
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kan opleses i vand. Krystallinsk cellulose blev afprovet da det er resistent overfor syre og
allerede findes i tre. Selv om cellulosekrystallerne setter sig fast pa overfalden af treeet,
begynder de at flokkulere pa grund af de mange ioner i arkaologisk trae og traenger derfor
kun et par mm ind i materialet. Det bliver derfor problematisk, selv med tilsat surfaktant, at
holde krystallerne adskilte under impraegneringsprocessen. Cellulosekrystaller kan muligvis
injiceres i sterre sprackker i traeet for at danne et materiale som andre stoffer til forstaerkning
af traeet kan saette sig pa.

Forsegene blev derfor fokuseret pa kitosan som pad mange mdder minder om cellulose
men kan opleses i monovalente syrer. Eddikesyre gav mere stabile oplesninger end saltsyre
og 2%"/, kitosan i 1 M eddikesyre har en pH omkring 5, hvilket er ideelt for behandling af
arkeologisk tree. Oplesningen treengte ind i sméd (ca. 0.5x0.5x2 cm) prover af tre fra
vikingetiden og var fordelt jevnt efter to uger. Efter fryseterring sa de behandlede prover ud
som de ubehandlede men var langt mere stabile og lettere at skaere med det barberblad.
Kitosan er desuden en antibakteriel fungicid og kan binde metalioner, hvilket kan gere

stoffet til attraktivt i forbindelse med behandling af arkaeologisk tree.



List of abbreviations and expressions

This work contains a number of words and expressions which are common in either

chemistry, wood engineering, or conservation. Since these expressions may not be well

known to those individuals who do not work within all fields, a list of abbreviations and

expressions is given below.

ATR

Bjorkman lignin

Cellulose whiskers

Cinnamyl alcohol

Coagulation

Coniferol

Attenuated Total Reflectance. An attachment to an IR
spectrophotometer where the sample can be placed on a small crystal,
often made of diamond, and examined as long as good contact between
sample and crystal remains (usually by a metal pin pressing the sample
onto the crystal). This eliminates the need for sample preparation (like
grinding KBr pellets or cutting thin slices of sample material) as long as

one dimension of the sample is small enough to fit under the metal pin.

Also known as Milled Wood Lignin (MWL) this is the fairly unchanged
lignin one gets by grinding wooden tissue finely and extracting lignin

with aqueous dioxane (aka 1,4-dioxacyclohexane).

The small mostly crystalline ellipsoids which remain after cellulose
fibres have been treated with acid to make the amorphous material
dissolveable in water.

(E)-3-phenyl-2-propen-1-ol. A basic chemical structure similar to the
one found in the monolignols and thus the name is sometimes re-used

when naming these.

The initial collision of particles in suspension into larger forms. It may

lead to flocculation.

See 'coniferyl alcohol'.
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Coniferyl alcohol

Consolidant

Coumaryl

Dispersion

DHP

DLS

ESEM

Flocculation

FTIR

XII

4-(3-hydroxy-1-propenyl)-2-methoxy-phenol. One of the monolignols,

also called 'coniferol'.

Any material added to archaeological artefacts to reinforce and

preserve them.

See 'p-coumaryl'.

A liquid in which particles are suspended (as opposed to as solution

where there are no particles because they dissolve).

DeHydrogenation Polymer. A lignin-like compound made by
dehydrogenating one or more monolignol(s), causing them to

polymerise.

Dynamic Light Scattering. A technique which wuses intensity
fluctuations of a laser over time to measure particle size and mobility in

dispersions.

Environmental Scanning Electron Microscopy (see 'SEM'). The
technique is the same as regular SEM but uses a low vacuum (rather
than the usual high vacuum) which means that it is possible to scan

samples without coating them.

When particles in dispersion stick together, potentially leading to huge
agglomerates. The initial process is called 'coagulation' with
'flocculation' being larger particles. Obviously, this must be avoided in

impregnation baths.

Fourier Transform Infra Red (spectroscopy). A common technique
which determines the relative amount of functional groups in a

compound by examining the absorption of infra-red light (typically



Glyoxal

Holocellulose

HPLC

In situ preservation

IR

Klason lignin

Kraft pulping

with wavelengths in the mid infra red region around 2500-25000 nm)

by said compound.

Ethanedial (IUPAC), O=CHCHO. The smallest dialdehyde. It may be
used in place of formaldehyde for polymerisation experiments due to

lower vapour pressure and thus toxicity.

The non-aromatic 'building blocks' of wood. Holocellulose is a way of

referring to both cellulose and hemicelluloses (but not lignin).

High  Performance  Liquid  Chromatography. A  standard
chromatographic method which separates different compounds usually
based on their interaction with the material in a packed column. A
detector then measures the amount of components in the solution over

time.

The practice of leaving found items buried (usually when there is
insufficient money for proper conservation) in order to avoid exposing

them to air and other factors which might degrade them further.

Infra Red. If a kind of spectroscopy, see 'FTIR'. Note that IR often
means Mid Infra Red (MIR) the region from 400 to 4000 cm™ (2500-
25000 nm).

The insoluble remains of wooden tissue after treatment and refluxing
with H,SO, (initially 72% then diluted during reflux). This lignin has

been heavily modified by the acid.

The process which separates cellulose from lignin during paper

production. The obtained 'kraft lignin' is sulphonated.
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MALDI-TOF

Monolignols

MWL

NMR

Paraloid

Matrix Assisted Laser Desorption/Ionisation — Time Of Flight mass
spectrometry. A technique where a UV laser is used to ablate the upper
layer of a sample. The constituents are then ionised and led through a

mass spectrometer to identify chemical components.

The three basic cinnamyl alcohol monomer 'building blocks' which
make up most of the lignin structure: p-coumaryl, coniferyl, and sinapyl

alcohol.

Milled Wood Lignin. Also called Bjorkman lignin.

Nuclear Magnetic Resonance (spectroscopy). Also simply '™R'
(especially in the field of medicine). A technique which utilises a
magnetic field to detect atoms with an odd number of protons. The
spectrum is measured as a 'chemical shift' (typically relative to a
reference compound/solvent). Each top gives information about the
chemical structure of the compound as well as the relative quantity of
each type of atom. 2D-techniques (like HMQC or HMBC) can even
determine how atoms are connected and thus the chemical structure of

the sample can be extrapolated.

A range of common consolidants which can be dissolved in acetone.
The most common is probably Paraloid B-72 which is an

etylmethacrylate-metylacrylate co-polymer.

p-coumaryl (alcohol) 4-[(E)-3-hydroxy-1-propenyl]phenol. One of the three

PEG

XIV

monolignols.

Poly(ethylene glycol) or 'poly(oxy ethylene)' according to [TUPAC - and
sometimes seen as 'poly(ethylene oxide)'. An ether chain, H[-O-CH,-
CH,],-OH, commonly used to stabilise waterlogged wood by watery

impregnation and subsequent freeze drying.



PF

F:P(-ratio)

Phenol-formaldehyde. A very durable thermoset polymer and the first
polymer to be mass produced under the name Bakelite. It is resistant to

most acids, bases and solvents.

The ratio of formaldehyde to phenol in a PF polymer. The higher the
number the more cross-linked and durable the resulting polymer

becomes. Below a value of 1, the polymer does not harden properly.

Raman spectroscopy Named after C. V. Raman, this kind of vibrational spectroscopy

Reaction wood

RH

SEM

gives results similar to IR spectroscopy. Spectra are recorded by
shining a laser at the sample so it is a non-destructive technique.
Fluorescence from organic (often aromatic) compounds may make it

difficult to obtain spectra from archaeological samples.

Wood which forms when the tree is under pressure or has some uneven
support (for example when leaning). In softwoods such wood is called
'compression wood' and forms below the overhang. In hardwoods it is
called 'tension wood' and forms above the overhang. Compression
wood has a high lignin content while tension wood is made up almost

entirely of cellulose.

Relative humidity (the ratio of the partial pressure of water pressure in
a given volume of air compared to the saturated water vapour pressure

at a given temperature).

Scanning Electron Microscopy. A kind of high resolution microscopy
where images are obtained by scanning the sample with an electron
beam which gives information about the topology and electrical
conductivity of the sample. Note that samples normally have to be

coated (sputtered) with a thin layer of carbon, gold and/or palladium to
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Sinapyl alcohol

Specific gravity

TAPPI

make the samples conductive and prevent electrostatic charges which

distort the images.

4-methoxy-3,5-dimethoxycinnamyl alcohol aka. 4-(3-hydroxy-1-
propenyl)-2,6-dimethoxphenol. One of the monolignols.

This is the ratio of the weight of a given volume of wood compared to
the weight of an equal amount of water. Note that this is similar to
density (since water has a density of approximately 1 g/cm® at room

temperature) but unitless.

Technical Association of Pulp and Paper Industry.

Whiskers, cellulose See 'Cellulose whiskers'.
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1. Introduction

From times immemorial, humankind and wood have been inseparable. Wood is integral
to everything from structures to tools, boats, and weapons [1](p. 434). Paper has long been
integral to communication and learning. Despite the abundance of steel and concrete, wood
is still used when building cottages, housing, and furniture (possibly modified — for example
into fibreboard). Wood products seem to have an bright future as bio-degradable and
environmentally friendly materials. With the ability of trees to absorb CO,,
environmentalists hope to see forest areas spread. Current engineering makes it possible to
design what is referred to as 'liquid wood' — a wood-based material which can then be cast
into a desired shape, allowing future television sets or computer cabinets to be made from
what is essentially wood [2]. Thus wood is likely to continue to play an important role in the
history of humankind.

The link between humanity and wood has been interpreted metaphorically as well. The
ancient Chinese philosophical system of Five Elements (0 [ - wi xing) even considers
wood the most human of the fundamental five 'steps' or 'phases’ due to its ability to grow
(31, [4].

Jorge Agustin Nicolds Ruiz de Santayana y Borras (better known as 'George Santayana'
in the US where he lived) wrote the famous words, “Those who cannot remember the past
are condemned to repeat it.”’[5]. Taken as a general encouragement to understand the past,
one might believe that wooden finds are essential in describing our ancestors. This is not
always so. Past cultures have been defined from leftover stone and ceramics since organic
materials are not found at archaeological sites as often as inorganic ones. This makes any

surviving wood rare and thus precious [1](p. 436).

Sadly, the abilities which sometimes make wood desirable, such as biodegradability,
cause problems when one wishes to preserve wood from earlier times. Archaeological wood
is often found submerged in bogs or similar wet places which provide a certain measure of
protection from biological degradation. Such finds are often extremely fragile and warp and
collapse upon drying, making it vital to consolidate these precious bits of history in order to

preserve them for future generations.



Even once treated and put on display, wooden artefacts may prove problematic. In the
case of the most richly ornamented Viking Age find in the world, the original treatment
proved damaging to the wood (this is fully explained in chapter 2 'The Oseberg find' on
page 7). This exemplifies the need to understand the possible degradation processes
occurring in treated wooden artefacts as well as to develop new materials without such

drawbacks.

Chemists, in general, can make valuable contributions to the field of cultural heritage.
Firstly, the 'impurity' of many archaecometrical samples makes it that much more important
to try to identify as many constituents as possible. Secondly, conservators are very skilled at
treating, displaying, and restoring objects. Unfortunately, they are often forced to work with
woefully little information. A wrong guess can obviously lead to a wrong treatment, which
may be harmful to the treated artefact. Even if everything about a given chemical analysis
cannot be elucidated (if, for example, a vibrational spectrum contains unidentifiable bands),
it is much better to get a rough idea about the object than to know nothing (chemically
speaking).

Developing new consolidants in particular is a task for chemists as it requires some
understanding of the chemical composition of both the proposed consolidants and the wood
itself. On the other hand, it cannot be done without taking the practical and ethical concerns
of a conservator into account. For this reason, it required a close collaboration between both
kinds of professionals. The work has also brought together past and present by including
'historical' chemical materials like Bakelite (patented in 1907 in the US by Leo Hendrik

Baekeland [6]) while also looking to modern bio-inspired materials.

1.1 Background

The present state of Oseberg find is the primary reason why this Ph.D. project was
initiated. Thus the story of Oseberg is told and comments about alum-treated materials are
made throughout this thesis. However, it is imperative to note that the aim of this study is
not to save the Oseberg find. Another related Ph.D. project — aiming to identify the degraded

wood from the Oseberg and test existing conservation treatments — was initiated shortly



after this project began. Thus this work has been focussed on defining possible new
consolidants for archaeological wood from a chemical perspective while testing some of
those materials. The experiments are focussed on phenol-formaldehyde, cellulose whiskers
and chitosan but an extensive literature review is given initially since it is the framework on
which ideas about new consolidants have been built.

Several ideas arose which could not be implemented due to time constraints. These
possible future consolidants are discussed at the end of the thesis (specifically chapter 8.6
"Future avenues of research' on page 185). For this reason, the work will possibly be more
valuable for wooden artefacts which will be found and treated in the future than the

displayed items in our museums today.

Since this work was funded by the Museum of Cultural Heritage but carried out mainly
at the Department of Chemistry, it was a requirement that this thesis contains sufficient
background information to make it readable by both conservators and chemists — and that
the so-called 'edutainment' carried out was included since public education and lecturing are
an integral part of museum workings (see Appendix A). Thus several concepts are explained
at a more basic level than required within the respective fields and the linguistic style is
deliberately kept fairly fluent. This will allow future students to read this thesis in order to
gain an overview of background and ideas of the project, which means future works can be

more focussed on actual experiments performed.

In order to follow conventions (particularly in the field of conservation) some words or
expressions are used, which do not correspond to IUPAC (the International Union of Pure
and Applied Chemistry) recommendations. Thus the text refers to 'PEG' or 'polyethylene
glycol' rather than the recommended IUPAC name 'poly(oxy ethylene)'. Similarly, it has
been attempted to write the thesis in British English, balancing between traditional spelling
and certain [TUPAC recommendations for spelling (for example using 'sulphur' rather than
'sulfur’). Also, note that the word 'artefact' is used in the archaeological sense (objects
recovered from an earlier culture) rather than the chemical sense (faulty data).

References in this work are placed at the end of the content in which they are used. This
does not carry over between paragraphs, so in case a given reference has been used for

several consecutive paragraphs, it will be noted at the end of each one. The reasoning



behind this is that it is easier to see where summary remarks and speculations have been

made by the author as these are put after the reference.

1.2 Initial ideas and work flow

When the project started, it was realised that there were a bewildering number of
directions in which to proceed. Based primarily on discussions with F. K. Hansen, H.
Kutzke and S. Braovac these included (but were not limited to):

» Carbon-based polymers (see chapter 6.2)

e Artificial lignin (future ideas in chapter 8.6.4)

* Re-use of waste lignin

» Silicon-based polymers (future ideas in chapter 8.6.2)

e Nanoparticles (for acid neutralisation) (see chapter 7.4)

* Nanoparticles (for structural support)

e Carbon nanotubes

* Biomimeralisation (later changed to biomimetics — see chapter 7.1)

e Bacterially produced cellulose (changed to cellulose whiskers — see chapter 7.2)

Obviously, it would be impossible to cover all these aspects within the relatively short
time frame of a Ph.D. project. Unfortunately, it was not obvious which of these approaches
would be most advantageous. At the same time, discussions at the Department of
Conservation led to a list of requirements (as seen in chapter 5.2 on page 75). Although it
was realised that it would most likely be impossible to satisfy all the requirements of such a
list, it served as a guideline of ideal goals throughout the project. This led to the initial phase
of the project being a literature review in order to better determine which approaches
seemed possible to implement while fulfilling as many of those requirements as possible.

In the initial stages of the project, it was envisioned that artificial lignin would be an
interesting road to pursue, so tests on phenolic polymers were started as they would be
chemically similar to lignin. It was believed at the time that relevant information about
phenol-formaldehyde (PF) would be readily available and this would allow easy
implementation of the compounds. Tests on phenolic compounds were discontinued for two

reasons. Firstly, became apparent that actually treating archaeological wood with PF was
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much more difficult than originally envisioned. Secondly, the people at the Department of
Conservation expressed their increasing concerns about the toxicity of the monomers
required during impregnation. In stead, the project was turned towards biomimetics as this
field dealt with so-called 'green' chemistry. Although water is a problematic solvent for
alum-treated material (see for example Figure 6.16 on page 110), it would be ideal for
treating new waterlogged finds. Initial tests started on cellulose as it is already present in the
degraded wood. Sadly, it was difficult to keep the cellulose dispersed. Chitosan was thus
investigated as an alternative. Despite initially promising results, the project ran out of time

and many roads were left as ideas for future avenues of research.






2. The Oseberg find

Since the threat of degradation now
facing the Oseberg find was a significant
reason this Ph.D. came about, the find
will be described in some detail although
the work itself has not been solely
focussed on the artefacts from Oseberg.
Additionally, the Oseberg collection
serves as an excellent example of
unforeseen consequences arising due to
the choice of consolidant and thus

demonstrates the need for the

development of new treatments.

o ) ~ Figure 2.1: Photograph of a Norwegian 20 kr coin
The Viking ship from Oseberg is
showing the profile of the Oseberg ship.

probably one of the most famous

historical artefacts in the world and helps explain why the Viking Ship Museum in Oslo is
the most visited museum in Norway [7]. Along with the animal head posts and sledges, the
profile from the Oseberg ship has been used as a worldwide symbol of the Viking Age. The
profile of the ship can be seen on the Norwegian 20 kroner coins — as seen in Figure 2.1 —
which is fitting as the Viking Age collections are considered national symbols.

Sadly, most of the Oseberg collection is in a precarious state due the long-term effects of
the alum originally used to preserve the waterlogged wood (for more on the treatment itself,
see chapter 4.1.3 'Alum treatment' on page 54). The treatment was successful and has kept
the items on display for more than a hundred years. It was probably the best alternative
given the choices available at the time of consevation. Still, several complications now

threaten the stability of the wooden items.



2.1 The contents and history of the find

The discovery of the ship was made on the 8" of August 1903 and the excavations
started in June 1904 and finished later that year. From this point it would take another 21
years before all artefacts were treated and reassembled. The discovery at Lille Oseberg
generated so much interest that people flocked to the excavation site and fences, signs, and a
guard even had to be posted. The discovery was a turning point in Norwegian history
because laws at the time did not require such historical artefacts to be turned over to the
state, allowing the owner of the property. Knut Rom, the farmer who discovered the
Oseberg ship on his lands, was allowed to sell it to whomever he pleased. After the
excavations were complete, the agreement with the government had still not been settled.
An estate owner, Fritz Treschow, bought the ship for 12000 kroner and generously donated
it to the Norwegian state. To prevent finds from falling into the hands of private collectors in
the future, the government passed a bill to prohibit the export of antiquities or sales to the
highest bidder [7].

The mound was originally 6 m high and about 40 m in cross section. It is situated about
4 km from the sea 15 m above sea level (note that both these numbers were smaller in
Viking times). Most of the timber was very well preserved, being laid out on blue clay and
with clay-containing peat covering the cairn. The weight of this arrangement pressed down
on the ship and broke the keel in two. This damaged many of the objects inside. Some time
after the burial, grave robbers took away anything made of gold and/or silver — and even
parts of the bodies [8].

The mound contained, among other things, the skeletons of two women, fifteen horses,
an ox, food, equipment for travelling by both land and sea, an entire ship, and four sledges.
Damage from the crushing weight of the mound meant one of the sledges was put together
from 1068 pieces [8]. It is unknown who the buried women were but they were clearly
worthy of great respect. It is assumed that one of them had inherited land after a late
husband or that they served in some important religious position [9].

The highly ornate surfaces of the wooden items makes them special and in this regard
the Oseberg find is the most unique of all Viking Age finds. Examples of these items as they

appear today can be seen in Figure 2.2.



Carbon dating gave an age of A.D. 720+80, although the style of decorations would
indicate a later date [8]. Current research puts the date of the burial at 834 A.D. Note that the
ship had been in use for several years at the time, so the wood is old enough to be in the
range of the carbon dating. The ship itself is not only the most ornamented Viking Age
vessel found but also the earliest Scandinavian vessel found with a sail. The design was
different from finds of ships dated just 50-75 years later, with the Oseberg ship having lower
sides — presumably because it was meant to sail in fjords and along the coast rather than

across the open sea [9].

Figure 2.2: Examples of the highly ornate items from the Oseberg find. To the left, the partially

alum-treated wagon. To the right an animal head post which has never been consolidated.

2.2 Conservation history of the find

To understand the consolidant choices available to conservators at the time, one must
remember that polymer chemistry was not developed. Although Thomas Graham began
distinguishing between crystalloids and colloids in 1861, these were still thought of as
agglomerates of smaller molecules rather than single large molecules until about 1930. H.
Staudinger and Pickles, starting in the late 1920's, both attempted to convince others that
such structures are in fact large linear molecules [10](p. 1-2). The first commercial plastic,
Bakelite, was not patented until 1907 [6]. Thus plastics were unknown at the time the

Oseberg find was treated and relatively few viable conservation methods existed.



The ship itself was treated with creosote and linseed oil. Another application of linseed
oil and white spirit was performed in 1957 [8]. Since the ship itself was never treated with
alum, but simply dried and lacquered, it is currently in significantly better shape than most
of the other artefacts from Oseberg [11].

Many of the other pieces were treated with alum (for more on the treatment itself, see
chapter 4.1.3 'Alum treatment' on page 54) and a following application of linseed oil and
lacquer. It was found that the alum treatment flattened the surfaces and thus blurred the
details of the many fine carvings. To prevent this, some of the objects (such as two sledge
shafts) were kept under water in a formalin solution for 50 years (until 1954) [8].

The waterlogged wood has lost most of its cellulose and only about half the dry matter
expected in fresh wood remains in the Oseberg wood [8]. Both cellulose and lignin was left
in the wood after it had been contained in water for 50 years after excavation (although
more exact measurements are not given) [12]. After having been stored in water for so long,
the wood had become very soft and on several occasions fungi had grown in the containers
despite the added 2% formaldehyde. The displays were glass sides on a brass bottom. Some
of the finds had been skewered on lead spikes covered with 'Bakelite' (which may or may
not have been phenol-formaldehyde, see the second paragraph of chapter 4.1.5 'Phenol-
formaldehyde treatment' beginning on page 59). The released ions reacted with the silver
alloys in nails ornamenting the carvings. This turned the liquid green and deposited powder
and crystals of lead oxalate. In at least one case, crystals of metallic copper were also found
on the brass rods [8].

To minimise treatment of objects, some of the water was replaced with trimethyl
carbinol and then dried in vacuum. Thus two of the animal head posts on display today
consist merely of the degraded wood with nothing to stabilise the core of the objects. The
method also left some transverse cracks despite every precaution — and despite the fact that

this had not happened in the preliminary experiments [12].

Different bulking materials were tested on the waterlogged Oseberg wood. Urea
formaldehyde has been used at various institutions for preserving waterlogged wood. The
results seem to depend heavily on the state of the wood and its acidity — and was thus
deemed too risky for the Oseberg wood. Cetalol S. A. is an alcoholic mix which can be

melted and solidifies on cooling. It was found to twist and crack the wood upon treatment.
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Jasperol, which is a sulphonated mix of alcohols from spermaceti oil, was too soft and gave
the surfaces a 'fatty' appearance. Thus, in many cases, PEG (Poly Ehtylene Glycol, another
name for poly[oxy ethylene]) was used. The objects were left in the PEG solution for 'some
days'. Despite some cracking and shrinkage, many of the coarser objects were successfully
treated this way [12]. The short time of impregnation may have made the shrinkage and
cracking much worse than it really had to be (see chapter 4.1.4 'Poly(ethylene glycol)

treatment' on page 57).

There was no room to display the Oseberg find at the existing Historical Museum. In
fact the Tune ship and the Gokstad ship were already stored in sheds. Thus a new museum
was built specifically for the Viking ships. It was not completed until 1957, although the
first wing was finished earlier and the Oseberg Ship moved there in 1926 [7].

A fairly constant RH (relative humidity) is maintained in the display cases by storing
supersaturated salt solutions in the stands [12]. This practice is still in use [11]. Monitoring
is going on at the time of writing to determine how much effect the changing seasons have

on the Oseberg ship in order to determine if further precautions are necessary.

2.3 Current challenges

Some years back, the conservators at the Viking Ship Museum noticed that bits had
fallen off the sledges. This led to an extensive project where the supports were rebuilt and
the items on display better stabilised. During this work it became evident that the objects are
now unable to stand without support in the way shown on old pictures taken just after the
original conservation [11].

There are several problems facing the alum-treated objects of the Oseberg find —
especially the complex mounted objects like the sledges. First of all, the alum-treatment
seems to have generated sulphuric acid as the salt decomposed during the initial heating.
The pH value of the finds now lies in the range of 0-2 when tested by wet pH strips. Such an
acidic environment has degraded both the cellulose and the lignin in the finds. The acid
causes the paper wrapping originally used to pack the items on storage to disintegrate. Much
worse, the finds themselves are often so deteriorated that they would powder where it not

for a thin layer of lacquer holding everything together [11], [13].
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The state of a given piece of alum-treated wood can be judged by looking at it since
darker parts are typically the most fragile [11]. This can be directly linked to studies of
lignin wood pulps which show that those with the highest delignification factor also display
the most colour. The most likely explanation being condensation as the degradation of lignin
seems to occur through demethylation, ether bond cleavage, and breakage of the CB-Cy
bonds [14]. Many of the treated wooden items (especially pieces in storage) are now very

dark and powdery.

Figure 2.3: X-ray images (top) and photographs (bottom) of a part of one of the sledges from the

Oseberg find. Note the vast amount of filler material and screws in the artefact. © Museum for

Cultural History, University of Oslo.
In addition to the general degradation, most of the mounted pieces are filled with screws
and nails attaching them to their frames. An example of this can be seen in Figure 2.3. The

corroding metals release ions which may act as catalysts, speeding degradation along.
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Iron in particular seems to catalyse various active degradation processes in the Vasa (the
most famous shipwreck in Sweden), both of holocelluloses (the non-armoatic organic
content of wood) and of PEG. Comparison between computer simulated and actual MALDI-
TOF (Matrix Assisted Laser Desorption/Ionisation — Time Of Flight mass spectrometry)
data indicate that a random cleavage of PEG chains is going on. The problem seems more
pronounced in the middle of the wood. Thus iron is a far more serious problem than sulphur
[15]. On the other hand, corroded metal pins seemed to act as a biocide in at least one
previous study [1](p. 339). Despite this positive side effect, ensuring that metal ions do not

catalyse the degradation of the remaining Oseberg material is of vital importance.

Sulphur is a concern in museums in general. Acidic sulphate salts on the surface of the
Vasa hull presents a similar case. It is estimated that there are still about two and a half
metric tonnes of S in the hull, all of which would generate another six tonnes of acid.
Exposure to moisture seems to generate sulphur-containing salts in the outermost layers of
the wood. This links water to acid formation [16]. Considering that the degraded finds from
Oseberg were treated with a sulphate salt, sulphur contents are obviously very high in these
finds as well. Moisture is also readily available through the air.

Since it is tricky to keep the Vasa completely dry, various methods for neutralising the
salts have been investigated, with a prominent solution being ammonia vapours. A mild
exposure does not seem to degrade the PEG or wooden structure. While neutralisation with
nanoparticles might be possible, the extremely alkaline environment around the particles
would likely damage the lignin as well. It is also unlikely that CO, will convert the
hydroxides to carbonates as quickly as is often estimated (if it penetrates very far at all).
While ammonia might reduce the crystallinity of cellulose, the reduced amount used in
vapour penetration is not likely to affect the lignin severely [16]. Still, ammonia is a very
strong base and it would be preferable to find a less severe method for de-acidification —

both for the Vasa and for the items from the Oseberg find.

The advanced state of decay within the Oseberg wood makes it difficult to treat without
permanent damage. Many items require urgent attention and re-treatment. Currently, the
pieces are falling apart. One must wonder if it is better to abide by all the recommendations

of good conservation practice or if it is more important to save the objects. The wrong kind
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of irreversible treatment means that the objects may decompose in the future with no hope
of saving them. On the other hand, such deterioration will occur anyway, given the current
circumstances — and on a much shorter time-scale — leaving us without what might be

considered the most unique Viking age discovery on Earth.
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3. Structure and composition of wood

In order to invent new consolidants for archaeological wood, it becomes necessary to
understand the physical and chemical composition of wood itself. The following section
first examines the physical structure of wood and then moves on to discuss the chemistry
related to fresh wood. Notes on degradation of wood is given and archaeological wood

discussed.

Wood has existed since the Devonian era (from 416 to 359 million years ago). This was
the time when fish evolved lungs and legs. Seed-bearing plants spread across the land,
forming the symbiotic relationship with insects still known today. True lignin-containing
plants and trees evolved at the same time [17]. Currently, lignocelluloses have been
proposed as an alternative to fossil fuels [18], making wood a potential source of renewable

energy.

3.1 Structure of fresh wood

Even prior to degradation, wood is rather complex and difficult to define. Roger M.
Rowell' was visiting Oslo and explained that he had not managed to put together a
definition of wood any shorter than: “A porous three dimensional, hydroscopic, viscoelastic,
anisotropic bio-polymer composite composed of an interconnecting matrix of cellulose,
hemicelluloses and lignin with minor amounts of inorganic elements and organic

extractives.”

Wood is usually cut in one of three planes, the transverse (cross sections), the radial
(going through the centre of the stem) and tangential cuts (similar to radial cuts but not
going directly through the centre of the stem). These are illustrated in Figure 3.1. While
different kinds of wood are obviously different on a macroscopic level (branches are not the
same as roots), the same is true at a microscopic level. Softwoods (or gymnosperms) are

mainly conifers whereas hardwoods (or angiosperms) are mainly flowering trees [19].

1 Rowell is a professor emeritus at the University of Wisconsin, Madison, USA. He has contributed to

numerous books on the subject of wood and wood chemistry.
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Archaeological softwoods typical in Norway include spruce and pine, while typical
archaeological hardwoods include oak, birch, and beech [11]. Both types of wood have a
thin, living outer layer under the bark, called sapwood, and a darker interior material, called
heartwood. The cells have growth rings in climates with distinct seasons as thicker and more
open earlywood and narrower layers of more dense latewood. Softwood lacks the ellipsoid
vessels which are found in hardwoods (these can be seen in Figure 3.5 on page 41) [19].

In the middle of each wooden cell is a void called the lumen. The cell wall consists of
three main regions: the middle lamella, the primary wall, and the secondary wall. The
middle lamella holds cells together and has a high lignin content. The primary wall contains
largely randomly orientated cellulose fibres. The term 'compound middle lamella' refers to a
middle lamella and primary walls of two cells on either side of it. The secondary cell wall is
composed of three layers. In the first, S, the cellulose is arranged in a helical fashion. The
next layer, S,, is the thickest and thus influences the characteristics of the secondary wall the
most. The innermost layer, S, contains almost no lignin since cellulose has a higher affinity

for water. The structure of a cell can be seen

Tangential

in Figure 3.2. Pits allow cells to
communicate. The pit membrane is composed
of carbohydrates (not phospholipids) and is a
remnant of the primary wall [19].

Interested readers are directed towards

Ref.[19] where a more thorough description

of wood cell physiology can be found.

Pores in fresh wood have sizes in the
range of 10-400 um [20](p. 12). This allows
solvents to penetrate but might cause Transverse

problems when particles flocculate (see

chapters 7232 "Zeta potential v

measurements' and 7.2.4 'Coagulation by iron Figure 3.1: Illustration of the three kinds of
ions' beginning on page 147). planes wood is usually cut in. Notice that
horizontal ray cells can be seen in the radial

plane.
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Many solvents cause wood to

. . . Primary Wall
swell or shrink. Dilute acids have
less effect than dilute bases. 81
Concentrated acids, on the other - s,
hand, not only cause increased
swelling but also destroy the wood 33

through hydrolysis. Most aqueous

solutions cause swelling similar to Lumen

that of water, but some saturated N e
solutions may cause increased

. Middle
swelling.  Non-polar  solvents lamelia

usually cause the least swelling,

Figure 3.2: Schematic showing the composition of wood
while solvents like oy layers. The middle lamella holds cells together. The
dimethylformamide or L= outer layer is called the Primary wall while there are three
butylamine cause even worse layers in the secondary wall: S;, S, and S;. Note that the S»
swelling than water [20](p. 28-29). layer is significantly thicker than the other layers.

This means that choice of solvent

can be extremely important when treating archaeological wood.

3.2 Chemical composition of fresh wood

Plant cell walls have a highly complex 3D structure. The number of polymers and their
interactions makes it difficult to isolate and investigate each individual polymer. Cellulose
has the most regular crystalline form and is thus the easiest to separate, but it is still energy-
demanding to free it from hemicelluloses and lignin. The kraft-pulping process often boils
the components at 170° in 2 M caustic soda and sodium sulphide — usually degrading the
components in the process [21].

Cellulose is the most common bio-polymer and lignin the second most common [22],
[23]. Cellulose, hemicellulose and lignin typically make up about 95% of fresh wood. Fats,
waxes, resins etc. only make up about 1% while inorganic material (often called 'ash’
because it remains when wooden samples are heated to 600°C) also makes up a few percent

of the wood [24](p. 112-113).
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Lignin forms a three-dimensional network within the wood, bonding to the
polysaccharide fraction. If the polysaccharides are decomposed using acid, the lignin
remains as a brown amorphous powder [20](p. 17-18).

Tests for characterising wood can be found on Ref.[24] p. 122+. The typical composition

of hardwoods and softwoods can be seen in Table 1 below.

Table 1: Main composition of softwoods and hardwoods [20].

Constituent Softwood (%) Hardwood (%)
Cellulose 45-50 40-45
Hemicelluloses 15-20 20-30
Lignin 25-30 20-25

Wood normally has a pH between 3 and 5.5. This means that a weakly acidic
environment will not damage the wood. Hardwoods, having a lower lignin content than
softwoods, are more susceptible to acidic or alkali degradation. Wood absorbs alkaline
solutions more readily than acidic ones, and are more quickly degraded by oxidising

compounds (like HNO;) [25].

3.2.1 Cellulose

Cellulose is a single well-defined polymer of D-glucose (unlike hemicellulose or lignin
which are made up of various chemical structures). It is the main structural polysaccharide
of plant cells and make up about 40-45% of wood. Each molecule contains about 7000-
12000 glucose units, (CsH;¢Os)n, joined by eliminating water from hydroxyl groups. The
structure of a cellulose molecule can be seen compared with chitin and chitosan in Figure
7.16 on page 156. Each cellulose molecule is about 3-5 um long. Hydrogen bonding both
keep the individual molecules linear and leads to strong connections to other molecules.
Each bundle of molecules is called an 'elementary fibril' and has a diameter of 2-4 nm. The
alignment is so regular that about 70% of the structures are crystalline. This results in a high
tensile strength and (usually) low solubility [24](p. 112-113). Experiments with crystalline

cellulose are described in chapter 7.2 'Cellulose whiskers' beginning on page 129.
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3.2.2 Hemicelluloses

Hemicellulose is also called polyose. Unlike cellulose, hemicelluloses consist of a
variety of related molecules which usually have branched chains consisting of 100-200
sugar residues. Hemicellulose and pectins make up about 20-30% of wood tissue mass.
However, pectins are a minor component in wood, making up 1% mass or less (during early
growth pectins constitute the cell wall and are thus later found in the middle lamella). These
polymers mainly contain galacturonic acid units and are highly soluble in neutral water. The
hemicellulose polysaccharides are different from cellulose in that they may be dissolved in
aqueous alkali. They were thus thought to be intermediaries in cellulose construction and
called 'hemicellulose' [24](p. 113-115).

Exact components vary among tree species and wood structures. In softwoods, the major
hemicellulose is glucomannan which makes up 10-15% of the wood mass. It is composed of
mannose, glucose, galactose and acetyl in the ratio 4:1:0.1:1. Other major components are
arabinoglucoronoxylan, which makes up 7-10% of the wood (and consists of xylose, 4-O-
methylglucuronic acid, and arabinose in the ratio 10:2:1.3), and galactoglucomannan which
makes up 5-8% of wood (consisting of mannose, glucose, galactose, and acetyl in the ratio
3:1:1:1). There are usually about 100 residues per molecule in softwood holocelluloses.
Hardwood hemicellulose polymers, on the other hand, are usually made up of about 200
residues per molecule. The typical components are glucuronoxylan, which makes up 15-
30% of the wood (consisting of xylose, 4-O-methylglucuronic acid, and acetyl in the ratio
10:1:7), and glucomannan which makes up 2-5% of the wood (and consists of mannose and

glucose in the ratio 1-2:1) [24](p. 113-115).

3.2.3 Lignin

Since lignin offers strength to the cell structure, and is difficult to degrade, it is
particularly interesting when discussing wood conservation. Since the possibility of
polymersing lignin-like compounds was discussed from the very beginning of this project
(see chapter 1.2 on page 4 and chapter 8.6.4 on page 187 for initial and future thoughts), its
chemistry will be described somewhat more thoroughly than was attempted for the

holocelluloses.
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Lignins are amorphous phenolic polymers, found only in vascular plants, that make up
20-30% of most wood [24](p. 115). Developing lignin to support them was a crucial step
which allowed plants to move onto land, and the basic pathway still in use in plants today
has been in use for 400 million years [22], [26]. Lignin is thus one of the most abundant
biopolymers (second only to cellulose) as roughly 30% of the organic carbon in the
biosphere is bound in lignin [23], [27]. Despite this accessibility, it has been hard to re-use
lignin from pulp by-products — partially due to the complex structure of lignin [27].

There is some confusion as to where certain kinds of plants and algae actually contain
lignin — and even how lignin should be detected, so it is not surprising that the exact

mechanism behind lignin formation is not understood [28].

To give an idea of how long lignin has been studied chemically, a few key points in the
early history of lignin chemistry are mentioned. The composite nature of wood was
discovered in 1838 by A. Payen who recognised that lignin was an “encrusting material”.
The term 'lignin' was introduced in 1865 by F. Schulze. P. Klason proposed in 1897 that
lignin was chemically related to coniferyl alcohol. He even assumed that part of the
structure was made up of coniferaldehyde or some hydroxyconiferyl alcohol rather than
pure coniferyl alcohol. These views — put forth as early as 1917 — influenced the way lignin
was thought of in the future. Klason removed carbohydrates from wood by hydrolysis with
sulphuric acid in 1908. Later, similar methods used other (possibly mixed) acids. In 1956-
57, Bjorkman and Persson discovered that almost one third of the lignin is extractable with
dioxane-water (9:1) after finely grinding the wood and suspending it in toluene. Lignin
extracted by this method is still known as “Bjérkman lignin” or milled wood lignin (MWL).
It contains less than half a percent of carbohydrates. Similar experiments with milled wood
have since been developed, but one must beware that they are not identical to the lignin in
situ [29].

The exact chemical composition of lignin varies not only between different plants but
even between different kinds of tissue within the same plant [30]. In fresh wood, lignin
makes up 15-35% with 60-80% found in the secondary wall (even though the middle
lamella has a higher concentration of lignin) [31](p. 9). It lends support to plants while
making the cell wall impermeable to water. Thus it is not surprising that it is in trees, which

have extreme needs of both structural strength and water, that high levels of lignin are found
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[32]. While fungi can degrade lignin (see below) it is otherwise a resistant polymer and it is
estimated that lignin will not be completely decomposed in soil until about 25 years have
passed [33] - although another study indicated that excess lignin used to anchor mulch was
noticeably degraded after a single year [34]. Lignin makes up 15% of all terrestrial biomass
[35] and thus lignin removal is a key step in preparing cellulose for paper manufacture.
Delignification would allow industrial use of delignified sawdust in stead of more expensive

cellulosic and cotton materials [23].

Lignins isolated from wood have polydisperse molecular weights ranging from
thousands to hundreds of thousands. They are primarily made up of three cinnamyl alcohols
((E)-3-phenyl-2-propen-1-ol) (only varying in the number of methoxyl groups attached to
the aromatic ring). During polymerisation they form a complex three-dimensional structure.
The molecules are held together by ester and carbon bonds, making lignin resistant to
hydrolysis. This means that lignin can be synthesised from the components left when wood
is dissolved in 72%"/,, sulphuric acid. On the other hand, lignins are not resistant to
oxidation and can be removed by bleaching [24](p. 115-116).

The exact classification of lignin depends both upon the genus of tree and the kind of
tissue within said tree. Softwood lignin is mainly made from coniferyl alcohol. Hardwoods
are made up of syringyl-guaiacyl lignin composed of coniferyl and sinapyl alcohols (the
molar ratios typically fall within the range from 4:1 to 1:2). The exact composition affects
the extent of cross-linking within the polymers. Generally those containing guaiacyl and p-
hydroxyl have the most cross-linking as unmethoxylated carbon atoms in the aromatic ring
may link to the phenolic oxygen of other monomers. This also means that hardwood lignins
are usually easier to degrade than softwood lignins [24](p. 115-116). Hardwoods are rather
heterogeneous when it comes to lignin distribution. Guaiacyl type lignin is found in the

secondary wall and middle lamella with syringyl lignin in the ray cells [24](p.119).

Since identification of lignin was not a part of these studies, interested readers may
consult Ref.[28] for a description of the most common chemical tests for lignin.
Unfortunately, these tests often give false positive results for non-lignins, and other
complementary methods of testing — such as IR (Infra Red), UV/VIS (Ultra Violet/Visible)

or ®C NMR (Nuclear Magnetic Resonance) spectroscopies — are recommended [28].
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Lignin is made up of mainly of three interlinking hydroxycimmaryl monomers H: p-
hydroxyphenyl, G: guaiacyl, and S: syringyl. Small amounts of other units exist as well. The
relative amount of each monomer varies between cell types. Hardwood lignins normally
consist of G and S units with traces of H, while softwood lignins are mainly composed of G
units with few H units [22]. The lignins and the different types of linking are shown on page
521 of Ref..[22] while various ways of forming lignin are shown on p. 526 of Ref.[22].
Kraft lignin is mainly composed of guaiacyl units, while hardwood lignin extracted with
organic solvents contains both guaiacyl and syringyl units [36].

The three alcohols p-coumaryl (4-[(E)-3-hydroxy-1-propenyl]phenol), coniferol (4-(3-
hydroxy-1-propenyl)-2-methoxy-phenol), and sinapol (4-(3-hydroxy-1-propenyl)-2,6-
dimethoxphenol) are called monolignols. When these are dehydrogenised, several resonance
structures result. This means that many different kinds of polymerisation are possible, and a
high degree of disorder is present within actual lignin [30], [37]. After basic synthesis, lignin
precursors are transported to the cell wall where they are polymerised [22]. The monolignols
themselves are fairly unstable and toxic and do not exist in abundance in plants.
Glycosidation through reaction with the hydroxyl group renders them non-toxic and enables
them to be both stored and transported. The monolignols concentrate in various parts of the
plant. If they have physiological properties beyond being the building block of lignin, these
have not been discovered yet [32].

The typical bond types can be exemplified by the following model compounds [40]:
arylglycerol-B-aryl ether (B-O-4 unit), phenyncoumaran (-5 unit), pinoresinol (B-f unit),
and dibenzodioxocine (5-5'-O-4 unit).

The most common bonds in softwood lignin (although hardwoods have a similar
configuration) are: gualicylglycerol-B-aryl ether (40-60%), phenylcoumaran (10%),
diarylpropane (5-10%), biphenyl (5-10%), diphenyl ether (5%), and pinoresol (<5%).
Structures of these compounds can be found in Ref.[30].

It has also been attempted to identify the components using IR spectroscopy. IR

assignments for lignin compounds can be found in Ref.[36](p. 1657-9).

The exact method by which lignin is polymerised has been tested and debated. Both

enzymatic and purely chemical mechanisms have been suggested. All that can be said for
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sure is that enzymes do not control the shape of the formed polymer rigorously [38],
although enzymes can effectively degrade not just the overall lignin structure but even the
aromatic rings [39]. The reaction paths for lignin polymerisation in both angiosperms and
gymnosperms have been mapped. *C marking indicates that the reaction which incorporates
acids into lignin goes through cinnamic acid which in turn can be converted into for eample
p-coumaric or sinapic acids. Many of the exact enzymes responsible for the reactions have
been identified and isolated [30].

UV light (from the sun or lamps in the laboratory) induce a change in hydroxycinnamaic
acids so that 20-30% of the solutions are made up of cis-isomers. Similar reactions may
occur in the bark of trees (note that most investigations are carried out on bark-free wood).
It is interesting that beech bark may stem from the dehydrogenative polymerisation of cis-

alcohols when the core wood is composed of trans-isomers [47].

The key to understanding how white rot is still able to decompose lignin (see chapter
3.3.1.1 'Fungal degradation' on page 29) has come mainly from chemical analysis of the
leftover wood. Thus it has been found that the content of both methoxyl groups and S-O-4
structure decrease when lignin is attacked by white-rot. It seems that there are three major
ways in which the lignin is degraded: cleavage of the propyl side chains (between the o and
B C's, forming benzoic acids), cleavage of the B-aryl ether bonds, and degradation of
aromatic compounds through oxidative ring opening. Other results indicate that the process
includes both oxidative and reductive reactions. Various enzymes have been employed to

study the exact degradation mechanisms [30].

Lignin is particularly interesting because it is biorenewable [36]. Phenolic medical drugs
are also gaining in popularity as many antioxidants found in fruits and vegetables are
phenolic compounds. Thus it seems that a varied intake of these compounds help prevent a
number of diseases (while dietary supplements consisting of a single kind of these
antioxidants curiously enough have no proven beneficial effect) [26]. The potential to use
lignin as a base for these drugs as well as for building materials makes the material
attractive to many fields — including that of conservation science. More on these thoughts

can be found in chapter 8.6.4 'Artificial lignin' on page 187.
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3.2.4 Chemical modification and synthesis of lignin

The aromatic contents of lignin seems to make it more resistant to typical archaeological
degradation then the rest of the wooden cell structure (see chapter 3.5.2 'Properties of
waterlogged wood' on page 38 for further elaboration). This means that a lignin-like
structure would not only be compatible with wood but also durable. The following section
summarises some of the attempts to polymerise lignin in order to determine if the methods
can be applied to conservation science (this discussion can be found in chapter 8.6.4

'Artificial lignin' on page 187).

The idea of making synthetic lignin is not new, and papers on this subject can be found
as least as far back as 1932. These early attempts at making lignin mainly involved heat-
treatment of wood components in an attempt to form the polymer [41]. Most artificial
lignins are sulfonated to allow better solubility in water. The sulfonic salt changes into
sulphonic acid below pH 3, causing lignin to precipitate (as the acid is not very water

soluble) [42].

Lignin has been extracted directly from wood in order to form lignophenols. The process
was very quantity-efficient [18].

Freudenberg and others showed that dehydrogenation of coniferyl alcohol with air could
produce a “dehydrogenation polymer” (DHP) which shared similarities with spruce
Bjorkman lignin [22]. DHP is similar to actual lignin in many aspects, including the
complex (and somewhat unpredictable) structure, although lignin contains fewer side chains
than DHP [22], [27]. It is made by dehydrogenation of phenolic monomers to form an
amorphous polymer structure [27]. Much information about the structure of lignin has been
gained through studying DHPs. These are made by mixing the precursor compounds with
either peroxidase/H,O, or laccase/O, as oxidisers. If the precursors are added slowly the
result is an end-wise polymerisation which more closely resembles actual lignin than DHP
made from applying everything in one go. When the process was interrupted before the
polymer could form, more than 30 different compounds were isolated and identified [22].
Artificial lignins also form many more unsaturated sidechain endgroups than natural lignins

since it is easier for many monomers to bond than the few which are accessible at a given
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time inside a plant. Thus monolignol radical primarily couple at the B-sidechain position
rather than only the 4-O- and 5-positions [43].

Polysaccharides improve the solubility of DHP (through formation of either covalent
bonds, colloidal aggregates, or both). Possibly due to this, very little DHP precipitates when
polymerised in solutions with high concentrations of polysaccharides. On the other hand,
the presence of the polysaccharides seems to promote cross linkages of the B-O-4 type,

making the structure of the DHP more closely resemble that of actual lignin [44].

The synthesis of monolignols is a bottleneck in the preparation of lignin model
compounds such as DHP. Multiple reaction steps were often required. Borohydride reagents
have been used to simplify the number of steps during synthesis. Borohydride Exchange
Resin (BER) in methanol can be used to safely and effectively produce clean 4-
hydroxycinnamyl alcohols. This method, despite relatively small yields, is still up to three
times cheaper than buying the alcohols directly (but note that this is still close to 1000
NOK/g). The exact procedure is given in Ref.[45].

Coniferyl alcohol DHP has been polymerised enzymatically (using horseradish
peroxidase) in a phosphate buffer at pH 7.6. The resulting sphere-like structures are believed
to be hollow, containing an onion-like structure of several layers separated by solvent or air.
On average, each contained 10° monomer units [50].

DHP from coniferin seem to form a more end-wise polymerisation than those prepared
from coniferyl alcohol. Thus it is closer to MWL in structure. Both the relative amounts of
available monomer units and pH seem to be important for the exact structure of the polymer

[46].

Although coniferyl and sinapyl alcohols are commercially available, they can be 10
times more expensive then 4-hydroxycinnamalaldehydes — and sometimes even of
questionable purity [45]. Monolignols have also been extracted directly from wood in a
quantity-efficient way [18]. No matter what approach is used, these monolignol alcohols
should not be stored for very long (days at most) before use in order to prevent oxidation

[45].
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Cis-coniferyl alcohol which is completely identical to the natural molecule may be
synthesised — although the yield is only 27% from vanillin [47]. Another approach is to use
2,6-dimethylphenol, which can be polymerised at room temperature to form poly(2,6-
dimethyl-1,4-phenylene oxide) (PPO). Under oxygen and with organic solvents, the
polymer grows to larger units than in water and under normal atmospheric air. The polymer
can depolymerise by adding more monomer or repolymerise via oxidative polymerisation
[48]. Of course, the cheapest solution may be to use actual wooden lignin. Lignin was

produced by treatment with 72% H,SO, for three hours, then ground in a mill [49].

The exact structure of the polymerised lignin depends upon interaction with nearby
surfaces. Graphite, for example, seems to interact in a way which causes increased ordering.
Lignin in itself is self-ordering, possibly because it is quite hydrophobic. It seems likely that
clusters of about 20 monomer units form at first and that these form modules of about 500

monomer units. Finally these modules aggregate to form globules of even larger size [50].

Lignophenols are modified lignin with a high phenolic content. Example molecular
weight of such highly cross-linked polymers is about 3500-4000 Da. The product may be
prepared from lignocatechol rather than monolignols, but can be polymerised using
peroxidase/H,O, in a 0.1 M methanol/phosphate buffer solution. Enzymatic reaction is also
a good way of turning lignin into phenolic resin [51]. Lignophenols can also be made using
more traditional chemical synthesis although this may require very high temperatures [52].
Lignophenols have been previously used in the consolidation of waterlogged wood where
they were shown to have better strength than PEG impregnation. The lignophenol in
question is a ligno-p-cresol made by phase separation using sulphuric acid. A 5% solution at
55°C was used for impregnation and the samples were subsequently freeze-dried [53].

Lignocelluloses might be interesting as an alternative to fossil fuels [18]. Ligno-p-cresol
mixed with cellulose formed network structures which kept cellulose mixed into them from
swelling. After drying, the cellulose-lignophenol structures did not change much by swelling

with water and re-drying [52].

Plastics reinforced with natural fibre is an environmentally friendly alternative to

existing composites. Thus lignin has been used as a natural adhesion polymer in plastics
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made from cotton and poly(lactic acid). Bast or hemp fibres, which contain some lignin,
also adhere better to a poly(lactic acid) matrix than cotton fibres made of pure holocellulose.
Lignin enforces adhesion and bound layers more efficiently together (breaks showed fewer
delaminations). On the other hand, lignin causes the mix to become more brittle and have a

lower impact strength. [54].

3.3 Degradation of wood

Wood found in museum collections rarely resembles fresh wood. This chapter describes
the various ways wood may degrade with a focus on waterlogged wood. This information is
intended to allow readers without conservation experience to understand how the properties
of wood change when it undergoes the transformation from fresh plants into what eventually

becomes museum objects.

More than 99% of the organic matter in wood is recycled into CO, and H,O [24](p. 119).
Without this biological degradation the surface of the Earth would be covered with
undegraded wood [56](p. 422). Less than a percent is waterlogged and becomes part of
bottom deposits in lakes and coastal regions. Most archaeological wood is found in

waterlogged form [24](p. 119-120).

Wood is a mixture of so many chemical and structural parts that the degradation of each
components must be investigated [57](p. 400). When wood used for buildings initially starts
to degrade, for example, the cellulose actually becomes more crystalline, strengthening the
wood. These changes stop after about 350 years, meaning that after this point archaeological
wood simply becomes more fragile [20](p. 19). It is also important to remember that age
alone does not affect the hygroscopicity of wood (at least as far back as the Recent Stone
Age) while the method of deterioration does affect it drastically [58](p. 94). Although the
knowledge that wood decays in soil and/or moist environments is ancient, the mechanisms

for such degradation are not fully understood yet [1](p. 438).

In a study with buried alder and oak, 90% and 98% of the polysaccharides and 15% and
25% of the lignin, respectively, was degraded. About 75% of the degraded polymers had
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been lost form the samples [31](p. 7). One should also be aware that while certain chemical
groups might remain in archaeological remains of wood polymers, it does not necessarily
mean that the polymer still possesses sufficient structural integrity to endure even in a

muscum.

Inland finds are degraded based primarily on local environment and burial conditions
rather than age [55](p. 31). Sediments affect oxygen penetration and thus lead to better
degrees of preservation at lower depths — with as little as 40 cm having a noticeable effect
[55]1(p. 39-40).

According to Ref.[59](p. 313), there are four deleterious agent groups concerning wood:

Biological: microorganisms, insects, bacteria, and animals (one may wonder why insects
are not included in the 'animal' category).

Chemical: photochemical and hydrolytic agents.

Mechanical: physical load, abrasion, and internal stresses.

Physical: hygroscopic (thermal-moisture) changes.

3.3.1 Biological degradation

Wood only escapes biological degradation if frozen or waterlogged under completely
anaerobic conditions [60](p. 68) although most so-called anaerobic environments are
probably not completely devoid of oxygen [55](p. 29-30).

If the wood is found in the ocean, like most shipwrecks, marine borers pose a serious
threat. Shipworm are thin borrowers feeding off the wood. In rare cases specimens of more
than two metres in length have been recorded. Gribble are another threat. This is a
crustacean species which feeds off the surface of the wood [20](p. 135-136). Note that
shipworm are not true worms but rather a type of clam with extremely small shells. Copper
containing preservatives have been used to protect wooden boats from these threats (the
fleet of Christopher Columbus was one of the earliest examples of such protection) [61].
Many archaeological finds, however, are from bogs or otherwise buried inland, making

fungal and bacterial degradation a much larger concern than shipworm.
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The various insects which attack wood are described in Ref.[20] chapter 5.1 (beginning
on page 51). As insects do not usually attack waterlogged wood, this subject will not be
explored further here (even though it is a notable concern when choosing storage conditions

for museum collections).

3.3.1.1 Fungal degradation

Fossil evidence shows that white-rot fungi (described below) have existed since the

Devonian period [63](p. 145). This suggests that fungi evolved at the same time as trees.

Classifying fungi is a difficult task, and apparently a generally accepted classification
does not exist. When discussing wood degradation, fungi may be easily distinguished by the
type of damage they cause. Only this classification will be described below. Interested
readers are referred to Ref.[20] chapter 5.2 for further information or Ref.[62](p. 19) for a
list of several species of fungi known to degrade wood.

This wide range of fungi means that any wood with a moisture content of 20% or more
can be attacked. Most fungi require moisture levels between 35 and 60%. Dryer wood, or
wood completely saturated with water, is not degraded by fungi. Fungi generally grow best
between 15 and 40°C, and become dormant above 44°C or under 0°C (although many can
survive -40°C without damage) [20](p. 95-98). Some, however, can operate under the
freezing point or above 60°C [63](p. 153 & p. 159). Depending upon exact type, fungi can
develop across most of the pH range, with low values around pH 2.5 and an upper ceiling of
pH 11 [20](p. 95-98). The optimal pH for brown- and white-rots is around 3.5 to 5.5 with
brown-rots favouring the most acidic conditions [63](p. 153 & p. 159).

Fungi attack by inserting enzyme-excreting hyphae into the wood. Holocellulose is
decomposed through various hydrolases. Lignin is always degraded by oxidising or ring-
splitting enzymes which require high moisture content [20](p. 99-102). Some termites even
utilise the abilities of fungus to degrade lignin, forming a symbiotic relationship which
allows both species to utilise the energy in lignocellulose for maximum effect. The

mechanism has been studied chemically [64].
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Wood attacked by fungi becomes either dark brown or whitish, resulting in the terms
'brown-rot' and 'white-rot' fungi. These names were introduced in 1874 and are still in use
today. A new type of infection similar to brown-rot was described in the 1950s and called
'soft-rot' [20](p. 99). Some fungi merely 'eat' the nutrients from wood, leaving the structure
more or less intact but discoloured. Others bore through cells and destroy the integrity of the
wood. Since there are thousands of types of fungi, the distinction into white- brown- or soft-
rot is not very precise. Nonetheless, it is often quite helpful as it distinguishes between
different types of decay — as long as it is remembered that each type is actually a very broad
category [63](p. 142-143). Note that many brown-rot and white-rot fungi are actually
closely related, despite causing different types of damage to the wood, and many genera
contain both types [65].

By observing the number of normal and free phenolic groups it is possible to estimate

what type of fungus has degraded the wood [40].

Brown-rotters mainly decompose the polysaccharides in wood. As lignin is exposed to
oxidation through the air, affected areas turn brown. Hyphae are thinner than the cell walls
but in contact with them, growing in the lumen. Cracks both parallel and perpendicular to
the grain are formed, dividing the wood into cubic pieces. Later on, the cubes can
decompose into a powder. Brown-rotters thrive at lower pH values than white-rotters
because brown-rot fungi accumulate oxalic acid [20](p. 102). Brown-rotters are capable of
degrading lignin but usually only in very small amounts [63](p. 151). They significantly
degrade methoxyl groups in the lignin but leave other side groups alone [66]. The overall
strength of attacked wood is severely diminished as a result [63](p. 151).

Compared to fresh lignins, lignins exposed to brown rot have a higher relative content of
phenolic hydroxyls and carbonyls (both conjugated and unconjugated) but a lower content
of aromatic methoxyl. This often leads to the conclusion that lignin is not notably altered by
the degradation process. Still, brown-rot produces hydroxyl radicals which attack lignin by
electrophilic addition to aromatic components. Additionally, some enzymatic degradation
seems to take place, indicating that the lignin structure must be degraded to allow space for
the enzymes to act. A comparison with Klason lignin showed that lignin attacked by brown-

rot had a very different structure from the model compound. NMR spectroscopy confirmed
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that relative polysaccharide content decreases and relative aromatic content increases in

wood affected by brown-rot. The leftover lignin loses side-chains but is still polymeric [35].

White-rot fungi are able to decompose lignin as well as polysaccharides. In a sample
attacked by so-called 'white pocket rot' less than 1% of the original lignin remained whereas
the polysaccharide content was about 80% of the expected value although the ratio varies
[24](p. 136), [63](p. 144). Some species, 'simultaneous white rotters', compose both types of
compounds equally quickly. Others, 'successive white rotters' or 'corrosion rotters', initially
decompose lignin faster than cellulose. The whitening effect on an attack can be ascribed to
the increase in relative cellulose content. Attacks leave cell structures intact for a long time
as they affect the lumen surface uniformly. Attacked wood becomes softer and is susceptible
to swelling as the lignin is removed. Hardwoods are generally preferred over softwoods by
many white-rots. Initial attack can dye the lignin in reddish-brown tones, leading to names
like 'red-rot' even though the attack is caused by a white-rot fungus [20](p. 102-104). White-
rot seems to primarily degrade syringyl units [66]. This means hardwood guaiacyl-syringyl
lignin is more rapidly bio-degraded than softwood guaiacyl lignin [28]. Carbonyl structure
is common in naturally degraded lignins. Fungal degradation produces benzaldehyde by
cleavage of the side chains [39]. Given the right circumstances, at least one species can even
degrade extremely durable polymers such as phenol-formaldehyde and a number of other
other materials such as DDT (dichlorodiphynyltrichloroethane), TNT (trinitrotoluene),
pyrenes, PCBs (polychlorinated biphenyls), and dioxins [67].

At least some white-rot fungi produce a lignin-like material themselves. This substance
is most likely made from oxidative polymerisation of hispidin (see ref.[28](p. 481) for the
chemical structure). Indeed, some of the compounds which were thought to break down
lignin have later been tested and, surprisingly enough, it seems that some of these enzymes
can actually polymerise lignin-like materials. The exact process of fungal degradation is still
not well understood and several of the reported tests are circumstantial or done without

proper control experiments, making it hard to say anything conclusive [28].
Soft-rot seems to be composed of a large number of species taking part in the

decomposition simultaneously [20](p. 104-105). Soft-rot is usually considered a surface

problem (although more extensive attacks occur) and may leave the wood seemingly intact

31



at the macroscopic level. Soft-rots are so called because affected wood is very soft while
wet and cracks upon drying [63](p. 156). Susceptibility to soft-rot seems to be inversely tied
to lignin content, and hardwoods are more often affected than softwoods. Nonetheless, soft-
rot can degrade lignin to some extent and does not seem to cause the same rapid
depolymerisation of cellulose as brown-rot [63](p. 158), degrading it at a slower rate than
brown-rots. They darken the wood, turning it almost black in advanced stages of decay. The
infection destroy all cell wall layers, creating cavities within the wood [20](p. 104-105).
Soft-rots can often operate in more extreme conditions than other fungi — and even tolerate
great variations in moisture content — but generally develop slower than most infections [63]
(p. 153 & p. 159). These fungi are found in continually wet or damp wood and are active
nearly up to the point where the wood becomes completely saturated with water. Soft-rots
are very tolerant and even show resistance to chromium-fluorine salts, although they are still

sensitive to copper compounds [20](p. 104-105).

Although fungal degradation is less of a threat to smaller displayed artefacts than timber,
the threat of fungal decay is still important when impregnating wood using watery
solutions/dispersions [11]. Fungal growth is best prohibited by completely anaerobic
conditions [24](p. 136) but this is rarely feasible in a museum. Additonally, mycotoxins can
be highly toxic and one should keep this in mind when working with fungi [20](p. 131).

Generally speaking, synthetic polymers are more resistant to fungal attack than natural
derivatives such as gelatine, starch, and cellulose. /n situ polymerisation of methyl
methacrylate (MMA) makes wood very resistant to brown-rot fungi. Unfortunately
poly(methyl methacrylate) is deposited in cell lumens, meaning that the cell walls may still
be destroyed. On the other hand, wood treated with poly(vinyl acetate) or a mix of PVA with
styrene is very susceptible to brown-rot attack. Acrylic resins are resistant to mould while
shellac and bees wax are not. Epoxy resins are generally considered very mould resistant,
but in a test an epoxy resin only performed as well as shellac or wax. Thus the specific

choice of epoxy and hardener may be extremely important [20](p. 130).
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3.3.1.2 Bacterial degradation

Chemical hydrolysis was long thought to be the main cause of decay in archaeological
wood until bacteria in the material were identified [55](p. 28-29). Bacteria are generally less
damaging to the wood strength than fungi. When working with archaeological objects,
however, bacteria can be a significant threat. Bacteria can also spread through the wood
very quickly, causing significant damage to wooden objects — especially when coupled with
fungal attack. Different kinds of bacteria will attack different parts of the wood in various
ways. An overview is found in Ref.[20](p. 132+) and several species of bacteria found in
archaeological wood are listed in Ref.[62](p. 19). Note that existence of bacteria does not
necessarily prove that they are the primary degraders of wood and further investigation into
this is needed [55](p. 30). Although most of the bacteria found in a sample in Nydam Mose
in southern Denmark were unidentified [62](p.116), it was possible to identify several
species from a 1700 year old spear shaft from this site [68]. Learning more about bacteria
might help determine whether a site is suitable for in situ preservation or not [62](p.1-2).

Bacteria seem to damage waterlogged wood (especially marine artefacts) to a much
higher extent than fungi [69](p. 169) although not much has been published about how
bacteria degrade waterlogged wood [24](p. 122).

There are three main types of wood-destroying bacteria, classified by the type of attack:
erosion, tunnelling, and cavitation. There may be other types, but their existence has not
been scientifically demonstrated [69](p. 162).

Erosion bacteria seem common and can progress inwards in affected wood pieces for at
least 1300 years [55](p. 30-31). They cause cell wall erosion somewhat similar to white-rot
fungi. The bacteria grow in the lumen and attack the S; layer. They may cause cavities
similar to soft-rot. The compound middle lamella is not degraded [55](p. 33-34) but heavy
damage to the S, layer causes the wood to collapse [69](p. 162).

Tunnelling bacteria penetrate into the S, layer and cause branching tunnels in the wood.
They leave behind a concentric wall-like structure — presumably made from
polysaccharides. Several different species of bacteria are probably involved. The end result
is similar to that caused by erosion bacteria but although the middle lamella and S5 layer are
severely degraded, large parts of these layers usually remain in degraded wood [69](p. 162-
165).
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Cavitation bacteria also attack the wood cell wall, forming widening cavities. Unlike
soft-rot cavities, bacteria cause damage more or less perpendicular to the long axis of the
fibres. Field material on these bacteria is very limited and they have not been reproduced in

a laboratory in a satisfactory manner [69](p. 165).

Even under anerobic conditions, bacterial degradation of lignin is limited compared to
the degradation caused by white-rot fungi. In experiments with “C-labelling, the bacteria
degraded a maximum of 20% of the lignin over a period of 14 days (while some results

were as low as 3%). Soft-rot fungi converted 20-30% of the lignin in 50 days [66].

3.3.2 Physical/chemical degradation

Wood is an excellent light absorber since both cellulose and lignin absorb UV light.
Because of this, UV radiation can only penetrate about 75 pum into the wood. This means
that insects and fungi pose a vastly larger risk to the integrity of wood [60](p. 85). Visible
light can penetrate further (at least 200 um although other sources specify 2540 um) but has
insufficient energy to break chemical bonds in the wood structure. Brown colouration from

weathering is caused by free radicals [70](p. 271-272).

Chemically speaking, oxidising acids damage wood more than non-oxidising acids, and
bases damage wood more than acids. Softwoods are generally more resistant to both types
of solutions than hardwoods. Exposure at first causes colour changes, but eventually result
in hydrolysis of the polysaccharides. This may even happen in anaerobic conditions where
slight traces of acid cause degradation over long periods of time. Bases at first cause
swelling and then decomposition of hemicellulose and lignin [20](p. 43).

The amorphous regions of cellulose are responsible for the swelling of wood, as the
loose structure allows water to react with free hydroxyl groups. Degradation of cellulose can
occur in a number of ways such as cleavage of hydrogen and glycoside bonds, breakage of
acetal linkages, or end-group reactions. While fairly resistant to alkaline conditions (which
mainly cause swelling), cellulose breaks down under acidic conditions as glycosidic bonds
are cleaved. The presence of metal ions will catalyse cellulose oxidation by forming free

peroxide radicals [57](p. 401-402).
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Hemicelluloses are more susceptible than pure cellulose to chemical degradation
because the chains contain side groups which obstruct tight alignment of the molecules. In
addition, hemicelluloses have a lower crystallinity than cellulose and are hydrolysed to
acetic acid under both acidic and alkaline conditions. Acid resistance varies from component
to component. In order of lessening acid resistance the monomers are: xylose, arabinose,
mannose, and glucose-galactose. In a study, it was found that pinewood pentosan chains
were cleaved after only five months in a weakly acidic environment [57](p. 403).

Lignin is more stable than the other wood components but the ester bonds may still be
cleaved, affecting the structure of the polymer. UV light may also degrade lignin [57](p.
403).

3.4 Archaeological wood

Wood ages unpredictably. Wood which had been part of a Buddhist monastery for 1800
years was found to be have higher strength than recent wood. This demonstrates the dangers
of comparing new and old wood in general [58](p. 98-100). While much research has been
performed on fresh wood, it is important to note that this is not always readily applicable to

archaeological wood. It appears to me that there are several significant differences:

1) Archaeological wood must be treated by conservators in a museum environment.
This means that non-toxic consolidants become important both during treatment and
subsequent display and that most kinds of pressure or heating are effectively
impossible — at least on larger displayed finds.

2) Archaeological wood is heavily degraded and a method which reinforces the cell
wall might not work as most or all of the S2 layer has degraded in many
archaeological finds. This means that some consolidants may penetrate better but it
also means that the remaining wood is very fragile.

3) The chemistry of the degraded wood is different from that of fresh wood and known
consolidants or glues might not adhere properly to a surface with different chemical
properties.

4) Biocides and fire retardants are a major concern in the wood industry since wooden

buildings are exposed to the elements. On the other hand, biological attacks are
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fairly rare in a controlled museum climate (although certain artefacts might be
infected when they arrive for conservation treatment).
5) Many industrial applications require fast treatment times whereas waterlogged

wooden finds might be impregnated for years before freeze-drying.

For the reasons above, it is not always easy or even possible to predict how a

consolidant will affect archaeological based on how it affects fresh wood.

3.5 Waterlogged wood

As most important archaeological wooden finds in Scandinavia have been waterlogged,
this state deserves special mention. Readers interested in a description more focussed on
conservation are kindly directed to Ref.[62](p.2-8).

Waterlogged wood and fossil or subfossil wood are closely related, and may be referred
to collectively as 'buried wood'. The main difference is that waterlogged wood usually has
been treated — and become an archaeological object — while fossil woods are usually older
than waterlogged wood [58](p. 87).

Waterlogged wood is defined as 'wood in which the pores have been filled to capacity
with water'. It rarely happens to living trees but is fairly common with archaeological wood
found in bogs or maritime environments [20](p. 24). Usually, such wood has been kept
beneath water (often by being buried beneath the water table) for a considerable time. While
finds are often well preserved beneath the water table, removal causes large-scale shrinkage

and warping [71](p. 395).

3.5.1 Swelling

Swelling, a process which happens to all elastic materials, is defined by three criteria:
Dimensional increase and thermal change as a result of taking up another phase,
microscopic homogeneity is retained, and cohesion is retained but diminished. Particularly
when working with wood, swelling is an important phenomenon [72] since secondary walls
of archaeological wood often swell, possibly bulging into and filling the lumen. Such

swelling can easily be observed using fluorescence microscopy [71](p. 41).
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Cellulose is reported to swell about 31-33% in water. When lignin is concerned, the
swelling seems to be closely related to the solubility parameter of a given liquid. It seems
that the increased softening of lignin pulps around 60-75°C dramatically increase swelling
[72].

Swelling is dependant upon the density of the cell wall, so latewood cells can swell
about twice as much as earlywood cells. Aged wood, on the other hand, can swell more than
fresh wood — despite having a low density. This is because cellulose does not swell as long
as it maintains crystallinity but is exposed to water in degraded wood. In this way it would
strengthen the wood a good deal if cellulose could be 'put back together' by some chemical
method. Cross-linking with epoxides and isocyanates may be possible. Another idea is to
attach an -OH group to the cell wall and then copolymerise this into a larger network [56](p.
426-428).

Woods with a high content of water-soluble extractives seem to reduce activation
energies related to swelling and thus cause more swelling than expected. It is, unfortunately,
difficult to correlate dielectric constant, dipole moment, or surface tension to the swelling
effect of various solvents. The presence of water usually increases the swelling effect of
other liquids. Temperature also has a drastic effect on how much wood swells — and even
what compounds will swell it (with water, for example, it increases both rate of swelling and
ultimate swelling). Sometimes, the compounds which swell the wood most rapidly are not
the ones which result in the largest ultimate swelling [72].

The initial response seems to be linear for several types of wood, with the volume
increase slowing down over time and the volume becoming practically constant after
somewhere between half an hour and four hours. Tangential swelling of fresh wood seems

to be linearly related to the density of the sample [72].
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3.5.2 Properties of waterlogged wood

Waterlogged wood, due to being partially destroyed, is very light. The specific gravity of
fresh wood varies from 0.11 (for balsa) to 1.05 or more (for lignum vite). Significant
variation can occur even within a single plant, however [59](p. 310). Waterlogged wooden
samples are a different matter. Densities in the range of 0.1-0.15 g/cm? are not unusual [73].

This means that freeze-dried archaeological wood feels much like balsa.
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Figure 3.3: Cryo-SEM image of a piece of freeze-dried Viking Age wood from the 'Box 7' sample.
Note that the structure of the remaining matrix is composed of layers and that both the middle

lamella and remaining cell wall material can be seen although the bulk of the cell wall is gone.

The strength of degrading wood can be directly related to the changes in the structure of
holocellulose and lignin within the cell wall. Usually, wood which has been partially
degraded does not, chemically speaking, resemble fresh wood [56](p. 421-422). For

example, one comparison of fresh and archaeological wood revealed that the archaeological
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material contained 50-80% of the expected lignin in fresh wood but only 2-30% of the
expected cellulose. Maximum water content ranged from 224 to 775% and densities varied
between 0.35 and 0.12 g/cm®. The complex structure of the residual lignin, as well as
superimposed signals from degraded compounds, made it hard to identify archaeological
wood using FT-IR spectroscopy [74]. The reduced crystallinity of the remaining cellulose
allows shrinkage to occur. If cell walls become thin enough, they cannot withstand drying
stresses and collapse. This effect is more pronounced in the tangential direction [58](p. 95).
Note that the remaining cellulose might be partially enveloped by lignin and this may make
it inaccessible for degradation [62](p. 111).

Waterlogged wood has a significant gradient of deterioration, meaning that the surface is
attacked first, turning spongy, while the interior can still be solid [20](p.10-11). When
waterlogged wood is degraded by fungi, the cell walls or pit membranes are attacked first
and the cells are severely deteriorated. It is often postulated that only the middle lamella
remains in very degraded archaeological wood [20](p. 15). Note that the true thickness of
the middle lamella is only a few nm and thus much smaller than the structures typically
observed in degraded wood [75]. An example can be seen in Figure 3.3 above. Most
waterlogged samples have a thicker mix of middle lamella and degraded celluloses,
typically 1-2 um across, as shown in Figure 3.4. A few archaeological wood samples are in
quite good condition and resemble fresh wood. One such atypical example can be seen in

Figure 3.5 and Figure 3.6 below.
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Figure 3.4: SEM image of a piece of freeze-dried Viking Age wood. Note that the cell structure is
heavily degraded and some cell wall layers are pealing off the middle lamellae.

The fact that mainly aromatic components can be detected using IR and Raman
spectroscopies have led to the assumption that the middle lamella remained [73]. Pyrolysis
combined mass spectrometry (PY/MS) has been previously used to obtain information about
fresh, decayed, and fossilised wood. Functional groups near aromatic rings in lignin
generally remain unaltered — as was the case with a hardwood sample from Italy and a
softwood sample from Israel [40]. Unfortunately, neither PY/MS nor vibrational
spectroscopy can confirm that the lignin is still fully intact, merely that some aromatic
residue can be found in the wood. Thus it is likely that the wood is structurally more

degraded than the chemical analyses might indicate.
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Figure 3.5: SEM image of a piece of freeze-dried archaeological birch wood (Betula). The wood is
in excellent shape and thus resembles fresh wood. Note the many larger ellipsoid vessels which

identifies the sample as hardwood.

'Shrinkage' occurs in the cell wall while 'collapse' means that the cell walls fold over
against each other. Shrinkage occurs below the fibre saturation point due to desorption of
water while collapse occurs as a result of capillary forces above the fibre saturation point.
Both cause longitudinal, radial, and tangential cracks. Shrinkage results in cuboidal cracks
and exfoliation while collapse is seen as depressions and distortions. The most troublesome
part is that the forces vary within a single piece of wood since the surface is more degraded
than the core [31](p. 11-12). The collapse caused during drying of waterlogged wood is
usually irreversible. Sometimes swelling agents can be added to non-collapsed areas of the

wood to compensate for the collapsed parts, but results are uncertain [20](p.31).
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Figure 3.6: SEM image of freeze-dried archaeological wood in good shape. Compare with Figure
34.

There is little information on the chemical degradation process of wet archaeological
wood. Since cellulose content is usually very low when compared to lignin content, the
characterisation of lignin is very important [40]. Although one could speculate that the
remaining lignin in waterlogged wood was somewhat water-resistant, the opposite is true.
This may be due to increased accessibility of the hydroxyl groups. The age of the wood in
itself does not appear to affect the results [20](p. 30-31).

Waterlogged wood looses significant amounts of holocellulose and takes up water,
meaning that the lignin content stays relatively unaltered when measured in percent volume.
Since oxygen is required for lignin decomposition, archaeological wood (and test samples

buried in mud) has more intact lignin than cellulose [20](p. 19), [66].

NMR has been previously used to investigate archaeological wood, showing that the

dominant $-O-4 bond in lignin mostly remains intact. Unfortunately, normal solid-state *C
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NMR investigations are not sensitive enough to reveal significant information about other
chemical bonds. In order to gain better information, 2D-HSQC (heteronuclear single
quantum coherence/correlation), quantitative *C NMR, and *'P NMR spectra may help.
These methods require lignin extraction and even acetylation. The HSQC spectra of two
different samples (one from Italy and one from Israel) of acetylated lignin showed
differences in bond quantity between the samples. Still, the results confirm that even in old
waterlogged wood the structure of lignin is not heavily modified. By comparing the results
with spruce milled wood lignin, it was possible to determine whether the samples were from

angiosperm or gymnosperm wood species [40].

3.5.3 Identification of waterlogged wood

Since the properties of wood change during degradation, one piece of waterlogged wood
may not resemble another. When you pick up a piece of waterlogged wood, you will
immediately feel whether it is rough, smooth, or slimy. It also becomes readily apparent if
the wood yields under light pressure — for example if your fingertips go through the outer
millimetres of the degraded material. Since it is difficult to quantify such sensations in a
reproducible manner, it is necessary to define a set of parameters which more easily allow

conservation professionals to compare different pieces of degraded wood.

An often used quality is the maximum moisture content, MCpax (or Umax) which is
defined as follows [76]:

MC _ Mswct_ Mms
max Mms

Where My is the mass of the wet (waterlogged) sample and M, is the dry weight. The
waterlogged weight can be measured by carefully touching the selected sample to a piece of
paper towel to remove extra moisture before weighing it. The sample is then placed in the
oven at 105°C until the water has evaporated (in this case, the samples were left for a week)
and weighed again to obtain the dry weight.

The density of the cell wall material, p.s, can be found using the following equation
[76]:
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Where p,or is the density of water in the pores, M,, is the mass of the displaced volume
of the waterlogged sample, M is the mass of the waterlogged sample, and R, is the
correction factor due to sorbed water.

To measure M,,, remove excess water from the waterlogged sample and attach it to a
needle. Place a beaker with water on a balance and press tare. Lower the sample into water
so that it is just submerged (it is important not to measure the mass of the needle point). To
measure Mg, simply let the sample fall to the bottom of the beaker and record the weight. It
is important not to remove any water during this operation, so it is advisable to use another
needle to detach the sample [76].

Rsop 1s used to correct for the fact that some of the volume is taken up by cell wall
material — rather than simply either sorbed or free water. At 20°C, Ry has a value of
approximately 0.028. A thorough rationale behind the necessity for Ry, and how it is
calculated can be found in Ref.[76].

The mass of cell wall material per volume of waterlogged sample, ps., can be calculated
using the following equation [76]:

Mss
M, !

11 Ry
plpor Pums plpor

Pso =

Combined, the three calculated terms define the degraded wood fairly well, estimating
both maximum moisture content, cell wall density and cell wall mass per waterlogged

volume.

3.5.3.1 Samples used in these investigations

In order not to use up precious sample material, the initial tests were carried out with
whatever wood was available. As time wore on, sample material was selected more

carefully, trying to match the degraded Oseberg material more closely.
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All samples were from the Museum for Cultural History at the University of Oslo®. All
but one of them were discarded wood from Viking Age excavations but unsuitable for
eventual display (some of these pieces might have come from Viking tools and buildings but
many of them probably stem from branches or similar). After excavation, they were kept in
a cooled room in water.

Note that bits of actual alum-treated Oseberg material were also impregnated with
polymer and investigated. These pieces are described in chapter 6.4.1 'Tmaging of PF-treated
samples' on page 100. Since it was not possible to identify these samples using the methods

described in chapter 3.5.3, they will not be described here.

Bits of the samples about 10x15x20 mm big were used for identification (the exact
measurements varied from sample to sample). The samples were mounted on a small pin in
a water bath at room temperature The properties of each of the test pieces (as defined in
chapter 3.5.3) can be found in Table 2 below.

The individual pieces can be described in the following manner:

“Drammen”: This piece of wood was a large fragment of pine wood (Pinus) from
Drammen, Norway. This sample was not waterlogged and in good shape. The wood was
about 100 years old. It was used for initial experiments with various polymers to get an idea
of their distribution inside actual wood. When evaluating the results of these experiments, it
is important to remember that the wood was quite different from the other samples used in
these experiments.

“Box 7”: This was a piece of pine wood (Pinus) from the excavation of Slagen
prestegard (Slagen rectory) near Tonsberg, Norway. This wood is from roughly the same
location as the Oseberg find and from a find situated very near to it. The site is from the
Viking Age. It was used primarily for cellulose whiskers impregnation tests.

“Stokk 9 sjakt 7”: Spruce wood (Picea) from Slagen prestegdrd (see the description of
Box 7 for details). The sample was used primarily for tests with cellulose whiskers.

“Stokk 3 sjakt 3”: Birch wood (Betula) from Slagen prestegdrd (see the description of
Box 7 for details). The sample was used for chitosan experiments — specifically the ones

described in Paper 3.

2 Susan Braovac kindly helped find suitable samples from the storage at the Department of Conservation.

Bjarte Aarseth, also from the Department of Conservation, found the sample from Drammen.
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“Kaupang 2”: Non-ring porous hardwood — most likely hazel (Corylus) although birch
(Betula) could not be ruled out. The sample is from the Kaupang excavation (Viking Age).
The first piece of wood chosen from Kaupang had collapsed which is why this one is
referred to as “Kaupang 2”. It was used for cellulose and chitosan impregnation tests.

“Lost sample”: This sample was a piece of Viking Age birch wood (Betula). Judging
from how deformable it was, it was fairly degraded (comparable to the two 'Stokk' samples).
Unfortunately, the sample was stored in a leaky container and dried out before proper
identification and measurements were performed. It was used for impregnation and curing
tests for PF.

Oseberg material: Alum-treated material from the Oseberg find was investigated. The
sample material was from either birch (Befula) or alder (Alnus) but a more exact
identification could not be performed due to the degraded state of the wood. Since the wood
had already been treated, and was very fragile, it was not possible to determine MC . or
other physical qualities. More information can be found in the PF imaging section (chapter
6.4.1 on page 100).

Table 2: Samples used in this investigation, their maximum moisture content, the density of their cell wall

materials, and the mass of cell wall compared to total waterlogged volume.

Sample MCay [%] P [g/em’] P [g/em’]
Drammen 159.4 1.304 0.4289
Box 7 480.6 1.274 0.1810
Stokk 9 sjakt 7 927.3 1.278 0.0985
Stokk 3 sjakt 3 657.8 1.285 0.1366
Kaupang 2 651.1 1.410 0.1398
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4. Treating and displaying wooden finds

This chapter focusses on the problems surrounding the treatment of waterlogged wood
as this kind of archaeological wood has been most relevant in this work. More information
about various treatment methods can be found in Ref.[20](p. 252+) with information on
biocides, from historical to modern, starting on p. 168. Readers interested in a different
description may find good information about conservation and preservation in Ref.[62]

(p-8+).

“The process of cheating Mother Nature, of arresting deterioration and preserving what
remains of the wood, is not without its price. In order to preserve what remains of
archaeological wood, a value hierarchy of attributes must be constructed. The attributes
remaining in the excavated deteriorated wood must be ranked within the hierarchy.
Conservation methods can be planned to preserve these attributes in descending order of
value.” [1](p. 437).

Not all finds can be treated the the same way — or have the same requirements for
conservation. A list of “concerns” for all phases is given in Ref.[59](p. 331). When doubts
arise, the conservators must prioritise. The most important aspects are: form, size,
dimension, surface detail, and proportion. Colour and texture are assigned moderate value,

while function, composition, and mass are the least valuable characteristics [1](p. 437).

Ethical dilemmas abound in consolidation. Impregnating material may be needed to
preserve objects, but also often link irreversibly to the artefacts, possibly altering their
fabric. The process may also affect what kind of later analyses are possible as the process
usually destroys minor fragments, such as pollen or spores, embedded in the object. Thus it
is important to try to maintain the physical properties of the original artefact as best as
possible, making it next to impossible to treat it with a single chemical substance [59](p.
304). Sometimes, the reversibility of a treatment might have to be sacrificed — such as if a
strong glue is needed to mend a piece which must bear a heavy load [77](p. 387). This,
combined with the knowledge that preserved objects will not last forever, has led to the train
of thought that it might be better to leave objects in situ since the degradation over time is

minimal while the finds are kept under anaerobic conditions [73]. The trouble with keeping
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large amounts of wood in storage at museums is another reason to look into the possibility
of reburial as a long-term storage possibility [31](p. 29). Finally, the funds for excavation
often outweigh those available for conservation treatments (at least in Scandinavia), which
also points to in situ preservation as a possible solution — especially since deciding when to

excavate and how to treat objects can be quite difficult [62](p.1).

It should be stressed that archaeological finds do not have to endure in the same way as
wood used for the construction of cottages or other outdoor buildings. The museum climate
is much more benign. There are usually no fungi and temperature and humidity are
controlled. Thus materials which cannot stabilise the wood in nature might serve adequately
in a museum where [11].

Unfortunately, large-scale impregnation or treatment means that many theoretically
sound solutions cannot actually be implemented. Changing pressure or atmosphere in the
museum, for example, is practically impossible. The expense of any chemical used must be
carefully considered and the health and safety of the conservators who treat the finds should
also be given extremely high priority [11], [73]. Note that these requirements are usually not
present in more traditional chemical research and require chemists to change the way they

approach problems concerning conservation.

Certain objects, such as many waterlogged wooden finds, are so deteriorated that their
physical properties cannot be said to resemble the original material very well. In this case,
the impregnating compound has to bear any stresses and — hopefully — distribute these
uniformly throughout the object [59](p. 305-306). Especially with waterlogged wood,
density may cause problems because the surface can be very porous while the core is dense
enough that it is very difficult for impregnating materials to penetrate/diffuse into it [20](p.
36). Once they do diffuse, wood swelling might be a problem. Thus nonpolar solvents are
preferable when dealing with dry wooden objects, but waterlogged wood can obviously be
treated with polar solvents. The rate of evaporation is similarly important [20](p. 369).
When applying liquid preservatives, one must be aware that solutions brushed or sprayed
onto wood rarely penetrate it, requiring pressure or vacuum to function properly [20](p.
167). When carried by a solvent, molecules with a diameter of up to 0.55 nm can penetrate

into areas of the cell wall which are normally occupied by adsorbed water. Since wood has a
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high affinity for water, impregnation materials can be left in solution while the water is
adsorbed into the wood [20](p. 21).

Placing wooden objects into cold baths of preservatives, heating them and subsequently
allowing them to cool is an efficient yet simple way of drawing preservatives into the wood,
potentially reducing impregnation times from days to hours [20](p. 255). Heating might
otherwise be problematic when wanting to test treated wood and consolidants since thermal
degradation and/or degradation by decay seem to be caused by different mechanisms than
the degradation happening in buried wood [20](p. 41).

Another significant problem during conservation of waterlogged wood is to prevent
distortion during drying. The variations between different finds of waterlogged wood makes

it impossible to come up with a single treatment which works for all finds [31](p. 20).

100pm JEOL 11/10/2010
2.00kV SEI M WD 7.2mm 10:00:30

Figure 4.1: Cryo-SEM image of a piece of freeze-dried Viking Age wood from Slagen prestegard.

Note that the rays swirl and are not regularly aligned.
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The degraded wooden material itself may also react chemically with whatever
consolidants are put into it. Wood modified by methacrylic anhydride can form covalent
bonds with styrene and methyl methacrylate (through free radical polymerisation). There
was no evidence of such bonding between monomers and wood modified with crotonic

anhydride [78].

If environmental moisture changes, the wood will change with it. This may cause a cycle
of swelling and shrinking detrimental to wooden artefacts on display. RH plays an important
role in this, and is a reason why displayed wooden finds should ideally be kept at a constant
temperature. The shifting of the wood may not only cause surface layers to peel off (ruining
paints) but eventually cause the wood itself to collapse. At RH levels of 65% or more,
moulds may also attack the wood [57](p. 404-405). For this reason, it is common to keep the

RH close to 50% in Scandinavian museums [11].

Even if the wood is hardly deteriorated, its structure might be somewhat irregular and
complex. An example of a natural 'whirl' found in a piece of Viking Age wood can be seen
in the SEM (Scanning Electron Microscopy) image in Figure 4.1 above. Although such
structures are unusual, their presence clearly demonstrate that no wood — whether fresh or

degraded — is a uniform material.

4.1 Conservation treatments

In the following, a list of various treatments will be discussed. This will serve as a point
of reference for the design of possible future consolidants as advantages and possible
complications will be compared to those of methods already in use. Furthermore, the list
should give readers an overview of the breadth of consolidants previously tested on

archaeological wood.

Consolidants tested on wood range from animal glues and oils to modern resins. Most of
the substances traditionally used are no longer recommended due to poor penetration and/or
support of the items — or an irreversible setting process [59](p. 329). Despite numerous

compounds which have been demonstrated to enhance wood properties, the exact
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mechanisms which cause such improvements are still being investigated. Usually the goal is
to incorporate agents into the cell wall to reinforce it [79]. Drying experiments have shown
that a thin layer of impregnating material in the outer layer may sufficiently stabilise the
find to prevent stress during drying — the obvious example is the Vasa [63](p. 188).

Gap fillers are described in Ref.[20] starting on page 553, but since this work deals with
the stabilisation of the wooden matrix itself, rather than filling larger gaps in the structure,
this subject will not be described in greater detail here. Adhesives will also be left largely
untouched. Suffice it to say that applying traditional adhesives to archaeological wood is
tricky. Often the impregnation material will interact with the wood and affect adhesion, or
the wood itself has to be stabilised before adhesion is possible. Low density woods may so
absorb too much adhesive, and uneven edges or fragments also affect the strength of glues

[20](p. 542-543).

Sodium chloride was previously added as a preservative and fire retardant but since it
damages the wood this practice has stopped. Similarly, SO,, which was previously used to
fumigate libraries, causes formation of acids which damage the wood. Ammonia gas swells
wood through formation of ammonium hydroxide but is sometimes used to darken certain

woods [20](p. 45).

Some of the more important methods for treating archaeological wood are described
below. These are mainly still in use but information about important historical treatments
(especially those relevant for the Oseberg find) are also included. For those interested in the
most common consolidants, an overview and comparison between PEG, sucrose, lactitol,

and Kauramin can be found in Ref.[80].

4.1.1 Freeze drying

Freeze drying is described in Ref.[20] starting on page 499. It avoids collapse by
sublimating the water at low pressure in stead of letting it dry normally. The advantage of
this method is primarily that the treated wood neither shrink nor warp significantly during
treatment. This makes the method ideal when treating very degraded wood (or flimsy

structures such as baskets) [20](p. 499).
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As wood is cooled, adsorbed water will become supercooled, not freezing until a
temperature of -38°C or less is reached at normal air pressure. Both the viscosity and surface
tension of such water increases (the former dramatically and the latter slightly). The wood
also shrinks as temperature is lowered, somewhat offsetting the tendency of water to
expand. Once water freezes, it may expand by as much as 13% and can cause damage due to
increased pressure [70](p. 238). Still, the problems with supercooled water means that
freeze-drying of archaeological wood should ideally be performed at very low temperatures
to ensure that the water sublimates rather than boils [11], [73].

When water-containing wood cools below the freezing point, the vapour pressure of ice
is lower than that of the supercooled water. This difference will drive water vapour away
from the supercooled surfaces to condense on ice in cell lumens and voids. How this affects
highly degraded wood (with a more amorphous structure than fresh wood) has not been
fully examined yet [70](p. 240).

Freeze-drying has been applied to large structures — such as a large Roman boat with a
wet weight of about 20 tons uncovered near Marseille which required about 5000 litres of
liquid nitrogen to treat [70](p. 251). In such cases it can be fairly expensive. On the other
hand, freeze-drying can sometimes be performed in winter in areas where the temperature is
suitably low and air currents are strong [20](p. 499-500). Atmospheric freeze-drying of large
timbres is thus discussed, partially because of the reduced price of maintaining low
temperature in an Arctic climate, partially due to the lighter colour of objects treatable with

lower consolidant (PEG) concentrations [70](p. 257).

Before freeze-drying became commonplace, waterlogged wood was dehydrated by a
solvent during treatment. In a second phase this solvent was replaced with a monomer or
resin. Water-soluble monomers make this easier as they can be added directly to the water
the wood is kept in, eliminating the need for an additional solvent [81](p. 221). This
achieves the same effect as freeze-drying, namely avoiding warping or collapse. Due to the
relative toxicity of many commonly used compounds, freeze-drying is currently preferred —

especially when treating larger finds [11], [73].
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Figure 4.2: ESEM image of a fragment of Oseberg wood treated with alum and linseed oil. Notice
how the oil fills the wooden structure while some alum crystals are visible below the middle in the

right side of the image.

4.1.2 Natural oil treatment

The first conservation treatment used was probably oils. Tung nut oil was famous in
China while linseed oil was common in Europe. The Tung oil has recently been used as a
renewable source of material for polyurethanes and might thus be interesting for
environmentally friendly materials [82]. Both oils were used in the treatment of
archaeological artefacts — for example, several finds from the Oseberg find were coated with

linseed oil [11]. Unfortunately, even long-lasting oils like whale oil or tung oil (which are
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excellent for treating wooden furniture) seem to degrade over time and are not really
suitable for long-term conservation [20](p. 383-4). Linseed oil hardens and expands upon
contact with oxygen. This process can take years and if the surface splits the oil may leak
out of the objects. Additionally, the oil can be attacked by bacteria, resulting in the smell of
rancid butter [20](p. 503).

Unfortunately, oil blocks the pores of wood, making it impossible to re-treat it in the
future. An example of Oseberg wood filled with linseed oil can be seen in Figure 4.2 above.
Due to this, as well as problems with stability, these oils should not be included in ulaltered

form in future consolidants.

4.1.3 Alum treatment

The alum treatment is especially relevant for this study since many items from the
Oseberg find were treated with alum (leading to some of the problems described chapter 2.3

'Current challenges' on page 11).

The Dane C. F. Herbst changed treatment of waterlogged wood with the introduction of
the alum method in 1858. This method was used extensively in Scandinavia over the next
100 years, until PEG-impregnation followed by freeze-drying became common practice. It
replaced preservation with glue during the 18™ and 19" centuries and, just prior to the 20"
century, with waxes and natural resins as well [20](p. 6).

Alum is the salt AIK(SO4),"12H,O (potassium aluminium sulphate dodecahydrate).
During impregnation objects are boiled for about two hours in a supersaturated alum
solution at close to 100°C. Preserved objects are not fire resistant and the alum crystals
rupture some of the wooden cells. Such crystals, often attributed to recrystallisation due to
moisture fluctuations, form on the surface of the objects [20](p. 372-5). Alum in treated
objects (without glycerol) is not particularly hygroscopic. RH values significantly above
90% are required before it begins to take up water [73]. Since the alum crystals are white,
the look of the treated objects is more lifelike than that of objects treated with lacquer or
bulked with PEG (see Figure 2.2 on page 9 for an example). The crystals inside the wood
form in various shapes and sizes. An example of a SEM (Scanning Electron Microscope)

image of alum-treated wood can be seen in Figure 4.3 below.
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Figure 4.3: ESEM image of alum-treated wood from the Oseberg find. Note that the crystals form

various structures but do not completely fill and stabilise the wood.

The distribution of alum has been investigated in newly treated objects with the
surprising result that aluminium was not locatable with EDX (Energy Dispersive X-ray
spectroscopy) [83]. Since Al can be detected in ashed samples, this may be due to the ions
binding intimately to the degraded lignin [11].

Although the alum treatment was used extensively in Scandinavia, not much published
research in its effects was easily available ten years ago. A single bachelor thesis from 1992
in Norwegian is one of the few Scandinavian examples of someone trying to conduct studies

on alum-treated heritage. This work included IR spectra and x-ray diffraction investigations
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of alum and also noted that the glycerol makes alum very hygroscopic. One of the most
interesting observations is that the wood seemed to deform to accommodate the shape of the

alum crystals (rather than the other way around) [84].

The current state of the alum-treated objects is dire, with high acidity causing the wood
to powder. An example of the highly fragmented structure of some alum-treated items can
be seen in Figure 4.4 below. Even though some of the damage might have been caused

while attempting to cut the wood with a razor blade, this only demonstrates how fragile the

remaining material is.

i
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Figure 4.4: SEM image of a piece of alum-treated wood from the Oseberg find cut in the
longitudinal direction. Note that the structure of the wood is gone and only a large number of

fragments of various sizes can be seen.
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4.1.4 Poly(ethylene glycol) treatment

Poly(ethylene glycol) (PEG) or poly(oxy ethylene) (POE) is currently used when
treating waterlogged wood and is probably one of the most widespread consolidants. As
such, it will be one of the standards potential new consolidants have to be measured against

and is thus reviewed here.

PEG was first synthesised in 1859 (ironically in the same year as the alum treatment
gained widespread use), it was not produced in large quantities until the beginning of the
1950's. At the end of the 1950's the first tests using PEG to stabilise waterlogged wood were
carried out in Sweden and Denmark (tests were probably carried out slightly earlier in
connection with the paper industry in the United States) [85](p. 196). When using PEG or
sugars for conservation, biocides must be added to the baths [20](p. 501).

PEG was used to preserve some of the artefacts from the Oseberg find [85](p. 198) but
the most famous object treated with PEG was the Swedish warship Vasa. After 333 years
under water, the ship was raised in 1961 and the PEG treatment started the year after. The
treatment went on for 17 years before the spraying was complete [86]. Due to doubts about
the stability of the method and find, the remaining Vasa material with PEG, along with other
PEG-treated artefacts, have been analysed to study possible degradation. The results
indicate that slight chemical degradation might have taken place [87].

Long chains of PEG do not penetrate far into the wood, while short chains do not
stabilise the surface in a satisfactory way. Thus it has become common to add first a low-
weight PEG followed by a high-weight one. PEG still require a long time to diffuse into the
wood, however, and can become unstable in temperatures and humidities found in the
summertime — even in temperate zones [l](p. 442-443). On the other hand, higher
concentrations can damage the stability of objects. A 100% PEG solution was found to
cause about four times the shrinkage of a 70% PEG solution. Low-molecular weight PEGs
may prevent shrinkage if the RH is kept very high (85% for PEG 600, 90% or more for PEG
1500). Long chain lengths, such as those in PEG 4000, seem to change the dimensions of
preserved wood in all tests [85](p. 203-204). As a possible compromise, a two-step process
for PEG impregnation has been recommended. At first a low-weight chain (such as PEG

200) is introduced in 10-15% concentration, and the PEG content is slowly increased (as far
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as 50%). This relatively small molecule penetrates far into the wood and hopefully stabilises
the core. A long-chain PEG (such as PEG 3000 or 4000) bath is then used, starting at
concentrations of about 40-50% and at elevated temperature (about 60°C). The
concentration is gradually increased to 70%. This long-chain PEG stabilises the fractured
outer layers of the wood, but does not penetrate into the core of larger objects [20](p. 501).
Unfortunately, this dual impregnation is not an ideal solution. Problems with optimal freeze
drying temperature when using mixtures of PEG200 and PEG2000 have led to the
conclusion that it is practically impossible to freeze-dry at a low enough temperature when
low-length PEG is involved. As a consequence it is probably better (or at least sufficient) to

use relatively long-chained PEG only in conservation [88].

Metal ions — especially iron — interfere with treatments with PEG. When composite
materials are preserved, PEG corrodes the metal parts, making the method unsuitable
without additional treatment with corrosion inhibitors to protect the metal. Solutions of HCI
at 3.5% can be used to wash out Fe ions from the wood. The acidic wood is best neutralised
using dilute solutions of NH; [20](p. 502). Not all metals are equally problematic as Ni salts
destabilise wet PEG while Fe and Cu salts might prevent degradation. Stainless steel
nozzles, on the other hand, seem to enhance degradation [89].

At 80°C, PEG 4000 was found to significantly degrade after about 100 hours with
significant drops in melting temperature and heat of fusion after 1000 hours [90]. The slight
reduction in molecular weight might indicate that the chain cleavage is end-wise rather than
random [89]. Although this could indicate that PEG in archaeological artefacts will also
degrade, investigation of PEG in wooden artefacts finds it in relatively good condition after
30 years [91]. Since PEG 4000 degrades noticeably in just four hours at 75°C in dry air but
not after 20 hours at 75% RH [89], the moisture content of treated wood might help preserve
PEG.

Although PEG is water-soluble, even short molecules, such as PEG 200, cannot be fully
removed from the wood after a year. A few percent polymer remained even after repeated
washes. When treating actual pieces of wood, it should be remembered that the PEG
molecules will diffuse so slowly that it often takes years to remove most of the polymer

[80]. This takes away an important reason for using PEG, namely reversibility.
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Because the results of PEG treatment have been also erratic, current trends are to look

for alternative treatment methods [31](p. 25).

4.1.5 Phenol-formaldehyde treatment

Phenol-formaldehyde (PF) resins have previously been used to preserve waterlogged
wooden items. The trade names vary with type and place. Some of the more common are:
Bakelite, Durex, Resinol or Kauresin. PFs are difficult to dissolve (most organic solvents do
not work, although boiling water or strong acids and bases might). The two main types are
acid-catalysed novolacs and base-catalysed resols. Novolacs are often uncured and require
hardeners (like hexamethylenetetramine or paraformaldehyde) to finalise cross-linking.
Resols usually contain an excess of formaldehyde and the polymer can be cured simply by
applying heat [20](p. 435-439). Note that the terms novolac' and 'resol' are not always well-
defined. This is described further in chapter 6.2 'Chemistry of PF' on page 82. More

information on PF is given in chapter 6 'Phenol-formaldehyde' starting on page 79.

Although PF compounds mainly serve as adhesives, waterlogged archaeological wood
has been stabilised through the use of these compounds. Composite wooden objects in
particular are joined securely through application of a resin. Such resins have some
significant disadvantages. Formaldehyde causes allergic reactions (especially to exposed
skin) and can even de-gas from conserved objects. In addition, the resins cross-link
irreversibly and may alter the appearance of the artefacts. The short hardening times also
mean that it is difficult to impregnate large objects with these polymers, and it is impossible
to remove the resins with solvents after impregnation [20](p. 435-439).

Some objects thought to be treated with PF are in fact not. Pieces from a degraded
wooden bucket, likely from the 1290's, were treated with urea formaldehyde in Wales.
Although the wood was in relatively good condition, it could not be dried without warping.
Alternatives to the alum method (which was becoming outdated at the time) and both
poly(vilyl acetate) and butyl methacrylate were considered but could not prevent warping.
Butyl methacrylate had no effect except keeping the water inside the treated objects.
Beeswax gave better results than either of these polymers but still left the surface with an

undesirable finish. Phenol-formaldehyde (PF) “Bakelite R.568 cured at 150°C was tested
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and gave satisfactory penetration and rigidity. The dark colour and the texture of treated
specimens meant that PF was abandoned in favour of urea-formaldehyde (“Bakelite Cement
G.10897/1” with a subsequent treatment in 5% watery “Bakelite Accelerator Q.111917)
[92]. This means that other finds may also be treated with “Bakelite” without actually being
treated with PF.

4.1.6 Kauramin and melamine-formaldehyde treatments

With investigations being carried out on phenol-formaldehyde, it is reasonable to
investigate the properties of similar polymers — especially since a very similar polymer has

already been developed for conservation use.

Melamine resins are not usually very reactive and need high curing temperatures. They
are often combined with other monomers with a high concentration of hydroxyl groups.
Some types of melamine resins are sensitive enough to acid that large amounts of it will
allow curing below 100°C. This process seems to require secondary amine groups (-NH-
CH,OR) [93]. Melamine reacts particularly well with formaldehyde and oxirane. It is used
to enhance thermal stability in resins due to the ring structure of the molecule. The resins
also work as electrical insulators. The main disadvantage is a low solubility in water (3.2 g/l
at 20°C and 5 g/l at 100°C), usually meaning that formalin at 80°C has to be used. Melamine
dissolution seems to be accompanied by formation of hydroxymethyl derivatives. Melamine
can also be dissolved fairly well in polyhydroxy compounds. However, the resin produced
from such dissolution (and automatic reaction once acid or base has been added) is reported
not to harden below 80°C. Since melamine-formaldehyde prepolymers are usually quite
unstable, the water removal needed to cure the resin can be problematic [94].

One reported study on increasing solubility focussed on formaldehyde in watery solution
and acetone as a solvent for melamine. The pH was kept at 11. By using catalyst, melamine
contents in the 40-50%"/,, were reached at temperatures in the 40-50°C range [94]. Note that
while the above gives some idea of the chemical adjustments possible regarding solubility,
the high pH makes the study inapplicable to waterlogged wood. Non-watery solvents are

needed in order to reach high melamine concentrations but doing so is not always necessary.
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It has been common practice at German museums to preserve archaeological wood with
“Kauramin” which is a melamine formaldehyde. The most important reasons for using it are
that it is soluble in water and has a low molecular size, allowing for good penetration of
wood. The slow hardening process when alcohols are turned into ether means that the
polymer will not simply cover the surface of impregnated objects. The wood is made more
elastic by adding ethylene glycol, ensuring that fewer cracks form in the preserved wood
[95]. As only a little polymer is deposited, Kauramin-treated wood is very light and has only
one to two thirds of the weight of the wood in the waterlogged state [80].

The following conservation procedure is based upon Ref.[95]: A 25% solution of the
melamine in water is prepared. 0.5% triethanolamin is added since it neutralises acid and
helps preserve the wood. 5% urea is added in order to lower the viscosity of the solution.
Urea also bonds with excess free formaldehyde. The product, called CE 5549, contains
about 1.5% free formaldehyde when bought. The baths are covered in order to avoid
evaporation and prevent oxygen from reacting with the formaldehyde (this produces formic
acid which catalyses the polymer reaction and shortens the lifespan of the impregnating
solution). Once impregnation is complete, the pH is lowered if necessary in order to initiate
polymerisation.

The time of conservation is fairly short due to the small size of the melamine compound
(5-30 A). Small objects can be treated in a week and large objects in about a year. Depth of
impregnation may be tested through elemental analysis, measuring the oxygen and nitrogen
content of the treated object.

After conservation, the wood is rinsed with running water and carefully wrapped in wet
wood pulp and finally foil. The wrappings are stored at 50°C in order to cause excess
polymer to diffuse into the wood pulp rather than be left on the surface of the artefacts. Pulp
is removed before it dries and becomes almost impossible to remove.

A sample of the impregnating solution is left along with the wrapped artefacts to easily
test if it has hardened (which usually happens after one to two weeks). Lower temperatures
prolong the time of hardening although the polymerisation happens even at room
temperature.

After hardening, the artefacts are still wet and must be dried carefully in order to avoid
fractures or warping of the wood. The wood is wrapped in polyethylene foil, which allows

small amounts of water to evaporate. From time to time, the wood is unwrapped in order to
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remove any water from condensation. Smaller objects take weeks or months to dry, while
large objects can take years. The method can be combined with microwave drying to speed
up the process. In this case objects must be stored in a way which enables air to reach all
sides of the object in order to prevent warping. Drying is usually continued until the water
content in the preserved object is about 15%.

Earlier comparison with freeze drying (both at -5°C and -40°C) and drying with micro
waves showed that the PE wrapping was the most favourable if fractures and shrinkage was
taken into account.

The surface of preserved wood is very light and contains chalk. It is treated with water
soluble waxes, artificial resins or drying oils to improve the colour of the object and
strengthen the surface.

The method leaves the wood in good enough shape for dendrochronological dating and
the formaldehyde preserves the object against biological attacks. Wooden objects with
organic or inorganic composites (such as stone, leather or textile) may be treated as well.
Small adjustments to the shape of the objects may be made even after drying (for example
by applying steam).

Further notes on the method may be found online [96].

A couple of tested resin solutions could not solidify until their solutions evaporated,
meaning that the wood cell structure was also warped. Electrolytic silsification in sodium
silicate worked but gave varied and generally unsatisfactory results. A melamine-
formaldehyde called “Arigal C” (originally developed to prevent rotting in cotton textiles)
was the best of the tested products. The monomers are applied in watery solution (about
25% polymer in 80°C hot water). Prolonged impregnation times are not harmful but the
polymerisation process starts if the pH falls below 7.3. At the end of impregnation 10%
catalyst (compared to the volume of the thinned Arigal C solution) is added. Vacuum is used
to remove air in the object. The object must be taken out of the impregnating solution in less
than 40 hours or the polymer will be difficult or impossible to remove from the surface of
the object. Deposits are avoided by rinsing the surface with hot water and wrapping the
objects in cotton clots soaked in distilled water. Everything is put in a PE bag to prevent
evaporation of water and heated to 65°C for 48 hours. After this drying at no more than 40°C

for about 20 hours and then continued at room temperature. The process can be repeated for
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delicate objects although the catalyst in the object limits the time an object may spend in the
impregnation bath the second time around, so only 5% catalyst is added to the second
solution. The re-treatment can also be used to fill cracks formed during initial treatment. The
advantages of the method include slight shrinkage, applicability to all types of wood, a

minimum of labour required, and high durability [97].

It was found that the Kauramin treatment overall resulted in the least swelling or
shrinkage when compared with a number of other often-used conservation materials such as
PEG and sucrose. In addition, it was the method least sensitive to wood species as the other
methods were better at stabilising pine than they were at stabilising beech and oak. The
method also has significant drawbacks. Curiously, the treatment did not work well on fresh
oak samples, where collapse occurred in the heartwood (so differences in degree of
degradation can be a problem). The pre-polymer cannot penetrate the cured outer resin layer
to correct for such faults. This makes premature polymerisation a serious risk — even at
controlled pH. The whitish colour of the polymer also mars the appearance of Kauramin-
treated artefacts. Another drawback in that curing takes place at 50°C rather than at room
temperature. Finally, drying time must be taken into account as the wrapping in paper makes
the objects unsuitable for display while drying (unlike the PEG or sucrose method where the
objects may dry in a museum environment). A further problem with Kauramin is that it
cannot be washed out of treated objects (unlike PEG or sucrose) [80]. In high
concentrations, the polymer might arrange itself randomly, resulting in blocked pores which
prevent future treatment of the wood. For this reason, the Kauramin method only applies a
little polymer to the treated items, thus preserving the open structure of the wood [98]. Thus
the last paragraph on the Kauramin method in Paper I should be worded differently —
although the discussion on plastification is still relevant (see chapter 5 'Future consolidants'

on page 71 for more information).

Note that the treatments described require temperature control and sometimes even
vacuum. The latter in particular severely limits the practical applications of the method. For
example, it will be impossible to treat the artefacts from the Oseberg find using a method

which cannot be applied directly in the museum.
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4.1.7 Treatment by various polymers

In order to develop new materials for waterlogged artefacts, it is vital to avoid problems
caused by already tested consolidants. One might think that there is a wealth of polymers

which would make wood conservation easy. Sadly, the truth is quite the opposite.

One possibility is to use sugars. Waterlogged wood treated with sucrose keeps the
appearance and weight of fresh wood [31](p. 25). Sucrose can effectively stabilise wood but
the procedure can be tricky as a near-saturated solution gives the best results. Evaporation of
water or a drop in temperature can cause the sucrose to crystallise and become very difficult

to remove [80].

Introduction of monomers into wood for in situ polymerisation has been discussed at
least since 1978. Polymers such as PMMA (poly methyl methacrylate) and PS (poly
styrene) (including various co-polymers) were introduced. It was found that wood-PMMA
has stress properties similar to solid PMMA but superior to wood. It is also more resistant to
static bending. Warping, checking and decay resistance are all improved — possibly due to
the changes in hygroscopicity [99]. In a previous experiment, water-soluble monomers gave
poor results. N-vinylpyrrolidone (NVP) formed a dark brown gel on the surface of the
treated objects and ruined their impression. It also caused splitting or cracking of the
impregnated samples — even after radiation curing. Similar cracking was caused in samples
treated with a 15% methacrylamide (MAID) solution. Oxygen prevented polymerisation in
samples treated with butyl methacrylate. This also caused cracks to form and resulted in a
very low overall impregnation. Treatment with acetone and Norsodyne and Ludopal resins
gave better results, with a maximum of 3.5% shrinkage of the highly deteriorated wood after
treatment. Unaltered Ludopal resulted in some cracks but adding butyl acrylate gave a more
flexible resin than the Norsodyne (propylene glycol polymaleate) with similar results
(maximum 1.2% shrinkage) [81](p. 226-227).

Certain in situ polymerisation methods, such as impregnation with poly(methyl
methacrylate), cannot be used with wet materials and polymerisation is so rapid that
corrections cannot be made once initiated [20](p. 439-479). Generally speaking, tests with
monomers (water-soluble or not) did not give optimal results — possibly due to low viscosity

and the inhibiting effect of oxygen on polymerisation [81](p. 232).
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Resins, such as urea-formaldehyde or melamine-formaldehyde resins, have drawbacks
(toxic reactants, swelling of the wood, poor penetration, wood is still susceptible to bio-
degradation) [20](p. 439-479). Thermoplastic resins are more attractive as wood
consolidants than thermosetting resins (due to reversibility). It is possible to introduce such
resins into the wood in solution (aqueous or non-aqueous) and start the polymerisation
through heat, a catalyst, or y radiation. The most commonly used polymers in resins are
acrylics, poly(vinyl acetates), poly(vinyl butyrals), and soluble nylon. Unfortunately, nylon
eventually cross-links and becomes brittle, making it unsuitable for impregnation of wooden
artefacts [100](p. 362-363). Soluble nylon has poor ageing characteristics and may even
flake off, taking wood and paint with it [20](p. 504). Unsaturated resins have higher
viscosities and create a more hard finish. Shrinkage is less than with many other monomers,
but can unfortunately reach as much as 9%. These resins were tested with acetone as solvent

and isophthalic polyester resin as the impregnating polymer [81](p. 232).

Several acrylics have been thoroughly tested using various species of wood and different
fungi for degradation. The resistance of many polymers to insect attack is also discussed
thoroughly, but such discussions are beyond the scope of this thesis. A list of
biodegradability states that polymers like PMMA, epoxy resins, PP, PS, PET,
“glasfaserverstirkt” polyester, hard (but not soft) PVC, and PE (in that order) are extremely
resistant to biological degradation. Many acrylics used in conservation are rated similarly to
PMMA. Interestingly, PF is only rated slightly above average and MF is rated as average
even though these polymers are traditionally described as very resistant chemically [101].
The stability and resistance to mould growth of various polymers has been tested. It was
found that polymer materials in themselves usually cannot withstand fungal attack without
treatment with some form of biocide [102]. Gamma radiation may also be used both for
killing unwanted organisms within the wood and/or activate polymerisation of certain

acrylics or polyester resins [20](p. 498).
Other compounds, like poly(vinyl acetate), poly(vinyl chloride) or poly(vinyl alcohol),

are not hard enough to stabilise the wood and/or do not penetrate very far into the wood.

Compounds like poly(vinyl butyral) and unsaturated polyester resins may prove more
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useful, but are still time-consuming and difficult or dangerous to handle during
polymerisation [20](p. 439-479).

Isocyanate foams are considered when voids have to be filled with a semi-rigid material.
Ethanofoams might be used as an interface between rigid nonhygroscopic materials and
cosolidated fabric. Latex or vinyl with a microsphere suspension are considered for filling
voids — and epoxides and polyesters might be used for the same purpose when an
interlocking matrix is needed. Finally, PVC is considered along with stainless steel or
aluminium tubing when supporting the direct load through a skeletal structure [100](p. 336).
A styrene polyester has been employed in an attempt to limit acidic sulphur efflorescence on
French shipwrecks treated with PEG. After a year of impregnation, tests showed that the
sulphur was well stabilised. It is also worth noting that already PEG-impregnated artefacts
can be re-conserved with a polyester resin (up to 40% concentration). The double treatment

does darken the surface of the wood slightly, however [103].

Using azelaic and sebaic acids (dicarboxylic acids with 9 and 10 C atoms respectively)
to impregnate the wood may offer an alternative without the need for freeze-drying [104].
Unfortunately it is difficult to ensure proper penetration and the acids also lower the pH of

treated wood significantly without offering superior support [73].

4.1.8 Silicon oil treatment

While most polymers used on archaeological wood may be carbon-based, it might be
worth it to expand into other kinds of polymers as well. Silicon-based chemistry might offer
new possibilities when designing polymers.

An overview of the chemistry and typical interaction between sillicon compounds and
wood can be found in Ref.[79]. According to this, sillicon is the second most abundant
element after oxygen. Silicates and silicic acid esters are found both in plants, lower
animals, and vertebrates (for example in palm leaves, sponges, and nails, respectively).
Silicic acid, H4SiO,, causes the formation of silicified wood by eventual polycondensation
to quartz and opal. Silicofluorides are used as biocides and makes wood less susceptible to
weathering and degradation due to light. Water glasses are solutions of potassium or sodium

silicates (typically 2-4 mol silicate to 1 mol alkali oxide). Water glasses are used as flame
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retardants, binding agents, and coating materials. While colourless in their pure form, they
are easily coloured due to impurities. Watery solutions are very alkaline, having pH values
of 12 or more, and precipitated in acidic environments. When impregnating (fresh) woods
with water glasses, the NA ions must be replaced in order to cause the material to
precipitate. This is done by introducing a salt, possibly as a two-step process. Hardwoods
gain significantly more weight than softwoods when impregnated. Considerable amounts of
chemicals are washed out during impregnation, and the wood is often soaked in acid to
prevent this by forcing the silicates to precipitate. Water glass is also highly hygroscopic.
The anti-shrink efficiency varied in tested samples (3-69%) but was generally low. On the
bright side, water glass makes the wood resistant to fire and fungal attack. Strength is only
improved slightly with curing at room temperature and actually reduced when cured at
higher temperatures (103°C). When combined with acetylation, the hydrophilic nature of
water glass causes a slight reduction in the ability to resist swelling. While some silicic acid
monomer solutions enhances wood strength properties, water glass actually reduces them

[79].

The COH group in the cell walls can be reacted with silanes (and since cross-linked with
carbonols or silanols). Catalysts are usually required. The polymers can either be added to
coat the cell walls or a mix with cross-linker can be introduced which penetrates the cell
walls. Water in the cells is replaced by acetone or an alcohol. Catalyst is usually added at
this point. MeSi(OMe); and Si(OEt), can both be used as cross-linkers although the former
is tri-functional (as opposed to tetra-functional) and results in a more pliable specimen [105]
(foreword).

Treating PEG-conserved objects with Si-polymers may cross-link free PEG and restore
the original dimensions of the object, counteracting the swelling often associated with PEG

treatments [105](p. 31-32).

Organosilicon compounds have been tested on wood. Some of these are poisonous and
the impregnation process is irreversible. White deposits may form on the surface of the
objects and cracks often develop in the brittle preserved wood — especially with waterlogged
wood [20](p. 492-6). Objects are exposed to fumes of catalyst in order to ensure that said

catalyst reaches the inner parts of the artefact and causes polymers to cure all the way
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through [105](p. 68). Previously tested silicon oils are not miscible with water, meaning that
dehydration of the objects to be treated is required. This, unfortunately, easily damages
waterlogged artefacts [105](p. 13). Water glass and similar compounds can be gradually
decomposed by CO, in the air [79]. The high pH value of dissolved water glass and similar
compounds also means the wood can be damaged — especially considering the significant

impregnation times required.

4.1.9 Supercritical carbon dioxide treatment

Supercritical CO, can act as a solvent and remove biocides from wood. Agents such as
DDT can be mostly removed, provided that the objects are treated from one side only, and
resins may be dissolved and mobilised. The CO, may even be circulated for later use [20](p.
264).

Additionally, supercritical CO, is used when drying waterlogged wood — or when
impregnating it with PEG — but water in the wood must be exchanged prior to treatment (for

example with methanol) [20](p. 289).

4.1.10 Nanoparticle treatments

Nanoparticles offer new ways to preserve cultural heritage by mixing soft-matter and
hard-matter systems, and have already been applied to wall paintings, paper, and wood — an
overview of which can be found in Ref.[106]. The approach is mainly used in the restoration
of frescos since these wall paintings, while long-lived, tend to degrade as the binder
(CaCO:s) oxidises (or turns into CaSO4-2H,0) — or as environmental pollution interacts with
the surface. Such degradation may be chemically counteracted by the following reactions:

(NH4),SO,4 + CaSO,-2H,0 --> (NH4),SO4 + CaCO; + H,O

followed by this neutralisation:

Ba(OH), + (NH,),SO,4 --> BaSO, + 2NH; + 2H,0.

Excess Ba(OH), reacts with CaCOs; to create new slaked lime which then sets — just as
when the fresco was originally painted). This process can usually be replaced with
consolidation using nanoparticles. In fact, Ca(OH), particles have already been used to
preserve Mayan paints in situ, where high relative humidity and tropical or sub-tropical

climate normally deteriorate both paintings and polymers used to preserve them [106].
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Nanoparticles can do more then simply reinforce frescos, however. Cellulose-based
materials can be effectively treated with alkaline particles which counteract the acidification
process degrading the cellulose polymer. Several aqueous and gas phase methods exist for
the neutralisation of acid in paper, but the distribution of the alkaline material is often hard
to control, possibly leading to increased vulnerability to moisture or loss of paper strength.
Nanoparticles of Mg(OH), or Ca(OH), can likewise be used to de-acidify paper. Indeed
these compounds have also been used to neutralise acidic archaeological wood — such as
that from the JVasa [106]. In one study of Vasa material, the nanoparticles contained
crystallites with an average size of 15 nm. The particles themselves were about 90-130 nm,
which allowed them to penetrate into the wood. Because CO, converts hydroxides to
carbonates, long-term degradation of lignin due to the alkaline hydroxides should not occur.
The outer 1-2 cm of the wood (where degraded PEG is also found) were successfully
neutralised. Mg(OH), particles are typically smaller — and thus penetrate further — than
Ca(OH), particles. Solvents other than propanol might also enhance penetration. Suspension
was achieved by using fluorinated solvents which are supposed to be chemically inert.
Dispersion was carried out by sonification and penetration was attempted under continuous
stirring. Both 0.2 and 0.4 M aqueous solutions were prepared. The procedure does require
multiple dryings under nitrogen atmosphere as well as the special solvents. The wood was
also washed to remove most of the PEG. No shrinkage was observed while drying the wood
(although the wood has already been dried once, which may make the result unreliable). The
wooden test pieces were fairly small, about 0.4x4 cm and had a pH of about 5.5 after

treatment [107].
Given these successful initial trials, it is reasonable to assume that future conservation

materials will include some sort of acid-neutralising particles. It would, however, be ideal to

work with less expensive solvents than the tested fluorinated ones.
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5. Future consolidants

The current state of the Oseberg collections also demonstrates how the ingenious
inventions of today become the headaches of tomorrow. Sadly, most existing treatments
have some form of drawback (see chapter 4.1 'Conservation treatments' beginning on page
50). This demonstrates the need for strategic planning towards new and better consolidants
for archaeological wood — as opposed to simply testing materials at random. Based on the
literature review in the previous chapters, some ideas and requirements for new consolidants
can be listed. This chapter deals with those ideas, presenting both the ideal list of
requirements for new consolidants and several of the practical considerations which must be

taken into account. This is also discussed in Paper I in the appendices.

Stephen Mann writes that “Viewed from afar, the landscape of science appears steadfast
and immutable. But in reality, this permanence is underpinned with a loose patchwork of
disciplines whose frontiers are constantly being redefined.” [108](introduction). “Clearly, an
interdisciplinary approach of this magnitude relies on the unlocking of human imagination
from the confines of conventional disciplines. A new paradigm is imminent — are we ready
for it?” [108](p.37). Although the quote in question is about biomimetics (see chapter 7.1
'The concept of biomimetics' on page 125), it might as well have been written about new
consolidants. When approaching wood conservation from a chemical viewpoint, it is
important to remember that conservation science very much deals with ethics. What may or
may not be permitted is not dictated by an individual or organisation since the treated

artefacts have historical value which must be preserved for future generations.

A list of requirements for conservation in general can be found in the A/IC Code of
Ethics and Guidelines for Practice, stating that: “The conservation professional must strive
to select methods and materials that, to the best of current knowledge, do not adversely
affect cultural property or its future examination, scientific investigation, treatment, or
function.” [109] While excellent in theory, this becomes difficult in practice. For example,
many products originally thought to be reversible have shown various problems (yellowing,
brittleness, detachments etc.) making re-treatability more important than reversibility [110].

In the 1960's, resins were applied to archaeological finds. It was thought that these resins
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could be removed at any time. Unfortunately this was not so. Many artefacts have ended up
permanently damaged due to the process. Generally, the removal of polymer materials is
difficult or even impossible, and many organic chemical compounds are harmful given
enough time. Thus inorganic compounds are much more effective when treating inorganic
artefacts like stones and wall paintings [106]. In a test (involving stonework and artificial
UV ageing) with Paraloid B 72, Paraloid B 67, and Dri-Film 104 (a Si-based product), all
three polymers underwent irreversible modifications, changing colours and making their
complete removal impossible. After 2000 hours of ageing, about 60% of the B72 and and
70% of the B67 was no longer soluble. This applied to polymers in actual stonework. When

applied to Petri dishes, only a few percent of polymer material was insoluble [110].

The AIC Code of Ethics and Guidelines for Practice also states that: “The conservation
professional shall promote an awareness and understanding of conservation through open
communication with allied professionals and the public.” [109]. The diverse nature of wood
means that there is no single optimal treatment to a given class of wooden objects. Thus a
dialogue between groups — focussing on each individual specimen to be treated — is the only
way to improve communication and treat each artefact appropriately [1](p. 447-448).

While important, useful communication is often hard to implement due to a 'language
barrier' between different fields — such as chemistry and conservation. Often it is hard for
conservators to ask questions the chemists understand — or for the chemists to deliver a
usable reply. It takes time and a willingness to explain all about one's own field.

There are also certain conditions which make communication more difficult. Many
studies on wood simply state that the wood was found in, for example, 'good condition' but

they rarely specify any details beyond possibly shrinkage [60](p. 68).

5.1 Practical considerations

The shortcomings of existing consolidants need to be considered before designing a new
one. First of all, the consolidant must remain stable and endure in normal air (see chapters
4.1.2 and 4.1.4) and possibly endure the presence of metal ions without degrading (see
chapters 2.3 and 4.1.4). Another important requirement is that the consolidant is fairly

evenly distributed throughout the wood in order to avoid forming an outer 'shell' with a
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fragile core (see chapters 2.3, 4.1.3, and 4.1.7) or prevent future treatment by other polymers
(see chapters 4.1.5 and 4.1.6). It is a significant advantage if the consolidant is resistant to
acid (see chapters 2.3, 4.1.3, and 4.1.4) although this might be accomplished by adding a
neutralising agent (see for example chapter 4.1.10). Speaking of pH, the treated wood
should be kept slightly acidic as alkaline conditions damage the wood (see chapters 3.2 and
4.1.8). The consolidant should be compatible with the existing wood (for example not
damage it due to being alkaline as in chapter 4.1.8). Last, but certainly not least, the ethics
and practical considerations of conservation must be taken into account, meaning that

consolidants should be non-toxic and avoid plastification (see chapters 4 and 4.1.5).

In order to achieve a method that lasts forever (or, since nothing lasts 'forever' than at
least several centuries) and leaves the finds re-treatable at such a time, several approaches
must be investigated. Will it be better to use inorganic particles which are very difficult to
degrade, or should it be attempted to mimic the structure of the existing wood? Existing
studies — while valuable — often focus on a single compound or set of curing conditions,
making it hard to generalise the results. Alternatively, usable methods may provide great
initial stability of the treated items but bond permanently with the wood, making it
impossible to re-treat the objects later on (and, sadly, meaning that such finds will probably
be irrecoverable once the treatment starts to fail). Thus the main aim of this study was to
discover in what general directions the most promising ways of conserving wood lie (or,

failing that, at least what should not be attempted in the future).

Preservation with reactive chemicals is called a number of things such as 'plastination',
'reactive filling', or '(chemical) bulking' [105](Foreword). It is important to note, however,
that this might not mean that the wood is being completely filled with polymer. This
scenario is called 'plastification' and essentially turns the porous wood into a solid lump of
matter. Such plastification is a danger to the above requirement of leaving an open structure.
In order to ensure retreatability it is essential to be able to predict the shape of the added
consolidant in the wood. The ideal consolidant simply adheres to the existing degraded
wooden matrix, adding an extra layer of a stable material while leaving the lumen open for

future consolidants.
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The choice of solvent may be as vital as the choice of consolidant. Polar solvents, for
example, tend to get adsorbed in the wood, lowering mobility of impregnating materials
[100](p. 363). Reaction with existing materials must also be considered. The highly
degraded alum-treated objects, for example, cannot be re-treated using watery solutions (see
chapter 6.4.1 'Tmaging of PF-treated samples' beginning on 100 for some of the actual trials)
or related solvents such as ethanol — while toluene seems to react less with the alum crystals
[11]. From a chemical perspective, using toxic solvents is not a problem as long as they do
not damage the wood. Such wood will not usually be treated by chemists in well-equipped
laboratories, however. This means that there is a constant balance between the practical
problems of working with toxic or expensive chemicals (possibly directly in the museums

themselves) and the least damaging way to treat wooden artefacts.

While it is easy enough in theory to encase objects in a museum in airtight display cases
filled with nitrogen, it is often difficult in practice. Either the cost of the display cases or the
required durability means that most museum objects are typically stored in normal
atmospheric air — often with some system in place to regulate humidity [11]. This means
that most consolidants will be exposed to oxygen, which accelerates degradation. Although
the problem can be postponed by adding an anti-oxidant to the polymer mix, this can only
prolong the inevitable. Ether and ester groups of polymers are easily cleaved through radical
depolymerisation in an oxygen atmosphere [111]. It is probably best to choose a polymer
lacking such groups. If this is not possible, ring structures should be chosen over linear
molecules with similar chemical compositions and especially aromatic compounds may

offer excellent stability to applied consolidants.

Both thermal degradation and degradation by decay seem to be caused by different
mechanisms than the degradation in buried wood [20](p. 41). Unfortunately, this means that
the best way to test a consolidant is to wait for it to degrade in a museum. Accelerated
ageing tests at elevated temperatures (and possibly known atmospheric compositions)
become the best way to investigate the durability of polymers. In such cases, it is vital to test
the impregnated objects, rather than a pure polymer mix, as ions or acids in degraded wood

may affect the degradation pathways of treated artefacts.
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5.2 Ideal consolidant requirements list

An important aspect of designing new materials for treating archaeological wood is to
specify exactly what qualities are desired in future consolidants. Discussions with the people
in the project (and the Department of Conservation) resulted in a list of desirable properties.
While all involved understood that it was unreasonable to expect all of these point to be met,
the list at least served as a focus point for selecting possible materials for further study. The
following list has been rearranged in an attempt to prioritise the requirements contained
within. The order is mainly based on considerations relevant when developing new
materials. Once it comes to implementing an actual product in conservation, all are of vital

importance.

1) Re-treatability (airy structure): The only practical way to make something last
forever is by treating it whenever it begins to show signs of weakness. Thus it is vital that
objects may be treated again in the future. In order to ensure that future treatment is
possible, open pores must exist throughout the treated material to allow future treatments to
fully penetrate the artefact. As such, an 'airy structure' is a vital requirement.

2) Good penetration: Since the alum treatment demonstrates how fragile objects can be
if only supported by a crust of consolidant, any new materials must thoroughly penetrate the
wooden matrix to properly support the core.

3) High durability: As cultural heritage should be available for future generations, a
consolidated item should ideally last forever. With 'forever' being impossible, it is at least
important to consider ageing and structural strength a couple of hundred years into the
future. One should note that the museum climate is quite stable and polymers might be less
prone to degradation here than for example outside.

4) No size alteration: As the polymer cures or penetrates, it is vital that it does not
distort the wood. This does not mean that the polymer itself cannot expand or shrink slightly
but the effects must not be noticeable on the treated objects.

5) Surface interaction with remaining wood: Since much of the alum-treated wood from
the Oseberg find is barely coherent, a consolidant should interact with the wood sufficiently
to prevent it from further warping out of shape. One easy way to achieve this is through
chemical bonding to the degraded wood but other kinds of bonds may be sufficient to

prevent distortion of the artefacts.
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6) Non-poisonous solvent & materials: As conservators may have to re-treat some
objects directly in the museum environment, it is vital that they (or visitors) are not exposed
to de-gassing carcinogen compounds. As such both the solvent used and the polymer
components should ideally be non-toxic. While this is of vital importance in actual
application, toxic materials are acceptable during development of new methods.

7) Non-warping solvent: Most solvents — especially polar ones — warp wood. While it is
possible to treat newly excavated wood with water as a solvent, it will not be possible for
the more degraded alum-treated objects (see chapter 6.4.1 Tmaging of PF-treated samples'
beginning on 100 for more on what solvents do). This requirement is significantly less
important for methods which will be applied to fresh wood as such material will most likely
be freeze-dried in order to prevent warping during drying. Thus the choice of solvent will
often be dictated by health and safety concerns or compatibility with earlier treatments.

8) Wood-coloured: The texture and colour of a consolidant must not ruin the impression
of the objects for museum visitors. While slight colour changes may be acceptable, white or
yellow colours are preferred as they will simply make the dark archaeological material look
more like fresh wood. This requirement is less important if applied to stabilise the core of
fragmented items — such as alum-treated material — since the visible surface should remain
unaltered.

9) Wood-friendly pH: The effects of the alum-treatment clearly demonstrate that extreme
pH ranges degrade the remaining wood over time (see chapter 2 on page 7 and chapter 4.1.3
on page 54) and that future treated materials should ideally have pH values in the 4-6 range.
This requirement has been assigned relatively low priority since a composite solution can
introduce a different compound with the capacity to neutralise whatever acid might be
generated inside treated objects. Furthermore, some finds may already have extreme levels
of acidity. This applies to the alum-treated Oseberg wood, for example.

10) Cost: Expensive materials is no barrier to research and testing of new materials.
Still, it is unrealistic to assume that a museum will be able to afford a new and superior
treatment which costs 20 times as much as an existing alternative. From a chemical
perspective, various ways to synthesise the desired product — or a number of similar

products — should be considered.
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As can be seen, the ideal consolidant has to live up to real-life requirements and as such
the tests described in this thesis can be said to be a mix of theory and practice, constantly
compromising between the possible and the desirable. With the many new disciplines
emerging in science, collaboration between different fields is sure to yield the theory,
materials, and expertise needed to develop truly new and promising consolidants for

archaeological wood.
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6. Phenol-formaldehyde

The search for future polymers began by going back to the very beginnings of polymer
chemistry to Bakelite. While this was not envisioned as the ideal solution in itself, the
results generated would help dictate likely avenues of approach.

Polyphenols are the reason plant species were able to colonise land so effectively. The
basic phenyl-propanoid pathway used by plants for lignin construction today was already
present in plants 400 million years ago [26]. For this reason, it is logical to try to reinforce
degraded plant matter with simple phenolic compounds, and one of the simplest is phenol-
formaldehyde (PF), the first widespread plastic. A fully cured PF can withstand most
solvents (only boiling with concentrated sulphuric acid will break it down) and can be

heated to 300°C before charring [112].

6.1 History and use of PF

In relation to conservation history specifically, the use of PF has been covered in chapter
4.1.5 'Phenol-formaldehyde treatment' on page 59. From a more general perspective, the
history behind PF is covered here.

As far back as 1859, Butlerov managed to create a poly-formaldehyde (although this
was not identified until the 1920's). Work on phenolic resins made from aldehydes was
reported in 1872. Even though a polymer was formed from phenol and formaldehyde, it was
not researched very well as it was found that the product could not crystallise. An insoluble
cross-linked PF resin was described by Kleeberg in 1891 and Smith gained a patent for PF
and proposed that it could be used to substitute wood and ebonite (a highly cross-linked
rubber). He also stressed the insulating properties of the material. With this focus, the
research into PFs gained renewed interest. The Louis Blumer Company gained a patent for
production of PFs in 1902 and Luft introduced the use of plasticisers in resins. Henschke
produced a non-soluble product upon reaction between phenol and formaldehyde in the
presence of sodium hydroxide. A significant change came with the invention of Bakelite,

however [6].
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It has been slightly more than a century since Leo Hendrik Baekeland (1863-1944)
applied for a patent on the 13™ of July 1907. Baekeland was trying to produce a synthetic
product with insulating capabilities to meet the increasing demands put forth by the
electrical industry. What he proposed was a phenol-formaldehyde polymer which is now
considered the first fully synthetic plastic [6].

Baekeland was born in Ghent, Belgium, and attended university there. After graduating,
he patented a way of developing photographs in water, but this never became a commercial
success. Possibly to start anew, Baekeland moved to the United States where he continued to
develop Velox, a fast-copying photographic paper. Eventually, he was able to sell the factory
producing this product and gain economic independence in 1900. While drawing upon the
knowledge of fellow chemists, Baekeland started researching phenolic resins in 1905.
Although he was not the first to produce phenolic formaldehyde, Baekeland managed to
describe an inexpensive way of producing it on a large scale. This allowed it to replace
shellac, which was needed for insulation by the electrical industry at the time. Motivated
primarily by making money, Baekeland was quick to exploit this need [6]. In 1907
Baekeland was well aware of others making products similar to phenol-formaldehyde. He
used these in his own research. He also divided the polymers into two classes. The first was
a 'shellac substitute', which was not fully cured, and can be transformed into the second
class, which is a fully cured polymer. The second type can also be formed directly [112].

Baekelands breakthrough was to let the polymerisation take place at 100°C or more.
This eliminated most of the release of formaldehyde gas, enabling commercial use of the
polymer [6]. He knew that gas (primarily formaldehyde) may escape due to the high
temperature [112]. Baekeland tested a variety of acids and bases while producing the PF, but
did not find any major differences between polymers formed by different organic or
inorganic catalysts or the finished products [6], [112]. He eventually divided the production
into three stages and three products [6]:

A: A soluble and meltable product.

B: What is gained when heating product A. It may swell in different solvents but is a
non-meltable solid. It softens when heated and may be moulded under pressure.

C: What is obtained when heating B under pressure. It cannot be melted or dissolved and

does not thermally degrade at temperatures lower than 300°C.
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Use of Bakelite, as Baekeland named the polymer, became very widespread. Production
companies were set up in Canada, Europe, and Japan. Baekeland was often willing to work
with competing companies rather than fight them. The Bakelite was mixed with fillers such
as wood flour or asbestos. Although the material was at first used for electrical insulation,
development of coloured resins made Bakelite a natural substitute for ivory or rubber. Cars,
telephones, jewellery, and radio sets used Bakelite components. Thomas Edison even chose
Bakelite to construct gramophone records from. Baekeland recognised the potential for a
Bakelite layer to replace lacquers on for example kitchen utensils. That Baekeland
eventually held over 400 patents speaks of the diversity of the material, which could be used
to produce everything from doorknobs to billiard balls [6].

After the the second World War, Bakelite was used less and less. The odour of Bakelite
became associated with times of despair and poor quality materials. It was probably more
important, though, that the production of Bakelite was expensive when compared to new
plastic materials like PVC, polystyrene, and nylons. Not only were they cheap, but their
thermoplast qualities often made them superior to Bakelite. Baekeland's legacy is very much
alive despite this. Is not just the material named after him, but rather the fact that plastics
were used in new ways (such as for insulation, jewellery, and structural materials). In this

way Bakelite paved the way for the innumerable plastic products surrounding us today [6].

A quick search on the internet will reveal that phenol-formaldehydes are still produced
today. PFs are used as adhesives for fresh wood and can even improve the mechanical
stability of plywood boards [113]. In fact, the slower curing time of the polymer in wood
might be due to monomers penetrating into the cell wall material. The question is whether
the PF cures normally or actually substitutes wood polymers [114](p.111 & 192). Low-
molecular PF seems to penetrate slightly into the wood cells while high molecular PF does
this to a lesser extent [114](p. 156 & 160). Phenol-formaldehyde can be mixed with waste
lignin to produce adhesives for wood [42]. Incorporation of lignin into PF novolac polymers
has already been successfully done [115], [116].

It is thus logical to attempt to incorporate the lignin-rich archaeological wood into a

polymer network in order to reinforce it.
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6.2 Chemistry of PF

The purpose of this chapter is mainly to give those without previous polymer knowledge
some insight into how phenol and formaldehyde react. Notes on novolac reactions will be

given as most of the experiments were carried out using acid catalysts.

Even though mixing phenol and formaldehyde with a catalyst is relatively easy, the
cross-linking of PFs is a complex process. As such, the structure of the resulting polymer is
difficult to elucidate. As such it was not until after 1945 that significant progress was made
in determining their structural properties despite the fact that PF had been in use for decades
at the time [119]. In fact, the polymerisation process might not be fully understood even
today [120]. As condensates are formed, many complex structures may result, making it
hard to model every possible reaction even though only two reactants are involved. In one
study, no less than 89 reactions between 13 compounds were considered, distributed as “7
addition reaction of formaldehyde to the phenol ring, 77 condensation reaction of monomers
with the phenol or other monomers, 4 addition reaction of formaldehyde to the aggregate

dimers, 1 condensation reaction of dimers with monomers.” [117].

The polymerisation of PF can be catalysed by sufficiently strong acids or bases. The
resulting thermosetting structure is amorphous. PFs catalysed by acid are called novolacs

while those catalysed by base are called resols [118]. The structure of the prepolymer
OH

depends upon the pH of the OH
solution [6]. The first step of H\ H* OH
- . +  C=0 —
polymerisation can be seen in /
H

Figure 6.1 while the continued

linking of molecules is shown

in Figure 6.2. The shown oH o
molecules eventually cross- H\ ot
L + Cc=0 EE—
link into a huge amorphous /

H
mass. An alternative to the
reactions shown in Figure 6.1

OH

can be seen in Figure 6.3
Figure 6.1: Initial reaction between phenol and formaldehyde.

below. While this reaction is

82



unlikely to be very common, it is shown since the kinetics measurements try to evaluate

which initial reaction is the more likely (see Figure 6.6 on page 98 for more information).

Today the PF reaction is divided into three steps [6]:

1) addition of formaldehyde to phenol,

2) synthesis of prepolymer, and

3) cross-linking of prepolymer.

Adding increasing amounts of formaldehyde relative to phenol creates more bonds
between phenol molecules and thus a stronger product — but the average degree of
polymerisation is reported to increase with increasing reaction time even if no additional
formaldehyde is added [113]. Since phenol has a functionality of one to three, and
formaldehyde has a

OH OH
functionality of two, a

formaldehyde:phenol (F:P) OH OH OH O O
molar ratio of 3:2 should H*
. . i — OR
theoretically  yield a + HO

completely  cross-linked
polymer — although this O O
does not happen in practice OH

It is also hard to
generalise the results as
polymers cured for shorter
. . OH OH
times sometimes show a

OH

higher degree of cross-

#: — OR + H,0
linking than a similar

polymer cured for a longer
time [119]. This is oA OH oH
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additional curing would enhance cross-linking. One can speculate that results might be
different for polymers cured a relatively low temperatures and pressures where the
individual molecules have more time to change orientation and fit into the existing polymer
structure.

What is noteworthy about the initial polymerisation is that formaldehyde may react at
both the meta and para positions. This means that the resulting polymer becomes
amorphous, lacking a recognisable repeatable structure. Rather than a single coiling chain
(which is common for most other polymers used in conservation) the resulting PF network

is reinforced throughout its structure, rendering it less flexible but more resistant to decay.

Since the reaction between phenol and formaldehyde is exothermic, PF reactions have
the unusual ability to self-heat at any pH if sufficient acid or base is added (the heat of
reaction is roughly 2800 J/g). Regardless of F:P ratio, the tendency to cause runaway
reactions is very small in between pH 2 and 7, but much higher more extreme levels of pH
[121]. This means that boiling is not only possible but likely at elevated temperatures and

may cause significant damage to archaeological wood should it occur.

Under basic conditions, formaldehyde in at least 1.5 times the molar mass of phenol is
used, forming a hydroxymethyl phenols called resols. These can again be heated and further
cross-linked (typically at
120°C). The temperature

OH OH
controls the degree of H\ - OH OH
polycondensation. + 2 /C:O —

Polymerisation under H

acidic conditions forms a

novolac. These QH Q.

th lasti duct H\ H' o
ermoplastic products . B /C —0

contain less formaldehyde H

than  phenol.  Adding

hardeners (for example OH

hexamethylenetetramine) — Figure 6.3: Hypothetical reaction between phenol and formaldehyde

used for the kinetic models.
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may result in later cross-linking. They are used as powders for injection and compression
moulding [6].

As novolacs are often sold as uncured pre-polymers, some references state that all
novolacs have F:P ratios of less than one while all resols have ratios greater than one. In the
following text, however, the term movolac' is used for any acid-catalysed PF even if said
polymer contains more formaldehyde than phenol. The effects of varying F:P ratios will be
further discussed in chapter 6.3.2 Pure polymer experiments on page 89).

What makes novolacs particularly durable is the mix of ring structures and lack of ether
bonds. This means that while the OH groups on the phenol rings may oxidise (possibly
explaining the colour change which happens as the polymer is exposed to oxygen), the
covalent bonds linking the polymer itself will not normally be broken. In this way the
strength of the material will not be drastically reduced by oxidation, and objects treated with

it may be stored in normal atmosphere (for example while on display in a museum).

It is possible to fully cure a pre-polymer by adding more formaldehyde or a molecule
which breaks down into similar parts. Hexamethylenetetramine (HMTA) is used as a source
of 'anhydrous formaldehyde' but often at elevated temperatures such as 130-250°C. The
polymer still takes more than 24 hours to cure below 175°C [118], [119]. In fact, it has been
reported that the addition reaction does not occur until about 90-95°C [121] although
adsorping water into the mix accelerates cross-linking through plasticisation so that it may
occur at temperatures as low as 70°C [122]. This may be due to the limited duration of the
experiments as PF test polymers did seem to cure at significantly lower temperatures (this is
described in chapter 6.3.2.1 on page 89). HMTA crystals can be found in pores of PF
polymer even after curing for 24 hours at 170°C. This indicates that HMTA is not soluble in
the polymer melt® [122]. HMTA cures polymers with a high amount of ortho-ortho linkages
more effectively [120]. It also seems that conversion rates for the pure resin is actually
higher at lower temperatures as high temperatures quickly fuse part of the structure and thus
hinder mobility. The investigated temperature range was 105-155°C so what happens at only

slightly elevated temperatures was not determined [123].

3 Note that the word 'melt' is often used about (pre)polymers in the liquid state even if said polymer is
incapable of melting in the chemical sense because it cannot form a crystal structure (such as for

example the amorphous phenol-formaldehyde).
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Although the reaction between phenol and formaldehyde may not be fully investigated,
it is possible to modify the bonds in the resulting polymer. The most effective catalysts in
promoting ortho-ortho linkages are reported to be zinc acetate, magnesium acetate,
manganese acetate, boric acid, and copper acetate (in that order) at about 4% weight
compared to phenol. All of these catalysts resulted in more than 80% ortho-ortho links when
reacted for 5 hours at 125°C. Prolonging reaction times meant that the ortho-bonded
molecules started to react at the para sites. The ratio between phenol and formaldehyde also
modifies the ortho-ortho frequency, with 18-30% molar excess of phenol being optimal

[120].

6.2.1 Mixing PF with other consolidants

In the same way as Kauramin method (see chapter 4.1.6 'Kauramin and melamine-
formaldehyde treatments' on page 60) started with pure melamine formaldehyde and
modified it to produce a more flexible polymer, it may be possible to modify PF in a similar

fashion.

PF has been modified in several ways already. A blend of two or more polymers may
result in an inexpensive way to create a product with superior properties. Since most
polymers are immiscible, block or graft polymerisation is usually needed to make a polymer
blend. Mixing poly(propylene) and phenolic resins results in a 'thermoplastic phenol
formaldehyde' made from high molecular weight novolacs. Using more formaldehyde than
phenol results in a thermoset product while using less formaldehyde than phenol results in
less cross-linking and thus a thermoplastic product [124]. Adding Bisphenol-A to novolacs
allows them to form denser networks than usual due to the increased functionality of pure
phenol. This increases both stability and resistance to chemicals. This may be done merely
by cross-linking the bisphenol-A with formaldehyde without the need for further added
phenol [125].

Carbohydrates (especially glycerol) were originally added to phenol-formaldehyde
polymers to alter their physical properties. During resin formation, the aldehydic
functionality of compounds like xylose is rapidly destroyed, preventing incorporation into

the polymer system. Sucrose, on the other hand, can be incorporated despite lack of
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aldehydic functionality as it is non-reducing. In fact, results indicate that any alditol
derivative gives better results than resins modified with reducing sugars. The alditol version
of xylose, namely xylitol, gave the best results. Adding 1,3-propanediol results in extremely
strong resins with high dry- and wet-shear strengths. More 1,3-propanediol than phenol (on
a molar ratio) could be added to the resin and was usable as a modifier [126]. In the cited
investigation, it was not determined if the carbohydrates were chemically incorporated into

the polymer itself or merely served as filler material.

Actual lignin does not contain very much phenol. Using NalO, titration, it is estimated
that there is less than one phenolic hydroxyl group per five Co units [29]. Despite this, PFs
(both novolacs [115] and resols [116]) have been reacted with lignin to form a coherent
polymer. This is primarily interesting because it is more environmentally friendly to use bio-
renewable wood components than petrochemical phenol for the production of said polymers
[36], [115]. Temperatures were relatively high in one study; the phenol:formaldehyde ratio
was 1:0.7 and the mix was heated to 80°C for one hour and then raised to 110°C for two
hours. Six to eight hours after this, there was less than 1% free formaldehyde left and the
reaction was stopped [115].

PF resols have been mixed with waste lignin in order to produce resins. Although such
waste lignin is fairly sulphonated [42], it still means this could be a valid method for
stabilising archaeological finds which consist of highly deteriorated lignin and would be an
interesting avenue of research for future investigations.

The most obvious solution for a very durable polymer which will harden at room
temperature is probably a novolac oligomer linked through epoxy links to an aliphatic chain

[111]. Due to time constraints, such experiments were not initiated as part of this work.

6.3 PF experiments

Unfortunately, it is difficult to utilise Baekelands breakthrough of high-temperature
polymerisation to eliminate some of the escaping formaldehyde since wood will blacken
and age at temperatures above 100°C. Thus the first goal was to determine how easily PF
would polymerise at low temperature (preferably room temperature but temperatures up to

80°C or so should be possible to implement).
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Despite the vast amount of published material on PF, all available information on
novolac was obtained at elevated temperatures and so-called 'low-temperature studies' were
still carried out at 140-150°C (and were on HMTA-cured resols) [127]. For this reason, the

initial steps were more time-consuming than originally envisioned.

6.3.1 Experimental procedures for PF

The experimental procedure for most of the experiments described in Paper 2 are
detailed there but most of it is repeated in the following for ease of reference.

Phenol, 37% watery formaldehyde solution, and the assorted polymers tested in Chapter
6.4.2, were all purchased from Sigma-Aldrich. Unless specified otherwise, pure HCI was
used as a catalyst for novolac experiments while NaOH was used for the resol experiments.

The pure polymer experiments were performed by mixing the reactants and catalyst in
30 ml plastic beakers with which the PF did not react. This made it easy to push the finished
product out of the beakers after curing. Typically, 6 g phenol was used and formalin added
to reach the desired ratio (5 g formaldehyde solution results in a 1:1 ratio). The beakers were

typically sealed with parafilm to prevent evaporation during polymerisation.

The wood used for the majority of these investigations was from the 'Drammen’' sample
(since these were initial experiments and quantity of sampling material was a concern).
Some actual Oseberg material was used to test the PF approach (this material is described
more thoroughly near Figure 6.12 on page 106). The monomer mix was dripped onto
sample pieces and polymerisation was initiated by dripping concentrated HCl onto the
soaked sample. The 'lost' sample piece was sealed in a glass vial with a F:P 1.4 monomer
mix, left to impregnate for three days, and heated to 70°C for a week to initiate curing. The
sample was then rinsed with water and wrapped in parafilm to slow down the drying

process.
Free formaldehyde content in samples was determined using the ISO 9397 standard.

This is a potentiometric titration where hydroxylamine hydrochloride is added to convert the

free formaldehyde to acid which is then neutralised with NaOH. Solid sample material is
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dissolved during the first step of the procedure to free any formaldehyde trapped inside

partially cured polymer bits.

6.3.2 Pure polymer experiments

The first experiments were designed to simply understand how PF cures under various
conditions. Actual experiments began by mixing monomers and catalyst in 30 ml beakers.
To fully cure the polymers, they were placed in an oven at 70°C for at least three days. Some
samples were left in the oven for about a week. As the polymers hardened before this time

was up, increasing the time might ensure that any excess formaldehyde would evaporate.

While both acids and bases are available as catalysts, this work has primarily focused on
acid-catalysed PFs, namely novolacs. There are two main reasons for this. Firstly, the
archaeological wood is normally more resistant towards acids than bases (see chapter 3.5.2
'Properties of waterlogged wood' on page 38). Another reason is that resols tend to form
some ether bonds in the structure, which may be undesirable as it can reduce the durability
of the polymer (see chapter 5.1 'Practical considerations' on page 72).

Despite the theoretical advantages of novolacs, it is also important to get an idea of how
the two different types of PF differ and react. One primary reason is that much of the
investigated literature from actual industrial production focuses on resols. If there are
differences, it could mean that the novolac will react differently from previously described

experiments.

6.3.2.1 Colour and curing

Initial experiments simply focussed on trying to get low-temperature curing going as

well as evaluate how PF might change the colour of treated wooden pieces.

A mixture of phenol and formaldehyde has been reported to have a pH value of 3.2
before catalyst is added [121]. Actual measurements gave a much lower value, namely 2.14.
This level of acidity might damage the wood if left for extended periods of time so it is quite
fortunate that PF seems to penetrate rapidly into the degraded structure of archaeological

wood.
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Choice of acid or base should not affect the curing process. The resols were made using
solutions of NaOH. The novolacs were primarily made using HCI as the catalyst if not
specified otherwise. Tests with H,SO4 indicated that concentrated acid is not recommended
as it immediately cures the polymer when a drop enters the prepolymer mix. The H,>SO,-
cured PF turned a very dark red immediately (much like HCl-cured PF after months of
accelerated ageing). Using HNO; resulted in an almost black monomer solution and
subsequently an almost black polymer. Due to the effects of accelerated ageing tests, it is
assumed that the oxygen content in these acids makes them unsuitable for the production of
bright PF polymers. For this reason, further tests were carried out using HCI only as a
catalyst. On a smaller piece of “Drammen” test wood, pure HCI was added. The acid alone
had no noticeable effect on the wood (except wetting) and did not colour the surface. This
does not mean that such concentrated acid will not affect the wood over time — or could
affect hardwoods more severely than the tested softwood.

Since runaway reactions are considered a problem in the industry, this was tested. Using
1.5 g of phenol and 5 ml 37% formaldehyde per cup, a series of four cups (and a test) were
set up. Using the Fibonacci series, 5, 8, 13, and 21 drops of HCI was added from a plastic
pipette. Only in the 21 drop container did the solution become cloudy and would proceed to
boil unless stirred. Note that a lot of excess formalin was present in these initial runs (F:P-
ratio 4) which would both provide more formaldehyde for the reaction but also more water
to cool it. During the experiments it was observed that acid drops to the bottom of the cup
and starts a chain reaction. It is thus important to stir the contents to avoid mishaps. Stirring
or swirling the sample after adding HCI prevented bumpy boiling at all F.P ratios (unless the
pH was significantly below 0) both at room temperature and when the sample was heated to

70°C after swirling it.

Samples at very low F:P ratios did not cure and even remained liquid after more than a
year and a half of storage in a sealed flask at room temperature. At an F:P ratio of 0.6, the
polymer cured enough to prevent flow after extended storage but the product could still be
easily redissolved in acetone. At higher F:P ratios, like 1.4 to 1.6, the polymer cured and
became solid. Most sample 'discs' polymerised in the bottom of 30 ml beakers could easily

be dropped on the floor repeatedly without any visible damage. Samples with F:P ratios of 1
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were incredibly brittle and shattered if treated so roughly. Samples with an F:P ratio of 0.8
did not harden fully and could easily be deformed if handled. Thin edges could be crushed
even at high F:P ratios. This demonstrates that the cured PF is fairly brittle. With higher
formaldehyde contents, the breaks were often less severe, however, and a piece would only
break into two or three fragments. This means that it should be possible to glue objects
treated with PF back together if they behave in a similar way.

The finished polymer samples looked different at similar F:P ratios. The novolacs were
transparent and not fully cured at F:P ratios of 1 or below (even though an F:P ratio of 1
theoretically allows every molecule to be bonded). At F:P ratios above 1, the polymer fused
into a solid mass with a pink or orange colour which became more red or brown the longer
the PF was heated. The fully cured samples were opaque — possibly due to escaping gasses
forming minute bubbles in the structure as thin layers seemed to be transparent after curing
(the bubbles may be seen in Figure 6.4 on page 92). As long as the prepolymer was kept in a
sealed bottle, it would remain colourless or very faintly pink. Thus the red/brown colour was
likely caused by oxidation and will eventually become apparent in museum objects treated
with novolacs.

One sample of novolac with a F:P ratio of 1.4 was kept in the oven to evaluate how the
colour and possibly consistency of the polymer would change. Even after a year at 70°C the
PF was still strong and resistant to minor blows although the beaker it had originally been
kept in had all but disintegrated, proving the relative resiliency of PF. Even after a year at
70°C, the novolac sample had not become completely black but retained a dark red tone.
The sample in question reached this state after about three months and then stayed fairly

unaltered.

Resols were only prepared in F:P ratios of 1 or greater to ensure that they would fully
cure. Even at high ratios, such as F:P = 1.8, the polymers remained mostly opaque.
Sometimes a transparent top could be observed on an opaque bottom. Both were usually
brown, with the transparent part looking slightly more red and the opaque part looking like
tea or coffee with milk in it. An explanation for this difference in a single piece of polymer
is that the top layer cures to the point where air cannot easily penetrate it and this traps
escaping water and formaldehyde in the layer below, where they form tiny bubbles which

makes the polymer opaque.
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Resols had a more uniform appearance then novolacs and changed less during
accelerated ageing experiments. Some of them turned very dark during curing, however, so
the end result was not consistently different. A few resol samples had cloudy layers like the
novolacs described above.

Some samples were examined in a was examined in a Leitz Diaplan microscope using a
Phaco 1 160/- lens and with a Imaging Source DFK41AU02 USB colour camera attached .
An example of a seemingly smooth surface can be seen in Figure 6.4 below. This confirms
that gasses escape during the curing process and indicate that the PF will most likely only
look transparent if cured in very thin layers. Of course, such thin layers will also maximise

oxygen exposure and thus the speed at which the polymer turns darker and degrades.

Figure 6.4: Image of the bottom surface of a novolac sample. Although the slight curvature of the

surface makes it difficult to focus the microscope, note the numerous bubbles in the structure.

6.3.2.2 PF phase separation

One important difference between novolacs and resols is that the novolacs separate into
a watery and an organic phase much earlier than the resols. A likely explanation for this is
that the oxygen-containing ether bonds found in resols make them more water-soluble. This

phase separation was always observed with novolacs — even when the mix was allowed to
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evaporate during polymerisation — but rarely with resols — and then only during the final
stages of curing. Due to the desirability of an open structure in treated objects (see chapter
5.2 'Ideal consolidant requirements list' on page 75) this phase separation means that the
organic phase is pushed towards the wooden walls rather than randomly filling the
remaining matrix (see Chapter 6.4.1 'Imaging of PF-treated samples' on page 100). This is a
very desirable quality which can possibly be taken advantage of in other polymers which
show a similar phase separation behaviour during polymerisation.

At first, the novolac mix would simply become opaque as the two phases formed. Given
time, the mix would form a distinct bottom phase with a clear phase on top. Over time, the
bottom phase would become opaque and later pink. In order to study this more thoroughly,
tests were made in enclosed vials to prevent evaporation of the watery phase. An example of
this phase separation is seen in Figure 6.5. The initial phase separation happened overnight
at room temperatures with high amounts of acid (pH below 0) but took a week at the same
temperature when mixed in 0.1 M ‘
HCl. This means it is possible to
delay the process when treating
wooden artefacts with PF (possibly
by adding acid after the prepolymer
mix has had time to fully penetrate
into the wood).

Since the two phases have vastly
different affinities (one being highly
polar while the other is composed of
aromatic oligomers which are fairly
non-polar), one might suspect that
the phases would interact with the
wooden matrix in different ways.

This was found to be true (as seen in

Figure 6.11 and the following

Figure 6.5: Photograph of phase separated novolac with a

tomographies, starting on page 105).
F:P-ratio of 0.8. Note that the upper phase is completely

transparent and the lower phase opaque.
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The free formaldehyde content was determined using the ISO 9397 standard. The
concentration of the pure formaldehyde was measured as being 39.5%"/,, (rather than the
37%"/,, claimed by Sigma-Aldrich) and this result was used for all further calculations.

It should be added that this free formaldehyde determination was also used on oligomer
novolacs made with an F:P ratio of 0.8. It showed that free formaldehyde content in the
watery phase is less than 1.5% and even lower in the organic phase. Considering the
formaldehyde content in most wooden products, such as fibreboard, this means that it

should be safe for conservators to handle such oligomer molecules.

6.3.2.3 Solvents and alternative cross-linkers

Glyoxal (OCHCHO) has been used to cross-link wood — although at 130-150°C while
adding a suitable catalyst [128]. Due to the toxicity of formaldehyde, it was attempted to
create a polymer from phenol and glyoxal. A sample was polymerised using pure glyoxal
and left for several months at 70°C to determine whether it would eventually polymerise.
The polymer did eventually become solid rather than liquid. Unfortunately, it was extremely
brittle and could be easily broken into smaller fragments by pressing into it with a metal
spatula.

Using a mix of formaldehyde and glyoxal resulted in a cured polymer which looked
much more brown than a pure reddish novolac made from formaldehyde. While brown will
more closely match the colour of treated objects than red, the colour is much too dark to
give a satisfactory wooden appearance. For this reason, glyoxal cannot be recommended in

any significant amounts as a replacement for formaldehyde.

As HMTA has been previously reported to be a good cross-linking agent, this was also
tested on the novolacs. Various amounts of HMTA were added but were difficult to dissolve
in the pre-polymer and did not seem to affect the curing in any noticeable way. Based on
this, the reaction did not seem to take place in the novolac mixtures at room temperature. It
might be possible to add additional catalysts to initiate the process at low temperatures.
Since the possible effect of such catalysts on the degraded wood is unknown, investigation

of catalysts would require a lot of time-consuming analyses. For this reason, the idea of
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replacing formaldehyde with HMTA for the final cross-linking of oligomer molecules inside

treated wood was not tested during this work.

Since water seems to dissolve at least the most damaged parts of the alum-treated wood
([11] and see chapter 6.4.1 'Imaging of PF-treated samples'), a couple of other solvents were
tested. Two common solvents used in conservation are acetone and propanol. Both may
dissolve a novolac prepolymer — given time and stirring. The finished solution is almost
colourless for the acetone and slightly yellowish for the acetone. When dried, it should be
noted that the resulting polymers look very different — whether excess formaldehyde is
added to ensure curing or not. Prepolymers dissolved in acetone end up very dark red. The
colour is so dark that it may be mistaken for black at a glance. For this reason, acetone
should probably be avoided as a solvent if treating archaeological objects with a PF-
prepolymer. Propanol, on the other hand, causes the polymer to become much lighter and
somewhat more yellow. The polymer also becomes more transparent than novolac
polymerised under water and possibly more flexible. If so, it seems like the propanol might
introduce flexible chains into the PF structure. An image of the treated polymers in shown in
Paper 2 in the appendices. The effects on durability are not currently known. Should it
become important to know more about the structure of these polymers, vibrational

spectroscopy might give sufficient information to understand them better.

At F:P ratios below one, the novolac prepolymer does not fully cure. This results in a
viscous mass which can be shaped and even flows given sufficient time. It may be dissolved
in solvents like acetone and propanol for impregnation (this happens after phase separation
so water is no longer a suitable solvent). In the dissolved state, the prepolymer does not
seem to further polymerise as no visual changes occurred in a month or so. This would
indicate that such a pre-polymer has a relatively long shelf life and might be suitable for

impregnation of waterlogged wood.

6.3.2.4 Oddy corrosion tests

In conservation science, degassing is extremely important as fumes might affect not only

the treated objects and visitors but also other artefacts on display. This is clearly seen in
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many museums where the shelves and display cases were constructed from MDF (medium
density fibreboard) which emitted acids which resulted in most lead objects being covered
in a thick layer of lead acetate [11]. In order to evaluate whether similar reactions might
occur due to formaldehyde or acids generated from PF, an Oddy test using lead coupons was
performed. This test is an accelerated corrosion test developed in the early 1970s by Oddy

and his co-workers [129].

The procedure from Ref.[129] was followed for the actual experiments. When preparing
the sample, each piece of PF was weighed to ensure that roughly the same mass was used
for each lead coupon. Sample polymers were smashed with a hammer to allow them to pass
into the test tubes as well as maximise surface area. Somewhere between 2.0 and 2.1 g
sample material was weighed for the first eight samples. The last sample, which consisted of
actual Viking Age wood, only weighed 1.4 g. The sample material was placed at the bottom
of a test tube along with a smaller test tube filled with a few drops of water to ensure high
humidity. A small piece of lead was scrubbed using a plastic brush to remove corrosion. It
was then suspended inside the tube on a thin plastic line. The test tubes were sealed with
glass plugs but since the plastic line went into the tubes, parafilm was added as well. In
addition to the tubes with samples, a control tube with just the lead coupon and water was
also set up. The vials were put into the oven at 60°C and left for exactly 28 days. The
parafilm melted and the tubes might not have been entirely airtight but the results seemed

consistent despite of this. The results are summarised in Table 3.

The results clearly show that the cured PF does it emit any volatile compounds which
can tarnish lead. The only PF sample which caused corrosion to occur was the one
containing lignin. Since the other samples were not likewise affected, it seems likely that
degradation of the lignin powder caused the corrosion. The same applies to the actual piece
of treated Viking Age wood where the wood might also have affected the lead irrespective
of the polymer used to consolidate it. 2-propanol might affect this corrosion process slightly
but not alarmingly. Furfural and furfuralcohol both generate significant amounts of

corrosion on lead coupons.
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Table 3: Oddy test samples and results

Sample Sample description | Notes Result

number

1 Phenol-furfural 1:1.2. A flat layer of brown/red

corrosion. The line attached to
the lead coupon was also
coloured reddish. The sample
itself also acquired a reddish tint.

2 pure furfuryl alcohol Extreme dark orange corrosion in
(HCI polymerised) a thick layer.

3 2-propanol novolac|Sample had a clear|Not significantly more corroded
cured in oven outer layer with an|than the control — but possibly

opaque core after the|slightly.
test.

4 2-propanol novolac (FP|It was noticed that this|Slightly more corroded than
1.4?) cured in the fume|sample was particularly|control (but more black than
hood tough and difficult to|white). Sample itself had become

smash with the hammer. |slightly darker and was a clear
amber.

5 Novolac FP 1 with lignin | Very brittle (powdered|Faint layer of white corrosion.

almost completely) The sample melted and could not
be retrieved.

6 Resol FP 1.6 with less|Clearly opaque beneath|Coupon as control. Sample
NaOH catalyst a shallow transparent|seemed unchanged.

surface

7 Novolac FP 1.6 No change (as control).

8 Novolac FP 1.4 +SDS |More pink than the|No change (as control).

other PF samples

9 Viking age wood | Sample weighed only|Some faint reddish corrosion
prepared with FP 1.4|1.4 g (rather than about| (possibly also due to wood in the
novolac in propanol then |2 g) sample?)
precipitated with water
and cured before drying

6.3.2.5 Kinetics experiments

The behaviour of curing kinetics have been studied previously using a variety of
methods such as DSC [130] and rheology [131]. Specific studies have even been carried out
on novolacs [132]. and resols [133]. Since the literature found only describes kinetics at
higher temperatures, a series of potentiometric titrations (using the ISO 9397 standard) was

carried out to elucidate the initial reaction between phenol and formaldehyde on a water
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bath set to 25°C. More on the experiments, including the theory behind the kinetics, can be

found in Paper 2 in the appendices.

The curves for the various models may be seen in Figure 6.6. Most of the shown curves
assume the initial reaction happens as shown in Figure 6.1 on page 82. Model IV in Figure
6.6, however, assumes that the initial reaction happens as shown in Figure 6.3 on page 84
where each phenol molecule reacts with two formaldehyde molecules. As can be seen, all of
the proposed models correspond well to the experimental data although models III and IV
are the best. These correspond to second order reactions with two reactants. The reaction
where one phenol molecule reacts with two formaldehyde molecules gave the best fit

although all the models gave good fits in the plotted region.
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Figure 6.6: Results of kinetic experiments plotted as graphs in Origin 8.1. The stated values denote

different F:P-ratios.
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The kinetics experiments show that it takes about a day for the phase separation to occur
at pH 0 or below. Note that the phase separation at this early stage simply means that the
mixture goes cloudy. The formation of two distinct phases takes longer. The pH value is
based on a worst case scenario for the actual alum-treated items and reaction times may be
extended by raising pH or shortened by adding catalyst. Adding more formaldehyde also
extends the time to phase separation (so while it takes about 20 hours for F:P ratio 0.8
samples it takes more than 70 hours for F:P ratio 1.4 samples). This means that the
monomers will have sufficient time to penetrate smaller pieces of wood before the phase

separation occurs under these conditions.

6.4 Impregnation experiments

Archaeological wood was treated with PF. As these were some of the first experiments
carried out, choosing plentiful sample material seemed important. For this reason, most of
the experiments were performed using the 'Dokka' wood sample rather than more degraded
wood. In the first attempts, the wood was simply filled with the monomer mix and
concentrated HCI was dripped onto the piece in order to catalyse the polymerisation. The
mix hardened in a minute or less, leaving reddish or even pink fragments which turned more
brown with age. The speed of polymerisation meant that it would most likely cause warping
of the wood. Additionally, concentrated acids are not very safe to work with — or conductive
to the lifetime of the remaining wooden material.

The approach was modified slightly to slow down the rate of polymerisation. Only a
little acid was added and the wood was kept in a closed container to prevent collapse due to
evaporation. It was still dripped onto the sample so no impregnation bath was used. This is
the approach tested on a few pieces of Oseberg wood described in Paper 2. Although these
pieces were small, the one with the least alum content seemed to preserve its shape during
this treatment (while the one with high alum content lost its shape almost immediately after
the monomer mix was applied). The results are further evaluated in the following chapter
"Tmaging of PF-treated samples' on page 100.

A final step was attempted where the piece was kept wet in an attempt to see if the
polymer would cure effectively under water. Given time, the polymerisation does progress

but the curing process takes more than half a year without evaporation. It seemed that the
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pre-polymer mix only penetrated into wet wood slowly. 2-propanol was used to replace
water in the 'lost' sample. The piece was dried in a paper towel and kept sealed with the
prepolymer mix in the oven over the weekend. After the phases had separated, the piece was
taken out of the prepolymer mix and wrapped in parafilm to prevent rapid evaporation. The
polymer does seem to cure in the fume hood but the wooden piece collapsed over the course
of the next week. This means that it will likely be necessary to extend the reaction time in
the oven — possibly while removing the prepolymer mix and adding more formaldehyde — in

order to stabilise the degraded material sufficiently.

6.4.1 Imaging of PF-treated samples

Computer tomography (CT) is most famous for its medical applications. Images from
different angles are recorded and the information is used to transform the data into a 3D
structure (often viewed in tomographic slices — such as the images in this chapter).
Synchrotron radiation increases spatial resolution to the micrometre scale on smaller
samples. Not only are synchrotron storage rings effective when producing x-rays but the
energy distribution is continuous rather than distributed around characteristic energy levels.
The source brightness (photons at a given angle) is also higher when using synchrotron
radiation [134]. Due to these advantages, it is not surprising that synchrotron radiation and
its use in archaeometry has already been discussed [135]. Especially when checking the
penetration of potential new consolidants, CT is an excellent tool. For this reason, it was

attempted on a series of samples treated with various polymers.

Imaging was performed at the Paul Scherrer Institute near Villigen, Switzerland*.
Neutron imaging and tomography as well as synchrotron x-ray computer tomography were
both employed. It should be noted that neutrons are particularly interesting for investigating
archaeological finds as they are sensitive to other elements than traditional x-rays. In
neutron imaging metals are generally transparent while anything containing hydrogen (such

as water) will block the transmission. This allows neutron tomography to examine metallic

4 Rajmund Mokso from the PSI is acknowledged for instrumental guidance during the stay while the
actual imaging was conducted in collaboration with Susan Braovac and Hartmut Kutkze from the
Museum for Cultural History at the University of Oslo. Eberhard Lehmann, also from the PSI, is

acknowledged for his assistance with the neutron experiments and knowledge of the method.
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statuettes or similar objects for filler material. Despite this advantage, larger samples were
examined with the neutron source and most of these were not treated with PF. Due to this,
only the x-ray results are discussed in detail in this thesis (an example neutron image can be
seen in Paper 2).

Since synchrotron time is precious, there was no easy opportunity to go back and run
more samples based on existing results. In stead, as many samples as possible were run
while at the PSI, resulting in a diversity of studies samples. Most of the run samples related

to new consolidants are presented in the following.

In preparing the samples for the x-ray investigation, it became painfully obvious that
synchrotron imaging requires small samples. Most of the samples reported on in this work

were a maximum of 1.5 mm in width/depth as this was the size of the recorded images. An

ideal sample is circular. Cutting fragile alum-treated wood to these specifications was

Figure 6.7: Samples of archaeological wood for synchrotron x-ray tomographies mounted with bee's

wax on sample holders. Note the diminutive size of the samples themselves.
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impossible and the samples ended up being whatever shape they fractured in. Several even
powdered during the investigation. The small samples were mounted using bee's wax —
which incidentally penetrated the alum-treated wood much more efficiently than most
consolidants and was often sucked several mm into the samples before hardening. Examples

of the samples can be seen in Figure 6.7 above.

Figure 6.8: Reconstructed x-ray tomography slice of 100 years old untreated archaeological wood

(sample 'Drammen’). Note that most of the cell wall material is gone.

In order to understand the distribution of consolidants, reference samples are needed. As
most tests were carried out on roughly 100 year old wood from Drammen, this was
examined and is shown in Figure 6.8 above and is further described in chapter 3.5.3.1
'Samples used in these investigations' on page 44. Unless mentioned otherwise, this is the
wooden material presented in this chapter. It was found that the wood itself had maintained

its overall structure although relatively large cracks had formed. Most of the cells are empty
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but some seem to be filled with a fairly uniform material. Apart from several observed large

cracks, the structure of the wood does not seem to be significantly damaged.

Figure 6.9: Reconstructed x-ray tomography slice of a piece of 100 years old archaeological wood

(sample 'Drammen’) treated with PF polymer. Note the uneven distribution.

A sample treated with PF is seen in Figure 6.9 above. The wood was soaked in PF
monomer solution and then cured using concentrated HCI. The tomography investigation
clearly shows a very uneven penetration of PF. As such, it will not be enough to simply drip
the consolidant onto an item for proper treatment. The archaeological wood should be

completely immersed in impregnating solution to ensure a proper distribution of

103



consolidant. While this is hardly surprising, it does add an extra complication to treating

existing museum objects — particularly the alum-filled objects from the Oseberg find.

Figure 6.10: Reconstructed x-ray tomography slice of a piece of Viking Age wood treated with PF

(sample 'lost'). Note that the structure has collapsed.

A small piece of 'lost' Viking Age wood was treated with PF. The F:P ratio was 1.4. A bit
of the piece was also investigated as shown in Figure 6.10 above. The polymer clearly
penetrated into the wood but unfortunately bulked most of it. What remains of the wooden

structure seems to have collapsed. This likely happened during the drying process as water
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was simply allowed to evaporate in the initial samples as they were placed into the oven for

curing.

"lost’)
treated with PF. Note that less polymer seems to leave more of the wooden structure intact but still
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ray tomography slice of a piece of

Figure 6.11: Reconstructed x-

Ils some of it completely.

A similar piece was treated in a simiar way but using less PF. A tomography slice from

this sample is shown in Figure 6.11 above. The wooden structure is obviously better

suggesting that finding the proper concentration of PF monomers

>

preserved in this sample
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to coat the wood without filling all pores will be critical if this method is ever to be
developed further.

Figure 6.12: Reconstructed x-ray tomography slice of a fragment of alum-treated Oseberg material.

Note that the white/grey alum patches seem to exist in two different densities (one grey and one

white).
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Figure 6.13: Photograph of the samples from the Oseberg find after treatment with PF. The ruler

shown at the bottom of the images has a cm/mm scale. The left sample retained its wooden structure
while the one to the right 'melted' during treatment. Note the shining crystals which have formed on

the degraded piece to the right.

Two pieces from the actual Oseberg find were also treated with PF. They were identified
as either birch (Betula) or alder (4/nus) but no further identification could be performed due
to thei In order to understand the effects of the polymer on these samples, pieces of alum-
treated wood without and added PF were also investigated. A typical example is shown in
Figure 6.12 above. As can be seen, the alum crystals seem to have two phases with different
densities. It is not known whether this happened during the original treatment or is
something which has developed over time. More worrying, it is clear that the alum is not
evenly distributed and that several of the vessels are not filled. This means that the
remaining wooden structure is not properly supported and thus likely to fracture in places.
Based on this, it is not surprising that several of the treated objects seem to be powdering.

Sample 1 was light brown which indicates that it had a relatively low alum content. It
was marked C55000/250 1904.27 but the piece had broken off in 2008 during re-packaging.
The solution penetrated this test piece of wood much like fresh wood, not penetrating well
across the grain. Two tests were made on this wood with different amounts of PF relative to

wood.
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Sample 2 was dark and had high alum content. It was marked 1904-229-232 (ref. x-ray
23/10/01 Fragment 1). This fragment was degraded enough that the solution seemed to get

sucked into the piece no matter where the solution was dripped onto it.

Figure 6.14: Reconstructed x-ray tomography slice of alum-treated Oseberg wood treated with a
surplus of PF.

Both samples were treated with a standard solution of 6 g of phenol to 7 ml
formaldehyde solution (F:P ratio 1.4). The mix was split into three beakers and 3 drops of
concentrated HCI were added to each. The solutions were applied to the test pieces using a

glass pipette and the samples were sealed in glassware in order to prevent evaporation and
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subsequently left in the fume hood to polymerise. After three hours, the 'melted' appearance
of Sample 2 was observed first. The samples were put into the oven for four days in order to
cure the polymer. Shortly after the containers were opened, a whitish coating (most likely of
minute alum crystals) was observed on the surface of Sample 2 (especially at the bottom of
the sample between it and the glass container). The samples were left in the fume hood until
dry enough to be handled by tweezers. Sample 1 had acquired a reddish cast from the PF but
seemed to have retained its structure. Both pieces can be seen after impregnation in Figure
6.13 above.

Figure 6.15: Reconstructed x-ray tomography slice of a piece of alum-treated Oseberg wood treated

with less PF.
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The impregnated Oseberg material was a fairly successful story considering that no
piece had been thoroughly examined before the x-ray study and that standard PF — rather
than a mix optimised for treatment — was used. In samples treated with varying degrees of
PF, the wooden structure was largely intact although the smaller cells were mostly filled
with cured polymer. These results are shown in Figure 6.14 and Figure 6.15 above. It should
be noted that the results for the two tests with varying amounts of PF are virtually identical,
meaning that it would have been preferable to make a greater separation between the

amounts of pre-polymer added.

Figure 6.16: Reconstructed x-ray tomography slice of Oseberg wood treated with PF. Note that the

structure of the treated sample is amorphous - unlike wood.
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Sample 2 was very dark — an obvious sign that it had been severely degraded — and
likely contained a relatively high amount of alum. The 'melted' appearance is likely due to
alum crystals in the sample recrystallising due to the water content of the formalin used. As
can be seen in Figure 6.13 and Figure 6.16 above, all signs of wooden structure were lost on
both a macro and micro scale. The sample had been transformed into an amorphous mix of
polymer cavities and crystal-rich regions. This obviously means that existing alum-treated
objects cannot be treated with PF monomers as tested (or for that matter any stabilising

agent dispersed in water) as the solvent itself will destroy the object.

6.4.2 Tests of polymers similar to PF

Since it is desirable to have more flexible consolidants than the results yielded by pure
novolac, a few similar polymers have been tested. Some of these have already been used to
treat/conserve wood or similar materials. Again, mainly the 'Dokka’ sample material was

used for the initial tests to ensure that sample material was plentiful.

6.4.2.1 Water glass

Water glass is chemically very different from PF but it might stabilise the wood by
adhering to the remaining structure (see chapter 4.1.8 'Silicon oil treatment' on page 66 for
more information). The main advantage of water glass, however, is that it is extremely easy
to work with.

Water glass was purchased from Sigma-Aldrich (sodium silicate solution, Na,O-Si;).
The used water glass was not thinned significantly as it seemed to seep into the
archaeological wood without problems. Appearances can be deceptive, however, as the
polymer only coated major cracks and failed to distribute itself evenly throughout the test
sample. One tomography slice is shown in Figure 6.17 where it is quite clear that the
polymer completely bulks cells and mainly fills cracks. While it is possible that longer
impregnation times at lower concentrations might alleviate this problem — and further
experiments should be carried out before the method is dismissed completely — the sample
at least shows that water glass cannot be applied to archaeological wood as easily as it can

to fresh flowers.
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Figure 6.17: Reconstructed x-ray tomography slice of a piece of 100 years old archaeological wood

(sample 'Drammen’) treated with water glass. Note the uneven distribution.

6.4.2.2 Melamine formaldehyde

The Kauramin method (described in chapter 4.1.6 'Kauramin and melamine-
formaldehyde treatments' on page 60) utilises a melamine-based polymer. As the colour of
this polymer is white, it affects the appearance of the archaeological wood less than PF. Pure
melamine formaldehyde (but not Kauramin) was tested on wood using the novolac
procedure described above. Unfortunately, the material did not fully cure under these

conditions and the resulting white mass could be broken apart simply by squeezing it
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between two fingers. It may be possible to obtain suitable results at higher pH but as wood
is generally more resistant to acid than base (and the alum-treated wood is already highly
acidic). Because of this problem with polymerisation — and because a melamine
formaldehyde designed specifically for the conservation of archaeological wood already

exists — this approach was not pursued any further.
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Figure 6.18: Reconstructed x-ray tomography slice of a piece of 100 years old archaeological wood

(sample 'Drammen’) treated with phenol, formaldehyde, and melamine.
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A mix of melamine and phenol formaldehyde was also tested. It cured but given earlier
experiments this could simply be the PF curing with the melamine acting as a filler. It was
tested on 100 years old archaeological wood from Drammen but did not penetrate properly.
As can be seen in Figure 6.18 above, the distribution is very similar to that of pure PF seen

in Figure 6.9 on page 103.

6.4.2.3 Furfuryl-related products

Furan resins can be made by substituting phenol with furfuryl alcohol. The reaction is
very similar to that of phenol and formaldehyde, including the possibility to polymerise it at
any pH. The self-heating rate of the reaction is fairly low in the range from pH 3 to pH 12
[121].

These polymers have ring structures and although five-sided rings are weaker than six-
sided ones, they should still prove more durable than linear ethers. Since these polymers
may self-polymerise without the need for formaldehyde to cross-link them, they were
initially considered interesting alternatives to PF.

Both furfuryl alcohol and furaldehyde were purchased from Sigma-Aldrich. They were
polymerised simply by adding a drop of concentrated HCl to the pure polymer.
Unfortunately, both of these products self-heated to the point of boiling during
polymerisation, making them difficult to work with. Furthermore, the fused polymers were
almost or completely black and thus a bad choice of consolidant. Significant shrinkage also
occurred during polymerisation. In the worst cases, the pure polymer shrunk to have only

half the diameter of the plastic cup it was polymerised in.

Synchrotron x-ray computer tomography also showed that the furfuryl products mainly
filled the outer layer of the wood and failed to fully penetrate the structure of 100 years old
archaeological wood from Drammen. The results for furfural in Figure 6.19 below show
how similar the distribution is to pure PF or PF with melamine (see Figure 6.9 on page 103

and Figure 6.18 on page 113).
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Figure 6.19: Reconstructed x-ray tomography slice of a piece of archaeological wood (sample

'Drammen’) treated with phenol furfural.

6.4.3 Discussion of PF as a consolidant

Bakelite items are some of the most well-preserved plastics and one of the very few
synthetic polymers where some items have endured more than a hundred years worth of
real-time ageing [136]. This means that they are better suited for conservation purposes than
many other polymers. Since many conservators agree that Bakelite was used to treat both
bones and wooden objects, it is surprisingly difficult to find published information about the

methods and polymer composition used. In one case, Bakelite was considered for the
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treatment of a wooden bucket but the actual polymer in question was supplied by the
Bakelite company (see chapter 4.1.5 'Phenol-formaldehyde treatment' on page 59). This
makes it more difficult to determine how many of the Bakelite-treated items were in fact
treated with PF. As such, it may not be meaningful to compare the real-time ageing of such
objects with the ageing of newly PF-treated wood. Additionally, one must remember that
most industrially produced PF objects contain substantial amounts of filler (often saw dust)
in order to make the polymer cheaper. Furthermore, Bakelite was normally made with a
base as a catalyst (since it was cheaper than acid). This may affect treated wood since
especially lignin is much more easily broken down in a basic than in an acidic environment.
Although PF filled with saw dust might be a good model for wooden items treated with PF,
it is also possible that the composition of the archaeological wood is sufficiently different
from fresh wood to affect the actual degradation significantly. These factors combine to

make it very difficult to actually judge the long term affect PF will have on treated items.

Since bumpy boiling did not occur above pH 0 at temperatures up to 70°C, it should not
affect the actual treatment of archaeological wood which will most likely be treated at
significantly higher pH values — provided the catalyst is properly dispersed. Additionally,
the amounts and concentration of polymer needed in conservation cannot be compared with
industrial PF manufacture. For these reasons, runaway reactions are unlikely to be a concern
if PF is applied to archaeological wood.

Speaking of acidity, it would be interesting to apply the treatment to more archaeological
hardwood samples. Much of the treated wood was fairly recent softwood, which is probably

fairly resistant to acid.

The Oddy corrosion tests demonstrated that pure PF catalysed by HCI does not affect
lead coupons. While it would be ideal to repeat this test using other kinds of metal as well,
the result makes it unlikely that PF will significantly corrode surrounding metals. For this
reason, it should be safe to display objects treated with PF along with other objects in a

museum.

The accelerated ageing experiments at 70°C demonstrated that the polymers tend to
redden and darken with age — eventually becoming so dark they almost look black. While
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this colour is much too dark to be desirable, it is no darker brown than many examples of
treated archaeological wood. It is darker than the alum-treated objects, however, and means
that pure novolac should not be used in this form for the treatment of restored surfaces. As
was found with the solvent tests, mixing PF with other reactants might dramatically alter the
appearance of the polymer. This means that it is possible to add a certain amount of phenolic
groups to a consolidant without affecting the appearance of treated objects significantly.
This in turn means that the increased chemical stability obtained by having aromatic rings in
the structure can be achieved.

In certain cases, the appearance of the polymer might not matter. For example in the
case of the Oseberg material, PF might be a better solution than on previously untreated
wood. Since the alum-rich surface of treated objects may have to be left alone, PF can be
injected into the core of degraded fragments and cured inside them. Provided the phase
separation can be achieved in way which does not warp the objects, this would allow the
powdery cores of the artefacts to be strengthened. Since the PF would not be applied to the
surface of the objects, any colouration would not be seen by museum visitors.

While the colour might not be a problem for alum-treated material, the solvent is. As
water was demonstrated to simply 'melt' certain degraded fragments of Oseberg material, it
is imperative to find another solvent if PF is to be implemented as a strengthening agent.
Since the objects from the Oseberg find likely have to be treated directly where displayed,
severe measures must be developed to prevent conservators and visitors from coming into

contact with the fumes emitted by the pre-polymer mix (more on this below).

The importance of the phase separation occurring during novolac curing should be
stressed. It is vitally important that this phase separation seems to distribute the polymer so
that voids in the lumen remain open but the walls are reinforced (as seen in for example
Figure 6.15 on page 109). Since access to the synchrotron facilities was limited, it was not
possible to return with a series of samples with different water contents, F:P ratios and pH
values. Doing this might well lead to an optimal ratio where the remaining wooden cell
material is reinforced without thickening the cell walls needlessly.

Regardless of whether novolacs themselves will be used, the usefulness of the phase
separation means that it should be kept in mind and, if possible, copied with other

consolidant systems.
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The kinetics experiments demonstrated that the polymerisation reaction happens at a
sufficiently slow rate to allow the monomers to penetrate into archaeological wood.
Unfortunately it also means that the wood will have to be enclosed during this time to
prevent evaporation of water and formaldehyde. While this should not be a problem when
treating new artefacts, it will make it very difficult to apply the method to the existing alum-
treated pieces (in addition to problems with water as a solvent).

When evaluating the penetration of PF, most of the test wood was from the sample from
Drammen. This means that the wood was not very degraded and this might affect the final
distribution of the polymer. Ideally, some of the experiments should be performed again

if/when given access to sufficiently high resolution x-ray tomography equipment.

One of the main concerns about using PF in conservation is that both phenol and
formaldehyde act as carcinogens and exposure to these monomers should be limited. This is
especially important since large pieces of wood will have to be treated in vats, meaning that
large amounts of monomers have to be handled. On the bright side, formalin should prevent
biological attacks during the impregnation.

Glyoxal and HMTA were tested in attempts to lower toxicity but did not sufficiently
cross-link the polymer without additional heat and catalysts. In addition, glyoxal resulted in
extremely dark samples. For this reason, glyoxal cannot be recommended as a suitable
substitute for formaldehyde in conservation studies. This does not mean that it is not
important to replace phenol in the future but rather that systematic work on suitable low-
temperature catalysts is desirable if phenolic polymers are ever to be used in conservation.

If phenol and formaldehyde can be pre-polymerised into oligomer molecules, the
toxicity drops dramatically. Since such oligomer tests showed a concentration of 1.5% or
less free formaldehyde, this level is acceptable when compared to other formaldehyde-
emitting products (such as fibreboard). It should be remembered that the 1.5%
formaldehyde was only found in the watery phase of the oligomer, which would be disposed
of during initial production. This means that novolac pre-polymers should be safe for
museum use. The primary drawback when considering pre-polymers is that larger molecules
interact less well with the cell wall material. Whether this actually makes a noticeable

difference must be tested.
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Developing the pre-polymers, however, would require the testing of both suitable
solvents (isopropanol and acetone were both tested but seemed to react with the pre-
polymer) and a procedure for successfully cross-linking them once they have penetrated the
archaeological wood. It may not be worthwhile to develop such procedures for new finds to
be treated. On the other hand, the novolac oligomers are the most successful consolidant

tested on alum-treated material during these investigations (more on this in the following).

Since the x-ray tomographies of alum-treated wood showed that PF adheres to the
wooden structure and reinforces it, wooden items which are not completely degraded may
be reinforced with PF while preserving the larger pores and openings of the wood.
Unfortunately, the same investigation showed that severely degraded alum-treated wood
cannot be treated with watery solvents as these dissolve the alum crystals maintaining the
frame of the wood. This makes the polymer suitable for less degraded waterlogged wooden
pieces (likely to include most newly excavated ones) or for stabilising the non-visible core
of objects. In fact, the durability and acid-resistance of PF might make it one of the more
attractive theoretical possibilities when evaluating which materials could be used to
reinforce the core of the alum-treated fragments of the Oseberg find. In such a case the
reddish PF composite would not be visible on the surfaces of treated objects, preserving
their appearance while strengthening them.

Larger pieces of wood — especially freshly excavated pieces which are less fragile than
the alum-treated material — should be immersed in an impregnation bath to ensure thorough
distribution of the monomers. The amount of PF in the sample suggested that the
concentration was a bit too high to preserve the open structure of the wood. For this reason,
it is recommended that the prepolymer mix be diluted with water (but note that this will
cause earlier phase separation unless the formaldehyde concentration is also increased). If
this avenue is to be pursued further, it is also important to choose more diverse kinds of
sampling material. The 'Dokka’ sample used for the majority of these tests is not degraded
enough to give a proper evaluation of how typical archaeological finds might behave. On
the other hand, tests on the 'lost' sample and actual Oseberg material does give enough

information to make a number of useful observations.
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Based on the above, we can evaluate the suitability of using PF for wooden finds. The
polymer has several advantages including good penetration in monomer state, long
durability, resistance to acids and solvents, as well as chemical compatibility with the
degraded wood. The disadvantages are brittleness, red or brown colouration occurring due
to oxidation, high acidity required during polymerisation, and above all that the monomers
are toxic.

The disadvantages probably outweigh the advantages if we consider PF as a solution for
an untreated piece of wood. Despite this, PF might be developed in order to stabilise the
core of severely degraded artefacts on display — such as the alum-treated objects from the
Oseberg find. For any kind of wood, utilising phase separation qualities similar to those
observed for the novolac could prove essential in maintaining the open structure of treated

wood.

As for the non-PF polymers, some conclusions can also be drawn here. The water glass
seemed to penetrate well into the wood — and would most likely distribute itself properly if
thinned with water (provided the wood was properly immersed in an impregnation bath).
The unfortunate tendency to completely fill cells means that the distribution of the polymer
is unsuitable for use without further modifications. A simple possibility might be to freeze
the treated wood after impregnation, allowing the forming ice crystals to push the polymer
into the degraded cell material. It might be better to design a Si-based molecule specifically
for wood conservation rather than simply use water glass, however (see chapter 8.6.2
'Silicate compounds' on page 186 for further ideas).

Melamine is less toxic then phenol, making melamine-formaldehyde a better choice than
PF. On the other hand, melamine did not react as willingly as phenol and may be difficult to
implement at low pH values. This is a significant drawback since archaeological wood is
less resistant to bases than to acids. It also makes it impossible to simply inject melamine
formaldehyde into alum-treated wood and let the natural acidity of the artefacts serve as a
catalyst for the polymerisation.

Both furfuryl alcohol and furaldehyde could be thinned with water to prevent self-
heating. Most likely, a suitable procedure for implementing them could be developed fairly
easily. They would be less durable — but also less toxic — than pure PF. Their main

disadvantage is their dark colour and extreme shrinkage during polymerisation. A further
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complication is the fact that they caused severe corrosion of lead coupons, making it tricky
to display furfuryl alcohol-treated objects along with other objects in a museum. These traits

make them unsuitable as consolidants for archaeological wood.

6.4.4 Possible treatment procedure for PF

Due to the problems with toxic fumes, the following procedure uses sealed storage
tanks. While it is certainly possible to polymerise the monomers in open air, the
requirements regarding health and safety in such a case are left for others to assess. It is
possible to do both impregnation and curing in a single bath. The following procedure uses
two. The reasoning behind this is two-fold. Firstly, pre-polymerised molecules in the
impregnation bath reduces toxicity. Secondly, using two baths means both impregnating and

curing solution can be recycled, reducing costs.

Prepare a solution of phenol in formalin (37%wt). Using a ratio of 1 g phenol to 1 g
formalin gives a F:P ratio of 0.8 and ensures that virtually all the formaldehyde will react.
As long as pH is not lowered, the solution can be kept for some time (months — more if a
non-watery solvent is added) before it is added to the wood.

Place the wooden item in plastic bag in an airtight container. Wait until the solution has
penetrated evenly throughout the artefacts (further testing is needed to determine this point).
Rinse the object with warm water or acetone/isopropanol to get rid of whatever pre-polymer
might be attached to the surface of the object (and may later ruin its appearance). Then
quickly transfer the impregnated items to another sealed bath containing 4:1 water:formalin
mix. Using separate impregnation and curing baths would allow the solutions to be reused
as long as a loss of formaldehyde content is accounted for. The additional formaldehyde will
now react with the oligomers. Adding water ensures that the the prepolymer molecules will
not dissolve in the formalin or meander throughout the wood as they are insoluble in water.
Add HCI to the formalin solution. The exact amount of HCI should be varied to achieve a
suitable curing time. Temperature and catalysts may be adjusted as well. A ratio of 0.0125 g
HCI per g phenol was used for the kinetics experiments. This gives a very low pH (around
0) without causing runaway reactions. Actual treatment should be carried out at much higher

pH in order to avoid damaging the objects.
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Leave the container until the polymer has cured. The exact time is extremely
temperature-dependant. It is possible to postpone the heating to allow the solution to
thoroughly penetrate into every pore of the wooden object. The mix can be left longer
without hardening but is very acidic.

Place the sealed bag and container back into the oven. Cure for five days at 70°C. Curing
at room temperature is not efficient when the final curing is taking place (the polymer may
not harden completely). At the end of this phase the polymer (and thus object) should have
hardened fully. Note that some formalin may be left in the water even after thorough
reaction.

At this stage the object should be cured but needs to be neutralised and dried before it is
put on display. It is possible to use a weak base or a buffer solution to neutralise the acid.
While it is theoretically possible to simply dilute the acid in water, it would have to be
diluted about 100.000 times to reach pH 6 (provided the pH of the solution is roughly 0 as in
the kinetics experiments) and the time required for pH to stabilise throughout the pore
system is not known.

Drying is the final phase and the PF should be more durable than for example PEG,
making the treated wood able to withstand drying under more rough circumstances. Tests
have shown that the wood may still warp if simply left in a fume wood, making it a better

solution to freeze-dry it despite added costs.

Note that this approach would have to be modified for alum-treated objects on display.
These will have to be injected with the prepolymer mix, most likely using syringes to
penetrate the surfaces of the objects. It is also vital that the watery solutions be replaced by

solvents which will not harm the alum crystals. Toluene might be a possibility.

If this method is ever to be implemented on a larger scale (meaning more than simply to
treat an object or two to compare the results with those of other methods) some optimisation
could be attempted.

The pre-polymer may be dissolved in acetone or isopropanol but beware that tests
indicated that acetone gives it a very dark colour whereas isopropanol turns it more yellow.
Unfortunately, the exact reaction happening has not been thoroughly investigated and it is

not known to what degree it might affect the properties of the finished PF. In the month or
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so that test solutions have been kept, there is no sign that the prepolymer beings to
agglomerate. In this state, the prepolymer also penetrates wood well and the penetration step
may be carried out without further acidifying the solution (and thus threaten the stability of
the wood).

As above, the treated object would need to be neutralised and dried before being put on
display. One possibility would be to treat the object with nanoparticles in dispersion before
the drying phase. Notes on more about acid-neutralising CaCO; experiments will be given

in chapter 7.4 'Calcium carbonate nanoparticles' on page 169.
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7. Biomimetic materials

When the toxicity of phenol and formaldehyde put an end to experiments with phenolic
polymers, the project launched off in a different direction. The goal was to find a field
associated with so-called 'green' chemistry and non-toxic solvents. Preferably, it should be at
the cutting edge of modern research and offer high compatibility with the degraded wood.

In an age where bio-technology becomes increasingly more popular due to
environmental concerns, wood conservation still relies on petro-chemicals for safeguarding
national heritage. Most conservators will probably agree that it is more important to treat
historical artefacts well than worry about issues like bio-renewability — although low
toxicity is a definite bonus. There is another reason for looking into bio-science; namely that
wood was once a living material and mimicking the way it is constructed might lead to the
discovery of very efficient consolidants. If non-toxic components and renewable materials

are added bonuses, why not implement bio-science into conservation science?

7.1 The concept of biomimetics

Being inspired by nature was pioneered by D'Arcy W. Thompson who published the
book 'On Growth and Form' in 1919. Long before that, Leonardo da Vinci looked to birds
when designing his flying machines and Galileo Galilei studied how body mass affected
bone structure in various species [137], [138]. In fact, the ancient Chinese tried to make
artificial silk and similar intentions can be found numerous places in literature from the past
few hundreds of years [137].

The term 'biomimetics' was coined by Otto Schmitt who used it as the title of a paper in
1969. The word 'bionics' was first used in 1960 by Jack Steele. However, Steele claimed in
1963 that he had come to prefer the word 'biomimetics' [137]. Eventually a significant
number of words related to materials mimicking nature arose, such as biomimetics, bionics,
biomimicry, biognosis or bio-inspired. Often, the exact distinctions between these concepts
are blurred [139] or even considered synonymous [137], [138]. In fact, the whole field is
somewhat undefined or, as Vincent et. al. put it; “No general approach has been developed
for biomimetics, although a number of people are currently developing methods for

searching biological literature for functional analogies to implement.”[137]. The word
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'biomimetic' will be used throughout this text to refer to the practice of adapting or become

inspired by structures and/or materials found in nature.

Many materials and technologies have been inspired by nature. As such it is often easier
to give examples of biomimetic materials than to explain all the possible implications of
biomimetic collaborations.

Interesting plant surfaces include superhydrophobic and superhydrophilic constructions
which interact with water in unusual ways due the surface structure of said plants. The most
famous — and well studied — example is probably the lotus plant which cannot get wet or
dirty (although this property is found in many other plants as well). Several examples are
given in Ref.[140]. Plant surfaces may also adhere via burrs — they may for example stick to
dogs when you take them for a walk — a fact which led to the development of Velcro [137].
It is quite likely that future materials will focus on the self-healing aspects (for example by
including pockets of bacteria inside building walls which awaken and seal the crack if
moisture penetrates into their area) [141]. Biological discoveries of interesting mechanisms
lead to those mechanisms becoming available for engineers [137]. Robots are being
developed which use the dry adhesive qualities of gecko feet for climbing [142]. The
possibility of surrounding ourselves with adhesives pads based on gecko feet and self-
cleaning surfaces inspired by plants is now common enough to have made it to Wikipedia

[143].

A related field is biomineralisation. While this has not been put to great use in the
experiments carried out during this project, it might still be important for future
conservation treatments. For this reason, a brief explanation of the concept of
biomineralisation follows.

Minerals have been used in organisms for at least 3500 million years. Complexity of
structures and applications expanded until at least until about 540 million years ago when
skeletal formation came about. Mineralisation is seen in all five animal kingdoms and
specialised to the degree where biological materials are likely to outperform engineered
ones. The mineralisation in living organisms is usually controlled by macromolecules, such
as a combination of polysaccharides, which forms a framework which is then filled with

minerals (like collagen is a framework in bone). The properties of formed crystals are
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usually not taken advantage of but rather used purely for mechanical purposes (a notable
exception being the magnetic properties of some Fe structures). If a crystalline phase is
formed, it might simply be induced by supersaturation and not possess much long-range
structure. Crystals may be reinforced with small amounts (as little as 0.02%wt) of proteins
which help deviate or absorb fractures. The most famous probably being the plywood-like
layering of nacre (mother of pearl). Such proteins may also promote nucleation and thus

spur growth [144].

7.1.1 Hierarchical structuring

Nature grows rather than fabricates. This means the way materials are structured differs
from engineered materials. The range of components is also very different [138]. Biological
systems are usually structured at the nano, micro, and meso levels. The structure and design
are intimately connected — unlike engineering where they have traditionally been divided
into two different disciplines [145].

Self-assembled polymers and composites provide control over the structure at all levels
of hierarchy. This allows for a more dynamic approach as the end result is obtained by an
algorithm rather than by pure duplication of an existing design [138]. Although more than
300 different polymers have been produced, proteins and polysaccharides can be considered
both more versatile and more responsive [137]. Additionally, bio-materials provide multiple
functions (for example human bone offering support and blood cell formation or a chitinous
exoskeleton offering protection and points for muscle to attach). Despite the numerous
advantages, it should also be remembered that most biological materials have poor high-
temperature performance and are fairly weak when compared with synthetic materials

[145].

Another extremely important aspect of bio-materials is self-healing. While it is difficult
to implement in engineered materials, self-healing can allow failed surfaces or materials to
fuse. One way to create a self-healing material might be to incorporate hollow glass tubes in
the polymer. Fractures will break the tubes and release a catalyst which promotes

polymerisation and cross-linking [141].
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7.1.2 Using biomimetic materials in conservation science

Biomimetics have already been applied in the field of conservation. Weathering weakens
the structure of exposed stone due to both chemical and biological issues. Bio-inspired
growth of calcium carbonate has been tested as a way to reinforce such stone. A thin
solution of organic matrix molecules (OMM) extracted from for example shellfish was
tested along with the much cheaper polyaspartic acid sodium salts (2 mg/100 ml). Both
enhanced the growth and structure of calcium carbonate crystals from supersaturated
calcium bicarbonate solutions. Test pieces and historical buildings were both treated and the
mix penetrated about 8 mm into the stone. Colour change was only observable through
instrument measurements for some treatments but the stone is not significantly reinforced

by the method [146].

With the growing demand that renewable materials and 'green chemistry' be used across
fields, biomimetics can be considered is very interesting from an environmental perspective
no matter what field it is applied to. The approach is, however, particularly relevant in
conservation science.

Conservators perform treatments of archaeological finds. This means that treatments are
usually carried out without any standard chemical facilities or chemical safety measures.
Especially the latter point makes it vital to investigate harmless materials and our bodies
have evolved to tolerate a large number of naturally occurring polymers.

A significant disadvantage of bio-materials is their lack of the strength associated with
engineered materials. Since most archaeological materials are already fragile, they can be
reinforced using relatively flexible polymers. Thus this is less of a concern in the field of
conservation.

Many biological materials are hybrid materials. If a material already incorporates both
organic and inorganic parts, it might make it easier to mix and match materials with
especially desirable qualities for conservation purposes. If a polymer easily incorporates
inorganic material, for example, it might be easy to incorporate inorganic nanoparticles for
acid neutralisation purposes.

Wood is a bio-material. Since wood is made up of several bio-polymers, similar bio-
polymers might easily adhere to the surfaces of the wood and thus strengthen it.

Furthermore, the bio-polymers will likely degrade under similar conditions as the wood,
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meaning that the degradation of the remaining material is not accidentally accelerated. Even
if the polymers used do not occur naturally in wood, building blocks like chitin in insect
carapaces are very similar to cellulose in structure. Several bio-materials are light-weight,
like bone, and thus offer excellent support. Finally, many biomimetic materials might self-
assemble or 'grow' inside the objects, enhancing strength and penetration. With such
excellent possibilities, it is essential to evaluate the possible application of biomimetic

materials for the treatment of archaeological wood.

7.2 Cellulose whiskers

The chemestry and function of cellulose in wood is described in chapter 3.2.1 'Cellulose’
on page 18 while its molecular structure can be seen in Figure 7.16 on page 156. From a
bio-inspired perspective, cellulose is the most common renewable polymer in nature,
making up 40-50% of wood and 90% of cotton fibre, with more than 7.5-10" tons produced
yearly [147], [148]. In addition to wood and other plants (particularly hemp, flax, jute,
ramie, and cotton), bacteria and tunicates may also produce cellulose [149]. While not
ordinarily considered very strong, cellulose molecules can form a structure so tight that even
water cannot enter. It is this crystalline structure which is highly concentrated in the so-
called 'cellulose whiskers' [149]. Since normal cellulose already exists in archaeological

wood, these resilient whiskers were chosen as a field of further study.

7.2.1.1 Chemistry of cellulose whiskers

Cellulose is very stable due to a network of hydrogen bonds which prevents melting and
dissolution with many solvents [149]. Adjacent cellulose chains can thus fit together in
crystalline regions. There are essentially four different forms of cellulose (simply labelled I,
II, 111, and IV) with I being the native cellulose. The I, lattice is found in cellulose from
algae and bacteria and has a triclinic unit cell while the Iy lattice is found in cotton and ramie
and has a monoclinic unit cell. The hydrogen bonding in the crystalline regions is so tight
that most common solvents cannot penetrate into the crystals and dissolve the cellulose.
Crystallinity thus affects swelling and absorbtion of the fibres. The less dense amorphous

regions, on the other hand, can be dissolved using acid (the type, temperature and treatment
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time affects the properties of the finished product). Whatever remains after such dissolution
is often referred to as 'whiskers' although the highly crystalline cellulose is known by many
names such as 'cellulose nanocrystals', ‘'microcrystals’, ‘'manocrystals/particles',
'microcrystallites', and 'nanofibres' [147], [148]. Technically, 'whiskers' refers to rod-like
nanoparticles with a high crystalline content while 'nanofibrils' should be used to describe
long flexible nanoparticles with both amorphous and crytalline regions [149]. Most
whiskers from plant sources have lengths of 100-300 nm while those from tunicates or
bacteria can be up to 3000 nm long. Diameters range from 3 to 70 nm with typical values
around 15-20 nm [148]. This means that whiskers from plants are better than those from
other sources when treating archaeological wood as the dimensions of the fibres should be
kept small to enhance penetration.

Cellulose was first isolated in 1832 but has been thoroughly studied since then. That
cellulose fibres can make stable suspensions in water after degradation with sulphuric acid
was reported in the 1950s [148]. H,SO4 in particular can produce whiskers which do not
flocculate due to electrostatic repulsion. Sulphur content can therefore be used as a measure
of properties. H,SOs-treated fibres contain some weak acids (sulphate ester and carboxyl
groups) which are less common in fibres treated with HCl (26 mmol/kg compared to < 18
mmol/kg) [147]. It is possible to reverse the surface changes in H,SOs-treated fibres under
mildly alkaline conditions, or to modify HCl-treated fibres by adding sulphatic groups
[148].

At a certain concentration, the whiskers form a chiral nematic phase which is ordered
enough to display macroscopic birefringence — similar to that of cholesterol. It can be seen
through crossed polarisers or by optical microscopy. In solution, the whiskers have a natural
vertical alignment which can be optimised by placing them in a strong magnetic field. When
under flow, they in stead align in the flow direction. The structure tends to be preserved
even if the fibres are covered in surfactants. The chiral twist power can be increased by
adding monovalent electrolytes like HCI or NaCl. H™ counter ions induce ordered phases at
the lowest concentrations. The critical concentration increases as follows: H" < Na' < K" <
Cs". NaCl concentrations as low as 10° M may screen the electrostatic interactions [147].
The equilibrium between isotropic and anisotropic phases is sensitive to the sulphate

content, the presence of electrolytes, and the kind of counterions used [148].
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Due to the hydroxyl groups on the surface of the CNs, both chemical modification and
various surfactants can affect the whiskers [148]. Stearic stabilisation has been attempted
before by grafting PEG-NH, chains onto the whiskers. This allowed them to be dispersed in
organic solvents. A method based on sililation has also been proposed [147]. Actual polymer
grafting onto the surface of the whiskers has been successfully been implemented [148]. In
addition to ionic species grafted during acid-treatment, whiskers may also be kept in
suspension by stearic repulsion between poly(oxy ethylene) chains grafted onto the rods.
Surfactants may be used to obtain dispersions in organic solvents as well [150]. The use of
surfactants is of course especially attractive as they potentially allow whiskers to keep
remain suspended even in water with a high ion concentrations (tests are described in

chapter 7.2.4 'Coagulation by iron ions' on page 148).

Cellulose also provides high axial stiffness, which is particularly advantageous when
using fibres to reinforce other polymers. Even adding water can dramatically alter the
modulus of cellulose composites (a reduction from 800 to 20 MPa for a sample containing
19%"/, nanowhiskers has been reported) [149]. Note that this means it is vital that cellulose
fibres in museums are kept at constant RH.

Cellulose nanowhiskers have thus been incorporated as fillers into a number of polymers
including siloxanes, oxyethylene, styrene, vinyl alcohol/acetate, ethylene/propylene and
urethanes. Bio-polymers like starch derivatives, soy protein, chitosan, and regenerated
cellulose have also been tried [148]. Crack lines are frequent in urea formaldehyde (UF)
without cellulose. Upon successful introduction, cellulose whiskers prevented cracking in
UF polymer bond [149]. Due to the hydrophilic nature of many cellulose whiskers, it is
often simple to mix a watery dispersion into the prepolymer while nonpolar solvents usually
require a solvent exchange (and even then some aggregation usually occurs). Most often,
incorporating whiskers into polymers does not affect the glass transition temperature of said
polymers — unless the polymer is moisture sensitive. For semicrystalline polymers, the
melting temperature is unaffected as well — unless the whiskers are chemically modified
[148].

Cellulose whiskers were combined with another tree component as part of a triblock
copolymer. The plant matter used was xyloglucan oligosaccharides from tamarind kernels

and the polymer a xyloglucan-oligosaccharide-poly(ethylene glycol)-polystyrene (XGO-
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PEG-PS) triblock copolymer. A diblock copolymer of XGO and PS was tested but
precipitated and could not stabilise the whiskers in watery dispersions [151]. This is the only
reference found which describes an attempt to approach a true wood structure by mixing

cellulose whiskers with components which resemble hemicelluloses.

Cellulose fibres have been used to produce films when combined with various other
polymers since pure cellulose does not have acceptable thermomechanical properties. In
stead the whiskers are incorporated into thermoplastic matrices. When mixed with latex, it
was found that 6% cellulose improved the elastic mechanical properties of the polymer 500

times [147].

7.2.1.2 Uses of cellulose whiskers

Cellulose whiskers have been used commercially for as varies purposes as emulsions in

foodstuffs for at least 35 years [152].

Cellulose and cellulose whiskers has been chemically modified with the specific purpose
of making consolidants for archaeological wood. The solubility of cellulose modifications in
water or organic solvents is modified by degree of substitution as well as functional groups.
Due to high stability and low toxicity, cellulose ethers are being used in a wide range of
products from cosmetics to building materials. Some have been previously tested as
consolidants for archaeological wood where high molecular weight has led to poor
penetration. On the other hand high molecular weight is desirable in order to confer better
strength and stability to treated items. One solution is to polymerise smaller molecules and
cross-link these inside the wood by heating the treated sample. On the other hand,
carboxymethyl and n-hydroxypropyl groups are particularly suitable for making cellulose
water-soluble [153]. Cellulose whiskers have been prepared with HCIl. SAXS (Small Angle
X-ray Scattering) as well as FTIR (Fourier Transform Infra Red) and NMR (Nuclear
Magnetic Resonance) spectroscopies were used to determine the properties of synthesised
polymers and the degree of penetration. Capillary viscometry was used to determine the

degree of polymerisation of the products. Klason lignin was also synthesised in order to test
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affinity with degraded wood (although it can be debated if the leftover wooden matrix is
identical to Klason lignin). Actual archaeological wood was also used [153].

Polymers synthesised were: allyl carboxymethyl cellulose and allyl n-hydroxypropyl
cellulose in various degrees of substitution and with varying degrees of polymerisation.
Allylic groups allow for cross-linking at 60°C but makes it difficult to dissolve the modified
cellulose in water — although it may be dissolved in chloroform or DMSO, replacing water
and the toxicity of these solvents is a problem in conservation. Thus carboxymethyl was
introduced in order to make the polymers more water-soluble and resulted in stable colloidal
systems in cold water [153].

IR spectroscopy revealed that a significant portion of the cellulose ether could simply be
washed out of the wood if of a type which does not cross-link. After being kept at 60°C for 6
hours the samples treated with allylated polymers could no longer be dissolved in water.
This was taken as an indication of successful polymer cross-linking [153].

A test on actual archaeological wood kept in the dispersion for 20 days at room
temperature showed that even the low molecular weight polymer did not penetrate fully

during this time [153].

7.2.2 Experimental procedures for cellulose whiskers

The experiments in this chapter were carried out in collaboration with the Max Planck
Institute for Colloids and Interfaces in Potsdam, Germany and several of the experiments

were performed there’.

'Fibrous cellulose, long' as well as H,SO., acetic acid, and acetic anhydride were

purchased from Sigma-Aldrich.

Three different SEMs, all located at the Max Planck Institute, were used for these
experiments. One was an ESEM (Environmental Scanning Electron Microscope),
specifically an FEI FE-ESEM Quanta 600 (FEI Company, Oregon, USA) used in low

vacuum mode with a large field detector. Samples were used without sputtering. Recordings

5 Ingo Burgert is gratefully acknowledged for arranging the stay and useful discussions during the trials
while Anayancy Osorio demonstrated the use of the tip sonicator and discussed the production of

cellulose whiskers.
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from this instrument are referred to as “ESEM” images. The second was a LEO 1550 FE-
SEM equipped with a Gemini detector (LEO Elektronmikroskopie GmbH, Oberkochen,
Germany). Images from this instrument are simply noted as “SEM images”. The final
instrument was a JEOL JSM-7500F FE-SEM using a secondary electron in-lens detector
(JEOL, Eching, Germany). Images from this instrument are referred to as “Cryo-SEM
images”. Acceleration voltages used (usually 5, 2, and 3 kV, respectively) along with
magnifications and working distances are noted on the individual images.

The freeze-dried samples were carefully cut with a razor blade into slices before
mounting them on sample holders. No coating was applied for the ESEM samples but others

were sputtered with 5 nm Au/Pd before being placed in the respective instruments.

Acetylation of cellulose whiskers was carried out by dispersing 0.248 g of the freeze-
dried fibres (treated for 30 minutes) in 15 ml glacial acetic acid. They were then acetylated
by being stirred at 60°C in roughly 10%"/,, acetic anhydride in acetic acid (with a catalytic
amount of added H,SOy).

Experimental procedures and theory for Zeta potential measurements is found in chapter
7.2.3.2 on page 147.

7.2.2.1 Producing
cellulose whiskers

Whiskers  were  prepared ‘
using the following procedure:
5%wt. fibrous cellulose was put
into a 66%wt. H,SO4 solution.
The mix was stirred vigorously
and heated to 60°C for either 30
minutes or one hour. After
heating, the mix was poured into
plastic tubes and centrifuged at ;
10.000 RPM (rounds per minute) Figure 7.1: Photograph of newly collected cellulose whiskers

in watery suspension.
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for ten minutes. After this the transparent supernatant was discarded and the vials filled with
deionised water, shaken and centrifuged again. These steps were repeated about five times
until an opaque phase could be seen in the supernatant. This was collected and used for
further experiments. If only a few whiskers were present in the supernatant, the vial was
refilled and centrifuged once again to maximise the yield. An example of prepared cellulose

whiskers collected from the cloudy supernatant after centrifuging can be seen in Figure 7.1.

7.2.3 Testing cellulose whisker impregnation

Viking Age wood was impregnated with cellulose whiskers in watery suspension. The
initial tests showed that cellulose whiskers attach and form a kind of fluffy structure seen in
Figure 7.3 below. They seemed to adequately fill the cracks in the archacological wood but
agglomerate too fast to fill the vessels. These filled cracks can be seen in Figure 7.2. This
means that they could potentially be used to create a kind of porous 'scaffolding' for further

SR - o ™ P S

stabilising agents to attach to. = 2y

The downside is that this would |
likely require double treatments,
at first an impregnation with
cellulose, followed by freeze-
drying to stabilise the cellulose
matrix, then another
impregnation cycle with a
different consolidant to

strengthen the material.

It was observed that the
cellulose sometimes degraded

upon immersion in acid, turning e :
the mix dark brown (rather than Figure 7.2: Freeze-dried piece of Viking Age wood (sample

. '‘Box 7') impregnated with cellulose whiskers. Note how the
the yellow-white or ochre

. freeze drying causes some of the whiskers out of the wooden
colouration normally observed)
structure. Also note that the larger cracks are filled with

and ruinin the  whiskers.
& whiskers.
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Affected whiskers were also dark brown after freeze-drying and the procedure caused them
to shrink dramatically during the process. The most likely explanation is that the metal ions
catalyse the degradation process somehow, rendering the whiskers unfit for further use.
This was probably due to either impurities in the equipment or the use of metal spoons
when handling the cellulose fibres.

This is particularly important if metal ions inside the wood can affect the whiskers in a
similar way — although this process might explain why so little cell wall material remains in
archaeological objects. At any rate, it is recommended that only plastic tools be used to
handle the cellulose fibres when making whiskers and that any affected batches of whiskers

are discarded rather than used.

Figure 7.3: Freeze-dried Viking Age wood (sample 'Box 7') in cellulose whisker suspension. Note

that the whiskers form a fluffy layer around the samples unless washed off.

Several solvents were tested in order to see if the cellulose whiskers were dispersible in
other mediums than water. Note that this was H,SOs-treated whiskers. Another treatment
method might result in whiskers which can be dispersed in nonpolar solvents. That this was
not the case for the H,SO,-treated whiskers can be seen in Figure 7.4 below. Clearly, polar
solvents like acetic acid and acetic anhydride were able to disperse this kind of whiskers

much more evenly than toluene — in which the whiskers did not disperse at all.
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Figure 7.4: Dispersion test for a number of solvents. From left to right: Toluene, absolute ethanol,

acetyl, acetic acid, anhydride, acetic acid after overnight, and water. The water seemed to give the

least flocculation.
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7.2.3.1 Imaging of cellulose whiskers

The imaging presented in this chapter was carried out at the Max Planck Institute for
Colloids and Interfaces®. Imaging was initially performed on an ESEM in order to minimise
sample preparation. Since it was not possible to obtain images at magnifications above
12.000 times on this instrument, two others — which required sample coating — were used as

well. One was a normal SEM while high magnification images were taken on a cryo-SEM.

The overall structure of the freeze-dried cellulose whiskers seems somewhat 'fluffy and
flaky'. The structure is generally open and porous but some larger 'sheets' are formed. An

example of this structure can be seen in Figure 7.5 above. Note that the dimensions of the

B  10pm 11/10/2010
5.0kV SEI SEM WD 6.0mm

Figure 7.5: Cryo-SEM image of freeze-dried cellulose whiskers. Note that the whiskers arrange

themselves in an open porous structure with some 'sheets' and 'leaves’.

6 Susann Weichold and Friederike Saxe are gratefully acknowledged for significant assistance and
discussions in operating the ESEM and Cryo-SEM instruments, while Rona Pitchke performed the
imaging on the LEO SEM.
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Figure 7.6: Cryo-SEM image of cellulose whiskers which have agglomerated inside a piece of
Viking Age wood (sample 'Box 7').

Generally speaking, the cellulose whiskers did not penetrate properly into the wooden
test pieces in watery dispersion. In stead, the whiskers tended to simply agglomerate and
adhere to the surface of treated pieces. This was seen in Figure 7.3 on page 136 and can be
seen at larger magnification in Figure 7.8 below. In one way it is advantageous that the
whiskers adhere so well to the surface as it means that they will most likely also adhere
quite well to the remaining wooden matrix and support the wood. Unfortunately, a white
fluffy surface mars the visual appeal of objects on display and the whiskers adhere fairly

well to the wood.
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Figure 7.7: Cryo-SEM image of freeze-dried Viking Age wood (sample 'Box 7') impregnated with
cellulose whiskers. Note how the whiskers agglomerate rather than attach to the remaining cell

walls.

The fluffy structure of the cellulose whiskers can — at certain magnifications — look
somewhat like a fungal attack. As fungi can theoretically grow inside the wood (especially
when kept at room temperature during the impregnation procedure), it was important to
compare a fungally infected piece to the ones treated with consolidant. During one of the
chitosan impregnation trials, a sample was infected. Since it was likely that other samples
would be infected by the same type of fungus (if they were infected at all), this sample was
also imaged and is shown in Figure 7.9 below. As can be seen, a huge amount of fungal
spores were visible in this image but were not found in any other examined sample.
Therefore, it is assumed that the structures found inside the wood are indeed consolidant

polymers and not the result of biological growth.
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Figure 7.8: SEM image showing the edge of a freeze-dried piece of archaeological wood (sample
'Stokk 9 sjakt 7') treated with cellulose whiskers. Note that the whiskers form a fluffy layer on top of
the wood (the upper third of the image) but that the wooden structure itself is relative free of

whiskers.

Using the cryo-SEM made it possible to detect individual fibres at magnifications of
x20.000-30.000 depending on how good the image quality was. An example of individual
whiskers agglomerated into a leaf-like structure can be seen in Figure 7.10 below. This
made it possible to determine that the typical whisker is about 300 nm long and around 15
nm in diameter. The size distribution is not very narrow, however, and some fibres seem to

be almost twice as long as the average.
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Figure 7.9: ESEM image of fungally attacked freeze-dried chitosan. Note the abundance of fungal

spores.

These whiskers tended to agglomerate at the surface of wood and not penetrate well.
PEG 1000 was added to the whiskers as it might act as a surfactant, preventing the whiskers
from sticking together and thus enhancing penetration. An example of this can be seen in
Figure 7.11 below. Close to the surface, even more material had entered into the wooden
structure as seen in Figure 7.12. While this initial test successfully proved that the whiskers
could be stabilised, PEG might not be the ideal surfactant.
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Figure 7.10: Cryo-SEM image of the freeze-dried cellulose fibres. Note that it is actually possible to

see individual fibres at this magnification.
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Figure 7.11: ESEM image of freeze-dried Viking Age wood (sample 'Box 7') impregnated with

cellulose whiskers and PEG 1000. Note the fairly high amount of whiskers filling the voids in the

cell structure.

Acetylation of cellulose whiskers is a standard procedure for modifying fibres [154].
Since acetylation changes the surface properties of whiskers, this was tested as well. It
seemed that the whiskers were dispersed in acetic acid almost as well as in water. As acetic

anhydride was added, the fibres seemed to dissolve.
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Figure 7.12: ESEM image of archaeological wood (sample 'Box 7') treated with cellulose whiskers
and PEG 1000. Note that in these surface layers, significant amounts of material is deposited inside

the wooden structure.

Adding sufficient acetic anhydride to make the solution completely transparent,
impregnating wooden pieces with it, and then freeze-drying them resulted in massive

amounts of material inside the cell structure. An example can be seen in Figure 7.13 below.
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Figure 7.13: Cryo-SEM image of freeze-dried Viking age wood (sample 'Box 7') impregnated with

acetylated cellulose whiskers (cellulose acetate).

Unfortunately, the structure of the whiskers had changed as seen in Figure 7.14. They
had become a coherent web-like structure rather than being composed of distinct rods
(compare to Figure 7.10 on page 143). The most likely reason is that the whiskers reacted
with acetic anhydride to form cellulose acetate (a material well known in conservation
circles for giving off acetic acid as it oxidises upon contact with air [136]). For this reason,
acetylation should probably only be performed if it is essential to disperse the whiskers in

non-watery solvents.
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Figure 7.14: Cryo-SEM image of cellulose whiskers which were dissolved in acetic anhydride,
reprecipitated, and freeze-dried. Note that the overall structure is much more 'fluffy’ than the more

'flaky' untreated freeze-dried whiskers.

7.2.3.2 Zeta potential measurements

The Zeta potential is easier to measure than it is to define. It relates to the charged
electrical field around a particle and as such gives an indication of electrostatic stability. A
very high positive or negative Zeta potential means that particles in dispersion will repel one
another and thus remain stable [155](p. 538+). A lower numerical Zeta potential, on the
other hand, means that the particles will usually flocculate unless somehow shielded (note
that the exact limits for stability depend on the particles but +25-50 mV is usually enough to
keep dispersions stable).

In order to determine if the fibres could be stabilised in a proper pH region, crystalline

cellulose was dispersed in 0.01 M NaCl (by pulse tip sonicating them for 30 seconds at 30%
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power) and a number of samples where made with varying pH values (adjusted using
diluted H,SO, and NaOH). A total volume of 1.5 ml of sample (at specific pH) was prepared
for each measurement. 1 ml of each sample was injected into a flow cell on a Malvern
Zetasizer Nano-Z instrument (with a HE-NE laser calibrated using a PS latex standard at
25°C). The flow cell was thoroughly cleaned using deionised water and pressurised air
between measurements.

The results can be seen in Figure 7.15 below. The whiskers have the lowest Zeta
potential in the pH 3-6 range and should thus be more stable at these pH levels. Since the
differences in potential between various pH levels is limited, the stability of a whisker

dispersion should not change much with varying pH.

Zeta potential cellulose
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Zeta potential/mv
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Figure 7.15: Zeta potential of cellulose whiskers at varying pH values.

7.2.4 Coagulation by iron ions

Since the flocculation of cellulose fibres was the primary reason why cellulose did not
effectively enter the wood, it was attempted to estimate what kind of ion concentrations
caused this flocculation (‘coagulation' refers to the initial agglomerates formed by particles

in suspension while 'flocculation' is a later stage where larger agglomerates are formed). If
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very low concentrations of ions still result in flocculation, it will be effectively impossible to

penetrate a piece of archaeological wood with cellulose whiskers.

The size of such particles can be measured using Dynamic Light Scattering (DLS). This
technique measures the intensity and fluctuations of a laser beam shining through a
dispersion and thus estimates the size of particles in the sample. To get accurate
measurements you should know the liquid and the particles should be perfectly spherical
[155](p. 236-242). Obviously, this is not the case for cellulose whiskers but the technique
still gives information about the relative size of the whiskers (so if the measured diameter

suddenly increases it is due to flocculation).

7.2.4.1 Critical coagulation concentration

The critical coagulation concentration, CCC, is the concentration at which dispersed
particles follow the fast and irreversible flocculation rate. Normally, particles can be kept
from flocculating due to electrostatic repulsion — meaning that identical particles have the
same charge and will thus repel one another (see also chapter 7.2.3.2 'Zeta potential
measurements' on page 147). Ions with opposite charges (also known as a counter-ions),
decrease the effective thickness of the diffuse double layer around charged particles,
reducing repulsion between them and thus allow them to stick together [155](p. 588). The
study and modelling of such coagulation can be modelled using DLVO theory (named after
the surface science pioneers Deryaguin, Landau, Verwey, and Overbeek) [155](p. 585). The

relevant equation (for parallel surfaces at 25°C) is:

CCC =3.86-10%(y"/A%z°)

where CCC is the concentration of the coagulant, ¥ is dependant upon the surface
potential (it is 1 for large potentials), A is the Hamaker constant (approximately 10° J for

dispersions in water), and z is the valence of the counter-ions [156](p. 37).

Note that since z° affects the concentration for large potentials (it is related to z* for low

ones), this means that the CCC should be directly related to 1/z° in the case of the whiskers
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(Shulze-Hardy's rule) [156](p. 37). Thus the type of ions in impregnation tanks containing
archaeological wood becomes extremely important as a single Fe*" ion causes as much

coagulation as 11.4 Ca*" ions or 729 Na" ions.

7.2.4.2 Experimental coagulation procedure

Two samples of whiskers were initially investigated using a Malvern 3000 HS4
Zetasizer. Both samples had much the same average size. However, the distribution was
almost uniform in the first sample (200-400 nm) while the second had a wide size
distribution (20-1000 nm). Both samples were produced from the same batch of cellulose
fibres and the only difference between them is that the first sample contained the initially
collected whiskers while the second sample contained the whiskers which went into
dispersion after repeating the shaking and centrifugation process. This suggests that the
collection stage of the production might be important as it could influence the size and/or

stability of the produced fibres.

Since iron is common in archaeological finds, it was natural to determine the CCC of
cellulose whiskers in Fe ion solutions. Since the effectiveness of an ion as a coagulation
agent depends upon its valency, Fe** is much more potent in this regard than Fe** (see last
chapter), this means that any experiments on pure Fe** ions will serve as a 'worst case
scenario'. After all, the actual ion concentration in impregnation baths with archaeological
wood should contain a number of different ion species. FeCl; was chosen as a source of Fe**
ions and a 1 M solution of these was prepared. Note that as cellulose has a negative charge,
the positive ions will affect the electrical layer around the whiskers and speed up
coagulation. The CI" ions from the FeCls, or other negatively charged ions for that matter,
will not influence coagulation time noticeably.

In total, 15 samples were prepared in 1 ml cuvettes. The concentration of Fe®" was
halved in each successive sample with the initial sample containing a final concentration of
0.167 M Fe* and the last sample containing 1.02-10° M Fe™. In addition, two control
samples without Fe*, one containing surfactant and one reference with only whiskers and

water, were investigated.
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Since cellulose whiskers eventually coagulate on their own, they would obviously also
coagulate in the presence of ions. For this reason the experiment was not carried out using
pure whiskers but whiskers to which a surfactant had been added. The chosen whiskers were
ultrasonicated at 40% power output on a Misoni Sonicator 3000 for one minute. This made
the dispersions visibly clearer. They were then mixed with a nonylphenol etoxylate (n=20)
surfactant. The initial mixing concentration as 2 g/l so the concentration in the samples
(where ion solution was also added) would be 0.33 g/g. A higher concentration is
undesirable as the surfactant could be visibly seen after treatment in the SEM images at

concentrations of 1 g/g. Thus a lower concentration was chosen for the stability test.

After three months, the experiment had to be terminated because some of the water had
started to evaporate despite the parafilm seal on the cuvettes. Although this means that it
was impossible to fully evaluate the long-term stability of the dispersions, it is still possible

to make some valuable observations.

7.2.4.3 Results concerning whisker stability

Immediately following the initial mixing of the samples, the ones with the highest iron
content flocculated visibly and formed a precipitate at the bottom of the cuvettes. The first
sample where the whiskers did not flocculate immediately had a concentration of 0.62 mM
Fe’* (meaning that the sample with 1.2 mM Fe** flocculated). This means that the CCC lies
below 1.2 mM Fe*. The samples below the CCC could be further analysed.

The results of the measurements show that the DLS gives very odd results from time to
time. The standard deviation of signals sometimes came up impossibly narrow (for example
2.6 nm in a sample with a peak at about 150 nm). The whiskers might be arranged in a
single distribution which the instrument interprets as multiple peaks — possibly because
these particles are not spherical. For this reason, standard deviations are not presented in the
data below and multiple peaks may not represent the actual distributions. Despite these
sources of error, the estimated diameters can still be used to determine whether there are

changes — particularly flocculation — happening in the dispersions.
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The initial dispersed cellulose without any added surfactant or Fe’* seemed to have an
excellent narrow size distribution. Tip sonication reduced the average size from 200-400 nm
to a narrow peak around 150 nm. This shows how essential tip sonication is to whisker

dispersion. As time wore on, it became apparent that some flocculation occurred.

Table 4: DLS measurements of sample 0 (containing whiskers without surfactant).

Sample 0 Peak 1 Peak 2

Time Intensity 1 Diameter 1 Intensity 2 Diameter 2
0 96.8% 159 nm

1 day 95.7% 141 nm

6 days 100% 156 nm

61 days 47.3% 199 nm 52.7% 482 nm

90 days 18.6% 390 nm 81.4% 1006 nm

Selected measurements from the sample without any added Fe*" or surfactant can be
seen in Table 4 above. While no major changes happened in the first week of measuring,
some coagulation had happened after two months and that the average size increased
significantly after another month of coagulation. This did not occur in the sample containing
surfactants. As can be seen in Table 5, below the average size had increased slightly from

the initial measurements to the final ones but no measurable flocculation had occurred.

Table 5: DLS measurements of sample 1 (containing whiskers and surfactant).

Sample 1 Peak

Time Intensity Diameter
0 95.5% 138 nm

7 days 96.9% 116 nm
61 days 100% 144 nm
90 days 100% 159 nm

An example of measurements on a sample which contained Fe*" ions which caused

flocculation can be seen in Table 6 below. This shows how the positive ions affect the

stability of the dispersion.
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Table 6: DLS measurements of sample 11 (containing both surfactant and 1.62-10* M Fe*”).

Sample 11 Peak 1 Peak 2

Time Intensity 1 Diameter 1 Intensity 2 Diameter 2
0 88.8% 211 nm

1 day 100% 128 nm

61 days 45.9% 153 nm 54.1% 608 nm

90 days 42% 272 nm 57.6% 782 nm

After two months, all samples up to and including Sample 12 had begun to flocculate.
Samples 13-15 still only gave a single peak with average sizes in the 132-167 nm range.
Due to evaporation through the parafilm seal, it was not possible to test whether these
samples were still dispersed after three months. Thus the sample with 8.14-10° M Fe**
flocculated while the samples with half this Fe concentration or lower did not.

The experiments thus show that flocculation due to positive ions will require the use of a
surfactant to keep whiskers dispersed. Even though a surfactant is applied, however, the
whiskers may flocculate before the impregnation is complete. After all, wooden artefacts
may be treated for years in impregnation baths to ensure proper distribution of the
stabilising agent — and several of the initially stabilised solutions still flocculated when left

for a quarter of a year.

To proceed from these results, a number of surfactants should be tested. While a
poly(oxy ethylene) might be a good starting point, various ether or alkyl groups could
significantly influence results. Additionally, a combination of different surfactants may

provide much better results than a single species.

7.2.5 Evaluation of cellulose whiskers as a consolidant

Although cellulose whiskers are made up of the most durable kind of cellulose, they do
not form sufficiently strong support on their own to reinforce wooden artefacts. They are
resistant to acids and most forms of degradation though, so whiskers might still bestow
desirable properties if combined with other materials.

The initial experiments clearly showed that cellulose whiskers will fill larger cracks and

voids in the wooden structure. They retain an open structure after freeze-drying which
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allows any treated object to be re-treated either with further components or sometime in the
future. This means that it may be possible to inject cellulose fibres into voids in wooden
artefacts to construct a kind of 'scaffolding' for future consolidants to adhere to and
reinforce.

Unfortunately, the fibres do not enter the smaller pores or lumens of the degraded wood
as the time it takes to penetrate it is longer than the time it takes the whiskers to start
flocculating.

The zeta potential measurements showed that the potential of the produced cellulose
whiskers was fairly constant throughout the pH range. This means that the flocculation

cannot be prevented simply by introducing the fibres in a buffer solution.

The DLS experiments demonstrated that Fe ions caused the whiskers to flocculate in
most solutions. Since the results were for Fe**, this means that a solution might contain 11.4
times more divalent positive ions and 729 times as many monovalent positive ions. As such,
actual impregnation baths might contain quite a bit of Fe*", Ca®", and Na' before the
whiskers begin to flocculate (for example, you would need a Na+ concentration greater than
0.45 M — equivalent to more than 16 g NaCl per litre — in order to cause immediate
flocculation). Because cellulose has a negative charge, such ions as SO,* or CI' can be
disregarded as they do not influence the stability of a whisker dispersion.

Since the impregnation of archaeological wood is likely to take several months, metal
ions are still likely to cause flocculation unless a better surfactant than the tested ones can be
found. Note that even if such hypothetical a surfactant allows whiskers to stay in dispersion,
it might have certain chemical properties which could affect treated wood. Much worse,
surfactant molecules might adhere to the surfaces of the degraded wooden matrix directly,
possibly preventing stabilising agents from attaching — or adhere to the dispersed fibres and
prevent them from attaching to the wood. In either case, more surfactants should be
carefully chosen and tested if this method is further developed. Until such a time comes, it is
more prudent to look towards consolidants which are easier to dissolve and get into the

wood.
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7.3 Chitosan

Cellulose is not the only sugar-like molecule which can be interesting for conservation
purposes. From a chemical viewpoint, the shells of insects and crabs are very similar to the
fibres in plants. Thus chitin is an interesting alternative to cellulose. A derivative of chitin,
chitosan, is an even more attractive since it lacks most of the acetic groups in chitin,
meaning that it is less likely to produce acetic acid upon degradation (which may harm

metals on display in a museum).

Chitosan has been mentioned in conservation literature but mainly to point out that it
cannot protect fresh wood against fungal attack — and with no comments about waterlogged
wood [20](p. 244). It has been applied to paper conservation and seems to strengthen certain
papers made from short fibres. If the chitosan is precipitated, the kind of alkali used will
heavily influence the durability of the paper [157].

Chitosan is non-toxic and relatively easy to dissolve in weak acids. These qualities alone

makes it worth testing as a wood consolidant.

7.3.1 Chemistry of chitosan

Chitin is a polysaccharide, specifically 2-acetamido-2-deoxy--D-glucose. It is identical
to cellulose with a hydroxyl group replaced by an acetamido group. Chitosan is a derivative
of chitin produced by alkaline deacetylation of the acetamido group into a primary amine
group (see Figure 7.16 below). Chitosan can be obtained from crab or shrimp shells as well
as mycelia. It is more biocompatible and biodegradable than typical synthetic polymers
[158]. While chitosan films have been used for packaging material, the hydrophobic nature
and relative weakness of the film means that petrochemical polymers are still more
attractive for this purpose [159]. Chitosan has been investigated for drug delivery due to its
low toxicity and biodegradability and may promote tissue growth and wound healing [158],
[160]. However, the same qualities are beneficial for conservation science as it allows

chitosan to be handled with minimal precautions.
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Figure 7.16: The chemical structures of cellulose, chitin, and chitosan (top to bottom) [158].

Gels made from chitosan may swell significantly in acidic (but not basic) solutions
[158]. This led to the statement that “Most of the naturally occuring polysaccharides [...]
are acidic or neutral in nature, whereas chitin and chitosan are examples of highly basic
polysaccharides.” [158] Due to the chemical compositions of chitin and chitosan, this
statement seems highly dubious and it does not fit with previously published results. Tests to
determine the kinetics of binding Cu®" to chitin also showed that this molecule is acidic with

a pK, value about 6.45 [161]. Potentiometric titrations proved that chitosan has a pK, value
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ion the range of 6.39-6.51 (inversely proportional to molecular weight) but can go as low as
6.17 for high degrees of deacetylation (94%) [162]. This means that both chitin and chitosan
are slightly acidic in nature — like the other polysaccharides — and that the phrase “highly

basic” should be avoided (this wording was unfortunately repeated in Paper 1).

At a pH of about 4, most amino groups in the chitosan chain will be protonated, causing
electrostatic repulsion and enhanced swelling of the polymer network. Raising pH causes
the charges to be screened and thus the chains to entangle more, increasing viscosity. In the
pH range 5.8-6.4, an actual gel zone is formed (samples in test tubes can be turned upside
down without running out of the tube) while even higher pH leads to phase separation. A
very low pH, such as 0.5, also leads to phase separation since increased ionic strength also
causes the chains to flocculate. This means that viscosity of chitosan solutions is at its
lowest at pH 3-4 and rises on either side of this window [163]. As such this is the ideal pH
for penetrating chitosan throughout archaeological wood.

Depending upon degree of deacetylation, chitosan might be soluble in both acidic and
alkaline solutions (especually with a fraction of n-acetylated residues around 0.6) [164].
Since archaeological wood is more resistant to acids than base, only acids have been
considered in the following. Chitosan is soluble in monovalent acids but not divalent ones.
Acid concentrations of 0.1-0.15 M can dissolve 2%"/, chitosan but generally not 2.5%"/,
(out of several tested acids, only chloroacetic acid could dissolve this higher concentration).
Using HCI leads to a less viscous system than using carboxylic acids [160]. Acetic acid

results in better fixation to wood than HC1 [165].

Adding salt to chitosan solutions reduces the hydrodynamic volume of the molecules
for both the hydrophobically modified and pure chitosan. In most cases, 10 mM NaCl was
sufficient to eliminate the need for surfactants [166]. Since it is effectively impossible to
remove salts from archaeological wood prior to impregnation, this effect might help to

further disperse the chitosan inside the degraded wood.
Chitosan can chelate metal ions and this may be utilised in waste-water treatment (both

industrial and otherwise) [158]. The adsorption is through the free electron pairs in N and O

atoms. Efficiency is in the following order: Cr** < Co®" < Pb*" < Mn?* << Cd*" < Ag" < Ni**
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< Fe’* < Cu* < Hg*. The processes are influenced by the pH of the solution and
concentration of ions as well as the size of the chitosan particles (with powder or
microspheres adsorbing up to twice as much iron as flakes). The efficiency increases with
increasing pH but takes place to some extent at pH levels at least as low as 2 [167]. This
makes the chelation at least potentially viable for archaeological wood since treatment times

are usually quite long.

7.3.1.1 Chitosan for wood impregnation

Chitosan has previously been tested on fresh wood in order to determine if its antifungal
properties could be used to preserve wood used in buildings. Scots pine, beech, downy
birch, and Norway spruce were impregnated with 2.4%"/, chitosan solutions. The chitosan
was treated with KNO, to depolymerise it. This resulted in four test solutions ranging from
129 to 18 kDalton in average molecular weight (MW). The viscosity decreased with
decreasing average molecule size. This procedure also turns the chitosan somewhat brown
depending upon degree of depolymerisation. In the longitudinal direction, the chitosan
penetrated well into the beech and also acceptably into the pine and birch while the spruce
only had very low uptake. Generally speaking, there was a visible difference between the
uptake of the various solutions although this difference was not so dramatic as to make it
improbable that the largest molecules would penetrate eventually. The uptake in the radial
and tangential directions were limited by the structure of the wood [164]. In another study,
wood samples were treated with 5, 2.5, and 1%"/, chitosan. Both high (58 kD) and low (18
kD) molecular weights were used. The chitosan prevented burning although the high
molecular weight was more efficient than the lower molecular weight. To achieve proper
anti-fungal properties, a weight gain of 5%"/, chitosan in water is required [169].

The pH value has been shown to be statistically significant for chitosan uptake in fresh
wood, indicating that the amine groups actively contribute to the fixation. This might be due
to hydrogen bonding to cellulose as well as an acid-base interaction with the phenolic
groups in lignin. Lower pH values gave lower fixation rates. At pH 3.5 the fixation was
about 44% lower than at pH 5.5. In the pH range 5.1-5.9, however, no change in fixation

was registered and pH 5.5 remains the recommended acidity for treatments [165]. Note that
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degraded wood could potentially react differently due to chemical changes to the surface
groups during degradation.

Chitosan does not appear to affect the mechanical properties of fresh wood even when it
mixes with the wooden matrix. Both the original and a somewhat depolymerised chitosan
gave roughly the same mechanical test results [170]. It has been found that longer chitosan
chains gives better fixation to the wooden matrix but the results are not consistent through
the published literature [165]. Longer chains do seem to enhance the antifungal properties of

the chitosan [171].

7.3.1.2 Chitosan-cellulose film

Combining the properties of cellulose and chitosan could be useful for both technical
and medical purposes. Oligoethylene oxide diglycidyl ether (DEO) can react with the
functional groups of both polymers. This decreases solubility dramatically while only
substituting 3-4% of the groups with groups from the DEO. Films of cellulose-chitosan may
be dry-spun and treated with NaOH or a plasticiser to modify their properties. Although
films made from mixtures of the two polymers had lower mechanical strength than those
made purely from one of the compounds, they still possessed sufficient strength for many
purposes (breaking stress 15-20 MPa) and relatively high elongation (15-30%) [168].

A chitosan-cellulose film has been previously made. The substrate was dipped for 10
minutes in a 2%"/, chitosan solution in 5% acetic acid, rinsed with deionised water and
dipped for 10 minutes in a 1%"/, cellulose whisker dispersion. Rinsing after each step, the
procedure could be repeated until films of the desired thickness were deposited. After five
minutes, very little change in layer formation occurred (although the time was kept at 10

minutes per cycle to ensure equilibrium) [159].

7.3.2 Experimental procedures for chitosan

Acids and KNO, were purchased from Sigma-Aldrich. Two types of chitosan were used,
one from Sigma-Aldrich (chitosan, low molecular weight, from crabs) and one from Kitonor
(also from crab exoskeletons). Solubility of chitosan was tested in 0.1 M solutions made by

diluting concentrated monovalent acids in deionised water. Experiments were carried out in
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0.1 M CH;COOH using a chitosan concentration of 2%"/,, unless noted otherwise. The
chitosan was dissolved overnight by placing the mixture on a magnetic stirrer.

Pieces of archaeological wood was cut with a razor blade and put into glass containers
with chitosan solution. They were sealed with parafilm and left at room temperature for the
duration of the impregnation (which was usually two weeks). After impregnation, the
surfaces of the samples were rinsed lightly with deionised water, frozen in a normal freezer
at -18°C and freeze-dried at room temperature.

Imaging was performed on an FEI Quanta 200 FEG-ESEM in low vacuum mode. This
means that no coating was applied after cutting slices of the freeze-dried samples with a

razor blade.

Full experimental procedures for the chitosan impregnation tests can be found in Paper

3 while chapter 7.3.2.3 on page 164 summarises the methods used.

7.3.2.1 Initial impregnation experiments

Testing was carried out without many initial experiments. As soon as it was verified that
chitosan was easily dissolved in monovalent acids, the objective was to get the chitosan into
archaeological pieces of wood, freeze-dry them, and evaluate any strength and colour

changes in the wood.

The literature suggested that acetic acid was one of the best solvents for chitosan. Since
acetic acid can be a problem in museums, HCI was also tested for chitosan solutions.

Both HCl and CH;COOH are suitable for getting the chitosan into solution and the
choice of acid did not seem to affect viscosity. The solubility of chitosan is based on
absolute amounts of acid added to the solution and not how much if it actually deprotonises.
This means HCI solutions are significantly more acidic than solutions of CH;COOH.
Additionally, the HCl-containing samples started to precipitate after less than a month,
forming thin white strands of chitosan. Even after half a year, there was no sign of
precipitation in the CH;COOH-containing samples. For this reason, 0.1 M CH3;COOH was
chosen for all further impregnation experiments even though the acid is not desirable in a

museum environment.
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Initial experiments determined that while it is possible to dissolve chitosan up to 10%"/,,
it is still very viscous down to below 5%"/, and probably unlikely to diffuse into wood at
concentrations above 2%"/,. Decreasing concentration to 1%"/, significantly reduced
viscosity but would result in less chitosan to reinforce treated items. Thus a 2%"/, solution
was used for all further experiments even though this consistency will realistically differ for

various degrees of polymerisation (DPs) of chitosan.

In two impregnation trials, the chitosan was attacked by fungi (an image of the spores
was shown in Figure 7.9 on page 142). Although this was not a general problem, it meant
that further samples were cut and prepared while wearing gloves to minimise the risk of
contamination. If the method is ever implemented for large-scale treatments, it will be

important to add fungicide to the baths during the long impregnation procedure.

7.3.2.2 Imaging

Sometimes it is possible to measure the presence of a consolidant simply by looking at
the thickness of the remaining cell walls before and after impregnation [73]. It was
attempted to do this with the chitosan-treated wood. The chitosan investigations were
carried out using an FEI Quanta 200 FEG-ESEM on low vacuum mode. This means that no
coating was applied after cutting slices of the samples with a razor blade.

Without coating, it was difficult to get good quality images at high enough
magnification to see individual cellulose whiskers but it was possible to determine how
consolidants were distributed overall. Much like the cellulose whiskers, the freeze-dried

chitosan could be found as a layer on the wood but did not fill the structure evenly.

The structure of the chitosan itself seemed fairly similar to that of the cellulose whisker
'flakes' and can be seen in Figure 7.17 below. Note that the structure of the chitosan
somewhat resembles that of cellulose whiskers (as seen in Figure 7.5 on page 138). The
chitosan structure is a little more uniform than that of the cellulose whiskers. It is likely,
however, that these structures are formed as the polymers are being extruded from the
freezing ice crystals, meaning that the way water freezes is more important for their shape

than the polymers themselves.
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Figure 7.17: ESEM image of freeze-dried chitosan solution.

What was particularly interesting about the initial chitosan investigations was that the
polymer — unlike the cellulose whiskers — did not seem to precipitate onto the remaining cell
wall material. An example of the look of the wood after impregnation can be seen in Figure
7.18 below. While this might indicate that the chitosan does not penetrate at all, later
investigations suggested that the chitosan simply adheres to the remaining wood, coating the
degraded cell structure. This is an extremely desirable quality in a consolidant as it allows

for further 'layers' to be added if/when the material starts to become brittle in the future.
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LFD|5.0 kV| 3.9 |8.1 mm|956x

Figure 7.18: ESEM image of freeze-dried Viking Age wood (sample 'Box 7') treated with chitosan

solution. Note that the remaining wooden matrix is relatively free of agglomerates.

A closer examination of the surface of the chitosan-treated wood revealed that it was
fairly uneven. Although it was difficult to get sharp images at this magnification, an
example of the 'lumpy' wooden structure can be seen in Figure 7.19. This structure is most

likely due to an uneven coating of chitosan adhering to the wood.
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Figure 7.19: ESEM image of freeze-dried wood treated with chitosan solution. Note how the surface

seems uneven - likely as a result of chitosan conglomerating on it.

7.3.2.3 Determination of chitosan in test samples

The Norwegian Forest and Landscape Institute in As had experience with treating fresh
wood with chitosan and generously offered to lend expertise in evaluating how effectively

chitosan penetrated small test pieces of archaeological wood’. The results of this

7 All impregnated and freeze-dried samples were analysed at the Norwegian Forestry and Landscape
Institute by Monica Fongen, Eva Grodas and Erik Larney. Erik Larney also performed the statistical
analysis and supplied the Figures shown in this chapter. Erik Larney and Gry Alfredsen also took part

in the initial discussions concerning the experiments.
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collaboration are shown in Paper 3 although the results are also summarised below for

increased accessibility.

The wooden pieces used were from the 'Stokk 3 sjakt 3' sample. This should be a fairly
representative sample for Viking Age hardwood. As many samples as possible were cut
from a single piece of wood. All impregnation experiments were carried out in triplicate to
reduce the chance of non-significant results and outliers. The sample size cut was roughly
2x0.75x0.75 cm but due to the fragile nature of the wood, some samples fractured and an

entirely even sample size was not obtained.

Most of the samples were impregnated with chitosan. A concentration of 2%"/, in 0.1 M
acetic acid was used to keep viscosity low. Treatments for the different series can be seen in
Table 7 below. Some of the chitosan solution was depolymerised with KNO, (a 4%"/\
solution was added for 0.015 g or 0.022 g KNO, per g chitosan for series C and F
respectively). The impregnation time was two weeks. Sample series F and G were heated for
24 hours at 60°C after impregnation (as this improved chitosan stability in fresh wooden
samples [172]). The samples were rinsed with deionised water and subsequently frozen in a
freezer. After a day, the samples were immersed in liquid nitrogen and freeze-dried. The
dried samples were cut into an outer, middle, and inner part and ground before determining
glycosamine contents.

Chitosan can be reduced to glucosamine monomer by hydrolysis. This means that
chitosan contents can be estimated by grinding the samples and mixing them with HCI and
an internal standard then heating them to 100°C for 48 hours. This degrades the chitosan.
The samples may them be mixed with more acid and heated to 100°C once again for 24
hours. HPLC (High Performance Liquid Chromatography) analysis can then be performed
where the glucosamine is detected using excitation at 340 nm and emission at 445 nm [173].

The main glycosamine contents can be seen in Table 7 below.

The results clearly showed that there was a vast difference in glycosamine content

between untreated samples (about 10 wmol/g) and treated samples (324-735 wmol/g). There
was a significant difference between the individual test pieces. This was expected due to the

inhomogeneous nature of wood. An overview of the samples and their glycosamine content
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can be seen in Figure 7.20. As can be seen, there is a significant difference between

individual samples, although there is a noticeable difference between most of the sample

series.

Table 7: Treatment of samples and average chitosan uptake.

Sample Treatment Mean glycosamine | Average chitosan
series content/imol/g | weight/kDaltons
A | Untreated (kept in acetic acid) 10.5 None
B |Chitosan (Kitonor) 502 12.25
C | Depolymerised chitosan (Kitonor) 615 6.25
D | Chitosan (Sigma-Aldrich) 446 222.5
E |Chitosan (Kitonor), heated after 505 12.25
impregnation
F | Depolymerised chitosan (Kitonor), 543 Not measured
heated
G | Untreated but heated 10.5 None
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Figure 7.20: Glycosamine content of the various samples in the chitosan experiment.

Since series B and F are identical except for the heat treatment of series F, it is not

surprising that these two series gave very similar results. Series D may contain less chitosan

since these pieces were impregnated with chitosan from Sigma-Aldrich which may have a

different composition from the others. This is likely because the average molecular size is

larger in Series D, explaining why less material penetrates. It seems odd that series C
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contains more chitosan on average than series F since slightly more KNO, was used to
depolymerise the chitosan used for series F — meaning that the average molecular weight of
the chitosan should be smaller than for series C. Since series C and F were cut from
different wood fragments, an explanation might be that one fragment was more degraded
and thus allows more chitosan to penetrate into it. This theory contradicts the results from
series B and E, however, as these gave roughly the same result even though the samples
were from different wooden fragments. The explanation might lie in the light rinsing of the
surface of the treated samples, as a depolymerised chitosan would most likely be easier to
wash out of the samples (leading to a lower result for series F than series C). Leaching
might also have happened during the time series F samples were heated, so further

experiments will likely be needed to confirm and explain this difference.
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Figure 7.21: Glycosamine content of the chitosan-treated samples by layer.
Note that samples A and G are not included since these were not treated

with chitosan.

Since each sample was cut into an outer, middle, and inner part, an uneven distribution
of chitosan would result in much higher average values in one category than another. As can
be seen in Figure 7.21, there is no such consistent trend. While the samples from the inner
part of the wood certainly have the largest spread, they contain higher as well as lower
glucosamine than the middle part of the samples, so the average value is virtually identical
for all locations. The spread might be due to cracks or partial collapse of the samples. Voids

may fill with chitosan and thus give a high glucosamine weight content. On the other hand,
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partial collapse, possibly having happened while the wood was in the ground, would make it
more difficult for the chitosan to penetrate into the samples. It seems like the middle part of
the wood seems to contain slightly more glucosamine on average — while the outer parts
contain less. A possible explanation is that slight amounts of chitosan were washed from the
surface when the samples were rinsed after the impregnation was complete. None of these

differences are statistically significant so these trends may be completely accidental.

7.3.3 Evaluation of chitosan as a consolidant

With its cellulose-like structure, chitosan has some 'backup' carbon chains in case the
oxygen in the rings gets severed. The oxygen links along the chain should also be more
stable than aliphatic ethers without any ring structures (such as PEG). This means that
chitosan should theoretically be stable enough to endure a while in a museum (at least
compared with other flexible, water-soluble polymers). While fungal attacks can be a

problem, adding fungicide to impregnation baths is already done for many consolidants.

One of the most interesting aspects of chitosan, is not purely its strengthening of the
wood but its ability to bind metal ions and thus prevent their catalytic effect on degradation
processes. This could significantly increase the lifetime of both the degraded wood itself
and any other polymers potentially used to reinforce it. Unfortunately, it was not possible to

evaluate how effectively chitosan chelated metal ions within this study.

When impregnating with chitosan, a pH of 3-4 results in minimal viscosity and thus
potentially better penetration. On the other hand, a higher pH results in a much higher
fixation rate (with an optimal rate at pH 5.1-5.9 provided degraded wood reacts the same
way as fresh wood). Since the size of chitosan molecules is also affected by salt content, this
effect will most likely counteract the slight swelling of chitosan at the increased pH. Due to
the natural acidity of wood, a pH around 5 seems like a reasonable compromise which
allows good penetration and fixation while minimising damage to the wood. Additionally, it

was found that the 0.1 M solutions of CH;COOH with 2%"/, chitosan has this pH.
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While the tests on fresh wood gives a good starting point, some of the considerations are
not relevant for archaeological artefacts. For example, loss of chitosan due to weathering is
not a problem in a museum environment. Several of the polymers used for conservation for
future display in a museum environment, such as PEG, would not endure the conditions in

outside buildings. This means that chitosan should be acceptable for museum use.

The initial study clearly shows that the 2%"/, chitosan solution in 0.1 M CH;COOH
penetrated all the way into small pieces of archaeological wood in two weeks. Thus chitosan
is potentially a good consolidant for archaeological wood.

It was difficult to see chitosan directly in the SEM images. The relatively low chitosan
concentration (2%"/,) might affect how readily it is seen. Even if an increase in width of the
remaining cell wall material could not be measured, the treated wood cracked and powdered
much less than untreated wood (or wood treated with cellulose fibres) when cutting the
freeze-dried samples with a razor blade. Based on this, it seems that chitosan offers
sufficient strength to keep smaller fragments together but it has not yet been tested on larger

archaeological wooden remains.

7.4 Calcium carbonate nanoparticles

Although many types of nanoparticles might be interesting for conservation purposes
(see chapter 4.1.10 'Nanoparticle treatments' on page 68 as well as Paper 1 in the
appendices), time limitations made it impossible to fully explore the potential types during
this project. Still, a few initial trials were carried out at the Max Planck Institute for Colloids

and Interfaces in Potsdam, Germany®.

Pieces of Viking Age softwood (samples 'Box 7' and 'Stokk 9 sjakt 3') were taken in the
waterlogged state and immersed in solutions of concentrated Ca(OH),. After a week the
samples were removed, freeze-dried, and examined on a LEO 1550 FE-SEM equipped with
a Gemini detector (LEO Elektronmikroskopie GmbH, Oberkochen, Germany). The samples
were sputtered with Au/Pd. Ca(OH), was purchased from Sigma-Aldrich.

8 Kuy-bock Lee was working on growing CaCO; matrices in situ and offered to help conduct a few
experiments. He prepared the impregnating solutions and carried out the SEM imaging presented in this

chapter.
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Figure 7.22: SEM image of a freeze-dried piece of archaeological wood (either sample 'Box 7' or
'Stokk 9 sjakt 3' treated with Ca(OH)..

7.4.1 Impregnation experiments and imaging

The samples are treated with Ca(OH),. Upon contact with CO,, this reacts to form
CaCO0s;. For this reason, it is important to seal both the solution and the test pieces during
impregnation to prevent the CO, in the atmosphere from reacting with the solution. With the
current debates about CO, sinks, it might be attractive to label this method as
environmentally friendly. One should be aware, however, that the reason the process works
is because it is reversible, meaning that when in contact with acid, the CaCOj; releases CO,
along with water and becomes a salt (for example CaCO; + H,SO4 — CaSO, + H,O + CO,).

This means that CO, storage is temporary.

170



Test pieces of wood from the samples 'Box 7' and 'Stokk 9 sjakt 3'were impregnated
with a saturated solution of Ca(OH).. The glasses were sealed with parafilm to prevent CO,
from reaching the solutions and initiating the reaction. The samples were exposed to air
before drying them. The imaging was done on a LEO 1550 FE-SEM equipped with a
Gemini detector. An overview of the structure can be seen in Figure 7.22 below.

It is clear that CaCO; does not grow enough to offer support to the wood. The thin
strands left inside the structure are most likely due to ions conglomerating as ice is formed
during the freezing process. A close-up of the strands can be seen in Figure 7.23 which

clearly shows that they seem to be covered by some kind of minute spherical structures —

most likely growing CaCOs formations.
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Figure 7.23: SEM close-up of the structures inside a freeze dried piece of wood treated with
Ca(OH).. Note the uneven structure of the strands which might be due to growth of CaCOj.
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7.4.2 Evaluation of calcium carbonate for conservation

These experiments have not been sufficient to fully evaluate the possible applications of
CaCOs for conservation purposes. The imaging indicates that there is some growth inside
the wood and thus that penetration is likely efficient. This is expected since the original
solution contains ions of limited size rather than large polymer molecules. This means that it
should be possible to use similar growth inside the wood to add a reservoir of acid-

neutralising agents.

7.5 Hybrid and composite materials

One of the more promising ideas in conservation science might be to mix different
materials to achieve certain desired properties. An example is an organic matrix which
supports the finds but contains inorganic particles which are able to neutralise acid (these
ideas are also expressed in chapter 8.6.1 'Nanoparticles' on page 185 as well as in Paper 1 in
the appendices). Unfortunately, time did not permit thorough testing during this project but a

single experiment on mixing PF with cellulose fibres was carried out..

7.5.1 Mixing PF and cellulose whiskers

Since cellulose may reinforce existing polymers, it would be interesting if it could also
enhance the properties of the PF if used for treatment of archaeological objects.

The collected but untreated cellulose whiskers (described in chapter 7.2.2.1 'Producing
cellulose whiskers' on page 134) were poured into a F:P 1.4 prepolymer mix and HCI added
as a catalyst (adjusting pH to just above 0). When mixing, the contests of the beakers
became white, unlike the pure PF mix which stays transparent. After standing in the fume
hood for an hour, a clear watery phase had formed in the top few mm of the solutions. The
solutions were transferred to an airtight container and placed in the oven at 70°C. The
samples were observed over the next several days and although the solid PF material should
only take up about 25% of the total volume, the white phase took up about 80% of the
volume with the small watery phase on top remaining clear. This ratio did not change visibly

over the next week.
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After seven days, the lid was taken off the airtight container and the PF was allowed to
cure as the water evaporated over the span of a day. What remained was a reddish brown
material which resembled the novolac samples described in chapter 6.3.2 'Pure polymer
experiments' on page 89 (although of a slightly more brown colouration). If picked up and

squeezed slightly, the material fell apart much like a compressed powder.

Figure 7.24: Microscope image showing PF spheres formed around cellulose whiskers in

suspension. The spheres are 10-20 pm in diameter.

Some of this powder was examined in a Leitz Diaplan microscope using a Phaco 1 160/-
lens and with a Imaging Source DFK41AU02 USB colour camera attached in order to
determine the shape and size of the individual particles. As seen in Figure 7.24 above, the
particles are spheres with diameters about 10-20 wm.

The low pH in the dispersion may cause the cellulose to flocculate rapidly (as seen in
chapter 7.2.3.2 'Zeta potential measurements' on page 147). If this is so, the actual size of

the flocculated cellulose — and thus of the PF coated spheres — is likely highly random and
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the results not reproducible. It is particularly interesting that the PF does not form an organic
phase when mixed with the cellulose whiskers but the components seems to form spherical
particles. Cellulose might stabilise the PF, possibly forming an emulsion by distributing
itself on the surface of formed PF spheres.

While it would be interesting from a pure research perspective to go back and vary
concentrations to understand the process better, it may not be relevant for conservation
purposes. The spheres produced in this experiment are too big to properly penetrate the
pores in archaeological wood and cannot be used as a kind of durable particle 'filler'. On the
bright side, the results indicate that PF adheres to the cellulose whiskers in suspension and

thus that it may be possible to easily coat cellulose-treated surfaces with PF.
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8. Summary and future ideas

The following chapter summarises some of the more important discoveries during this

work. Additionally, a number of possible avenues for future research are presented.

Since the aim of this work was to design new consolidants, the theoretical list of
requirements for such will be summarised. Of course, the actual results from the tests on
various compounds should not be overlooked. Both results on phenol-formaldehyde (PF) as
well as more biomimetic materials (specifically cellulose and chitosan) are summarised in

the following.

8.1 Chemists in consolidant design

When chemists enter the field of conservation, they have to leave many traditional
approaches behind. Working in the museum environment usually means no control over
atmosphere or temperature and ventilation is often rather limited. Time frames are often
very long in conservation where impregnation can go on for years. This does not mean that
the role of chemists in conservation science is limited to performing analyses (although that,
too, is important).

The task of finding new consolidants requires a comparison between existing methods
as well as an understanding of why some attempts fail. By understanding the molecular
structures of consolidants, it is possible to predict roughly how they might behave. It also
means that certain chemical groups in a polymer can be exchanged in order to increase
flexibility or resistance to acids and oxidation. Modifying surface groups is also a way of
controlling solubility or enhancing the interaction between the remaining wooden material
and the consolidant. The same approach might substitute a toxic group or solvent with a less
harmful one. Similarly, polymerisation reactions or treatments might be broken down into
steps so initially toxic monomers are pre-polymerised in order to produce an oligomer
which can be used directly in the museum environment (see discussions regarding PF in
chapter 8.5.2 'Novolac reinforcement of alum-treated wood' on page 183).

Since cost can be a barrier to implementing a new kind of consolidant, various

alternatives should be taken into account. Perhaps the expensive parts of a polymer can be
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replaced by cheaper chemicals with similar properties. An alternate synthesis path might
reduce production costs significantly. Such considerations are usually not possible for

conservation professionals without an extensive chemistry background.

8.2 Designing a new consolidant

Looking back at previously tested consolidants for archaeological wood, it seems like
problems with poor penetration or plasticisation are primary concerns. Durability of both the
polymer and what remains of the wooden material are also extremely important — as is
maintaining the look of the treated wood. Finally, ensuring the safety of conservators who
have to handle objects during treatment is also vital. The full list of requirements are most
likely so specific that it will not be sufficient to simply use a material designed for a
different purpose. Rather, specific research towards new consolidants should be undertaken.

Since reversibility will most likely not be feasible, re-treatability should be an extremely
important factor when designing a new consolidant. This is best achieved by leaving an
open structure (preferably the structure of the wood itself) to allow for more treatments in
the future. Other pressing requirements are ordered in the list in chapter 5.2 'Ideal
consolidant requirements list' on page 75.

A single material is unlikely to be able to provide both strength, flexibility, suitable
colour and acid-neutralising properties. Thus future consolidants will likely have to be
composite systems where each component fulfils a specific purpose. The oft repeated
example is a polymer with embedded nanoparticles for acid neutralisation. More concrete
ideas are given below in chapter 8.5 'Developing investigated methods' and chapter 8.6

'Future avenues of research'.

8.2.1 PF as a consolidant

Acid-catalysed PFs (novolacs) might be suitable for treating the very acidic alum-treated
wood as sulphuric acid (which might be present in several kinds of archaeological wood)
does not degrade the cured polymer. Besides, PF is one of the few synthetic polymers which

has survived a hundred years worth of real-time ageing in a museum environment.
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Looking at the ideal list of requirements (in chapter 5.2 on page 75), PF easily fulfils the
first half of the requirements — although nr. 4 (whether it warps the wood) must be verified
using larger pieces of wood. Requirements about penetration, shape and durability are
fulfilled. It is especially vital that the phase separation which occurs as novolacs polymerise
seems to make the organic phase adhere to the remaining wooden structure while water
gathers in the lumens and voids of the wood, preserving the wooden structure. Toxicity can
be reduced significantly by creating a pre-polymer (for example a pentamer) which is still
small enough to penetrate into the wood but does not enter the body as readily as phenol
monomers. Colour is not a significant concern for a material which will only be applied to
the inner parts of artefacts. Unfortunately, this method cannot be applied to alum-treated
wood in its current state as the alum crystals are dissolved by the watery formalin used for
polymerisation. Some other treated solvents, like propan-2-ol and acetone, seemed to react
with the prepolymer molecules and chance the properties of the cured polymer.

Even though phenol and formaldehyde are toxic materials and the resulting polymer
quickly obtains a bright red colour upon contact with air, PF treatment may be a way to treat
severely degraded wood and reinforce the centre of powdery fragments. For this reason, it
should be remembered as an emergency solution which might be developed and

implemented for degraded alum-treated wood.

8.2.2 Cellulose whiskers as consolidants

Cellulose is found in wood already and initial tests showed that such 'cellulose whiskers'
(small rods of highly crystalline material which are resistant to acid) adhered to the surface
of archaeological wood. During freeze-drying, the whiskers formed into a porous open
structure. While cellulose fibres may reinforce other polymers or even help fill voids in
archaeological material, the tests showed that it was extremely difficult to keep the whiskers
from conglomerating in the presence of metal ions. Even moderate amounts of surfactant
did not prevent this flocculation from happening over time. Due to the metal content of
archaeological wood, this means that cellulose whiskers will most likely agglomerate before
penetrating into the items to be treated. As such, cellulose whiskers fail the second

requirement on the list (see chapter 5.2 on page 75) due to lack of penetration. It may also
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fail the requirement for interaction with the degraded wood (nr. 5) although this is less clear.
For this reason, the method cannot be recommended in its current form.

Cellulose whiskers still fulfil the other requirements in the list. They may still have a
role in conservation science as gap fillers which leave an open structure for further
impregnation or as reinforcing fibres in another polymer. It is also possible to test a wider
range of surfactants in order to determine if the tendency to flocculate can be overcome. It
should also be tested how said surfactant affects the treated wood to which it will likely
adhere. Ideally, surfactants might be cross-linkable later on to act as a fibre reinforced

polymer attaching directly to the surfaces of the degraded wood.

8.2.3 Chitosan as a consolidant

The ability of chitosan to penetrate test samples along with its ability to chelate metal
ions and natural anti-fungal and -bacterial abilities makes it a promising candidate when
considering new consolidants. Since it can penetrate wood in a 0.1 M acetic acid solution,
the resulting pH value of roughly 5 is compatible with the wood (although the acetic acid
may certainly react with other metallic items on display). A 2%"/, was shown to penetrate
into small pieces of archaeological wood and distribute itself evenly after two weeks of
impregnation at room temperature. When cutting treated and untreated pieces, it was evident
that the chitosan had stabilised the wood, enabling clean cuts with a razor blade rather than
the powdery results obtained from untreated freeze-dried samples. This means that chitosan
fulfils every point on the list of requirements (in chapter 5.2 on page 75) provided that
future test pieces do not warp and costs are comparable to that of PEG because the chitosan
baths are easier to recycle. This makes chitosan extremely suited as a potential consolidant.

In the future, it will be imperative to continue these impregnation and stabilisation tests
on larger pieces of wood to fully evaluate shrinkage and stability of chitosan-treated
archaeological wood before any actual implementation with archaeological material is

attempted.
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8.3 Methods and approaches

Some of the tools used may have special advantages or disadvantages when applied to

the field of conservation. These are discussed in the following.

8.3.1 Imaging

Tomographic imaging is a powerful tool in conservation science. The x-ray synchrotron
investigations carried out at the Paul Scherrer Institute offered views of the 3D structure of
the degraded wood, allowing us to see how consolidants are distributed inside the degraded
wooden matrix (presented in chapter 6.4.1 'Imaging of PF-treated samples' on page 100).
Tomographies offer an advantage over more traditional SEM investigations as the 3D
reconstruction makes it possible to move along pores and vessels in the wood to see if they
are blocked at any point. Blocked vessels would prevent future treatments from penetrating

evenly and most likely from reaching significant portions of the wood.

8.3.2 Phase separation

The phase separation witnessed during novolac polymerisation is extremely interesting
because it seemed in the x-ray tomographies that polymer material was deposited in the
degraded wood, leaving the voids in the wood free of consolidant. This makes such phase
separation an extremely desirable quality — no matter that the actual consolidant is — and
worth incorporating deliberately into other consilidants by modifying their molecular
structure to achieve a suitable balance between hydrophilic solubility and hydrophobic

precipitation.

8.3.3 Freeze drying temperature

The freezing of samples was carried out both in liquid nitrogen (-196°C) and in a normal
freezer (about -18°C). Samples frozen at the lower temperature seemed more prone to
cracking during the freezing process and whatever consolidant was applied often extruded

out of the ends of the treated wood. Especially the latter problem was significantly less
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pronounced when freezing at high temperatures — even if the sample was subsequently
cooled using liquid nitrogen.

In SEM images recorded after freeze-drying, it was very hard to see the consolidant in
the samples frozen at high temperatures. In the samples frozen in liquid nitrogen, the
consolidant formed strands in the lumens of cells. Most likely, slower freezing times means
that consolidant material is pushed into the remaining cell wall material as water in the
samples freezes, filling the lumen with ice. It is possible that this leads to better stabilisation
of the treated items.

As discussed in chapter 4.1.1 'Freeze drying' on page 51, water sorbed in archaeological
finds may become supercooled. If so, the resulting water might boil during the drying
process. This conflicts with the observation above where a mild freezing seems to equate a
better distribution of any consolidants added to the wood. For this reason, it may be ideal to
freeze treated objects slowly at first and then lower the temperature below -38°C before the
drying process commences. Of course, the effect of the growing ice crystals inside the
treated items should also be further investigated, as the slower freezing may result in ice
crystals growing large enough to damage the remaining wooden matrix. Keeping a low
temperature during the drying process might also result in less damage than drying at room

temperature and might improve the quality over the results obtained here.

8.3.4 Dynamic Light Scattering

Using DLS is fairly simple and the method provided a good tool for estimating
flocculation over time. This in turn gives reasonable estimates of shelf- or impregnation
time limits on consolidant dispersions. Even though the theory is developed for spherical
particles, reasonable results were obtained for cellulose rods.

On the other hand, the method should not be used without caution. Single distributions
of uneven particles may be interpreted as multiple distributions and the width of bands were
sometimes absurd (such as a standard deviation of less than 3 nm in a sample of whiskers of
highly variable length). In order to avoid 'over-interpretation' of obtained results, other

methods — such as turbidity measurements — should be considered as well.

181



8.4 Closed avenues of approach

Several ideas were put forth during this project which did not really work as intended.
While it is notoriously difficult to publish so-called 'negative results, it is still important for
the conservation community to know about methods which should most likely not be

pursued.

Carbon nanotubes is one such problematic agent. In theory, the stability of carbon
nanotubes would make them ideal in fusing inside wood. Unfortunately, carbon nanotubes
are extremely expensive, difficult to disperse evenly, and next to impossible to synthesise in
a fully reproducible manner. This means that their actual sizes and shapes will vary widely
within a single batch. Even assuming that it would be possible to disperse the tubes in
ancient wood (which it may not be), the kinds of chemicals required to modify their surfaces
to interact and fuse would most likely destroy the wood (concentrated nitric acid is often
employed for this). Finally the carbon nanotubes are utterly black and would colour treated

wood, giving it an undesirable appearance while on display.

Another problem is furfuryl-related products. While these seem chemically similar to
PF, the resulting polymer reacts even more radically, bringing the water in every test
sample/solution to the boil. The resulting polymer was pitch black and thus unsuitable for
objects which should go on display. Finally, furfuryl alcohol polymer reacted strongly with
lead coupons in the Oddy corrosion test, showing that it would be difficult to keep furfuryl
alcohol-treated items near other finds being displayed in a museum. Thus it might be
possible to add minute amounts of furfuryl alcohol or furfuran without visible negative

effects on treated objects but one would need an exceedingly good reason for doing this.

8.5 Developing investigated methods

While some some useful observations were made from the existing experiments, they
were insufficient to fully evaluate the applicability of the tested consolidants. The following

avenues of research are a logical extension of the performed experiments.
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8.5.1 Tomographic imaging

Given the usefulness of 3D imaging, it would be very interesting to run further samples
to compare some of the biomimetic approaches with the PF-treated samples. Unfortunately,

this has to be part of possible future investigations.

8.5.2 Novolac reinforcement of alum-treated wood

While it should be stressed that using novolacs might not be the most ideal solution for
newly discovered wooden artefacts, it might serve as a "Plan B" for existing fragile items.
The precarious state of the Oseberg find means that it is essential to work out potential
solutions — even if these do not adhere to every ethical ideal, as it would be far worse to lose
the objects forever!

Toxicity can be reduced by pre-polymerising the novolac. Oligomer molecules were
easily dissolved in propan-2-ol and penetrated easily into the wood. With less than 1% free
formaldehyde in the organic phase, the mix should be safe to work with even in a museum.
The challenge is to find a way to further cross-link those oligomers without resorting to
watery formaldehyde solutions once they have been deposited inside alum-treated artefacts.

Oxidation seems to be the most likely explanation for the colour change in finished PF
polymer. If this is so, it can be avoided by storing the treated artefacts in a pure nitrogen
atmosphere. Since this is difficult to implement in museums, it might be more realistic to at
least postpone the reaction by adding an anti-oxidant. Since one of the more well known is
ascorbic acid, it might be possible to have the anti-oxidant act as a catalyst for the novolac
polymerisation as well. As previously stated, colour will not be of significant importance if
the polymer is only used to stabilise the inner regions of existing artefacts.

The phase separation which occurs in watery dispersions may not happen in organic
solvents but if a suitable solvent could be found, phenol-formaldehyde has been shown to
have a suitable affinity for the degraded alum-treated wood from the Oseberg collections to

strengthen the objects.

Future studies on alum-treated wood should focus on phenolic prepolymers and how to
transport them into the artefacts and then cross-link them once they are in place — all

without dissolving the alum. Testing a range of solvents on either the monomer mix or
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partially polymerised oligomer molecules is not particularly difficult — although any
impregnation tests at room temperature and pressure are likely time-consuming. Still, such
experiments could lead to an 'emergency procedure' which could be implemented to
strengthen the alum-treated Oseberg material provided biomimetic alternatives cannot be

easily developed or implemented.

8.5.3 Epoxy novolacs

This study only focused on pure PF but several novolac epoxies are commercially
available. The high aromatic content stabilises the polymers and should also helps stabilise
the ether bonds of epoxies, making them less susceptible to oxidation. As PF oligomers can
be dissolved in 2-propanol, it might be possible to introduce the oligomers in toluene or a
similar solvent which will not dissolve alum. Such a consolidant might be used to grow a
new framework inside the highly fragile alum-treated objects on display. Since only the core
of these objects will be treated, it makes it possible to use consolidants with a red or brown

colour.

8.5.4 Further chitosan developments

Out of the tested materials, chitosan seemed the easiest to implement for future
treatment of waterlogged finds. The relative ease of use, however, makes it all the more
imperative that the material is thoroughly tested before being applied to finds of actual
value.

Since it was difficult to see chitosan in the SEM images of treated samples, it might be
useful to develop a procedure to impregnate and freeze-dry samples in such a way that the
chitosan is more easily seen (even if this might not be the optimal distribution for
preservation — see chapter 8.3.3 'Freeze drying temperature' on page 180).

The fixation rate of chitosan to wood has only previously been performed on fresh wood
and as degradation changes the chemistry of wood, these tests should ideally be run again
on archaeologically degraded wood.

In order to determine proper penetration times, larger pieces of wood should be
impregnated and freeze-dried before the chitosan penetrates all the way through the

material. To gain a better understanding of the breadth of application, wood of multiple
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genera in varying degrees of degradation should be treated with chitosan with different
degrees of depolymerisation. This would provide the best overview of how applicable the
method is to actual larger archaeological finds.

The use of acetic acid should be thoroughly considered. Ideally it should be neutralised
before freeze-drying as it may corrode metal items if released in a museum environment
(ideally, treated objects should not affect metal coupons in an Oddy test — see chapter
6.3.2.4 on page 95 for more information). De-gassing should be measured from treated
objects (both with and without neutralisation) to get a better idea of the effectiveness of such
treatment.

That chitosan is soluble in acids could potentially be a problem since the consolidant
might dissolve or form a swelling gel inside the treated wood. Tests with varying levels of
pH and RH should be performed in order to determine if or to what extent this actually
happens.

The stability of chitosan has not been tested. This means that chitosan could potentially
fail as quickly as existing unsuitable plastic products. Hopefully, the ring structure will
make it more chemically stable than many of these linear molecules but accelerated ageing
tests (preferably in various atmospheres) should be carried in order to evaluate whether
chitosan will last long enough in a museum environment to be implemented as a

consolidant.

8.6 Future avenues of research

Unfortunately, this work has merely managed to skim the surface of a vast ocean of
possibilities, and many interesting experiments could not be performed at all during this
project. The following areas show promise in the treatment of archaeological wood and

should be the base for further investigations.

8.6.1 Nanoparticles

In order to neutralise acid generated inside wooden artefacts, deposits of a slightly
alkaline materials are desirable. Nanoparticles have already been applied to serve this

function (see chapter 4.1.10 'Nanoparticle treatments' on page 68), and should certainly be
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integrated into treatments of archaeological wood in the future. As shown, CaCO; might
grow inside wooden artefacts as the object is exposed to CO, in the air and solutions for this
purpose may be easily made. The problem with the tested method is that the initial Ca(OH),
solution is highly basic and may damage the wood if left for long. Thus short impregnation
times are a requirement. An alternative solution would be to look at chemically similar

nanoparticles in order to test whether a less basic alternative can be found.

It should be tested whether it is possible to freeze-dry the samples immediately after the
impregnation and then expose them to air to initiate the reaction. Since a moist environment
should speed up reaction time, the samples could also be left in solution. How and if such
changes affect the structure and growth of CaCO; (or similar acid-neutralising deposits)

could be important for treated artefacts.

Beyond acid neutralisation, nanoparticles might also be integrated into other
consolidants in order to improve mechanical properties. Silicate particles might be

especially suited for this task due to their durability.

8.6.2 Silicate compounds

As mentioned in chapter 4.1.8 'Silicon oil treatment' on page 66, various silicon oils
have already been tested on archaeological wood. The fact that a consistent conclusion has
not been reached means that the method has some potential but possibly that common
commercially available products do not possess ideal qualities. The high pH values
associated with many silicate compounds make them undesirable for treatment of wood.
While this does not mean useful molecules cannot be designed, it makes it more difficult to
draw upon existing knowlegde. Since it is possible to change the chemical properties of Si
polymers simply by introducing new functional groups, it is also possible to control how
closely the polymers adhere to the remaining cell walls this way. In theory, this allows the
monomer or oligomer molecules to penetrate in a suitable solvent, become sorped to the
wooden matrix, and phase separate so the structure of wood may be retained (as was the
case for the phenol-formaldehyde, see for example Figure 6.14 on page 108). Thus after

freeze-drying the polymers can react with oxygen to cross-link, slowly strengthening the
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artefact while leaving the structure open for future consolidants. In fact, the ability to cross-
link upon contact with oxygen — rather than degrade — is an extremely desirable quality in
consolidants which will most likely be kept in normal atmospheric air.

The anti-swelling effect observed for some silicates mean that they may be valuable in
combination with other consolidants which tend to cause slight swelling. Thus a hybrid

material which is partially silicate might could potentially be a very good consolidant.

8.6.3 Electrical mobility

While the properties of chitosan as a physical stabiliser could be evaluated partially, it
was not possible to determine how efficiently the molecule binds metal ions. Both the
Technical University of Denmark and the Norwegian Forestry and Landscape Intsitutehave
experimented with moving metal ions in electrical fields. This existing technique might be
used to reduce the metal ion content in found or treated wood, reducing the amount of
catalyst available for ongoing oxidation processes. In relation to the experiments performed
in this study, the method might be used to evaluate the effect chitosan has on the mobility on

metal ions inside archaeological wood.

8.6.4 Artificial lignin

Although the PF is a kind of 'optimised lignin structure', it has drawbacks (chief among
them toxic components and brittle products). Other kinds of lignin-like polymers could be
explored and in situ polymerisation could be attempted. This section drawn upon chapter
3.2.4 'Chemical modification and synthesis of lignin', starting on page 24, in order to
speculate on how the knowledge might best be applied to wood conservation.

Concerning DHP, the question is whether it would be advantageous in conservation to
actually produce such a structurally stringent polymer or whether it would be better to
synthesise something closer to actual lignin. A more random structure might allow the
polymer to better interact with the existing degraded wood. Provided the polymer bonds to
the existing degraded wood, or even adheres closely enough to it, it might offer better
support than a chemically better defined but less flexible polymer. Of course, chemical

simplicity most likely means that it is easier to predict the degradation behaviour of said

polymer.
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Since polysaccharides influence the structure of artificial lignin in a way which makes it
resemble natural lignin, the in situ polymerisation of lignin inside archaeological wood
might produce lignin which is more similar to plant lignin than if polymerised on its own.
For this reason, it is essential to test all lignin-like materials on actual archaeological wood

pieces before drawing any final conclusions about their structure and durability.

It is clearly possible to produce a DHP with very lignin-like properties. Costs, however,
are very high. Coniferyl alcohol costs about 2600 NOK/g but might be produced from
vanillin in stead. Since 10 kg of vanillin costs about 3000 NOK, the low yield is not a
financial problem. It is more of a problem that the synthesis requires several steps and
involves other fairly expensive compounds. Both eugenol (about 500 NOK/kg) and vanillin
should be considered as possible raw materials for lignin-like polymers. If not, the cost of
artificial lignins will make it impossible to implement them on a larger scale by museums.

Another financially sound possibility is to look for leftover lignin from the pulp and
paper industry. Such lignin is currently very cheap since it is considered a waste product. It
is usually heavily sulphonated. Since sulphonation improves solubility in water, it may be a
desirable quality for artificial lignins used for conservation — even though sulphur is
generally frowned upon in conservation treatments. The alternative is to use other solvents
than water. Such solvents may require better precautions due to toxicity but they might also
allow a re-treatment of the alum-containing wood. It will be vital to test such syntheses with
non-corroding solvents and in ion rich environments if they are ever to be used on the actual
Osebers finds on display. Such a procedure, if it can be implemented, would produce a very

attractive solution to the current state of the find.

Using 2,6-dimethylphenol to form a lignin-like structure should also be tested. The
reversible treatment is highly desirable but seems to have been carried out under highly
alkaline conditions, making it inapplicable to waterlogged artefacts. When it comes to
commercial feasibility, 2,6-diphenylphenol is much cheaper than actual monolignols —

around 550 NOK per kg.

As can be seen, there are several avenues which might still be applicable to

archaeological wood despite the high cost of many compounds. Another attractive solution
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is to combine said lignin with other polymers to produce a more desirable product. When
using lignin, additional Oddy tests should be run on all products as lignin-containing PF

samples seemed to cause corrosion of lead (see chapter 6.3.2.4 on page 95).

8.6.5 Composite and hybrid materials

Since wood is itself a composite, it makes sense to mimic similar structures. There are
countless ways of going about this and most of them would be a combination of approaches
already mentioned. It might be possible to mix cellulose fibres or nanoparticles into another
consolidant to improve its resistance to acid or mechanical performance.

Chitosan and cellulose whiskers adhere to one another, and films can be made from
alternating layers of these polymers (see chapter 7.3.1.2 'Chitosan-cellulose film' on page
159). This means that the same approach might be used inside archaeological wood. A
highly deacetylated chitosan will have a positive charge and adhere to the existing wooden
matrix. An artefact immersed in chitosan might thus be impregnated and then rinsed to
remove excess chitosan. Following this, the chitosan-coated wood could be immersed in a
bath of cellulose whiskers with enough surfactant to keep them from flocculating. Provided
the surfactant does not prohibit the cellulose from attaching to the chitosan, films could be
formed. Given enough consecutive treatments, the chitosan/cellulose film might be strong
enough to support the wood. If not, another polymer could be grafted onto either layer to
reinforce it — as shown when PF adhered to cellulose whiskers and formed microspheres in
stead of conglomerating at the bottom of the beaker.

Tests carried out during this study showed that it was possible to incorporate lignin into
novolac structures even at room temperature but whether the two polymers bonded

chemically was not tested.

8.7 Closing remarks

This thesis has attempted to sum up the major points of a very cross-disciplinary
collaboration. The extensive background section should be helpful for new people joining

the project — no matter what their background. In addition, the background material, along
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with discussions with the other collaborators, has been the foundation for the list of
requirements for future consolidants.

As for the experiments themselves, they have helped show promising properties of new
consolidants (such as the phase separation during novolac polymerisation) and even
revealed that chitosan shows a lot of promise as a consolidant for archaeological wood. It
has attempted to mix the earliest industrial polymer chemistry (phenol-formaldehyde) with
the materials of the present and future (biomimetics).

The most exciting part of the work, however, may well lie in where it leads. Numerous
roads towards new consolidants have been discovered. Especially composite materials may
solve many of the problems with poor flexibility, durability, or acid-resistance found in
consolidants today. New approaches should hopefully lead to better treatments, allowing us

to preserve our past for future generations to enjoy — and learn from.
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10. Appendices and papers

Paper 1:
Mikkel Christensen, Hartmut Kutzke, Finn Knut Hansen
New materials used for the consolidation of archaeological wood — past attempts, present

struggles, and future requirements
Journal of Cultural Heritage 13(3), p. S183-S190, 2012.

The paper describes most of the material presented in chapter 5 'Future consolidants' and
gives some of the initial tests for cellulose whiskers found in chapters 7.2.3 and 7.2.3.1.

Paper 2:
Mikkel Christensen, Finn Knut Hansen, Hartmut Kutzke
Phenol formaldehyde revisited — novolac resins for the treatment of degraded

archaeological wood
Archaeometry, submitted with revisions

The paper deals with the applications of novolacs in conservation science and sums up most
of chapter 6. It deals specifically with the kinetics experiments summed up in chapter
6.3.2.5.

Paper 3:

Mikkel Christensen, Erik Larney, Hartmut Kutzke, Finn Knut Hansen

Enhanced stability of archaeological wood by treatment with chitosan and modified
chitosan solutions

Journal of the American Institute for Conservation, submitted

The paper describes the impregnation experiments carried out on chitosan (especially
chapter 7.3.2.3).

Appendix A:

Mikkel Christensen
Researcher grand prix — when ph.d. students do edutainment

Background information, thoughts and actual presentations by M. Christensen (with some
Norwegian language input and musical assistance from Christina Kobb).
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Appendix A:

Researcher grand prix

when Ph.D. students do edutainment

Table of Contents
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If there was one thing I never thought I would be doing as part of my Ph.D. it would be
singing in front of (and aided by) 400 people outside of my own field then turn to three
judges who would score the performance. Still, this is how things turned out after I signed
up for, and ended up making it all the way to the national final in, a competition in
edutainment. This appendix explains what the competition was, the material I presented, and
what I had to consider and learn along the way.

Concept

In 2011, the five major university cities in Norway (Oslo, Stavanger, Bergen, Trondheim,
and Tromse) all sent two hopeful candidates to a national final. The goal was to tell people
about your research in an easily understandable way in just four minutes using whatever
props or PowerPoint slides you thought would make it interesting. The name of the game
was 'Forsker grand prix' — or 'researcher grand prix' for a literal translation (It should be
noted that, in Norway, the term 'grand prix' is often associated with the Eurovision Song
Contest or 'Melodi grand prix' — rather than car races — which might help explain the format
and the time limit).

The number of hopeful candidates varied from town to town but in Oslo there was about
65 applicants from which 20 were selected to actually participate. The fields of study were
widely distributed and included literature, law, music, psychology, medical sciences and
geology as well as chemistry. We 20 met for a two-day introductory seminar and then
proceeded to write, help one another, and be coached before the semi-finals.

Appendix A page 1 of 42



Execution

The contest ran for two rounds in Oslo. First were two semi-finals were 10 candidates
participated and only half proceeded to the Oslo final. A single candidate only got to one
semi-final so these effectively reduced the number of participants to 10 for the Oslo final.
The two highest ranking participants from each regional final then went on to the national
finals in Bergen where a grand winner was determined.

The first semi-final (which I did not attend) was on the 21* of May in Oslo and the
second on the 18" of June. The Oslo finals were on the 24" of Setember, the weekend before
the national finals in Bergen on the 2™ of October.

After each presentation the performance was scored. Three judged were present. One with
an acting background, one a journalist, and one with an academic position and education.
Each would score the presentation from one (lowest) to six (best). In addition, audience
members were handed manometers and would also score the presentation. The scores from
the judges were averaged and the scores from the judges and the audience each counted for
50% of the total score. While the scores from the judges were publicly known immediately
following each presentation, the scores from the audience were not revealed. Rather, the
winners of each round were simply declared, maintaining suspense up to the very end.

For the semi-finals, only a four minute presentation was required. After all participants
had finished, the scores were tallied and the five who would go on to the finals were
announced. Fir the Oslo and national finals, an additional presentation was required. At first,
all 10 participants would present four minutes. The best three, based on total scores, were
nominated. Then there was a break during which the judges would nominate a 'wildcard' to
proceed as well. The selected four participants did a six-minute presentation further
elucidating their chosen topic. The final winner(s) were then declared based on total scores
for the second round.

Motivation

When [ initially wanted to sign up, it was partially because such a cross-disciplinary study
as chemistry and Viking Age artefacts more or less begs to be presented in this way. 2011
was the international year of chemistry and I felt that my projects represents an interesting
but very untraditional view of what chemistry might be about. Encouraged by my
collaborators at the museum, I signed up.

Language

Several nationalities participated and while most spoke or understood Norwegian, several
presentations were given in English. Due to these being the only officially allowed
languages, I asked if I should present in English but was told by the local organisers that
Danish was my only acceptable choice. While speaking your native language is usually not
a hindrance, it did mean that I was speaking a 'dialect of Norwegian' which might not be as
easily understood as the regional accents of the other competitors. I decided that I would
speak slowly and extremely clearly (but try not to offend the intelligence of the audience by
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replacing too many Danish words with Norwegian ones). After the first rehearsal, I was told
that it was difficult to understand me initially (the audience had to chance to 'adjust' to my
way of speaking and speaking through a microphone probably only made things worse).
Based on this, I really forced myself to speak clearly despite being nervous and completely
abandoned the idea of doing something akin to a typical modern stand-up routine where
sentences are delivered very quickly (incidentally, the winner of the national finals had
exactly this kind of presentation style). I must have succeeded in keeping my speed down as
I finished all presentations the way I rehearsed them — only a few seconds before my time
was up.

Coaching and planning

While the bulk of the work was solely up to the individual participants, we were coached
both initially and once before each show in Oslo. While it is not possible to note everything
interesting which went on, I will mention a few points I felt were particularly helpful in the
hope that they might also be useful to other researchers speaking to audiences other than
colleagues within their established field.

During the initial meeting we saw several presentations to improve our performance on
stage. What particularly struck me was the following two points (made by

1) Nowadays, nobody truly respect academics simply because they are more learned
than everyone else. If you want to get the attention of the audience, enthusiasm is
really the only way to do it.

2) The classical saying 'just be yourself' is actually not what most people want. They
want to be entertained. If you can project the personality of a brilliant stage
performer, this bit of acting might be far better than what you as a person would
naturally act like on stage.

Another presenter started out by telling seemingly randomly about the male Grévy's zebra
which will guard watering holes, preventing female zebras from drinking from them unless
they mate, then went on to compare this with his own high school life. The point being that
while the zebra may have an extremely simple strategy, it is a strategy which nonetheless
works! He then told us that while we might forget everything else he said, the behaviour of
this particular kind of zebra would stay with us for years and that we, too, should strive to
do something which worked for us — and would be remembered by the audience. At the
time, I doubt many of us understood how important this advice actually is.
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I was coached by Niels
Peter from 'Det Andre
Theateret' in Oslo. He was
also present to help us
with team-building
exercises and a few other
pointers during the initial
meeting. For my first
personal  session,  he
listened to my presentation
and made three excellent
observations:

1) Usually it is true
that you cannot
underestimate your
audience. ~ While
this sounds cruel, it
is often difficult for
people from other
fields to
understand  your
speciality ~ which
you have studied
for years. If anyone
brings their s
children it would .
be nice if they also  [llustration 1: The presenter holding up the replica of the
understand most of animal head post from the Oseberg find (photo by Bjarte
what is going on.  Aarseth).

2) While entering and doing a presentation is fine for a conference, it does not win a
competition like the Researcher grand prix. In order for the audience to vote for you,
you need a suitable introduction which makes them personally involved as well as
make them relate to you as a person as well as a researcher. Starting with a mystery
(such as an incomprehensible slide) might also get people interested.

3) While four minutes seem like no time at all, the audience can only think about things
when you stop talking. Pauses are important.

4) Voice is important. While it is easy to get caught up in your own presentation and
talk about something in a loud, excited voice, it is sometimes more effective to pause
and lower your voice. This creates diversity and helps keep focus on you. The
audience will not be able to listen well to a presenter who sounds excited all the
time.

Since Niels Peter also advised getting props — something physical to hold on to rather
than just the images in the presentation behind me, I went to Bjarte Aarseth who is a
woodcarver working at the Viking Ship Museum. He kindly lent me a replica of one of the
animal head posts from the Oseberg find (which he has carved himself). An image of me
with the ritual head post is shown in Illustration 1.
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Web page introduction text

All participants were put on the internet. The following short text accompanied my
image:

DANISH (English below)
Navn: Mikkel Christensen

Institution: Kjemisk institutt og Kulturhistorisk museum ved Universitetet i Oslo
Tittel: Kemi til kultur — hvordan kan vi bevare vikingeskatte?

Baggrund:

Jeg er fadt i Kebenhavn og har studeret kemi og matematik ved universitetet dér. Mit
speciale var et samarbejde med Nationalmuseets Bevaringsafdeling, hvor jeg forsegte at
forstd, hvordan arkaeologisk trae er pavirket kemisk. En dag fik vi besag en gruppe norske
konserveringsstuderende og museets kemiker, Hartmut. Han opfordrede mig til at sege en
stipendiatstilling i Oslo. Derfor kom jeg hertil.

Forskningsprojektet:

Fokus for mit projekt er at udvikle nye metoder til at bevare arkaeologisk trae, da
eksisterende metoder ofte ikke er langtidsholdbare eller tilstraekkelig effektive. Enkelte — sa
som alunkonserveringen, der er benyttet pA mange af de unikke udskarne objekter fra
Osebergfundet — er direkte skadelige over tid. Derfor er det nedvendigt at udvikle nye
bevaringsmidler, som sikrer, at man kan behandle objekterne igen i fremtiden, hvis de skulle
begynde at blive skrabelige. Strukturen inde i traeet ma derfor vare aben efter behandling.
Pa Kjemisk institutt har jeg set pd traditionelle polymerer (som f.eks. Bakelit), men er
begyndt at benytte 'biomimetik' (materialer inspireret af naturens design) til at forsege at
"forsteerke gammelt tree med nyt tre". I gjeblikket fokuserer jeg pa hejkrystallinske
resistente cellulosefibre til at forstaerke objekterne — alene eller i kombination med andre
stoffer.

Fremtidsdremme:

I fremtiden haber jeg pé at blive del af et storre skandinavisk projekt — gerne med
samarbejde med biomimetriske forskningsinstitutioner i resten af verden — der arbejder med
at analysere fund og udvikle metoder til at bevare dem. I min fritid héber jeg pa at leere nye
absurde sange, diskutere alt fra science fiction til mytologi med nye mennesker og fortsatte
mine miniaturespil og -maling.

ENGLISH
Name: Mikkel Christensen

Institution: Department of Chemistry and Museum of Cultural Heritage at the University
of Oslo

Title: Chemistry for cultural heritage — how can we preserve Viking treasures?

Background:
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I am from Copenhagen and studied chemistry and mathematics at the university there.
My Master project was a collaboration with the National Museum of Denmark. I tried to
look at chemical changes in archaeological wood. One day a group of Norwegian students
of conservation were visiting and their accompanying chemist suggested that I apply for a
Ph.D. position in Oslo. Thus I ended up here.

The research project:

My primary objective is to develop new ways to treat archaeological wood. Most existing
methods are either not stable in the long run or have other detrimental side effects. The latter
is true for the alum-treated objects from the Oseberg mound in Norway, which means that
the most uniquely carved Viking Age artefacts in the world are threatened. Future materials
must have an 'open' structure so it is possible to re-treat objects if the existing consolidants
begin to degrade. At the Department of Chemistry I have tested traditional polymers (such
as Bakelite) but have begun to work with biomimetic materials. Such materials are inspired
by existing designs in nature and I am thus working on 'reinforcing old wood with new
wood'. Right now I am focussing on highly crystalline and resistant cellulose fibres which
can strengthen the wood — either alone or in combination with other materials.

Hopes for the future:

I hope to continue working with the analysis and preservation of archaeological objects
in the future — preferably as part of a Scandinavian research group collaborating with
biomimetic institutions from around the world. In my free time I hope to learn new absurd
songs, discuss everything from science fiction to mythology with the people I meet, and
continue my miniature painting and gaming.

Four-minute presentation

In order to focus on a relatively simple message, I tried to base the first presentation on
the fact that the ageing wood needed reinforcement and that [ was looking at cellulose fibres
in an attempt to 'put fresh wood into the old wood' — even if there might be problems with
using cellulose without additional support. My original concept included a slide to introduce
the concept of biomimetics but I abandoned it after the coaching session for a longer
introduction. Eventually, I ended up with the following presentation for the semi-finals in
Oslo:

I entered stage with a metal suitcase handcuffed to my wrist (I ended up abandoning the
handcuffs later on as they were tricky to remove quickly and difficult to see from the back
of the room). From the suitcase I pulled a 1:1 replica of an animal head post from the
Oseberg find — generously lent to me by its creator, Bjarte Aarseth from the Viking Ship
Museum. I held this in one hand during the introduction.

The presentation won me the first place at the semi-finals in Oslo and I felt that the
audience responded well to it every time it was performed. What follows is each slide as
shown with the original Danish text in italics followed by an English translation (note that
an accurate translation of the Danish text has been attempted. This means the English might
be tweaked and made more eloquent in case the presentation is ever to be given in English).
The text is the one used for the semi-finals with one added sentence about my own work
beginning (as one of the judges felt that was the only weak point of the show). In

Appendix A page 6 of 42



subsequent showings, I left out the warfare references as I thought Norway might want
something more peaceful after the bombing and subsequent shooting on the 22™ of July
2011 (a day I returned from Denmark to Oslo to witness an almost tangible desolation in the
air). Viewed out of context, however, I feel the chemical warfare references are better left in
as they provide a kind of sub-theme within the presentation.
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Kemi til kultur —
hvordan kan vi bevare vikingeskatte?

Mikkel Christensen

Kjemisk institutt &
Kulturhistorisk museum
ved Universitetet i Oslo

Davs! Her kommer en dansker for at redde Norges nationalarv! Her ma kemisk
krigsforelse til. Dette er mine vaben...

Hullo! Here comes a Dane in order to save Norway's national heritage! This requires
chemical warfare. These are my weapons...
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Sum EHT= 300V WD= 5mm  Signal A= InLens Date :12 Oct 2010

Her er den usynlige fjende — som er inde i ham her.
Er det lysende klart for alle? Nej?!? Hmmm... OK, lad mig forklare...

This is the phantom menace — which resides inside this guy.
Is that obvious to everyone? No?!? Hmmm... OK, let me explain...

Appendix A page 9 of 42



Forestil dig at du kommer ind pd museet pa Bygdey. Du maser dig forbi turisterne og ser
Osebergskipet. Du beundrer sollyset, som fremhaver udskeringerne. Det er fint. Ingen
problemer. S& kommer der en mand med skeeg og briller og han tager dig med ud bagved —
pa lager. Her ser du noget denne dyrehovedstolpe, som skal skreemme onde ander, ikke
virker pa:

Imagine that you enter the museum at Bygdoy. You squeeze past the tourists and look at
the Oseberg ship. You admire the sunlight which enhances the carvings. It looks nice. No
problems. Then this bloke comes along with a beard ans glasses and leads you out back —
into the storage. Here you see something which this animal head post, which is supposed to
scare evil spirits, does not work on:

Appendix A page 10 of 42



Pa magasin!

Svovlsyre fra den oprindelige behandling. Kemisk krigsforelse som far treeet til at
spraekke og blive til pulver. De vigtigste dele af vikingeskatten forsvinder!

Her kommer vi til mit projekt, som er at opfinde nye metoder til at forsterke det
skrebelige tree.

Sulphuric acid from the original treatment. Chemical warfare causing the wood to crack

and turn into powder. The most important parts of the Viking treasure are disappearing!
This brings us to my project which is to invent new methods to reinforce the fragile wood.
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Arkaologisk trae

For at forsteerke objekterne, ma man forstd, hvordan arkaologisk trae ser ud. Set fra enden
kan man se store spraeekker, men trae har naturligt sma huller som kan ses i
elektronmikroskop.

In order to strengthen the objects, you must understand what archaeological wood looks
like. If you look at the end of this piece you may see large cracks — but wood also has
minute holes which we can see in an electron microscope.
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Date :12 Oct 2010

Signal A= InLens

Vi kan forsterre det,

We can enhance it -
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men vi skal leengere ind.

but we have to go further in.
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Vi skal helt ind 1 traeet.

We have to all the way into the wood.
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EHT = 3.00 k¥ WD= 35mm Signal A= InLens Date :12 Oct 2010

Sadan! Det er her slaget om fortidens fremtid skal sta.

Like this! This is where the battle for the future of the past will be fought.
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Sum EHT=- 300K¥ WD=- Smm  Signal A=InLens Date :12 Oct 2010

[ frisk trae er de hvide celleveegge ofte tykke, men det stof, der hedder celulose bliver
brudt ned nér treeet ligger 1 jorden — eller stér 1 svovlsyre pd museum. Vi er sikkert mange,
der har cellulose pé, for bomuld bestar af mere end 90% cellulose.

In fresh wood the white cell walls are often thick but the compond called cellulose is

degraded when the wood is in the ground — or is acidic in a museum. Most of us are
probably wearing cellulose as cotton consists of more then 90% cellulose.
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EHT= 3.00kVv WD= S5Smm Signal A= InLens Date :12 Oct 2010

Vi ma have et stof ind for at forsterke cellevaeggene. Men krigen fortsatter.

We have to get some compound in here to reinforce the cell walls. But the war continues.
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i
3pm

EHT = 3.00 k¥ WD= 5mm Signal A= InLens Date :12 Oct 2010

Om 100 ar bliver forsvaret nedbrudt.

In a hundred years this defence will also degrade.
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3um

EHT= 3.00kV WD= 5mm Signal A= InLens Date :12 Oct 2010

Sa behandler man treeet med et nyt lag. Derfor er det vigtigt ikke at fylde hullerne.
Men hvad skal man komme ind i traeet? Det ville jo veare elegant at 'gro nyt tre' inde i
det gamle. Derfor har jeg valgt at se pa...

We then treat the wood with a new layer. This is why it is important not to fill these holes.

What should we put into the wood? It would be very elegant to 'grow fresh wood inside
the old'. This is why I have chosen to look at...
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Cellulosekrystaller

Celulose! Undskyld? [ser og peger pa en i publikum]Jo, det er helt rigtigt at celulosen
nedbrydes i jorden — godt husket.

Cellulose! Pardon? [looks at and points to someone in the audience] Yes, it is true that
cellulose is degraded in soil — well remembered.
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Cellulosekrystaller

Cellulose + syre =

Derfor ma jeg behandle den med svovlsyre, og rense den, sa det kun er den mest
resistente del, der kommer ind i traeet. [ vandig dispersion ser den sddan ud.

This is why I have to treat my cellulose with sulphuric acid and rinse it so only the most
resistant part of the cellulose gets into the wood. In watery dispersion it looks like this.
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Cellulosekrystaller

Cellulose + syre =

Her har jeg smé stykker arkaologisk tree, som cellulosen treenger ind i.

What we see here are bits of archaeological wood which the cellulose seeps into.
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3

30um EHT= 300k WD= 4mm  Signal A= SE2 Date :29 Nov 2010

I elektronmikroskop ser man, at cellulosen har lagt sig inde i porerne. I fremtiden
fortseetter forskningsprocessen. Jeg ma optimere fordeling og styrke s vi kan vinde krigen
og bevare de tre typer objekter pa museet:

In an electron microscope we see that the cellulose has adhered to the pores. In the future
the research continues. I have to optimise distribution and strength so we may win the war
and preserve the three kinds of objects which are at the museum.
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Dem der nedbrydes af syre fra den oprindelige behandling, dem der aldrig er forsterket
og derfor er skrebelige, og dem der klarer sig forbleffende godt bare med lak. Det var alt fra
mig. Genstandende far de sidste ord.

Whose which are being degraded by acid from the original treatment, whose which those

which have never been reinforced, and those which do surprisingly well with simple
lacquering. That's all I had to say. I leave the final words to the objects.
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Jeg foler meg
tom innvendig!

De braker...
Nel, jeg tror
jeg flytter!

The sledge says, "Help me, I am sour!", the animal head post "I feel empty inside,"” and
the Oseberg ship thinks "They're complaining... Nah, I think I'll move."
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Six-minute presentation

I intended to use my longer presentation to explain the concept of biomimetics and show
some of the trials which went before. As I considered how time-consuming it had been to
create a four-minute presentation, however, a series of events led me to do something
untraditional.

When [ originally told Hartmut Kutzke about the contest, he asked if anyone had ever
done something completely unexpected — such as singing their project as an opera. While I
did not immediately think I would want to do this, the thought stuck in the back of my mind.
At the party after the first semi-final, I ended up talking to Christina Kobb who asked me
what the notes about 'absurd songs' in my entry on the web page meant. She then offered to
play for me if I needed musical assistance. This really got me thinking. Partially because I
thought it would be very untraditional and interesting to sing — partially because I realised
that with audience participation all the text would have to be on the slides and I would not
have to spend time remembering it all. This got me to start writing a song and, remembering
that it is nice to involve your audience, I felt I had to write it in Norwegian (as, again,
Danish sometimes has different stresses, word order, or even number of syllables). Once
again, Christina was kind enough to step in and help me get the text more intelligible before
the performance. Susan Braovac suggested the well known tune "Musevisa" which it was a
tradition to sing at the museum.

During my second coaching session, we once again talked about introductions and I
mentioned that I believed the tune was originally Danish. I was encouraged to use this angle
and thus discovered (in http://dansedatabase.dk/nyt fra rodder/rod08.htm) that the song
was not only Danish but had been written at the time the Oseberg mound was excavated.
This fortuitous coincidence made into the presentation.

I got to test this song the night before the Oslo finals at the Techincal museum of Oslo.
There were only relatively few people present (perhaps around 20) but I was much relieved
that they sang along and seemed to have a good time. I was still surprised by the
wholehearted participation from the larger audience next night. The audience sang so loudly
that I could barely hear myself in spite of the loudspeakers and the feeling of being 'carried'
through your presentation by so many people helping you is incredible. Despite the less
enthusiastic score of the science judge, the audience sent me to the national finals. Although
I did not proceed to the second round in Bergen, I still felt that the song had served its
purpose — and am glad that I got to try something a bit untraditional.

The presentation is given below with the original Norwegian/Danish text and an English
translation. The lyrics are translated for content rather than in any artistic way.
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Kemi til kultur —
hvordan kan vi bevare vikingeskatte?

Processen at udvikle nye metoder
til at bevare gammelt trae

Mikkel Christensen

Kjemisk institutt &
Kulturhistorisk museum
ved Universitetet i Oslo

Hei.
Jeg har allerede snakket om, hvor mit projekt er nu — altsa om at fa cellulose ind i traeet —
men ikke processen bag forskningen.

Efter et par méaneder i Oslo var jeg til julebord pa museet. Taenk, der synger vi pludselig
en gammel dansk melodi. Jeg kendte den som "Moar, jeg skal tisse", heroppe hedder den
"Musevisa". Det oprindelige navn er "Svensk Scottish" og den er i gvrigt skrevet samme ar
som Oseberg blev udgravet. Det morsomme er, at nordmendende har givet melodien nyt
indhold s4 den kan overleve lengere. Det er faktisk det samme som jeg gor med det norske
vikingetre.

Hi.

I've already talked about where my project is now — about getting cellulose into the wood
that is — but not about the process behind the research.

After a couple of months in Oslo I joined the Christmas party at the museum. Well,
suddenly we are singing an old Danish tune. I knew it as "Mummy, I have to pee", up here is
is called "Musevisa" [mouse ballad]. The original name is "Swedish Scottish" and it is, by
the way, written in the same year as Oseberg was excavated. The funny thing is that the
Norwegians have given this tune new contents in order to make it last longer. This is
actually the same thing I am doing to the Norwegian Viking wood.
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Fellessang:

Processen at udvikle nye metoder
til at bevare gammelt trae

Melodi: Musevisa

Sa synger vi allesammen — pa "Musevisa' (eller var det musévisa?)

Then we'll all sing — on "Musevisa" [mouse ballad] (or was it '"Museum ballad?)
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I nittenhundrefire ble Oseberg gravd opp

sa treet matte sikres men da ble det pluts'lig stopp.
For det sto lakk og olje for konservering klart

men det gjor treet markt og tungt og synes rart.
Alun! Alun! Smelt det i et bad

for da blir treet lyst og lett og vi kan vaere glad.
Sett det sammen - det ma sitte godt

med spiker og med kitt da blir det helt utrolig flott!

Vent, stop...

In nineteen hundred and four Oseberg was excavated

and the wood had to be protected but then things came to a stop.
Lacquer and oil were standing ready for the conservation

but these make the wood dark and heavy and seem strange.
Alum! Alum! Melt it in a bath

when the wood will be bright and light and we can be pleased.
Fit it together — it has to sit well

with nails and with plaster it will look incredibly well!

Wait, stop...
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I nittenhundrefire ble Oseberg gravd opp

Se pa Rontgenbilledet hvorden de oprindelige dele af sleeden i virkeligheden er sat
sammen. Det gor ikke konserveringen lettere...

Look at the x-ray image how the original parts of the sledge are actually put together.
This doesn't make conservation any easier...
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Hva ingen kunne spa om, at pa etthundre ar

fikk svovelsyre langsomt etset vikingskatten var.
Men na finnes det plastikk og mat'rialkjemi

med disse blir vi vel vare problemer fri?

Museet ma - ansvaret er tungt -

pa tross av syre/sprekker holde treet evig ungt.
Hent han dansken - han far tenke na

en helt ny tilgang til problemet han ma finne pa.

What no one could predict was that in a hundred years
sulphuric acid slowly corroded our Viking treasure away.
But now we have plastics and materials chemistry

with these we are quite sure to get rid of our problems?
The museum must — the responsibility weights heavily -
in spite of acid/cracks keep the wood forever young.
Bring that Dane — he has to think now

an entirely new approach to the problem is his to find.
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Se, verdens eldste plastikk den heter Bakelitt
(ble patentert i nitten-sju) pa den vi tar en titt.
Den etses ei av syre, nei den er like hel

og kjemisk ligner den pa treets styrke-del.
Bakelitt er fenol-formaldehyd

(kan begge veere giftige og det er ingen fryd).
Kan vi fa det inn i tre med flid?

See, the world's oldent plastic is called Bakelite

(was patented in nineteen seven) at this we'll have a look.
1t is not corroded by acid, no it is just as whole

and chemically it looks like the strength-part of the wood.
Bakelite is phenol-formaldehyde

(can both be poisonous which is no joy).

Can we get it into wood with perseverance?

And will it support and protect the wood over time?
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Se, verdens eldste plastikk den heter Bakelitt
(ble patentert i nitten-sju) pa den vi tar en titt.

T OH
+ H\c=o =
). |-|/
Fenol + formaldehyd
OH

Stop. Kemikeren vil gerne tilfoje et par ord. Her er fenol og formaldehyd og de er giftige,
men de kommer langt ind i treeet og reagerer forst til sma molekyler og sa...

Stop. The chemist would like to add a few words. This is phenol and formaldehyde and
they are poisonous — but they get far into the wood and react, at first to small molecules and
then...
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o
og kjemisk HaG
Bakelitt er
(kan begge
= o - /%OH CH;
— 2 @_
: _ HO
H-C
. \CH
...enormt store molekyler, der ikke lengere kan optages i kroppen, og sa er de ikke giftige
mere. Men virker det pa treeet? Naste vers...

4 2

CH2

rFenol + Tormaiaenya

...enormously large molecules which can no longer be adsorbed by the body — meaning
that they are no longer poisonous. But do they work on the wood? Next verse...
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Med Bakelitt ble vikingtre nennsomt impregnert
og studietur for 3 til Sveits ble hastig arrangert.
Der skannet vi na pregver (med ny tomografi)
som Rgntgenbilder lot oss se strukturen i.

—

With Bakelite Viking wood was carefully impregnated

and a study trip for three to Switzerland was hastily arranged.
There we scanned samples (using new tomography)

which x-ray images let us see the structure of.

Image text: "Big machines" (left) "Smaller samples!" (vight).

Appendix A page 36 of 42



Forste prgven den ble veldig flott

for stoffet har fordelt seg og det statter treet godt.
Andre prgven den ble ikke bra

da alunet ble opplgst ble den faktisk mislykka!

The first sample it was very good looking
because the compound was distributed and supports the wood well.

The other sample it was not good
as the alum was dissolved it actually failed!
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et godt.

kka!

Undskyld, jeg afbryder igen men detteher er virkelig speendende. Pa forste billede kan
man se at strukturen af tree er bevaret. Bakelitten har bare lagt et tyndt lag ud over den. Det
er hvad vi gnsker. De hvide omrader er alun, som er smeltet inde i treeet.

I'm sorry to interrupt once again but this is really interesting. In the first image you see
that the structure of the wood has been preserved. The Bakelite has just distributed itself as
a thin layer across it. This is what we want. The white areas are alum which has melted
inside the wood.
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Farste prave,
for stoffet h_

Problemet ser man her, pa den anden preve. Traeet har veret sé edelagt, at kun
alunkrystallerne holdt det sammen. Nar vi kommer vand pa smelter treeet, og der er ingen
struktur. Hvad ger man s&? Synger naste vers.

Here, in the second sample, you see the problem. The wood has been so degraded that

only the alum crystals kept it together. As we put water in the wood, it melts and there is no
structure left. What does one do then? Sings the next verse.
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Sa derfor vi far tenke en helt ny strategi:

Et stoff med styrke og struktur men uten gifter i.
Kanskje far vi lure pa ,biomimetikk*

Hvor man blir inspirert av all naturens mekanikk.
Hund i skogen renset pelsen sin

derfor dens eier tenkte ,borrelas-ideen er min!“
Bater far delfiners dynamikk.

Fra kattegyets skinn en vanlig lys-refleks vi fikk.

Naturlig
borre

Det er biomiketik.

So we then have to think of an entirely new strategy:

A compound with strength and structure but without poison in it.
We could possibly wonder about "biomimetics”

where you become inspired by all the machanics of nature.

Dog in forest rinsed his fur

thus its owner thought, "the Velcro idea is mine!”

Boats get the dynamics of dolphins.

From the shine of the cat's eye a normal reflex we got.

Image text: "Natural burr" (far left) "Artificial Velcro" (middle left).

This is biomimetics.
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Hvilket stoff kan velges, som kompatibelt er?
Faktisk cellulose (det finns allerede der).

Ellers kitosan som er ,,optimert” kitin

med skall fra krabber/reker blir vel skatten fin?
Heisann og hoppsann og fallerallera

en handsrekning fra mor natur ma vikingtreet ha!
Heisann og hoppsann og fallerallera

dytt nytt tre inn i gammelt tre da blir det kanskje bra!

Tak til 'koret', tusind tak til musikken — tak fra mig!

What compound can be chosen which is compatible?

Actually cellulose (it is already there).

Or chitosan which is 'optimised’ chitin

using the shell of crabs/shrimp will likely turn the treature pretty?
Heisann and hopsann and fallerrallera

lend a hand from mother nature the Viking wood must!

Heisann and hopsann and fallerallera

push new wood into old wood then all might end well!

Thank you to the 'chorus’, thanks a lot to the music — that's all from me!
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Gained experience and closing remarks

One of the nicest thing about the competition was, ironically enough, that it did not really
feel like a competition. All of the participants from Oslo were friendly and we helped one
another during the rehearsals. Suggestions and comments like "Don't stand there — you will
block the presentation", "Why did you remove that comment from last time? Put it back
in!", or "Wait, let me run to the back and tell you if I can see that clearly" were common. It
eventually felt more like we were a group of performers putting on one big common show
than a group of rivals who would soon be competing. As mentioned above, Christina even
went so far as to play for me during the six-minute presentation and Marianne helped me
transport my props to and from the national final. While the show might have been a good
learning experience no matter what the interaction between us, I feel that it would have been
much less enjoyable without this mentality pervading the set.

I think most of were surprised how little the judges understood or remembered from our
presentations. It was often plain that they were criticising things we had tried to explain or
asked for more detail about something we already covered. While it is easy to dismiss the
judges as incompetent, you really have to ask yourself whether you are the one who could
have explained things better. This again makes you wonder what good all the fancy research
is if it is to hard to comprehend as to be inaccessible for anyone outside of your own field. Is
it better to keep research 'correct' and 'pure' or is it more valuable to take a few
understandable points and use these to make others interested in your field?

The untraditional approach of writing a song seemed to go down fairly well. Not only did
it engage the audience but it also made my presentation stand out. In a competitive
environment it is important to be noticed — and untraditional approaches might not only
benefit your score but hopefully also affect how much of the idea behind the show the
audience remembers later on. I think it is safe to say that all of the participants will have a
different view of when something is science and when it is merely entertainment.

Of course, all participants had to conquer their fears. This, perhaps is one of the greatest
boons reaped. Conferences will not seem scary when you have had to perform and be
judged publicly in a competition. All in all, participating gave me some nice experiences
and hopefully some insights which will be useful in the future.
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