
Dept. of Math. University of Oslo
Statistical Research Report No 1
ISSN 0806–3842 October 2013

Particle move-reweighting strategies for online inference

R. Marques1, G. Storvik1

Abstract

Sequential Monte Carlo (SMC) methods are one of the most important computational tool to deal
with intractability in complex statistical models. In those techniques, the distribution of interest
is approximated by a set of properly weighted samples. One problem with SMC algorithms is
the weights degeneracy: either the weights have huge variability or high correlations between the
particles. Updating the particles by a few MCMC steps has been suggested as an improvement in
this case (the resample-move algorithm). The general setup is to first resample the particles in such
a way that all particles are given equal weight. Thereafter the MCMC steps are applied in order to
make the identical samples diverge. In this work we consider an alternative strategy where the order
of MCMC updates and the resampling steps are switched, i.e. MCMC updates are performed first.
The main advantage with such an approach is that by performing MCMC updates, the weights can
be updated simultaneously, making them less variable. We illustrate through simulation studies
how our methodology can give improved results for online Bayesian inference in general state space
models.

Keywords: Approximate inference; Particle filter; MCMC moves; reweighting schemes; Sequential
Monte Carlo methods; State space models

Iemail of correspondence: geirs@math.uio.no
1University of Oslo and Statistics for Innovation Centre, Oslo, Norway.

Preprint submitted to Elsevier October 31, 2013

1. Introduction

In many real-world applications, observations arrive sequentially in time, in which cases state
space models provide flexible representations for stochastic dynamical systems. Such models are
applied in a wide range of fields, e.g. financial econometrics, ecology, geo(neuro)-science, engineering
or machine learning [12, 21, 23].

Sequential Monte Carlo (SMC) methods are an efficient class of algorithms to sample from
probability distributions of interest. Their respective algorithms –called particle filters (PF)– are
exhaustively used to carry out inference of intractable state space models. By employing sequential
Monte Carlo (SMC) methods, the target distribution is approximated by a set of weighted samples,
generated sequentially from some proposal distributions [see 12, 3, 16, 14, and the references therein].

A well-known problem in SMC methods is weight degeneracy, also called sample impoverish-
ment. This problem is related to the increasing variance of the particle weights over time [13, 12].
Therefore, after a few iterations there are only a small number of particles left which adequately
characterize the target distribution. Consequently, the Monte Carlo estimators will gradually loose
their good statistical proprieties.

Since the seminal paper on SMC methods by [20], the introduction of the resample stage poses an
inexpensive alternative to avoid the collapse of particle filter algorithms due to weight degeneracy.
The idea of the resample step consists in sampling the particles randomly by duplicating the ones
with high weights and removing those with low weights. Afterwards, the weights take equal values.
Under mixing conditions, SMC methods with resampling provide estimates of marginal distributions
whose variance is uniformly bounded with time [9, 7, 14]. However, the successive use of the resample
procedure can affect significantly the distinct number of particles, and consequently SMC methods
tend to loose sample diversity when considering simultaneous distributions or variables with slow
mixing.

In order to rejuvenate the particles after the resample step, MCMC kernels were successfully
introduced to build proposal distributions in particle filter algorithms [19]. Basically, after the
resample stage, the addition of MCMC moves allows the particles to move through the sample
space and rejuvenate. Gilks and Berzuini [19] and Chopin [7] provide a formal justification for such
schemes, including theoretical results focused on consistency and asymptotic normality. Later, [11]
and [26] present alternative strategies to reduce weight degeneracy in particle filter algorithms.
Other approaches, such as dynamic parameter estimation using sufficient statistics [15, 41] can also
be considered as particle filters with MCMC moves. A restriction for these approaches is however
that resampling has to be made before a move, restricting the possibility for adaptive resampling.

In this paper, we propose a flexible strategy that allows for MCMC moves without the need of
a preliminary resampling step. Following the MCMC moves, we update the particle weight taking
into account the diversification step and that MCMC moves give particles closer to the target
distribution. The effect of this is that resample stages can be delayed. With this strategy, we
are able to diversify the particles via an MCMC move and, at the same time, reduce the weight
degeneracy. The validity of this approach is based on the commonly used trick of working on an
artificial extended distribution having the target distribution as marginal combined with the use of
backwards kernels, introduced in [10] for static problems and considered in more general settings
in [42]. Due to the flexibility in choices of backwards kernels, many updating schemes for particle
weights can be considered. We will discuss different alternatives.

This paper is organized as follows. Section 2 gives a brief overview of the Sequential Monte Carlo
methods and the particle filter algorithm with the MCMC move step. Section 3 presents the move-
reweighting approach as an efficient way to combine diversification with updating of the weights.

2

Figure 1: State-space model described by graphical structure.

Section 4 demonstrates two applications of our methodology for sequential Bayesian inference: a
non-Gaussian likelihood model with time varying parameter, and a non-linear Gaussian stochastic
system. Finally, section 5 closes with a discussion.

2. Sequential Inference in State Space Models

2.1. Preliminaries: notation and model description

Let {xt}t∈N and {yt}t∈N be discrete-time stochastic processes in which the latent process xt is
indirectly observed through the measurement data yt. As traditionally used in the literature, the
generic state-space models are expressed in terms of a dynamic process model in combination with
an observation model:

x0 ∼π(x0); Initial Distribution

xt|x1:t−1 ∼π(xt|xt−1); Prior Latent Model

yt|y1:t−1, x1:t ∼π(yt|xt), Observation Model

where here and in the following π(·) is used generically for distributions based on the assumed state-
space model with · specifying which variables that are in question. In general the distributions will
depend on some parameters θ. These will be assumed parameters known and are therefore not
included in the notation. We will also use the notation x1:t = (x1,x2, ...,xt) ∈ Xt and y1:t =
(y1,y2, ...,yt) ∈ Yt to denote the first t individuals of the sequence of latent and observed variables.
For simplicity of notation we assume each xt have a common sample space X ⊂ Rpx and we denote
Xt =

∏t
k=1 X and similarly Yt =

∏t
k=1 Y for Y ⊂ Rpy . Figure 1 describes the dynamic hierarchical

structure between the hidden Markov process and the observations using a graphical configuration.

Given the data y1:t up to time t, inference focuses on the posterior distribution

p(x1:t) ≡ π(x1:t|y1:t) ∝ π(x1)π(y1|x1)

t∏
k=2

π(xk|xk−1)π(yk|xk). (1)

When p(x1:t) is intractable, Monte Carlo sampling methods can be applied to carry out an ap-
proximate inference. Algorithms based on MCMC schemes are traditional stochastic techniques to

3

sample from high-dimensional distributions. In many cases, including sequential inference, these
methods do not perform well when strong temporal correlations are present [33, 6, 10]. Within
statistical Monte Carlo techniques, SMC methods (and also combined with MCMC sampling) have
become a powerful tool to perform static and dynamic inference in complex or high-dimension
models [see 16, 1, 8, and the references therein].

2.2. Sequential Monte Carlo methods

SMC methods are a broad class of Monte Carlo integration methods based on importance
sampling techniques which decompose the target distribution in a sequence of low dimensional
distributions. For each time t, SMC methods represent the posterior π(x1:t|y1:t) in (1) using a
finite collection of properly weighted samples {(xit, wit), i = 1, . . . , N} with N � 1, according to the
following definition [30, 32]:

Definition 1. A set of weighted random samples {(xi, wi), i = 1, . . . , N} is called proper (or prop-
erly weighted) with respect to p if, for any square integrable function g,

Eq[g(xi)wi] = cEp[g(xi)], for i = 1, . . . , N,

for some normalizing constant c common to all the N samples generated form q.

The population of samples are called particles, and in the case where x = x1:t they are typically
generated sequentially from some low-dimensional conditional distributions

q(x1:t) = q(x1)

t∏
k=2

q(xk|xk−1).

where q(·) is generically used for proposal distributions. Assuming that q(x1:t) > 0 for all x1:t with
p(x1:t) > 0, then based on sequential importance sampling ideas, particle weights are defined as

wit ≡ wt(xi1:t) =
p(xi1:t)

q(xi1:t)
∝ wit−1

π(xit|xit−1)π(yt|xit)
q(xit|xit−1)

allowing for recursive computation. Estimation is usually based on normalized weights, making
the proportionality constant unnecessary to compute. For time t > 1 when new data arrives, the
particle filter algorithm provides an online estimate of Ep[g(x1:t)|y1:t] through

N∑
i=1

witg(xi1:t)/

N∑
i=1

wit

which is consistent with probability one [12, 7]. In addition, particle filters provide, as a natural
byproduct, an unbiased estimator for the marginal likelihood [9, 34]. Such likelihood estimates have
been used in different contexts, with emphasis on parameter learning, model selection and building
particle proposals for sequential inference [see e.g. 34, 1, 37, 8, 43, 39].

Taking the prior π(xt|xt−1) as the proposal distribution (the Bootstrap filter by [20]), the
incremental weights boils down to evaluating the likelihood for the observation. Despite that the
Bootstrap filter is easy to implement, better proposals can give substantial improvements in the
efficiency of SMC methods. [13] show that the optimal proposal is the conditional distribution given

4

Algorithm 1 Ordinary SMC for Filtering

At t = 1
Sample xi1 ∼ q(xi1|y1) for i = 1, ..., N .
Compute and normalize the weights

wi1 = π(xi1)π(y1|xi1)/q(xi1|y1).

for t = 2, 3, ... do
Propagate xit ∼ q(xit|xit−1,yt) for i = 1, ..., N .
Compute and normalize the weights

wit = wit−1
π(xit|xit−1)π(yt|xit)
q(xit|xit−1,yt)

.

if Effective sample size is small then
Resample to obtain N new equally-weighted particles.

end for

the previous state and the current observation, i.e., qopt(xt|xt−1,yt) = π(xt|xt−1,yt). However, the
optimal choice is not available in many applications, making it necessary with some approximation
(eg. deterministic sampling methods or local linearisation proposals). Alternative choices of q are
presented in [5] and [35].

An efficient algorithm should be able to produce particle weights with low variance. Even though
the use of clever proposals close to qopt tends to decrease the variance, the weight degeneracy
problem will be unavoidable. The next proposition [see proof in 28] deals with how dimension
increase influences the variance of the weights.

Proposition 1. Let π(v1,v2) and q(v1,v2) be two probability densities, where the support of π is
a subset of the support of q. Then,

Varq

[
π(v1,v2)

q(v1,v2)

]
≥ Varq1

[
π1(v1)

q1(v1)

]
where π1(v1) =

∫
π(v1,v2)dv2 and q1(v1) =

∫
q(v1,v2)dv2 are marginal densities.

A special case is to define v1 = x1:t−1 and v2 = xt resulting in that

Var[wt(x1:t)] ≥ Var[wt−1(x1:t−1)]

for all t ≥ 2. In practice, as t increases, only a few particles (in the limit, only one) dominate the
entire sample implying an extremely poor representation of the target distribution.

In order to attenuate the degeneracy problem, [20] suggested to add resampling steps, commonly
named sequential importance resampling (SIR). Resampling is not needed at all time steps, only
when samples are too degenerate. The need for resampling may be evaluated by computing the
quality of samples using the effective sample size ([24]; [29]; [4]).

Algorithm 1 provides a generic version of the ordinary SMC for filtering, assuming the static
parameters are known.

5

2.3. SMC with MCMC moves

Although the SIR algorithm is able to control the variance of weights and is easy to implement,
successive use of the resampling stage tends to impoverish the sample by reducing the distinct
number of particles. In particular, when the target distribution differs significantly each time, the
variance of the Monte Carlo estimator may be affected negatively ([19]; [2]). Consequently, the
efficiency of the SMC algorithms may be poor, even when clever proposals are considered.

[19] proposed to add MCMC moves after the resampling step to reduce the sample impoverish-
ment. The approach is called the resample-move (RM) algorithm, and the main idea is to create a
greater diversity in the sample by rejuvenating the particles via a combination of sequential impor-
tance resampling and MCMC sampling steps. In this approach, a Markov kernel K(x?1:t|x1:t) with
p(x1:t) as the stationary distribution is designed to draw samples after the resample steps.

Different Markovian kernels can be used at each time-step. Some features of the kernel K are
explored in [19]. In particular, the Markov kernel does not need to be ergodic since the particles
target the correct distribution before the move step. For the same reason, no burn-in is required,
and the number of Markov chain iterations for each particle are taken as an option. In case many
Markov chain updates are required, the use of parallel programming can compensate for the extra
computational complexity due to MCMC moves. A simple version of the RM algorithm at time t
is as follows:

(a) Run the particle filter with resampling to obtain N new equally weighted particles;

(b) Move x?1:t according to MCMC kernel K invariant with respect to p(x1:t);

(c) Approximate Ep[g(x1:t)|y1:t] by N−1
∑N
i g(x?i1:t).

In any version of particle filter algorithms, the RM approach can be easily implemented with
a computational cost of O(tNM) at each time step, where M is the number of MCMC steps.
A possibility is to choose s such that at each time step we only move xt−s+1:t in which case
the computational cost reduces to O(sNM) [see, for instance 36]. Further, sophisticated MCMC
sampling algorithms [38, 25] can be applied for increasing the statistical performance.

3. Reweighting schemes

The current section introduces our approach to reweight the particles after a move. In the
suggested methodology, we perform the move before (or without) a resample stage, followed by a
weight updating. Many types of updates can give properly weighted samples, and by clever choices
of such updates we can obtain less variability of the particle weights. This can subsequently lead
to delay of resampling and better performance of the full algorithm.

3.1. Move by MCMC kernels

Assume x1:t ∼ q(x1:t) is followed by a move x?1:t ∼ K(x?1:t|x1:t) where K is invariant wrt
p(x1:t). As suggested by [10] and [42] define an extended target distribution as p(x?1:t,x1:t) ≡
p(x?1:t)h(x1:t|x?1:t), where h(x1:t|x?1:t) is an artificial density/backward kernel that integrates to one
in Xt. Following ordinary importance sample theory working on the enlarged space, we obtain the
following result:

6

Proposition 2. Let {(xi1:t, wit), i = 1, . . . , N} be a properly weighted sample with respect to p(x1:t)
where the particles are generated from q(x1:t). Assume for each i we make a move xi1:t → x?i1:t by
a transition kernel K that is invariant wrt p(x1:t) and update the weights by

w?it ≡ w?t (xi1:t; x
?i
1:t) =wit × rit (2)

where

rit ≡ rt(xi1:t; x?i1:t) =
p(x?i1:t)h(xi1:t|x?i1:t)
p(xi1:t)K(x?i1:t|xi1:t)

,

and h(x1:t|x?1:t) is a density such that {(x?1:t,x1:t) : p(x?1:t)ht(x1:t|x?1:t) > 0} is a subset of {(x?1:t,x1:t) :
q(x?1:t)K(x1:t|x?1:t) > 0}. Then

{(x?i1:t, w?it), i = 1, . . . , N} is proper with respect to p(x1:t).

Also, define q?(x?1:t) =
∫
Xt
q(x1:t)K(x?1:t|x1:t)dx1:t. Then

E[w?t (x1:t; x
?
1:t)|x?1:t] =

p(x?1:t)

q?(x?1:t)
≡ wopt

t (x?1:t),

and

Var[w?t (x1:t; x
?
1:t)] >Var[w

opt
t (x?1:t)].

For a proof, see appendix Appendix A.
Proposition 2 gives us some useful elements. First, by adding the MCMC move and updating

the particle weights, we have that, for any density h, w?t is a proper weight for x?1:t with respect to
p(x1:t). Even though we are working with an extended space, the MCMC move does not modify
the unbiased property. The main point of this sampling scheme is to highlight the multiple choices
of proper weight functions w?t (x1:t; x

?
1:t) for any given kernel K in that there is a great flexibility in

the choice of h. In subsection 3.2, we describe some of these possibilities. Note that proposition 1
can give the impression that by extending set of variables from x1:t to (x1:t,x

?
1:t) the variance of

the weights will increase. However, within this framework x1:t is no longer the variable of interest
and only service as an auxiliary variable for generation of x?1:t. An important point is then that
the marginal target distribution for x1:t can deviate from p(x1:t) and thereby Proposition 1 is no
longer relevant.

Second, in case we wish to compute the conditional expectation of g(x1:t), this quantity can be
consistently estimated by

N∑
i=1

w?it g(x?i1:t)/

N∑
i=1

w?it . (3)

Finally, despite in most of the cases we are not able to evaluate q?, the updated particle weights
are unbiased estimates of the optimal weights wopt

t .
The stochastic term rt can be seen as a dynamic correction term that will tend to rebalance

the ordinary particle weights after an MCMC move. By updating the ordinary particle weights, we

7

Algorithm 2 Move-reweighting for Filtering with MCMC kernels

At time t do
Propagations as in the ordinary SMC
Move to x?it via a p-invariant MCMC kernel, K(x?it |xit).
Update and normalize the weights w?it ∝ wit × rit where

rit =
p(x?i1:t)h(xi1:t|x?i1:t)
p(xi1:t)K(x?i1:t|xi1:t)

,

if Effective sample size is small then
Resample to obtain N new equally-weighted particles.

introduce an additional chance to reduce the cases where the distribution of the weights is extremely
skewed. Since via an MCMC move, x?1:t is closer to the target distribution than x1:t, the updated
weights should also be closer to 1/N . For clever choices of h we can obtain that Var[w?t] < Var[wt]
allowing us to reduce the weight degeneracy.

The move-reweighing scheme is a simple combination of SMC and MCMC sampling where
computational complexity is comparable to the RM algorithm. Similar to the RM algorithm,
parallel sampling may be applied to increase the computational performance. Since x1:t are auxiliary
particles, we only need to store x?1:N1:t and their respective proper weights to provide consistent
estimation. As for the RM algorithm, any MCMC schemes can be applied. For example, see
the appendix in [42] for details on how to update the weights when proposals are generated via
Metropolis-Hastings moves. Note that, after updating the particle weights the degeneracy problem
may still be present, and resample stages may be required in most practical situations. By clever
choices of move steps and weight updating schemes, the degeneracy problem can however be reduces,
delaying the need for resampling.

Algorithm 2 describes our algorithm in this case. Similar to the RM algorithm, moves will
typically only involve the last s components of x1:t in which case the weight updating reduces to

rit =
p(x?it−s+1:t|xi1:t−s)h(xit−s+1:t|xi1:t−s,x?it−s+1:t)

p(xit−s+1:t|xi1:t−s)K(x?it−s+1:t|xi1:t)

in which case the computational complexity at each iteration reduces to O(sNM).

3.2. Choices of the h functions

The choices of the conditional densities h should, in general, be balanced in two strategies: (i)
to control the variability of the particle weights; (ii) to find an artificial density that will lead to
weights that are easy to evaluate. Additionally, by the importance sampling principles, h must
have a support that is small enough.

Some special cases of h and their respective particle weights are interesting to be discussed. To
explore their performance, we will see what kind of weights we obtain in three special cases:

c.1 If q(x1:t) = p(x1:t), we are drawing from the right distribution in the first place. Updating the
particles with an p invariant kernel K also gives the right distribution on the updated/moved
particle. We would therefore like the weights to be equal to 1 in this case.

8

c.2 If K(x?1:t|x1:t) = p(x?1:t), the move gets us directly to the right distribution, so also in this
case, we would like the weights to be equal to 1.

c.3 If K(x?1:t|x1:t) = q?(x?1:t), that is x1:t is not used in the update, we would like the weights to
be equal to p(x?1:t)/q

?(x?1:t).

By Proposition 2, the optimal weight we can obtain at time t is wopt
t (x?1:t; x1:t). This corresponds

to choosing hopt(x1:t|x?1:t) = q(x1:t)K(x?1:t|x1:t)/q
?(x?1:t) which is a legal density. In practice, how-

ever, the quantities involved will not be possible to calculate, making this not a realistic choice.
Another option is

h1(x1:t|x?1:t) ≡
p(x1:t)K(x?1:t|x1:t)

p(x?1:t)
⇒ w?t (h1) = wt. (4)

This shows that when MCMC moves are applied, using the original weights still gives a properly
weighted sample. An important special case is when resampling is applied before move, so that
wit = 1/N for all i. In this case we obtain the RM algorithm. This Monte Carlo scheme was originally
proposed, outside the context of particle methods, by [31] and it is also referred as generalized
importance sampling in [38]. Note however that although easy to apply, these weights will typically
be different from the optimal ones, indicating that better choices are possible. In the c.1 case,
w?t (h1) = wt = 1, giving a sensible result. In case c.2, however, w?t (h1) = wt = p(x1:t)/q(x1:t), not
at all taking into account that we in this case are using a good (perfect) kernel for the move. A
similar situation occur for case c.3.

We can also define the h function by the Markovian transition kernel:

h2(x1:t|x?1:t) ≡ K(x1:t|x?1:t)⇒ w?t (h2) =
p(x?1:t)K(x1:t|x?1:t)
q(x1:t)K(x?1:t|x1:t)

. (5)

Note that if K satisfies detailed balance, this choice coincides with h1 and w?t (h2) = wt and the
properties are similar to that choice.

Yet another possibility is to choose h as the marginal proposal distribution

h3(x1:t|x?1:t) ≡ q(x1:t)⇒ w?t (h3) =
p(x?1:t)

K(x?1:t|x1:t)
. (6)

Both in cases c.2 and c.3, we obtain the ideal weights, but in case c.1 we obtain w?t (h3) =
p(x?

1:t)
K(x?

1:t|x1:t)
,

not taking into account that we started right in this case. This therefore will be a good choice if we
have an efficient MCMC kernel, i.e. K(x?1:t|x1:t) ≈ p(x?1:t) or a move not depending much on x1:t.
These weights will also be easy to compute, assuming the MCMC kernels are easily available.

Finally, any mixture of the previous h’s can also be considered. For example, for α ∈ [0, 1] we
have

h(x1:t|x?1:t) ≡ αq(x1:t) + (1− α)K(x1:t|x?1:t)

⇒ w?t (h) = αw?t (h3) + (1− α)w?t (h2). (7)

In practice, only parts of x1:t is moved will typically be moved. Some extra care is needed in
such cases. Appendix

9

Algorithm 3 Move-reweighting for Filtering with arbitrary transitions

At time t do
Propagations as in the ordinary SMC
Move to x?it via a transition kernel Q(x?it |xit).
Update and normalize the weights w?it ∝ wit × rit where

rit =
p(x?i1:t)h(xi1:t|x?i1:t)
p(xi1:t)Q(x?i1:t|xi1:t)

,

if Effective sample size is small then
Resample to obtain N new equally-weighted particles.

3.3. General moves

In cases where the use of an MCMC kernel is difficult, alternative moves can be considered.
For these situations, we first sample particles from a proposal x1:t ∼ q(·), followed by an arbitrary
transition kernel, i.e. x?1:t ∼ Q(·|x1:t). The following statement is analogous to that of Proposition 2:

Proposition 3. Let {(xi1:t, wit), i = 1, . . . , N} be a properly weighted sample with respect to p, and
the particles are generated from q. Assume for each i we move xi1:t → x?i1:t by a transition kernel
Q(·|x1:t) and update the weights by

w?it ≡ w?it (x1:t; x
?
1:t) =wit × rit (8)

where

rit ≡ rt(x1:t; x
?
1:t) =

p(x?i1:t)h(xi1:t|x?i1:t)
p(xi1:t)Q(x?i1:t|xi1:t)

and h is a density such that {(x?1:t,x1:t) : p(x?1:t)h(x1:t|x?1:t) > 0} is a subset of {(x?1:t,x1:t) :
q(x1:t)Q(x?1:t|x1:t) > 0}. Then

{(x?i1:t, w?it (x1:t; x
?i
1:t)), i = 1, . . . , N} is proper with respect to p.

The proof of Proposition 3 is identical to the proof of Proposition 2, only replacing K(x?1:t|x1:t)
with Q(x?1:t|x1:t).

When an MCMC kernel is not available, the use of some arbitrary transition kernel q to move
and reweight the particle can be attractive. The choice of Q can, for example, be an approximation
to an MCMC kernel or a clever proposals taking into account that we have the samples generated
from q as auxiliary particles. For instance, we can choose Q as the Langevin proposals, such as

Q(x?1:t|.) = Np(x?1:t|x1:t + σ2

2 ∇p, σ
2Ip) where σ2 is some tuning parameter, and ∇p is the gradient

of the unnormalized target distribution.
Algorithm 3 offers an alternative (analogues to algorithm 2) to implement the move-reweighting

with arbitrary transitions algorithm for filtering. As for algorithm 2, more general resampling
schemes can be considered.

10

3.4. Summary of particle moves and (re)-weighting strategies

If we have an p-invariant MCMC kernel, K, or some arbitrary transition kernel Q to diversify
the particles, we can adduce at least four strategies for (re)-weighting them in an SMC framework:

s.1 Start with an equally weighted sample, move the particles via K and maintain the equal
particle weights;

s.2 Start with a properly weighted sample, move the particles via K and maintain the same
particle weights;

s.3 Start with a properly weighted sample, move the particles via K and update the particle
weights; or

s.4 Start with a properly weighted sample, move the particles via Q and update the particle
weights.

Strategy s.1 is the RM algorithm mentioned in subsection 2.3, and s.2 is its generalization, both
provided properly weighted samples with respect to p. Strategies s.3 and s.4 are cases where,
through a diversification step, the weights are updated. Thus, these schemes are promising to make
the particle weights less variable and, at the same time, reduce the sample impoverishment.

4. Numerical Illustrations

In this section we illustrate the move-reweighing approach with two examples. The first is a
state-space model with a linear Gaussian state process combined with a non-Gaussian likelihood.
Here we are able to move (parts of) the particles directly from a Gibbs kernel. The second is a
non-linear Gaussian stochastic system, where the rejuvenated particles are reweighted after a move
with a general kernel. In both cases, we assume all static parameters to be known, and we consider
t = 1, 2, . . . , 200.

As a standard measure for evaluating the sample impoverishment, we calculate the effective
sample size [ESS, 27] by

ESSt =
(
∑N
i=1 w

i
t)

2∑N
i=1(wit)

2
. (9)

The performance is also evaluated using the ordinary root mean square error (RMSE). Assuming
µt is some functional measure of π(xt|y1:t) and µ̂t is the corresponding particle filter estimate, it is
defined through

RMSE(µt) =

√√√√T−1
T∑
t=1

(µ̂t − µt)2 (10)

The functionals that will be considered are posterior means or α-quantiles of the marginal distri-
bution π(xt,l|y1:t). In practice µt will be unknown but are approximated by running the ordinary
SMC algorithm using a huge number of particles (N = 35× 104).

11

Table 1: Gauss-Poisson model without resampling. Comparison of the ordinary SMC algorithm (O, algorithm 1),
the move-without-reweighting algorithm (M, algorithm 2 using the backward kernel from equation (4)) and the
move-reweight algorithm (MR, algorithm 2 using the backward kernel from equation (6)), all without resampling.
Results are based on one simulation of data based on model (11) with parameters given in (12) and an average of
1000 repetitions of the algorithms. N = 5000 particles were used in all cases. Both for ESS and RMSE, an average
over time is given, that is ESS = 1

T

∑T
t=1 ESSt and RMSEl = 1

T

∑T
t=1 RMSE(µl,t) with µl,t = E[xl,t|y1:t].

Alg ESS(%) Mean 10% quantile 90% quantile
RMSE1 RMSE2 RMSE1 RMSE2 RMSE1 RMSE2

O 0.0284 1.4878 0.1350 3.5655 2.9066 0.2436 0.2157
M 0.0385 0.3682 0.1897 0.3609 0.4270 0.1470 0.0979

MR 4.9200 0.0631 0.0275 0.0642 0.0493 0.0783 0.0557

4.1. Gaussian process with Poisson distributed data

We start illustrating our methodology for a Poisson-Gaussian state space model. Hence, assume
xt = (x1,t, x2,t)

′ and

x1,t =0.90x1,t−1 + ε1,t

x2,t =0.20x2,t−1 + 0.95x1,t + ε2,t

yt ∼Poisson(exp(5 + x2,t)).

(11)

For x1 = (x1,1, x2,1), we assume to follow the stationary distribution of the process. In our experi-
ments we set(

ε1,t
ε1,t

)
ind∼ N (0,Σ), Σ =

(
1 0
0 0.1

)
(12)

Note in particular that observation yt only depend on x2,t. Based on this model, one set of obser-
vations y1:200 where generated which will be our data in the following experiments.

Propagations are in this case applied by generating x1,t ∼ π(x1,t|xt−1) followed by simulating
x2,t ∼ q1(x2,t|x1,t, yt,xt−1) where the latter is the Laplace approximation to π(x2,t|x1,t, yt,xt−1).
The propagation is then followed by a move (x2,t, x1,t) → (x?2,t, x

?
1,t) where x?2,t = x2,t while

x?1,t ∼ π(x1,t|xt−1, x2,t, yt) = π(x1,t|xt−1, x2,t). Hence, we move x?1,t directly from the Gibbs kernel
which is a Gaussian distribution. In addition, for reweighting the particles we compute w?t using
equation (B.2).

A first experiment was carried out with N = 5000 without resampling in order to explore the
degeneracy problem. Table 1 shows the performance measures while Figure 2 displays the behaviour
of the effective sample over time. From Table 1 we see that while some small improvements are
made when including a move, a much larger improvement is made when such a move is combined
with reweighting. Figure 2 shows that the main improvements are made in the first time-points,
indicating that degeneracy can be reduced but that resampling will be needed at a later time point.

In a second experiment, the influence of resampling was explored. Using the same simulated
data set, we ran the move-reweighing (MR) approach adding multinomial resampling to compare
the resample-move (RM) algorithm with the move-reweight alternatives. Table 2 and Figure 3
report the main results using these methods with N = 50 and N = 5000 particles. First, since the
MR approach introduces a mechanism to update the particle weights before the resample stage,
the effective sample size can gain a significant improvement as demonstrated in the first column of

12

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

Time

E
S

S

0 50 100 150 200

0
20

0
40

0
60

0
80

0
10

00

Time

R
el

at
iv

e
E

S
S

Figure 2: Effective sample size for algorithms described in Table 1. Left panel, ESS, and right panel is the relative
ESS scaled by the ordinary ESS. Solid red line: Move-reweighting, dashed blue line: resample-move, dotted black
line: ordinary SMC, the last one indistinguishable from the dash line in the left plot and not present in the right
plot.

Table 2.In this case, ESS measures the one-step ahead loss in effective sample size after a resampling
has been performed (no number is given for MR2 since resampling in this case is stochastic). In
practice, this shows that with MR-approaches more particles can be representative to approximate
the target distribution. This is also seen in the RMSE number for different targets, in particular for
N = 50. Closer inspection of the results also revealed that the main benefits were at time points
where the data was most informative (high yt values). For a large number of particles (N = 5000),
the approaches presented similar results. This mainly indicate that in this case any methods is doing
good and that the gain mainly is when fewer particles are used. In summary, good performance
depends on a combination of moving the particles to the region of strong support and incorporating
this information in the weights.

4.2. A Low-dimensional non-linear dynamical system

Consider now a low-dimensional linear dynamical model

x1,t =x1,t−1 + hx2,t−1 + σ1ε1,t (13)

x2,t =x2,t−1 + hα(1− x21,t−1)x2,t−1 − hx1,t−1 + σ2ε2,t (14)

yt =x2,t + σ3ε3,t (15)

where {εl,t} are independent white noise processes with standard normal marginals. This model
was used in Gao and Zhang [18] as a discretized version of the Van del Pol oscillator described
through a second-order differential equation (with h as the discretization step size). We deviate
somewhat from Gao and Zhang [18] in the observation model. The static parameter vector is
θ = (h, α, σ2

1 , σ
2
2 , σ

2
3)′ in which for our simulations we use h = 0.1, α = 1, σ2

1 = 5×10−2, σ2
2 = 8×10−3

and σ2
3 = 1× 10−3. We start sampling the states x1,1 and x2,1 independently from N(0, 0.01).

13

Table 2: Gauss-Poisson model with resampling. Comparison of the ordinary SMC algorithm with resampling at
each time-point (O), resample-move (RM), move-reweighting with resampling at each time-point (MR1) and move-
reweighting with resampling if ESS/N < 50% (MR2). Results are based on one simulation of data based on
model (11) with parameters given in (12) and an average of 1000 repetitions of the algorithms.

N Alg ESS(%) Mean 10% quantile 90% quantile
RMSE1 RMSE2 RMSE1 RMSE2 RMSE1 RMSE2

50 O 27.84 0.1451 0.0569 0.3120 0.1569 0.3378 0.0339
RM 27.86 0.0931 0.0552 0.2620 0.1467 0.3290 0.0269
MR1 95.64 0.0599 0.0403 0.0612 0.0705 0.0359 0.0169
MR2 - 0.0548 0.0394 0.0612 0.0684 0.0466 0.0406

5000 O 27.13 0.0203 0.0404 0.1924 0.0548 0.2737 0.0163
RM 27.30 0.0293 0.0165 0.0545 0.0373 0.0281 0.0150
MR1 94.61 0.0453 0.0320 0.0513 0.0672 0.0353 0.0108
MR2 - 0.0452 0.0321 0.0638 0.0308 0.0355 0.0513

In this case it is easiest to consider π(x1,t−1, x2,t|y1:t) as the target distribution at time t.
Propagation at time t is then performed by simulating x1,t−1 ∼ π(x1,t−1|xt−2, x2,t−1) and x2,t ∼
π(x2,t|xt−1, yt) (two Gaussian distributions). This is followed by a move x?1,t−1 ∼ q(x?1,t−1|xt−2, x2,t),
the Laplace approximation of π(x1,t−1|xt−2, x2,t−1, x2,t, yt) = π(x1,t−1|xt−2, x2,t). Note that in this
case our move kernel is not invariant with respect to the target distribution, making weight updating
according to Proposition 3 necessary to use. In particular, we will assume

h(x1,t1 |xt−2, x∗1,t−1, x2,t−1, x2,t) = π(x1,t−1|xt−2)

in which case

w?t = wt−1
π(x∗1,t−1|xt−2)π(x2,t|x∗1,t−1, x2,t−1)π(yt|x2,t)

π(x2,t|xt−1, yt)q(x∗1,t−1|xt−2, x1,t−1, x2,t−1, x2,t)

In this case, the resample-move approach is not possible to use, so only a comparison between
ordinary SMC and move-reweighting is performed in this case.

Even the particles are not rejuvenated via an MCMC kernel, the empirical results suggested
again that by reweighing the particles we can gain some improvement in the SMC performance. In
this case, the main improvement is in the x1,t variable which is the one that is moved. Moving by
an arbitrary kernel can also be propitious to avoid the cases where few extreme weights dominate
the entire sample resulting a high variance or lack of accuracy measured by the RMSE. Note that
in this case, the (one step ahead) effective sample size did not differ much for the two approaches,
indicating that the main benefit in this case is the possibility of better samples through the move
step.

5. Discussion

The resample-move (RM) algorithm is based on that if a particle is from the right distribution,
a move using a kernel invariant to the target distribution will also be from the right distribution.
Getting particles from the right distribution is obtained by a preliminary resample step in the RM

14

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

E
S

S

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

E
S

S
Figure 3: Effective sample for the model and algorithms describe in Table 2. Left panel, ESS obtained by SMC with
N = 50, and right panel with N = 5000. Solid red line: Move-reweighting, dashed blue line: Resample-move and
dotted black line: Ordinary SMC.

approach. If particles has corresponding importance weights, keeping these weights after such a
move will still give properly weighted particles.

In this paper we have extended the resample-move in different ways. By considering moves as
part of simulations in an extended space, alternative weights that still are proper with respect to
the target distribution is possible to obtain. This have several benefits:

• Better weights can be obtained, taking into account that when moves are applied another
importance distribution is used.

• Resampling is not necessary at each time step, making it possible to combine moves with
different resampling strategies.

Table 3: Oscillator model with resampling at each time-point. RMSE for quantiles of the ordinary SMC algorithm
(O) and move-reweighting (MR). Results are based on one simulation of data based on model described in equations
(14-15) with an average of 1000 repetitions of the algorithms.

N Alg ESS(%) Mean 10% quantile 90% quantile
RMSE1 RMSE2 RMSE1 RMSE2 RMSE1 RMSE2

50 O 59.91 0.1336 0.0069 0.2174 0.0159 0.1954 0.0057
MR 61.64 0.1167 0.0067 0.1469 0.0160 0.0807 0.0061

500 O 58.73 0.0461 0.0022 0.2012 0.0160 0.1797 0.0051
MR 59.38 0.0416 0.0025 0.1352 0.0159 0.0752 0.0049

5000 O 58.79 0.0171 0.0007 0.2006 0.0161 0.1786 0.0052
MR 58.88 0.0147 0.0012 0.1303 0.0159 0.0747 0.0048

15

• Moves using kernels that are not necessary invariant with respect to the target distribution
is possible to apply.

Our approach, the move-reweighting algorithm, allows a great flexibility to reweight the samples
using a proper weight with respect to the right distribution. We have pointed out that the traditional
framework to add MCMC moves within particle filter algorithms ([19]) can be encapsulated as a
special case in our approach.

In our simulation studies, we demonstrate that the move-reweighting algorithm can successfully
reduce weight degeneracy and, at the same time, increase sample diversity. In the first experiment,
we showed clearly how effective sample size has been affected when we update the weights after a
MCMC move. In short, the move-reweighting approach can be promising to attenuate the asymme-
try in the distribution of the particle weights. As a result, we obtain a satisfactory increase in the
effective sample size. In the second experiment we illustrate the use of moves with arbitrary ker-
nels and show that improvements can be obtained compared to ordinary SMC (the resample-move
algorithm is not possible to use in this case).

Although we have assumed that static parameters are known, an interesting further research
topic is to see how our approach can be combined with different alternatives for sampling from
the joint distribution p(x1:t, θ) [22, 1, 8]. Furthermore, advanced MCMC move approaches (e.g.
adaptive methods by [17]) can also be possible to merge with the reweighting schemes presented in
order to construct more efficient algorithms. Lastly, in an attempt to address the problems caused
by the curse of dimensionality in SMC methods [40], the move-reweighting strategies can possibly
be used for improvements of particle filter algorithms in high-dimension systems.

Acknowledgments

We gratefully acknowledge financial support from CAPES-Brazil and Statistics for Innovation
Center, in Norway.

Appendix A. Proofs

Proof of Proposition 2. As g is a p-integrable function,

E[g(x?1:t)w
?
t (x?1:t)] =

∫
Xt×Xt

g(x?1:t)w
?
t (x?1:t)q(x1:t)K(x?1:t|x1:t)dx

?
1:tdx1:t

=

∫
Xt×Xt

g(x?1:t)p(x
?
1:t)h(x1:t|x?1:t)dx?1:tdx1:t

=

∫
Xt

g(x?1:t)p(x
?
1:t)

∫
Xt

h(x1:t|x?1:t)dx1:tdx
?
1:t

=

∫
Xt

g(x?1:t)p(x
?
1:t)dx

?
1:t = Ep[g(x?1:t)].

16

Further, using that the conditional sampling distribution for x1:t given x?1:t is q(x1:t)K(x?1:t|x1:t)/q
?(x∗1:t)

we have

E[w?t (x1:t; x
?
1:t)|x?1:t] =

∫
Xt

w?t (x1:t; x
?
1:t)

q(x1:t)K(x?1:t|x1:t)

q?(x∗1:t)
dx1:t

=
p(x?1:t)

q?(x?1:t)

∫
Xt

h(x1:t|x?1:t)dx1:t

=
p(x?1:t)

q?(x?1:t)
= wopt

t (x?1:t).

Finally, Var[w?t (x1:t; x
?
1:t)] ≥ Var[wopt

t (x?1:t)] is a direct consequence of Proposition 1 choosing v1 =
x?1:t and v2 = x1:t. �

Appendix B. Moving only parts

Assume now that only parts of x1:t is moved. Some care is then needed. Write x1:t = (xm1:t,x
f
1:t)

where xm1:t is the part of x1:t that is moved while xf1:t is fixed (after propagation). Then the proper

extended distribution to work with is p(xf1:t,x
m∗
1:t)h(xm1:t|x

f
1:t,x

m
1:t) and weights are given by

w∗t (x1:t,x
m∗
1:t) =

p(xf1:t,x
m∗
1:t)h(xm1:t|x

f
1:t,x

m∗
1:t)

q(x1:t)K(xm∗1:t |x1:t)
.

Writing q(x1:t) = q(xf1:t)q(x
m
1:t|x

f
1:t) and choosing h(xm1:t|x

f
1:t,x

m∗
1:t) = q(xm1:t|x

f
1:t) we end up with

weights

w∗t (x1:t,x
m∗
1:t) =

p(xf1:t,x
m∗
1:t)

q(xf1:t)K(xm∗1:t |x1:t)
.

An alternative is to write q(x1:t) = q(xm1:t)q(x
f
1:t|xm1:t) and choosing h(xm1:t|x

f
1:t,x

m∗
1:t) = q(xm1:t) in

which case the weights reduces to

w∗t (x1:t,x
m∗
1:t) =

p(xf1:t,x
m∗
1:t)

q(xf1:t|xm1:t)K(xm∗1:t |x1:t)
.

This alternative will typically be less efficient, but can be preferable when q(xf1:t) is difficult to
compute.

An important special case is where only (parts of) the last xt is moved. In that case, we have

w∗t (x1:t,x
m∗
t) =

p(x1:t−1,x
f
t ,x

m∗
t)h(xmt |x1:t−1,x

f
t ,x

m∗
t)

q(x1:t−1)q(xt|x1:t−1)K(xm∗t |x1:t)

∝wt−1(x1:t−1)
π(xft ,x

m∗
t |x1:t−1)π(yt|xft ,xm∗t)h(xmt |x1:t−1,x

f
t ,x

m∗
t)

q(xt|x1:t−1)K(xm∗t |x1:t)

where wt−1(x1:t−1) = p(x1:t−1)/q(x1:t−1) are the weights from the previous time points (actually
only an unbiased estimate of wt−1 is needed so that moves and reweighting at previous time points

17

can easily be incorporated). Similar choices of h as above can be applied in which cases proper
weights are

w∗t (x1:t,x
m∗
1:t) =wt−1(x1:t−1)

π(xft ,x
m∗
t |x1:t−1)π(yt|xft ,xm∗t)

q(xft |x1:t−1)K(xm∗t |x1:t)
(B.1)

and

w∗t (x1:t,x
m∗
1:t) =wt−1(x1:t−1)

π(xft ,x
m∗
t |x1:t−1)π(yt|xft ,xm∗t)

q(xft |x1:t−1,xmt)K(xm∗t |x1:t)
. (B.2)

References

[1] Andrieu, C., A. Doucet, and R. Holenstein (2010). Particle Markov chain Monte Carlo methods.
Journal of the Royal Statistical Society: Series B (Statistical Methodology) 72 (3), 269–342.

[2] Berzuini, C. and W. Gilks (2003). Particle filtering methods for dynamic and static Bayesian
problems. In Models and inference in HSSS: Recent developments and perspectives, pp. 207–227.
Oxford University Press.

[3] Cappé, O., S. Godsill, and E. Moulines (2007). An overview of existing methods and recent
advances in sequential Monte Carlo. Proceedings of the IEEE 95 (5), 899–924.

[4] Cappé, O., E. Moulines, and T. Rydén (2005). Inference in hidden Markov models. Springer
Verlag.

[5] Chen, R. and J. S. Liu (2000). Mixture Kalman filters. Journal of the Royal Statistical Society:
Series B (Statistical Methodology) 62, 493–508.

[6] Chopin, N. (2002). A sequential particle filter method for static models. Biometrika 89 (3),
539–552.

[7] Chopin, N. (2004). Central limit theorem for sequential Monte Carlo methods and its application
to Bayesian inference. The Annals of Statistics 32 (6), 2385–2411.

[8] Chopin, N., P. E. Jacob, and O. Papaspiliopoulos (2013). SMC2: an efficient algorithm for
sequential analysis of state space models. Journal of the Royal Statistical Society: Series B
(Statistical Methodology) 75 (3), 397–426.

[9] Del Moral, P. (2004). Feynman-Kac Formulae, Genealogical and Interacting Particle Systems
with Applications. New York: Springer-Verlag.

[10] Del Moral, P., A. Doucet, and A. Jasra (2006). Sequential Monte Carlo samplers. Journal of
the Royal Statistical Society: Series B (Statistical Methodology) 68 (3), 411–436.

[11] Doucet, A., M. Briers, and S. Sncal (2006). Efficient block sampling strategies for sequential
Monte Carlo methods. Journal of Computational and Graphical Statistics 15 (3), 693–711.

[12] Doucet, A., N. de Freitas, and N. Gordon (2001). Sequential Monte Carlo methods. Springer-
Verlag.

18

[13] Doucet, A., S. Godsill, and C. Andrieu (2000). On sequential Monte Carlo sampling methods
for Bayesian filtering. Statistics and computing 10 (3), 197–208.

[14] Doucet, A. and A. M. Johansen (2009). A tutorial on particle filtering and smoothing: fifteen
years later. Handbook of Nonlinear Filtering 12, 656–704.

[15] Fearnhead, P. (2002). Markov Chain Monte Carlo, sufficient statistics, and particle filters.
Journal of Computational and Graphical Statistics 11 (4), 848–862.

[16] Fearnhead, P. (2008). Computational methods for complex stochastic systems: a review of
some alternatives to MCMC. Statistics and Computing 18, 151–171.

[17] Fearnhead, P. and B. Taylor (2013). An adaptive sequential Monte Carlo sampler. Bayesian
Analysis 8 (1), 1–28.

[18] Gao, M. and H. Zhang (2012). Sequential Monte Carlo methods for parameter estimation in
nonlinear state-space models. Computers & Geosciences 44 (0), 70 – 77.

[19] Gilks, W. and C. Berzuini (2001). Following a moving target Monte Carlo inference for dy-
namic Bayesian models. Journal of the Royal Statistical Society: Series B (Statistical Methodol-
ogy) 63 (1), 127–146.

[20] Gordon, N., D. Salmond, and A. Smith (1993, apr). Novel approach to nonlinear/non-gaussian
bayesian state estimation. Radar and Signal Processing, IEE Proceedings F 140 (2), 107 –113.

[21] Green, P., N. Hjort, and S. Richardson (2003). Highly structured stochastic systems, Volume 10.
Oxford University Press Oxford (United Kingdom).

[22] Kantas, N., A. Doucet, S. Singh, and J. Maciejowski (2009). An overview of sequential Monte
Carlo methods for parameter estimation in general state-space models. In Proceedings of the
IFAC Symposium on System Identification (SYSID).

[23] Kevin, M. (2012). Machine Learning: a probabilistic perspective. The MIT press.

[24] Kong, A., J. S. Liu, and W. H. Wong (1994). Sequential imputations and Bayesian missing
data problems. Journal of the American statistical association 89 (425), 278–288.

[25] Liang, F., C. Liu, and R. Carroll (2011). Advanced Markov chain Monte Carlo methods:
learning from past samples, Volume 714. Wiley.

[26] Lin, M., R. Chen, and J. S. Liu (2013). Lookahead strategies for sequential Monte Carlo.
Statistical Science 28 (1), 69–94.

[27] Liu, J. S. (1996). Metropolized independent sampling with comparisons to rejection sampling
and importance sampling. Statistics and Computing 6 (2), 113–119.

[28] Liu, J. S. (2001). Monte Carlo strategies in scientific computing. Springer.

[29] Liu, J. S. and R. Chen (1995). Blind deconvolution via sequential imputations. Journal of the
American Statistical Association 90 (430), 567–576.

[30] Liu, J. S. and R. Chen (1998). Sequential Monte Carlo methods for dynamic Systems. Journal
of the American Statistical Association 93 (443), 1032–1044.

19

[31] MacEachern, S. N., M. Clyde, and J. S. Liu (1999). Sequential importance sampling for
nonparametric Bayes models: The next generation. Canadian Journal of Statistics 27 (2), 251–
267.

[32] Malefaki, S. and G. Iliopoulos (2008). On convergence of properly weighted samples to the
target distribution. Journal of Statistical Planning and Inference 138 (4), 1210–1225.

[33] Neal, R. M. (2001). Annealed importance sampling. Statistics and Computing 11 (2), 125–139.

[34] Pitt, M., R. Silva, P. Giordani, and R. Kohn (2010). Auxiliary particle filtering within adaptive
Metropolis-Hastings sampling. Technical report, Cornell University Library.

[35] Pitt, M. K. and N. Shephard (1999). Filtering via simulation: Auxiliary particle filters. Journal
of the American Statistical Association 94 (446), 590–599.

[36] Polson, N. G., J. R. Stroud, and P. Müller (2008). Practical filtering with sequential parameter
learning. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 70 (2), 413–
428.

[37] Poyiadjis, G., A. Doucet, and S. Singh (2011). Particle approximations of the score and
observed information matrix in state space models with application to parameter estimation.
Biometrika 98 (1), 65–80.

[38] Robert, C. and G. Casella (2004). Monte Carlo statistical methods. Springer Verlag.

[39] Shephard, N. and A. Doucet (2012). Robust inference on parameters via particle filters and
sandwich covariance matrices. In Nuffield College Economics Working Papers. University of
Oxford.

[40] Snyder, C., T. Bengtsson, P. Bickel, and J. Anderson (2008). Obstacles to high-dimensional
particle filtering. Monthly Weather Review 136 (12), 4629–4640.

[41] Storvik, G. (2002). Particle filters for state-space models with the presence of unknown static
parameters. Signal Processing, IEEE Transactions on 50 (2), 281–289.

[42] Storvik, G. (2011). On the flexibility of Metropolis–Hastings acceptance probabilities in aux-
iliary variable proposal generation. Scandinavian Journal of Statistics 38 (2), 342–358.

[43] Whiteley, N. and A. Lee (2012). Twisted particle filters. Technical report, Cornell University
Library.

20

