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Introduction

The work pursued in this thesis concerns two fields related inside homotopy
theory. On the one hand, it draws on the work initiated in [31] by Fabien
Morel and Vladimir Voevodsky on the homotopy theory of schemes. This
work opens the possibility of transfering methods from algebraic topology to
the study of schemes and varieties. On the other hand, we will use methods
developed for the study of classifying spaces of finite groups which have been
explored in stable equivariant homotopy theory.

To be more specific, our interest lies in transfering some of the work on
Segal’s Burnside ring conjecture in algebraic topology to motivic homotopy
theory. This conjecture, now a proven result by the work of Gunnar Carlsson
[8] in the 1980s, concerns the stable cohomotopy of classifying spaces of
groups. For a finite group G, there is a map

R(G) −→ KU0(BG)

from its representation ring R(G) to the K-theory of its classifying space
BG. After completing R(G) at its augmentation ideal and extending this
map by continuity, Atiyah [3] proved that the resulting map is an isomor-
phism. Segal [36] worked on what would happen if one replaced K-theory
with stable cohomotopy, thereby trying to compute π0S(BG). His conjecture
was that a replacement for R(G) was A(G), the Burnside ring of isomor-
phism classes of finite G-sets, and that the same process would yield an
isomorphism after passing to its completion.

The conjecture was generalized, reformulated and proved in special cases
along the way to a full proof. Our work relates to a construction appearing
on the algebraic side of the considerations that concern the case where
G = Cp, the cyclic group of order p. In the case where G = Z/2 one has

BZ/2 � RP∞.

In this case Lin used the Adams spectral sequence to verify Segal’s conjec-
ture. In his paper [24], he constructs an inverse system of spectra RPn

k by
using stunted projective spaces and James periodicity. Let D(X) be the
S-dual of a spectrum X. Then there is a relation

πi(X) ∼= π−i(DX),
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and it is possible to show that

D(RPn
0 ) � Σ(RP−1

−n−1).

Theorem 1.2 in Lin’s article treats RP∞
0 by describing the groups

lim
k
πi(RP k

0 )
∼= lim

k
π−i−1(RP

−1
−k−1)

for different i. For the spectra RP∞
k , the Adams spectral sequence permits a

calculation of the groups [Si,RP∞
k ] (theorem 1.3 in [24]). The calculation of

the E2-term over A, the mod 2 Steenrod algebra, boils down to calculating
the system of groups

Exts,tA (H∗(RP∞
k ),Z/2)

and in the end
Exts,tA (Z/2[x, x−1],Z/2)

after passing to the limit. Remarkably, Lin, together with Adams, Davis
and Mahowald ([25]) show that

Exts,tA (Z/2[x, x−1],Z/2) ∼= Exts,t+1
A (Z/2,Z/2).

This isomorphism can be understood on more conceptual grounds: It is a
special case of the so-called Singer construction R+(−) which can be defined
for modules over A. It comes equipped with an A-linear map

ε : R+(Z/2) −→ Z/2

such that the induced map

ε∗ : Ext∗,∗A (Z/2,Z/2) ∼= Ext∗,∗A (R+(Z/2),Z/2).

is an isomorphism. It is put to use in calculating the relevant Ext-groups in
the case where G is elementary abelian in [1]. Carlsson’s work shows that
this step is the base on which the general conjecture rests.

In [8], Carlsson comments that Segal’s conjecture in its original form is
hard to generalize due to its focus on a map that only involves the zeroth
stable cohomotopy group of BG. Therefore, he generalizes it to a form which
has better chances of success and, based on previous calculations, he shows
that one has an isomorphism of rings

γ : π̂∗G(S
0)I −→ π∗G(EG+)(∼= π∗S(BG+))

involving completed equivariant (stable) cohomotopy groups. Here I is the
augmentation ideal of A(G) ∼= π0G(S

0) and EG is a contractible G-CW
complex with G acting freely. Hence Carlsson’s work implies Segal’s original
conjecture.



CONTENTS 7

We follow considerations taken from the introduction of [18] and we will
always assume that G is finite. There is an equivariant cofiber sequence

EG+ −→ S0 −→ ẼG

induced by the collapse map EG+ → S0. Given a G-space X, there is a
G-map

X ∼= F (S0, X) −→ F (EG+, X).

Smashing with the above sequence and taking fixed points, we end up with
the commutative diagram

(EG+ ∧X)G ��

�
��

XG ��

Γ

��

(ẼG ∧X)G

Γ̂
��

(EG+ ∧ F (EG+, X))G �� (F (EG+, X))G �� (ẼG ∧ F (EG+, X))G

We borrow some notation from [26]: Let X be a genuine G-spectrum and
let

XhG := (F (EG+, X))G,

XhG := (EG+ ∧X)/G � (EG+ ∧X)G

and
XtG := (ẼG ∧ F (EG+, X))G

These are refered to as the homotopy fixed points, the homotopy orbits
and the Tate construction of X respectively. Specializing to the case where
X = S, the sphere spectrum in the category of genuine G-spectra, and
G = C2 we get a commutative diagram

ShC2
��

�
��

SC2 ��

Γ

��

S

Γ̂
��

ShC2
�� ShC2 �� StC2

In the introduction of [18] it is observed that this is equivalent to

RP∞
+

��

�
��

SC2 ��

Γ

��

S

Γ̂

��
RP∞

+
�� D(RP∞

+ ) �� ΣRP∞−∞

with
RP∞

−∞ := holimk RP
∞
−k

and
RP∞

−k := Th(−kγ1 ↓ RP∞).
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Here kγ1 is the k-fold sum of γ1, the tautological line bundle over RP∞, and
Th(−kγ1 ↓ RP∞) denotes the Thom spectrum of the virtual vector bundle
−kγ1. It is possible to rephrase Segal’s conjecture as a homotopy limit
problem where we want to show that Γ is an equivalence and this happens if
and only if Γ̂ is too. For this, we may use an inverse limit of Adams spectral
sequences just as Lin did in his work. It is here that Singer’s construction
comes to the aid: Define

H∗
c (ΣRP

∞
−∞) := colim−kH

∗(ΣRP∞
−k),

something we will call the continous cohomology of ΣRP∞−∞. In this nota-
tion, H∗(−) means cohomology with coefficients in Z/2. As a module over
the Steenrod algebra, it is isomorphic to R+(Z/2). Now, we have a map of
spectra

S −→ ΣRP∞
−∞

realizing
ε : R+(Z/2) −→ Z/2

after evaluating cohomology. Because of the resulting Ext-isomorphism, this
means the E2-terms of the Adams spectral sequence converging to π∗(S)2̂
and the inverse limit over k of the Adams spectral sequences converging to
π∗(ΣRP∞

−k)2̂ associated to ΣRP∞−∞ are isomorphic. Hence, the map

S → ΣRP∞
−∞

inducing ε is an equivalence after completion at 2.

The world of motivic homotopy is a modern development related to
classical algebraic topology. Since its birth in [31] it has been used for
studying cohomology theories of algebraic varieties among which motivic
cohomology has been the main focus. These are powerful techniques and
the study of cohomology operations on motivic cohomology has played a part
in the ideas that led to proofs of the Milnor and Bloch-Kato conjectures. To
explore this theory further it would be interesting to know that constructions
from the classical theory could be set up to work in this framework.

Although we do not prove a motivic version of Segal’s conjecture, we
show that there exists a construction entirely similar to the one introduced
by Singer for modules over the motivic Steenrod algebra. This is theorem
3.3.6. Also, for the module playing the part of Z/2, we check that the
Singer construction can be realized as the continous motivic cohomology
of an inverse tower of motivic spectra just as it was done in Lin’s work.
This is part 4.1, culminating in proposition 4.1.37. Finally, we give an
application, proving that there is an equivalence resembling the one we saw
above although the completion is different. This is theorem 2.0.2.



Chapter 1

The basic categories

Let F be a field. We will study the motivic homotopy theory of smooth,
separated schemes of finite type over F and our notation for this category will
be Sm/F . The basic reference for these ideas is [31] and additional details
may also be found in [34]. A good introduction with a lot of motivation can
also be found in [39].

Motivic homotopy theory comes about in a way that mimicks the defi-
nition of homotopy in the some relevant category of spaces. Namely, given
such a category, one defines weak equivalences between them and invert
them to form the associated homotopy category.

If we want to represent generalized cohomology theories, we define spec-
tra. These are collections of pointed spaces {Ei} and bonding maps

ΣEi → Ei+1

between them. For each spectrum we can define stable homotopy groups
and given a map of spectra, we say that it is stable weak equivalence if
the resulting map on all stable homotopy groups is an isomorphism. If such
maps are inverted we end up with the stable homotopy category SH. By the
Brown representability theorem, every cohomology theory E∗(−) on spectra
can be represented by an object in SH which is unique up to isomorphism.

The category of schemes is too rigid to study homotopy theory directly.
For instance, it will be of interest to form topological constructions that
might destroy the scheme structure. Hence we embed some category of
schemes, e.g. Sm/F , into some larger category where these constructions
can be performed harmlessly.

As discussed in [39], this is done in several steps. One first embeds the
relevant schemes into presheaves Pre(Sm/F ) on Sm/F by sending a scheme
to the presheaf it represents. This category has all small limits and colimits
which was what we wanted. This is not enough however since we also want

9
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certain pushout squares to be preserved after the embedding. To solve this
we pass to sheaves ShvNis(Sm/F ) which do respect these pushouts. The
sheaf property can be defined with respect to any Grothendieck topology, but
in motivic homotopy theory, the relevant one is the Nisnevich topology. This
topology is subcanonical so the presheaf represented by a smooth scheme is
in fact a sheaf.

At this point, we are ready to build in the notion of homotopy. We can
embed ShvNis(Sm/F ) into the category of simplicial sheaves

ΔopShvNis(Sm/F )

by giving a sheaf the constant (discrete) simplicial structure. The sheaf
associated to Spec(F ) plays the role of the basepoint in this category. There
is also a pointed version of this category which we denote using

ΔopShvNis(Sm/F )•.

The forgetful functor

ΔopShvNis(Sm/F )• → ΔopShvNis(Sm/F )

comes with a left adjoint that takes X to X+ := X � Spec(F ). It is here
we can define a model structure which lets us speak of the notion of homo-
topy: In a model category we define a class of weak equivalences and each
such category has an associated homotopy category where the images of the
weak equivalences are formally inverted. This process is called localization,
a method first used by Bousfield. For the precise definitions and main re-
sults, the reader may consult [19]. The category ΔopShvNis(Sm/F ) can be
given many model structures (objectwise/local, injective/projective,..) with
pointed versions for ΔopShvNis(Sm/F )•. We can freely choose between the
ones that are Quillen equivalent since the resulting homotopy categories will
be equivalent. Let us denote one such homotopy category using HNis.

In addition to the weak equivalences we have defined so far, we want the
affine line A1 to play the part of the unit interval. Again, this is done by
using localization. First, call a space Z A1-local if

HomHNis
(X,Z) → HomHNis

(X × A1, Z)

is an isomorphism for all X ∈ Sm/F . A map P → Q in HNis is an A1-weak
equivalence if

HomHNis
(Q,Z) → HomHNis

(P,Z)

if an isomorphism for all A1-local Z. If HNis is further localized with respect
to A1-weak equivalences, we end up with the relevant category in which to
study motivic homotopy theory.
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Definition 1.0.1. Let H•(F ) be the A1-localized category obtained from
ΔopShvNis(Sm/F )•. We will refer to objects in this category as pointed
motivic spaces.

In this way we force the maps

X × A1 → X

to be weak equivalences.

Let S1
s be the constant simplicial sheaf with value Δ1/∂Δ1 and let S1

t

be the simplicial sheaf represented by Gm with 1 as its basepoint. The
category ΔopShvNis(Sm/F )• is symmetric monoidal with respect to the
smash product and this property is inherited by H•(F ). We let

Sn
s := (S1

s )
∧n

and
Sn
t := (S1

t )
∧n

for n ≥ 0. Additionally, we write

Sp,q := Sp−q
s ∧ Sq

t

for p ≥ q ≥ 0. Given X ∈ H•(F ), the smash products X ∧ S1
s and X ∧ S1

t

will be denoted ΣsX and ΣtX respectively. Let T := A1/(A1 − 0). This
is refered to as the Tate object in the literature. There are isomorphisms
T ∼= S1

s ∧ S1
t
∼= P1, with P1 pointed at infinity. Finally, the smash product

of X ∧ T will be denoted ΣTX.

We will work with spectra and need to see how these are handled in
the motivic world. A T -spectrum is a sequence of pointed motivic spaces
E0, E1, . . . with bonding maps

ΣTEi → Ei+1.

A map E → F between these are collections of maps Ei → Fi commuting
with the bonding maps. We let Spt(F ) denote this category. For a spectrum
we can define the presheaf

πsp,q(E)(X) := lim
n

HomH•(F )(S
p+2n,q+n ∧X+, En);X ∈ Sm/F

and its associated sheaf πsp,q(E)Nis. A stable weak equivalence of T -spectra
is a map inducing an isomorphism of sheaves πsp,q(E)Nis → πsp,q(F )Nis. We
localize and define SH(F ) to be the category obtained after inverting the
stable weak equivalences. The suspension functor ΣT defined on SH(F )
becomes invertible and the objects in this category represent bigraded co-
homology theories on Sm/F by defining

Ep,q(X) := lim
n

HomH•(F )(S
−p+2n,−q+n ∧X+, En);X ∈ Sm/F.

Examples of such cohomology theories are motivic cohomology, algebraic
K-theory and algebraic cobordism, all of which are mentioned in [39].
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Chapter 2

Overview and the main
argument

As alluded to in the introduction, the Singer construction is an algebraic con-
struct providing us with relevant homological information about the Adams
spectral sequence in some special cases. In turn, this makes it possible to
use the spectral sequence to describe the stable homotopy groups of classi-
fying spaces after some appropriate completion. In this chapter we review
the argument and what we need to set this up motivically.

In chapter 3, the motivic Steenrod algebra A is reviewed and given
a left module M over it, we check that R+(M) can be constructed as
colimnB(n)⊗A(n−1)M , where B(n) is an A(n)-A(n−1)-bimodule for finitely
generated subalgebras of A and each morphism in the colimit system is an
additive isomorphism as discussed in [1]. The main motivation will be the
usage of R+(M) with M = Mp where Mp := H∗,∗(Spec(F );Z/p) serves as
the motivic stand-in for Z/p. The identification of A relies on the charac-
teristic of the base field over which all spaces and spectra are defined to be
0 as explained in [42]. In any case, there is an A-linear map

ε : R+(Mp) −→ Mp

inducing an isomorphism

ε∗ : Ext∗,(∗,∗)A (Mp,Mp) ∼= Ext
∗,(∗,∗)
A (R+(Mp),Mp).

This follows from proposition 3.3.4 and theorem 3.3.6.

Next, in chapter 4, we realize R+(M2) using an inverse tower of mo-
tivic spectra L∞

−k and the A-module H∗,∗
c (L∞

−∞) := colimkH
∗,∗(L∞

−k) for
L∞
−∞ := holim−k L

∞
−k. This is done in the exact same manner as we saw

above with the only difference lying in the definition of the motivic Thom
spectra due to the fact that we may not work with orthogonal complements
in algebraic geometry. See 4.1.23 for the precise definition of L∞

−k. This

13
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particular tower requires that we restrict our work to motivic cohomology
with mod 2 coefficients if the algebraic identifications are to work out cor-
rectly. There is most likely a similar tower for the odd case but this eludes
the author at the moment. The main result is the existence of the A-linear
isomorphisms

R+(M2) ∼= Σ1,0H∗,∗
c (L∞

−∞)

which is a consequence of proposition 4.1.37.

Finally, in part 4.2, convergence properties of the motivic Adams spectral
sequence are reviewed and we check that all the building blocks going into
the argument above are indeed working. This limits the generality of the
base field F and forces char(F ) to be 0 as we are using theorem 1 in [21].
We look at the tower

L∞
−∞ �� · · · �� L∞

−1
�� L∞.

At each step there is a motivic Adams spectral sequence strongly converging

to the homotopy groups of
︷︸︸︷
L∞
−k , the 2, η-completion of L∞

−k where η ∈ π1,1(S)
is the algebraic Hopf map

A2 \ 0 → P1

sending (x, y) �→ [x : y]. The E2-terms are

Ext
∗,(∗,∗)
A (H∗,∗(L∞

−k),M2)

and we take the inverse limit of these spectral sequences to form a new

spectral sequence converging strongly to
︷ ︸︸ ︷
L∞
−∞ with E2-term

E
s,(t,∗)
2 (L∞

−∞) ∼= Ext
s,(t,∗)
A (H∗,∗

c (L∞
−∞),M2).

This is theorem 4.2.23. For this result to work properly we need to assume
that M2 is a finite dimensional vector space over Z/2 in each bidegree since
we need certain inverse limit groups to vanish.

Given these provisos, we state our main result:

Theorem 2.0.2. Assume that char(F ) = 0, that p = 2 and that M2 is a
finite dimensional vector space over Z/2 in each bidegree. Then the inverse
limit spectral sequence described above induces a π∗,∗(−)-isomorphism

S → Σ1,0L∞
−∞

after 2, η-completion.
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Proof. Since the inverse limit spectral sequence satisfies

E
s,(t,∗)
2 (L∞

−∞) ∼= Ext
s,(t,∗)
A (colim

k
H∗,∗(L∞

−k),M2)

and
R+(M2) ∼= Σ1,0H∗,∗

c (L∞
−∞),

the map

ε∗ : Ext∗,(∗,∗)A (M2,M2) ∼= Ext
∗,(∗,∗)
A (R+(M2),M2)

sets up an isomorphism between the E2-term of this spectral sequence and
the E2-term of the motivic Adams spectral sequence converging to the ho-
motopy groups of the 2, η-completion of the motivic sphere spectrum. The
reader may find a picture of the E2-term in appendix A in [14]. In particular,
we have

HomA(M2,M2) ∼= HomA(R+(M2),M2) = Ext
0,(0,0)
A (H∗,∗

c (Σ1,0L∞
−∞),M2).

The identity morphism generates

Hom0,0
A (M2,M2) = Z/2

and is an infinite cycle of the Adams spectral sequence of the completed
sphere: The E2-term is 0 when s or t− s is negative and so any differential
to or from this group is trivial. The same vanishing must then also hold for
the inverse limit spectral sequence. From this we know that

Hom0,0
A (R+(M2),M2) = Z/2

is generated by 1 ∈ Z/2 which corresponds to ε. This will then be an infinite
cycle.

This cycle will correspond to a class in π0,0(
︷ ︸︸ ︷
(Σ1,0L∞

−∞)). Hence there is
a map

f : S0,0 →
︷ ︸︸ ︷
Σ1,0L∞

−∞ .

Now, define

fk : S0,0 →
︷ ︸︸ ︷
Σ1,0L∞

−k

to be the composition

S0,0 →
︷ ︸︸ ︷
Σ1,0L∞

−∞ →
︷ ︸︸ ︷
Σ1,0L∞

−k

where the first map is always f . The induced maps

f∗k : H∗,∗(
︷ ︸︸ ︷
Σ1,0L∞

−k) = H∗,∗(Σ1,0L∞
−k) → H∗,∗(S0,0) = Mp
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are compatible so there is an induced map

f∗ : H∗,∗(Σ1,0L∞
−∞) → Mp

Given the correspondence between the two spectral sequences, this map is
ε under the identification H∗,∗

c (Σ1,0L∞
−∞) = R+(Mp). From the maps fk we

get induced maps of spectral sequences

E∗,(∗,∗)
r (S0,0) → E∗,(∗,∗)

r (Σ1,0L∞
−k)

At the E2-terms, these are

Ext
∗,(∗,∗)
A (Mp,Mp) → Ext

∗,(∗,∗)
A (H∗,∗(Σ1,0L∞

−k),Mp),

and they converge to the homomorphism

π∗,∗(
︷︸︸︷
S0,0) → π∗,∗(

︷ ︸︸ ︷
Σ1,0L∞

−k).

Passing to the limit, there is an induced map of spectral sequences

E∗,(∗,∗)
r (S0,0) → E∗,(∗,∗)

r (Σ1,0L∞
−∞)

given at the E2-term as

Ext
∗,(∗,∗)
A (Mp,Mp) → Ext

∗,(∗,∗)
A (H∗,∗

c (Σ1,0L∞
−∞),Mp).

It converges to the homomorphism

π∗,∗(
︷︸︸︷
S0,0) → π∗,∗(

︷ ︸︸ ︷
Σ1,0L∞

−∞) ∼= lim
k
π∗,∗(

︷ ︸︸ ︷
Σ1,0L∞

−k).

Under the identification H∗,∗
c (Y ) = R+(Mp), this map corresponds to ε so

the map of E2-terms is the familiar Ext-isomorphim. This implies that the
map of the Er-term is an isomorphism for all r which in turn implies the
isomorphism of abutments

π∗,∗(
︷︸︸︷
S0,0) → π∗,∗(

︷ ︸︸ ︷
Σ1,0L∞

−∞)

since the spectral sequences are strongly convergent.

At numerous places in the text we shall not restrict our work to the case
p = 2 and this is due to the fact that many considerations work perfectly
fine for odd p. At some point someone may construct an inverse tower of
spectra for these cases too so the computations made may come in handy.



Chapter 3

The algebra

3.1 The motivic Steenrod algebra and its dual

From now on we let F be a field of characteristic 0. There are several reasons
for this and we will comment on these matters in remark 3.1.7. The basic
algebraic object with which we will work isH∗,∗(Spec(F );Z/p), the bigraded
motivic cohomology ring of a point (with p a rational prime). An element
h in Ha,b(Spec(F );Z/p) is said to have degree a and weight b, or sometimes
bidegree (a, b). The notation bideg(h) = (a, b), deg(h) = a and wt(h) = b
may also be used. Following notational practice from [14], we let

Mp := H∗,∗(Spec(F );Z/p).

Some facts on Mp will need to be recollected and for this we define other
well-known algebraic objects:

Definition 3.1.1. For a field F , let

T (F×) := Z⊕ F× ⊕ (F× ⊗ F×)⊕ · · ·

be the free, graded algebra on the group F× of units of F . Define

KM
∗ (F ) := T (F×)/(x⊗ (1− x) : x ∈ F×, x 
= 0, 1)

This is a graded ring refered to as the Milnor K-theory of F .

Conventions have us denote the elements in KM
n (F ) by {x1, . . . , xn}. For

more on Milnor K-theory, the reader should see chapter 4 and 7 in [17].

Definition 3.1.2. For a field F , let

μp(F ) := Spec(F [x]/(xp − 1))

be the p-th roots of unity in F .

17
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Proposition 3.1.3. Let F be a field that admits resolution of singularities.
Then M

0,1
p

∼= μp(F ) and M
a,a
p

∼= KM
a (F )/p for nonnegative integers a.

Proof. The identification H0,1(Spec(F );Z/p) ∼= μp(F ) can be found in [28],
corollary 4.9. The second is a consequence of theorem 5.1 (in the same
reference) which states that

Ha,a(Spec(F );Z) ∼= KM
a (F ).

The long exact sequence in motivic cohomology associated to

0 −→ Z
∗p−→ Z

π−→ Z/p −→ 0

and the fact that Ha+1,a(Spec(F );Z) vanishes (lemma 3.2 part 2 in [38])
settles the result.

Let τ be a generator of M0,1
p

∼= μp(F ) and ρ be the class of {−1} in

M
1,1
p

∼= F×/(F×)p. We remark that ρ = 0 when p is odd. The following
result on Mp will be helpful to us:

Lemma 3.1.4. Let F be our field of characteristic 0. Then

Ma,b
p = 0

when a < 0 and when a > b.

Proof. The first condition relies on the Bloch-Kato conjecture. It implies
thatHa,b(Spec(F );Z/p) ∼= Ha

ét(Spec(F );μ
⊗b
p ), and this vanishes for negative

degrees by construction. The references for this is theorem 6.17 in [43]. The
second condition is theorem 3.6 in [28].

On the last result: One should read the comments in the introduction
of [45]. Here Weibel comments that this result rests on three lemmas from
an earlier version of Voevodskys paper, some of which are suspected to be
false. He states that these problems are circumvented by using a result from
his paper and gives references to the remaining lemmas.

Consider two bigraded modules M and N over Z/p, both with bidegrees
consisting of a degree and a weight. We define an isomorphism of bigraded
Z/p-modules

Twdeg :M ⊗Z/p N −→ N ⊗Z/p M

by the association Twdeg(m ⊗ n) = (−1)deg(m) deg(n)n ⊗ m, the twist map
that only takes degrees into account. The cup product makes Mp a bigraded
algebra over Z/p, commutative in that the following diagram commutes:

Mp ⊗Z/p Mp
Twdeg

��

∪
��

Mp ⊗Z/p Mp

∪
��

Mp
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In his paper [41], Voevodsky studies bistable operations on motivic coho-
mology with coefficients in Z/p. The two ways of suspending in H•(F ) add
complexity to the study of operations on H∗,∗(X;Z/p) with X ∈ H•(F ).
There are natural isomorphisms

σs : H
∗,∗(X;Z/p) −→ H∗+1,∗(ΣsX;Z/p)

and

σt : H
∗,∗(X;Z/p) −→ H∗+1,∗+1(ΣtX;Z/p),

sometimes refered to as the simplicial and algebraic suspension isomor-
phisms.

Definition 3.1.5. A bistable operation of bidegree (u, v) on H∗,∗(−;Z/p) is
a collection of natural transformations

θ : Ha,b(−;Z/p) −→ Ha+u,b+v(−;Z/p)

(for all (a, b) ∈ Z×Z) of functors on H•(F ) that commute with both σs and
σt.

The set of all such operations will be denoted Abist and this is a bigraded
noncommutative algebra over Z/p with multiplication given by composition
of operations.

Voevodsky constructs operations P k and Bk (for integers k ≥ 0) of
bidegrees (2k(p − 1), k(p − 1)) and (2k(p − 1) + 1, k(p − 1)) respectively.
These are shown to satisfy P 0 = 1, βBk = 0 and βP k = Bk where β is the
Bockstein operation

β : H∗,∗(X;Z/p) −→ H∗+1,∗(X;Z/p)

induced from the short exact sequence

0 −→ Z/p −→ Z/p2 −→ Z/p −→ 0.

Definition 3.1.6. Let A be the subalgebra of Abist generated by operations
of the form u �→ hu (h ∈ Mp) in addition to β and the P k’s. A is called the
motivic Steenrod algebra. The inclusion of bigraded Z/p-algebras

Mp � A

taking h to the map u �→ hu will be denoted η.

A complication for things to come is the fact that this inclusion is not
central, so A is not an algebra over Mp.
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Remark 3.1.7. At the beginning of this section we assumed that the char-
acteristic of our ground field F was 0 and lemma 3.1.4 was one reason why.
The bounds on Mp are needed for calculations later on. Another important
reason for this lies in the relationship between A and Abist. It is expected
that these coincide, but at the present, this can only be proved with our
basic assumption. See section 3.4 of [42] for more on this.

Following conventions from algebraic topology, one writes

Sq2k+ε := βεP k

(ε ∈ {0, 1}) when p = 2. These operations satisfy analogues of the Cartan
formula and Adem relations which we record for use in proving lemma 4.1.19
and proposition 4.1.37:

Proposition 3.1.8. Let X and Y be motivic spaces, x ∈ H∗,∗(X;Z/p),
y ∈ H∗,∗(Y ;Z/p). Then we have

P k(x× y) =

k∑
i=0

P i(x)× P k−i(y),

when p is odd, and

Sq2i(x× y) =
i∑

a=0

Sq2a(x)× Sq2i−2a(y) + τ
i−1∑
b=0

Sq2b+1(x)× Sq2i−2b−1(y),

Sq2i+1(x× y) =

i∑
a=0

(Sq2a+1(x)× Sq2i−2a(y) + Sq2a(x)× Sq2i−2a−1(y))

+ ρ
i−1∑
b=0

Sq2b+1(x)× Sq2i−2b−1(y)

when p = 2.

Proof. Proposition 9.7 in [41].

Theorem 3.1.9. Let 0 < a < 2b. Then we have

SqaSqb =

�a/2	∑
i=0

(
b− 1− i

a− 2i

)
Sqa+b−iSqi
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when a is odd and

SqaSqb =

�a/2	∑
i=0

τ εi
(
b− 1− i

a− 2i

)
Sqa+b−iSqi

+ ρ

�a/2	∑
i=1,i≡b(2)

(
b− 1− i

a− 2i

)
Sqa+b−i−1Sqi

when a is even. Here,

εi =

{
1 if b is even and i is odd,

0 otherwise.

Proof. This is theorem 10.2 in [41]. However, the statement given there is
incorrect. Voevodsky follows Steenrod’s work in [16] but the terms involving
the factor ρ should read as above.

Theorem 3.1.10. Let p be an odd prime. If 0 < a < pb, we have

P aP b =

�a/p	∑
i=0

(−1)a+i

(
(p− 1)(b− i)− 1

a− pi

)
P a+b−iP i

If 0 < a ≤ pb then

P aβP b =

�a/p	∑
i=0

(−1)a+i

(
(p− 1)(b− i)

a− pi

)
βP a+b−iP i

+

�(a−1)/p	∑
i=0

(−1)a+i−1

(
(p− 1)(b− i)− 1

a− pi− 1

)
P a+b−iβP i

Proof. This is theorem 10.3 in [41]. There, one finds one of the index bound-
aries stated incorrectly: The Adem relation for P aβP b reads 0 ≤ a ≤ pb
where it should be as above.

As a consequence, similar to the situation for the classical Steenrod al-
gebra, one may show that as a left Mp-module, A is freely generated by the
admissible monomials in these generators (this is lemma 11.1 and corollary
11.5 in [41]): For p odd, a monomial

P I := βε0P k1 · · ·P ksβεs
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is said to be admissible if the sequence I = (ε0, k1, . . . , ks, εs) of nonnegative
integers satifies ki ≥ pki+1 + εi for 1 ≤ i < s. Here, εi ∈ {0, 1}. For p = 2
monomials of the form

SqI := Sqk1 · · ·Sqks
are said to be admissible if the sequence I = (k1, . . . , ks) of nonnegative
integers satifies ki ≥ 2ki+1 for 1 ≤ i < s. We will use the notation
A ∼= Mp{P I | I admissible} when p is odd and A ∼= Mp{SqI | I admissible}
when p = 2 with I admissible according to the two different cases.

Definition 3.1.11. Let M be a bigraded left Mp-module. If M is generated
by some set {bI} and only finitely many of these lie in any given bidegree
then M is said to have finite type. Similarly, a bigraded right Mp-module is
said to have finite type if only finitely many of its right generators has any
given bidegree.

An inspection of the bidegrees of the admissible monomials given above
reveals that A is a free left Mp-module and of finite type. It is also bounded
below by both axes in the degree-weight plane.

A can be given more structure, as expected: Voevodsky defines a mor-
phism of rings (this is lemma 11.8 in [41])

Δ : A −→ (A⊗l A)r

defined as follows: Given a ∈ A, Δ(a) is equal to Σa′⊗a′, the unique element
such that

a(xy) = Σ(−1)deg(a
′)pa′(x)a′′(y)

for any x ∈ H̃p,∗(X) and y ∈ H̃∗,∗(Y ). Here A⊗lA is taken to mean the left
module tensor product and (A ⊗l A)r is a submodule (over Z/p) of A ⊗l A
carrying a ring-structure induced from A⊗Z/p A:

Definition 3.1.12. Let M and N be bigraded, left Mp-modules. Then M⊗l

N is defined as the coequalizer in the following diagram:

Mp ⊗Z/p M ⊗Z/p N
aM⊗N��

Twdeg ⊗N
��

M ⊗Z/p N ��M ⊗l N

M ⊗Z/p Mp ⊗Z/p N

M⊗aN

��

where the a?-maps are given by the left action of Mp on M and N .

The existence and uniqueness of Δ is proved following the proof Milnor
gives in part 3 of [29]. Where Milnor proves uniqueness using the vanishing
of the cohomology groups of Eilenberg-Maclane spaces, Voevodsky uses a
similar condition of the motivic cohomology of classifying spaces which is
given in [41] lemma 11.4.
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The topological steenrod algebra admits a multiplicative coproduct so
one could be tempted to think that this applies to A as well. However, since
Mp is not central in A, Δ is not left Mp-linear, hence we must be careful
when we want to check that Δ is multiplicative. In [41] part 11, Voevodsky
observes that we can let A⊗l A act on A⊗Z/p A by the formula

(a⊗ b)(c⊗ d) = (−1)deg(b) deg(c)ac⊗ bd

where a⊗ b ∈ A⊗lA and c⊗d ∈ A⊗Z/pA, and pass to the quotient A⊗lA.
Then Δ lands in a special subset of A⊗l A:

Definition 3.1.13. Let f ∈ A ⊗l A and x, y ∈ A ⊗Z/p A with the property
that x and y are identified in A⊗l A under the projection

A⊗Z/p A −→ A⊗l A.

Then f is operator-like if we have fx = fy ∈ A⊗lA. The collection of such
elements is denoted (A⊗l A)r.

One observes that (A⊗lA)r is in fact a ring: For x, y as in the definition
and f, g operator-like, we have fx = fy and hence gfx = gfy in A⊗l A.

For a bigraded right Mp-module M and a bigraded left Mp-module N ,
the notation M ⊗Mp N will be reserved for the standard way of forming
tensor products of graded modules over the bigraded Z/p-algebra Mp by
which we mean the coequalizer in the diagram

M ⊗Z/p Mp ⊗Z/p N
aM⊗N��

M⊗aN

��M ⊗Z/p N ��M ⊗Mp N

Remark 3.1.14. The considerations on the different tensor products over
Mp come about as A⊗lA is not an Mp-algebra since Mp is not in the center
of A. We also remark that our notation is different from the one used by
Voevodsky in [41] where he uses A⊗Mp A instead of our A⊗lA and A⊗r,lA
instead of our A⊗Mp A.

Definition 3.1.15. For any left Mp-module M we define

M∨ := HomMp(M,Mp)

(left Mp-module homomorphisms).

We will refer to this process as Mp-dualization and say that M∨ is the
Mp-dual of M . M∨ is a left module over Mp with its left action given
by (hf)(m) := (−1)deg(f) deg(h)f(hm) (h ∈ Mp, f ∈ HomMp(M,Mp) and
m ∈M). If in additionM is a bimodule overMp,M

∨ is also a bimodule with
a right action given by (fh)(m) := (−1)deg(m) deg(h)f(mh). These actions
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produce elements in HomMp(M,Mp) since Mp is graded commutative: It is
obvious that these maps respect addition of elements in M so we check that
they are graded left Mp-linear maps. For h′ ∈ Mp we have

(hf)(h′m) = (−1)deg(f) deg(h)f(hh′m)

= (−1)deg(h) deg(h
′)(−1)deg(f) deg(h

′)h′(−1)deg(f) deg(h)f(hm)

= (−1)(deg(h)+deg(f)) deg(h′)h′(hf)(m)

and

(fh)(h′m) = (−1)deg(h
′m) deg(h)f(h′mh)

= (−1)(deg(h
′)+deg(m)) deg(h)(−1)deg(f) deg(h

′)h′f(mh)

= (−1)(deg(f)+deg(h)) deg(h′)h′(−1)deg(m) deg(h)f(mh)

= (−1)(deg(f)+deg(h)) deg(h′)h′(fh)(m)

so these maps are indeed homomorphisms of graded left Mp-modules.

Remark 3.1.16. Now, consider A∨. The motivic Steenrod algebra A is a
free left Mp-module on the admissible monomials P I or SqI (where I is an
admissible sequence). This implies that

A∨ ∼=
∏
I

Mp{SqI}∨ or A∨ ∼=
∏
I

Mp{P I}∨

as a left module over Mp. Because of our assumptions on F and the fact
that A is of finite type and in a sense bounded below, the limitations on
bidegrees will, as we will prove later, imply that

A∨ ∼=
⊕
I

Mp{SqI}∨ or A∨ ∼=
⊕
I

Mp{P I}∨

and so A∨ has a basis consisting of the Mp-dual basis of {SqI | I admissible}
or {P I | I admissible}. Thus A∨ is a free left Mp-module. From bidegree
considerations, it also of finite type and bounded below. This also im-
plies that A ∼= (A∨)∨ as left Mp-modules. We define {ϑ(I) | I admissible}
to be the Mp-dual basis of {SqI | I admissible} when p = 2 and {P I |
I admissible} when p is odd.

There is a composition of maps

A∨ ⊗Z/p A
∨ � A∨ ⊗l A

∨ G−→ (A⊗l A)
∨ −→ ((A⊗l A)r)

∨

where the first map is the quotient map defining the coequalizer, the second
map is defined by letting

G(α⊗ β)(a⊗ b) = (−1)deg(a) deg(β)α(a)β(b)

(α, β ∈ A∨ and a, b ∈ A) and the third is the Mp-dual of the inclusion. The
composite will be denoted G.
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Definition 3.1.17. Let

φ : A∨ ⊗Z/p A
∨ −→ A∨

be defined as G concatenated with the Mp-dual of Δ.

Proposition 3.1.18. The map φ gives A∨ the structure of an associative
algebra over Z/p. It is graded commutative with respect to the degree.

Proof. This is proposition 12.1 in [41].

To go further we need some helpful results:

Lemma 3.1.19. Let M be a bigraded Mp-bimodule and N a bigraded left
Mp-module. Then there is a morphism of bigraded left Mp-modules

θ :M∨ ⊗Mp N
∨ −→ (M ⊗Mp N)∨

defined by letting

θ(f ⊗ g)(m⊗ n) = (−1)deg(g) deg(m)f(mg(n)),

where f ∈M∨, g ∈ N∨, m ∈M and n ∈ N .

Proof. The morphism is a specialization of lemma 3.3 a) in [5].

Lemma 3.1.20. Let M and N be as in the last lemma and assume that N
is free on a set {bI}. If the canonical morphisms

M∨ ⊗Mp

⊕
I

Mp{bI}∨ −→M∨ ⊗Mp

∏
I

Mp{bI}∨

and ⊕
I

(M ⊗Mp Mp{bI})∨ −→
∏
I

(M ⊗Mp Mp{bI})∨

(of left Mp-modules) are isomorphisms, then θ is an isomorphism.

Proof. We argue with a commutative diagram:

M∨ ⊗Mp N
∨

A
		 ��

θ �� (M ⊗Mp N)∨

E
��

M∨ ⊗Mp

∏
I

Mp{bI}∨ ��
∏
I

(M∨ ⊗Mp Mp{bI}∨)
∏
I
θ

��
∏
I

(M ⊗Mp Mp{bI})∨

M∨ ⊗Mp

⊕
I

Mp{bI}∨
B




C ��
⊕
I

(M∨ ⊗Mp Mp{bI}∨)





⊕
I

θ

��
⊕
I

(M ⊗Mp Mp{bI})∨
D
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If N ∼= ⊕
I

Mp{bI} then N∨ ∼= ∏
I

Mp{bI}∨ and

M∨ ⊗Mp N
∨ ∼=M∨ ⊗Mp

∏
I

Mp{bI}∨.

This isomorphism is named A in the diagram. We also have

M ⊗Mp N
∼=M ⊗Mp

⊕
I

Mp{bI} ∼=
⊕
I

M ⊗Mp Mp{bI}

so

(M ⊗Mp N)∨ ∼=
∏
I

(M ⊗Mp Mp{bI})∨

which is isomorphism E . That C is an isomorphism is general theory. Now
θ is an isomorphism when N is free on one generator b since we have the
following commutative diagram:

M∨ ⊗Mp (Mp{b})∨
θ

��

∼= ��M∨ ⊗Mp Mp{b}∨
∼= �� Σ− bideg(b)M∨

∼=
��

(M ⊗Mp Mp{b})∨ (Σbideg(b)M)∨
∼=��

Thus the morphism
⊕
I

θ must also be an isomorphism. If we can show

that morphisms B and D are isomorphims, then θ is also an isomorphism
by commutativity of the diagram. These are direct consequences of the
assumptions in the hypothesis.

Lemma 3.1.21. The conditions of the last lemma are met when M = N =
A and hence there is an isomorphism

θ : A∨ ⊗Mp A
∨ −→ (A⊗Mp A)

∨

of left modules over Mp.

Proof. We check that there are isomorphisms⊕
I

Mp{ϑ(I)} ∼=
∏
I

Mp{ϑ(I)}

and ⊕
I

(A⊗Mp Mp{P I})∨ ∼=
∏
I

(A⊗Mp Mp{P I})∨
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where {P I} is the basis of admissible monomials and {ϑ(I)} is the Mp-dual
basis. We fix a bidegree (i, j) and argue with a picture:

� = (i, j)

•

deg
��

wt





Here, the horizontal axis represents degrees and the vertical axis represents
weights. An element in (

∏
I

Mp{ϑ(I)})i,j , represented by the triangle, will

only have non-zero components such as the ones represented by the bullet
which lies on or below the dashed line of slope 1/2(p− 1), above the degree-
axis and of degree ≤ i. Since there are only finitely many of these, we get
the wanted isomorphism⊕

I

Mp{ϑ(I)} ∼=
∏
I

Mp{ϑ(I)}.

Similarly, we check that
⊕
I

(A ⊗Mp Mp{P I})∨ ∼= ∏
I

(A ⊗Mp Mp{P I})∨, or
equivalently

⊕
I

(A{P I})∨ ∼= ∏
I

(A{P I})∨. A is concentrated inside the first

quadrant of the diagram above, so the elements of the basis that contribute
to any given bidegree (i′, j′) lie within the rectangle with the origin and
(i′, j′) diagonally opposite to each other, so there can only be finitely many.

A∨ can be given more structure: The multiplication of A

μ : A⊗Z/p A −→ A

satisfies μ(ah⊗ a′) = μ(a⊗ ha′) for all h ∈ Mp, so we obtain a map

μ : A⊗Mp A −→ A.
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Taking the Mp-dual map and composing with the inverse of θ (since θ is
an isomorphism in this case) we get a morphism of bigraded, commutative
Z/p-algebras ψ and a commutative diagram

A∨ ψ ��
μ∨

��

A∨ ⊗Mp A
∨

(A⊗Mp A)
∨

θ−1




.

The fact that ψ is multiplicative is lemma 12.10 in [41]. By dualizing the
inclusion η : Mp � A we get a morphism of bigraded, commutative Z/p-
algebras ε : A∨ −→ Mp.

In contrast to the situation for the dual of the classical Steenrod algebra,
there is more than one unit: First, let

ηL : Mp −→ A∨

be the association given by sending h ∈ Mp to the morphism a �→ ha(1Mp)
with a ∈ A.

Secondly, there is another construction one may consider. Following the
work of John Milnor on the dual of the classical Steenrod algebra in [29], we
can construct a morphism of rings the following way: For a smooth scheme
X over F , define (see page 44 in [41])

λX : H∗,∗(X;Z/p) −→ H∗,∗(X;Z/p)⊗l A
∨

by letting λX(h) =
∑
I

P I(h)⊗ ϑ(I) where the I’s are admissible. This sum

is finite since Ha,b(X;Z/p) = 0 when a > b+ dim(X) (theorem 3.6 in [28])
so only finitely many of the P I(h) are nonzero. When X = Spec(F ), we get
a morphism of Z/p-algebras

ηR : Mp −→ A∨

taking

h �→
∑
I

P I(h)ϑ(I).

This is the right unit of A∨. Because of all the structure A∨ has, the following
definitions are natural (see Ravenels book, [32] appendix 1):

Definition 3.1.22. Let K be a commutative ring. A (bi)graded commu-
tative bialgebroid over K is a pair (D,Γ) of (bi)graded commutative K-
algebras with structure maps such that for any other (bi)graded commutative
K-algebra E, the sets HomK−alg(D,E) and HomK−alg(Γ, E), morphisms of
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(bi)graded commutative K-algebras, are the objects and morphisms of a cat-
egory. The structure maps are

ηL : D −→ Γ

ηR : D −→ Γ

ψ : Γ −→ Γ⊗D Γ

ε : Γ −→ D

where ψ, ε, ηL and ηR are morphisms of (bi)graded K-algebras. Γ is a D-
bimodule with its left D-module structure given by ηL and right D-module
structure given by ηR. These maps must satisfy

• εηL = 1D and εηR = 1D.

• (1Γ ⊗ ε)ψ = 1Γ and (ε⊗ 1Γ)ψ = 1Γ

• (1Γ ⊗ ψ)ψ = (ψ ⊗ 1Γ)ψ

Definition 3.1.23. A morphism in the category of (bi)graded commutative
bialgebroids is a pair of morphisms of (bi)graded K-algebras

(δ, γ) : (D,Γ) −→ (D′,Γ′)

making the diagrams

D
η? ��

δ
��

Γ

γ

��
D′ η? �� Γ′

(where ? may be replaced with L or R ),

Γ
ψ ��

γ

��

Γ⊗D Γ

γ⊗γ

��
Γ′ ψ �� Γ′ ⊗D′ Γ′

and

Γ
ε ��

γ

��

D

δ
��

Γ′ ε �� D′

commute.
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Remark 3.1.24. The need for these definitions lies in the fact that the
existence of a conjugation χ, which is a part of the definition of a Hopf
algebroid, is troublesome. It must satisfy χ ◦ ηL = ηR which is seen to be
true here, but we must also have χ◦ηR = ηL which is unclear for all of Abist.
Thus we limit ourselves to consider the structures in the definition given
above. We should mention that it is possible to define χ for A as discussed
in section 4.3 of [20].

Definition 3.1.25. Let (D,Γ) be a (bi)graded commutative bialgebroid over
K. Then a (bi)graded left comodule M over Γ is a (bi)graded left D-module
together with a (bi)graded D-linear morphism ψ : M −→ Γ ⊗D M with ψ
counital and coassociative. Elements m ∈ M such that ψ(m) = 1 ⊗m are
said to be left primitive. One can define (bi)graded right comodules in an
entirely similar way. A comodule algebra M is a comodule which is also
a commutative associative D-algebra such that the structure map ψ is an
algebra map.

Definition 3.1.26. Let (D,Γ) be a (bi)graded commutative bialgebroid over
K and let I be a (bi)graded ideal in Γ. Then I is a (bi)graded bialgebroid
ideal if

1. ψ(I) ⊂ Ker(π⊗π) where π⊗π : Γ⊗DΓ −→ Γ/I⊗DΓ/I is the obvious
morphism, and

2. ε(I) = 0.

Lemma 3.1.27. If (D,Γ) be a (bi)graded commutative bialgebroid over K
and let I be a (bi)graded bialgebroid ideal. Then (D,Γ/I) is a (bi)graded
commutative bialgebroid and (1D, π) : (D,Γ) −→ (D,Γ/I) is a morphism of
commutative bialgebroids.

Proof. One defines η′L := ηL ◦ π and η′R := ηR ◦ π, both morphisms of K-
algebras D −→ Γ/I. These obviously make the following diagram commute:

Γ
π �� Γ/I

D

η?

��

η′?

��

.

The fact that Γ/I inherits the structure of a K-algebra is general theory
and the assumption ε(I) = 0 induces a morphism of K-algebras
ε′ : Γ/I −→ D with a commutative diagram similar to the one above.

Similarly, the composite Γ
ψ−→ Γ ⊗D Γ

π⊗π−−−→ Γ/I ⊗D Γ/I and the condition
ψ(I) ⊂ Ker(π ⊗ π) induces a morphism of K-algebras ψ′ : Γ/I −→ Γ/I ⊗D

Γ/I making the right diagrams commute.
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In motivic homotopy theory, one can construct the classifying space,
BG, of a linear algebraic group G over F : Given a faithful representation

G→ GL(V ),

we can form the affine space

A(V ) := Spec(Sym(V ∨))

on which G acts. Let Ui ⊂ A(V )i be the open subset where G acts freely.
There are closed immersions Ui → Ui+1 and we define

BG := colimi Ui/G

where the quotients are taken in the category of sheaves. There are other
candidates for the notion of classifying space as described in [31], section
4. The construction described above serves as a geometric approximation
to the models defined in a more topological way. The different models are
however equivalent in H•(F ) in the cases considered here.

To calculate the dual motivic Steenrod algebra we will have to calculate
our morphism of rings

λX : H∗,∗(X;Z/p) −→ H∗,∗(X;Z/p)⊗l A
∨

with X = Bμp. Let λ be the resulting morphism. Voevodsky has the
following result:

Theorem 3.1.28. Let F be a field of characteristic 0. Then there are classes
u ∈ H1,1(Bμp;Z/p) and v ∈ H2,1(Bμp;Z/p) and isomorphisms

H∗,∗(Bμ2;Z/2) ∼= M
∗,∗
2 [u, v]/(u2 + ρu+ τv)

and
H∗,∗(Bμp;Z/p) ∼= M∗,∗

p [u, v]/(u2)

when p is odd.

Proof. These are special cases of theorem 6.10 in [41].

In [41] section 12, Voevodsky follows Milnors computation in [29] and
shows that there are unique elements

τi ∈ (A∨)2pi−1,pi−1

and
ξj ∈ (A∨)2(pj−1),pj−1

such that

λ(u) = u⊗ 1 +
∞∑
i=0

vp
i ⊗ τi



32 CHAPTER 3. THE ALGEBRA

and

λ(v) =

∞∑
j=0

vp
j ⊗ ξj .

Now, define
Γp := Mp [τi, ξj | i ≥ 0, j ≥ 1] /(τ2i )

when p is odd and

Γ2 := M2 [τi, ξj | i ≥ 0, j ≥ 1] /(τ2i + τξi+1 + ρτi+1 + ρτ0ξi+1).

In both cases there is a morphism of bigraded, commutative algebras

Mp � Γp

over Z/p given by the inclusion of Mp into Mp [τi, ξj | i ≥ 0, j ≥ 1] followed
by reduction modulo the relevant ideal. It will be denoted ηpL.

Consider the pair (Mp,Γp) of bigraded commutative algebras over Z/p.
We define a morphism

ψΓp : Γp −→ Γp ⊗Mp Γp

of Z/p-algebras taking

ψΓp(τk) = τk ⊗ 1 +
k∑

i=0

ξp
i

k−i ⊗ τi

ψΓp(ξl) =
l∑

j=0

ξp
j

l−j ⊗ ξj

with the convention that ξ0 = 1 in these formulae.

εΓp : Γp −→ Mp

is defined by sending all τi’s and ξj ’s with the exception of ξ0 to zero. To-
gether with the usual algebra structures over Z/p these maps are very close
to giving us a bialgebroid.

Theorem 3.1.29. (Mp,Γp) can be given the structure of a bigraded, com-
mutative bialgebroid over Z/p. As such, the pair (Mp, A

∨) is isomorphic to
(Mp,Γp) for any rational prime p.

Proof. Following Milnor’s paper [29], Voevodsky ([41], theorem 12.6) proves
that there is an isomorphism of bigraded commutative Z/p-algebras

ι : Γp −→ A∨.

By construction, ηL, ψ and ε are morphisms of Z/p-algebras and as such,
they must take the same values as the corresponding morphisms ηpL, ψΓp

and εΓp . For (Mp,Γp) to be a bialgebroid of the wanted type, we define ηpR
to be the composite ηR ◦ ι. This morphism must take the same values as ηR
so we are done.
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Remark 3.1.30. From this point on we identify Γp and A∨ under this
isomorphism.
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3.2 Finitely generated subalgebras of A

Our motivation for this section will be to extend the work of Adams, Gu-
nawardena and Miller on the classical Steenrod algebra using a construction
of Singer (see [1] for all this). Starting with a left A-module M , there is an
algebraic object R+(M) we will study. Its construction needs some prelim-
inary work before being defined.

Definition 3.2.1. For n ≥ 0, define the ideals I(n) ⊂ A∨ where

I(n) := (τn+1, τn+2, . . . , ξ
pn

1 , ξp
n−1

2 , . . . , ξpn, ξn+1, ξn+2, . . . ).

We define
A∨(n) := A∨/I(n)

When n = −1, we let A∨(−1) := Mp.

The ideals I(n) and algebras A∨(n) are direct analogs of the ones found
in chapter 2 and 6 of [16]. A∨(n) is a free left module over Mp with a basis
consisting of monomials

ξIτJ = ξi11 · · · ξinn τ j00 · · · τ jnn
with I := (i1, . . . , in), J := (j0, . . . , jn), 0 ≤ ik < pn+1−k and 0 ≤ jl ≤ 1. We
wish to study quotients of this sort and descend the bialgebroid structure of
A∨ along the projection π : A∨ −→ A∨(n):

Lemma 3.2.2. For each n ≥ 0, I(n) is a bigraded bialgebroid ideal.

Proof. First, ε(I(n)) = 0 by definition. We want to see that (π⊗π)ψ(I(n)) =
0. Since ψ is a Z/p-algebra homomorphism, it suffices to check this on the
generators of the ideal. We have

ψ(τk) = τk ⊗ 1 +
k∑

i=0

ξp
i

k−i ⊗ τi.

The fact that k ≥ n + 1 implies that all the terms of the sum are in the
image of I(n)⊗MpA

∨ ⊂ A∨⊗MpA
∨ except the one where k− i = 0, but this

is an element in the image of A∨⊗Mp I(n) ⊂ A∨⊗Mp A
∨ (this is an injection

since Tor
Mp

1,(∗,∗)(A
∨, A∨(n)) ∼= 0 in the relevant long exact sequence). Thus

all these elements are sent to zero by π ⊗ π. To conclude we perform the
same check for the other generators of the ideal. We have:

ψ(ξp
s

l ) =
l∑

i=0

ξp
j+s

l−j ⊗ ξp
s

j

Again, if l + s ≥ n + 1, the terms are all in the image of I(n) ⊗Mp A
∨ ⊂

A∨⊗MpA
∨ except when l−j = 0, and for this one index, we have an element

of A∨ ⊗Mp I(n) ⊂ A∨ ⊗Mp A
∨.
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Remark 3.2.3. For n ≥ 0, the last result and lemma 3.1.27 imply that we
have morphisms of Z/p-algebras

φn : A∨(n)⊗Z/p A
∨(n) −→ A∨(n)

and
ψn : A∨(n) −→ A∨(n)⊗Mp A

∨(n),

and for each n, these form the structure maps of a bigraded commutative
bialgebroid (Mp, A

∨(n)). The pair

(Mp, π) : (Mp, A
∨) −→ (Mp, A

∨(n))

forms a morphism in this category.

There are other ideals in A∨ relevant to our construction:

Definition 3.2.4. For n ≥ 0, define ideals J(n) ⊂ A∨ where

J(n) := (τn+1, τn+2, . . . , ξ
pn−1

2 , . . . , ξpn, ξn+1, ξn+2, . . . ).

We let
C∨(n) := A∨/J(n)

in addition to
B∨(n) := C∨(n)

[
ξ−1
1

]
.

The ideals J(n) and associated modules B∨(n) are defined in the exact
same manner as the ones found in [1] section 2.

Observe that for the ξp
s

r in these ideals, we mean to take the ones where
n + 1 ≤ r + s with 2 ≤ r, so for n = 0, ξ1 is not in J(0). As basic
examples to keep in mind, we get C∨(0) ∼= ⊕

Mp{ξk1 , τ0ξk1} for k ≥ 0, and
B∨(0) ∼= ⊕

Mp{ξk1 , τ0ξk1} for k ∈ Z.

C∨(n) and B∨(n) are free left Mp-modules and have monomial bases
consisting of the elements

ξIτJ = ξi11 · · · ξinn τ j00 · · · τ jnn
with I := (i1, . . . , in), J := (j0, . . . , jn), 0 ≤ i1, 0 ≤ il < pn+1−l for 1 < l ≤ n
and 0 ≤ jl ≤ 1, and

ξIτJ = ξi11 · · · ξinn τ j00 · · · τ jnn
with I := (i1, . . . , in), J := (j0, . . . , jn), i1 ∈ Z, 0 ≤ il < pn+1−l for 1 < l ≤ n
and 0 ≤ jl ≤ 1 respectively.

We will see that C∨(n) and B∨(n) both carry more structure:

Lemma 3.2.5. ψ(J(n)) lies in the sum of the images of I(n)⊗Mp A
∨ and

A∨ ⊗Mp J(n) in A
∨ ⊗Mp A

∨.
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Proof. We have

ψ(τk) = τk ⊗ 1 +
∑
i

ξp
i

k−i ⊗ τi.

If k ≥ n + 1, then τk ⊗ 1 ∈ I(n) ⊗Mp A
∨ and ξp

i

k−i ∈ I(n) except possibly
when i = k. But for this case one has 1 ⊗ τk ∈ A∨ ⊗Mp J(n) so our result
holds for these generators. Similarly we have

ψ(ξp
s

l ) =
∑
j

ξp
j+s

l−j ⊗ ξp
s

j

Here, l + s ≥ n + 1 so ξp
j+s

l−j ∈ I(n) for j 
= l. For this single index, we get

the element 1⊗ ξp
s

l which lies in A∨ ⊗Mp J(n).

Lemma 3.2.6. ψ(J(n)) lies in the sum of the images of J(n)⊗Mp A
∨ and

A∨ ⊗Mp I(n− 1) in A∨ ⊗Mp A
∨.

Proof. We have

ψ(τk) = τk ⊗ 1 +
∑
i

ξp
i

k−i ⊗ τi

k ≥ n+1 implies that all terms are in the image of J(n)⊗MpA
∨ ⊂ A∨⊗MpA

∨

except when k − i = 1 or k − i = 0 in which case these two terms lie in the
image of A∨ ⊗Mp I(n− 1) ⊂ A∨ ⊗Mp A

∨. Similarly we have

ψ(ξp
s

l ) =
∑
j

ξp
j+s

l−j ⊗ ξp
s

j ,

and here all terms lie in the image of J(n) ⊗Mp A
∨ except when l − j < 2.

For the two last terms we have elements in the image of
A∨ ⊗Mp I(n− 1).

The last two results imply that from the composites

A∨ ψ �� A∨ ⊗Mp A
∨ π⊗π �� A∨(n)⊗Mp C

∨(n)

and

A∨ ψ �� A∨ ⊗Mp A
∨ π⊗π �� C∨(n)⊗Mp A

∨(n− 1),

we get induced Z/p-algebra homomorphisms

ψn
l : C∨(n) −→ A∨(n)⊗Mp C

∨(n)

and
ψn
r : C∨(n) −→ C∨(n)⊗Mp A

∨(n− 1),

making C∨(n) a left comodule algebra over A∨(n) and a right comodule
algebra over A∨(n− 1).
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We have diagrams

C∨(n)
ξp

n

1 ∗
��

ψn
l

��

C∨(n)

ψn
l

��
A∨(n)⊗Mp C

∨(n)
A∨(n)⊗(ξp

n

1 ∗)
�� A∨(n)⊗Mp C

∨(n)

and

C∨(n)
ξp

n

1 ∗
��

ψn
r

��

C∨(n)

ψn
r

��
C∨(n)⊗Mp A

∨(n− 1)
(ξp

n

1 ∗)⊗A∨(n−1)

�� C∨(n)⊗Mp A
∨(n− 1)

where ξp
n

1 ∗ is the map that takes c �→ ξp
n

1 c for each element c ∈ C∨(n).

Lemma 3.2.7. These diagrams are commutative.

Proof. Let x ∈ A∨. For the composite

A∨ ψ−→ A∨ ⊗Mp A
∨ π⊗π−−−→ A∨(n)⊗Mp C

∨(n),

we have

(π ⊗ π)(ψ(ξp
n

1 x)) = (π ⊗ π)(ψ(ξp
n

1 )ψ(x)) = (1⊗ ξp
n

1 )(π ⊗ π)(ψ(x))

as can be explained by inspecting the expansion

ψ(ξp
n

1 ) = ξp
n

1 ⊗ 1 + 1⊗ ξp
n

1 .

Here the first term lies in I(n) ⊗Mp A
∨ and is projected to zero by π ⊗ π

so the diagram for ψn
l must commute. Similarly, from the inspection of the

composite

A∨ ψ−→ A∨ ⊗Mp A
∨ π⊗π−−−→ C∨(n)⊗Mp A

∨(n− 1)

we conclude that

(π ⊗ π)(ψ(ξp
n

1 x)) = (π ⊗ π)(ψ(ξp
n

1 )ψ(x)) = (ξp
n

1 ⊗ 1)(π ⊗ π)(ψ(x))

since the term 1 ⊗ ξp
n

1 ∈ A∨ ⊗Mp I(n − 1). Thus, the diagram for ψn
r must

commute.

In other words, multiplication by ξp
n

1 is a morphism of left A∨(n)-
comodules and a morphism of right A∨(n−1)-comodules. We recall a result
from commutative algebra:
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Proposition 3.2.8. Given a commutative ring R and a non-zerodivisor
r ∈ R, let S := {1, r, r2, . . .}. Then

S−1R ∼= colim(R
∗r−→ R

∗r−→ R −→ · · · ).

Proof. We use the proof of theorem 3.2.2 in [44]. The set S can be par-
tially ordered by divisibility and forms a filtered category with morphisms
HomS(s1, s2) = {s ∈ S | s1s = s2}. If we let F be the functor from S to

the category of R-modules defined by F (s) = R and F (s1)
∗s−→ F (s2), then

we can show that colimS F ∼= S−1R: Define maps R-linear homomorphisms
F (s) −→ S−1R by sending 1 �−→ 1

s . These form a compatible system of R-
linear maps so there is an induced map colimS F −→ S−1R. It is surjective
since a

s is in the image of F (s) −→ S−1R. Since we assumed that r was a
non-zerodivisor, the maps F (s) −→ S−1R are all injective. Filtered colimits
are exact and so the map colimS F −→ S−1R is also injective.

Remark 3.2.9. We quickly remark that since S−1M ∼= S−1R⊗R M and

(colimiMi)⊗R N ∼= colimi(Mi ⊗R N)

for a filtered diagram {Mi} of R-modules, the argument above implies that

S−1M ∼= colim(M
∗r−→M

∗r−→M −→ · · · ).

The remark implies B∨(n) can be regarded as a colimit of C∨(n) under
multiplication with ξp

n

1 : There are diagrams

C∨(n)
ψn
l ��

ξp
n

1
��

A∨(n)⊗Mp C
∨(n)

A∨(n)⊗(ξp
n

1 ∗)
��

C∨(n)
ψn
l ��

ξp
n

1��

A∨(n)⊗Mp C
∨(n)

A∨(n)⊗(ξp
n

1 ∗)��
...

��

...

��
B∨(n)

ψn
l �� A∨(n)⊗Mp B

∨(n)
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and

C∨(n)
ψn
r ��

ξp
n

1
��

C∨(n)⊗Mp A
∨(n− 1)

(ξp
n

1 ∗)⊗A∨(n−1)
��

C∨(n)
ψn
r ��

ξp
n

1��

C∨(n)⊗Mp A
∨(n− 1)

(ξp
n

1 ∗)⊗A∨(n−1)��
...

��

...

��
B∨(n)

ψn
r �� B∨(n)⊗Mp A

∨(n− 1)

coming from the universal property of B∨(n). Hence, B∨(n) becomes a
left A∨(n)-comodule and a right A∨(n− 1)-comodule through the coactions
given at each step in the colimit.

There are inclusions of ideals (0) ⊂ J(n) ⊂ J(n − 1), in turn inducing
horizontal surjective ring maps

A∨ �� �� C∨(n) �� ��
��

��

C∨(n− 1)
��

��
B∨(n) �� �� B∨(n− 1)

At each stage, there are short exact sequences

0 �� J(n− 1)

J(n)
�� A

∨

J(n)
�� A∨

J(n− 1)
�� 0

C∨(n) C∨(n− 1)

and

0 �� (
J(n− 1)

J(n)
)[ξ−1] �� (

A∨

J(n)
)[ξ−1] �� (

A∨

J(n− 1)
)[ξ−1] �� 0

B∨(n) B∨(n− 1)

The projection
C∨(n) → C∨(n− 1)

is a map of A∨(n − 1)-A∨(n − 2)-bicomodules where we consider C∨(n) as
a bicomodule via the maps

C∨(n) �� A∨(n)⊗Mp C
∨(n)

π⊗C∨(n)�� A∨(n− 1)⊗Mp C
∨(n)
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and

C∨(n) �� C∨(n)⊗Mp A
∨(n− 1)

C∨(n)⊗π�� C∨(n)⊗Mp A
∨(n− 2).

The structure maps and the maps of bicomodules induce the same structure
and maps for B∨(n) via the directed system defining it.

Definition 3.2.10. By application of HomMp(−,Mp) , we let

A(n) := HomMp(A
∨(n),Mp)

and likewise for B(n) and C(n).

This dualization gives A(n) the structure of a left module over Mp. In
addition, A(n) can be given the structure of a Z/p-algebra by the composite

A(n)⊗Mp A(n)
θ−→ (A∨(n)⊗Mp A

∨(n))∨
(ψn)∨−−−−→ A(n)

where we use the map θ from lemma 3.1.19. It is an isomorphism by the
same reasoning that we used in lemma 3.1.21. We end up with a chain of
Z/p-algebras

Mp = A(−1) � A(0) � · · · � A(n− 1) � A(n) � · · · � A

which are finite dimensional overMp. Both B(n) and C(n) inherit structures
of A(n)-A(n−1) bimodules and we produce a diagram dual to the one above
(with injective horizontal maps):

A C(n)���� C(n− 1)����

B(n)





B(n− 1)����





We recall that B∨(n) has a given monomial basis and let P k and βP k

be Mp-dual to (the classes) ξk1 and τ0ξ
k
1 in B∨(n) for k ∈ Z and n ≥ 0. The

projection
A∨ −→ C∨(n)

sends ξk1 �−→ ξk1 +J(n) and τ0ξ
k
1 �−→ τ0ξ

k
1 +J(n) (k ∈ N∪ 0). At each stage,

we saw that there was a projection

C∨(n) −→ C∨(n− 1),

and this map sends ξk1 + J(n) �−→ ξk1 + J(n− 1) and
τ0ξ

k
1 + J(n) �−→ τ0ξ

k
1 + J(n− 1). After localization, the morphism

B∨(n) −→ B∨(n− 1)

takes ξk1 + J(n) �−→ ξk1 + J(n− 1) and τ0ξ
k
1 + J(n) �−→ τ0ξ

k
1 + J(n− 1) for

all k ∈ Z.
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Lemma 3.2.11. At each step, the map

B(n− 1) −→ B(n)

sends P k, βP k ∈ B(n− 1) to P k, βP k ∈ B(n).

Proof. This is checked easily given the monomial generators: Since the class
of ξIτJ ∈ B∨(n) is sent to the class of ξIτJ ∈ B∨(n− 1) and P k(ξIτJ) (for
P k ∈ B(n− 1)) is zero unless ξIτJ = ξk1 , the composition of the map

B∨(n) −→ B∨(n− 1)

and P k ∈ B(n − 1) takes the same values as P k ∈ B(n) on the monomial
generators of B∨(n). Hence they are equal. The same argument shows that
the statement concerning βP k holds true.

Thus, the composition

B(0) −→ B(n) −→ A

obtained from dualizing

A∨ −→ B∨(n) −→ B∨(0)

sends P k and βP k to P k and βP k when k ≥ 0. If k < 0, the corresponding
generators map to 0 since the morphism B(n) −→ A factors through C(n).

Now, one must be careful when considering generators from different
sides. B∨(0) is free as a left module over Mp and is generated by the set
{ξk1 , τ0ξk1 | k ∈ Z}. In fact, more is true for these generators:

Lemma 3.2.12. As a right module over Mp, B
∨(0) is free on the generators

{ξk1 , τ0ξk1 | k ∈ Z}.

Proof. We construct a map of right Mp-modules

f : {ξk1τ ε0 | k ∈ Z, 0 ≤ ε ≤ 1}Mp −→ B∨(0)

and use theorem 2.6 of [6]. For this we impose filtrations on both sides and
construct a map of filtered modules. Secondly, we must verify that both
filtrations are exhaustive and Hausdorff and that the filtration on

{ξk1 , τ0ξk1 | k ∈ Z}Mp

renders it complete. One must also check that the induced map of filtration
quotients is an isomorphism.
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Filter B∨(0) ∼= Mp{ξk1τ ε0 | k ∈ Z, 0 ≤ ε ≤ 1} and
{ξk1τ ε0 | k ∈ Z, 0 ≤ ε ≤ 1}Mp by letting

F d := Mp{ξk1τ ε0 | k + ε ≥ d} ⊂ B∨(0)

and
F

d
:= {ξk1τ ε0 | k + ε ≥ d}Mp ⊂ {ξk1τ ε0 | k ∈ Z, 0 ≤ ε ≤ 1}Mp,

both decreasing filtrations. They are evidently exhaustive. Since both mod-
ules are sums, no element can be of infinite filtration except the trivial one.
Hence they are both Hausdorff. Define a map of right Mp-modules

f : {ξk1τ ε0 | k ∈ Z, 0 ≤ ε ≤ 1}Mp −→ B∨(0)

by sending
ξk1τ

ε
0m �−→ ηR(m)ξk1τ

ε
0 ,

where m ∈ Mp and ηR(m)ξk1τ
ε
0 means the class obtained after multiplication

in A∨ and application of the composition A∨ −→ C∨(0) −→ B∨(0). Since

ηR(m) = λ(m) =
∑
I

P I(m)ϑ(I)

for admissble I, we see that f(ξk1τ
ε
0m) = mξk1τ

ε
0 +

∑
m′ with elements in

the sum having higher filtration than ξk1τ
ε
0m. This implies that the map f

induces on filtration quotients is an isomorphism. Now, we want to evaluate
the functor R lim on the filtration on {ξk1τ ε0 | k ∈ Z, 0 ≤ ε ≤ 1}Mp to check
for completeness. This is done one bidegree at a time. Fixing one such, R lim
vanishes when d is large enough so by [6], proposition 2.2, the filtration is
complete and we are done.

Lemma 3.2.13. B(n) is a free left A(n)-module with generators

{P k | k ∈ Z, pn | k}

Proof. For a proof, we begin by considering the following diagram:

A∨(n)⊗Mp B
∨(n)

A∨(n)⊗ρ
��

B∨(n)
ψn
l��

��
A∨(n)⊗Mp

⊕
pn|k Mp{ξk1}

Here, ρ is defined to be B∨(n) −→ B∨(0) −→ ⊕
pn|k Mp{ξk1}, where the first

map comes from our projective system of modules and the second one is the
projection

B∨(0) ∼=
⊕
k∈Z

Mp{ξk1 , τ0ξk1} −→
⊕
pn|k

Mp{ξk1}.
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The composition of ψn
l and a projection tensored with an identity, both of

which are left A∨(n)-comodule maps, is also a map of left A∨(n)-comodules.
We will show that the composition in the diagram is an isomorphism of
Mp-modules, and so also a left A∨(n)-comodule isomorphism.

Define an isomorphism of Mp-modules

α : A∨(n)⊗Mp

⊕
pn|k

Mp{ξk1} −→ B∨(n)

by sending

ξ(i1,...,in)τ (j0,...,jn) ⊗Mp ξ
k
1 �−→ ξ(i1+k,...,in)τ (j0,...,jn).

An inverse may be given by sending

ξ(i
′
1,...,i

′
n)τ (j

′
0,...,j

′
n) �−→ ξ(b,i

′
2,...,i

′
n)τ (j

′
0,...,j

′
n) ⊗ ξap

n

1

where i′1 = apn + b with 0 ≤ b < pn.

We expand our diagram to

A∨(n)⊗Mp B
∨(n)

A∨(n)⊗ρ
��

B∨(n)
ψn
l��

��
A∨(n)⊗Mp

⊕
pn|k Mp{ξk1} A∨(n)⊗Mp

⊕
pn|k Mp{ξk1}
α





��

where the lower horizontal map is chosen so that the lower triangle com-
mutes. One may filter A∨(n)⊗Mp

⊕
pn|k Mp{ξk1}: Define

F d := Mp{m = m′ ⊗m′′ ∈ A∨(n)⊗Mp

⊕
pn|k

Mp{ξk1} | deg(m′′) ≥ d}

where m′ ∈ A∨(n) and m′′ ∈ ⊕
pn|k Mp{ξk1} are ranging over the elements of

their respective monomial bases as left modules over Mp. It is an exhaustive,
decreasing filtration which is obviously Hausdorff. The map ψn

l takes

m = ξIτJ = ξ(i1,i2,...)τ (j0,j1,...) ∈ B∨(n)

to the product
ψn
l (ξ

(b,i2,...))ψn
l (τ

(j0,j1,...))ψn
l (ξ

apn

1 )

with i1 = apn + b and 0 ≤ b < pn. Multiplying these together and applying
(A∨(n)⊗ ρ), we get a product of factors of the form

(ξ1 ⊗ 1 + 1⊗ ξ1)
b(ξ2 ⊗ 1 + ξp1 ⊗ ξ1)

i2 ∗ . . . ∗ (ξn ⊗ 1 + ξpn−1 ⊗ ξ1)
in ,

τ (j0,j1,...) ⊗ 1
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and either

(ξ1 ⊗ 1 + 1⊗ ξ1)
apn =

∑(
a

c

)
ξcp

n

1 ⊗ ξ
(a−c)pn

1

when a is non-negative, or 1 ⊗ ξap
n

1 when a is negative. This last property
follows from the definition of the left A∨(n)-comodule structure on B∨(n).
It was formed by taking the colimit of the left A∨(n)-comodule structure
on C∨(n) under the multiplication by ξp

n

1 . The element ξap
n

1 ∈ B∨(n) is
the image of 1 ∈ C∨(n) at the −a − th level of the defining tower and the
commutativity of the diagrams of towers defining B∨(n) and
A∨(n)⊗Mp B

∨(n) implies that

ψn
l : B∨(n) −→ A∨(n)⊗Mp B

∨(n)

satisfies ψn
l (ξ

apn

1 ) = 1 ⊗ ξap
n

1 . The product of the elements above can be
written

ξ(b,i2,...)τ (j0,j1,...) ⊗ ξap
n

1 +
∑

m′ ⊗m′′

with all the other terms having higher filtration so the induced map of fil-
tration quotients is an isomorphism. Again, we want to evaluate the functor
R lim on the given filtration to check for completeness. Working with bi-
graded modules, this is done one bidegree at a time. In a fixed bidegree,
there are no elements of infinite filtration and by the Mittag-Leffler criterion
the derived limit vanishes. By [6], proposition 2.2, the filtration is complete.
Hence, the map we are dealing with is an isomorphism of left Mp-modules.
Dualizing the first diagram in this proof we get

A(n)⊗Mp B(n)
φn
l �� B(n)

A(n)⊗Mp

∏
pn|k Mp{P k}

A(n)⊗ι



 ��

with φnl defined to be the Mp-dual of ψ
n
l composed with θ of lemma 3.1.19.

However, the module
∏

pn|k Mp{P k} is isomorphic to
⊕

pn|k Mp{P k} since

the generators P k all lie on a line of slope 1/2(p − 1) in the degree-weight
plane and will only contribute to finitely many bidegrees. All these facts
taken together imply the diagonal arrow is an isomorphism of left Mp-
modules.

Lemma 3.2.14. B(n) is a free right A(n− 1)-module with generators

{P k, βP k | k ∈ Z}
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Proof. The proof is similar to the one in the last lemma: Our diagram is
now

B∨(n)⊗Mp A
∨(n− 1)

π⊗A∨(n−1)

��

B∨(n)
ψn
r��

��
B∨(0)⊗Mp A

∨(n− 1) B∨(0)⊗Mp A
∨(n− 1)

γ





��

where π is the projection

(
A∨

J(n)
)[ξ−1] −→ (

A∨

J(0)
)[ξ−1].

There is an isomorphism of Mp-modules

γ : B∨(0)⊗Mp A
∨(n− 1) −→ B∨(n)

defined on our monomial basis by sending

ξl1τ
ε
0 ⊗ ξ(i1,...,in−1)τ (j0,...,jn−1) �−→ ξ(l

′,i1,...,in−1)τ (ε,j0,...,jn−1).

Here l′ = l − (
∑n−1

s=1 isp
s) − (

∑n−1
t=0 jtp

t), the unique integer such that the
association is degree-preserving.

We point out to the reader that this map shifts the exponents to the right
with the modification in the power of ξ1 given to obtain a degree preserving
map.

The inverse of γ is given by sending

ξ(i
′
1,...,i

′
n)τ (j

′
0,...,j

′
n) �−→ ξl

′′
1 τ

j′0
0 ⊗ ξ(i

′
2,...,i

′
n)τ (j

′
1,...,j

′
n)

with l′′ = i′1 + (
∑n

s=2 i
′
sp

s−1) + (
∑n

t=1 j
′
tp

t−1).

We filter B∨(0)⊗Mp A
∨(n− 1) by the increasing submodules

Gd := Mp{m = m′ ⊗m′′ ∈ B∨(0)⊗Mp A
∨(n− 1) | deg(m′) ≤ d}.

Given

γ(ξl1τ
ε
0 ⊗ ξ(i1,...,in−1)τ (j0,...,jn−1)) = ξ(l

′,i1,...,in−1)τ (ε,j0,...,jn−1)

with l
′
= l−(

∑
isp

s)−(
∑
jtp

t), the application of (π⊗A∨(n−1))ψn
r results

in the multiplication of elements of the form

(τ ε0 ⊗ 1 + 1⊗ τ ε0),

(ξp
s

1 ⊗ ξs + 1⊗ ξs+1)
is = (ξisp

s

1 ⊗ ξiss + . . .+ 1⊗ ξiss+1),

(ξp
t

1 ⊗ τt + 1⊗ τt+1)
jt = (ξjtp

t

1 ⊗ τ jtt + . . .+ 1⊗ τ jtt+1)
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and either
(ξl

′
1 ⊗ 1 + . . .+ 1⊗ ξl

′
1 )

if l′ is non-negative or ∑(
b

c

)
ξ−apn+b−c
1 ⊗ ξc1

where l′ = −apn + b with 0 ≤ b < pn if l′ is negative.

In the end the product is of the form

ξ
(l′+

∑
isps+

∑
jtpt)

1 τ ε0 ⊗ ξ(i1,...,in−1)τ (j0,...,jn−1) +
∑

m′ ⊗m′′

which is equal to

ξl1τ
ε
0 ⊗ ξ(i1,...,in−1)τ (j0,...,jn−1) +

∑
m′ ⊗m′′.

Here, the terms of the sum are all of lower filtration which implies the matrix
representing our composite is invertible with 1’s on the diagonal, thus also
invertible. Hence the map induced on filtration quotients is an isomorphism
of Mp-modules. The filtration on B∨(0)⊗MpA

∨(n−1) is evidently Hausdorff
and completeness follows since we can evaluate R lim in each bidegree as we
saw in the proof of the last lemma.Thus, we use theorem 2.6 of [6] to conclude
that our map is an isomorphism of Mp-modules.

Taking Mp-duals in the diagram we started with and using the fact that
B∨(0) has a basis as in lemma 3.2.12 which has finitely many generators in
each bidegree as a module over Mp, we produce the diagram

B(n)⊗Mp A(n− 1)
φn
r �� B(n)

B(0)⊗Mp A(n− 1)

π∨⊗A(n−1)



 



where we have used bounds on the bidegrees and the map θ of lemma 3.1.19
which is an isomorphism under these circumstances. All these facts taken
together imply the diagonal arrow is an isomorphism of left Mp-modules and
we have proved our result.

Lemma 3.2.15. A is a free left A(n)-module.

Proof. The reasoning here resembles the work in the two former lemmas. We
want to check that A∨ is a free left A∨(n)-comodule. First, the comodule
structure is given by the map

A∨ ψ �� A∨ ⊗Mp A
∨ π⊗A∨

�� A∨(n)⊗Mp A
∨.
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There is an isomorphism of left Mp-modules

δ : A∨(n)⊗Mp

⊕
I∈S,J∈T

Mp{ξIτJ} −→ A∨

where

S = {I = (i1, . . . , iq) : p
n+1−k | ik when 1 ≤ k ≤ n, ik ≥ 0 when k ≥ n+ 1}

and

T = {J = (0, . . . , 0, jn+1, . . . , jq′) : 0 ≤ jk ≤ 1 for k ≥ n+ 1}.

It is defined by sending

ξI
′
τJ

′ ⊗ ξIτJ �−→ ξI
′′
τJ

′′
.

Here , I ′ := (i′1, . . . , i′n) with i′k < pn+1−k when 1 ≤ k ≤ n. Also, J ′ :=
(j0, . . . , jn) with 0 ≤ j′k ≤ 1. Finally, the index sets I ′′ = I + I ′ and
J ′′ = J + J ′ with ξI′′τJ ′′

are gotten by multiplying monomials so that

ξI
′′
τJ

′′
= ξIτJξI

′
τJ

′
= ξIξI

′
τJτJ

′
.

The diagram of choice is now

A∨(n)⊗Mp A
∨

A∨(n)⊗π
��

A∨(π⊗A∨)ψ��

		
A∨(n)⊗Mp

⊕
I∈S,J∈T Mp{ξIτJ}

with π in the vertical, left-hand map being the projection taking all mono-
mials except the ones specified by S and T to zero. Expanding the diagram
to

A∨(n)⊗Mp A
∨

A∨(n)⊗π
��

A∨(π⊗A∨)ψ��

��
A∨(n)⊗Mp

⊕
I∈S,J∈T Mp{ξIτJ} A∨(n)⊗Mp

⊕
I∈S,J∈T Mp{ξIτJ},

δ





��

we go on and filter the right-hand tensor factor by letting

Fd := Mp{m = m′ ⊗m′′ ∈ A∨(n)⊗Mp

⊕
I∈S,J∈T

Mp{ξIτJ} | deg(m′′) ≤ d}.
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We start with a monomial ξI
′′
τJ

′′
= ξI

′
τJ

′
ξIτJ ∈ A∨ with sequences of

exponents as described above. The application of ψ leads us to the multi-
plication of expressions

(ξk ⊗ 1 +
k−1∑
l=1

ξp
l

k−l ⊗ ξl + 1⊗ ξk)
ik

and

(τk ⊗ 1 +
k−1∑
l=1

ξp
k

k−l ⊗ τl + 1⊗ τk)
jk .

Looking at ψ(ξI
′
τJ

′
), we see that the map A∨(n)⊗ π sends this element to

ξI
′
τJ

′ ⊗ 1 because of the upper bounds on the exponents in the expressions
resulting from the application of ψ. In any case, the expression we obtain
after mapping to A∨(n)⊗Mp

⊕
I∈S,J∈T Mp{ξIτJ} has the form

ξI
′
τJ

′ ⊗ ξIτJ +
∑

m′ ⊗m′′

where the monomials m′′ are of lower filtration than ξIτJ . We conclude
as before that our map of interest is an isomorphism of left Mp-modules
since this is the case for the lower horizontal map. Taking Mp-duals in the
diagram we started with we produce the diagram

A(n)⊗Mp A
�� A

A(n)⊗Mp

⊕
I∈S,J∈T Mp{ξIτJ}∨




��

where we have used the fact that
⊕

I∈S,J∈T Mp{ξIτJ} is bounded below
and of finite type and the map θ of lemma 3.1.19 which is an isomorphism.
Hence the diagonal arrow is an isomorphism of left Mp-modules and we have
proved our result.

3.3 The motivic Singer construction

Recall that there is a directed system

B(0) �� �� · · · �� �� B(n) �� �� B(n+ 1) �� �� · · · .

We have also seen, in lemma 3.2.14, that as a right A(n− 1)-module, B(n)
is free on the generators

{P k, βP k | k ∈ Z}.
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By lemma 3.2.11, the generators {P k, βP k} ∈ B(0) are sent to
{P k, βP k} ∈ B(n) for n > 0. Focussing on the interaction between the
stages in this tower; suppose we are given a bigraded left A(n)-module M .
We can form the composite morphism of left A(n)-modules

B(n)⊗A(n−1) M −→ B(n+ 1)⊗A(n−1) M −→ B(n+ 1)⊗A(n) M

coming from functoriality in changes of base and in the left-hand tensor
factor. Since both ends of the composite are isomorphic to B(0)⊗Mp M as
bigraded left modules over Mp and generators are sent to generators, this is
an isomorphism over Mp.

An important definition arises:

Definition 3.3.1. For a bigraded left A-module M , we define

R+(M) := colim
n→∞ B(n)⊗A(n−1) M,

the motivic Singer construction.

The Singer construction appears in [37] and is also disussed in [1] where
this section finds most of it inspiration.

As we are takingM to be a module over A from the start and evaluating
the colimit, R+(M) can be given the structure of an A-module too. For
n ≥ 0 there are compositions

B(n)⊗A(n−1) M −→ A⊗A(n−1) M −→ A⊗A M ∼=M

that fit into commutative diagrams

B(n)⊗A(n−1) M ��

∼=
��

M

B(n+ 1)⊗A(n) M

��

Definition 3.3.2. Taking the colimit in this diagram we define

ε : R+(M) −→M

to be the resulting morphism of bigraded left A-modules.

For the applications we have in mind the map ε has an important prop-
erty as observed in [1]:

Definition 3.3.3. A map of bigraded left A-modules M −→ N is said to be
a Tor-equivalence if the induced map

TorA∗,(∗,∗)(Mp,M) −→ TorA∗,(∗,∗)(Mp, N)

is an isomorphism.
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Proposition 3.3.4. Given a Tor-equivalence M −→ N then the induced
maps

TorA∗,(∗,∗)(K,M) −→ TorA∗,(∗,∗)(K,N)

and

Ext
∗,(∗,∗)
A (N,L) −→ Ext

∗,(∗,∗)
A (M,L)

are isomorphisms if we assume that

• K can be written as a filtered colimit of submodules that are free and
of finite rank over Mp,

• L is isomorphic to the Mp-dual of such a module K.

Proof. To prove the first part, one begins with looking at modulesK that are
isomorphic to a free Mp-module of finite rank. TorA∗,(∗,∗)(−,M) commutes
with finite sums and using the 5-lemma and the split exact sequence

0 → Mp → K → K ′ → 0

establishes the first isomorphism for such choices of modules. Since
TorA∗,(∗,∗)(−,M) commutes with filtered colimits, the first isomorphism fol-
lows. For the second one, we want to use the isomorphism

TorA∗,(∗,∗)(K,M)∨ ∼= Ext
∗,(∗,∗)
A (M,K∨)

which holds under the stated conditions of proposition 5.1 chapter VI in
[10]. If this holds then the map

Ext
∗,(∗,∗)
A (N,L) −→ Ext

∗,(∗,∗)
A (M,L)

can be written as the dual of

TorA∗,(∗,∗)(K,M) −→ TorA∗,(∗,∗)(K,N).

At this point we should clarify the relationship between homological
algebra over A and A(n). We have a directed system

A(n) �� ��
��

��

A

A(n+ 1)
��

��

to work with and saw, in lemma 3.2.15, that A is a free left A(n)-module.
Given a free resolution F∗ −→ N −→ 0 of a bigraded left module N over A,
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this also gives a free resolution of N over A(n). Functoriality in the ground
ring then gives us an isomorphism

colim
n→∞ Tor

A(n)
∗,(∗,∗)(K,N) ∼= colim

n→∞ H∗,(∗,∗)(K ⊗A(n) F∗),

with K being a right module over A (and so also a right module over A(n)).
On the other hand, we also have

colim
n→∞ H∗,(∗,∗)(K ⊗A(n) F∗) ∼= H∗,(∗,∗)(colim

n→∞ K ⊗A(n) F∗) ∼= H∗,(∗,∗)(K ⊗A F∗)

since homology commutes with directed colimits, two colimits commute with
each other and the tensor product being a coequalizer. Thus,

colim
n→∞ Tor

A(n)
∗,(∗,∗)(K,N) ∼= TorA∗,(∗,∗)(K,N).

This reduction comes to our aid in the next result:

Lemma 3.3.5. IfM is a free A-module, then R+(M) is flat as an A-module
and

Mp ⊗A R+(M)
Mp⊗ε �� Mp ⊗A M

is an isomorphism.

Proof. If M is a free A-module, then it is free over A(n − 1). This implies
that B(n)⊗A(n−1)M is isomorphic to a direct sum of B(n)’s. Since B(n) is
free over A(n) by 3.2.13, B(n) ⊗A(n−1) M is free over A(n) and hence also
flat over A(n). This property passes to the colimit. But then

TorAs,(∗,∗)(K,R+(M)) ∼= colim
n→∞ Tor

A(n)
s,(∗,∗)(K,R+(M)) ∼= 0

for any right A-module K and s > 0. A standard result from homological
algebra, for which the reader may consult theorem 8.6 in chapter 5 of [27],
then yields the proof of our first claim.

For the second claim we observe that it will be sufficient to prove the
case where M = A. This is because direct sums commute with tensor
products and directed colimits from which R+(−) is built. Now, we saw
that B(n) was free as a left module over A(n) on generators {P apn | a ∈ Z}
in 3.2.13. Tensoring with Mp on the left, the steps in the directed system
{B(n)⊗A(n−1) A} become

Mp ⊗A(n) B(n)⊗A(n−1) A �� Mp ⊗A(n+1) B(n+ 1)⊗A(n) A.

By lemma 3.2.11 the composition

Mp ⊗A(n) B(n) �� Mp ⊗A(n+1) B(n+ 1)

Mp{P k : pn | k} Mp{P l : pn+1 | l}
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sends
P k �−→

∑
pn+1|l

hlP
l

with bideg(hl) = bideg(P k)− bideg(P l), an integral multiple of (2p− 2, 1).
This can only happen if l = k since M

i,j
p is only nonzero for i, j ≥ 0 and

j ≥ i with our restrictions on the ground field. Passing to the colimit over
n, k must be divisible by pn for all n with the only possibility k = 0. Hence
Mp ⊗A R+(A) has but one base element, corresponding to k = 0, so we get
an isomorphism

Mp ⊗A R+(A)
Mp⊗ε �� Mp ⊗A A ∼= Mp.

Theorem 3.3.6. Let M be an A-module. The map ε : R+(M) −→ M is a
Tor-equivalence.

Proof. Let
· · · −→ Fs −→ Fs−1 −→ · · · −→ F0 −→M

be a free resolution of M over A. By application of R+(−), we obtain the
commutative diagram

· · · �� R+(Fs) ��

��

R+(Fs−1) ��

��

· · · �� R+(F0) ��

��

R+(M)

��
· · · �� Fs

�� Fs−1
�� · · · �� F0

��M.

Observe that R+(−) preserves exactness: At each stage in the defining
colimit we tensor with a free right module (lemma 3.2.14), which is flat,
and since directed colimits preserve exactness this is the case for R+(−).
Next, we remember from lemma 3.3.5 that R+(−) takes free modules to
flat ones so the upper row is a flat resolution of R+(M). It is a general
fact from homological algebra that such a resolution may be used to com-
pute TorA∗,(∗,∗)(Mp, R+(M)), see e.g. [44], 3.2.8. Tensoring the commutative
diagram with Mp we get another diagram

· · · �� Mp ⊗A R+(Fs) ��

1Mp⊗ε

��

Mp ⊗A R+(Fs−1) ��

1Mp⊗ε

��

· · ·

· · · �� Mp ⊗A Fs
�� Mp ⊗A Fs−1

�� · · ·
in which the vertical morphisms are isomorphisms. Thus we have isomor-
phisms

TorA∗,(∗,∗)(Mp, R+(M)) −→ TorA∗,(∗,∗)(Mp,M)

and we are done.



Chapter 4

Inverse limits of motivic
spectra

4.1 Realization in the motivic stable category

We want to realize the algebraic construction R+(Mp) as a module over
A using constructions in SH(F ), the category of motivic spectra over F .
This will involve using models for classifying spaces in H•(F ) following the
classical work on Segals conjecture. In [1] it was observed that the Singer
construction relates to the study of stable cohomotopy groups of the clas-
sifying space BZ/p. In our work we will try to exploit the techniques de-
veloped in conjunction with these considerations to say something about
the corresponding problem for the linear algebraic group μp in motivic ho-
motopy theory. This will involve manipulating diagrams of motivic spectra.
Throughout, the notationH∗,∗(X) will meanH∗,∗(X;Z/p) unless something
else is stated. Although we will comment on phenomena arising for odd p
the specific tower constructed for the realization is only made for the case
p = 2. There is probably a similar construction for the odd case but we
leave that for future work.

4.1.1 Preliminaries

The projective spaces Pn (n ≥ 0) represent motivic spaces. Although fi-
bration sequences are subtle in motivic homotopy theory, there are special
cases where we know certain details. For example, there are associated fiber
sequences

Gm −→ An+1 \ 0 −→ Pn

where the algebraic group Gm is defined by

Gm := Spec(F [x, x−1]).

53
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This can be found in [46], example 4.4.9. Each projective space Pn comes
with a tautological line bundle, γ1n. It can be thought of as the closed subset
of An+1

∏
Pn satisfying the equations

xiyj = xjyi

where (x0, . . . , xn) are the coordinates of An+1 and (y0, . . . , yn) are the co-
ordinates of Pn. These bundles are related through the fact that for each
inclusion

ι : Pn −→ Pn+1

we have ι∗γ1n+1 = γ1n. Passing to the obvious colimit, one defines
P∞ := colimn P

n. Recall the algebraic group μp from definition 3.1.2. We
can think of Pn as the quotient (An+1\0)/Gm where we letGm act diagonally.
There is a closed inclusion μp −→ Gm and we let μp act on An\0 through the
action of Gm. Related to the projective spaces are the motivic lens spaces:

Definition 4.1.1. For n ≥ 1, the motivic lens space Ln is defined to be the
motivic space represented by (An \ 0)/μp.

The inclusions ι : An \ 0 −→ An+1 \ 0 sending (a1, . . . , an) to
(a1, . . . , an, 0) induce inclusions

ι : Ln −→ Ln+1.

Using the resulting directed diagram, we define L∞ to be the colimit. The
reader should note that in [31], L∞ is denoted B(μp)gm. The following basic
fact on these spaces will be needed later:

Lemma 4.1.2. The motivic spaces Ln are represented by smooth schemes.

Proof. As with projective spaces, we cover Ln with the subspaces Vi in the
diagram

An \ 0 /μp �� Ln

Ui = Gm × An−1 μp ��





Vi





where one of the coordinates is not equal to zero. We identify

Vi ∼= (Gm × An)/μp ∼= Spec((F [x1, . . . , xn, x
−1
i ])μp)

and we have
F [x1, . . . , xn, x

−1
i ]μp ∼= F [m]

where m ranges through the monomials xe11 · · ·xenn such that

e1 + · · ·+ en ≡ 0(mod p)

Smoothness can be checked locally and the algebra F [m] is smooth.
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The proof of lemma 6.3 in [41] shows that Ln is isomorphic to

E((γ1n−1)
⊗p) \ 0 ↓ Pn−1),

the total space of the complement of the zero section of the line bundle
(γ1n−1)

⊗p over Pn−1. The projection induces a map

fn : Ln −→ Pn−1.

Remark 4.1.3. The tautological line bundle γ1n−1 over Pn−1 may be pulled
back to Ln using fn and we use the notation γ1n−1 for the resulting bundle
as well.

To aid our work with fibre bundles over the spaces Ln we recollect more
material from [31]:

Remark 4.1.4. One fact we will use is the following: The very construction
of H•(F ) forces an algebraic vector bundle E −→ X, where X is represented
by a smooth scheme, to be an A1-homotopy equivalence (example 2.2, p.106
in [31]).

Given an algebraic vector bundle, we will also consider motivic Thom
spaces:

Definition 4.1.5. Assume E −→ X to be a vector bundle with X smooth
over F . Then the Thom space of E over X, denoted Th(E ↓ X) or Th(E),
is defined to be

E(E ↓ X)

E(E ↓ X) \X
where E(E ↓ X) is the total space of the bundle into which X is embedded
through the zero section.

The definition makes sense since we are working with simplicial sheaves
where quotients such as this exist. Concerning this construction there is
a result we will use later. It is often refered to as the ”homotopy purity”
isomorphism:

Theorem 4.1.6. Assume X and Y are smooth schemes over F and that
ι : X −→ Y is a smooth, closed embedding with normal bundle NY,X . Then
there is an isomorphism in H•(F ):

ρY,X :
Y

Y \X −→ Th(NY,X)

Proof. This theorem 2.23 on page 115 in [31].
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Given a vector bundle E of rank n over a smooth scheme X, there is a
class t(E) in H̃2n,n(Th(E ↓ X);Z) called the Thom class of E . See the discus-
sion in chapter 4 of [41] for this. We can map this class to H̃2n,n(Th(E ↓ X))
by using the long exact sequence in cohomology associated to the sequence

0 −→ Z
∗p−→ Z

π−→ Z/p −→ 0

and we will use the notation t(E) for this class as well. There is a ”Thom
diagonal” map defined as the bottom map in the diagram

E(E ↓ X) \X

��

�� X × E(E ↓ X) \X

��
E(E ↓ X)

��

�� E(E ↓ X)× E(E ↓ X) �� X × E(E ↓ X)

��
Th(E ↓ X) �� X+ ∧ Th(E ↓ X).

It lets us multiply elements x ∈ H∗,∗(X) with t(E) ∈ H̃2n,n(Th(E ↓ X))
upon the evaluation of cohomology. In the diagram, the left vertical sequence
is the one defined by the inclusion of the complement of the zero section.
The map

E(E ↓ X) → E(E ↓ X)× E(E ↓ X)

is the diagonal and the map

E(E ↓ X)× E(E ↓ X) → X × E(E ↓ X)

is induced by the projection of the bundle E .
Naturally, there is a motivic Thom isomorphism:

Lemma 4.1.7. For every motivic space Y ∈ H•(F ) there is an isomorphism

H̃∗,∗(Y ∧X+) −→ H̃∗+2n,∗+n(Y ∧ Th(E ↓ X))

given by multiplication with t(E) sending y ∈ H̃∗,∗(Y ∧X+) to y ∪ t(E).

Proof. Proposition 4.3 in [41].

Definition 4.1.8. Using the zero section, we define the Euler class
e(E) ∈ H2n,n(X;Z) to be the restriction of t(E) along X+ −→ Th(E).

As with Thom classes, we will use the same notation for the class in
H2n,n(X) resulting from a change of coefficients. Next, we will use the
Gysin sequence for calculations:
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Lemma 4.1.9. Let X −→ Y be the inclusion of a smooth, closed subscheme
into a smooth scheme Y of codimension c. Then there is an associated long
exact sequence

· · · �� H∗−2c,∗−c(Y )
∗e(NY,X)

�� H∗,∗(X) �� H∗,∗(X \ Y ) �� · · ·

of Mp-modules.

Proof. See e.g. [28], theorem 15.15.

We need to know the evaluation of motivic cohomology on both projec-
tive spaces and lens spaces. In the first case, this is entirely similar to the
calculation made in classical algebraic topology:

Lemma 4.1.10. We have H∗,∗(Pn) ∼= Mp[v]/(v
n+1) and H∗,∗(P∞) ∼= Mp[v]

where bideg(v) = (2, 1).

Proof. This is proved with an induction on n beginning withH∗,∗(P0) ∼= Mp.

The class v is the first Chern class c1(γ
1
0) living in M

2,1
p which is zero since

we are working over a field of characteristic zero.

Let us assume inductively that H∗,∗(Pn−1) ∼= Mp[v]/(v
n) with

v = c1(γ
1
n−1). The normal bundle of the smooth embedding

j : Pn−1 −→ Pn

is isomorphic to the tautological bundle γ1n−1 and through the homotopy
purity isomorphism, we can view Pn as the Thom space

E(γ1n−1)

E(γ1n−1) \ Pn−1

in H•(F ). The Thom isomophism gives us an isomorphism

H∗,∗(Pn−1) ∼= H̃∗+2,∗+1(Pn)

sending a ∈ H∗,∗(Pn−1) to t(γ1n) ∗ j∗(a). Here ∗ is the module map given by
the Thom diagonal and this is equal to the cup product t(γ1n)∪ j∗(a). From
this we see that

c1(γ
1
n−1)

i �→ t(γ1n) ∪ c1(γ1n−1)
i = t(γ1n) ∪ j∗(t(γ1n)i) = t(γ1n)

i+1.

Specifically, t(γ1n)
n+1 must be zero. Hence the identification

H∗,∗(Pn) ∼= Mp[v]/(v
n+1) must hold. The result for H∗,∗(P∞) can be seen

from evaluating inverse limits and using that all the maps in this system are
surjective so any derived limit must be zero.
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Lemma 4.1.11. There are ring isomorphisms

H∗,∗(Ln) ∼= M2[u, v]/(u
2 + ρu+ τv, vn)

H∗,∗(L∞) ∼= M2[u, v]/(u
2 + ρu+ τv)

for p = 2 and
H∗,∗(Ln) ∼= Mp[u, v]/(u

2, vn)

H∗,∗(L∞) ∼= Mp[u, v]/(u
2)

for p odd where bideg(u) = (1, 1) and bideg(v) = (2, 1)

Proof. This is theorem 6.10 in [41]. The proof of lemma 6.3 in that same
paper shows that Ln is isomorphic to E((γ1n−1)

⊗p) \ 0 ↓ Pn−1), the total
space of the complement of the zero section of the line bundle (γ1n−1)

⊗p over
Pn−1. There is an associated cofiber sequence

Ln −→ E((γ1n−1)
⊗p ↓ Pn−1) −→ Th((γ1n−1)

⊗p ↓ Pn−1)

inducing a Gysin long exact sequence of Mp-modules. Lemma 4.5 of [41]
implies that e((γ1n−1)

⊗p) = pe(γ1n−1) which is zero with Z/p-coefficients so
the Gysin sequence induces a short exact sequence

H∗,∗(Pn−1) −→ H∗,∗(Ln) −→ H∗−1,∗−1(Pn−1).

From this we conclude that H∗,∗(Ln) has a basis consisting of elements
vi, uvi which follows from the identification of the cohomology of Pn−1. The
description of u2 can be found in the discussion leading up to lemma 6.8
in [41]. Evaluating the colimit over the system originating in the inclusions
Ln −→ Ln+1 and using the surjectivity of the resulting maps in the inverse
system of cohomology groups, we also cover the cases for H∗,∗(L∞).

Let p 
= char(F ) and assume ζ ∈ F is a primitive p-th root of unity.
Having chosen one such, we can construct an isomorphism μp ∼= Z/p which
in turn leads to a weak equivalence of classifying spaces

L∞ ∼= BZ/p.

Using this and the inclusion

Z/p ↪→ Σp

sending 1 ∈ Z/p to the cycle (1 · · · p) ∈ Σp, we construct a map

pζ : L
∞ −→ BΣp.

The group Σp acts on Ap fixing the line where all coordinates are equal.
From the diagonal inclusion

A1 Δ �� Ap

we may construct an inclusion of vector bundles L ↪→ εp over BΣp. The

quotient bundle has fibers Ap/A1 and is isomorphic to the sum
⊕p−1

i=1 (L)
⊗i.
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Definition 4.1.12. Define

d := e(
εp

L
) ∈ H̃2p−2,p−1(BΣp+),

the Euler class of εp

L .

We will be needing some results of Voevodsky:

Lemma 4.1.13. Assuming that p 
= char(F ) and that F contains a primi-
tive p-th root of unity, the injective map

p∗ζ : H̃
∗,∗(BΣp+) −→ H̃∗,∗(L∞

+ ),

satisfies

p∗ζ(d) = −vp−1.

Proof. This is lemma 6.13 in [41].

Theorem 4.1.14. Assuming that p 
= char(F ), there exists a unique class

c ∈ H̃2p−3,p−1(BΣp+)

such that β(c) = d.

Proof. This is theorem 6.14 in [41].

Lemma 4.1.15. Assuming that p 
= char(F ) and that F contains a primi-
tive p-th root of unity one has

p∗ζ(c) = −uvp−2.

Proof. This is lemma 6.15 in [41].

Theorem 4.1.16. If p 
= char(F ), there are ring isomorphisms

H∗,∗(BΣ2) ∼= M2[c, d]/(c
2 + ρc+ τd)

and

H∗,∗(BΣp) ∼= Mp[c, d]/(c
2)

for p odd.

Proof. These are special cases of theorem 6.16 in [41] where the first isomor-
phism is simply a restatement of lemma 4.1.11.
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Before we move on to the homotopical constructions we record what the
motivic power operations do to the classes c, d, u and v: In section 5 of [41] a
total power operation, which we denote using the letter P , is defined. It has
many of the same properties possessed by the total operations for singular
cohomology. In particular, it is a morphism of rings. In what follows we
split our considerations for the two cases p odd or even.

Assuming p odd, we have

H̃∗,∗(L∞
+ ) ∼= Mp[u, v]/(u

2)

and
β(u) = v and β(v) = 0.

It follows from theorem 9.5 and lemma 9.9 in [41] that

P (u) = u.

From the same two results and lemma 9.8 in the same reference we also have
P (v) = v + vp = v(1 + vp−1). The multiplicativity of P the implies that we
get P (vb) = vb(1 + vp−1)b. Expanding this we see that

P a(vb) =

(
b

a

)
vb+a(p−1).

Now, from the discussion of pζ we saw that p∗ζ(d) = −vp−1, p∗ζ(c) = −uvp−2

and β(c) = d. Since β satisfies β2 = 0 we must have β(d) = 0. Using
functoriality and the morphism pζ we get

P (d) � �� P (−vp−1) = −P (v)p−1

d(1− d)p−1 � �� −vp−1(1 + vp−1)p−1.

From this and the fact that p∗ζ is injective we deduce that P (d) = d(1−d)p−1,

P (db) = db(1− d)b(p−1) and finally the following lemma:

Lemma 4.1.17. Assuming p odd, we have

P a(db) = (−1)a
(
b(p− 1)

a

)
da+b.

Similarly we have

P (c) � �� P (−uvp−2) = −P (c)P (v)p−2

c(1− d)p−2 � �� −uvp−2(1 + vp−1)p−2
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from which we deduce that

P (c) = c(1− d)p−2.

From this we deduce the following lemma

Lemma 4.1.18. Assuming p odd, we have

P a(cdb−1) = (−1)a
(
b(p− 1)− 1

a

)
cda+b−1

Proof. This follows by considering

P (cdb−1) = c(1− d)p−2db−1(1− d)(b−1)(p−1) = cdb−1(1− d)b(p−1)−1

and expanding.

Now, assuming p = 2 we repeat the reasoning above: We have

H̃∗,∗(L∞
+ ) ∼= M2[u, v]/(u

2 + ρu+ τv).

For the class u, the Steenrod squares satisfy Sq0(u) = u, Sq1(u) = β(u) = v
and Sqi(u) = 0 for i ≥ 2 from instability (a consequence of lemma 9.9
in [31]). For v we have Sq0(v) = v, Sq1(v) = β(v) = 0 since β2 = 0,
Sq2(v) = v2 and Sqi(u) = 0 for i ≥ 3 from instability.

Lemma 4.1.19. We have

Sq2i(vk) =

(
2k

2i

)
vk+i, Sq2i+1(vk) = 0, Sq2i(uvk) =

(
2k

2i

)
uvk+i

and Sq2i+1(uvk) =

(
2k

2i

)
vk+i+1.

Proof. This follows by using the Cartan formula and induction on k.

4.1.2 The homotopical construction

Moving further, there are spectra we will use for the construction of a model
for R+(Mp). Recall from the introduction that there were towers of spectra
used for calculating the stable homotopy groups of RP∞−∞ using the Adams
spectral sequence. This tower may also be realized in another way.

Consider bundles over RPn, for n ≥ 0. A point in RPn is a line L
in Rn+1. We get two bundles over RPn, one line bundle with fiber L and
one trivial (n + 1)-bundle with fiber Rn+1, over that point. Call these γ1n
(the tautological bundle) and εn+1. The inclusion L ⊂ Rn+1 defines an
embedding of bundles γ1n → εn+1.
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In topology, we can form orthogonal complements. Let ζn be the n-
bundle over RPn with fiber L⊥ ⊂ Rn+1 over L, so that γ1n ⊕ ζn ∼= εn+1.

Taking k copies of these bundles, we get an embedding

kγ1n → kεn+1 = εk(n+1)

of bundles over RPn. The sum kζn is then an orthogonal complement, so
that

kγ1n ⊕ kζn ∼= kεn+1.

In lemma 4.3 of [4], Atiyah shows that there is a homeomorphism

Th(kγ1n)
∼= RPn+k

k = RPn+k/RP k−1

for k ≥ 0. Using the Thom isomorphism, we get H∗(RPn) ∼= H̃∗+k(RPn+k
k )

where H∗(−) is cohomology with Z/2 coefficients. We have H∗(RPn) =
P (x)/(xn+1) = Z/2{xi | 0 ≤ i ≤ n} where x = w1(γ

1
n) is the first Stiefel

Whitney class of γ1n. The quotient map RPn+k → RPn+k
k induces an inclu-

sion
H̃∗(RPn+k

k ) → H∗(RPn+k)

that takes H̃∗(RPn+k
k ) isomorphically to Z/2{xj | k ≤ j ≤ n + k}. Under

this identification, the Thom isomorphism is given by multiplication by xk,
taking xi to xi+k.

The formal relation kζn = kεn+1 − kγ1n in KO(RPn) suggests that kζn
takes the role of −kγ1 plus a trivial bundle. Given a vector bundle ξ and a
trivial bundle εm, we get a homeomorphism Th(εm ⊕ ξ) ∼= ΣmTh(ξ). In our
situation we want to extend this so we define

Th(−kγ1n) := Σ−k(n+1)Th(kζn)

as a spectrum so that

Th(kζn) ∼= Th(kεn+1 − kγ1n)
∼= Σk(n+1)Th(−kγ1n).

This means that Th(−kγ1n) is a spectrum with k(n + 1)-th space Th(kζn),
and more generally given at level k(n+1)+ � by Σ�Th(kζn) for � ≥ 0, while
the spaces for � < 0 are set equal to the base point ∗. We also use the
suggestive notation

RPn−k
−k := Th(−kγ1n)

(as a spectrum) for k > 0. There is a Thom isomorphism H∗(RPn) ∼=
H∗−k(RPn−k

−k ). We have an isomorphism

H∗−k(RPn−k
−k ) ∼= Z/2{xj | −k ≤ j ≤ n− k}

if we continue to write the Thom isomorphism as formal multiplication by
x−k.
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Now we let k grow. The inclusions

kγ1n → (k + 1)γ1n

obtained by adding kγ1n to the inclusion

0 → γ1n

induce maps of Thom complexes

RPn+k
k = Th(kγ1n) → Th((k + 1)γ1n) = RPn+k+1

k+1

for k ≥ 0. Under the Thom isomorphisms, the induced map in cohomology
corresponds to the map

H∗−k−1(RPn) → H∗−k(RPn)

given by multiplication by the characteristic class x ∈ H1(RPn). The formal
relations

(k + 1)ζn = (k + 1)εn+1 − (k + 1)γ1n

and

kζn + εn+1 = (k + 1)εn+1 − kγn

in KO(RPn) suggest that the inclusion

(k + 1)ζn → kζn + εn+1

obtained by adding kζn to the inclusion

ζn → εn+1

takes the role of that inclusion after adding a trivial bundle. We define the
map of spectra

RPn−k−1
−k−1 = Th(−(k + 1)γ1n) → Th(−kγ1n) = RPn−k

−k

to be the map of spectra

Σ−(k+1)(n+1)Th((k+1)ζn) → Σ−(k+1)(n+1)Th(kζn⊕εn+1) = Σ−k(n+1)Th(kζn)

given at level (k + 1)(n+ 1) by the map

Th((k + 1)ζn) → Th(kζn ⊕ εn+1)

induced by the bundle inclusion

(k + 1)ζn → kζn ⊕ εn+1.
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The map in cohomology H∗(RPn−k
−k ) → H∗(RPn−k−1

−k−1 ) corresponds under
the Thom isomorphism to the map

H∗+k(RPn) → H∗+k+1(RPn)

given by multiplication by x.

Next we let n grow. The inclusion Rn+1 ⊂ Rn+2 defines a map i :
RPn → RPn+1, covered by bundle maps γ1n → γ1n+1 and εn+1 ⊕ ε1 → εn+2,
and isomorphisms γ1n

∼= i∗γ1n+1 and εn+1 ⊕ ε1 ∼= i∗(εn+2) over RPn. These
are compatible with the inclusions γ1n → εn+1 and γ1n+1 → εn+2. They
determine a bundle map ζn⊕ ε1 → ζn+1 of orthogonal complements, and an
isomorphism ζn ⊕ ε1 ∼= i∗ζn+1. Taking the direct sum of k copies of these
maps, we get a bundle map kζn ⊕ kε1 → kζn+1 covering i : RPn → RPn+1,
and an isomorphism kζn ⊕ kε1 ∼= i∗kζn+1. We define the map of spectra

RPn−k
−k = Th(−kγ1n) → Th(−kγ1n+1) = RPn+1−k

−k

to be the map of spectra

Σ−k(n+1)Th(kζn) → Σ−k(n+2)Th(kζn+1)

given at level k(n+ 2) by the map

ΣkTh(kζn) ∼= Th(kζn ⊕ kε1) → Th(kζn+1)

induced by the bundle map kζn ⊕ kε1 → kζn+1. The map in cohomology
H∗(RPn+1−k

−k ) → H∗(RPn−k
−k ) corresponds under the Thom isomorphism to

the surjective homomorphism H∗+k(RPn+1) → H∗+k(RPn) that sends x to
x but takes xn+1 to 0.

Lemma 4.1.20. The diagram

RPn−k−1
−k−1

��

��

RPn−k
−k−1

��
RPn−k

−k
�� RPn+1−k

−k

commutes. It induces the commutative diagram

Z/2{xj | −k − 1 ≤ j ≤ n− k − 1} Z/2{xj | −k − 1 ≤ j ≤ n− k}��

Z/2{xj | −k ≤ j ≤ n− k}





Z/2{xj | −k ≤ j ≤ n+ 1− k}��





in cohomology, where each homomorphism maps xj to xj, if defined, and
otherwise to 0.
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Proof. Over RPn, start with the inclusion (k + 1)ζn ↪→ kζn ⊕ εn+1 where
the last ζn is included in its defining trivial bundle εn+1. Then add the sum
(k + 1)ε1 so we get an inclusion

(k + 1)ζn ⊕ (k + 1)ε1 ↪→ kζn ⊕ εn+1 ⊕ (k + 1)ε1.

Using the bundle map kζn ⊕ kε1 → kζn+1 covering i : RPn → RPn+1 and
the isomorphism kζn ⊕ kε1 ∼= i∗kζn+1, we get a commutative diagram

(k + 1)ζn ⊕ (k + 1)ε1 ��

��

(k + 1)ζn+1

��
kζn ⊕ εn+1 ⊕ (k + 1)ε1

��

kζn+1 ⊕ εn+2

kζn+1 ⊕ εn+1 ⊕ ε1

where the isomorphism kζn+1⊕εn+2 ∼= kζn+1⊕εn+1⊕ε1 is taking place inside
(k + 1)εn+2 over RPn+1. In the end, this commutative diagram induces a
commutative square of Thom spaces and we recover the stated square we
were after. We have already seen the cohomological identifications and how
the powers of x map when varying n and k.

Momentarily fixing k, we now define the spectrum RP∞
−k as the homotopy

colimit
RP∞

−k = hocolimnRP
n−k
−k

of the diagram of spectra

RP−k
−k → · · · → RPn−k

−k → RPn+1−k
−k → . . . .

We obtain an isomorphism

H∗(RP∞
−k)

∼= lim
n
H∗(RPn−k

−k ) ∼= Z/2{xj | −k ≤ j} .

We note that each RP∞
−k is bounded below and of finite type in the sense

that π∗(RP∞
−k) is bounded below and H∗(RP∞

−k) is a finite dimensional vec-
tor space over Z/2 in each degree. The spectrum RP∞

0 is the suspension
spectrum of RP∞

+ .
Letting k vary, again, the vertical arrows in the diagram of the lemma

induce a diagram of spectra

· · · → RP∞
−k−1 → RP∞

−k → · · · → RP∞
0 .

We define RP∞−∞ as the homotopy limit

RP∞
−∞ = holimk RP

∞
−k
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of this diagram. Its continuous cohomology is defined to be the colimit

H∗
c (RP

∞
−∞) := colimkH

∗(RP∞
−k)

∼= Z/2{xj | j ∈ Z} = P (x, x−1) .

The map RP∞−∞ → RP∞
0 induces the usual homomorphism P (x) → P (x, x−1)

in cohomology.

With all this in mind, the constructions seen here are the ones that gen-
eralize to the motivic setting although there is a slight twist to the motivic
substitute for RP∞

−l since we do not have a notion of orthogonality for mo-
tivic spaces. We start with considering bundles over Ln for n ≥ 0. From the
beginning of this chapter we remember the bundle γ1n−1 as the pullback of
γ1n−1 from Pn−1. It can be viewed as (An\0)×μpA

1 over Ln where we identify
(λx1, . . . , λxn, y) and (x1, . . . , xn, λy) where (x1, . . . , xn, y) ∈ (An \ 0) × A1

and λ ∈ μp. From the inclusion A1 ⊂ An we can construct an embedding of
γ1n−1 into the trivial vector bundle εn over Ln by sending

(x1, . . . , xn, y) �→ (x1, . . . , xn, x1y, . . . , xny) ∈ Ln × An.

In our situation, we cannot form orthogonal complements in order to
extend the definition of Th(−kγ1n) from the topological situation. Instead,
we consider ordinary complements.

Definition 4.1.21. Let η ↪→ ξ be an inclusion of vector bundles. Then we
define

Th(ξ, η) :=
E(ξ)

E(ξ) \ E(η)

Lemma 4.1.22. Given an isomorphism of vector bundles η ⊕ ζ ∼= ξ over a
smooth scheme X, then we have A1-homotopy equivalences

E(ζ) −→ E(ξ)

and
E(ζ) \ 0 −→ E(ξ) \ E(η),

hence the map
Th(ζ) −→ Th(ξ, η)

is also such an equivalence.

Proof. It is obvious that ξ is a vector bundle over ζ and by remark 4.1.4
it is an A1-homotopy equivalence. As for the other case, the fiber bundle
E(ξ) \ E(η) is locally of the form An \ Am ∼= Am × (An−m \ 0) so from the
same remark, we have an A1-homotopy equivalence

E(ζ) \ 0 −→ E(ξ) \ E(η).
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Consider again the embedding of γ1n−1 into the trivial vector bundle εn

over Ln. We can form the k-fold sum and define the relevant spectrum with
which to work:

Definition 4.1.23. For n ≥ 0 and k ≥ 0, let Ln−k
−k be the motivic spectrum

Ln−k
−k = Σ−kn

T Th(kεn, kγ1n−1)

This means that Ln−k
−k is a motivic spectrum with kn-th space

E(kεn ↓ Ln)

E(kεn ↓ Ln) \ E(kγ1 ↓ Ln)
,

and more generally given at level kn + � by Σ�
TTh(kε

n, kγ1n−1) for � ≥ 0,
while the spaces for � < 0 are set equal to the base point ∗.

We identify the cohomology groups of Ln−k
−k :

Proposition 4.1.24. As modules over M2 we have an isomorphism

H∗,∗(Ln−k
−k ) ∼= Σ−(2k,k)M2[u, v]/(u

2 + ρu+ τv, vn)

where bideg(u) = (1, 1) and bideg(v) = (2, 1).

Proof. We saw the structure of the cohomology of Lens spaces as modules
over Mp in lemma 4.1.11 and we had

H∗,∗(Ln) ∼= M2[u, v]/(u
2 + ρu+ τv, vn).

Also, there is a chain of isomorphisms

H∗,∗( E(kεn)
E(kεn)\E(kγ1

n−1)
) H∗,∗(Th(Nkεn,kγ1

n−1
))

∼=��

H∗−2k(n−1),∗−k(n−1)(Ln)
∼= �� H∗−2k(n−1),∗−k(n−1)(E(kγ1n−1))

∗t(N
kεn,kγ1n−1

)





given by the purity equivalence, the Thom isomorphism and the fact that
locally affine maps are A1 homotopy equivalences. Hence, given the suspen-
sion isomorphism

H∗,∗(Ln−k
−k ) ∼= H∗+2kn,∗+kn(Th(kεn, kγ1n−1)),

the result follows.

Now we let k grow and for this we need to study the inclusions

E((k − 1)γ1n−1) ⊂ E(kγ1n−1)

over Ln. The following result of Voevodsky will be crucial.
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Lemma 4.1.25. Let Z ⊂ Y ⊂ X be smooth embeddings of closed sub-
schemes. There is an induced map of motivic spaces

π :
X

X \ Y −→ X

X \ Z .

For the induced map on motivic cohomology we have

π∗(aX,Z) = ρ∗X,Y (t(NX,Y ) ∗ aY,Z)

where aX,Z is the image of the Thom class t(NX,Z) under ρ
∗
X,Z and

aY,Z ∈ H̃2c(Y,Z),c(Y,Z)(Y ) corresponds to the Thom class

t(NY,Z) ∈ H̃2c(Y,Z),c(Y,Z)(Th(NY,Z))

under the map

Y −→ Y

Y \ Z −→ Th(NY,Z)

and c(Y, Z) is the codimension of Z in Y .

Proof. This is lemma 2.4 of [40]. The product t(NX,Y ) ∗ aY,Z ∈ H∗,∗(Y ) is
formed using the Thom diagonal

Th(NY,Z) −→ Y+ ∧ Th(NY,Z)

and evaluating cohomology.

Now, from the inclusions

E((k − 1)γ1n−1) ⊂ E(kγ1n−1) ⊂ E(kεn)

we go on to form

E(kεn ↓ Ln) \ E(kγ1 ↓ Ln) ��

��

E(kεn ↓ Ln) \ E((k − 1)γ1 ↓ Ln)

��
E(kεn ↓ Ln)

��

E(kεn ↓ Ln)

��
Th(kεn, kγ1n−1)

�� Th(kεn, (k − 1)γ1n−1)

g

��
Σn
TTh((k − 1)εn, (k − 1)γ1n−1)
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Lemma 4.1.26. g is an isomorphism in H•(F ).

Proof. Let us consider the following situation: Let A ↪→ X and B ↪→ Y be
closed immersions in Sm/F . Then there is a Nisnevich elementary distin-
guished square (see [31] for the definition)

(X \A)× (Y \B)

��

�� X × (Y \B)

��
(X \A)× Y �� (X × Y ) \ (A×B)

coming from the cover of (X ×Y ) \ (A×B). Given this, there is an isomor-
phism

(X × Y ) \ (A×B) ∼= (X × (Y \B))
⋃

(X\A)×(Y \B)

((X \A)× Y )

since such squares are pushouts (lemma 1.6 on page 98 in [31]). Hence we
get

X × Y

(X × (Y \B))
⋃

(X\A)×(Y \B)((X \A)× Y )
∼= X × Y

(X × Y ) \ (A×B)
.

Next, we let X = E((k − 1)εn ↓ Ln), Y = An, A = E((k − 1)γ1 ↓ Ln) and
B be the origin. To conclude, we use the isomorphism

E((k − 1)εn ↓ Ln)× An ∼= E(kεn ↓ Ln)

and the identification

Σn
T

E((k−1)εn↓Ln)
E((k−1)εn↓Ln)\E((k−1)γ1↓Ln)

E((k−1)εn↓Ln)
E((k−1)εn↓Ln)\E((k−1)γ1↓Ln)

∧ An

An\0 .

In the end, the map
Ln−k
−k −→ Ln−k+1

−k+1

is then

Σ−kn
T Th(kεn, kγ1n−1) → Σ−kn

T Th(kεn, (k−1)γ1n−1)
∼= Σ

−(k−1)n
T Th((k−1)εn, (k−1)γ1n−1)

given at level kn by the map

Th(kεn, kγ1n−1) → Th(kεn, (k − 1)γ1n−1)

induced by the inclusion E((k − 1)γ1) ⊂ E(kγ1) over Ln.

The map in motivic cohomology can be decribed using lemma 4.1.25:
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Proposition 4.1.27. The associated homomorphism of M2-modules

H∗,∗(Ln−k+1
−k+1 ) −→ H∗,∗(Ln−k

−k )

takes the classes vi and uvi to vi+1 and uvi+1.

Proof. The map Ln−k
−k −→ Ln−k+1

−k+1 was given by the composite

Th(kεn, kγ1n−1)
�� Th(kεn, (k − 1)γ1n−1).

To see the effect on cohomology we study the diagram

H∗,∗(Th(kεn, kγ1n−1)) H∗,∗(Th(kεn, (k − 1)γ1n−1))
π∗��

Σ−(2k(n−1),k(n−1))H∗,∗(E(kγ1n−1))

∗t(N
kεn,kγ1n−1

)





Σ−(2k(n−1)+1),k(n−1)+1)H∗,∗(E((k − 1)γ1n−1))

∗t(N
kεn,(k−1)γ1n−1

)





Σ−(2k(n−1),k(n−1))H∗,∗(Ln)

∼=




Σ−(2k(n−1)+1),k(n−1)+1)H∗,∗(Ln)

∼=




Here the upper vertical maps arise from the Thom isomorphism, the lower
vertical ones come from the fact that vector bundles are A1-homotopy equiv-
alences and π is the map from lemma 4.1.25. From that result we know that

π∗(akεn,(k−1)γ1
n−1

) = ρ∗kεn,kγ1
n−1

(t(Nkεn,kγ1
n
) ∗ akγ1,(k−1)γ1

n
).

The functoriality of the classes involved means that all classes being multi-
plied with a class of bidegree (2, 1) corresponding to the class akγ1

n−1,(k−1)γ1
n−1

∈
H̃2,1(kγ1n−1) , in turn corresponding to the Thom class

t(Nkγ1
n,(k−1)γ1

n−1
) ∈ H̃2,1(Th(Nkγ1

n,(k−1)γ1
n−1

))

under the map

E(kγ1n−1) −→
E(kγ1n−1)

E(kγ1n−1) \ E((k − 1)γ1n−1)
−→ Nkγ1

n−1,(k−1)γ1
n−1

.

Next we let n grow. The inclusion An ⊂ An+1 defines a map

ι : Ln → Ln+1,

covered by bundle maps γ1n−1 → γ1n and εn ⊕ ε1 → εn+1, and we have
isomorphisms γ1n−1

∼= ι∗γ1n and εn ⊕ ε1 ∼= ι∗(εn+1) over Ln. These are
compatible with the inclusions γ1n−1 → εn and γ1n → εn+1.
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Now, we consider the inclusions of bundles

E(γ1n) ⊂ E(kεn+1)

over Ln+1. If we pull both of these bundles back over ι, the bundle kεn+1

splits to become kεn ⊕ kε1 and since we have kγ1n−1
∼= ι∗kγ1n, we get an

induced map
Th(kεn ⊕ kε1, kγ1n−1) → Th(kεn+1, kγ1n)

covering
ι : Ln → Ln+1.

Lemma 4.1.28. In H•(F ), there is an isomorphism

Th(kεn ⊕ kε1, kγ1n−1)
∼= Σk

TTh(kε
n, kγ1n−1).

Proof. This follows as in lemma 4.1.26: We use the diagram

(X \A)× (Y \B)

��

�� X × (Y \B)

��
(X \A)× Y �� (X × Y ) \ (A×B)

where we let X = E(kεn ↓ Ln), Y = Ak, A = E(kγ1 ↓ Ln) and B be the
origin. Again, we use the identification

Σk
T

E(kεn ↓ Ln)

E(kεn ↓ Ln) \ E(kγ1 ↓ Ln)
=

E(kεn ↓ Ln)

E(kεn ↓ Ln) \ E(kγ1 ↓ Ln)
∧ Ak

Ak \ 0
and the isomorphism

X × Y

(X × (Y \B))
⋃

(X\A)×(Y \B)((X \A)× Y )
∼= X × Y

(X × Y ) \ (A×B)
.

Hence the map
Ln−k
−k −→ Ln−k+1

−k

is given at level k(n+ 1) by the map

Σk
TTh(kε

n, kγ1n−1)
∼= Th(kεn ⊕ kε1, kγ1n−1) → Th(kεn+1, kγ1n).

Proposition 4.1.29. The associated homomorphism of M2-modules

H∗,∗(Ln−k+1
−k ) −→ H∗,∗(Ln−k

−k )

takes the classes vj to vj and uvj to uvj when j ≤ n but takes vn+1 and
uvn+1 to 0.
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Proof. To see the effect on cohomology we study the diagram

H∗,∗(Σk
TTh(kε

n, kγ1n−1)) H∗,∗(Th(kεn+1, kγ1n))��

Σ−kn(2,1)H∗,∗(E(kγ1n−1))





Σ−kn(2,1)H∗,∗(E(kγ1n))





��

Σ−kn(2,1)H∗,∗(Ln)





Σ−kn(2,1)H∗,∗(Ln+1)





��

We explain the maps: The lower horizontal map is the standard projection
Σ−kn(2,1)H∗,∗(Ln+1) → Σ−kn(2,1)H∗,∗(Ln) that sends vj to vj and uvj to
uvj when j ≤ n but takes vn+1 and uvn+1 to 0. The upper vertical maps
result from the Thom isomorphim although the left map is composed with
the obvious suspension isomorphism. The lower vertical maps are the iso-
morphisms induced from the A1-homotopies coming from the bundles kγ1n
and kγ1n−1. Commutativity follows since

Σk
TTh(kε

n, kγ1n−1)
∼= Th(kεn ⊕ kε1, kγ1n−1) → Th(kεn+1, kγ1n)

covers

ι : Ln → Ln+1.

Lemma 4.1.30. The diagram

Ln−k
−k

��

��

Ln−k+1
−k

��
Ln−k+1
−k+1

�� Ln−k+2
−k+1

commutes. It induces the commutative diagram

Σ−(2k,k)M2[u, v]/(u
2 + ρu+ τv, vn) Σ−(2k,k)M2[u, v]/(u

2 + ρu+ τv, vn+1)��

Σ−(2k−2,k−1)M2[u, v]/(u
2 + ρu+ τv, vn)





Σ−(2k−2,k−1)M2[u, v]/(u
2 + ρu+ τv, vn+1)��





in cohomology, where each homomorphism maps vj to vj and uvj to uvj, if
defined, and otherwise to 0.
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Proof. We start with the commutative diagram

E((k − 1)γ1n−1)
��

��

��

E((k − 1)γ1n)

��

��
E(kγ1n−1)

��

��

��

E(kγ1n)

��

��

Ln �� Ln+1

E(kεn ⊕ kε1) ��

��

E(kεn+1)

��

where the bundles on the left-hand side are the ones arising from pulling
back the bundles on the right-hand side of the inclusion Ln → Ln+1. It
induces a commutative diagram

Th(kεn ⊕ kε1, kγ1n−1)
��

��

��

Th(kεn+1, kγ1n)

��

��

Ln �� Ln+1

Th(kεn ⊕ kε1, (k − 1)γ1n−1)
��

��

Th(kεn+1, (k − 1)γ1n).

��

Since we have

Th(kεn ⊕ kε1, kγ1n−1)
∼= Σk

TTh(kε
n, kγ1n−1),

Th(kεn ⊕ kε1, (k − 1)γ1n−1)
∼= Σn+k

T Th((k − 1)εn, kγ1n−1)

and

Th(kεn+1, (k − 1)γ1n)
∼= Σn+1

T Th((k − 1)εn+1, kγ1n−1)

by lemmas 4.1.26 and 4.1.28, we get a commutative diagram of spectra

Σ
−k(n+1)
T Ln−k

−k
��

��

Σ
−k(n+1)
T Ln−k+1

−k

��

Σ
−k(n+1)
T Ln−k+1

−k+1
�� Σ

−k(n+1)
T Ln−k+2

−k+1 .

The induced maps after evaluating cohomology were described in lemmas
4.1.27 and 4.1.29.
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Momentarily fixing k, we now define the spectrum L∞
−k as the homotopy

colimit
L∞
−k = hocolimn L

n−k
−k

of the diagram of spectra

L−k
−k → · · · → Ln−k

−k → Ln+1−k
−k → . . . .

The spectrum L∞
0 is the suspension spectrum of L∞

+ . Letting k vary, again,
the vertical arrows in the diagram of the lemma induce a diagram of spectra

· · · → L∞
−k−1 → L∞

−k → · · · → L∞
0 .

We define L∞
−∞ as the homotopy limit

L∞
−∞ = holimk L

∞
−k

of this diagram. All these spectra and the maps between them can be
represented in the following diagram:

L∞
−∞

��
...

��

...
...

...

��
L0
−1

h0
−1 ��

d0−1

��

L1
−1

h1
−1 ��

d1−1

��

· · · �� L∞
−1

d−1

��
L0
0

h0
0 �� L1

0

h1
0 �� · · · �� L∞

0 .

Definition 4.1.31. Given an inverse tower of motivic spectra

Y �� · · · �� Y−s−1
�� Y−s

�� · · · �� Y0

with Y := holimn Yn, we define the continous cohomology of Y to be

H∗,∗
c (Y ) := colimnH

∗,∗(Yn).

Proposition 4.1.32. As modules over M2 we have

H∗,∗(L∞
−k)

∼= lim
n
H∗,∗(Ln−k

−k ) ∼= Σ−(2k,k)M2[u, v]/(u
2 + ρu+ τv) .

and
H∗,∗

c (L∞
−∞) ∼= M2[u, v, v

−1]/(u2 + ρu+ τv),

where bideg(u) = (1, 1) and bideg(v) = (2, 1).
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Proof. These are consequences of lemma 4.1.30.

We note that each L∞
−k is bounded below and of finite type in the sense

that π∗,∗(L∞
−k) is bounded below in topological degrees and H∗,∗(L∞

−k) is
finite dimensional over M2 in each degree.

Before stating the last result of this section, we discuss the action of A
on

R+(Mp) := colim
n→∞ B(n)⊗A(n−1) Mp

∼= Mp{βεP k : ε ∈ {0, 1}, k ∈ Z}.

Although the case where p is odd is not used in our conclusions we show
that these cases work out algebraically in case a suitable tower of spectra
should arise at a later point in time. A little lemma is needed for these
calculations.

Lemma 4.1.33. Given a a prime p and assume a < pn. The function
sending z ∈ Z to

(
z
a

) ∈ Z/p is periodic with period pn.

Proof. We write (1+ x)z = Σ
(
z
a

)
xa. Since (1+ x)p

n
= 1+ xp

n
in Z/p[x], we

get (1 + x)z+pn = (1 + x)z(1 + xp
n
). Given that a < pn, the coefficients of

xa in the expressions (1+ x)z and (1+ x)z(1+ xp
n
) are the same and hence(

z + pn

a

)
≡

(
z

a

)
(mod p).

First, we assume b ≥ 0. Given any P a ∈ A(n) ⊂ A, that is 0 ≤ a < pn,
its action on

P b ⊗ 1 ∈ B(n)⊗A(n−1) Mp
∼= R+(Mp)

is given by P a(P b ⊗ 1) = P aP b ⊗ 1. We use the Adem relations to expand
the product P aP b and the tensor splits as the sum

P aP b ⊗ 1 =

�a/p	∑
i=0

(−1)a+i

(
(p− 1)(b− i)− 1

a− pi

)
P a+b−i ⊗ P i(1)

where P i can be moved across the tensor since i ≤ �a/p� < pn−1. Now,
P i(1) = 0 except when i = 0, hence we get

P aP b ⊗ 1 = (−1)a
(
(p− 1)b− 1

a

)
P a+b ⊗ 1
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Similarly, we have P a(βP b ⊗ 1) = P aβP b ⊗ 1 leading to the expansion

P aβP b ⊗ 1 =

�a/p	∑
i=0

(−1)a+i

(
(p− 1)(b− i)

a− pi

)
βP a+b−i ⊗ P i(1)

+

�(a−1)/p	∑
i=0

(−1)a+i−1

(
(p− 1)(b− i)− 1

a− pi− 1

)
P a+b−i ⊗ βP i(1)

with the only nonzero summand being the one where i = 0. Thus we have

P aβP b ⊗ 1 = (−1)a
(
(p− 1)b

a

)
βP a+b ⊗ 1.

Our next task is to consider negative b. If b+kpn ≥ 0, the element βεP b⊗1 ∈
B(n)⊗A(n−1) Mp maps to βεP b+kpn ⊗ 1 ∈ C(n)⊗A(n−1) Mp in the defining
inverse system

B(n)⊗A(n−1) Mp → · · ·C(n)⊗A(n−1) Mp → · · · → C(n)⊗A(n−1) Mp.

Hence P a(βεP b ⊗ 1) maps to P a(βεP b+kpn ⊗ 1) ∈ C(n) ⊗A(n−1) Mp for
b + kpn ≥ 0. Here we may use the formulas for positive b as we did above
and since the binomial coefficients involved are periodic as in lemma 4.1.33,
we see that the expressions P a(P b ⊗ 1) and

(−1)a
(
(p− 1)b− 1

a

)
P a+b ⊗ 1

have the same image in C(n) ⊗A(n−1) Mp for b + kpn ≥ 0 and hence they
must be the same element in R+(Mp). The same reasoning shows that

P aβP b ⊗ 1 = (−1)a
(
(p− 1)b

a

)
βP a+b ⊗ 1

is also valid for negative b. Summarizing, we get the following result:

Proposition 4.1.34. Let p be an odd prime. Then we have

P aP b ⊗ 1 = (−1)a
(
(p− 1)b− 1

a

)
P a+b ⊗ 1

and

P aβP b ⊗ 1 = (−1)a
(
(p− 1)b

a

)
βP a+b ⊗ 1

for all b ∈ Z.
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For p = 2 we argue as before: Taking Sqa ∈ A(n) ⊂ A, its action on

Sqb ⊗ 1 ∈ B(n)⊗A(n−1) M2
∼= R+(M2)

is given by Sqa(Sqb⊗1) = SqaSqb⊗1. We use the Adem relations to expand
the product and the tensor splits as the sum

SqaSqb ⊗ 1 =

�a/2	∑
i=0

(
b− 1− i

a− 2i

)
Sqa+b−i ⊗ Sqi(1)

if a is odd and

SqaSqb ⊗ 1 =

�a/2	∑
i=0

τ εi
(
b− 1− i

a− 2i

)
Sqa+b−iSqi(1)

+ ρ

�a/2	∑
i=1,i≡b(2)

(
b− 1− i

a− 2i

)
Sqa+b−i−1Sqi(1)

if a is even. Here we remind ourselves that we took

εi =

{
1 if b is even and i is odd,

0 otherwise.

We have Sqi(1) = 0 except for when i = 0, hence we get

SqaSqb ⊗ 1 =

(
b− 1

a

)
Sqa+b ⊗ 1.

The discussion of the action of A on Sqb ⊗ 1 for negative b is entirely the
same as in the odd case and the formula

SqaSqb ⊗ 1 =

(
b− 1

a

)
Sqa+b ⊗ 1

is valid in these cases as well.

Proposition 4.1.35. For p = 2 we have

SqaSqb ⊗ 1 =

(
b− 1

a

)
Sqa+b ⊗ 1

for all b ∈ Z.

Before we state the next proposition we need a simple observation on
binomial coefficients modulo 2:
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Lemma 4.1.36. If m is even and n is odd then we have
(
m
n

) ≡ 0 modulo 2.

Proof. We have
(
m
n

)
= m

n

(
m−1
n−1

)
and so n

(
m
n

)
= m

(
m−1
n−1

)
. Since m is even it

cannot divide n and hence
(
m
n

)
must be even.

Proposition 4.1.37. There is an A-module isomorphism

R+(M2) ∼= Σ1,0H∗,∗
c (L∞

−∞) ∼= Σ1,0M2[u, v, v
−1]/(u2 + ρu+ τv).

Proof. There is an isomorphism of M2-modules

ϕ : R+(M2) −→ Σ1,0H∗,∗
c (L∞

−∞)

sending

Sq2k ⊗ 1 �→ Σ1,0uvk−1

and

Sq2k+1 ⊗ 1 �→ Σ1,0vk.

We will check that it is A-linear: First we deal with Sqb⊗ 1 ∈ R+(M2) with
b non-negative. There are commutative diagrams

Sq2k ⊗ 1
ϕ ��

Sq2a∗
��

Σ1,0uvk−1

Sq2a∗
��(

2k−1
2a

)
Sq2k+2a

ϕ

��

(
2(k−1)

2a

)
Σ1,0uvk−1+a

(
2k−1
2a

)
Σ1,0uvk−1+a

Sq2k+1 ⊗ 1
ϕ ��

Sq2a∗
��

Σ1,0vk

Sq2a∗
��(

2k
2a

)
Sq2k+2a+1 ϕ ��

(
2k
2a

)
Σ1,0vk+a,

Sq2k ⊗ 1
ϕ ��

Sq2a+1∗
��

Σ1,0uvk−1

Sq2a+1∗
��(

2k−1
2a+1

)
Sq2k+2a+1

ϕ

��

(
2(k−1)

2a

)
Σ1,0vk+a

(
2k−1
2a+1

)
Σ1,0vk+a
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and

Sq2k+1 ⊗ 1
ϕ ��

Sq2a+1∗
��

Σ1,0vk

Sq2a+1∗
��(

2k
2a+1

)
Sq2k+2a+2

ϕ

��

0

(
2k

2a+1

)
Σ1,0uvk+a

The equalities can be seen from the fact that
(
2k−1
2a

)
=

(
2k−2
2a

)
+

(
2k−2
2a−1

)
,(

2k−1
2a+1

)
=

(
2k−2
2a+1

)
+

(
2k−2
2a

)
.
(
2k−2
2a−1

)
,
(
2k−2
2a+1

)
and

(
2k

2a+1

)
are all divisible by 2

from the lemma beforehand.

We can extend ϕ to elements Sqb ⊗ 1 ∈ R+(M2) with b negative: The
action of A on the elements uεvb is determined by the identification in
proposition 3.2.8 and using the formulas for positive squaring operations.
For example, the action of Sq2a on uεvb is

(
2(b+k)

2a

)
vb+k+a =

(
2b
2a

)
vb+k+a or(

2(b+k)
2a

)
uvb+k+a =

(
2b
2a

)
uvb+k+a depending on ε where b + k ≥ 0. We saw

the A-action on R+(M2) in the discussion before this lemma and how it was
extended to negative b. From this we conclude that the isomorphism follows
from the Sqb ⊗ 1 ∈ R+(M2) with b positive.

4.2 The motivic Adams spectral sequence

This section recapitulates current knowledge of the convergence of the mo-
tivic Adams spectral sequence following [14] and [21]. As in the classical
situation, there are two ways to set it up, a homological and a cohomological
spectral sequence. They both converge to the homotopy groups of the same
object in SH(F ) under finite type assumptions as discussed in [14] proposi-
tion 7.14. The homological spectral sequence is formed by constructing an
exact couple: We follow chapter 2 of [32]. First, let E be a ring-spectrum
over F , that is a ring-object in SH(F ), and take X ∈ SH(F ). We will
assume that E is flat which happens if E ∧ E is equivalent to a wedge of
suspensions of E. In lemma 7.3 of [14], it is shown that H(Z/p) has this
property. An E-Adams resolution of X is a diagram

X X0

��

X1
��

��

X2
��

��

· · ·��

K0 K1 K2

where the following conditions are met (proposition 2.2.1 in [32]):

• Xs+1 is the fiber of the map Xs → Ks;
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• E ∧Xs is a retract of E ∧Ks;

• Ks is a retract of E ∧Ks;

• Ext
t,(u,∗)
E∗,∗(E)(E∗(S0,0), E∗,∗(Ks)) is isomorphic to πu,∗(Ks) when t = 0

and 0 when t < 0. Here Ext is taken in the category of comodules over
E∗,∗(E).

Specifically, such resolutions can be constructed in the following way: Start-
ing with the unit map S → E one forms the homotopy fiber, E say. There
is an induced fiber sequence

E
s+1 → E

s → E ∧ Es
.

Smashing these sequences with X we obtain the tower above by setting
Xs := E

s ∧X and Ks := E ∧Xs. The fiber sequences Xs+1 −→ Xs −→ Ks

induce long exact sequences

· · · �� π(m,n)(Xs+1) �� π(m,n)(Xs) �� π(m,n)(Ks) �� · · · ,

and defining E
s,(m,n)
1 := π(m−s,n)(Ks) and D

s,(m,n)
1 := π(m−s,n)(Xs), we

produce an exact couple

D1
i1 �� D1

j1

  
E1

k1
!!

where i1 is induced by Xs+1 −→ Xs, j1 is induced by Xs −→ Ks and k1
is the connecting morphism. In the language of section 7 in [6], this is
a half-plane spectral sequence with entering differentials. For conditional
convergence one modifies the tower so that the homotopy limit is trivial:
Starting with the compositions

E
s → E

s−1 → · · · → S

and defining Cs−1 to be the cofiber of the map E
s −→ S, we get induced

maps Cs −→ Cs−1. From the tower constructed above, another tower of
fibrations then results:

• C−1 ∧X

��

C0 ∧X��

��

· · ·��

Σ1,0E ∧X Σ1,0E ∧ E ∧X
and we let X∧

E be the homotopy limit of this tower. It is called the E-
nilpotent completion of X, a definition found in [7] proposition 5.5. The
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Adams spectral sequence converges conditionally to lims π∗(Cs ∧ X) and

under the condition R limE
∗,(∗,∗)
∞ ∼= 0, strongly to π∗,∗(X∧

E). The reader
may consult [6], [2] section 15 part 3 or [32] chapter 2 for the construction,
details on the E2-term and its convergence. For our purposes, we take
E = H(Z/p), the mod p motivic Eilenberg-MacLane spectrum.

Work on the convergence of this spectral sequence has focused on a
particular class of motivic spectra, namely the cellular ones. See [13] for the
basic results. The concept of cellularity is relevant to any pointed model
category with examples being H•(F ) and SH(F ).

Definition 4.2.1. Let A := {Sk,l | k ≥ l ≥ 0}. Then the class of unstably
cellular spaces is the smallest class in H•(F ) such that

• all objects in A are unstably cellular;

• any object weakly equivalent to an unstably cellular object is unstably
cellular;

• the homotopy colimit of any diagram C : I −→ H•(F ) such that each
Ci is unstably cellular is unstably cellular.

Definition 4.2.2. Let B := {Sk,l | k, l ∈ Z}. Then the class of cellular
spectra is the smallest class in SH(F ) such that

• all objects in B are cellular;

• any object weakly equivalent to a cellular object is cellular;

• the homotopy colimit of any diagram D : I −→ SH(F ) such that each
Di is cellular is cellular.

Remark 4.2.3. Following the conventions in [13], we say that a motivic
space X is stably cellular if the suspension spectrum of X is cellular in
SH(F ). In lemma 3.1 of that same article, it is shown that unstably cellular
spaces are also stably cellular.

In H•(F ) and SH(F ), attaching cells to a space or spectrum X means
taking the cofiber of a map of the form∨

i

Ski,li −→ X.

where ki ≥ li ≥ 0 for motivic spaces. Starting with a point and iterating we
produce unstably cellular spaces and cellular spectra by lemma 2.2 in [13].

Definition 4.2.4. A motivic cell spectrum X is of finite type if there exists
a k ∈ Z such that X has no cells in bidegree (k′ + l, l) for each k′ < k, and
only finitely many cells in bidegrees (k′′ + l, l) for any k′′ ∈ Z.
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The motivic Adams spectral sequence does not always converge to the
p-completion of the relevant spectrum so we need more theory to cover the
cases that may arise. Recall that for a field F , we can define GW (F ),
the Grothendieck Witt-ring of isomorphism classes of nonsingular quadratic
forms over F . For the definition and the basic results one may consult
chapter one of [15].

Definition 4.2.5. The Milnor-Witt K-theory of F is the graded associative
ring KMW∗ (F ) generated by the symbols [u], for each unit u ∈ F×, of degree
1, and one symbol η of degree −1 subject to the following relations:

• For each a ∈ F× \ 1, we have [a][1− a] = 0

• For each pair (a, b) ∈ (F×)2, we have [ab] = [a] + [b] + η[a][b]

• For each u ∈ F×, we have [u]η = η[u]

• For h := η[−1] + 2, we have ηh = 0

We recall some results of Fabien Morel:

Theorem 4.2.6. Let F be a perfect field. Then there is a ring isomorphism

KMW
∗ (F ) → π∗,∗(S0,0).

Proof. This is theorem 6.2.1 in [30].

Theorem 4.2.7. Let F be a perfect field. Then there is an isomorphism

GW (F ) → [S0,0, S0,0]SH(F ).

Proof. This is theorem 6.2.2 in [30].

There algebraic Hopf map

A2 \ 0 → P1

in H•(F ) sending (x, y) �→ [x : y] represents a class η ∈ π1,1(S
0,0) after

passing to the map induced on suspension spectra. Let X be a motivic
spectrum over F . If we define X/pn to be the homotopy cofiber in the
sequence

X
∗pn �� X �� X/pn,

then these form an inverse system and we define

X̂ := holimnX/p
n.

Similarly, there is an inverse system X/(pn, ηn), and we define︷︸︸︷
X := holimnX/(p

n, ηn).
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These will be refered to as the p-completion and the (p, η)-completion of X
respectively.

Finally, we state the basic result on the convergence of the motivic
Adams spectral sequence:

Theorem 4.2.8 ([21]). Let F be of characteristic 0 and X ∈ SH(F ) be
cellular of finite type. There is a map

comp : X −→ X∧
H(Z/p)

and under the conditions on F and X this map is a completion at (p, η)
meaning that

X∧
H(Z/p) �

︷︸︸︷
X .

If p > 2 and cdp(F ) < ∞, or p = 2 and cd2(F [i]) < ∞ then it is also a

completion at p meaning that X∧
H(Z/p) � X̂ is an equivalence.

Proof. This is theorem 1 in [21].

Corollary 4.2.1. Under the assumptions of the last theorem, the motivic
Adams spectral sequence converges strongly to the homotopy groups of the
respective completion of X with E2-term

CotorA
∨

∗,∗ (Mp, H∗,∗(X))

Proof. Corollary 3 in [21].

Remark 4.2.9. We remark that

CotorA
∨

∗,∗ (Mp, H∗,∗(X))

is isomorphic to

Ext∗,∗A (H∗,∗(X),Mp)

if H∗,∗(X) is free and of finite type as a module over Mp. This follows by

dualization: CotorA
∨

∗,∗ (Mp, H∗,∗(X)) is calculated using the cobar resolution
(see e.g. [32], appendix 1) with terms

Mp ⊗Mp (A
∨)⊗s ⊗Mp H∗,∗(X)

and

Mp�A∨H∗,∗(X)

as its 0-th term. Since both H∗,∗(X) and A∨ are free over Mp and of finite
type, the Mp-dual complex is a resolution of

(Mp�A∨H∗,∗(X))∨ ∼= M∨
p ⊗A H∗,∗(X)∨ ∼= M∨

p ⊗A H
∗,∗(X)
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with homology groups TorA∗,∗(Mp, H
∗,∗(X)) and so

CotorA
∨

∗,∗ (Mp, H∗,∗(X)) ∼= (TorA∗,∗(Mp, H
∗,∗(X))∨.

In dualizing we need to know that H∗,∗(X)∨ ∼= H∗,∗(X) which also follows
by the assumptions on H∗,∗(X) and the discussion leading up to lemma 7.13
in [14]. From proposition 5.3, chapter 6 in [10], there is an isomorphism

TorA∗,∗(M
∨
p , H

∗,∗(X)) ∼= Ext∗,∗A (H∗,∗(X),Mp)
∨

given that A is of finite type. Hence our isomorphism follows.

We turn to two handy results:

Lemma 4.2.10. Let

X −→ Y −→ Z

be a homotopy cofiber sequence in SH(F ). If any two of the three spectra in
the sequence are cellular, then so is the third.

Proof. This is a special case of lemma 2.5 in [13]. We need to check that the
motivic desuspension of every object in B := {Sk,l | k, l ∈ Z} is equivalent
to an object in B which is evident.

Lemma 4.2.11. Let

X −→ Y −→ Z

be a homotopy cofiber sequence in SH(F ) with all three spectra being cellular.
If any two of the three spectra in the sequence are of finite type, then so is
the third.

Proof. Let X, Y be of finite type and f : X −→ Y . Then Z ∼= Cf , the
mapping cone. In SH(F ), a pointed simplicial model category, we have
Cf := CX ∪f Y . This complex has a cell in bidegree (a+ 1, b) for any cell
of bidegree (a, b) in X and a cell of bidegree (a′, b′) for any cell (a′, b′) in Y
and is then of finite type. There are induced cofiber sequences

Y −→ Z −→ Σ1,0X

and

Z −→ Σ1,0X −→ Σ1,0Y

so assumptions of finite type for Y and Z, or X (and a fortiori Σ1,0X) and
Z, implies the finite type of Σ1,0X and Σ1,0Y by the same argument. Taking
desuspensions then produces cell spectra with cells in one degree less than
ΣX1,0 and Σ1,0Y .
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Remark 4.2.12. The objects Pn are cellular of finite type for n ≥ 0: There
are cofiber sequences

Pn−1 −→ Pn −→ S2n,n

in H•(F ) so the corresponding sequence in SH(F ) together with the fact
that stable cellularity has a 2 out of 3-property in cofiber sequences as we
saw in lemma 4.2.10. An induction on the dimension of the projective spaces
then shows cellularity for these objects. Since cellularity is preserved under
homotopy colimits we derive this property for P∞. We just saw that the
set of finite type motivic spectra also has the 2 out of 3-property for cofiber
sequences so we can show that Pn is of finite type by the same argument.
From the cofiber sequence above and the dimensions of the cells we are
attaching, the motivic space P∞ is contained in this class as well.

Lemma 4.2.13. If X and Y are stably cellular objects of H•(F ) then so is
X × Y . In addition, if both are of finite type, then so is the product.

Proof. The first part is proved in lemma 3.6 of [13]. From the reasoning in
that same result, cellularity is proved by using the unstable cofiber sequence

X ∨ Y −→ X × Y −→ X ∧ Y
and showing that both X ∨ Y and X ∧ Y are cellular. If both X and Y are
of finite type then X ∨ Y will be too since we have a cofiber sequence

X −→ X ∨ Y −→ Y.

The argument in lemma 3.3 in [13] showing that X∧Y is cellular boils down
to showing that it can be written as a homotopy colimit of smash products
of the spheres in X and Y so if both of them are of finite type then so is
X ∧ Y .

Definition 4.2.14. Let {Uα} be a Zariski-cover of a scheme X. We say
that the cover is completely (stably) cellular if each intersection Uα1···αn :=
Uα1 ∩ · · · ∩ Uαn is (stably) cellular.

Lemma 4.2.15. Let X be a scheme and U∗ −→ X be a hypercover in
H•(F ). If each Un is stably cellular, then so is X. If each Un is unstably
cellular, then so is X.

Proof. Lemma 3.9 in [13]. For the definition of a hypercover, the reader may
see definition 4.1 in [12].

Proposition 4.2.16. Let X be an n-dimensional cubical diagram in H•(F )
or SH(F ) indexed on the set {1, ..., n} with X{1,...,n} being the homotopy
colimit. If all the other vertices in the cube are cellular and of finite type,
all morphisms are cofibrations between cofibrant objects then X{1,...,n} is also
cellular of finite type.
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Proof. Cellularity is immediate. Let S be a subset of {1, ..., n}. It corre-
sponds to a vertex aS in the cube with coordinates (a1, ..., an) where ai = 0
if i /∈ S and where ai = 1 if i ∈ S. Assume that there is a motivic space (or
spectrum) X(aS) = XS at corner aS for every subset S and that

X{1,...,n} = hocolimS XS

is situated at corner a{1,...,n} = (1, ..., 1). By the cofibrancy assumptions we
may assume that

colimT<S XT → XS

is a cofibration for each T ∈ 1, ..., n so the homotopy colimit and the colimit
of the diagram are equivalent. Hence X{1,...,n} = colimS XS . At this point
the cube has 2n corners and we extend it so that there are 3n of them with
coordinates (a1, ..., an) where 0 ≤ ai ≤ 2 for 1 ≤ i ≤ n and such that

X(a1, .., 0, .., an) → X(a1, .., 1, .., an) → X(a1, .., 2, .., an)

is a cofiber sequence for each subsequence (a1, ..., ai−1, ai+1, ..., an) and
1 ≤ i ≤ n. We remark that X(2, ..., 2) is the zero-object in either category.
Now assume that XS is of finite type for each of the 2n − 1 possible S ∈
{1, ..., n} in the original cube. By the two out of three property, X(a1, ..., an)
is of finite type if one of the coordinates is 0.

From the cofiber sequence

X(2, .., 2, 0) → X(2, .., 2, 1) → X(2, .., 2, 2)

it follows that X(2, .., 2, 1) is of finite type. As a consequence, the cofiber
sequence

X(2, .., 0, 1) → X(2, .., 1, 1) → X(2, .., 2, 1)

then implies that X(2, .., 1, 1) is of finite type. Using the cofiber sequences
recursively, we end up with the sequence

X(0, 1..., 1) → X(1, 1, .., 1) → X(2, 1, ..., 1)

from which it follows that X(1, 1, .., 1) is of finite type and we have proved
our result.

For the next result, we need to recall that an algebraic fiber bundle with
fiber F is a map

p : E → B

such that B can be covered by Zariski opens so that p is locally of the form

U × F → U.

This is related to the discussion concerning lemma 3.9 in [13].
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Proposition 4.2.17. The motivic spaces Ln are stably cellular and of finite
type for n ≥ 0.

Proof. We consider the covering by Zariski opens using Vi := Gm ×μp A
n−1

coming from the diagram

An \ 0 /μp �� Ln

Gm × An−1 /μp ��





Vi.





where we let one of the coordinates be nonzero. Here, Vi is A1-homotopy
equivalent (in H•(F )) to Gm/μp ∼= Gm and more generally

Vi1···ij := Vi1 ∩ · · · ∩ Vin
is homotopic to (Gm)j/μp ∼= (Gj

m): We identify

(Gm)j/μp ∼= Spec(F [x±1
1 , . . . , x±1

j ]μp)

where μp acts on F [x±1
1 , . . . , x±1

j ] by multiplication in each variable. As an

algebra over F it is isomorphic to F [x±p
1 , (xp−1

1 x2)
±1, . . . , (xp−1

1 xj)
±1] and

so

Spec(F [x±1
1 , . . . , x±1

j ]μp)
∼= �� Spec(F [x±p

1 , (xp−1
1 x2)

±1, . . . , (xp−1
1 xj)

±1])

∼=
��

(Gm)j .

The variety Vi1···ij is an affine bundle over (Gm)j/μp and given this relation-
ship, they must be homotopy equivalent in H•(F ). (Gm)j is stably cellular
and of finite type by lemma 4.2.13 since Gm is the sphere S1,1.

We recover Ln as the homotopy colimit of an n-cube consisting of corners

{VI := Vi1 ∩ · · · ∩ Vik | I ⊂ {1, . . . , n} \ ∅}

with maps VI −→ VJ if J ⊂ I. Working with the injective objectwise model
structure on these spaces, we may assume that all corners are cofibrant and
that all maps are cofibrations. Thus, Ln is of stably cellular and of by finite
type by proposition 4.2.16 since this holds for VI . Cellularity is preserved
under homotopy colimits and we derive this property for L∞.

We will verify the cellularity and finite type of motivic spectra such as
the ones we dealt with in definition 4.1.23 and quote a result of Dugger and
Isaksen.
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Lemma 4.2.18. If p : E −→ B is an algebraic fiber bundle with fiber F
such that F is stably cellular and B has a completely stably cellular cover
that trivializes the bundle then E is stably cellular

Proof. Lemma 3.9 in [13].

The diagrams of the former section had us looking at motivic spaces

E(kεn ↓ Ln)

E(kεn ↓ Ln) \ E(kγ1 ↓ Ln)

over Ln. If the result on the convergence of the Adams spectral sequence is
to be of any use, these had better be cellular.

Lemma 4.2.19. The spaces E(kεn↓Ln)
E(kεn↓Ln))\E(kγ1↓Ln))

are stably cellular and of

finite type.

Proof. We use the covering {Vi}1≤i≤n. Over each of these the inclusion

E(kγ1) −→ E(kεn)

is isomorphic to

E(kA1) −→ E(kAn)

which may be seen as follows: Over (x1, . . . , xn) ∈ V1, E(γ1) is given by the
points (y1, . . . , yn) in E(An) such that (y1, . . . , yn) = y1(1, x2, . . . , xn). We
send

(y1, . . . , yn) �−→ (y1, y2 − y1x2, . . . , yn − y1xn) ∈ A1 × 0

and conversely

(y1, 0, . . . , 0) �−→ (y1, y2 + y1x2, . . . , yn + y1xn) ∈ An.

These formulae extend to the k-fold sum in an obvious way. We conclude
that E(kεn ↓ Ln)\E(kγ1 ↓ Ln) is isomorphic to Akn \Ak locally. This space
is equivalent to Ak(n−1) \ 0 which in turn is equivalent to S2k(n−1)−1,k(n−1),
a fact proved to be true in example 2.11 in [13]. Since the cover {Vi}1≤i≤n

satisfies the assumptions of lemma 4.2.15, E(kεn ↓ Ln) \ E(kγ1 ↓ Ln) is

unstably cellular. In the end, E(kεn↓Ln)
E(kεn↓Ln)\E(kγ1↓Ln)

is a homotopy pushout

which is then cellular from the definitions.

The finite type-property for these spectra needs to be verified. As we
just saw, the bundle can be trivialized such that the fibers are obviously of
finite type: They are equivalent to S2k(n−1)−1,k(n−1). Letting

p :
E(kεn ↓ Ln)

E(kεn ↓ Ln) \ E(kγ1 ↓ Ln)
−→ Ln
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be the projection, we cover E(kεn↓Ln)
E(kεn↓Ln)\E(kγ1↓Ln)

using

V ′
i := {p−1(Vi) � Vi × S2k(n−1)−1,k(n−1)}.

At this point we come back to the argument in proposition 4.2.16 using the
cubical diagram arising from the covering {V ′

i }1≤i≤n and finite type follows
in the exact same manner. This concludes the proof.

Now that all spectra of the relevant types are known to be cellular and
of finite type we return to the towers of our classifying spaces. Recall that
we constructed towers

L∞
−∞ �� · · · �� L∞

−1
�� L∞.

At each finite stage, there is associated a motivic Adams spectral sequence.
We want to get to the calculation of the homotopy of L∞

−∞. To do so, our
considerations become more general: Suppose {Yn} is an inverse system of
motivic spectra, each cellular and of finite type, and let Y := limn Yn. Then
for each stage the Adams spectral sequence converges strongly as in corollary
4.2.1. We organize these spectra in a diagram which is lifted from [26] and
can also be found in [11]:

· · · �� Zs
��

��

· · · �� Z0 = Y

��
...

��

...

��
· · · �� Zn−1,s

��

��

· · · �� Zn−1,0 = Yn−1

��
· · · �� Zn,s

�� · · · �� Zn,0 = Yn.

Here, each row is an Adams resolution and at the top we have

Zs := holimn Zn,s.

We will need some additional conditions on our building blocks for further
progress:

Lemma 4.2.20. H(Z/p) is cellular and of finite type.

Proof. This is lemma 6 in [21] or corollary 20 in [23]. The cellular structure
is described in [23], section 3.

We will also use the following result:
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Proposition 4.2.21. The spectra H(Z/p) are p, η-complete.

Proof. For p-completeness, the maps

H(Z/p)
∗pn �� H(Z/p)

are 0 on homotopy groups and from the commutative diagram of cofiber
sequences

H(Z/p)
∗pn+1

��

∗p
��

H(Z/p) �� H(Z/p)/pn+1 ��

��

Σ1,0H(Z/p)

∗p
��

H(Z/p)
∗pn �� H(Z/p) �� H(Z/p)/pn �� Σ1,0H(Z/p)

we get an equivalence H(Z/p) � holimnH(Z/p)/pn = Ĥ(Z/p) by passing
up the inverse tower. Next, concerning η-completeness, this element corre-
sponds to a class in π1,1(S

0,0). Furthermore, the map

H(Z/p) ∧ η : H(Z/p) ∧ S1,1 −→ H(Z/p) ∧ S0,0 ∼= H(Z/p)

is homotopic to the trivial map. This follows from the fact that the same
map represents a class in

H0,0(H(Z/p) ∧ S1,1) ∼= H−1,−1(H(Z/p))

with the last group being trivial at least when char(F ) is zero. Because of
the triviality of this class, we have H(Z/p)/η � H(Z/p) ∨ Σ1,0H(Z/p) and
also H(Z/p)/ηn � H(Z/p) ∨ Σn+1,nH(Z/p) for all n ≥ 0. The maps in the

inverse system defining
︷ ︸︸ ︷
H(Z/p) are the identity maps on the H(Z/p) and

nilpotent on the Σn+1,nH(Z/p)-summands. Hence, following the same tower
argument as before, H(Z/p) is also η-complete. The stated result follows by
using the diagram below:

Σ2n,nH(Z/p)
∗ηn ��

∗pm
��

H(Z/p) ��

∗pm
��

H(Z/p)/ηn ��

∗pm
��

Σ2n+1,nH(Z/p)

∗pm
��

Σ2n,nH(Z/p)
∗ηn ��

��

H(Z/p) ��

��

H(Z/p)/ηn ��

��

Σ2n+1,nH(Z/p)

��
Σ2n,nH(Z/p)/pm �� H(Z/p)/pm �� H(Z/p)/(pm, ηn) �� Σ2n+1,nH(Z/p)/pm
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For each row of the diagram concerning the Zn,s, the corresponding
spectral sequence is generated by the exact couple

π∗,∗(Zn+1,s) �� π∗,∗(Zn,s)

��
π∗,∗(Kn,s).

""

Proposition 4.2.22. Assume Mp to be noetherian and that it is finite di-
mensional as a module over Z/p in each bidegree. If we let

E∗,(∗,∗)
r (Y ) := lim

n
E∗,(∗,∗)

r (Yn)

then the trigraded groups {E∗,(∗,∗)
r (Y )} are the terms of a spectral sequence

with E2-term

E
s,(t,∗)
2 (Y ) ∼= Ext

s,(t,∗)
A (colim

n
H∗,∗(Yn),Mp) =⇒ πt−s,∗(

︷︸︸︷
Y )

If p > 2 and cdp(F ) < ∞, or when p = 2 and cd2(F [i]) < ∞ then it
converges strongly to the p-completion of Y .

Proof. This is an adaption of proposition 2.2 in [26]. For each s, Zn,s and
Kn,s are of finite type: Both S

0,0 and H(Z/p) are of finite type and the fiber
sequence

H(Z/p) −→ S0,0 −→ H(Z/p)

implies that H(Z/p) is of finite type. An induction using the fiber sequence

H(Z/p)
s+1 −→ H(Z/p)

s −→ H(Z/p) ∧H(Z/p)
s

followed by smashing with appropriate spectra Xn,s (also of finite type)

imply that Zn,s = H(Z/p)
s ∧ Xn,s and Kn,s = H(Z/p) ∧ Zn,s are of finite

type. At each n we will need both E2 and E∞-terms to be of finite type
over Mp and for this we assume Mp to be noetherian so taking subquotients
remains of finite type. Completing all rows with respect to (p, η), we get
exact couples

π∗,∗(
︷ ︸︸ ︷
Zn+1,s) �� π∗,∗(

︷︸︸︷
Zn,s)

��

π∗,∗(
︷︸︸︷
Kn,s).

��

We saw that
︷︸︸︷
Kn,s � Kn,s so these exact couples have the same Er-terms

as the ones we started with. All homotopy groups involved are compact
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Hausdorff since the spectra Zn,s and Kn,s are of finite type over Mp and
Mp is finite dimensional in each bidegree over Z/p. For this class of groups,
filtered inverse limits are exact (see e.g. lemma 1.1.5 in [33]) so we pass to
the homotopy limits at the top row and obtain the exact couple

π∗,∗(
︷︸︸︷
Zs ) �� π∗,∗(

︷︸︸︷
Zs )

##
limn π∗,∗(Kn,s).

""

Fixing n we have conditional as well as strong convergence so

lim
s
π∗,∗(Zn,s) = 0 = R lim

s
π∗,∗(Zn,s)

and
R lim

r
Es,∗,∗

r (Xn) = 0.

We may interchange limits so

lim
s

lim
n
π∗,∗(Zn,s) ∼= lim

n
lim
s
π∗,∗(Zn,s) = 0

Also, since derived inverse limits are exact, there is a diagram of short exact
sequences

R lims limn π∗,∗(Zn,s) �� R limn,s π∗,∗(Zn,s) �� limsR limn π∗,∗(Zn,s)

R limn lims π∗,∗(Zn,s) �� R limn,s π∗,∗(Zn,s) �� limnR lims π∗,∗(Zn,s)

coming from the collapse of the spectral sequences in [35] theorem 3. Hence
the limit spectral sequence is conditionally convergent. For strong conver-
gence it is enough to consider the diagram

R limr limnE
s,∗,∗
r (Xn) �� R limn,r E

s,∗,∗
r (Xn) �� limr R limnE

s,∗,∗
r (Xn)

R limn limr E
s,∗,∗
r (Xn) �� R limn,r E

s,∗,∗
r (Xn) �� limnR limr E

s,∗,∗
r (Xn)

which is coming from [35]. From our assumptions, each limr E
s,t,∗
r (Xn) is

finite dimensional over Z/p so R limn limr E
s,t,∗
r (Xn) = 0 so our spectral

sequence also converges strongly.

This result has obvious implications for our tower

L∞
−∞ �� · · · �� L∞

−1
�� L∞.

and we state what we set out to prove from the beginning:
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Theorem 4.2.23. There is an inverse limit of Adams spectral sequences
arising from the tower

L∞
−∞ �� · · · �� L∞

−1
�� L∞.

If we let E
∗,(∗,∗)
r (L∞

−∞) := colim
k

E
∗,(∗,∗)
r (L∞

−k) then the trigraded groups {E∗,(∗,∗)
r (L∞

−∞)}
are the terms of a spectral sequence with E2-term

E
s,(t,∗)
2 (L∞

−∞) ∼= Exts,(t,∗)(colim
k

H∗,∗(L∞
−k),Mp) =⇒ πt−s,∗(

︷ ︸︸ ︷
L∞
−∞)

If cd2(F [i]) <∞ then it converges strongly to the 2-completion of L∞
−∞.

Proof. Follows immediately from the last proposition and the finite type of
the L∞

−k.

Theorem 4.2.24. The E2-term of the spectral sequence in the last theorem
is isomorphic to

E
s,(t,∗)
2 (Σ−1,0R+(M2),M2)

as an A-module.

Proof. This is a consequence of theorem 3.3.6 and proposition 4.1.37.
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Chapter 5

Concluding comments

Now that we have seen that the construction R+(M2) may be realized topo-
logically as it was in the classical case, it is only natural that one should
try to say something about what the conclusions may imply for a motivic
version of the Segal conjecture for the case where we are dealing with μ2.
There are papers on equivariant spectra in the motivic setting ([9], [22]) but
generalizations of Carlssons argument in [8] is not known to the author. One
should speculate though.

There should be a tower of motivic spectra for dealing with μp for odd
p but the author has not found a suitable candidate as of yet. Also, it
would be interesting to see how the constructions in this thesis behaves
under realization functors from motivic spaces to topological spaces. The
computations in [14] suggest that one might find interesting information
concerning the classical Adams spectral sequences by using this bridge. The
author has not spent any time on these ideas so this might be another theme
for future research.

95
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