
FPGA Based
Development
Platform for
Biomedical
Measurements

Master Thesis

Lars Jørgen Johnsen
Aamodt

4th June 2013

Abstract

This thesis deals with prototype development of an FPGA based develop-
ment platform for biomedical measurements. The system uses a custom
built front-end to measure electrodermal activity. The digital signal pro-
cessing is performed on an FPGA, and the data is transferred via Bluetooth
to an Android application. The digital signal processing, Bluetooth com-
munication and the Android application has been tested and verified, and
the potential, current and resistance measurement chains of the front-end
show a high degree of linearity. The reactance measurement chain was
found to be inoperable, and further testing is required to get the front-end
fully functional.

I

II

Acknowledgments

This thesis is the fulfilling of the Master of Science in Electronics and
Computer Technology at the Department of Physics, University of Oslo.
This work was carried out in the period from January 2012 to June 2013,
under the supervision of Professor Ørjan G. Martinsen at UiO Electronics
Group, Ph.D Candidate Tore Andrè Bekkeng at UiO Plasma- and Space
Physics Group, and Ph.D Christian Tronstad at the OUS Rikshospitalet,
Department of Clinical and Biomedical Engineering. I’ m very grateful
to Ørjan G. Martinsen for giving me the opportunity to work with this
interesting topic. I would like to thank Martinsen for his support and
guidance during this work. I would also like to thank Christian Tronstad
for shearing his insight on skin measurements. Special thanks go to Tore
Andrè Bekkeng for his guidance and motivation throughout the entire
project. I also want to thank the Electronics lab at the Department of
Physics and Stein Lyng Nilsen for valuable help during circuit design and
PCB production. To all former and current students at room 333V at the
Department of Physics, this would not have been the same without you.
To Bent and Espen, thanks for all discussions, help and nonsense during
this time. Last but not lest I would like to give a special thanks to my
amazing girlfriend Tine Paulsen, and my family for all their support and
care during my work on this project.

Oslo, Norway, June 2013
Lars Jørgen Johnsen Aamodt

III

IV

Nomenclature

FFT Fast Fourier Transform

AC Alternating Current

ADC Analog-to-Digital Converter

AOSP Android Open Source Project

ASIC Application Specific Integrated Circuit

CMR Common-mode Rejection

CMRR Common-mode Rejection Ratio

CORDIC Coordinate Rotation Digital Computer

CPE Constant Phase Element

EA Electrode Area

ECG Electrocardiogram

EDA Electrodermal Activity

EEA Effective Electrode Area

FIR Finite Impulse Response

FPGA Field-Programmable Gate Array

FSM Finite State Machine

HDL Hardware Description Language

HSMC High-Speed Mezzanine Connector

IC Integrated Circuit

In-Amp Instrumentation Amplifier

ISM Industrial, Science and Medical Radio Band

V

LE Logic Element

LUT Look-up Table

NCO Numerically Controlled Oscillator

Op-Amp Operational Amplifier

PCB Printed Circuit Board

PIO Programmed Input/Output

PLL Phase-Locked Loop

Redox Oxidation-reduction reactions

SDK Software Development Kit

SNR Signal-to-Noise Ratio

Sudomotor Movement of sweat in the sweat duct

UART Universal Asynchronous Receiver/Transmitter

VCCS Voltage-controlled Current Source

VI

Contents

1 Introduction 1
1.1 Background and Motivation 1
1.2 Goals of the Present Work . 2

2 Basic Theory 3
2.1 Bioimpedance . 3
2.2 Anatomy of Human Skin . 4

2.2.1 Skin Anatomy . 4
2.2.2 The Distribution and Structure of Sweat Glands . . . 7

2.3 Electrical Properties of Human Skin 7
2.3.1 Electrodermal Activity 8
2.3.2 Electrical Models of Human Skin 8

2.4 Electrodes . 11
2.4.1 Electrode Noise . 15

2.5 Measuring Principles . 16
2.5.1 Endosomatic Measurements 16
2.5.2 Exosomatic Mesurments 16
2.5.3 Three-electrode Systems 16
2.5.4 DC Potential and AC Conductance Measured at the

Same Skin Site . 17
2.5.5 Recording Sites . 19

3 Electronics Theory 21
3.1 Voltage-to-Current Conversion 21

3.1.1 The Howland Current Source 21
3.1.2 The Enhanced Howland Current Source 23
3.1.3 The Dual op-amp Current Source 24

3.2 Current Measurements . 25
3.2.1 Shunt Ammeter . 25
3.2.2 Feedback Ammeter . 26

3.3 The Instrumentation Amplifier 27
3.4 Analog Isolation Techniques and Patient Safety 28

3.4.1 Isolation Amplifiers 29
3.5 Lock-In Detection . 31
3.6 Inherent Noise . 34

VII

3.7 Noise analysis of a Transimpedance Amplifier 36
3.8 Sampling Analog Signals . 38

4 Digital Theory, Communication and Software 41
4.1 FPGA Design . 41

4.1.1 NiosII . 41
4.1.2 UART . 43
4.1.3 Megafunctions . 43
4.1.4 SignalTap II Logic Analyzer 44

4.2 Bluetooth Communication . 44
4.3 Android . 45

4.3.1 Android Architecture 45
4.3.2 Application Fundamentals 46

5 Design and Development 47
5.1 General System Requirements 47
5.2 System Overview . 48
5.3 Skin Electrodes . 49
5.4 Analog Front-end . 50

5.4.1 Power Isolation and Distribution 50
5.4.2 Isolation Amplifier . 51
5.4.3 Howland Current Source 52
5.4.4 Voltage Reference . 54
5.4.5 Preamplifier Circuit 55

5.5 The Data Acquisition Card . 57
5.5.1 Analog-to-Digital Converters 57
5.5.2 Digital to Analog Converter 59
5.5.3 Power Module . 60

5.6 FPGA Development Board . 60
5.6.1 Clock Divider . 61
5.6.2 Numerically Controlled Oscillator 62
5.6.3 AD5340 Controller . 63
5.6.4 AD7766 Controllers 63
5.6.5 Digital Signal Processing 67
5.6.6 Nios II . 71

5.7 Bluetooth module . 73
5.8 PCB Design . 74
5.9 The Android Application . 76

5.9.1 The Start Activity . 76
5.9.2 The Help Activity . 77
5.9.3 Device List Activity 77
5.9.4 The Main Activity . 77
5.9.5 The Bluetooth Service 78

VIII

6 System Verification and Calibration 79
6.1 Verification . 79

6.1.1 The Digital-To-Analog Converter 79
6.1.2 Digital Design Verification 81
6.1.3 Nios II and Bluetooth Communication 83
6.1.4 The Android Application 83
6.1.5 The RSO-2412DZ/H3 DC-DC Converter 85

6.2 Calibration of the Analog Front-end 86
6.2.1 Howland Current Source 86
6.2.2 The Resistance Measurement 88
6.2.3 The Reactance Measurement 88
6.2.4 The Electric Potential Measurement 90
6.2.5 The Current Measurement 91

6.3 Summary . 94

7 Summary and Conclusion 95
7.1 Conclusion of the Present Work 95
7.2 Future Work and Recommendations 96

A User Manual for the BioDataLogger Android Application 101

B The BioDataLogger UML and Code 105
B.1 UML Diagram . 105
B.2 Code . 106

C PythonDevelopmentTool UML and Code 147
C.1 UML . 147
C.2 Code . 148

D Matlab and Simulink Code 155
D.1 Moving Average Filter Analysis Code 155
D.2 Lock-in Simulation . 156
D.3 Calibration Code . 157

E LTspice Simulation 159
E.1 LTspice Simulation used to verify the values used for the

ADA4941 . 159

F VHDL Code 161
F.1 Top File . 161

G Nios II Firmware 181
G.1 Code . 181

IX

H Analog Front-end Files 185
H.1 Schemetics Analog Front-end Files 185
H.2 PCB Analog Front-end . 191

I Data Acquisition Card Production Files 195
I.1 Schemetics . 195
I.2 PCB . 203
I.3 Part List . 206

X

List of Figures

1.1 FPGA based development platform for biomediacal meas-
urments. 2

2.1 Cross section of human skin. 5
2.2 Cross section of epidermis. 5
2.3 Descriptive skin equivalent model. 9
2.4 Explanatory sweat duct model. 10
2.5 The Electrode-electrolyte Interface 12
2.6 Common Skin Electrodes . 14
2.7 Three-electrode system and its sensitivity field. 17
2.8 Measuring Principle . 18
2.9 Suggested electrode placement 19

3.1 The basic Howland current source. 22
3.2 The modified Howland current source. 23
3.3 The dual op-amp current source. 24
3.4 The shunt ammeter. 25
3.5 The feedback ammeter. 26
3.6 Basic three op-amp instrumentation amplifier schematic. . . 27
3.7 Schematic of the HCNR201 29
3.8 Unipolar photovoltaic amplifier. 30
3.9 Digital quadrature demodulation hardware algorithm. . . . 31
3.10 Noise model for the feedback ammeter. 36
3.11 Aliasing. 38

4.1 Cyclone III device family logic element. 42
4.2 The Nios II 32-bit embedded soft processor 42
4.3 The basic UART packet format. 43
4.4 The architecture of the Android operating system. 45

5.1 Overview of the FPGA based development platform. 48
5.2 Placements of the electrodes. 49
5.3 Overview of the Analog Front-end. 50
5.4 The isolated DC-DC converter. 51
5.5 Isolation Amplifier . 52
5.6 Dual Op-amp Howland Current Source 53

XI

5.7 Variable precision voltage reference 54
5.8 Preamplifier . 56
5.9 Overview of the Data Acquisition Card 57
5.10 Digital Filter Frequency Response for AD7766-2. 58
5.11 Schematic for driving the AD7766-2. 59
5.12 Overview of the digital design. 60
5.13 The Clock Divider. 61
5.14 The Numerically Controlled Oscillator. 62
5.15 The AD5340 Controller. 63
5.16 The AD7766 Controllers. 64
5.17 Serial timing diagram, reading data using C̄S. 65
5.18 Diagram of the FSM used to control the AD7766. 65
5.19 The digital signal processing. 66
5.20 The Moving Average Filter Module. 67
5.21 FSM diagram of the moving average filter. 68
5.22 The frequency response of a moving average. 69
5.23 The Remove Bias Module . 69
5.24 FSM diagram of the remove bias module. 70
5.25 The Data Enable Module. 71
5.26 The Dataregister Module . 71
5.27 The Nios II processor. 72
5.28 Screenshot of the Python development Tool. 73
5.29 The PmodBT2 peripheral module. 73
5.30 The two different revisions of the Data Acquisition Card. . . 75
5.31 The two different revisions of the Analog Front-end. 75
5.32 The BioDataLogger. 76
5.33 UML diagram of the Android application. 77

6.1 The output signal from the DAC. 80
6.2 An FFT of the output signal from the DAC. 80
6.3 Timing diagram of the AD5340 controller. 81
6.4 Timing diagram of the AD7766A controller. 81
6.5 Timing diagram of the AD7766B controller. 81
6.6 Timing diagram of the Remove Bias Module. 82
6.7 Timing diagram of the Moving Average Filter Module. . . . 82
6.8 Timing diagram of the Data Enable and Data Register

Modules. 82
6.9 The data received from the PmodBT2 Bluetooth module. . . 83
6.10 The Android profiling tool. 84
6.11 The BioDataLogger drawing generated data. 85
6.12 Output noise on the positive rail. 85
6.13 Output noise on the negative rail. 85
6.14 The setup used to test the Howland current source. 86
6.15 The measured peak-to-peak voltage UR plotted against the

different resistors Rvar. 87

XII

6.16 The setup used to calibrate the resistance measurement. . . . 88
6.17 The instrument output plotted against the different resistors

Rvar . 89
6.18 The setup used to calibrate the reactance measurement. . . . 89
6.19 The offset on the inputs of the analog front-end. 90
6.20 The setup used to calibrate the electric potential measurement. 90
6.21 The instrument readout plotted against the different electric

potentials. 91
6.22 The setup used to calibrate the Current measurements. . . . 92
6.23 The instrument readout plotted against the applied current. 93

A.1 Start the application. 101
A.2 The information screen. 102
A.3 The start screen. 102
A.4 Activated Bluetooth dialog. 102
A.5 The main screen. 102
A.6 The option menu. 102
A.7 Select Bluetooth device dialog. 103
A.8 BioDataLogger . 103
A.9 The notification. 104

B.1 UML diagram displaying the architecture of the BioData-
Logger. 105

C.1 UML diagram displaying the architecture of the Python
application. 147

D.1 Simulink simulation used to test the lock-in algorithm. . . . 156

E.1 LTspice Simulation used to verify the values used for the
ADA4941. 160

XIII

XIV

List of Tables

5.1 Selected component values for the ADC driver ADA4941-1. 59
5.2 PLL Frequencies . 62
5.3 AD5340 Truth Table . 64

XV

XVI

Chapter 1

Introduction

1.1 Background and Motivation

Measurements of biomedical signals have traditionally been done using
PC-based instrumentation and microcontroller technology. Due to the
sequential nature of the microcontroller, it offers little flexibility when
adding new modules in an existing design.

Field-programmable Gate Arrays (FPGA) are integrated circuits with
programmable logic cells and interconnections. The FPGAs are flexible,
and functionality can be changed as needed. The technology is concurrent,
and new modules can be added without altering the existing design.
These properties makes it possible to add new features and performing
system maintenance at a low cost and engineering effort. A fully tested
and verified FPGA design can easily be transferred to a full-custom
Application Specific Integrated Circuit (ASIC) facilitating large scale
production.The combination of concurrency, flexibility and low power
consumption, makes modern FPGAs well suited for portable systems.

In the recent years, the use of mobile applications in smartphones and
tablets have exploded. This is true for the private market, and it is steadily
increasing in the professional marked as well. An example of this is the use
of tablets, like the Apple Ipad, in public institutions like the parliament
and public schools. A mobile application as a monitoring device in a
measurement system offers great flexibility for the users. Monitoring can
be done in real-time, and with great distance between the observer and
the subject measured.

FPGA technology offers a flexible interfaced that can be used for
functions like wireless data exchange. An example of this to use a
Bluetooth module for communication and data transfer. Bluetooth is
implemented in most computers and mobile devices. This makes it a
highly available and low cost alternative for data transfer between an
FPGA and a mobile application unit.

1

1.2 Goals of the Present Work

The main goal of this thesis is to produce an FPGA based develop-
ment platform for biomedical measurments. The system should be
based on general modules that perform tasks like: measurements, pre-
amplification, digital signal processing, communication and data repres-
entation. In addition to the specifications already mentioned, the system
should also meet the following requirements:

• The digital signal processing should be implemented on the FPGA
in such a way that the system is expandable and scalable.

• The data representation should be done on an Android mobile
application.

• The communication between the Android application and the
hardware platform should be done using Bluetooth technology.

• The biomedical measurement used to demonstrate the capabilities of
the platform should be electrodermal activity.

• The system should facilitate for the implementation of an ECG signal
processing module, which has been developed by Huseby (2013).

Data Acquisition Card

EDA Front-end

Bluetooth Module

Android Device

Bluetooth Link

Skin Electrodes

EKG Front-endSkin Electrodes

ECG Signal
Processing

EDA Signal
Processing

Nios II
Embedded
Processor

FPGA

Figure 1.1: FPGA based development platform for biomediacal measur-
ments.

2

Chapter 2

Basic Theory

This chapter will give a review of the basic theory needed to understand
the purpose and measuring principle of the system presented in this thesis.

2.1 Bioimpedance

Bioimpedance is a term used to describe the passive electrical properties
of biological materials. It serves as an indirect transducing mechanism
for physiological events, and in its simplest form it only requires the
application of two or more electrodes. Measurements of bioimpedance
can be performed on a vast specter of biological materials such as dead
tissue, living tissue or organic material related to any organism such as
plant, microbe, cell, animal or human. (Grimnes et al. 2006)

Since body fluids contains ions like Na+ and Cl− the conductivity of
the body is electrolytic. This means that the charge carriers are ions, and
not electrons like in metal wires. Body tissue is composed of cells; these
cells have thin cell membranes with poor conductive properties. This
gives tissue a capacitive property that is frequency dependent, and as a
result, tissue can be regarded as a dielectric. (Grimnes et al. 2006)

Since tissue can be regarded as both a volume conductor and a
dielectric it can be described as a complex impedance.

Impedance Z [ohm, Ω] is a term used to denote a materials ability to
oppose AC current flow. In an electrical circuit or a biomaterial it is
expressed as the complex ratio of an AC voltage to an AC current:

Z =
v
i

(2.1)

where v is the voltage and i is the current.
Impedance can also be expressed by its Cartesian form:

Z = R + jX (2.2)

3

where the real part R is the resistance and the imaginary part X is the
reactance.

Or on its polar form:

Z = |Z| ejarg(Z) (2.3)

where the magnitude |Z| represents the ratio between the voltage
amplitude and the current amplitude and φ = arg(Z) represents the phase
difference between voltage and current.

Admittance Y [siemens, S] is the inverse of impedance Y = 1
Z and is a

measure of how easily a circuit or biomaterial will allow a current to flow:

Y = G + jB (2.4)

where the real part G is the conductance, and imaginary part B is the
suseptance.

Immittance is a term that combines both impedance and admittance of
a circuit or biomaterial. Since immittance is a term that applies to both
impedance and admittance which have different units, it dose not have its
own unit.

2.2 Anatomy of Human Skin

To better understand the electrical properties of human skin and how
its activity is measured, we will start with a review of the basics of skin
anatomy.

2.2.1 Skin Anatomy

As one can see from Figure 2.1 on the facing page the skin consists of
two distinct layers; epidermis which is the outermost layer, and dermis
which is located underneath. In addition to these two main layers, there
is also a third layer called hypodermis. This layer is sometimes included,
even though it is not strictly a part of the skin. In addition to these layers,
the skin also contains several different appendages such as, sweat glands,
sebaceous glands and hair follicles.

Epidermis

The epidermis is the skins outer structure and serves as a protective layer
between the body and its environment. The epidermis is divided into
two main layers, an inner layer of viable cells called stratum Malpighii
and an outer layer of anucleate horny cells called stratum corneum. As

4

Figure 2.1: Cross section showing the anatomy of the human skin
(reprinted from The Integumentary System).

Figure 2.2: Cross section showing a section of epidermis with its epidermal
layers (reprinted from Skin layers).

5

one can see form Figure 2.2 the stratum Malpighii is subdivided into
four different layers. The first of these is the stratum granulosum located
underneath stratum corneum containing various-sized keratohyalin. A
spinous layer called stratum spinosum and the stratum basale in contact
with the dermis. In friction surfaces or in areas where the epidermis is
thick, like the hands and feet, there are also an additional layer of hyaline
called stratum lucidum located between stratum corneum and stratum
granulosum.(Montagna et al. 1974)

In humans the skin is continually being renewed in a process referred
to as keratinization. The desquamation of horny cells on the skins
surface is replaced by cell proliferation of the basal epidermal cells. As
the keratinocytes divides into two daughter cells in the basal layer, one
remains static, and the other migrates to the upper layer. Here the
cell undergoes a number of morphological and biochemical changes. In
the next layer the keratinocytes grows and flatten, and the generation
of keratin will progressively fill the cell. As the kreatinocytes move
towards the upper layers they become flatter, and there nucleus begins to
degenerate. They also secrete a cement which increases cohesion between
the cells. When the cells arrive at the stratum corneum they have become
corneocytes, anucleate flattened cells filled with keratin.(Montagna et al.
1974)

Dermis

The dermis is located under the epidermis and it consists of a matrix
of loosely connective tissue composed of the fibrous proteins collagen,
elastin and reticulin. The matrix of the dermis contains blood vessels,
nerves and lympatics. The epidermal appendages eccrine sweat glands,
apocrine glands and the pilosebaceous unit are also penetrated into it.
Compared to the epidermis, the dermis is much thicker, and it is divided
into two dermal layers. The two layers are distinguished according to
there density, and by the arrangement of their collagen fibers.(Boucsein
2012)

The layer next to the epidermis is called stratum papillare, and it
forms a fingerlike pattern which fits into cavities on the underside of
the epidermis. Thus forming an intimate intermeshed junction referred
to as the epidermal-dermal junction. In addition to a possibly adhesive
effect this greatly increases the area of the basal layer, and results in an
enlargement of the area that produces new epidermal cells.(Montagna et
al. 1974)

The inner dermal layer called stratum reticulare is thicker than stratum
papillare, and it is made up bye strong collagenus fibers. This gives the
skin a high resistance against damage and rupture.

6

Hypodermis

The hypodermis is located under the dermis, and connects the skin with
the connective tissue covering the muscles. It allows good horizontal
mobility of the skin across its surface, and consists of loose connective
tissue. The hypodermis also contains the nerves and vessels which
supplies the skin. Because it can store fat it will be working as a thermal
layer.(Boucsein 2012)

2.2.2 The Distribution and Structure of Sweat Glands

The human body is covered with more than three million sweat glands.
These glands are considered to be exocrine which means that they secrete
directly onto the skin’s surface. The greatest density of sweat glands are
found on the palms, soles, and on the forehead. The lowest densities are
found on the arms, legs, and trunk.(Kuno 1956) Millington(1983) states
the following mean numbers of sweat gland per m2 on adult skin: 233 on
the palms, 620 on the soles, 360 on the forehead and 120 on the thighs.

There are two different types of sweat glands, apocrine and eccrine. As
one can see form Figure 2.1 on page 5 the apocrine glands are large in size,
and discharge into the hair follicle. These glands are mainly found in the
areola region of the breast, the genital and the axillary regions. According
to Herrmann et al. 1973 the apocrine sweat glands only play a negligible
role with respect to the total amount of sweating.

The eccrine glands, which make up the majority in human skin have
there greatest densities on the palms, soles and on the forehead. From
Figure 2.1 on page 5 one can see the eccrine gland are divided into two
different subparts; the secretory segment and the duct. The secretory
segment originates in the hypodermis or in the dermis and has the shape
of an irregularly coiled rounded mass. From this structure there is a duct
that goes relatively straight through the dermis and epidermis before it
spirals through the stratum corneum and opens on to the skin’s surface
through a pore.(Boucsein 2012)

2.3 Electrical Properties of Human Skin

As mentioned in Section 2.2.1 the stratum corneum is composed of a
protective barrier of keratinized cells called corneocytes. This layer has
a high ionic impedivity compared to the viable deeper layers of the
skin.(Grimnes 1982) The impedivity is influenced by the moister content
of stratum corneum. It is at its largest on the surface which is in direct
contact with the ambient humidity.(Tronstad et al. 2008)

The stratum corneum is perforated with sweat ducts. Since sweat
is an electrolyte solution the filling and absorption of sweat will mainly

7

influence the admittance of the outer layers of skin. Grimnes (1982) shows
that the filling of a sweat duct results in a doubling of the stratum corneum
admittance within few seconds.

In Grimnes (1984) it is argued that the ions flow through the stratum
corneum is negligible and that the dominant ionic path through ordinary
stratified stratum corneum is through the sweat ducts.

Since sweat is an electrolyte the filling of the sweat ducts mainly
contributes to the conductive part of the admittance, the capacitive part
of the admittance represents the moisture content of the stratum corneum.
(Martinsen et al. 2001)

2.3.1 Electrodermal Activity

The sweat activity on friction surfaces such as palmar and plantar skin
sites is very sensitive to psychological stimuli or conditions.(Grimnes et
al. 2006) Because of this the psychological effects on the electrical changes
in human skin have been studied for more then 100 years. Throughout this
history there have been different theories on the function and mechanism
of electrodermal activity (EDA). (Cacioppo et al. 2007)

From a physiological point of view, active sweating in humans can be
divided into two categories: thermal and mental / emotional. Thermal
sweating appears over the whole body surface, and plays an important
role in keeping the body temperature constant. The other part of
active sweating is influenced by emotion, mental stress and sensory
stimulation. The palmar and plantar sweat glands are innervated by
the sympathetic chain of the autonomic nervous system. In Kerassidis
(1994) the thermoregulatory effect of palmar and plantar sweat was
investigated, and the paper concludes that palmar and plantar sweating is
not thermoregulatory. As a result of this EDA is said to reflect sympathetic
activation. This type of sweating is usually present at some level during a
conscious state of mind, but disappears during sleep. (Kuno 1956)

2.3.2 Electrical Models of Human Skin

As mentioned in Section 2.1 on page 3 tissue have resistive and capacitive
properties. In order to investigate different aspects of these properties one
can use substitute models for the tissue, or in this instance the skin. All
models of biological tissue are separated into descriptive and explanatory.

Descriptive Model

The descriptive model is meant to describe the electrical properties of the
skin, and thus characterize the skin by both known electrical components
and algorithms. This category of models primarily reflects the measured

8

values and time courses, and it does not necessarily correspond to the
microanatomy of the skin. (Grimnes et al. 2008)

For the skin an descriptive electrical model is an electronic circuit. If
this circuit is constructed out of one ideal resistor a one ideal capacitor, the
model would be able to represent measuring results of one frequency. It
would not be able to mimic the whole immittance spectrum found in the
skin. To compensate for this, a second resistor is usually added, and the
capacitor is replaced with a more general Constant Phase Element (CPE).
The CPE is not a physical component, but a mathematical concept that can
have any constant phase.(Grimnes et al. 2006)

GAC B

YPOL

R∞

Gvar

Figure 2.3: Descriptive skin equivalent model.

The circuit in Figure 2.3 is a skin equivalent model from Grimnes
(2005). It consists of the resistor Gvar connected in parallel with the CPE
(YPOL). The CPE consists of a frequency dependent capacitor B connected
in parallel with a frequency dependent resistor GAC. I addition to the
parallel connection of Gvar and CPE there is also a resistor R∞ connected
in series.

Explanatory Model

The explanatory model is based on electrical theory and is composed of
discrete components like resistors, conductors, voltage sources, etc. The
model uses knowledge about basic electrical concepts, and relates them
to anatomical structures of physical processes. In this way the model is
meant to explain the physical processes or anatomy by the properties of
its electrical components.(Grimnes et al. 2008)

Figure 2.4 on the next page shows a simplified electrical equivalent
model of the skin, the model is based on the Fowles model (D.C. 1974),
and modified for AC measurements by Christian Tronstad.

9

R1

R2

R3

R6

E1

E2

C1

A

B

EPIDERMIS

DERMIS

SWEAT DUCT

R4

R5

Figure 2.4: Explanatory sweat duct model (reprinted from Tronstad 2012).

The following explanation originates from the description given by
Tronstad (2012), and is based on many years of bioimpedance research
by S Grimnes and Ø G Martinsen.

There are several different sources influencing the electrical properties
of the skin, but this model focuses on the sudomotor (movement of
sweat). The sudomotor activity is the mechanism responsible for the
largest change in the electrical admittance. As already mentioned in
Section 2.3.2, the skin has both conductive and capacitive properties. One
can see from Figure 2.4, that sweating mainly influenc the conductive
part of the admittance. The resistors R1 and R2 represent the conductive
pathway through the sweat duct, and they change conductance as the
sweat fills the duct. This means that the sum R1 + R2 is of interest
when measuring the sudomotor sweat activity. The terminal A is for
the measuring electrode and terminal B is for the counter-electrode. The
resistor R3 and capacitor C1 represent the epidermal admittance. The
resistance from the deeper layers of the skin, to the counter-electrode,
is represented by the resistor R6. Resistors R4 and R5 represents the
resistance of the duct wall at the epidermal and sub-epidermal levels, and
are connected to the biopotentials E2 and E1, where E1 < E2.

Since the impedance of a capacitor decreases with higher frequencies,
C1 will influence the sensitivity depth of the measurement. At higher
excitation frequencies the sensitivity depth will increase. This means
that a low excitation frequency results in a measurement sensitive to

10

epidermal skin properties and the highly resistive stratum corneum. The
contribution form the resistor R6 will becomes negligible. If the excitation
frequency is too low, the AC measurement signal will fall within the
same range as the skin biopotential activity. The signals will then become
difficult or impossible to distinguish.

2.4 Electrodes

In order to measure bioimpedance, it is necessary to provide some sort
of interface between the body and the instrumentation. This interface
is obtained by the use of electrodes. These electrodes interacts with
the ionic charge carriers, and transduce them into electric current for
the instrumentation. To achieve this transducing function the electrodes
consist of an electrical conductor in contact with some sort of aqueous
ionic solution from the body.

The interaction between electrons in the electrodes and the ions in the
body can influence the performance of the measurement. It is therefore
important that the electrodes are selected according to the intended
application.(Grimnes et al. 2008)

Electrode-electrolyte Interface

In Figure 2.5 on the following page, the transfer between the body and
the electrode is shown. The body is represented by the electrolyte. When
a net current crosses this interface the electrons (e−) and anions (A−)
move in the opposite direction of the current in the electrode. The cations
(C+) move in the same direction as the electrode current. These chemical
reactions are called redox (reduction-oxidation) , and can be presented in
general by the following reactions :(Webster 2009)

C ⇀↽ Cn+ + ne− (2.5)

Am− ⇀↽ A + me− (2.6)

where n is the valence of cation material C, and m is the valence of
anion material A.

In Reaction 2.5 it is assumed that the electrode is made up of some
atoms of the same material as the cations. This material can become
oxidized at the interface to form a cation and one ore more free electrons.
The cation is then discharged into the electrolyte, and the electron remains
in the electrode as a charge carrier. Reaction 2.6 gives the process of the
anions. In this case the anions at the electrode-electrolyte interface can
become oxidized to a neutral atom and give off one or more electrons
to the electrode. The reactions described for Reactions 2.5 and 2.6 are

11

Figure 2.5: Current crossing an electrode-electrolyte interface from left to
right. The electrode consists of metallic atoms C. The electrolyte is an
aqueous solution containing cations of the electrode metal C+ and anions
A−. The figure is reprinted from Webster (2009).

often reversible, and when the reaction happens from right to left; it is
referred to as reduction. If no current is crossing the interface the oxidation
and reduction reactions cancel each other out. When current flow from
electrode to electrolyte the oxidation dominates, and when it flows in the
opposite direction the reduction dominates.(Webster 2009)

Another important aspect of the electrode-electrolyte interface is the
half-cell potential. When metal is placed in a solution containing the same
ions as it self, there will be a local change in the concentration of ions in the
solution near the surface of the metal. This means that the charge in this
region is not neutral, and there will be a difference in potential between
the region close to the metal and the rest of the solution.(Webster 2009) It
is important to use the same metals for an electrode pair. If different metals
are used, the different half-cell potentials may create DC voltage outputs
of more than 1 V. This can contribute to the noise of the measurement, and
saturate the input of the biopotential amplifier.(Grimnes et al. 2008)

Polarization

If two ionic solutions of different concentrations are separated bye an ion-
selective semi permeable membrane, there will be an electric potential
E across the membrane. This relationship is described bye the Nernst
equation:

E = −RT
nF

ln
a1

a2
(2.7)

12

where a1 an a2 are the activities of the ions on either side of the
membrane. R is the universal gas constant, T is the absolute temperature,
n is the valence of the ions and F is the Faraday constant.

The half-cell potential or Nernst potential mentioned in the previous
section is described for conditions where there are no electric current
between the electrode and the electrolyte. For conditions where there is
a current between the two, the observed half-cell potential is often altered.
This alteration is due to the polarization of the electrode and can influence
the electrode performance.(Grimnes et al. 2008)

The difference in potential between the zero current half-cell potential
and the observed potential are known as overpotential. The overpoten-
tial phenomenon is composed of three different mechanisms: the ohmic,
the concentration, and the activation overpotentials. The ohmic overpo-
tential is due to the resistance of the electrolyte, and it results in a voltage
drop along the path of the current in the electrolyte. The concentration
overpotential results from changes in the ion distributions of the electro-
lyte near the electrode-electrolyte interface. When no current is flowing
across the electrode-electrolyte interface, the reactions described by 2.5
on page 11 and 2.6 on page 11 reach equilibrium. If a current is estab-
lished, this equality will be disturbed resulting in a change of the half-cell
potential of the electrode. The difference between this change of potential
and the equilibrium potential, is the concentration overpotential. The last
mechanism of polarization is the activation overpotential. This mechan-
ism results in a difference in voltage between the electrode and the elec-
trolyte, and happens because the redox has different energy barriers. This
results in different activation energies and the redox reaction is therefore
not entirely reversible.(Bronzino 2000)

Polarizable and Nonpolarizable Electrodes

Theoretically there are two types of electrodes: perfectly polarizable, and
perfectly nonpolarizable. The difference between these two classifications
refers to what happens to the electrode when a current passes between it
and the electrolyte.

For perfectly polarizable electrodes there are no actual charge crossing
the electrode-electrolyte interface when a current is applied. These
electrodes work by changing the distribution within the ion solution near
the electrode.

Perfectly nonpolarizable electrodes allow the current to pass freely
across the electrode-electrolyte interface without changing the charge
distribution in the electrolyte near the electrode. The two electrode
classifications are only theoretical, and they can not be fabricated. It is
however possible to fabricate electrodes that approximate the theoretical
descriptions.(Webster 2009)

Electrodes made from noble metals such as platinum come close to

13

behaving like polarizable electrodes. For this type of electrodes a charge
distribution different from that of the bulk electrolytic solution is found
close to the electrode-electrolyte interface. This effect makes the electrodes
sensitive to situations where movement is present, and in measurements
that involve low frequency or dc signals. If the electrode moves with
respect to the electrolytic solution, the charge distribution in the solution
adjacent to the electrode surface will change. This will result in a voltage
change in the electrode (motion artifacts).

Because of this, for most biomedical measurements, nonpolarizable
electrodes are preferred. A typical example of an electrode that comes
close to having nonpolarizable characteristics is the silver-silver chloride
electrode (Ag/AgCl).

The Skin Surface Electrode

In order to couple the electrode to the skin an ionic conductor is positioned
between the tissue and the electronic conductor. According to Grimnes
(2008) the purpose of the contact electrolyte is to:

• Control the metal-electrolyte interface

• Form a high conductance salt bridge from the metal to the skin

• Ensure small junction potentials

• Enable the metal-electrolyte interface to separate form the tissue

• Fill out space between the electrode plate and tissue

Figure 2.6: Two common designs for skin surface electrodes: (a) recessed
metal with gel in cup; (b) electrode with hydrogel contact electrolyte. The
figure is reprinted from Grimnes (2006).

Figure 2.6 shows the two most common types of skin contact elec-
trodes. These electrodes are constructed with a controlled distance

14

between the metal part of the electrode and the skin. This volume is filled
with contact electrolyte. For electrode (A) the electrolyte is a wet gel that
is restrained by a container for mechanical support and to prevent evap-
oration. For electrode (B) the electrolyte is a solid contact gel that is sticky
so it also serves as fixation. (Grimnes et al. 2006)

Variations of the design used for electrode (B) are common for dispos-
able electrodes. According to Electrodermal Measurespsyp et al. (2012)
they can have the following advantages: hygienic, antiseptic, hypoaller-
genic, and latex free. They can have good systems for fixation, and be
stored for many months in an unopened package. The electrodes can be
produced in large production runs with uniform electrical characteristics,
and be pre-gelled so that the metal-electrolyte interface is stabilized and
ready for use.

There are two surface areas that are important fore the immittance
of an electrode. The first of these, the metal-electrolyte interface area,
referred to as the electrode area (EA). This area determines the polarization
impedance of the EA, and is dependent on redox reactions and sorption
processes at the interface, and diffusion processes in the electrolytic
solution. The second area is the interface between the electrolytic solution
and the skin called the effective electrode area (EEA). This area determines
the measured skin Impedance. The type and concentration of the
electrolyte is therefore important in order to avoid interference with the
sweat process.(Grimnes et al. 2006)

The use of sintered silver-silver chloride electrodes is standard for
measurements of EDA. This is because they minimize electrode polariz-
ation, and the bias potential between the electrodes. Another advantage is
that they are also commercially available both as reusable and disposable
versions.(Psychophysiological Research et al. 2012)

2.4.1 Electrode Noise

Noise is an unwanted AC voltage superimposed on its equilibrium DC
potential in the electrodes. This noise is dependent on the frequency range
and it can take the form of pulse noise, white noise or 1/f noise 1.(Grimnes
et al. 2008) According to Grimnes et al. (2008) there are tree rules that are
important for the electrode noise:

• Larger electrode area gives less noise because of averaging effects.

• The more polarizable the electrode is, the more noise it generates.

• A more diluted contact electrolyte will generate more noise.

There are also other sources of disturbance present when using
skin electrodes, sudden voltage spikes with amplitudes of hundreds of

1Fore more information on the different types of noise see Section 3.6

15

microvolt’s and millisecond duration may occur. Non-uniform electrode
surface can have local current exchanges between impurity centers that
will contribute to the electrode noise. An AgCL electrode in 0.9% saline
may generate noise in the order of 10 µVp-p when used to measure ECG
at a bandwidth of 0.1-100 Hz. Pure silver plate electrodes may generate 10
times this value.(Grimnes et al. 2008)

2.5 Measuring Principles

This section looks further into the different methods used to measure EDA
and goes through the electrode system used in this thesis, its recording
sites and its measurement artifacts.

2.5.1 Endosomatic Measurements

An endosomatic measurement of EDA refers to the potential difference
that can be measured across the palmar and plantar skin in the absence of
any applied voltage or current. In this type of measurement one electrode
is placed on an active site, and the reference electrode is placed on a
relatively inactive site. The parameter measured is called skin potential SP,
and the signal amplitude usually have a range from 0 to ± 20 mV.(Dittmar
et al. 1991)

2.5.2 Exosomatic Mesurments

Exosomatic measurements of EDA are conducted by applying a constant
external voltage or current through the electrodes. This current can be
either AC or DC. With the application of constant current source, the result
will be a resistance measurement. If the voltage is kept constant, the result
will be a conductance measurement. With the application of an AC voltage
signal with a constant voltage, the measured result will be admittance, and
for a constant current the result will be impedance.(Boucsein 2012)

2.5.3 Three-electrode Systems

Figure 2.7 on the facing page shows the general principle behind a three-
electrode impedance system, and its sensitivity field. In this system there
is separate current carrying and signal pick-up electrodes, so the signal is
not picked up from the site of current application. This means that the
impedance measured is transfer impedance. For two-electrode systems
it can be difficult to estimate the contribution from the neutral electrode.
This problem can be compensated by using a large neutral electrode, but
the distal volume segment of the current path through the tissue, will still
influence the measurement. To better control the measured tissue zone,

16

Figure 2.7: Three-electrode system and its sensitivity field.(Oslo Bioimped-
ance Group 2010)

a third electrode is therefore added. The electrode M is used for both
current injection and voltage recording. The current in this set-up flows
from electrode M to electrode C, and the electrode R is used as a pick-
up electrode. If electrode R was not present the measured result would be
dependent on the impedance of both the electrodes and the tissue between
them. In order to avoid this, the voltage u is measured on R with respect
to M. The impedance is then given as Z = u/i and the measurement is
dependent on the polarization impedance of M, and a tissue volume zone
proximal to M. (Grimnes et al. 2008)

In Martinsen et al.(1999) it is shown that the sensitivity is also
dependent on the measurement frequency. High frequency measurements
are dominated by the deeper viable layer of the skin, and low frequency
measurement are dominated by the stratum corneum.

2.5.4 DC Potential and AC Conductance Measured at the
Same Skin Site

The two parameters skin conductance and skin potential are important in
the EDA tradition. The standard way to measure these parameters is to
use an exosomatic DC current for the conductance and an endosomatic
method for the potential. The use of DC current in the exosomatic
measurement results in a disturbance in the endosomatic DC potential.
The two measurements can therefore not be conducted at the same time.
In addition to this the DC current flow will polarize the electrodes,

17

electrolyze the skin, and possibly disturb the conductance du to varying
electromotive forces in the circuit.(Grimnes et al. 2010) To avoid these
problems a new measuring method was presented in Grimnes et al.
(2010). This method uses an AC constant current system to measure
AC conductance and DC potential simultaneously at the same skin site.
Figure 2.8 shows a modified version of the original measuring system.
This system was design by professor Sverre Grimnes.

Z1

Vout
Z2

Z3

I1

I1

I1

I=0

I=0
Gain = 100

Electrodes
Stratum Corneum

Deeper Layers

e1

e2

e3

Figure 2.8: Measuring Principle

The circuit in Figure 2.8 uses a three electrode system, and performs
both an exosomatic and an endosomatic measurement. The DC potential
is measured through electrode 1 and electrode 2, and is amplified by
the instrumentation amplifier. The AC impedance measurement is also
measured between the same electrodes, and the signals must therefore be
separated by signal processing. The DC potential is extracted by the use
of a lowpass filter that removes the AC components, and leaves the DC
potential. In order to find the AC conductance G, the complex impedance
must be separated into resistance R and reactance X. This is done with a
lock-in amplifier, and has the added benefit of removing unwanted noise.
Since we now have the resistance and the reactance, both the conductance
and the susceptance can be calculated by the following formulas:

G =
R

R2 + X2 [S] (2.8)

18

B =
−X

R2 + X2 [S] (2.9)

As mentioned in Section 2.3, the low frequency skin susceptance is
measure of the stratum corneum hydration, and is therefore an interesting
parameter to include in the instrument.

2.5.5 Recording Sites

EDA is recoded on the smooth and hairless skin of the palms and the soles.
The palms are often used for convenience. Figure 2.9 shows an overview
of the recommended electrode sites for EDA measurements on the palms.
Active electrodes are placed either on the volar phalanges of the fingers,
or on the thenar and hypothenar sites of the palms on the nondominant
hand. The nondominant hand is used to reduce the chance of movement,
and to leave the dominant hand free to be used.

Figure 2.9: Suggested electrode sites fore EDA measurements on the left
arm (reprinted from Malmivuo (1995)).

19

20

Chapter 3

Electronics Theory

This chapter reviews the electronics theory used to implement the
measuring system presented in this thesis.

3.1 Voltage-to-Current Conversion

In bioimpedance applications impedance is often found by injecting an
AC current into the subject and measuring the voltage across it. In order
to get a reliable measurement it is therefore important to have a stable and
reliable current source. The stimulating AC signal is normally generated
as a voltage by direct syntheses or a digital-to-analog converter. The AC
signal is then converted by a voltage-to-current generator into a current of
known amplitude.

The impedance of the subject is a value that changes with time, and
results in a variable load. It is therefore important that the current source
is able to cope with these variations without going into saturation or any
other form of overload. The current source should also have a high output
impedance in order to affect the measurement in the smallest possible way.

This section will take a look at some of the most commonly used
current sources in bioimpedance and their pros and cons.

3.1.1 The Howland Current Source

The Howland current source as shown in Figure 3.1 on the next page is a
well known and widely used circuit for linear voltage-controlled current
sources (VCCS) with variable loads.

The circuit was invented by Prof. Bradford Howland at MIT, and first
published in (Sheingold 1964). In its original form the Howland current
source consists of one op-amp and four resistors, and its operation is
based on both negative and positive feedback. According to Chen et al.
(2010), the circuit can be described by current analysis giving the following
equations.

21

Vin

R4R3

IL

R2R1

C2

C1

LOADRL

V+

V- VO

Figure 3.1: The basic Howland current source.

IL ≈
Vin −V+

R1
+

Vo −V+

R2
(3.1)

V+ ≈ V (3.2)

V−
R3
≈ Vo −V−

R4
(3.3)

If one then sets R1R4 = R2R3, the current flowing through the variable
load RL is given by

IL ≈
Vin

R1
(3.4)

From Formula 3.4 one can see that the load current IL is not a part of
the output current expression. The current IL through the load is therefore
independent of the load, and for an ideal op-amp the output impedance is
infinite.

The main problem with this configuration is that in order to guarantee
high output impedance, the resistors R1 − R4 must be closely matched.
According to Xiaoke et al. (2012) it has been shown that the maximum
mismatch should not exceed 0.1%

22

3.1.2 The Enhanced Howland Current Source

The enhanced Howland current source is shown in Figure 3.2. As the
name implies this configuration is a modified version of the original How-
land. By neglecting the stabilizing capacitors C1 and C2, and assuming an
ideal op-amp, current analysis gives the following equations.(Chen et al.
2010)

Vin

R4R3

RL

R2R1

C2

R5

C1

LOAD IL

V-

V+

Vo

Figure 3.2: The modified Howland current source.

IL ≈
Vo −VL

R4
+

VL −V+

R3
(3.5)

Vin −V−
R1

≈ V− −Vo

R5
(3.6)

VL −V+

R3
≈ V+

R2
(3.7)

V+ ≈ V− (3.8)

If one then sets R1 = R5 and R2 = R3 + R4, the current flowing through
the variable lode RL is given by:

RI ≈
Vin

R4
(3.9)

23

From Formula 3.9 on the preceding page one can see that the value
of RL is not included in the output current expression. The load current
IL is therefore independent of the load resistance and assuming an ideal
op-amp the output impedance is infinite.

One of the benefits of this configuration is that by splitting R2 from
the original Howland into R3 and R4, the power consumption of R1 is
reduced. This means that unwanted heating of R1 is reduced, resulting
in a more stable value for the resistor due to its temperature coefficient,
resulting in a better balance in the resistor bridge formed by R1, R2, R3, R4.

Another advantage of the enhanced Howland current source is that
it enables the designer to use larger resistors for the same output current.
This results in a design that is less influenced by the resistance represented
by the length of the Printed Circuit Board PCB tracks, and results in better
balancing of the resistors.

3.1.3 The Dual op-amp Current Source

Figure 3.3 shows the dual op-amp current source. This current source
differs from the two Howland configurations mentioned earlier by being
composed of two op-amps, thereby increasing the circuit complexity. By
neglecting the stabilizing capacitors C1 and C2, and assuming an ideal op-
amp, current analysis gives the following equations.(Chen et al. 2010)

Vin

R4R3

Iout

R2R1

C2

R5

C1 V1+

V1-

V2+

V2-

Vo1

Vo2

Figure 3.3: The dual op-amp current source.

V1+ ≈ V1− (3.10)

24

IL ≈
Vo1 −V2+

R5
(3.11)

Vin −V1−
R3

≈ V1− −Vo1

R4
(3.12)

V2− −V1+

R2
≈ V1+

R1
(3.13)

V2+ ≈ V2− (3.14)

If one then sets R1R4 = R2R3, the current flowing through the variable
lode RL is given by:

RI ≈
R2

R1
· Vin

R5
(3.15)

In this configuration the introduction of an additional op-amp results
in an advantage. For an ideal op-amp the current flowing form R5 will
see the theoretically infinite input resistance of the op-amp, and it will
therefore flow through the load resistance RL.

3.2 Current Measurements

According to KEITHLEY (2004) there are two basic techniques for low
current measurements: the shunt ammeter technique, and the feedback
ammeter technique. This section will look at the differences between the
two methods, and go through their strengths and weaknesses.

3.2.1 Shunt Ammeter

Iin

RA

Vout

RB

RS

VB

Figure 3.4: The shunt ammeter.

25

Figure 3.4 on the preceding page shows a shunt ammeter. The circuit
is constructed by shunting the input of a voltmeter with the resistor Rs.
When the current Iin flows through the shunt resistor Rs, there will be a
voltage drop across it. This voltage is measured by the voltmeter, and the
resulting output voltage is given by:

Vout = IinRS

(
1 +

RA

RB

)
(3.16)

To minimize the shunt ammeters influence on the system to be
measured, the shunt resistance RS should be kept as small as possible.
This is because the voltage drop caused by the current flowing through
the current measuring device can affect the circuit being measured. This is
effect referred to as a voltage burden. Small resistor values also have the
added benefit of better accuracy, voltage, time and temperature stability.
In addition to this, a low value resistor also reduces the input time constant
and thus results in a faster instrument response time. The disadvantage of
small resistor values is that they degrade the signal-to-noise ratio of the
measurement. This means that in order to measure small currents, the
actual value of RS must be large in order to get a sufficient voltage drop
over the resistor.

3.2.2 Feedback Ammeter

Input Output

RF

IIN

VOVb

Figure 3.5: The feedback ammeter.

The feedback ammeter or transimpedance amplifier is shown in Figure
3.5. In this measurement technique the input current Iin flows through the
feedback resistor RF. If the op-amp has a low offset current, the output
voltage is given as

VO = −IINRF (3.17)

26

where the output voltage is a measure of the input current, and the overall
sensitivity is given by the feedback resistor R f .

The feedback ammeter does not have a shunt resistor, this means
that the voltage burden Vb is reduced to practically zero. The feedback
ammeter is therefore better suited for measuring low currents. Since the
settling time of the instrument is proportional to the size of RS multiplied
by the total capacitance of the cabling and the op amp input capacitance,
the feedback configuration results in faster measurements.

3.3 The Instrumentation Amplifier

Figure 3.6 shows the basic structure of an three op-amp instrumentation
amplifier (in-amp). An in-amp is a device that amplifies the difference
between two input voltage signals while rejecting signals that are common
to both inputs. This makes the in-amp well suited for extracting small
signals from signal sources, and its output is given by the following
formula:

Vout = A(V1 −V2) = A∆V (3.18)

V

V1

V2

RG

Vout

Figure 3.6: Basic three op-amp instrumentation amplifier schematic.

where V1 is the noninverting input, V2 is the inverting input, ∆V is the
voltage difference and A is the gain.

An important property of the in-amp is its common-mode rejection
(CMR) which is its ability to amplify signals that are differential and cancel
out any signals that are common. The common-mode gain is the ratio
of change in output voltage to change in common-mode input voltage.

27

The differential mode gain is the gain between the input and output for
voltages applied across the two inputs. The common-mode rejection ratio
(CMRR) is then the ratio between the differential gain and the common-
mode gain. (Kitchin et al. 2006)

Another important property when measuring a differential potential is
the input impedance of the in-amp which should be high. This is to ensure
that the instrument do not burden the measurand.

As one can see from Figure 3.6 on the previous page it is possible to
build an in-amp from tree op-amps and seven resistors. This implies that
the designer needs to select appropriate op-amps and balance the circuit
manually to achieve high CMR. An often more suitable option are to select
a monolithic IC op-amp produced by one of the big IC manufactures.

The advantages of selecting a monolithic IC in-amp are that the passive
and active components will be located on the same die. This means
that they can be closely matched by wafer laser trimming and other
manufacturing techniques. Ensuring a high CMR, matched temperature
characteristics, better performance, and low price. Using one IC will also
reduce the PCB space and complexity.

3.4 Analog Isolation Techniques and Patient
Safety

In medical applications it is often essential to provide some sort of
protection between the patient and the electrical equipment. The main
reason for this is to prevent possible hazards like electrical shock. To
accomplish this, some sort of isolation barrier or galvanic isolation is
used. Galvanic isolation can be accomplished by the use of three different
technologies: transformer isolation, capacitor isolation and opto-isolation.
In addition to safety, galvanic isolation also has the added benefit of
breaking ground loops, and thus reducing line frequency interference.

An isolation transformer is a transformer where the primary and
secondary windings are physically separated from each other. Isolation
transformers are often 1:1, and the main purpose is not to provide voltage
transformation, but signal isolation. The isolation transformer works by
the same principle as a normal transformer, but they have an additional
safety screen between the primary and secondary windings. This screen is
connected to external ground, and there is no connection between external
ground and the neutral connection used as a reference by the isolated
system. This removes common mode noise between the external ground
and the floating neutral.

Capacitor isolation use circuit-specific capacitors that are constructed
so that they shunt the energy generated by high voltage impulses,
transients or surges to ground.

28

An opto-isolator or optocupler use optical transmission to transfer
an electrical signal, and in its simplest form it consists of a LED in
combination with a photo diode. This configuration works for digital

Figure 3.7: Schematic of the HCNR201

applications, but since the linearity and stability is a function of time and
temperature, it is not suitable for analog applications.(Bronzino 2000) This
problem can be solved by using a closely matched photo diode design like
the one used in HCNR200/201 by Avago Technologies. For these types of
linear optocuplers a LED is used to illuminate two matched photo diodes.
One photo diode is then used to monitor and stabilize the circuit driving
the LED. This results in a photo current on the output that is linearly
related to the light output of the LED on the input.

3.4.1 Isolation Amplifiers

An isolation amplifier is a commonly used interconnection for analog
signals, and they can be implemented using different technologies. Most
integrated solutions rely on some sort of analog to digital, or voltage
to frequency conversion to provide input/output and noise insulation.
These designs often use transformers or high-speed digital optocouplers
which often results in complex and expensive solutions. A flexible
and low-cost alternative to the integrated solutions are to construct
the amplifier around a linear optocoupler like the HCNR201 shown in
Figure 3.7.

When constructing this type of isolation amplifier, the optocoupler
can be configured as either photovoltaic or photoconductive. When
a photovoltaic configuration is used the photo diode is unbiased, and
when a photoconductive configuration is used the photo diode is reverse-
biased. The biasing of the photo diode influence the current flow in
the photo diode when no light shines on it, and this effect is refered to
as dark current. In a photoconductive configuration the dark current is

29

proportional to the bias voltage. In a photovoltaic configuration the dark
current is close to zero.

When low noise, high linearity, and drift performance are important
design parameters, a photovoltaic configuration is the best alternative as
it can meet or exceed the equivalent of 12 bit AD performance. When
maximum signal bandwidth is desired a photoconductive configuration is
more appropriate, and its linearity and drift characteristics are comparable
to a 9 bit AD converter.(Vishay 2008)

Figure 3.8: Unipolar photovoltaic amplifier (reprinted from Vishay
emiconductors (2008)).

The Unipolar Photovoltaic Amplifier

Figure 3.8 shows the schematic of a photovoltaic isolation amplifier
constructed from the optocoupler HCNR201 and two op-amps. On the
input stage the external feedback amplifier is used in combination with
PD1 to monitor the light generated from the LED, and adjust the LED
current for nonlinearities. The op-amp A1 will always try to deliver zero
volts across the photo diode PD1. This means that if a positive voltage is
placed on the input, A1 will swing to the negative rail and create a flow
of current through the LED. The positive input voltage will also create a
current through R1. The light generated by the LED will be detected by
PD1, and it will generate the photo current IPD1. If one assumes A1 to
be an ideal amplifier, all the current through R1 will flow through PD1.
Since the + input of A1 is set to 0 V, the current through R1, and IPD1,
is equal to IPD1 = VIN+/R1. From this relation we can see that IPD1 is
dependent on the input voltage and the value of R1, and independent
of the light output characteristics of the LED. If there is a change in the
LED temperature, A1 will adjust, and a constant current in PD1 will be
maintained. The current IPD1 is exactly proportional to VIn+, and this
gives a linear relationship between the input voltage and the photo diode
current. By stabilizing and linearizing IPD1 , the light from the LED is
also stabilized and linearized. Since the LED shines on both of the photo
diodes, IPD2 will be stabilized as well. In reality IPD1 and IPD2 are not

30

perfect, so the transfer gain coefficient K3 is included: IPD1 = K3 · IPD2
In the output stage the transimpedance amplifier converts IPD2 back into
a voltage according to VOut = IPD2 · R2. The combination of the above
equations yields the expression:(Technologies 2010)

VOut

VIn
= K3 ·

R2
R1

(3.19)

3.5 Lock-In Detection

ADC

I[n] LPF
hL[n]

LPF
hL[n]

Q[n]

C[n]

Q[n]

X[n]

Y[n]

M[n]

Algorithm

Figure 3.9: Digital quadrature demodulation hardware algorithm.

Lock-in detection, or synchronous detection is one of the most effective
and widely used techniques for recovering signals dominated by noise. In
principle the technique involves a reference signal that is demodulated at
the same frequency as the signal of interest. The demodulated signal is
then lowpass filtered to obtain the result. The demodulation and filtering
enables the lock-in to focus on the signal of interest and ignore other
frequencies.

The rest of this section is based on the article "Digital Lock-In Detection
for Discriminating Multiple Modulation Frequencies With High Accuracy
and Computational Efficiency" by Masciotti et al. (2008).

If a source signal S(t) is applied to a system that yields a measurable
response M(t), it can be written mathematically as:

S(t) = dcs + Ascos(2π fmt + ϕs) (3.20)

M(t) = dcm + Amcos(2π fmt + ϕm) (3.21)

31

Where dcs is the dc component of S(t), dcm is the dc component of M(t),
As is the amplitude of S(t), Am is the amplitude of M(t), ϕs is the phase of
S(t), ϕm is the phase of M(t), fm is the modulation frequency and t is time.

In order to analyze the system, one measure the amplitude Am and the
phase ϕm.

In an analog lock-in system the measured signal M(t) is multiplied by
a reference signal of the same frequency by a mixer, and the signal is then
low-passed filtered. When both the phase and amplitude of the measured
signal is of interest quadrature demodulation is used. Figure 3.9 on the
preceding page shows a diagram that displays the general algorithm used
in quadrature demodulation. The demodulator works by multiplying
the signal M[n] by the in-phase reference C[n] (sin) and the quadrature
reference S[n] (cos). This results in the two signals I[n] and Q[n] which
is the in-phase and quadrature products of the multiplications. These
two signals are then lowpass filtered to obtain the final result, which
is proportional to the difference in amplitude and phase between the
reference and the measured signal.

From Figure 3.9 an analog-to-digital converter (ADC) is used to
transfer the analog signal over to the digital domain. If this ADC takes
Ns samples of the signal M(t) at a sampling frequency of fs that satisfies
the Nyquist criterion fs > 2 fm, the discrete signal is given by:

M[n] = dcm + Amcos
[

2π fmn
fs

+ ϕ

]
, 0 ≤ n ≤ Ns − 1 (3.22)

The measurement time Tm, which is the time required to take the Ns
samples is

Tm =
Ns

fs
(3.23)

If the monitoring of the source does not require rates as high as fs
the measurement time is given by the settling time of the lowpass filter.
The noise reduction exhibited by the lock-in detector increases with Tm,
and the value of Ns is therefore chosen as a trade off between the noise
reduction and the measurement time Tm.

In order for the digital quadrature demodulation to work, the in-phase
and quadrature signals C[n] and S[n] have to be represented as discrete
signals on the following form:

C[n] = cos
[

2π fmn
fs

]
(3.24)

S[n] = sin
[

2π fmn
fs

]
(3.25)

32

The digital signals S[n] and M[n] are both generated internally by
the system. This means that they are free of any other noise than the
numerical precision errors as long the ADC is synchronized. With C[n]
and S[n] on discrete form, the in-phase and quadrature signals I[n] and
Q[n] multiplied by the measured M[n] can be written on the following
form:

I[n] = M[n]× cos
[

2π fmn
fs

]
(3.26)

I[n] =
1
2

Amcos(ϕm) + dcmcos
[

2π fmn
fs

]
+

1
2

Amcos
[

4π fmn
fs

+ ϕm

]
(3.27)

Q[n] = M[n]× sin
[

2π fmn
fs

]
(3.28)

Q[n] =
1
2

Amsin(ϕm) + dcmsin
[

2π fmn
fs

]
+

1
2

Amsin
[

4π fmn
fs

+ ϕm

]
(3.29)

When the sinusoids I[n] and Q[m] are multiplied their spectral
components Am and dcm are frequency shifted. As one can see from
Equation 3.27 and Equation 3.29 the equations are composed of three
distinct components. The first is the dc component due to the phase and
amplitude of the original sinusoidal signal. The second component has
an amplitude of dcm at the original modulation frequency. And the third
component is at twice the modulation frequency and has an amplitude of
Am
2 .

To obtain the real part X[n] and the imaginary part Y[n] of the
measured sinusoid, one can filter out the unwanted ac term by convolving
I[n] and Q[n] with a lowpass filter hL[n] as shown below:

X[n] = hL[n]⊗ I[n] (3.30)

X[n] ≈ 1
2

Amcos(ϕm) (3.31)

Y[n] = hL[n]⊗Q[n] (3.32)

Y[n] ≈ 1
2

Amsin(ϕm) (3.33)

33

3.6 Inherent Noise

Noise is inherent in the circuit elements of analog systems and can
not be totally eliminated. Since the noise of a system affects system
performance metrics such as signal-to- noise ratio (SNR) it has to be taken
into consideration. This section will take a closer look at the three most
common sources of noise in analog systems.

Thermal noise

Thermal noise is often referred to as Johnson noise or Nyquist noise, and it
is generated when thermal energy causes free electrons to move randomly
in a resistive material. This movement happens regardless of any applied
voltage or current flow, and is similar to the Brownian motion of particles.
The random vibration of the electrons is dependent on temperature, and
will increase for temperatures above absolute zero. When the electrons
move, their charge contributes to many small current surges in the
material and even though the average of these movements is zero they
contribute to an instantaneous voltage across the conductor. The power
density of thermal noise has a uniform or flat power distribution over all
frequencies and is therefore referred to as white noise.(Motchenbacher et
al. 1993)

At frequencies below 100 MHz, thermal noise can be calculated by
using Nyquist’s relation for the thermal noise voltage Et in rms voltage(TI
2002):

Et =
√

4kbTR∆ f (3.34)

From Equation 3.34 the thermal current noise It is then given by:

It =
Et

R
=

√
4kbT∆ f

R
(3.35)

where kb is Boltzmann’s constant, T is the absolute temperature in
Kelvin, R is the resistance in ohms, and ∆ f is the noise in hertz over the
measured bandwidth.

Shot Noise

Shot noise is generated by random fluctuations in the motion of charge
carriers in a conductor. When electrons encounter a potential barrier,
such as a pn junction in a semiconductor, each electron and hole carries a
charge. When the electron encounters the barrier, energy is stored. When
the hole arrives, it shoots across the barrier and the energy is released. This
will result in an impulse of current and this pulsing flow creates a granule
effect with variations referred to as shot noise.(Motchenbacher et al. 1993)

According to TI (2002) some of the characteristics of shot noise are:

34

• It is always associated with current flow, and it stops when the
current flow stops.

• It is independent of temperature.

• It is spectrally flat or has a uniform power density which results in a
constant value when plotted versus frequency.

• It is present in any conductor.

The RMS shot noise current is equal to:

Es =
√

2qIDC∆ f (3.36)

where q is the electronic charge (1.602× 10−19 Coulombs), IDC is the
direct current in amperes, and ∆ f is the noise bandwidth in hertz.

Flicker Noise

Flicker noise or 1/f noise as it is often referred to, has a spectral density
that increases without limit as frequency decreases. This type of noise
is pervasive in nature, and it is present in all active and many passive
devices. The origin of flicker noise is not completely understood, but
the generation and recombination of carriers in surface energy states
and the density of surface states are believed to be important factors.
Improvements in the treatment of surfaces during manufacturing have
reduced flicker noise. (Motchenbacher et al. 1993)

TI (2002) states that some of the most important characteristics of
flicker noise are:

• It increases as the frequency decreases.

• It is associated with a dc current in electronic devices

• It has the same power content in each octave

The voltage noise E f is given(TI 2002):

E f = KV

√(
ln

fmax

f min

)
(3.37)

And the current noise I f is given:

I f = KI

√(
ln

fmax

f min

)
(3.38)

where E f and I f are proportionality constants in volts or amperes
representing E f and I f at 1 Hz, and fmax and fmin are maximum and
minimum frequencies in Hz.

35

3.7 Noise analysis of a Transimpedance Ampli-
fier

Figure 3.10 shows the noise model analysis circuit for the feedback
ammeter. To analyze noise in the frequency domain, equivalent generators
for voltage noise are applied to the circuit. These generators are the square
root of the noise power densities, and represent the noise density over
frequency for the different elements:

RF
enb

evn

enj

Figure 3.10: Noise model for the feedback ammeter.

• enb is the input current noise of the op-amp multiplied by the
feedback resistor RF

• env is the input voltage noise of the operational amplifier

• enj is the thermal noise or the Johnson noise of the resistor

I order to calculate the total noise in the system; it is assumed that the
different noise contributions are not correlated. One can then find the total
rms noise signal etot by the following formula:

etot =
√

e2
nb + e2

nv + e2
nj (3.39)

In general analog design the resistors are normally kept relatively small
in order to achieve a trade off between the thermal noise and the current
consumption. For the transimpedance amplifier this is not possible as the
gain is given by VO = −IINRF which implies that in order to get a high
gain, the value of the feedback resistor RF also have to be high.

In order to calculate the total noise etot of the transimpedance amplifier,
the operational amplifier OPA140 is chosen as an example. The OPA140
is a high precision JFET input amplifier that according to its data sheet
features the following noise characteristics:

36

Input current noise density = 0.8 f A/
√

Hz

Input voltage noise density = 8 nV/
√

Hz

If one then assumes a bandwidth of 1 kHz, a feedback resistor of 1
MΩ and a room temperature of 22◦ C (or 295.15 K) the different noise
contributions are given as:

enb =
0.8 f A√

1 kHz
· 1 MΩ ≈ 25.3 pV

env = 8 nV√
1 kHz

≈ 253.0 pV

enj =
√

4kbTR∆ f =
√

4 · kb · 295.15 K · 1 MΩ · 1 kHz ≈ 4.04 µV

etot =
√

e2
nb + e2

nv + e2
nj

=
√
(25.3 pV)2 + (253.0 pV)2 + (4.04 µV)2 ≈ 4.05 µV

As one can from etot, the thermal noise of the feedback resistor R f is
the dominant noise source. From etot, the thermal noise of the feedback
resistor R f is the dominant noise source. This is because the individual
noise contributions are added by the square.

Signal-to-noise ratio is defined as the power ratio between a signal and
the noise. For the transimpedace amplifier this is given by:

SNR[dB] = 10log10

(I · R f

etot

)
(3.40)

To get a general understanding of the threshold of detectability for the
transimpedace amplifier one can assume that the SNR is equal to 1. This
results in SNR = 0 dB and Formula 3.40 can now be written as:

10log10

(I · R f

etot

)
= 0 (3.41)

Solved for I we get:

I =

(
I · etot

R f

)
(3.42)

With etot = 4.05 µV and R f = 1 MΩ and an SNR of 1 Formula3.42
gives the lowest detectable threshold in this example as 4.05 nA.

37

3.8 Sampling Analog Signals

By sampling a continuous analog signal we attempt to represent the time
dependency of the signal by a set of discrete samples taken at fixed
intervals ts. The information between each sample in the original signal
is lost. In order to ensure that the representation of the analog signal is
accurate the intervals of ts must therefore be carefully chosen.

The sampling theorem also referred to as the Shannon sampling
theorem states that an input signal must be sampled at a minimum rate
grater than twice the highest-frequency component in the signal. This
critical sampling rate is called the Nyquist rate, and stated as a formula, it
says that fs

2 > fa, where fa is the maximum frequency of the signal being
sampled.

If one violates the Nyquist criterion it is referred to as undersampling
and the result is a phenomena called aliasing.

0 1 2 3 4 5 6 7 8 9 10
Samples

0

Am
pl

itu
de

Time Domain Effect of Aliasing

Figure 3.11: Aliasing making two different sinusoidal fit the same set of
samples.

From Figure 3.11 one can see an example of aliasing, a sinusoid of
frequency fred = 0.9 (solid line) is sampled at fs = 1.0 which is below the
Nyquist rate.

From the samples taken of fred, it looks as if the sinusoid fblue = 1.0
(dotted line) is the correct representation.

This effect is called frequency fold back, and it occur because every
frequency above the fs

2 is folded back into the sub- fs
2 range.

Until now the signals used to explain sampling theory have all been
pure sinusoids of one frequency. However in the real world, this is rarely
the case. Analog signals are often contaminated by different types of noise
and spurious signals, and any unwanted interference with a frequency
beyond fs

2 will alias.
To avoid this it is necessary to filter the analog signal before it is

sampled by the ADC. The influence of the disturbance on the signal being
sampled is dependent on the power spectrum of the out-of-band noise. If

38

the noise power is much smaller then the resolution of the ADC it will be
undetectable.

A lowpass filter is a filter that passes low-frequency signals, and
reduces the amplitude of signals with frequencies above its cutoff
frequency. This is why lowpass filters are well suited as antialiasing filters.

An ideal antialiasing filter should pass all the frequencies below its
cutoff frequency, and block all undesired higher frequencies. However for
a real analog filter this implies that the filter needs a very small transition
band, resulting in a high number of poles (order), higher complexity, and
higher price. An often used technique to lower the complexity and price
of the analog antialiasing filter is to use oversampling. In an oversampling
system the samples are taken at higher rates than what is strictly needed.
This result in a spread in the quantization noise-energy. The noise outside
the region of interest can then be filtered out by a digital lowpass filter,
thereby reducing the noise level in the frequency band of interest.

Classes of ADCs called Sigma-Delta converters are inherently over-
sampling converters. These converters are slow, compared to other con-
verters like successive approximation, but they have benefits as high res-
olution, high stability, low power and low cost.

39

40

Chapter 4

Digital Theory, Communication
and Software

This chapter reviews the digital theory, communication and software used
to create the hardware platform presented in this thesis.

4.1 FPGA Design

Field-Programmable Gate Arrays (FPGAs) are Integrated Circuits (ICs)
that contain configurable blocks of logic with interconnects that can be
configured to establish connections between them. The main difference
between FPGAs and more conventional fixed logic circuits like Applica-
tion Specific Integrated Circuits (ASICs) are that they can be programmed
multiple times. An FPGA can be used to implement the same logic as an
ASIC but with the added benefit of reprogrammability.

The smallest unit in an Altera Cyclone III FPGA is the Logic Element
(LE) shown in Figure 4.1 on the following page. The LE has four inputs
and contains a four-input Look-up Table (LUT), a register and output
logic. A LUT can be regarded as a function generator that can be used
to implement any function with four variables. More detailed information
regarding the Altera Cyclone III family can be found in Altera (2012). In
order to define the behavior of an FPGA, the designer uses a Hardware
Description Language (HDL). In this thesis VHDL will be used to describe
the digital system.

4.1.1 NiosII

The Nios II shown in Figure 4.2 on the next page is a 32-bit embedded
soft processor that is designed to be instantiated on Altera FPGA
devices. The processor is defined in a hardware description language,
and it can therefore be implemented entirely in programmable logic
and memory blocks. The development of a Nios II system consists

41

2–2 Chapter 2: Logic Elements and Logic Array Blocks in the Cyclone III Device Family
Logic Elements

Cyclone III Device Handbook December 2011 Altera Corporation
Volume 1

Figure 2–1 shows the LEs for the Cyclone III device family.

LE Features
You can configure the programmable register of each LE for D, T, JK, or SR flipflop
operation. Each register has data, clock, clock enable, and clear inputs. Signals that
use the global clock network, general-purpose I/O pins, or any internal logic can
drive the clock and clear control signals of the register. Either general-purpose I/O
pins or the internal logic can drive the clock enable. For combinational functions, the
LUT output bypasses the register and drives directly to the LE outputs.

Each LE has three outputs that drive the local, row, and column routing resources. The
LUT or register output independently drives these three outputs. Two LE outputs
drive the column or row and direct link routing connections, while one LE drives the
local interconnect resources. This allows the LUT to drive one output while the
register drives another output. This feature, called register packing, improves device
utilization because the device can use the register and the LUT for unrelated
functions. The LAB-wide synchronous load control signal is not available when using
register packing. For more information on the synchronous load control signal, refer
to “LAB Control Signals” on page 2–6.

The register feedback mode allows the register output to feed back into the LUT of the
same LE to ensure that the register is packed with its own fan-out LUT, providing
another mechanism for improved fitting. The LE can also drive out registered and
unregistered versions of the LUT output.

Figure 2–1. Cyclone III Device Family LEs

Row, Column,
And Direct Link
Routing

data 1
data 2
data 3

data 4

labclr1
labclr2

Chip-Wide
Reset

(DEV_CLRn)

labclk1

labclk2

labclkena1

labclkena2

LE Carry-In

LAB-Wide
Synchronous

Load
LAB-Wide

Synchronous
Clear

Row, Column,
And Direct Link
Routing

Local
Routing

Register Chain
Output

Register Bypass

Programmable
Register

Register Chain
Routing from
previous LE

LE Carry-Out

Register Feedback

Synchronous
Load and

Clear Logic

Carry
Chain

Look-Up Table
(LUT)

Asynchronous
Clear Logic

Clock &
Clock Enable

Select

D Q

ENA
CLRN

Figure 4.1: Cyclone III device family logic element (reprinted from Altera
(2012)).

Figure 4.2: The Nios II 32-bit embedded soft processor (reprinted from
Altera(2013)).

42

of two steps: hardware generation, and software design. The Altera
Qsys integration tool is used to configure and integrate the system
hardware. This tool allows the designer to choose from three different
core configurations: Nios II/f (fast), Nios II/s (standard), and Nios II/e
(economy). In addition to this, the designer can add any number of
peripherals and memory interfaces. The Altera Embedded Design Suite
(EDS) is used for software design. This package includes the Eclipse
based development environment, C/C++ compiler, debugger and an
instruction-set simulator.(Altera 2013b)

4.1.2 UART

Figure 4.3: The basic UART packet format containing 1 Start bit, 8 Data
bits, 1 Parity bit and 1 Stop bit (reprinted from Kong (2010)).

Universal Asynchronous Receiver/Transmitter (UART) is a character
based protocol used for serial communication. When two UART devices
exchange data, the transmitter takes bytes of data and transmits the
individual bits sequentially. The receiving UART then reassemble the
bits back into bytes. UART communication can be either full duplex or
half duplex. The transmitting and receiving data lines are named Tx and
Rx, and asynchronous transmission allows data to be transmitted without
the use of a separate clock line. Figure 4.3 shows the basic UART packet
format containing 1 Start bit, 8 Data bits, 1 optional Parity bit and 1 Stop
bit. In order to synchronize the transmitter and the receiver, the two
devices need to operate on the same transmission speed (Baud Rate). The
Start bit is used to inform the receiver that a data word is about to be
transmitted and it is used to synchronize the receiver. The stop bit marks
the end of a transmission, and the optional parity bit is used for error
correction.(Osborne 1980)

4.1.3 Megafunctions

Altera Megafunctions are ready-made, and tested blocks of intellectual
property that is optimized for Altera devices. In Quartus the MegaWizard
Plug-In tool is used to select, customize and implement a large variety of

43

different functions that range from standard flip-flops to FFT algorithms
and FIR filters. There are mainly two types of megafunctions; the ones
supplied from the Altera Megafunction Partners Program, and the ones
created by Altera referred to as MegaCore Functions.(Altera 2013a)

The most basic functions are free to use, but some of the more complex
functions require a license. If a license is needed the function can be tested
and used according to the two operating modes. The untenthered mode
is time restricted, and will disable the function after a set time period. In
the tethered mode the development card or system needs to be connected
to the host computer that runs the Altera design software. If this mode is
supported by the implemented megafunctions, the design can operate for
a long time or indefinitely.

4.1.4 SignalTap II Logic Analyzer

The SignalTap II Logic Analyzer is an Altera debugging tool used to
examine the behavior of the internal signals of the FPGA in real-time.
The analyzer works without extra I/O connections or probes, and it can
be set up with different data gathering and trigging conditions. The
captured data is stored in the memory blocks of the device, and the JTAG
communication cable used to program the FPGA is used for data transfer.

4.2 Bluetooth Communication

Bluetooth is a wireless technology standard used to exchange data over
short distances. It was first developed by Ericsson as a wireless alternative
to RS-232 data cables, and it is now managed by the Bluetooth Special
Interest Group. Bluetooth operates in the globally unrestricted Industrial,
Science, and Medical radio band (ISM) that range from 2.400 GHz to
2.483 GHz. The hardware used for Bluetooth is specifically designed
for small size, low cost and low power. When two bluetooth enabled
devices connect to each other, it is called pairing. The device that initiates
the connection is called the master and the other devices are called
slaves. A master can have simultaneous connections with up to seven
slaves in ad-hoc networks known as piconets. When several piconets are
connected it is referred to as a scatternet. The devices in a piconet use a
specific frequency hopping pattern which is determined by the Bluetooth
specification address and clock of the master. In short the hopping pattern
is a pseudo-random ordering of the 79 frequencies in the ISM band, and
the pattern can be adapted to exclude a portion of the frequencies that
are used by interfering devices. The range is application specific and can
operate over a distance of 10 meters to 100 meters depending on the device
class and desired power consumption.(Bluetooth 2013)

44

4.3 Android

Android is a Linux based open-source software stack containing an
operation system, middel-ware and key applications. Android is created
for devices like mobile phones and tablets, and it is maintained and
developed by the Android Open Source Project (AOSP) led by Google.
Applications for Android are written in the Java programming language,
and the Android SDK (Software Development Kit) provides the tools and
API libraries necessary to build, test and debug applications.

4.3.1 Android Architecture

Figure 4.4: The architecture of the Android operating system. (reprinted
from Android-System-Architecture)

Figure 4.4 shows a diagram of the major components of the Android
operation system. The diagram is divided into different sections, and the
top section is the Application layer. This layer consists of Java applications
like the preinstalled core applications for SMS, contacts, email client,
calendar, and other basic functions. The second layer is the Application
Framework; this layer enables the developer access to the same framework
APIs as the core application. This enables the developer to take advantage
of the device hardware, run background services, set alarms, etc. The

45

third layer contains the C/C++ libraries used by the different components
of the system. These libraries are exposed to the developer through the
Application Framework. In addition to the C/C++ libraries this layer also
contains the Android Runtime. The Android Runtime contains the core
library and the Dalvik Virtual Machine. The core libraries provide most
of the core functionality for the Java programming language. The Dalvik
Virtual Machine enables an Android application to run in its own process,
and it is optimized for a minimal memory footprint. The bottom layer is
the Linux Kernel, and this layer is responsible for core system services,
and serves as an abstraction layer between the hardware and the rest of
the software stack.

4.3.2 Application Fundamentals

An Android application is constructed from four different basic applica-
tion components. These components are activities, services, broadcast re-
ceivers and content providers, and the developer can choose to use them
separately, or in combinations.

• Activities: An activity represents a single screen with a user interface
that responds to events. An Activity can start other activities, and
they have the ability to return values. This means that different
activities can be combined to create a cohesive user experience.

• Services: A service is a component that runs in the background,
and they have no user interface. These components are used to
perform long-running operations like playing music or maintaining
data transfer, without blocking the user interaction with the activity.
A service can be started by other components like activities. In order
for a different component to interact with a service, they need to bind
to the service.

• Broadcast Receivers: A broadcast receiver is used to respond to
system broadcast announcements like screen turn off or low battery.
These components have no user interface, but they can be used to
create a status bar notification, and in that way serve as a gateway to
other components.

• Content Providers: A content provider enables an application to
access shared application data through the file system, a SQLite
database, or other storage locations available to the application.
The content provider manages application data, and the application
needs the proper permissions to query the content provider for
information.

For more information on Android development see Android (2013).

46

Chapter 5

Design and Development

In this chapter the design and development process of the developmet
platform is reviewed. Included is a look at the general system require-
ments and coverage of the implementation. Each subsystem and their
design requirements are covered in their respective sections.

5.1 General System Requirements

To demonstrate its capabilities, the development platform presented in
this thesis is going to conduct endosomatic and exosomatic measurements
on skin. These measurements should be conducted using a custom built
front-end connected to skin electrodes. The generation and sampling
of analog signals needed for the measurements are to be generated by
a custom built data acquisition card, and the signal processing are to
be implemented using FPGA technology. The representation of the
measurements should be displayed on an Android mobile application.
The communication between the Android application and the hardware
platform should be done by the use of Bluetooth technology. In addition
to the specifications already mentioned, the system should also have the
following requirements:

• The digital signal processing should be implemented on the FPGA
in such a way that the system is expandable and scalable.

• The Android application should be able to store data for later
analysis and processing.

• The hardware should satisfy safety requirements so that human
measurements can be conducted.

47

5.2 System Overview

FPGA Development BoardData Acquisition CardAnalog Front-end

Bluetooth Module

Android Device

Bluetooth Link

Skin Electrodes

Figure 5.1: Overview of the FPGA based development platform.

An overview of the selected development platform and its main
components are shown in Figure 5.1. As one can see from the diagram
the system is divided into six distinct parts: the skin electrodes, the analog
front-end, the Data Acquisition Card, the FPGA development board, the
Bluetooth module and the Android platform. The arrows in the diagram
show the direction of the control and communication signals.

In short the functions of the different modules are as follows:

• Skin electrodes: Transduce the analog signals to and from the skin.

• Analog Front-End: Apply a constant AC current to the skin elec-
trodes, measure and amplify the analog signals from the electrodes
and provide galvanic separation.

• Data Acquisition Card: Generate the analog signals needed for the
front-end and sample the analog signals for the FPGA development
board.

• FPGA Development Bord: Control the Data Acquisition Card
and the Bluetooth communication module and perform signal
processing algorithms.

• Bluetooth module: Establish a wireless connection between the
hardware and the software platforms.

• Android platforms: Receive, display and save the transferred data.

48

5.3 Skin Electrodes

As discussed in Section 2.4 the electrode geometry and its materials
influence the performance of the skin measurement. The electrodes used
in this thesis are the pre-wired Kendall 1050NPSM Neonatal Electrodes
from COVIDIEN. These electrodes are made of Ag/AgCL and use a
conductive adhesive hydrogel to provide adhesion to the skin. The
electrodes are delivered in packets of three color coded electrodes that
have a diameter of 25 mm each. This gives an EEA of 4.9 cm2 per electrode.

The Kendall 1050NPSM Neonatal Electrodes have previously been
used for conductance measurements by Johnsen (2009), Tronstad et al.
(2010) and Jabbari et al. (2010) with good results. According to Tronstad
et al. (2013) the use of solid gels have the following advantages:

• Solid gels are less sensitive to motion artifacts.

• Solid gels have a better ability than wetter gels to return the
skin conductance to the baseline during recovery after a period of
sweating.

• Solid gels like the one used in Kendall 1050NPSM Neonatal Elec-
trodes introduce a smaller change in the level of skin conductance
over time, due to a smaller amount of free water in the gel and its
lower viscosity.

Figure 5.2: Placements of the electrodes (adapted from Jabbari et al.
(2010)).

The selected electrode placement is shown in Figure 5.2.

49

5.4 Analog Front-end

The purpose of the Analog Front-end is to conduct endosomatic and
exosomatic measurements as described in Section 2.5. In addition to this,
the front-end also needs to supply galvanic separation between the parts
of the circuit in contact with skin, and the rest of the system. In order
to make the measurement system flexible and easy to modify the Analog
Front-end will be implemented as a separate PCB.

Figure 5.3 shows an overview of the selected design. As one can see
from the diagram the front-end is constructed of the following modules:
an isolated DC-DC converter, an isolation amplifier, a dual op-amp
Howland current source and a preamplifier. Operating power for the
front-end is supplied by the FPGA development board.

Howland Current
Source

Preamplifier Circuit

Stimulus voltage from
the DA-Converter

Voltage Signal to the
AD-Converter

Current Signal to the
AD-Converter

Galvanic Isolation

Stimulus voltage

Stim
u

lu
s cu

rren
t

Voltage Signal

Current Signal

Power

Elektrode 1

Elektrode 2

Elektrode 3

Isolated DC-DC
Converter

Isolation Amplifier

Power from the FPGA
Development Bord

Figure 5.3: Overview of the Analog Front-end.

5.4.1 Power Isolation and Distribution

The Analog Front-end PCB is supplied with regulated 12 V DC from the
FPGA development board. The dual op-amp Howland current source
and the preamplifier needs a supply of ± 12 V DC and since they are
connected to human skin the power to these modules needs to be isolated
from the rest of the system. The power consumption of the modules
protected by the isolation barrier including the drivers for the isolation
amplifier was estimated to worst case value of 780 mW. Since DC-DC
converters generally get more efficient for higher loads, the estimated

50

power consumption was used to select a converter with the correct power
rating.

Figure 5.4: The isolated DC-DC converter RSO-2412DZ/H3 from Recom
Power.

To satisfy the mentioned requirements the isolated dual output DC-
DC converter RSO-2412DZ/H3 from Recom Power was selected. This
converter delivers 1 Watt of power, has an output voltage of ± 12 V and
accepts input voltages ranging from 4.5 V to 18 V. The converter is certified
according to the EN-60601-1 standard for medical electrical equipment.
According to its data sheet the isolation is tested for a voltage of 3000VDC
for 1 second and is rated to 1500VAC@60Hz for 1 minute. In addition to
this, the unit also has continuous short circuit protection.

The efficiency at full load is typically 75-80%, and it can deliver an
output current of ±42 mA. To make sure that the maximum capacitive
load of ± 330µF was not exceeded, the capacitive contribution of the
isolated part of the front end was calculated and found to be 101 µF. The
maximum output ripple of the converter is limited to 20 MHz and has a
maximum value of 50 mVP−P. In accordance with the recommendations
given in the data sheet a 10 µF capacitor was added between terminal 1
and 2 as shown in Figure 5.4

5.4.2 Isolation Amplifier

For safety reasons, the interface of the Analog Front-end PCB needs to be
isolated from the rest of the system. As discussed in Section 3.4.1 this can
be accomplished by integrated solutions, but in order to reduce costs an
analog isolation design based on the optocoupler HCNR201 from Avago
Technologies was selected. The schematic for this isolation amplifier is

51

shown in Figure 5.5, and its functionality is explained in Section 3.4.1. As
one can see from the circuit, it consists of two OP413 op-amps from Analog
Devices that are used to drive the input and output of the optocoupler. The
OP413 op-amp were chosen for its low noise and drift characteristics and
its availability in quad packs. The HCNR201 LED is supplied with +12V
DC and in order to limit its current the 470k Ω resistor R7 was added. The
4.7 pF capacitor C9 and 330 pF capacitor C7 are added to increase stability
and they have the added benefit of limiting the bandwidth and therby
reducing noise. Because of its higher value C12 will be the determining
factor. With the potentiometer adjusted to 150 kΩ (gain of 1 : 1) the cutoff
frequency fc of the lowpass filter is given by:

fc =
1

2πRC
=

1
2π · 150kΩ · 330pF

≈ 3.5 kHz (5.1)

Figure 5.5: Isolation Amplifier

5.4.3 Howland Current Source

For exosomatic measurements a constant AC current is needed. This
current is generated by a VCCS, which receive a 2.5V AC signal from the
Data Acquisition Card.

As discussed in Section 3.1 the output impedance of the Howland
circuit variations are limited by feedback resistor matching. This problem
can be solved by using external precision resistors or by the use of
potentiometers to calibrate the circuit. This will however add to the
complexity of the design and calibration. To avoid these problems, a
Dual op-amp Howland circuit constructed around a difference amplifier
with internal precision resistors was chosen. This circuit is based on a
design given in BURR-BROWN (1990). As one can see from Figure 5.6, it
consists of the difference amplifier AD8276 in combination with the op-
amp AD8512 and one resistor. In this configuration the error represented
by the feedback resistors are significantly reduced. Unlike current sources
made with a series pass element, this current source has a bipolar output.

52

Figure 5.6: Dual Op-amp Howland Current Source

It can therefore both sink and source current. The circuit shown in Figure
5.6 has differential inputs. In order to attain a non-inverting transfer
function the -IN input is grounded. The external op-amp AD8512 is used
to drive the feedback resistor in the difference amplifier. This op-amp is a
dual-supply precision JFET type, and it was selected for its low input bias
current, noise and drift characteristics.

In addition to the components already mentioned, a passive high-pass
filter and a voltage buffer is added in front of AD8276. The high-pass
filter is used to shift the level of the signal from the isolation amplifier, and
the voltage buffer is used to prevent unwanted loading on the input of
AD8276. The cut-off frequency fc of the high-pass filter is given by:

fc =
1

2πRC
=

1
2 · π · 100 kΩ · 100 µF

≈ 0, 016 Hz (5.2)

The main component of the Howland current source is the AD8276
precision dual supply JFET difference amplifier. This component was
primarily selected for its laser-trimmed on-chip resistors that provide
advantages like high output impedance, space-saving and improved gain
accuracy and temperature drift. The AD8276 has a CMRR of 86 dB and it
is able to sink and source a current of ± 70 mA.

The output current IL of the current source is given as: (BURR-BROWN
1990)

IL =
Vin

R
(5.3)

where Vin is the input voltage and R is the external resistor.
According to Yamamoto et al. (1981) the limit for linear measurements

on skin are limited to a current density of 20 µA/cm2 for 25 Hz.
This means that for the Kendall 1050NPSM Neonatal Electrodes with a
diameter of 25 mm, the current can not exceed 92 µA. In addition to this,
the selected current will also influence the magnitude of the measured

53

impedance and thus the signal-to-noise ratio. In order to balance the SNR
against the range needed for the ADC, the current was set to 1 µ A. This
gives the following value for the resistor R:

R =
Vin

IL
=

2.5V
1 µA

= 2.5 MΩ (5.4)

Since 2.5 MΩ do not exist as a standard resistor size, one resistors of
1.5MΩ was connected in series with a 1MΩ resistor as shown in Figure
5.6.

According to BURR-BROWN (1990) an approximation of the output
impedance Z0 can be found by the following formula:

Z0 = RX · 10(
CMRR

20) (5.5)

where RX is the external resistor and CMRR is the difference amplifiers
common mode rejection ratio in dB. With a CMRR of 86 dB and an external
resistor of 2.5 MΩ the output impedance of the current source is given by:

Z0 = RX · 10(
CMRR

20) = 2.5 MΩ · 10(
86 dB

20) = 49.8 GΩ (5.6)

5.4.4 Voltage Reference

The input of the isolation amplifier has a range of 0-5 V. To account for
this the precision voltage reference ADR445 is used to bias the in-amp
and the transimpedance amplifier. In order to allow for adjustments, the
variable voltage source design shown in Figure 5.7 was selected. In this
circuit the two 10 kΩ potentiometers P6 and P7 are used to set the desired
voltage. The buffering amplifier provides impedance matching and
current drive. The potentiometer P6 connected between VOUT and GND,
with its wiper connected to the op-amp, is used for coarse adjustments.
The potentiometer with its wiper connected to trim pin of ADR445 is used
for fine adjustments.

Figure 5.7: Variable precision voltage reference

54

5.4.5 Preamplifier Circuit

To conduct the endosomatic and exosomatic measurements explained in
Section 2.5 an instrumentation amplifier is needed. The instrumentation
amplifier selected is the FET-input INA 111 from BURR-BROWN. This
in-amp has a high CMMR of 106 dB, a low input current of 20 pA and
low offset voltage and drift characteristics. According to BURR-BROWN
(1998) the gain of INA111 is set by the following formula:

G = 1 +
50 kΩ

RG
(5.7)

where RG is an external resistor.
In order to determine the appropriate gain for the skin impedance

measurement, the expected range must be determined. This was done
by Johnsen (2009) as part of his Master thesis, and he found that for
a frequency of 24Hz the skin impedance was approximately 30 kΩ.
However, this value is dependent on the skin and activity of the subject.
It can vary from 10 kΩ during high activity, to several hundred kΩ for dry
skin during low activity.

Another important critera for determining the gain is the range of
the endosomatic voltage measurement. According to Boucsein (2012)
endosomatic voltage measurements usually range from -0.1 to -20 mV, but
for some subjects, recordings can become as low as -50 to -70 mV.

The range of the ADC used for the Data Acquisition Card is set from
0 to 10 volts. With an offset of 5 V supplied by the voltage reference, this
means that the sum of the endosomatic and exosomatic signals can not
exceed ±5 V. If one assumes an impedance of 200 kΩ, a skin potential of
70 mV and a current of 1 µA, the maximum combined signal is equal to
130 mV. This gives a maximum gain of 5V

130 µV = 38.46.
From Equation 5.7 this gives the following value for the external

resistor RX:

R =
50 kΩ
G− 1

=
50 kΩ

38.46− 1
≈ 1.33 kΩ (5.8)

As one can see from Figure 5.8 two resistors of 1 kΩ and 330 Ω was
used to obtained the combined value of 1.330 kΩ. This gives the in-amp a
gain of 38.6.

As one can see form Figure 5.8 a transimpedance amplifier has been
added to the three electrode system. This modification is done so that the
current applied to the skin can be monitored. The op-amp selected for this
is the OPA129 from BURR BROWN. This amplifier has an ultra low bias
current of 100 fA combined with low drift and noise characteristics. This
makes it suitable for low current measurements.The 4.7; pF capacitor C5 is
added to stabilize the op amp.

55

Figure 5.8: Preamplifier

56

5.5 The Data Acquisition Card

Power

Power from the FPGA
Development Bord

Analog to Digital
Converters

Digital to Analog
Converter

Power

Control and data signals to
and from the FPGA
Development Board

MCLK from the FPGA Development Bord

SCLK from the FPGA Development Bord

Figure 5.9: Overview of the Data Acquisition Card

The purpose of the Data Acquisition Card is to generate the sinusoid
needed for the exosomatic measurements and sample the analog signals
for the ECG and the EDA parts of the measurement system. The Data
Acquisition Card is implemented as an extension card to the FPGA
Development Board. The FPGA Development Board uses a High-Speed
Mezzanine connector that is based on the Samtec 0.5 mm pitch, surface-
mount QTH/QSH family of connectors. To simplify the interface the
THDB-HTG board is used. This board serves as a converter for the High-
Speed Mezzanine interface, and converts it to three 40-pin expansion
prototype connectors. In addition to this the converter board also supplies
regulated 3.3 V, 5 V and 12 V. For the Data Acquisition Card connector J2
and J3 are used. An overview of the Data Acquisition Card is shown in
Figure 5.9, and it consists of the following main modules: one digital to
analog converter, four analog to digital converter and a power module.
The Data Acquisition Card was designed and produced in collaboration
with Miriam Kirstine Huseby.

5.5.1 Analog-to-Digital Converters

For Analog-to-Digital Conversion a high performance, 24-bit over-
sampling successive approximation (SAR) ADC (AD7766-2) was used.
This converter was selected for its ac and dc accuracy, low power con-
sumption and its on-chip linear-phase lowpass FIR filter. A wide dynamic
range in combination with ac and dc accuracy makes the AD7766-2 suited
to measure small variations in skin impedance over a wide dynamic range.

57

The filtered output data is in 24-bit serial format, two’s compliment, with
the MSB being clocked out first. The sample rate is set by the MCLK.
By using oversampling, the quantization noise of the converter is spread
across the bandwidth of 0 to fmclk . Digital filtering following the converter
output acts to remove the out-of-band quantization noise. The frequency
response of the digital filter is shown in figure 5.10. Because of the digital
filtering, the AD7766-2 has an output decimation rate of 32. With a max-
imum MCLK input frequency of 1024 MHz, the maximum output data
rate is 32 kHz. The analog inputs of the AD7766-2 are differential. Which
provide rejections of signals common to both Vin+ and Vin−.

AD7766

Rev. C | Page 16 of 24

0

–20

–40

–60

–80

–100

–120

–140

–160
0 128k112k96k80k64k48k32k16k

A
M

PL
IT

U
D

E
(d

B
)

FREQUENCY (Hz) 06
44

9-
21

6

Figure 32. AD7766 Digital Filter Frequency Response

0

–20

–40

–60

–80

–100

–120

–140

–160
0 64k56k48k40k32k24k16k8k

A
M

PL
IT

U
D

E
(d

B
)

FREQUENCY (Hz) 06
44

9-
21

7

Figure 33. AD7766-1 Digital Filter Frequency Response

0

–20

–40

–60

–80

–100

–120

–140

–160
0 32k28k24k20k16k12k8k4k

A
M

PL
IT

U
D

E
(d

B
)

FREQUENCY (Hz) 06
44

9-
21

8

Figure 34. AD7766-2 Digital Filter Frequency Response

ANALOG INPUT STRUCTURE
The AD7766/AD7766-1/AD7766-2 are configured as a differential
input structure. A true differential signal is sampled between the
analog inputs VIN+ and VIN−, Pin 4 and Pin 5, respectively. Using
differential inputs provides rejection of signals that are common
to both the VIN+ and VIN− pins.

Figure 35 shows the equivalent analog input circuit of the
AD7766/AD7766-1/AD7766-2. The two diodes on each of the
differential inputs provide ESD protection for the analog inputs.

06
44

9-
21

9

VIN+

VREF+

C1

D

D

GND AGND

RIN C2

VIN–

VREF+

C1

D

D

GND AGND

RIN C2

Figure 35. Equivalent Analog Input Structure

Take care to ensure that the analog input signal does not exceed
the reference supply voltage (VREF+) by more than 0.3 V, as specified
in the Absolute Maximum Ratings section. If the input voltage
exceeds this limit, the diodes become forward biased and start
to conduct current. The diodes can handle 130 mA maximum.

The impedance of the analog inputs can be modeled as a parallel
combination of C1 and the network formed by the series con-
nection of RIN, C1, and C2. The value of C1 is dominated by the
pin capacitance. RIN is typically 1.4 kΩ, the lumped component
of serial resistors and the RON of the switches. C2 is typically
22 pF, and its value is dominated by the sampling capacitor.

SUPPLY AND REFERENCE VOLTAGES
The AD7766/AD7766-1/AD7766-2 operate from a 2.5 V supply
applied to the DVDD and AVDD pins. The interface is specified to
operate between 1.7 V and 3.6 V. The AD7766/AD7766-1/
AD7766-2 operate from a reference input in the range of 2.2 V
to 2 × AVDD applied to the VREF+ pin. The nominal reference
supply voltage is 5 V, but a 2.5 V supply can also be used. When
using a 5 V reference, the recommended reference devices are
the ADR445, ADR435, or ADR425; when using 2.5 V, the ADR441,
ADR431, or ADR421 are recommended. The voltage applied to
the reference input (VREF+) operates both as a reference supply
and as a power supply to the AD7766/AD7766-1/AD7766-2
devices. Therefore, when using a 5 V reference input, the full-scale
differential input range of the AD7766/AD7766-1/AD7766-2 is
10 V. See the Driving the AD7766/AD7766-1/AD7766-2 section
for details on the maximum input voltage.

Figure 5.10: Digital Filter Frequency Response for AD7766-2.

Single-ended-to-differential Driver

In order to drive the differential inputs of AD7766-2, the single-ended-
to-differential driver ADA4941-1 was selected. The ADA4941-1 is a low
power, low noise differential driver for ADCs. The choice of the driver
was based on an example circuit from the AD7766-2 datasheet, as shown
in Figure 5.11.

Voltage Reference

As a nominal reference voltage, either 5 V or 2.5 V supply can be used. A 5
V reference input was chosen, as this gives the full-scale differential input
range from 0 to 10 V. To ensure a stable 5 V reference , the ADR445 XFET
voltage reference was used. It was chosen because of its ultralow noise,
high accuracy, and low temperature drift. As a nominal reference voltage,
either 5 V or 2.5 V supply can be used. A 5V reference input was chosen,
as this enables a full-scale differential input range of 10 V.

58

AD7766

Rev. C | Page 20 of 24

DRIVING THE AD7766/AD7766-1/AD7766-2
R1 and R2 set the attenuation ratio between the input range and
the ADC range (VREF+). R1, R2, and CF are chosen depending on
the desired input resistance, signal bandwidth, antialiasing, and
noise contribution. The ratio of R2 to R1 should be equal to the
ratio of REF to the peak-to-peak input voltage. For example, for
the ±10 V range with a 4 kΩ impedance, R2 = 1 kΩ and R1 = 4 kΩ.

The AD7766/AD7766-1/AD7766-2 must be driven with fully
differential inputs. The common-mode voltage of the differential
inputs to the AD7766/AD7766-1/AD7766-2 devices, and therefore
the limits on the differential inputs, is set by the reference voltage
(VREF+) applied to the device. The common-mode voltage of the
AD7766/AD7766-1/AD7766-2 is VREF+/2. When the AD7766/
AD7766-1/AD7766-2 VREF+ pin has a 5 V supply (using ADR445,
ADR435, or ADR425), the common mode is at 2.5 V, meaning
that the maximum inputs that can be applied on the AD7766/
AD7766-1/AD7766-2 differential inputs are a 5 V p-p input
around 2.5 V.

R3 and R4 set the common mode on the VIN− input, and R5 and R6
set the common mode on the VIN+ input of the ADC. The common
mode, which is equal to the voltage present at VOFFSET1, should be
close to VREF+/2. The voltage present should roughly be set to the
ratio of VOFFSET1 to 1 + R2/R1.

06
44

9-
01

6

0V

VIN+

VIN–

VREF

VREF
2

0V

VREF

VREF
2

06
44

9-0
17

ADA4841-1
15Ω

3.3nF

1kΩ

ADA4841-1
15Ω

3.3nF

1kΩ

4

5

1

2

AD7766
AVDD

VREF+

VIN+

VIN–

2.2nF

2.2nF

*

ADR4xx

ADP3330-2.5

2.5V

2.5V TO 5VREFERENCE
VOLTAGE

1kΩ

1kΩ

1kΩ

1kΩ

AIN+

AIN–

*SEE VREF+ INPUT SIGNAL SECTION FOR DETAILS.

Figure 39. Maximum Differential Inputs to the AD7766

An analog voltage of 2.5 V supplies the AD7766/AD7766-1/
AD7766-2 AVDD pin. However, the AD7766/AD7766-1/AD7766-2
allow the user to apply a reference voltage of up to 5 V. This
provides the user with an increased full-scale range, offering the
user the option of using the AD7766/AD7766-1/AD7766-2 with
a greater LSB voltage. Figure 39 shows the maximum inputs to
the AD7766.

Figure 40. Driving the AD7766 from a Fully Differential Source

15Ω

15Ω

100µF

R1

100nF

100nF

2.5V

VOUT = 5V REF

5.2V

–0.2V

CF

R4

R2

R6

VIN

R3

R5

VREF+ AVDD

AGND

VIN+

VIN–

AD7766
2.2nF

2.2nF

ADA4941-1

IN

FB

OUTP

OUTN
REF

VOFFSET1

VOFFSET2

ADR425
ADR445

VIN

ADP3330-2.5

LDO

DGND

0.1µF0.1µF

06
44

9-
01

8

DIFFERENTIAL SIGNAL SOURCE
An example of recommended driving circuitry that can be used
in conjunction with the AD7766 is shown in Figure 40. Figure 40
shows how the ADA4841-1 device can be used to drive an input
to the AD7766 from a differential source. Each of the differential
paths is driven by an ADA4841-1 device.

SINGLE-ENDED SIGNAL SOURCE
For applications using a single-ended analog signal, either
bipolar or unipolar, the ADA4941-1 single-ended-to-differential
driver creates a fully differential input to the AD7766. The
schematic is shown in Figure 41.

Figure 41. Driving the AD7766 from a Single-Ended Source

Table 8. Resistor Values Required When Using the Differential-to-Single-Ended Circuit with ADA4941 (See Figure 41)
VIN (V) VOFFSET1 (V) VOFFSET2 (V) OUT+ (V) OUT− (V) R1 (kΩ) R2 (kΩ) R4 (kΩ) R3 = R5 = R6 (kΩ)
+20, −20 2.5 2.203 −0.01, +4.96 5.01, 0.04 8.06 1 12.7 10
+10, −10 2.5 2.000 0.01, 4.99 4.99, 0.01 4.02 1 15 10
+5, −5 2.5 1.667 0.00, 5.00 5.00, 0.00 2 1 20 10

Figure 5.11: Schematic for driving the AD7766-2 from a single-ended
source.

Recalculating the Input Range

To get an input range from 0 V to 10 V and an antialiasing cutoff frequency
of 106 Hz the input driver needs to be recalculated. The AD7766-2
datasheet gives the following explanation of the different components:

R1 and R2 are used to set the attenuation ratio between the input range and
the ADC range (Vre f). R1, R2 and CF set the input resistance, bandwidth and
antialiasing. R3 and R4 set the common mode on the Vin− input, and R5 and R6
set the common mode for the Vin+ input of the ADC.

The selected component values are shown in Table 5.1, and the LTspice
simulation used to verify the values are located in Appendix E.

Table 5.1: Selected component values for the ADC driver ADA4941-1.

Component Name Value

CF 330 pF
R1 2 kΩ
R2 1 kΩ
R3 20 kΩ
R4 10 kΩ
R5 10 kΩ
R6 10 kΩ

5.5.2 Digital to Analog Converter

For Digital-to-Analog Conversion, the 12 bits single voltage-output
AD5340 by Analog Devices is used. The AD5340 was selected for its low
power operation and its parallel data interface. The voltage at the Vre f is
set to 5V by an ADR445 to provide the reference voltage for the DAC. The

59

input coding to the DAC is straight binary, and the ideal output voltage is
given by:

Vout = Vre f ×
D
2N × Gain (5.9)

where D is the decimal equivalent of the binary code, which is loaded to
the DAC register 0 to 4095 (12 bit). N is the DAC resolution. Gain is the
output amplifier gain, set to 1 or 2.

With a gain of 1 the maximum output-voltage is given as:

Vout = Vre f ×
D
2N × Gain = 5 V × 4095

212
× 1 = 4.99V (5.10)

5.5.3 Power Module

Power for the Data Acquisition Card is supplied by the 12V, 5V, and
3.3V pins on the Terasic THDB-HTG connector connected to the FPGA
Development Bord. In addition to the voltages supplied by the Terasic
THDB-HTG connector, two ADP3330 regulators are used to supply 2.5 V
to the AVDD and DVDD pins of the ADCs.

5.6 FPGA Development Board

UART TX

Nios II Embedded Processor

AD5340
Controller

AD7766
Controllers

EDA Digital Signal Processing

Clock Divider
Numerically
Controlled
Oscillator

X

Y

Potential

Current

ADC DATA

ADC DATA

Sin

C
o

s

Si
n

50MHz

1.25KHz

2MHz

2
M

H
z

4
0

kH
z

1
.2

5
K

H

2
M

H
z

Cyclone III FPGA

40kHz

D
ata A

cq
u

isitio
n

 C
ard

UART RX

D
ata Syn

ch
ro

n
izatio

n

Figure 5.12: Overview of the digital design.

The purpose of the FPGA development board is to control the
external modules and perform signal processing. Since the size and
complexity of the final system is not completely known in advance. The
development board had to be selected so that the entire prototype could

60

be implemented. In addition to this, the development board had to be
equipped with an interface that allowed the use of external modules.

To satisfy these requirements, the Cyclone III DSP Development Board
from Altera was selected. This board provides a hardware platform that
is intended for low-power, high-volume and feature-rich design. The
FPGA used on the development board is the low-cost series Cyclone III
family FPGA EP3C120F780 with 119K logic elements, four phase locked
loops and 288 embedded 18-bit x 18-bit multipliers. The Cyclone III
device family is built on 65-nm low-power process technology, and they
are designed to provide low static and dynamic power consumption. In
addition to the FPGA, the development board is also expendable through
two Altera High-Speed Mezzanine Connectors (HSMC) that each have 86
I/Os and can deliver up to 19.8 W per interface.

An overview of the digital design is shown in Figure 5.12. As one
can see from the diagram the design consists of the following modules:
AD5340 Controller, AD7766 Controllers, Numerically Controlled Oscil-
lator, EDA Digital Signal Processing, Clock Dividers and Nios II Embed-
ded Processor. The arrows in the diagram represent the main clock and
control signals. The digital logic implemented on the FPGA is done by
a combination of ready-made Altera Megafunctions and custom modules
written in VHDL. The VHDL code and functions are found in Appendix
F.

5.6.1 Clock Divider

Figure 5.13: The Clock Divider.

The FPGA Development board is supplied with two crystal oscillators
that serve as reference clocks for the Cyclone III FPGA. The oscillator
frequencies are 125 MHz and 50 MHz. The dynamic power consumption

61

of a FPGA is proportional to the switching frequency that drives its logic
gates (Rabaey 2009). The 50 MHz clock was therefore selected as the
system master clock.

As shown in Figure 5.12 the digital modules have different frequency
requirements. In order to meet these requirements, a Phase-Locked Loop
(PLL) Megafuntcion was used. The PLL use one of the four integrated PLL
blocks available in the Cyclone III FPGA to generate stable frequencies
that are distributed throughout the design. The generated frequencies are
given in Table 5.2. The principles used to chose the specific frequencies
will be covered in later sections.

Table 5.2: PLL Frequencies

Signal Name Frequency

clk_1M 2 MHz
clk_40k 40 kHz

clk_1_25k 1.25 kHz

5.6.2 Numerically Controlled Oscillator

Figure 5.14: The Numerically Controlled Oscillator.

To perform the algorithm described in Section 3.5 and generate
the sinusoid needed for the exosomatic measurement, a Numerically
Controlled Oscillator (NCO) is used. The NCO is implemented as a
MegaCore function, and its outputs are the discrete-time and valued
in-phase and quadrature signals fsin() and fcos(). As shown in Figure
5.14 the NCO is driven by a 40 kHz clock signal. The 31-bit phase
constant phi_inc_i is used to generate an output frequency of 25 Hz. The

62

Angular resolution and magnitude precision of the output waveforms
are set to 16-bit and 12-bit respectively. The NCO supports small ROM,
large ROM, CORDIC and Multiplier based algorithms. In order to obtain
the highest possible SNR, the different algorithms were compared in the
design software, and a large ROM based algorithm was selected. This
gives a SNR of 89 dB. According to Electrodermal Measurespsyp et al.
(2012) a frequency between 20 and 30 Hz is recommended to reduce the
capacitive current without giving time for electrolysis during each half
cycle. Because of this and the type of filter used by the DSP algorithm, a
frequency of 25Hz was selected.

5.6.3 AD5340 Controller

Figure 5.15: The AD5340 Controller.

The AD5340 module shown in Figure 5.15 is used to control the
external digital-to-analog converter located on the Data Acquisition Card.
The data input signal NCO_Data is connected to the sine wave signal
produced by the NCO. The AD5340 is used to supply a continuous analog
signal, and it is therefore configured in synchronous mode. This enables
the DAC registers to be updated by the rising edge of WR_n as shown in
Table 5.3. Before the data word is shifted out to the DAC it is converted to
offset binary.

5.6.4 AD7766 Controllers

The Data Acquisition Card is equipped with four AD7766 analog-to-
digital converters. These ADCs are controlled by the AD7766_A and
AD7766_B modules. The AD7766_A module controls one ADC that is
dedicated to the ECG part of the system. The remaining ADCs are
controlled by AD7766_B, and these ADCs are dedicated to the EDA part

63

Table 5.3: AD5340 Truth Table

CLR LDAC CS WR Function

1 1 1 X No data transfer
1 1 X 1 No data transfer
0 X X X Clear all registers
1 1 0 0→ 1 Load input register
1 0 0 0→ 1 Load input register and DAC registers
1 0 X X Update DAC register

Figure 5.16: The AD7766 Controllers.

of the system. The ADC data rate is set by the clock signals MCLK_EDA
and MCLK_ECG. As explained in Section 5.5 the AD766 ADC use a digital
filter and oversampling to reduce the total signal noise. This results in a
decimation ratio of 32. If the ADC is run at a sampling rate fs of 40 kHz
the data rate fd = 40 kHz

31 = 1.25 kHz. The sampling rate was selected in
order to achieve a data rate that gives an integer number of samples per
period for the 25 Hz signal. Since the data rate used by the different EDA
DSP modules is the same, the ADCs are run in parallel.

The AD7766 Controller is implemented according to the finite state
machine (FSM) shown in Figure 5.18. The FSM diagram is designed
according to the AD7766 timing diagram shown in 5.17.

64

AD7766

Rev. C | Page 6 of 24

TIMING DIAGRAMS

MCLK 1

DRDY

t2

t3 t4

t1

tREAD

t5 t5

tDRDY

8 × n 8 × n1

06
44

9-
00

2

Figure 2. DRDY vs. MCLK Timing Diagram, n = 1 for AD7766 (Decimate by 8), n = 2 for AD7766-1 (Decimate by 16), n = 4 for AD7766-2 (Decimate by 32)

06
44

9-
00

3

DRDY

CS

SCLK

SDO

tDRDY

tREAD

D22MSB D21 D20 D1 LSB

t6
t13

t12

1 23

t10

t11
t7

t8 t9

Figure 3. Serial Timing Diagram, Reading Data Using CS

06
44

9-
00

4

CS = 0

SCLK

SDO DATA
INVALID MSB D22 D21 D20 D1 LSB DATA

INVALID

DRDY

tDRDY

tREAD

1 23 24

t14

t8 t9 t15
t11

t10

Figure 4. Serial Timing Diagram, Reading Data Setting CS Logic Low

Figure 5.17: Serial timing diagram, reading data using C̄S.

Init

PowerUp

Wait_st

ReadInit

Read_st

FinRead

resetcnt= 94800

sync_pd <= '0'

sync_pd <= '1'

drdy_n = '1'

drdy_n = '1'

cs_n <= '0'
shift_en <= '1'

bitcnt = 23

DataReadyADC <= '1'

Figure 5.18: Diagram of the FSM used to control the AD7766.

65

EDA Signal Processing

Moving Average
Filter

Remove Bias

Remove Bias

Multiplier

Multiplier

Moving Average
Filter

Moving Average
Filter

Multiplier
Moving Average

Filter

Voltage Signal
from the AD-

Converter

Current Signal
from the AD-

Converter

Voltage Signal
from the AD-

Converter

Sin()

Sin()

Cos()

Y

X

C

P

Endosomatic Channel

Exosomatic Channel

Current Channel

Figure 5.19: The digital signal processing used to separate the endosomatic
(red), exosomatic (yellow) and the current (green) measurements from the
25 Hz carrier frequency.

66

5.6.5 Digital Signal Processing

Figure 5.19 shows the digital signal processing used to separate the endo-
somatic (red), exosomatic (yellow) and the current (green) measurements
from the 25 Hz carrier frequency. The endosomatic channel use a moving
average digital low-pass filter to extract the skin potential P measured bye
the instrumentation amplifier. The exosomatic channel use the Lock-In
Detection technique explained in Section 3.5 to extract the real Y and ima-
ginary part X of the impedance. The current channel uses the same type
of Lock-In Detection scheme as the real section of the exosomatic channel.
In order for the Lock-In Detection algorithm to work the offset is removed
from the voltage and current input signals.

The Multiplier Module

The Multiplier module is implemented using the standard VHDL library
package ieee.numeric_std. This library provides arithmetic vector func-
tions for the numeric types SIGNED and UNSIGNED. The modules takes
the two input signals DATA_IN_A and DATA_IN_B and returns the
product as the signal DATA_OUT.

The Moving Average Filter Module

Figure 5.20: The Moving Average Filter Module.

The module in Figure 5.20 performs a moving average filtering on the
input data signal DATA_IN. When a new data item is received, the output
signal DATA_OUT is the average of the previous 200 samples. The filter
can be implemented as a general finite impulse response (FIR) filter. In a
general FIR the samples are multiplied with a coefficient, and the results

67

are summed for each new input value. Since a moving average filter is a
special case of the FIR filter with all its coefficients equal to 1

numbero f samples
the number of computations can be reduced.

init

add

sub

div

start_calc = '1'

Figure 5.21: Diagram of the FSM used to implement the moving average
filter.

To reduce the number of computations the filter is implemented
according to the state diagram shown in Figure 5.21. The FSM use a
shift registers to hold the 200 values, and keep a running sum that is
updated for each new value. In this way the calculations are reduced to
one addition, one subtraction and one division for each new sample.

To find the correct length of the shift register , the filter was analyzed
in MATLAB. Figure 5.22 shows the frequency and phase response of the
moving average filter with an order of 200 and a data rate fs of 1.25 kHz.
From the frequency response one can see that the carrier frequency of 25
Hz and its harmonics are significantly dampened. This has the added
benefit of also reducing the 50 Hz and 100 Hz external noise. To prevent
the filtering of fast changes in the signal, the step response is set to 200 mS.

68

0 10 20 30 40 50 60 70 80 90 100

−100

−80

−60

−40

−20

0

Frequency (Hz)

M
ag

ni
tu

de
 (d

B)

Frequency respons

Figure 5.22: The frequency response of a moving average filter with an
order of 200 and a fs of 1.25 kHz (the frequency axis is scaled in order to
make it more readable).

The Remove Bias Module

Figure 5.23: The Remove Bias Module

In order for the Lock-In Detection technique to work, the endosomatic
bias needs to be removed from the input signals. To achieve this, the
remove bias module shown in Figure 5.23 is used. This module is
constructed according to the FSM diagram shown in Figure 5.24. As one
can see from the FSM diagram, this module is almost identical to the

69

moving average filter.
The difference lies in the additional state named sub_mean. In this state,

the mean of the previous samples are subtracted from the input signal
resulting in a bias free output signal. In order to make the mean value less
dependent on changes in the bias, the shift register is set to a length of 800
samples.

init

add

sub

div

start_calc = '1'

sub_mean

Figure 5.24: Diagram of the FSM used to implement the remove bias
module.

The Data Enable Module

The Data enable module shown in Figure 5.25 is used to generate the
signal data_enable. This signal is used to enable synchronous triggering
of the input data for the Nios II processor. The data_enable is also used to
enable the data register module that clocks data in to the PIO ports of the
Nios II processor.

70

Figure 5.25: The Data Enable Module.

The Data Register Module

Figure 5.26: The Dataregister Module

The Data Register module shown in Figure 5.26 is a data register that
is used to ensure correct timing during a read operation on the Nios II
processor. The module use the input signal data_enable to update the PIO
input ports of the processor.

5.6.6 Nios II

In order to send data from the FPGA an interface to the external Bluetooth
module is needed. This can be done with a custom UART driver written in

71

Figure 5.27: The Nios II processor.

VHDL. A more flexible solution is to use a Nios II processor with a UART
peripheral. This solution enables the use of C code to control data transfer
and formatting. The Nios II processor used in this system is shown in
Figure 5.27. The peripherals used are: programmed input/output (PIO)
modules for data transfer to the processor, and a UART module to control
the external Bluetooth module.

The C used by the Nios II processor is located in Appendix G

The Python development Tool

In order to simplify the prototyping and development of the digital
system, a Python PC application was developed. The main advantage
with this tool is that the Python programming language enables changes
to be implemented more easily then the Android application written in
Java. In its present form the application has the following functionality:

• Display multiple data signals in the two plot views.

• Write the incoming data to a text file.

• Monitor the size of the input data queue.

• Adjust the x and y axes of both the plot views.

• Clear the incoming data queue.

A screenshot of the application is shown in Figure 5.28. The source
code and its UML class diagram is located in Appendix C.

72

Figure 5.28: Screenshot of the Python development Tool.

5.7 Bluetooth module

PPmmooddBBTT22™™
RReeffeerreennccee MMaannuuaall

Revision: August 17, 2011

Note: This document applies to REV A of the board.
1300 NE Henley Court, Suite 3

 Pullman, WA 99163
(509) 334 6306 Voice | (509) 334 6300 Fax

Doc: 502-214 page 1 of 2

Copyright Digilent, Inc. All rights reserved. Other product and company names mentioned may be trademarks of their respective owners.

Overview

The PmodBT2 is a powerful peripheral module
employing the Roving Networks® RN-42 to
create a fully integrated Bluetooth interface.

Features include:

• Bluetooth 2.1/2.0/1.2/1.1 Compatible
• Simple UART Interface
• A wide range of modes including: Slave

Mode, Master Mode, Trigger Master
Mode, Auto-connect Master Mode,
Auto-connect DTR Mode, and Auto-
connect ANY Mode.

• Small form factor: 1.5” x 0.8”

Functional Description

The PmodBT2 uses a standard 12-pin
connection and communicates via UART.
There is a secondary SPI header on the board
for updating the RN-42 firmware if needed.

Jumper Settings

The PmodBT2 has several modes available to
the user via jumper settings. JP1 through JP4
provide various modes of operation as
indicated in Table 1 below. Each jumper is
active when shorted. JP1 restores the device
to factor default settings after three transitions
of the jumper setting (short-to-open or open-to-
short). After the third transition, the device
returns to factor default except for the
Bluetooth name. The other three jumpers, JP2-
JP4, only sample in the first 500 ms of

operation to allow the pins that they tie to on
the RN-42 module to serve a separate purpose
later in the modules operation. JP2 enables
pairing with a special device class defined by
the user in software. This may be used so that
the PmodBT2 operates as a substitute for an
RS232 cable. JP3 enables auto connect to a
stored address defined by the user. Finally,
JP4 chooses whether to operate at the stored
baud rate (115.2kbps default) or a baud rate of
9600 regardless of the software selected rate
when shorted. For more detailed information

Jumper Description
JP1 (PIO4) Factory Default
JP2 (PIO3) Auto Discovery/Pairing
JP3 (PIO6) Auto Connect
JP4 (PIO7) Baud Rate Setting (9600)

Table 1: Set Jumper Description

Figure 5.29: The PmodBT2 peripheral module.

In order to transfer data between the FPGA and the software platforms,
a communication link is needed. To obtain a flexible interface that
supports both the Android OS and computer platforms, the Bluetooth
interface module PmodBT2 shown in Figure 5.29 was selected. This
module is made by Digilent and based on the RN-42 Bluetooth link
from Roving Networks. The PmodBt2 interface has a standard 12-pin

73

connection and communicates via a UART interface. The RN-42 Bluetooth
link supports the Bluetooth standards 2.1/2.0/1.2/1.1. By default, the
PmodBT2 is set to a baud rate of 115.2 kbps with a packet format of 8
data bits, no parity bit and 1 stop bit. In order to set the module in auto
discovery/pairing the jumper JP2 is set. The selected settings for PmodBt2
are selected in order to simplify the prototyping process. If additional
restrictions like added security or custom baud rates are needed, the
module can easily be configured by setting it in command mode.

5.8 PCB Design

Two different PCB prototypes have bean developed for this project: The
Analog Front-end and the Data Acquisition Card. Both of the PCBs are
made from two layer FR4 epoxy substrates. A two layer design was
selected in order to produce the PCBs at the Electronic Workshop at the
Department of Physics at UiO. The schematic design and PCB layout were
done in Zucken CADSTAR. The Data Acquisition Card was designed and
produced in collaboration with Miriam Kirstine Huseby.

To provide a stable and uniform ground reference throughout the two
PCBs, ground planes were used. Fast switching digital circuits serve
as noise sources; the sensitive preamplifier on the Analog Front-end is
therefore supplied with a separate ground plane. This ground plane is
isolated from the rest of the card and the digital system, as discussed in
Section 3.4.1.

To ensure minimal power fluctuations and reduce noise, all active
components have two bypass capacitors. A 100 nF ceramic capacitor is
used to suppress high frequency noise, and a 100 µF tantal capacitor is
used to suppress low frequencies noise and serve as a current buffer for
the IC. The capacitors are positioned as close to the IC pins as possible.
On the Analog Front-end PCB the capacitors are placed on the bottom
layer. This was done in order to give space fore the probes used to verify
the circuit. On both cards the different power rails are put on the bottom
layer.

As one can see from Figure 5.30 and Figure 5.31, two different revisions
of the Analog Front-end and the Data Acquisition Card were made. The
first revisions were used to debug and test the individual sub circuits.
The experience gained from these tests, were then used to make the final
revisions. The revision markings follow the different versions of the
schematics, and the final versions of the Analog Front-end and the Data
Acquisition are therefore marked REV.E and REV.C respectively.

74

Prototype 1 REV.C

Figure 5.30: The two different revisions of the Data Acquisition Card.

Prototype 1 REV.E

Figure 5.31: The two different revisions of the Analog Front-end.

75

5.9 The Android Application

To display and store the data transmitted by the Bluetooth module, an
Android application named BioDataLogger has been developed. The
BioDataLogger is developed for Android devices that supports Bluetooth
functionality and has a software platform between Android 2.2 and
Android 4.1.2. The application is intended to be used as a display and
data storage tool. Figure 5.32 shows a screenshot of the BioDataLogger.

Figure 5.32: The BioDataLogger.

The UML diagram in Figure 5.33 shows the architecture and relations
used by the classes of the application. As shown in the UML diagram the
application is constructed from different activities and one background
service. The activities are used to interact with the user, and they hold the
views needed to render information to the screen. The background service
contains the data queue and the threads needed to maintain the Bluetooth
connection. This producer consumer architecture was chosen in order
to preserve the Bluetooth and data storage capabilities in the event of a
disturbance from the Android OS. If for instance the phone receives a call,
the Android system will stop the activity, but not the background service.
The communication between the activities, the service and the threads are
managed by message handlers that operate on message queues.

The rest of this section will give a short review of the key components
used in the application. The user manual and source code is located in
Appendix B.

5.9.1 The Start Activity

The StartActivity serves as the starting point of the BioDataLogger
application. When the user pushes the application icon this activity is
launched. The activity contains two buttons that point to the MainActivety
and the HelpActivity.

76

Figure 5.33: UML diagram displaying the architecture of the Android
application.

5.9.2 The Help Activity

This activity is used to display information like the intended use of the
application and contact information.

5.9.3 Device List Activity

This activity is used to list paired devices and devices that are in range of
the unit. When the Bluetooth module is selected from the list, its MAC
address is return to the MainActivity.

5.9.4 The Main Activity

This activity serves as the main component of the BioDataLogger and
holds the views needed to display information to the screen. The PlotView
is designed as a game graphics engine, and extends the integrated
SurfaceView class in order to draw graphics to the screen. To make
sure that the application remains responsive, the actual rendering is
done by a thread named PlotThread. If Bluetooth is disabled when
the MainActivity launches, it will ask the user for permission to enable
it. This activity also holds the different buttons needed to start the
data log, connect/disconnect the Bluetooth link and stop the background
service. When the user push the connect button, the DeviceListActivity
returns the MAC address of the external device. When the MainActivity

77

receives the MAC address, it starts the BluetoothService, binds to it,
and sends the MAC address. Communication between the MainActivity
and the BluetoothService is maintained by the message handler named
IncomingHandler. When a data point is sent from the BluetoothService, it
is decoded by the MainActivity and sent to the PlotView.

5.9.5 The Bluetooth Service

This component is a service that runs in its own separate process. This
means that the Bluetooth connection and data log will remain operational
regardless of what happens to the MainActivity. When the BluetoothSer-
vice starts, it creates a notification that is displayed on the phones notifica-
tion drawer. This enables the user to restart the MainActivety, and rebind
to the Service. In order to initiate and maintain a Bluetooth connection,
the three threads ConnectThread, ConnectedThread and SendDataThread
are used. The ConnectThread establish an outgoing connection with the
external device. This thread runs straight through, and it either succeeds
or fails. The ConnectedThread runs during a connection with the external
device, and handles all incoming transmissions. When data is received,
the thread writes the data to a text file located on the SD card and appends
it to the BluetoothQueue. Since the socket used by the ConnectedThread
uses blocking calls, a separate thread named SendDataThread is used to
transmit the data from the BluetoothQueue to the MainActivity. In order
to stop the BluetoothServis an exit button is implemented in the Main-
Activity. When this button is pushed the service receives a message that
activates a destroy routine.

78

Chapter 6

System Verification and
Calibration

This chapter covers verification and analysis of the measurement systems
primary modules. Method and results of the system calibration are also
included.

6.1 Verification

6.1.1 The Digital-To-Analog Converter

Experimental Setup

A Tektronix TDS 2024B oscilloscope is used to verify the output of the
AD5340 DAC. The oscilloscope is used to measure the output signal and
to calculate an Fast Fourier Transform (FFT) of the signal.

Results

Presented in Figure 6.1 is the output signal from the DAC. The signal has
a peak-to-peak voltage level of 5 V at a frequency of 25 Hz. As expected,
the signal is a sine wave.

An FFT of the output signal is presented in Figure 6.2. The signal
power Ps is approximately 68 dB and the noise floor Pn is estimated to
10 dB. This gives an SNR of 68 dB - 10 dB = 58 dB.

79

Figure 6.1: The output signal from the DAC.

Figure 6.2: An FFT of the output signal from the DAC.

80

6.1.2 Digital Design Verification

This section contains the timing diagrams used to verify the different
modules on the FPGA. The diagrams are recorded in real-time using the
SignalTap II Logic Analyzer.

Figure 6.3: Timing diagram of the AD5340 controller. The diagram shows
the signal from the NCO being converted to binary offset and shifted out
to the DAC (bottom).

Figure 6.4: Timing diagram of the AD7766A controller used for the ECG
part of the system. The signal at the bottom of the diagram shows the
serial data received from the ADC.

Figure 6.5: Timing diagram used to verify the AD7766B controller used for
the EDA part of the system. The three signals at the bottom of the diagram
shows the serial data received from the ADCs.

81

Figure 6.6: Timing diagram displaying the input and output of the
Remove Bias Module as a waveform. It is evident that the module
removes the offset, as seen in the bottom, output, waveform.

Figure 6.7: Timing diagram displaying the input and output signals of the
Moving Average Filter Module. The bit length of the output signal (the
bottom line) is displayed as a bar plot and scaled to better display the
averaging effect.

Figure 6.8: Timing diagram of the Data Enable and Data Register Modules
used to synchronize communication with the Nios II processor. The
bottom line of the diagram shows the duration and value of the sample
that is delivered to the processor.

82

6.1.3 Nios II and Bluetooth Communication

The PmodBT2 Bluetooth module and the Nios II processor is verified with
a C script on the Nios II. The script generated test data and transmits
them to the PmodBT2 via the UART peripheral. The PmodBT module
is wirelessly connected to a PC with an integrated Bluetooth link. To
display the transmitted data, the Docklight RS232 terminal tool is used.
The Docklight RS232 terminal communicates with a baud rate of 115.2
kbps with a packet format of 8 data bits, no parity bit and 1 stop bit.

Results

Figure 6.9: The Docklight RS232 terminal tool displaying the data stream
received from the PmodBT2 Bluetooth module.

The data stream sent from the PmodBT2 Bluetooth module is displayed
in Figure 6.9.

6.1.4 The Android Application

Experimental Setup

Each sub module of the BioDataLogger was tested individually via
a debug terminal supplied by the Android SDK. Verification of the

83

BioDataLogger was performed to check the stability of the application.
To test if any bugs are present or if any input combinations could crash
the application, a user test was performed. During this test, simulated
data was transmitted from the Nios II processor. While the application
was plotting the data, the user was trying different button combinations to
deliberately trigger an error. In order to profile the software performance,
the Android SDK traceview and dmtracdump tools were used. When
problems were detected, they were corrected and the profiling process
was repeated. This was done until the intended software performance
and functionality was obtained.

Results

Figure 6.10: The profiling tool displaying the use of resources over time
(top) and the time spent in the different functions of the BioDataLogger.

The timeline and profile panel supplied by the traceview and dmtrac-
dump tools are displayed in Figure 6.10. The resource usage is shown in
the timeline (top) and the profile panel (bottom) displays the resources
used by the different functions of the BioDataLogger. As seen in the pro-
file panel, the most demanding task is the function used by the PlotView
to draw the graphs from the incoming data, with a CPU usage of 61.2%.
The screenshot in Figure 6.11 on the facing page shows the BioDataLogger
drawing data generated by the Nios II processor.

84

Figure 6.11: The BioDataLogger drawing generated data from the Nios II
processor.

6.1.5 The RSO-2412DZ/H3 DC-DC Converter

Experimental Setup

A Tektronix TDS 2024B oscilloscope is used to measure output noise of
the RSO-2412DZ/H3. The measurement is conducted on both the positive
and negative rails in respect to the neutral connection.

Results

Figure 6.12: Output noise on
the positive rail.

Figure 6.13: Output noise on
the negative rail.

85

Figure 6.12 and 6.13 shows the noise on the positive and negative rails.
The ripple and noise occurs at a frequency of approximately 666 kHz.
The output ripple and noise of the RSO-2412DZ/H3 is approximately 67
mVp−p. This measured value is higher then the 50 mVp−p value specified
by its datasheet.

6.2 Calibration of the Analog Front-end

The Matlab scripts used to generate the plots presented in this section can
be found in Appendix D.3.

6.2.1 Howland Current Source

Experimental Setup

Bias

Electrode Terminal 2

Electrode Terminal 1

Electrode Terminal 3

Not Connected

Not Connected

Analog Front-end

Howland Current Source

Instrumentation Amplifier

Transimpedance Amplifier

Rvar

Figure 6.14: The setup used to test the Howland current source.

The setup used to test the Howland current source is shown in
Figure 6.14. A Tektronix TDS 2024B oscilloscope is used to measure the
voltage drop over resistor Rvar. The resistance values used for Rvar range
from 65.4 kΩ to 267.4 k Ω. To compensate for uncertainties in the resistor
values, they are measured with KEITHLEY 2635 SYSTEM SourceMeter.

Results

As seen in Figure 6.15 on the facing page, there is a linear relation between
the different resistors Rvar and the measured peak-to-peak voltage UR.
According to ohm’s law this means that the Howland current source is
able to maintain a stable AC current when the loads are changed. The

86

0.5 1 1.5 2 2.5 3
x 10

5

−0.02

0

0.02

residuals

Linear: norm of residuals = 0.0033956

0.5 1 1.5 2 2.5 3
x 10

5

0.05

0.1

0.15

0.2

0.25
Resistance vs Voltage

R
var

U
r

y = 7.1183e−07*x + 0.019904

data 1
 linear

Figure 6.15: The measured peak-to-peak voltage UR plotted against the
different resistors Rvar (Top pane). Residuals between measurements and
the linear fit (Bottom pane).

87

range of the resistor values used is restricted due to the resolution of the
oscilloscope and noise. The linear fit has an R-squared = 1.

6.2.2 The Resistance Measurement

Experimental Setup

Bias

Electrode Terminal 2

Electrode Terminal 1

Electrode Terminal 3

Analog Front-end

Howland Current Source

Instrumentation Amplifier

Transimpedance Amplifier

Rvar

Figure 6.16: The setup used to calibrate the resistance measurement.

The setup used to calibrate the resistance measurements is shown
in Figure 6.16. The resistor values used for Rvar range from 239 Ω
to 121.83 k Ω. To compensate for uncertainties in the resistor values,
they are measured with the KEITHLEY 2635 SYSTEM SourceMeter. The
instrument readout is done in the Nios II debug terminal.

Results

Figure 6.17 on the facing page demonstrates a linear relation between the
values read by the instrument, and the different resistors Rvar.The linear
fit has an R-squared = 1.00.

6.2.3 The Reactance Measurement

Experimental Setup

The setup used to calibrate the reactance mesurments is shown in
Figure 6.18 on the next page. The resistor R has a fixed value of 10 kΩ.
Cx represents different capacitors in a range from 30 nF to 2 µF.

88

0 1 2 3 4 5 6 7
x 10

5

−200

−100

0

100

200
residuals

Linear: norm of residuals = 271.9716

0 1 2 3 4 5 6 7
x 10

5

0

5

10

15 x 10
4 Resistance vs Instrument Readout

R
var

In
s
tr

u
m

e
n

t
R

e
a

d
o

u
t

y = 0.18124*x + 16.994

data 1
 linear

Figure 6.17: The instrument output plotted against the different resistors
Rvar (Top pane). Residuals between measurements and the linear fit
(Bottom pane).

Bias

Electrode Terminal 2

Electrode Terminal 1

Electrode Terminal 3

Analog Front-end

Howland Current Source

Instrumentation Amplifier

Transimpedance Amplifier

Cx

R

Figure 6.18: The setup used to calibrate the reactance measurement.

89

Figure 6.19: The offset on the inputs of the analog front-end.

Results

During this calibration, a small offset was discovered on the inputs of the
Analog Front-end. This leads to a charging of the capacitor Cx as shown
in Figure 6.19.

6.2.4 The Electric Potential Measurement

Experimental Setup

Bias

Electrode Terminal 2

Electrode Terminal 1

Electrode Terminal 3

Analog Front-end

Howland Current Source

Instrumentation Amplifier

Transimpedance Amplifier

Not Connected

Figure 6.20: The setup used to calibrate the electric potential measured by
the instrumentation amplifier.

The setup used to test the electric potential measured by the instru-
mentation amplifier is shown in Figure 6.20. The KEITHLEY 2635 SYS-

90

TEM SourceMeter is used to apply an electric potential in the range of -5
µVto -65 µV in steps of 5 µV. The instrument readout is done in the Nios
II debug terminal.

Results

−0.07 −0.06 −0.05 −0.04 −0.03 −0.02 −0.01 0
−1000

0

1000
residuals

Linear: norm of residuals = 2157.7025

−0.07 −0.06 −0.05 −0.04 −0.03 −0.02 −0.01 0
−10

−5

0

5 x 10
6 Voltage vs Instrument Readout

Voltage

In
s
tr

u
m

e
n

t
R

e
a

d
o

u
t

y = 1.266e+08*x + 2.574e+05

data 1
 linear

Figure 6.21: The instrument readout plotted against the different electric
potentials (Top pane). Residuals between measurements and the linear fit
(Bottom pane).

Figure 6.21 shows that there is a linear relation between the values
read by the instrument, and the electric potential. The linear fit has an
R-squared = 1.00.

6.2.5 The Current Measurement

Experimental Setup

The setup used to calibrate the current measurements is shown in
Figure 6.22 on the following page. In order to generate a constant current
AC signal, the Howland current source was used. The input voltage was
in the range of 1 V to 4 V in steps of 0.3 V. This corresponds to a current
range of 400 nA to 1.6 µA in steps of 120 nA.

91

Bias

Electrode Terminal 2

Electrode Terminal 1

Electrode Terminal 3

Not Connected

Analog Front-end

Howland Current Source

Instrumentation Amplifier

Transimpedance Amplifier

Figure 6.22: The setup used to calibrate the Current measurements.

Results

Figure 6.23 on the next page demonstrates a linear relation between the
values read by the instrument, and the applied current. The linear fit has
an R-squared = 0.9996.

92

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
x 10

5

−2

0

2

x 10
−7 residuals

Linear: norm of residuals = 2.738e−08

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
x 10

5

0

0.5

1

1.5

2 x 10
−6 Current Instrument vs Readout

Current

In
s
tr

u
m

e
n

t
R

e
a

d
o

u
t

y = 6.659e−12*x + 2.7841e−08

data 1
 linear

Figure 6.23: The instrument readout plotted against the applied current
(Top pane). Residuals between measurements and the linear fit (Bottom
pane).

93

6.3 Summary

The results presented in Section 6.1 demonstrate that the different modules
operate according to the given specification in Chapter 5.

In Section 6.2, it has been shown that an offset is present at the
input of the preamplifier. This was assumed to originate from the
Howland Current Source. A series capacitor was added to the input of
the preamplifier to remove this offset. This modification improved the
measurements, but there is still an offset on the input. These results
suggested that the offset originated from the transimpedance amplifier. To
investigate this, the feedback resistor of the transimpedance amplifier was
replaced with a lower value, which resulted in an increased offset. This
implies that the offset is originating from the transimpedance amplifier
or the following analog stages. Because of time restrictions, further
investigations could not be conducted.

It has been shown that, even though the reactance measurement chain
is inoperable, the potential, current and resistance measurements chains
show a high degree of linearity. This verifies that the digital Lock-In
Detection technique operate according to its specification. The Android
mobile application is able to receive, display and store data produced by
the operable measurement chains.

94

Chapter 7

Summary and Conclusion

This chapter summarizes the work and results presented in this thesis. It
reviews the main contributions and results, and gives recommendations
for further work.

7.1 Conclusion of the Present Work

The work of this thesis has been related to the development of a FPGA
Based Development Platform for Biomedical Measurements. This thesis
describes the design, development and verification of the development
platform. Based on the accomplishments and contributions, the following
conclusions are drawn:

• A prototype of an FPGA Based Development Platform for Biomed-
ical Measurements has been developed.

• The digital signal processing is implemented based on modules, this
makes the system easy to scale and expand.

• An Android mobile application that is able to receive data sent over
Bluetooth from the development platform has been implemented
tested and verified.

• A custom built front-end needed for the measurements of electro-
dermal activity has bean built and tested. The calibration of the re-
actance measurement chain was found to be inoperable. The poten-
tial, current and resistance measurement chains show a high degree
of linearity.

95

7.2 Future Work and Recommendations

Based on the work presented in this, the following improvements
and changes are recommended for future versions of the development
Platform:

• The source of the offset present on the input of the preamplifier needs
to be identified and corrected.

• Implement LC filtering to remove the output noise of the RSO-
2412DZ/H3 DC-DC Converter.

• The single ended to differential circuit based on ADA4941-1 should
be replaced with the ADC driver AD8476. This will simplify the
input stages of the Data Acquisition Card and make them less reliant
on impedance matching.

• Implement and test alternative algorithms like Coordinate Rotation
Digital Computer (CORDIC) and FFT to extract the real and
imaginary parts of the impedance.

• Make a new multi-layer PCB design that combines the data acquis-
ition channels, FGPA, communication and power conversion. This
makes the system able to be operated on battery power, making it
portable.

96

Bibliography

Altera (2012). ‘Cyclone III Device Handbook’. In: Volume 1.
— (2013a). Altera Megafunctions. http://www.altera.com/products/ip/altera/

mega.html. [Online; accessed 8-April-2013].
— (2013b). Nios II Processor: The World’s Most Versatile Embedded Processor.

http://www.altera.com/devices/processor/nios2/ni2-index.html. [Online;
accessed 8-April-2013].

Android-System-Architecture. https : / / en .wikipedia . org /wiki /File :Android -
System-Architecture.svg. [Online; accessed 8-April-2013].

BURR-BROWN (1990). ‘Implementation and Applications of Current
Sources and Current Receivers’. In: pp. 20 –22.

— (1998). ‘High Speed FET-Input INSTRUMENTATION AMPLIFIER’. In:
Bluetooth, SIG (2013). Android. : http : / / www . bluetooth . com / Pages /

Bluetooth-Home.aspx. [Online; accessed 8-April-2013].
Boucsein, Wolfram (2012). Electrodermal Activity. Second Edition. Springer.
Bronzino, J.D. (2000). The biomedical engineering handbook. 1. The Biomedical

Engineering Handbook. Springer. ISBN: 9783540663515. URL: http ://
books.google.no/books?id=6bK84ZHFuW4C.

Cacioppo, John T et al. (2007). HANDBOOK OF PSYCHOPHYSIOLOGY.
Third Edition. Cambrige University Press.

Chen, D. X. et al. (Mar. 2010). ‘Comparison of three current sources
for single-electrode capacitance measurement’. In: Review of Scientific
Instruments 81.3, pp. 034704 –034704–3. ISSN: 0034-6748. DOI: 10.1063/
1.3367879.

D.C., Fowles (1974). ‘Mechanisms of elektrodermal activity’. In: Methods in
Physiological Psychology. Bioelectric Recording Techniques.

Dittmar, A. et al. (1991). ‘Analysis Of Skin Potential Response Using A
Novel Feature Code For The Study Of The Emotional Response’. In:
pp. 427–428.

Google (2013). Android. : http ://www.android . com/. [Online; accessed 8-
April-2013].

Grimnes, S. (1982). ‘Psychogalvanic reflex and changes in electrical
parameters of dry skin’. English. In: Medical and Biological Engineering
and Computing 20 (6), pp. 734–740. ISSN: 0140-0118. DOI: 10 . 1007 /
BF02442528. URL: http://dx.doi.org/10.1007/BF02442528.

97

Grimnes, S. et al. (2005). ‘Cole electrical impedance Model-a critique and
an alternative’. In: Biomedical Engineering, IEEE Transactions on 52.1,
pp. 132–135. ISSN: 0018-9294. DOI: 10.1109/TBME.2004.836499.

Grimnes, Sverre (1984). ‘Pathways of Ionic Flow through Human Skin in
vivo’. In: Acta Derm Venereol.

Grimnes, Sverre et al. (2006). ‘BIOIMPEDANCE’. In: Wiley Encyclopedia of
Biomedical Engineering.

— (2008). BIOIMPEDANCE AND BIOELECTRICITY BASICS. Second
Edition. Elsevier Ltd.

Grimnes, Sverre et al. (2010). ‘Electrodermal activity by DC potential and
AC conductance measured simultaneously at the same skin site’. In:
Skin Research and Technology 17.1, pp. 26–34. ISSN: 1600-0846.

Herrmann et al. (1973). Biochemie der Haut. Stuttgart: Georg Thieme.
Huseby, Miriam Kirstine (2013). ‘FPGA Based Development Platform for

Biomedical Measurements’. In:
Jabbari, A et al. (2010). ‘Simultaneous measurement of skin potential

and conductance in electrodermal response monitoring’. In: Journal of
Physics: Conference Series 224.1, p. 012091.

Johnsen, Børge (2009). ‘PDA-basert instrument for måling av elektro-
dermal aktivitet’. In:

KEITHLEY (2004). Low Level Measurements Handbook. Sixth Edition.
KEITHLEY.

Kerassidis, S. (1994). ‘Is palmar and plantar sweating thermoregulatory?’
In: Acta Physiologica Scandinavica 152.3, pp. 259–263. ISSN: 1365-201X.
DOI: 10.1111/j.1748-1716.1994.tb09805.x. URL: http://dx.doi.org/10.
1111/j.1748-1716.1994.tb09805.x.

Kitchin, Charles et al. (2006). A DESIGNERâ€™S GUIDE TO INSTRU-
MENTATION AMPLIFIERS. Third Edition. Analog Devices.

Kong, WW (2010). UART â€“ Universal Asynchronous Receiver and Trans-
mitter. http : / / tutorial . cytron . com . my / 2012 / 02 / 16 / uart - universal -
asynchronous-receiver-and-transmitter/. [Online; accessed 8-April-2013].

Kuno, Y. (1956). Human perspiration. American lecture series. Thomas. URL:
http://books.google.no/books?id=6oI_AAAAYAAJ.

Malmivuo, Jaakko et al. (1995). Bioelectromagnetism. [Online; accessed 8-
April-2013]. URL: \url{http://www.bem.fi/book/27/27.htm}.

Martinsen, Ø. G. et al. (1999). ‘Measuring depth depends on frequency
in electrical skin impedance measurements’. In: Skin Research and
Technology, pp. 179–181.

Martinsen, Ørjan G et al. (2001). ‘Facts and Myths about Electrical
Measurement of Stratum corneum Hydration State’. In: Medical and
Biological Engineering and Computing.

Masciotti, J.M. et al. (Jan. 2008). ‘Digital Lock-In Detection for Discriminat-
ing Multiple Modulation Frequencies With High Accuracy and Com-
putational Efficiency’. In: Instrumentation and Measurement, IEEE Trans-

98

actions on 57.1, pp. 182 –189. ISSN: 0018-9456. DOI: 10.1109/TIM.2007.
908604.

Millington, Philip F. et al. (1983). Skin (Biological Structure and Function
Books). Cambrige University Press.

Montagna, William et al. (1974). THE STRUCTURE AND FUNCTION OF
SKIN. Third Edition. Academic Press, INC, pp. 1–17.

Motchenbacher, C.D. et al. (1993). Low-Noise Electronic System Design.
JOHN WILEY and SONS, INC.

Osborne, A. (1980). An Introduction to Microcomputers: Basic concepts.
An Introduction to Microcomputers. Osborne/McGraw-Hill. ISBN:
9780931988349. URL: http://books.google.no/books?id=ScAjAAAAMAAJ.

Oslo Bioimpedance Group (2010). : http : //www.bioimpedance . org. [Online;
accessed 8-April-2013].

Psychophysiological Research, Society for et al. (2012). ‘Publication re-
commendations for electrodermal measurements’. In: Psychophysiology,
pp. 1017–1034.

Rabaey, J.M. (2009). Low Power Design Essentials. Series on integrated
circuits and systems. Springer London, Limited. ISBN: 9780387717135.
URL: http://books.google.no/books?id=A-sBy_nmQ8wC.

Sheingold, D. H. (1964). ‘Impedance and Admittance Transformations
using Operational Amplifiers’. In: Lightning Empiricist Volume 12, p. 7.

Skin layers. http://en.wikipedia.org/wiki/File:Skinlayers.png. [Online; accessed
8-April-2013].

TI (2002). Op Amps For Everyone. Texas Instruments.
Technologies, Avago (2010). ‘HCNR200 and HCNR201 Applications in

Motor Drive and Current Loop’. In: Application Note 5394.
Terry, Ryan. The Integumentary System. http : / / www . ck12 . org / user :

dGVycnlyQHZhbGxleTI2Mi5vcmc./section/The-Integumentary-System-\%
253A\%253Aof\%253A\%253A-Introduction-to-the-Human-Body\%253A-
Bones \%252C -Muscles \%252C - and - Skin/. [Online; accessed 8-April-
2013].

Tronstad, Christian (2012). Developments in biomedical sensors based on
electrical impedance : improvements in electrodes, instrumentation and signal
processing technology for new and existing biomedical sensors for clinical use.
[Department of Physics], Faculty of Mathematics and Natural Sciences,
University of Oslo.

Tronstad, Christian et al. (2008). ‘Electrical measurement of sweat activity’.
In: Physiological Measurement 29.6, S407. URL: http://stacks.iop.org/0967-
3334/29/i=6/a=S34.

Tronstad, Christian et al. (2010). ‘A study on electrode gels for skin con-
ductance measurements’. In: Physiological Measurement 31.10, p. 1395.
URL: http://stacks.iop.org/0967-3334/31/i=10/a=008.

Tronstad, Christian et al. (2013). ‘Improved Estimation of Sweating Based
on Electrical Properties of Skin’. In: Annals of Biomedical Engineering
41.5, p. 1074. URL: http://dx.doi.org/10.1007/s10439-013-0743-4.

99

Vishay, Semiconductors (2008). ‘Designing Linear Amplifiers Using the
IL300 Optocoupler’. In: Application Note 50.

Webster, J.G. (2009). Medical Instrumentation Application and Design. Wiley.
ISBN: 9780471676003. URL: http : / / books . google . no / books ? id =
1Y4lAAAACAAJ.

Xiaoke, Li et al. (May 2012). ‘Analysis of constant-current characteristics
for current sources’. In: Control and Decision Conference (CCDC), 2012
24th Chinese, pp. 2607 –2612. DOI: 10.1109/CCDC.2012.6244414.

Yamamoto, T. et al. (1981). ‘Non-linear electrical properties of skin in the
low frequency range’. English. In: Medical and Biological Engineering and
Computing 19.3, pp. 302–310. ISSN: 0140-0118. DOI: 10.1007/BF02442549.
URL: http://dx.doi.org/10.1007/BF02442549.

100

Appendix A

User Manual for the
BioDataLogger Android
Application

This user manual will go through the steps needed to use the BioDataLog-
ger application. Before you can install and run the application, you need
to enter settings - security, and tap the Unknown Sources box. When the

Figure A.1: Start the application.

application is installed, you can locate and run the BioDataLogger logo
shown in the bottom right corner of Figure A.1

101

Figure A.2: The information
screen.

Figure A.3: The start screen.

Figure A.3 shows the start screen of the application. This screen has
two buttons located under the BioDataLogger logo. The Help button
enters the information screen shown in Figure A.3. To enter the main
screen of the application and start a recording, push the start button.

Figure A.4: Activated Bluetooth
dialog.

Figure A.5: The main screen.

If Bluetooth is not activated, the application will ask for permission to
activate it as shown in FigureA.4. After the Bluetooth is activated, the
application will enter the main screen shown in Figure A.5. In order
to start a bluetooth connection, push the option button on the lover
left corner of the device. This will activate the option menu shown in
Figure A.6.

Figure A.6: The option menu.

102

The Connect Bluetooth and Disconnect Bluetooth buttons are used
to connect and disconnect from the development platform. When the
Connect Bluetooth button is pushed, the dialog shown in Figure A.7 will
appear.

Figure A.7: Select Bluetooth device dialog.

In order to connect to the development platform, select the device
named RN42-0F4B with the MAC address 00:06:66:43:0F:4B. After a
successful connection is established, the name of the device will appear
in the top right corner of the screen. The device will now start to plot the
incoming data as shown in Figure A.8. The two buttons Auto Zoom and
Start Log are used to scale the incoming data and start the log respectively.
When the log is activated a counter will appear in the upper write corner
of the screen.

Figure A.8: BioDataLogger

The screen is divided in two sections by a horizontal line. The
upper section is dedicated to the EDA related measurements, and the
lower section is dedicated to the ECG related measurements. If the
recording session is disturbed during a recording, the notification shown
in Figure A.9 on the following page can be used to enter the application
and continue the recording. Since the data log is managed by a separate
serves, there will be no data loss. If a zoom level other then the one
provided by the Auto Zoom is desired. The individual graphs can be

103

scaled by sliding a finger on the screen. The two graphs can also be scaled
together by sliding a finger up or down the right side of the screen.

Figure A.9: The notification.

The log file will be stored in a folder named Data on the phones SD-
card.

104

Appendix B

The BioDataLogger UML and
Code

B.1 UML Diagram

Figure B.1: UML diagram displaying the architecture of the BioDataLog-
ger.

105

B.2 Code

Listing: StartActivity.java
package com . BioDataLogger ;

import android . app . A c t i v i t y ;
import android . content . I n t e n t ;
import android . os . Bundle ;
import android . view . View ;
import android . view . Window ;
import android . widget . Button ;

/**
* This A c t i v i t y serves as a s t a r t i n g point f o r the
* BioDataLogger and disp lays information .
* @author Lars Jørgen Aamodt
*/

public c l a s s S t a r t A c t i v i t y extends A c t i v i t y implements View . OnClickListener {

/** Called when the a c t i v i t y i s f i r s t c rea ted . */
@Override
protected void onCreate (Bundle s a ve d I n s t an c e S t a t e) {

super . onCreate (s a ve d I n s t an c e S t a te) ;

requestWindowFeature (Window . FEATURE_NO_TITLE) ;

setContentView (R . layout . s t a r t) ;

Button s t a r t P l o t = (Button) findViewById (R . id . s t a r t P l o t) ;
s t a r t P l o t . se tOnCl ickLis tener (t h i s) ;

Button help = (Button) findViewById (R . id . help) ;
help . se tOnCl ickLis tener (t h i s) ;

}

/** L i s t e n e r f o r menu */
public void onClick (View v) {

I n t e n t in ;

switch (v . get Id ()) {

// s t a r t p l o t a c t i v i t y
case R . id . s t a r t P l o t :

in = new I n t e n t (this , MainActivity . c l a s s) ;
s t a r t A c t i v i t y (in) ;
t h i s . f i n i s h () ;
break ;

// s t a r t help a c t i v i t y
case R . id . help :

in = new I n t e n t (this , HelpAct ivi ty . c l a s s) ;
s t a r t A c t i v i t y (in) ;

break ;

}

}

106

}

Listing: PlotView.java
package com . BioDataLogger ;

import j ava . u t i l . Arrays ;
import j ava . u t i l . concurrent . atomic . AtomicBoolean ;

import android . content . Context ;
import android . graphics . Bitmap ;
import android . graphics . Canvas ;
import android . graphics . Color ;
import android . graphics . Pa int ;
import android . u t i l . A t t r i b u t e S e t ;
import android . u t i l . Log ;
import android . view . MotionEvent ;
import android . view . SurfaceHolder ;
import android . view . SurfaceView ;
/**

* This c l a s s extends SurfeceView in order to draw 2D information to the screen .
* @author Lars Jørgen Aamodt
*/

public c l a s s PlotView extends SurfaceView implements SurfaceHolder . Cal lback {

private PlotThread mPlotThread ;

private f i n a l s t a t i c i n t dataLength = 7 2 0 ;
private f i n a l s t a t i c i n t doubleDataLength = dataLength * 2 ;

private f l o a t [] plotData1 = new f l o a t [doubleDataLength] ;
private f l o a t [] plotData2 = new f l o a t [doubleDataLength] ;
private s t a t i c f i n a l i n t [] dataX = new i n t [dataLength] ;

private s t a t i c f i n a l i n t width = 8 0 0 ;
private s t a t i c f i n a l i n t height = 4 2 2 ;
private s t a t i c f i n a l i n t dy = height /2;
private f l o a t s c a l e 1 = 1 5 ;
private f l o a t s c a l e 2 = 1 5 ;
private f l o a t scaleOld1 ;
private f l o a t scaleOld2 ;

private s t a t i c f i n a l Paint p a i n t P l o t 1 = new Paint () ;
private s t a t i c f i n a l Paint p a i n t P l o t 2 = new Paint () ;
private s t a t i c f i n a l Paint paintBackground = new Paint () ;

f i n a l AtomicBoolean backgroudMade = new AtomicBoolean (f a l s e) ; //TODO trenger
nok ikke atomic

private s t a t i c f i n a l boolean D = t rue ;
private s t a t i c f i n a l S t r i n g TAG = " PlotView " ;

// 2 touch s t a t e s
private s t a t i c f i n a l i n t NONE = 0 ;
private s t a t i c f i n a l i n t DRAG = 1 ;

//Var iab le f o r touch s t a t e
private i n t mode = NONE;

// background Bitmap f o r drawing c e n t e r l i n e
private s t a t i c Bitmap background ;

private f l o a t yOld ;
private f l o a t xOld ;

107

private f l o a t yNew;
private f l o a t yDif ;
private boolean fingerDown = t rue ;

/**
* Constructor PlotView
*/

public PlotView (Context contex t) {
super (contex t) ;
i n i t () ;

}

/**
* Constructor PlotView
*/

public PlotView (Context context , A t t r i b u t e S e t a t t r s) {
super (context , a t t r s) ;
i n i t () ;

}

/**
* Constructor PlotView
*/

public PlotView (Context context , A t t r i b u t e S e t a t t r s , i n t d e f S t y l e) {
super (context , a t t r s , d e f S t y l e) ;
i n i t () ;

}

/**
* i n i t i a t i o n method
*/

public void i n i t () {

getHolder () . addCallback (t h i s) ;

mPlotThread = new PlotThread (getHolder () , t h i s) ;

generateXY () ;

//enable paint ing t o o l s
paint ingTools () ;

setKeepScreenOn (t rue) ;

}

/**
* This method i s where the drawing takes place .
*/

@Override
public void onDraw (Canvas canvas) {

//pre−draw background
drawBackground (canvas) ;

// draw the background

canvas . drawBitmap (background , 0 , 0 , paintBackground) ;

drawPlot (canvas , plotData1 , pa intPlot1 , plotData2 , p a i n t P l o t 2) ;

}

/**
* This method i s c a l l e d immediately a f t e r any s t r u c t u r a l changes (format or

s i z e) have been made to the s u r f a c e .
* The s u r f a c e i s locked to landscape , so t h i s i s not in use .

108

*/
public void surfaceChanged (SurfaceHolder holder , i n t format , i n t width , i n t

height) {

}

/**
* This method i s c a l l e d immediately a f t e r the s u r f a c e i s f i r s t c rea ted .
*/

public void surfaceCreated (SurfaceHolder holder) {
i f (D) Log . i (TAG, " surfaceCreated ") ;

// make new thread
mPlotThread = new PlotThread (getHolder () , t h i s) ;
mPlotThread . setRunning (t rue) ;
// s t a r t the thread
mPlotThread . s t a r t () ;

}

/**
* This method i s c a l l e d immediately before a s u r f a c e i s destroyed .
*/

public void surfaceDestroyed (SurfaceHolder holder) {
i f (D) Log . i (TAG, " surfaceDestroyed ") ;

backgroudMade . s e t (f a l s e) ;

// t e l l thread to shut down & wait f o r i t to f i n i s h
//clean shutdown
boolean r e t r y = t rue ;
mPlotThread . setRunning (f a l s e) ;
while (r e t r y) {

t r y {
mPlotThread . j o i n () ;
r e t r y = f a l s e ;

} catch (InterruptedExcept ion e) {
// t r y shut t ing down the thread again and again . . .

}
}

}

/**
* Pre−draw the black background and c e n t e r l i n e
*/

private void drawBackground (Canvas canvas) {
i f (! backgroudMade . get ()) {

background = Bitmap . createBitmap (canvas . getWidth () , canvas . getHeight
() , Bitmap . Config . RGB_565) ;

Canvas c = new Canvas (background) ;
c . drawColor (Color .BLACK) ;
for (i n t j =0 ; j <(width−1) ; j ++) {

c . drawLine (0 , dy , width , dy , paintBackground) ;
c . drawLine (0 , height , width , height , paintBackground) ;

}
backgroudMade . s e t (t rue) ;

}
}

/**
* This method generates x values f o r dataX array
*/

public void generateXY () {

for (i n t k = 0 ; k < doubleDataLength ; k++) {
plotData1 [k] = height−(dy+2) ;
plotData2 [k] = height −(2) ;

}

109

for (i n t j = 1 , i = 1 ; j <= dataLength−2; j +=2 , i ++) {
dataX [j] = i * 2 ;
dataX [j +1]= i * 2 ;

}
dataX [dataLength−1]= dataLength ;

}

/**
* This method draws the two data p l o t s .
* @param canvas the canvas to draw on .
*/

private s t a t i c void drawPlot (Canvas canvas , f l o a t [] data1 , Paint p1 , f l o a t []
data2 , Paint p2) {
// draw p l o t 1
canvas . drawLines (data1 , p1) ;
// draw p l o t 2
canvas . drawLines (data2 , p2) ;

}

/**
* This method s e t s and s h i f t data in to the data array 1 .
* @param d1
*/

public void setBTData1 (i n t d1) {

// i f (D) Log . d (TAG, " setBTData ") ;
// s h i f t Data
System . arraycopy (plotData1 , 0 , plotData1 , 4 , doubleDataLength−4) ;
plotData1 [1] = height −((d1 * s c a l e 1) +(dy+2)) ;

plotData1 [3] = plotData1 [5] ;

// Replace x values in p l o t
for (i n t i = 0 , j = 0 ; i < doubleDataLength−1; i +=2 , j ++) {

plotData1 [i] = dataX [j] ;
}

}

/**
* This method s e t s and s h i f t data in to the data array 2 .
* @param d2
*/

public void setBTData2 (i n t d2) {

// s h i f t Data
System . arraycopy (plotData2 , 0 , plotData2 , 4 , doubleDataLength−4) ;
plotData2 [1] = height −((d2 * s c a l e 2) + (2)) ;

plotData2 [3] = plotData2 [5] ;

// Replace x values in p l o t
for (i n t i = 0 , j = 0 ; i < doubleDataLength−1; i +=2 , j ++) {

plotData2 [i] = dataX [j] ;
}

}

/**
* This method s e t s the d i f f e r e n t drawing parameters .
*/

private void paint ingTools () {

// paint p lo t1
p a i n t P l o t 1 . se tColor (Color .GREEN) ;
p a i n t P l o t 1 . s e t A n t i A l i a s (t rue) ;
// p a i n t P l o t 1 . setStrokeWidth (1) ;
// p a i n t P l o t 1 . s e t S t y l e (Paint . S t y l e . STROKE) ;

110

// paint p lo t1
p a i n t P l o t 2 . se tColor (Color .YELLOW) ;
p a i n t P l o t 2 . s e t A n t i A l i a s (t rue) ;
// p a i n t P l o t 2 . setStrokeWidth (1) ;
// p a i n t P l o t 2 . s e t S t y l e (Paint . S t y l e . STROKE) ;

//paint c e n t e r l i n e
paintBackground . se tColor (Color .GRAY) ;
paintBackground . s e t A n t i A l i a s (t rue) ;
//paintBackground . setStrokeWidth (1) ;
paintBackground . s e t S t y l e (Paint . S t y l e . STROKE) ;

}

/**
* This method a d j u s t s the s c a l i n g of data array 1 and 2 .
* @return true
*/

public void autoZoom () {

//Array f o r y values of plotData1
f l o a t [] tmpDataY1 = new f l o a t [dataLength] ;
//Array f o r y values of plotData2
f l o a t [] tmpDataY2 = new f l o a t [dataLength] ;
//Get y values from plotData and copy them to tmpDataY
i n t n = 0 ;
for (i n t i = 1 ; i < doubleDataLength ; i ++) {

// I f number i s odd (y)
i f (i%2 != 0) {

tmpDataY1 [n] = plotData1 [i] ;
tmpDataY2 [n] = plotData1 [i] ;
n++;

}
}

Arrays . s o r t (tmpDataY1) ;
// d i f f 1 = max − min
f l o a t d i f f 1 = tmpDataY1 [dataLength−1]−tmpDataY1 [0] ;

scaleOld1= s c a l e 1 ;
s c a l e 1 = (height/ d i f f 1) * 5 ; // (((height /2) / d i f f 1) /2) ;

Arrays . s o r t (tmpDataY1) ;
// d i f f 2 = max − min
f l o a t d i f f 2 = tmpDataY1 [dataLength−1]−tmpDataY1 [0] ;

scaleOld2= s c a l e 2 ;
s c a l e 2 = (height/ d i f f 2) * 5 ; // (((height /2) / d i f f 2) /2) ;

// Replace y values in p l o t
for (i n t i 1 = 1 ; i 1 < doubleDataLength ; i 1 ++) {

// I f number i s odd (y)
i f (i 1%2 != 0) {

//f ind the o r i g i n a l value and c a l c u l a t e the new
plotData1 [i 1] = height −(((((− plotData1 [i 1]+ height)−dy−2)/

scaleOld1) * s c a l e 1) +(dy+2)) ;
plotData2 [i 1] = height −(((((− plotData2 [i 1]+ height)−2)/

scaleOld2) * s c a l e 2) + (2)) ;
}

}
}

/**
* This method handles touch screen motion events .
*/

public boolean onTouchEvent (MotionEvent event) {

111

// Handle touch events

switch (event . getAct ion () & MotionEvent .ACTION_MASK) {

case MotionEvent .ACTION_DOWN: // f i n g e r down
// i f (D) Log . d (TAG, " f i n g e r down") ;

yOld= event . getY () ;
xOld= event . getX () ;
fingerDown = t rue ;

mode = DRAG;
break ;

case MotionEvent .ACTION_UP: // f i n g e r up
// i f (D) Log . d (TAG, " f i n g e r up") ;

fingerDown = f a l s e ;
break ;

case MotionEvent .ACTION_MOVE:
i f (D) Log . d (TAG, " f i n g e r move") ;

i f (mode == DRAG) {

i f (fingerDown) {
yNew = event . getY () ;

}

i f ((yOld < height * 0 . 5) || (xOld > width * 0 . 9)) {
yDif = yOld−yNew;

// i f (D) Log . d (TAG, " y"+ yOld) ;
i f (yDif >= 10 || yDif <= −10) {

scaleOld1= s c a l e 1 ;
s c a l e 1 += yDif /100;

// Replace y values in p l o t
for (i n t i 1 = 1 ; i 1 < doubleDataLength ; i 1 ++) {

// I f number i s odd (y)
i f (i 1%2 != 0) {

//f ind the o r i g i n a l value and c a l c u l a t e the new
plotData1 [i 1] = height −(((((− plotData1 [i 1]+

height)−dy−2)/scaleOld1) * s c a l e 1) +(dy+2)) ;
}

}
}

}

i f ((yOld > height * 0 . 5) || (xOld > width * 0 . 9)) {
yDif = yOld−yNew;

// i f (D) Log . d (TAG, " y"+ yOld) ;
i f (yDif >= 10 || yDif <= −10) {

scaleOld2= s c a l e 2 ;
s c a l e 2 += yDif /100;

// Replace y values in p l o t
for (i n t i 1 = 1 ; i 1 < doubleDataLength ; i 1 ++) {

// I f number i s odd (y)
i f (i 1%2 != 0) {

//f ind the o r i g i n a l value and c a l c u l a t e the new
plotData2 [i 1] = height −(((((− plotData2 [i 1]+

height)−2)/scaleOld2) * s c a l e 2) + (2)) ;
}

}
}

112

}
i f (xOld > width * 0 . 9) {

yDif = yOld−yNew;

// i f (D) Log . d (TAG, " y"+ yOld) ;
i f (yDif >= 10 || yDif <= −10) {

scaleOld1= s c a l e 1 ;
scaleOld2= s c a l e 2 ;

s c a l e 1 += yDif /100;
s c a l e 2 += yDif /100;

// Replace y values in p l o t
for (i n t i 1 = 1 ; i 1 < doubleDataLength ; i 1 ++) {

// I f number i s odd (y)
i f (i 1%2 != 0) {

//f ind the o r i g i n a l value and c a l c u l a t e the new
plotData1 [i 1] = height −(((((− plotData1 [i 1]+

height)−dy−2)/scaleOld1) * s c a l e 1) +(dy+2)) ;
plotData2 [i 1] = height −(((((− plotData2 [i 1]+

height)−2)/scaleOld2) * s c a l e 2) + (2)) ;
}

}
}

}
break ;

}
}
return true ;

}
/**

* This method s e t s s c a l e on r e s t o r e
* @param y the s c a l e
*/

public void s e t S c a l e 1 (f l o a t y) {

s c a l e 1 = y ;
}

/**
* This method s e t s s c a l e on r e s t o r e
* @param y the s c a l e
*/

public void s e t S c a l e 2 (f l o a t y) {

s c a l e 2 = y ;
}

/**
* This method gets s c a l e .
* @return y the current s c a l e
*/

public f l o a t getSca ley1 () {
return s c a l e 1 ;

}

/**
* This method gets s c a l e .
* @return y the current s c a l e
*/

public f l o a t getSca ley2 () {
return s c a l e 2 ;

}

}

113

Listing: PlotThread.java
package com . BioDataLogger ;

import android . graphics . Canvas ;
import android . u t i l . Log ;
import android . view . SurfaceHolder ;

/**
* This Thread holds the Canvas and executes drawing .
* @author Lars Jørgen Aamodt
*/

public c l a s s PlotThread extends Thread {

private f i n a l S t r i n g TAG = " PlotThread " ;
private f i n a l boolean D = f a l s e ;

private SurfaceHolder sHolder ;
private PlotView mPlotPanel ;
private boolean running = f a l s e ;

// maximum frames per second
private f i n a l s t a t i c i n t MAX_FPS = 1 0 0 ;
// maximum number of frames to be skipped
private f i n a l s t a t i c i n t MAX_FRAME_SKIPS = 2 0 0 ;
// the frame period
private f i n a l s t a t i c i n t FRAME_PERIOD = 1000 / MAX_FPS ;

/**
* Constructor
* @param surfaceHolder
* @param panel
*/

public PlotThread (SurfaceHolder surfaceHolder , PlotView panel) {
sHolder = surfaceHolder ;
mPlotPanel = panel ;

}

/**
* s t a r t and stop run ()
* @param run true f o r s t a r t and Fa lse f o r stop
*/

protected void setRunning (boolean run) {
running = run ;

}

@SuppressWarnings (" unused ") // there i s no need to c a l c u l a t e FPS when not
debugging

@Override
public void run () {

long s tar tTime ; // s t a r t time of the c y c l e
long t imeDi f f ; // time used by the c y c l e
i n t sleepTime ; // ms to s leep i f FPS > max_FPS
i n t framesSkipped ; // number of frames being skipped
i n t framesCounter = 0 ; // number of frames
long to ta lTime = 0L ; // the t o t a l of n c y c l e s
double FPS ; // the c a l c u l a t e d frames per second

Canvas canvas ;

while (running) {
canvas = null ;
t r y {

114

canvas = sHolder . lockCanvas (null) ;
i f (canvas != null) {

synchronized (sHolder) {
s tar tTime = System . currentTimeMil l i s () ;
framesSkipped = 0 ;
i f (D) framesCounter ++;

mPlotPanel . onDraw (canvas) ; // draw p l o t

t imeDif f = System . currentTimeMil l i s () − s tar tTime ;

sleepTime = (i n t) (FRAME_PERIOD − t imeDi f f) ;

i f (D) tota lTime+= t imeDif f ;
// i s there time to s leep
i f (sleepTime > 0) {

//add the s leep time to the t o t a l time
tota lTime+= t imeDif f+sleepTime ;
t r y {

Thread . s leep (sleepTime) ;

} catch (InterruptedExcept ion e) { }
}

i f (framesCounter == 100 && D) {
FPS = (1000/(tota lTime /100)) ;
i f (D) Log . d (TAG, " FPS : "+ FPS) ;
to ta lTime =0L ;
framesCounter= 0 ;

}

while (sleepTime < 0 && framesSkipped < MAX_FRAME_SKIPS)
{

sleepTime += FRAME_PERIOD ;

framesSkipped ++;
}

}
}

} f i n a l l y {
// make shore the s u r f a c e i s not l e f t in an i n c o n s i s t e n t s t a t e
i f (canvas != null) {

sHolder . unlockCanvasAndPost (canvas) ;
}

}
}

}

}

Listing: MainActivity.java
package com . BioDataLogger ;

import android . app . A c t i v i t y ;
import android . b luetooth . BluetoothAdapter ;
import android . content . ComponentName ;
import android . content . Context ;
import android . content . I n t e n t ;
import android . content . ServiceConnect ion ;
import android . graphics . Color ;

115

import android . os . Bundle ;
import android . os . Handler ;
import android . os . IBinder ;
import android . os . Message ;
import android . os . Messenger ;
import android . os . RemoteException ;
import android . os . SystemClock ;
import android . u t i l . Log ;
import android . view . Menu ;
import android . view . MenuInflater ;
import android . view . MenuItem ;
import android . view . View ;
import android . view . View . OnClickListener ;
import android . view . Window ;
import android . view . WindowManager ;
import android . widget . Button ;
import android . widget . TextView ;
import android . widget . Toast ;
import android . widget . ToggleButton ;
/**

* This A c t i v i t y serves as the main c l a s s of BioDataLogger and holds the
d i f f e r e n t Views needed to display information to the screen .

* I t a l s o s t a r t s the B l u e t o t h S e r v i c e and binds to i t in order to r e c e i v e the
data sent over the Bluetooth l i n k .

* @author Lars Jørgen Aamodt
*
*/

public c l a s s MainActivity extends A c t i v i t y implements OnClickListener {

private f i n a l S t r i n g TAG = " MainActivity " ;
private f i n a l boolean D = t rue ;

// views used by t h i s a c t i v i t y
private s t a t i c PlotView mPlotView ;
private s t a t i c TextView mTextViewConnect ;
private s t a t i c TextView mTextViewLog ;
private s t a t i c TextView mTextViewPlot1 ;
private s t a t i c TextView mTextViewPlot2 ;
private s t a t i c TextView mTextViewError ;

// Name of the connected device
private S t r i n g mConnectedDeviceName = null ;
// Local Bluetooth adapter
private BluetoothAdapter mBluetoothAdapter = null ;
private S t r i n g mBluetoothAddress ;
private Messenger mService = null ;

// Array f o r incoming data .
private i n t [] incomingData = new i n t [5] ;

private boolean mIsBound ;

private Handler timeHandler ;
private long startLogTime ;

private f i n a l Messenger mMessenger = new Messenger (new IncomingHandler ()) ;

// Message types sent from the Blue toothServ ice Handler
public f i n a l s t a t i c i n t MESSAGE_STATE_CHANGE = 1 ;
public f i n a l s t a t i c i n t MESSAGE_READ = 2 ;
public f i n a l s t a t i c i n t MESSAGE_DEVICE_NAME = 3 ;
public f i n a l s t a t i c i n t MESSAGE_TOAST = 4 ;

// I n t e n t request codes
private f i n a l s t a t i c i n t REQUEST_ENABLE_BT = 1 ;
private f i n a l s t a t i c i n t REQUEST_CONNECT_DEVICE = 2 ;

116

// Key names rece ived from the Blue toothServ ice Handler
public f i n a l s t a t i c S t r i n g DEVICE_NAME = " deviceName " ;
public f i n a l s t a t i c S t r i n g TOAST = " t o a s t " ;

/** Called when the a c t i v i t y i s f i r s t c rea ted . */
@Override
public void onCreate (Bundle s a ve d I n s ta n c e S t a t e) {

super . onCreate (s a ve d I n s t an c e S t a t e) ;
// request to remove t i t l e
requestWindowFeature (Window . FEATURE_NO_TITLE) ;
getWindow () . s e t F l a g s (WindowManager . LayoutParams . FLAG_FULLSCREEN,

WindowManager . LayoutParams . FLAG_FULLSCREEN) ;

android . os . Process . s e t T h r e a d P r i o r i t y (android . os . Process .
THREAD_PRIORITY_MORE_FAVORABLE) ;

setContentView (R . layout . p l o t) ;

mPlotView = (PlotView) findViewById (R . id . plotview) ;

mTextViewPlot1 = (TextView) findViewById (R . id . p lo tText_1) ;
mTextViewPlot1 . se tTextColor (Color .GREEN) ;

mTextViewPlot2 = (TextView) findViewById (R . id . p lo tText_2) ;
mTextViewPlot2 . se tTextColor (Color .YELLOW) ;

mTextViewError = (TextView) findViewById (R . id . e r r or T ex t) ;
mTextViewError . se tTextColor (Color .RED) ;
mTextViewError . s e t T e x t (" Data format ERROR! ") ;

mTextViewLog = (TextView) findViewById (R . id . logText) ;
mTextViewLog . se tTextColor (Color .GREEN) ;

mTextViewConnect = (TextView) findViewById (R . id . connectText) ;

timeHandler = new Handler () ;

Button autoZoom = (Button) findViewById (R . id . autozoom) ;
autoZoom . se tOnCl ickLis tener (t h i s) ;

ToggleButton s tar tLog = (ToggleButton) findViewById (R . id . s t a r t l o g) ;
s ta r tLog . se tOnCl ickLis tener (t h i s) ;

r e s t o r e (s a v e d I ns t a n c eS t a t e) ;
// Bind to Blue toothServ ice
t r y {

doBindService () ;
} catch (Throwable t) {

Log . e (TAG, " Fa i l ed to bind the s e r v i c e " , t) ;
}

}

/**
* Called to r e t r i e v e per−i n s t a n c e s t a t e from an a c t i v i t y before being k i l l e d
* so t h a t the s t a t e can be r e s t o r e d in onCreate (Bundle) .
*/

@Override
protected void onSaveIns tanceSta te (Bundle o u t S t a t e) {

super . onSaveIns tanceSta te (o u t S t a t e) ;
o u t S t a t e . put Int (" connectColor " , mTextViewConnect . getCurrentTextColor ()) ;
o u t S t a t e . putCharSequence (" connectText " , mTextViewConnect . getText ()) ;
o u t S t a t e . putFloat (" s c a l e 1 " , mPlotView . getSca ley1 ()) ;
o u t S t a t e . putFloat (" s c a l e 2 " , mPlotView . getSca ley2 ()) ;

117

}

/**
* Restore the bundle made by onSaveInstanceSta te .
* @param s t a t e Bundle made by onSaveInstanceSta te .
*/

private void r e s t o r e (Bundle s t a t e) {
i f (s t a t e != null) {

mTextViewConnect . se tTextColor (s t a t e . g e t I n t (" connectColor ")) ;
mTextViewConnect . s e t T e x t ((S t r i n g) s t a t e . getCharSequence (" connectText "

)) ;
mPlotView . s e t S c a l e 1 (s t a t e . g e t F l o a t (" s c a l e 1 ")) ;
mPlotView . s e t S c a l e 2 (s t a t e . g e t F l o a t (" s c a l e 2 ")) ;

}
}

/**
* Called a f t e r onCreate (Bundle) — or a f t e r onRestar t () when the
* a c t i v i t y had been stopped , but i s now again being displayed to the user .
*/

@Override
protected void onStar t () {

super . onStar t () ;
i f (D) Log . d (TAG, "On S t a r t ") ;

checkBT () ;

s e t E r r o r T e x t (f a l s e) ;

// I n i t i a l i z e the Blue toothServ ice
s t a r t S e r v i c e (new I n t e n t (MainActivity . this , B lue toothServ ice . c l a s s)) ;

}
/**

* This method gets the BluetoothAdapter , and t r i e s to enable i t .
*/

protected void checkBT () {
//Local Bluetooth adapter
mBluetoothAdapter = BluetoothAdapter . getDefaultAdapter () ;

i f (mBluetoothAdapter == null) {
Toast . makeText (getBaseContext () , " This device does not support

Bluetooth ! " , Toast .LENGTH_SHORT) . show () ;
f i n i s h () ;

}

// i f b luetooth i s not enabled , request to enable i t .
i f (! mBluetoothAdapter . isEnabled ()) {

I n t e n t e n a b l e I n t e n t = new I n t e n t (BluetoothAdapter .
ACTION_REQUEST_ENABLE) ;

s t a r t A c t i v i t y F o r R e s u l t (enable Intent , REQUEST_ENABLE_BT) ;
}

}

/**
* Called a f t e r o n R e s t o r e I n s t a n c e S t a t e (Bundle) , onRestar t () ,
* or onPause () , f o r your a c t i v i t y to s t a r t i n t e r a c t i n g with the user .
*/

@Override
protected void onResume () {

super . onResume () ;
i f (D) Log . d (TAG, "On Resume") ;

}

/**
* Called a f t e r onStop () when the current a c t i v i t y i s being re−displayed to

the user

118

* (the user has navigated back to i t) . I t w i l l be followed by onStar t () and
then onResume () .

*/
@Override
protected void onRestar t () {

super . onRestar t () ;
i f (D) Log . d (TAG, "On R e s t a r t ") ;

}

/**
* Called when you are no longer v i s i b l e to the user .
*/

@Override
protected void onStop () {

super . onStop () ;
i f (D) Log . d (TAG, "On Stop ") ;

}

/**
* Perform f i n a l cleanup before an a c t i v i t y i s destroyed .
*/

@Override
protected void onDestroy () {

super . onDestroy () ;
i f (D) Log . d (TAG, "On Destroy ") ;
// Unbind from BluetoothServ ice
t r y {

doUnbindService () ;
} catch (Throwable t) {

i f (D) Log . e (TAG, " Fa i l ed to unbind from the s e r v i c e " , t) ;
}

}

/**
* Called as part of the a c t i v i t y l i f e c y c l e when an
* a c t i v i t y i s going i n t o the background , but has not (yet) been k i l l e d .
*/

@Override
protected void onPause () {

super . onPause () ;
i f (D) Log . d (TAG, "On Pause ") ;

}

/**
* I n i t i a t e s Bluetooth by binding to Blue toothServ ice and launching

D e v i c e L i s t A c t i v i t y .
*/

private void i n i t B T () {
i f (D) Log . d (TAG, " i n i t B T ") ;

t r y {
doBindService () ;

} catch (Throwable t) {
i f (D) Log . e (TAG, " Fa i l ed to bind to the s e r v i c e " , t) ;

}

// Launch the D e v i c e L i s t A c t i v i t y to see devices and do scan
I n t e n t s e r v e r I n t e n t = new I n t e n t (this , D e v i c e L i s t A c t i v i t y . c l a s s) ;
s t a r t A c t i v i t y F o r R e s u l t (s e r v e r I n t e n t , REQUEST_CONNECT_DEVICE) ;

}

/**
* Called when an a c t i v i t y you launched e x i t s , giving you the requestCode you

s t a r t e d i t with ,
* the resultCode i t returned , and any a d d i t i o n a l data from i t . The

resultCode w i l l be RESULT_CANCELED

119

* i f the a c t i v i t y e x p l i c i t l y returned that , didn ’ t re turn any r e s u l t , or
crashed during i t s operat ion .

*/
public void onAct iv i tyResul t (i n t requestCode , i n t resultCode , I n t e n t data) {

switch (requestCode) {
case REQUEST_CONNECT_DEVICE:

// When D e v i c e L i s t A c t i v i t y re turns with a device to connect
i f (resultCode == A c t i v i t y . RESULT_OK) {

// Get the device MAC address
mBluetoothAddress = data . g e t E x t r a s () . g e t S t r i n g (D e v i c e L i s t A c t i v i t y

. EXTRA_DEVICE_ADDRESS) ;
// send MAC address to s e r v i c e and s t a r t connect ion .
Bundle b = new Bundle () ;
i f (mService != null) {

t r y {
i f (D) Log . d (TAG, "MAC: " + mBluetoothAddress) ;
//Bundle b = new Bundle () ;
b . putSt r ing (" s t r " , mBluetoothAddress) ;
Message msg = Message . obta in (null , B lue toothServ ice .

MSG_DEVICE_ADDRESS) ;
msg . setData (b) ;
mService . send (msg) ;
b . c l e a r () ;

} catch (RemoteException e) { }
}

}
break ;

case REQUEST_ENABLE_BT :
// When the request to enable Bluetooth re turns
i f (resultCode == A c t i v i t y . RESULT_OK) {

// Bluetooth i s now enabled

} e lse {
// User did not enable Bluetooth or an e r r o r occurred
Toast . makeText (this , " Bluetooth not enabled " , Toast .LENGTH_SHORT)

. show () ;
// f i n i s h () ;

}
}

}

/**
* S e t s e r r o r message to screen .
* @param b true f o r error , f a l s e f o r no message .
*/

private void s e t E r r o r T e x t (boolean b) {
i f (b) {

mTextViewError . s e t V i s i b i l i t y (View . VISIBLE) ;
} e lse {

mTextViewError . s e t V i s i b i l i t y (View . INVISIBLE) ;
}

}

/**
* Decode incoming data and sends i t to s e t P l o t T e x t and PlotView to be

displayed .
* @param d incoming data
*/

private void setData (byte [] d) {

i f (D) Log . i (TAG, " DATA_length : " + d . length) ;

for (i n t i = 0 ; i < 5 ; i ++) {
incomingData [i] = (i n t) (d [i] & 0xFF) ; // convert unsigned Byte to

120

i n t e g e r
i f (D) Log . i (TAG, "DATA_in : " + i) ;

}

for (i n t i = 0 ; i < incomingData . length ; i ++) {
i f (D) Log . i (TAG, " DATA_testifo : " + i) ;

//* I f data don ’ t s t a r t on 0 , display e r r o r message and sync queue .
i f (incomingData [0] != 0) {

// s e t E r r o r T e x t (t rue) ;
/**
t r y {

Message msg = Message . obta in (null , B lue toothServ ice .
MSG_SYNC_QUEUE) ;

msg . replyTo = mMessenger ;
mService . send (msg) ;

} ca tch (RemoteException e) { }
// draw 0 f o r bad data

mPlotView . setBTData1 (0) ;

mPlotView . setBTData2 (0) ;
re turn ;

} */

// s e t E r r o r T e x t (f a l s e) ;

//data s t a r t
/**
i f (incomingData [0] == 0) {

t r y {

mTextViewPlot1 . s e t T e x t (I n t e g e r . t o S t r i n g (incomingData [1])) ;

mTextViewPlot2 . s e t T e x t (I n t e g e r . t o S t r i n g (incomingData [2])) ;

mPlotView . setBTData1 (incomingData [3]) ;

mPlotView . setBTData2 (incomingData [4]) ;

} ca tch (NumberFormatException e1) {
}

} * */
}

}
}

/**
* Incoming Handler c l a s s t h a t r e c e i v e s messages form the Blue toothServ ice .
* @author l jaamodt
*/

c l a s s IncomingHandler extends Handler {
@Override
public void handleMessage (Message msg) {

switch (msg . what) {
case MESSAGE_STATE_CHANGE:

i f (D) Log . i (TAG, "MESSAGE_STATE_CHANGE: " + msg . arg1) ;
switch (msg . arg1) {
case BluetoothServ ice .STATE_CONNECTED:

mTextViewConnect . s e t T e x t (" Connected to : "+
mConnectedDeviceName) ;

mTextViewConnect . se tTextColor (Color .GREEN) ;
break ;

case BluetoothServ ice .STATE_CONNECTING:
mTextViewConnect . s e t T e x t (" Connecting . . ") ;
mTextViewConnect . se tTextColor (Color .GREEN) ;

121

break ;

case BluetoothServ ice .STATE_NONE:
mTextViewConnect . s e t T e x t (" Not connected ") ;
mTextViewConnect . se tTextColor (Color .RED) ;
break ;

case BluetoothServ ice .STATE_DISCONNECTED:
mTextViewConnect . s e t T e x t (" Not connected ") ;
mTextViewConnect . se tTextColor (Color .RED) ;
break ;

}
break ;

case MESSAGE_READ:
i f (D) Log . i (TAG, " Read message ") ;

setData (msg . getData () . getByteArray (" data ")) ;
break ;

case MESSAGE_DEVICE_NAME:
// save the connected device ’ s name
mConnectedDeviceName = msg . getData () . g e t S t r i n g (DEVICE_NAME) ;
Toast . makeText (getAppl icat ionContext () , " Connected to "

+ mConnectedDeviceName , Toast .LENGTH_SHORT) . show () ;
break ;

case MESSAGE_TOAST:
Toast . makeText (getAppl icat ionContext () , msg . getData () . g e t S t r i n g (

TOAST) ,
Toast .LENGTH_SHORT) . show () ;

break ;
default :

super . handleMessage (msg) ;
}

}
}

private ServiceConnect ion mConnection = new ServiceConnect ion () {

public void onServiceConnected (ComponentName className , IBinder s e r v i c e)
{
mService = new Messenger (s e r v i c e) ;
i f (D) Log . d (TAG, " Attached ") ;
t r y {

Message msg = Message . obta in (null , B lue toothServ ice .
MSG_REGISTER_CLIENT) ;

msg . replyTo = mMessenger ;
mService . send (msg) ;

} catch (RemoteException e) {
// In t h i s case the s e r v i c e has crashed before we could even do

anything with i t
}

}

public void onServiceDisconnected (ComponentName className) {
// This i s c a l l e d when the connect ion with the s e r v i c e has been

unexpectedly disconnected − process crashed .
mService = null ;
i f (D) Log . d (TAG, " Disconnected ") ;

}
} ;

/**
* Unbind to the Blue toothServ ice .
*/

private void doBindService () {

122

bindService (new I n t e n t (this , B lue toothServ ice . c l a s s) , mConnection ,
Context .BIND_AUTO_CREATE) ;

mIsBound = t rue ;
i f (D) Log . d (TAG, " Binding ") ;

}
/**

* Unbind form the Blue toothServ ice .
*/

private void doUnbindService () {
i f (mIsBound) {

// I f we have rece ived the serv ice , and hence r e g i s t e r e d with i t ,
then now i s the time to u n r e g i s t e r .

i f (mService != null) {
t r y {

Message msg = Message . obta in (null , B lue toothServ ice .
MSG_UNREGISTER_CLIENT) ;

msg . replyTo = mMessenger ;
mService . send (msg) ;

} catch (RemoteException e) { }
}
// Detach e x i s t i n g connect ion .
unbindService (mConnection) ;
mIsBound = f a l s e ;
i f (D) Log . d (TAG, " Unbinding ") ;

}
}

/**
* I n i t i a l i z e the contents of the A c t i v i t y ’ s standard options menu .
*/

@Override
public boolean onCreateOptionsMenu (Menu menu) {

MenuInflater i n f l a t e r = getMenuInf later () ;
i n f l a t e r . i n f l a t e (R . menu . main_activity_menu , menu) ;
return (super . onPrepareOptionsMenu (menu)) ;

}
/**

* L i s t e n e r t h a t responds to s e l e c t i o n s made in the option menu .
*/

@Override
public boolean onOptionsItemSelected (MenuItem item) {

// Handle item s e l e c t i o n
switch (item . getI temId ()) {

case R . id . b luetoothconnect :
i n i t B T () ;
return true ;

case R . id . b luetoothdisconnect :
i f (mService != null) {

t r y {
Message msg = Message . obta in (null , B lue toothServ ice .

STATE_DISCONNECTED) ;
mService . send (msg) ;

} catch (RemoteException e) {
e . p r i n t S t a c k T r a c e () ;

}
}
t r y {

doUnbindService () ;
} catch (Throwable t) {

i f (D) Log . e (TAG, " Fa i l ed to unbind from the s e r v i c e " , t) ;
}

//stop the log timer
stopTimer () ;
return true ;

123

case R . id . e x i t :
s t o p S e r v i c e (new I n t e n t (MainActivity . this , B lue toothServ ice . c l a s s)) ;
//stop the log timer
stopTimer () ;
t h i s . f i n i s h () ;

return true ;

default :
return super . onOptionsItemSelected (item) ;

}
}

/**
* L i s t e n e r f o r on display Buttons .
* */

public void onClick (View v) {

switch (v . get Id ()) {

case R . id . autozoom :
mPlotView . autoZoom () ;
Toast . makeText (getBaseContext () , "AutoZoom" , Toast .LENGTH_SHORT) . show

() ;
break ;

case R . id . s t a r t l o g :

i f (((ToggleButton) v) . isChecked ()) {
// S t a r t t imer and t e l l the B lue toothServ ice to s t a r t logging

incoming data .
Toast . makeText (getBaseContext () , " S t a r t Log " , Toast .LENGTH_SHORT

) . show () ;
s ta r tT imer () ;
i f (mService != null) {

t r y {
Message msg = Message . obta in (null , B lue toothServ ice .

MSG_LOG_ON) ;
msg . replyTo = mMessenger ;
mService . send (msg) ;

} catch (RemoteException e) { }
}

} e lse {
// Stop timer and t e l l the B lue toothServ ice to stop logging

incoming data .
Toast . makeText (getBaseContext () , " Stop log " , Toast .LENGTH_SHORT) .

show () ;
stopTimer () ;
i f (mService != null) {

t r y {
Message msg = Message . obta in (null , B lue toothServ ice .

MSG_LOG_OFF) ;
msg . replyTo = mMessenger ;
mService . send (msg) ;

} catch (RemoteException e) { }
}

}
break ;

}

}
/**

* Creates a Runnable t h a t operates the log timer in a separa te thread .
*/

124

private Runnable mUpdateTimeTask = new Runnable () {
public void run () {

f i n a l long s t a r t = startLogTime ;
long m i l l i s = SystemClock . upt imeMil l i s () − s t a r t ;
i n t seconds = (i n t) (m i l l i s / 1000) ;
i n t minutes = seconds / 6 0 ;
seconds = seconds % 6 0 ;
i f (seconds < 10) {

mTextViewLog . s e t T e x t (" " + minutes + " : 0 " + seconds) ;
Log . d (" P l o t A c t i v i t y " , " " + minutes + " : 0 " + seconds) ;

} e lse {
mTextViewLog . s e t T e x t (" " + minutes + " : " + seconds) ;
Log . d (" P l o t A c t i v i t y " , " " + minutes + " : " + seconds) ;

}
timeHandler . postAtTime (this , s t a r t + (((minutes * 60) + seconds + 1) *

1000)) ;

}
} ;

/**
* S t a r t s the Runnable t imer .
*/

private void s tar tT imer () {
i f (startLogTime == 0L) {

startLogTime = SystemClock . upt imeMil l i s () ;
timeHandler . removeCallbacks (mUpdateTimeTask) ;
timeHandler . postDelayed (mUpdateTimeTask , 100) ;

}
}
/**

* Stops the runnable t imer .
*/

private void stopTimer () {
startLogTime = 0L ;
timeHandler . removeCallbacks (mUpdateTimeTask) ;
mTextViewLog . s e t T e x t (" ") ;

}

}

Listing: HelpActivity.java
package com . BioDataLogger ;

import android . app . A c t i v i t y ;
import android . os . Bundle ;
import android . view . Window ;
/**

* This A c t i v i t y disp lays help information .
* @author Lars Jørgen Aamodt
*/

public c l a s s HelpAct ivi ty extends A c t i v i t y {
/** Called when the a c t i v i t y i s f i r s t c rea ted . */
@Override
protected void onCreate (Bundle s a ve d I n s t an c e S t a t e) {

super . onCreate (s a ve d I n s t an c e S t a t e) ;
requestWindowFeature (Window . FEATURE_NO_TITLE) ;
setContentView (R . layout . help) ;

}
}

Listing: DeviceListActivity.java

125

package com . BioDataLogger ;
/*

* Copyright (C) 2009 The Android Open Source P r o j e c t
*
* Licensed under the Apache License , Version 2 . 0 (the " License ") ;
* you may not use t h i s f i l e except in compliance with the License .
* You may obta in a copy of the License a t
*
* ht tp ://www. apache . org/ l i c e n s e s /LICENSE−2.0
*
* Unless required by a p p l i c a b l e law or agreed to in writ ing , software
* d i s t r i b u t e d under the License i s d i s t r i b u t e d on an "AS IS " BASIS ,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, e i t h e r express or implied .
* See the License f o r the s p e c i f i c language governing permissions and
* l i m i t a t i o n s under the License .
*/

import j ava . u t i l . Se t ;

import android . app . A c t i v i t y ;
import android . b luetooth . BluetoothAdapter ;
import android . b luetooth . BluetoothDevice ;
import android . content . BroadcastReceiver ;
import android . content . Context ;
import android . content . I n t e n t ;
import android . content . I n t e n t F i l t e r ;
import android . os . Bundle ;
import android . u t i l . Log ;
import android . view . View ;
import android . view . View . OnClickListener ;
import android . view . Window ;
import android . widget . AdapterView ;
import android . widget . AdapterView . OnItemClickListener ;
import android . widget . ArrayAdapter ;
import android . widget . Button ;
import android . widget . ListView ;
import android . widget . TextView ;

/**
* This A c t i v i t y appears as a dia log . I t l i s t s any paired devices and
* devices detec ted in the area a f t e r discovery . When a device i s chosen
* by the user , the MAC address of the device i s sent back to the parent
* A c t i v i t y in the r e s u l t I n t e n t .
*/

public c l a s s D e v i c e L i s t A c t i v i t y extends A c t i v i t y {
// Debugging
private s t a t i c f i n a l S t r i n g TAG = " D e v i c e L i s t A c t i v i t y " ;
private s t a t i c f i n a l boolean D = f a l s e ;

// Return I n t e n t e x t r a
public s t a t i c S t r i n g EXTRA_DEVICE_ADDRESS = " device_address " ;

// Member f i e l d s
private BluetoothAdapter mBtAdapter ;
private ArrayAdapter<Str ing > mPairedDevicesArrayAdapter ;
private ArrayAdapter<Str ing > mNewDevicesArrayAdapter ;

@Override
protected void onCreate (Bundle s a ve d I n s t an c e S t a t e) {

super . onCreate (s a ve d I n s t an c e S t a te) ;

// Setup the window
requestWindowFeature (Window . FEATURE_INDETERMINATE_PROGRESS) ;
setContentView (R . layout . d e v i c e _ l i s t) ;

126

// Set r e s u l t CANCELED in case the user backs out
s e t R e s u l t (A c t i v i t y .RESULT_CANCELED) ;

// I n i t i a l i z e the button to perform device discovery
Button scanButton = (Button) findViewById (R . id . button_scan) ;
scanButton . se tOnCl ickLis tener (new OnClickListener () {

public void onClick (View v) {
doDiscovery () ;
v . s e t V i s i b i l i t y (View .GONE) ;

}
}) ;

// I n i t i a l i z e array adapters . One f o r already paired devices and
// one f o r newly discovered devices
mPairedDevicesArrayAdapter = new ArrayAdapter<Str ing >(this , R . layout .

device_name) ;
mNewDevicesArrayAdapter = new ArrayAdapter<Str ing >(this , R . layout .

device_name) ;

// Find and s e t up the ListView f o r paired devices
ListView pairedListView = (ListView) findViewById (R . id . paired_devices) ;
pairedListView . setAdapter (mPairedDevicesArrayAdapter) ;
pairedListView . setOnItemCl ickLis tener (mDeviceClickListener) ;

// Find and s e t up the ListView f o r newly discovered devices
ListView newDevicesListView = (ListView) findViewById (R . id . new_devices) ;
newDevicesListView . setAdapter (mNewDevicesArrayAdapter) ;
newDevicesListView . se tOnItemCl ickLis tener (mDeviceClickListener) ;

// R e g i s t e r f o r broadcasts when a device i s discovered
I n t e n t F i l t e r f i l t e r = new I n t e n t F i l t e r (BluetoothDevice .ACTION_FOUND) ;
t h i s . r e g i s t e r R e c e i v e r (mReceiver , f i l t e r) ;

// R e g i s t e r f o r broadcasts when discovery has f i n i s h e d
f i l t e r = new I n t e n t F i l t e r (BluetoothAdapter . ACTION_DISCOVERY_FINISHED) ;
t h i s . r e g i s t e r R e c e i v e r (mReceiver , f i l t e r) ;

// Get the l o c a l Bluetooth adapter
mBtAdapter = BluetoothAdapter . getDefaultAdapter () ;

// Get a s e t of c u r r e n t l y paired devices
Set <BluetoothDevice > pairedDevices = mBtAdapter . getBondedDevices () ;

// I f there are paired devices , add each one to the ArrayAdapter
i f (pairedDevices . s i z e () > 0) {

findViewById (R . id . t i t l e _ p a i r e d _ d e v i c e s) . s e t V i s i b i l i t y (View . VISIBLE) ;
for (BluetoothDevice device : pairedDevices) {

mPairedDevicesArrayAdapter . add (device . getName () + "\n" + device .
getAddress ()) ;

}
} e lse {

S t r i n g noDevices = getResources () . getText (R . s t r i n g . none_paired) .
t o S t r i n g () ;

mPairedDevicesArrayAdapter . add (noDevices) ;
}

}

@Override
protected void onDestroy () {

super . onDestroy () ;

// Make sure we ’ re not doing discovery anymore
i f (mBtAdapter != null) {

mBtAdapter . cancelDiscovery () ;
}

// Unregis ter broadcast l i s t e n e r s
t h i s . u n r e g i s t e r R e c e i v e r (mReceiver) ;

127

}

/**
* S t a r t device discover with the BluetoothAdapter
*/

private void doDiscovery () {
i f (D) Log . d (TAG, " doDiscovery () ") ;

// I n d i c a t e scanning in the t i t l e
s e t P r o g r e s s B a r I n d e t e r m i n a t e V i s i b i l i t y (t rue) ;
s e t T i t l e (R . s t r i n g . scanning) ;

// Turn on sub− t i t l e f o r new devices
findViewById (R . id . t i t l e _ n e w _ d e v i c e s) . s e t V i s i b i l i t y (View . VISIBLE) ;

// I f we ’ re already discovering , stop i t
i f (mBtAdapter . i sDiscover ing ()) {

mBtAdapter . cancelDiscovery () ;
}

// Request discover from BluetoothAdapter
mBtAdapter . s t a r t D i s c o v e r y () ;

}

// The on−c l i c k l i s t e n e r f o r a l l devices in the ListViews
private OnItemClickListener mDeviceClickListener = new OnItemClickListener ()

{
public void onItemClick (AdapterView<?> av , View v , i n t arg2 , long arg3) {

// Cancel discovery because i t ’ s c o s t l y and we ’ re about to connect
mBtAdapter . cancelDiscovery () ;

// Get the device MAC address , which i s the l a s t 17 chars in the View
S t r i n g i n f o = ((TextView) v) . getText () . t o S t r i n g () ;

// prevent the re turn of "No devices have been paired " and "No
devices found " bug

i f (! i n f o . equals ("No devices have been paired ")) {
i f (! i n f o . equals ("No devices found ")) {

S t r i n g address = i n f o . subs t r ing (i n f o . length () − 17) ;
// Create the r e s u l t I n t e n t and include the MAC address
I n t e n t i n t e n t = new I n t e n t () ;
i n t e n t . putExtra (EXTRA_DEVICE_ADDRESS, address) ;

// Set r e s u l t and f i n i s h t h i s A c t i v i t y
s e t R e s u l t (A c t i v i t y . RESULT_OK, i n t e n t) ;

}
}
f i n i s h () ;

}
} ;

// The BroadcastReceiver t h a t l i s t e n s f o r discovered devices and
// changes the t i t l e when discovery i s f i n i s h e d
private f i n a l BroadcastReceiver mReceiver = new BroadcastReceiver () {

@Override
public void onReceive (Context context , I n t e n t i n t e n t) {

S t r i n g a c t i o n = i n t e n t . getAct ion () ;

// When discovery f i n d s a device
i f (BluetoothDevice .ACTION_FOUND. equals (a c t i o n)) {

// Get the BluetoothDevice o b j e c t from the I n t e n t
BluetoothDevice device = i n t e n t . g e t P a r c e l a b l e E x t r a (

BluetoothDevice . EXTRA_DEVICE) ;
// I f i t ’ s already paired , skip i t , because i t ’ s been l i s t e d

already
i f (device . getBondState () != BluetoothDevice .BOND_BONDED) {

mNewDevicesArrayAdapter . add (device . getName () + "\n" + device .
getAddress ()) ;

128

}
// When discovery i s f in i shed , change the A c t i v i t y t i t l e

} e lse i f (BluetoothAdapter . ACTION_DISCOVERY_FINISHED . equals (a c t i o n))
{
s e t P r o g r e s s B a r I n d e t e r m i n a t e V i s i b i l i t y (f a l s e) ;
s e t T i t l e (R . s t r i n g . s e l e c t _ d e v i c e) ;
i f (mNewDevicesArrayAdapter . getCount () == 0) {

S t r i n g noDevices = getResources () . getText (R . s t r i n g . none_found
) . t o S t r i n g () ;

mNewDevicesArrayAdapter . add (noDevices) ;
}

}
}

} ;

}

Listing: BluetoothService.java
package com . BioDataLogger ;

import j ava . io . F i l e ;
import j ava . io . FileNotFoundException ;
import j ava . io . FileOutputStream ;
import j ava . io . IOException ;
import j ava . io . InputStream ;
import j ava . u t i l .UUID;

import android . app . N o t i f i c a t i o n ;
import android . app . Noti f icat ionManager ;
import android . app . PendingIntent ;
import android . app . S e r v i c e ;
import android . b luetooth . BluetoothAdapter ;
import android . b luetooth . BluetoothDevice ;
import android . b luetooth . BluetoothSocket ;
import android . content . I n t e n t ;
import android . os . Bundle ;
import android . os . Environment ;
import android . os . Handler ;
import android . os . IBinder ;
import android . os . Message ;
import android . os . Messenger ;
import android . os . RemoteException ;
import android . u t i l . Log ;
/**

* This S e r v i c e i n i t i a t e and c o n t r o l s the Bluetooth connect ion .
* I t r e c e i v e s data over Bluetooth , s t o r e s i t in a queue , and sends i t to the

MainActivity .
* @author Lars Jørgen Aamodt
*/

public c l a s s BluetoothServ ice extends S e r v i c e {

private s t a t i c f i n a l boolean D = t rue ;
private s t a t i c f i n a l S t r i n g TAG = " Blue toothServ ice " ;

// the bluetooth address from c l i e n t
private S t r i n g mAddress ;

private BluetoothQueue mBluetoothQueue ;

//For showing and hiding n o t i f i c a t i o n .
private Notif icat ionManager mNM;

// c u r r e n t l y r e g i s t e r e d c l i e n t
private Messenger mClient = null ;
private BluetoothDevice mDevice = null ;
private BluetoothAdapter mBluetoothAdapter = null ;

129

// Unique UUID f o r t h i s a p p l i c a t i o n
private s t a t i c f i n a l UUID MY_UUID = UUID. fromString ("

00001101−0000−1000−8000−00805F9B34FB ") ;

// Member f i e l d s
private ConnectThread mConnectThread ;
private ConnectedThread mConnectedThread ;
private SendDataThread mSendDataThread ;
private i n t mState ;

private boolean l o g S t a t e = f a l s e ;

// Constants t h a t i n d i c a t e the current s e r v i c e s t a t e
public s t a t i c f i n a l i n t MSG_REGISTER_CLIENT = 1 ;
public s t a t i c f i n a l i n t MSG_UNREGISTER_CLIENT = 2 ;
public s t a t i c f i n a l i n t MSG_DEVICE_ADDRESS = 3 ;

// Constants t h a t i n d i c a t e the current connect ion s t a t e
public s t a t i c f i n a l i n t STATE_NONE = 1 ;
public s t a t i c f i n a l i n t STATE_LISTEN = 2 ;
public s t a t i c f i n a l i n t STATE_CONNECTING = 3 ;
public s t a t i c f i n a l i n t STATE_CONNECTED = 4 ;
public s t a t i c f i n a l i n t STATE_DISCONNECTED = 5 ;
public s t a t i c f i n a l i n t MESSAGE_READ = 6 ;

// Constants t h a t i n d i c a t e the current log s t a t e
public s t a t i c f i n a l i n t MSG_LOG_ON = 7 ;
public s t a t i c f i n a l i n t MSG_LOG_OFF = 8 ;

// Constant t h a t i n d i c a t e queue sync
public s t a t i c f i n a l i n t MSG_SYNC_QUEUE =9;

//Target we publish f o r c l i e n t s to send messages to IncomingHandler .
private f i n a l Messenger mMessenger = new Messenger (new IncomingHandler ()) ;

/**
* Return the communication channel to the s e r v i c e .
*May return n u l l i f c l i e n t s can not bind to the s e r v i c e .
*/

@Override
public IBinder onBind (I n t e n t arg0) {

return mMessenger . getBinder () ;
}

@Override
public void onCreate () {

super . onCreate () ;
i f (D) Log . i (TAG, " S e r v i c e c r e a t e ") ;

android . os . Process . s e t T h r e a d P r i o r i t y (android . os . Process .
THREAD_PRIORITY_URGENT_AUDIO) ;

mNM = (Noti f icat ionManager) getSystemService (NOTIFICATION_SERVICE) ;
// Display n o t i f i c a t i o n
showNoti f icat ion () ;

mBluetoothQueue = new BluetoothQueue () ;
}

/**
* Called by the system every time a c l i e n t e x p l i c i t l y s t a r t s the s e r v i c e by

c a l l i n g s t a r t S e r v i c e (I n t e n t)
*/

@Override
public i n t onStartCommand (I n t e n t i n t e n t , i n t f l a g s , i n t s t a r t I d) {

130

i f (D) Log . i (TAG, " onStartCommand ") ;
return START_NOT_STICKY ;

}

/**
* Called by the system to n o t i f y a S e r v i c e t h a t i t i s no longer used and i s

being removed .
*/

@Override
public void onDestroy () {

super . onDestroy () ;
i f (D) Log . i (TAG, " S e r v i c e destroy ") ;
stop () ;
mBluetoothQueue . c l e a r A l l () ;
// Cancel the p e r s i s t e n t n o t i f i c a t i o n .
mNM. cance l (R . s t r i n g . r e m o t e _ s e r v i c e _ s t a r t e d) ;

}

/**
* Set the current s t a t e of the bluetooth connect ion .
*/

private synchronized void s e t S t a t e (i n t s t a t e) {
i f (D) Log . i (TAG, " s e t S t a t e () " + mState + " −> " + s t a t e) ;
mState = s t a t e ;

// Give the new s t a t e to the Handler so the UI A c t i v i t y can update
i f (mClient != null) {

t r y {
mClient . send (Message . obta in (null , MainActivity .

MESSAGE_STATE_CHANGE, s t a t e , −1)) ;

} catch (RemoteException e) {
// The c l i e n t i s dead .
mClient=null ;

}
}

}

/**
* Return the current connect ion s t a t e .
*/

public synchronized i n t g e t S t a t e () {
return mState ;

}

/**
* S t a r t the ConnectThread to i n i t i a t e a connect ion to a remote device .
* @param device The BluetoothDevice to connect
*/

public synchronized void connect (BluetoothDevice device) {
i f (D) Log . i (TAG, " Connect to : " + device) ;

// Cancel any thread attempting to make a connect ion
i f (mState == STATE_CONNECTING) {

i f (mConnectThread != null) {
mConnectThread . cance l () ;
mConnectThread = null ;

}
}

// Cancel any thread c u r r e n t l y running a connect ion
i f (mConnectedThread != null) {

//mConnectedThread . cance l () ;
mConnectedThread . i n t e r r u p t () ;
mConnectedThread = null ;

}

// S t a r t the thread to connect with the given device

131

mConnectThread = new ConnectThread (device) ;
mConnectThread . s t a r t () ;
// c l e a r queue
mBluetoothQueue . c l e a r A l l () ;
s e t S t a t e (STATE_CONNECTING) ;

}

/**
* S t a r t the ConnectedThread to begin managing a Bluetooth connect ion
* @param socket The BluetoothSocket on which the connect ion was made
* @param device The BluetoothDevice t h a t has been connected
*/

public synchronized void connected (BluetoothSocket socket , BluetoothDevice
device) {
i f (D) Log . i (TAG, " Connected ") ;

// Cancel the thread t h a t completed the connect ion
i f (mConnectThread != null) {

mConnectThread . cance l () ;
mConnectThread = null ;

}

// Cancel any thread c u r r e n t l y running a connect ion
i f (mConnectedThread != null) {

mConnectedThread . cance l () ;
mConnectedThread . i n t e r r u p t () ;
mConnectedThread = null ;

}
// Cancel any thread c u r r e n t l y sending data to UI A c t i v i t y
i f (mSendDataThread != null) {

mSendDataThread . i n t e r r u p t () ;
mSendDataThread = null ;

}

// S t a r t the thread to manage the connect ion and perform transmiss ions
mConnectedThread = new ConnectedThread (socket) ;
mConnectedThread . s t a r t () ;

// S t a r t the thread to manage data t ransmiss ions to UI A c t i v i t y
mSendDataThread = new SendDataThread () ;
mSendDataThread . s t a r t () ;

Bundle b = new Bundle () ;

// Send the name of the connected device back to the UI A c t i v i t y
i f (mClient != null) {

t r y {
b . putSt r ing (MainActivity .DEVICE_NAME, device . getName ()) ;
Message msg = Message . obta in (null , MainActivity .

MESSAGE_DEVICE_NAME) ;
msg . setData (b) ;
mClient . send (msg) ;
b . c l e a r () ;

} catch (RemoteException e) { }
s e t S t a t e (STATE_CONNECTED) ;

}
}

/**
* Stop a l l threads
*/

public synchronized void stop () {
i f (D) Log . i (TAG, " Stoping a l l e threads ! ") ;

i f (mConnectThread != null) {
mConnectThread . cance l () ;
mConnectThread = null ;

132

}

i f (mConnectedThread != null) {
mConnectedThread . cance l () ;
mConnectedThread . i n t e r r u p t () ;
mConnectedThread = null ;

}

i f (mSendDataThread != null) {
mSendDataThread . i n t e r r u p t () ;
mSendDataThread = null ;

}
s e t S t a t e (STATE_NONE) ;

}

/**
* I n d i c a t e t h a t the connect ion attempt f a i l e d and n o t i f y the UI A c t i v i t y .
*/

private void connect ionFai led () {
i f (D) Log . e (TAG, " Connection Fa i l d ") ;
Bundle b = new Bundle () ;
i f (mClient != null) {

t r y {
// Send a f a i l u r e message back to the A c t i v i t y
b . putSt r ing (MainActivity . TOAST, " Unable to connect device ") ;
Message msg = Message . obta in (null , MainActivity .MESSAGE_TOAST) ;
msg . setData (b) ;
mClient . send (msg) ;
b . c l e a r () ;

} catch (RemoteException e) { }

s e t S t a t e (STATE_DISCONNECTED) ;
}

}

/**
* I n d i c a t e t h a t the connect ion was l o s t and n o t i f y the UI A c t i v i t y .
*/

private void connect ionLost () {
i f (D) Log . e (TAG, " Connection Lost ") ;
Bundle b = new Bundle () ;
t r y {

i f (mClient != null) {
// Send a f a i l u r e message back to the UI A c t i v i t y
b . putSt r ing (MainActivity . TOAST, " Device connect ion was l o s t ") ;
Message msg = Message . obta in (null , MainActivity .MESSAGE_TOAST) ;
msg . setData (b) ;
mClient . send (msg) ;
b . c l e a r () ;

}
} catch (RemoteException e) { }
// stop a l l threads
stop () ;
s e t S t a t e (STATE_DISCONNECTED) ;

}

/**
* This thread runs while attempting to make an outgoing connect ion
* with a device . I t runs s t r a i g h t through ; the connect ion e i t h e r
* succeeds or f a i l s .
*/

private c l a s s ConnectThread extends Thread {
private BluetoothSocket mmSocket = null ;
private BluetoothDevice mmDevice = null ;

public ConnectThread (BluetoothDevice device) {
mmDevice = device ;

133

BluetoothSocket tmp = null ;

// Get a BluetoothSocket f o r a connect ion with the given
BluetoothDevice

t r y {
tmp = device . createRfcommSocketToServiceRecord (MY_UUID) ;

} catch (IOException e) {
i f (D) Log . e (TAG, " c r e a t e () f a i l e d " , e) ;

}
mmSocket = tmp ;

}

public void run () {
i f (D) Log . i (TAG, "BEGIN mConnectThread ") ;
setName (" ConnectThread ") ;

// Cancel discovery because i t w i l l slow down a connect ion
mBluetoothAdapter . cancelDiscovery () ;

// Make a connect ion to the BluetoothSocket
t r y {

// This i s a blocking c a l l and w i l l only return on a
// s u c c e s s f u l connect ion or an except ion
mmSocket . connect () ;

} catch (IOException e) {
// Close the socket
t r y {

mmSocket . c l o s e () ;
} catch (IOException e2) {

i f (D) Log . e (TAG, " unable to c l o s e () socket during connect ion
f a i l u r e " , e2) ;

}
connec t ionFai led () ;
return ;

}

// Reset the ConnectThread because we ’ re done
synchronized (B lue toothServ ice . t h i s) {

mConnectThread = null ;
}

// S t a r t the connected thread
connected (mmSocket , mmDevice) ;

}

public void cance l () {
t r y {

mmSocket . c l o s e () ;
} catch (IOException e) {

i f (D) Log . e (TAG, " c l o s e () of connect socket f a i l e d " , e) ;
}

}
}

/**
* This thread runs during a connect ion with a remote device .
* I t handles a l l incoming transmiss ions and data logging to SDcard .
*/

private c l a s s ConnectedThread extends Thread {
private BluetoothSocket mmSocket = null ;
private InputStream mmInStream = null ;
private FileOutputStream fOut = null ;

134

public ConnectedThread (BluetoothSocket socket) {
i f (D) Log . i (TAG, " Create ConnectedThread : ") ;
mmSocket = socket ;
InputStream tmpIn = null ;

t h i s . s e t P r i o r i t y (Thread . MAX_PRIORITY) ;

// Get the BluetoothSocket input stream
t r y {

tmpIn = socket . getInputStream () ;

} catch (IOException e) {
e . p r i n t S t a c k T r a c e () ;
i f (D) Log . e (TAG, " temp socke t s not crea ted " , e) ;

}
mmInStream = tmpIn ;

// make data f i l e on SDcard
F i l e sdCard = Environment . g e t E x t e r n a l S t o r a g e D i r e c t o r y () ;
F i l e d i r = new F i l e (sdCard . getAbsolutePath () + "/Data ") ;
d i r . mkdirs () ;
F i l e f i l e = new F i l e (dir , "/data . t x t ") ;

// Get the f i leOutputStream
t r y {

fOut = new FileOutputStream (f i l e) ;
} catch (FileNotFoundException e1) {

e1 . p r i n t S t a c k T r a c e () ;
i f (D) Log . e (TAG, " FileOutputStream not crea ted " , e1) ;

}
}

public void run () {
i f (D) Log . i (TAG, "BEGIN mConnectedThread ") ;
// Temporary b u f f e r f o r InputStream
byte [] b u f f e r = new byte [3 0 7 2] ;
i n t bytes= 0 ;
byte [] bufferClone ;

// Keep l i s t e n i n g to the InputStream while connected
while (! i s I n t e r r u p t e d ()) {

t r y {

// Read from the InputStream
bytes = mmInStream . read (b u f f e r) ;

bufferClone = b u f f e r . c lone () ;

// i n s e r t data in queue
mBluetoothQueue . i n s e r t (bufferClone , bytes) ;

// i f logging ac t iva ted , wri te to f i l e on SDcard
i f (l o g S t a t e && fOut != null) {

fOut . wri te (bufferClone , 0 , bytes) ;
}

} catch (IOException e) {
// i f (D) Log . e (TAG, " disconnected " , e) ;
//e . p r i n t S t a c k T r a c e () ;
connect ionLost () ;

}
}

135

i f (i s I n t e r r u p t e d ()) {
// c l e a r the queue
mBluetoothQueue . c l e a r A l l () ;
// i n d i c a t e process ended s u c c e s s f u l l y
i f (D) Log . i (TAG, " mConnectedThread ended s u c c e s s f u l l y ") ;

} // e l s e { }
}

/**
* Close stream and socket .
*/

public void cance l () {
i f (D) Log . d (TAG, " mConnectedThread . cance l () ") ;

i f (mmSocket != null) {
t r y {

mmSocket . c l o s e () ;
mmSocket = null ;

} catch (IOException e) {
e . p r i n t S t a c k T r a c e () ;
i f (D) Log . e (TAG, " c l o s e () of connect socket f a i l e d " , e) ;

}
}

i f (fOut != null) {
t r y {

//fOut . f l u s h () ;
fOut . c l o s e () ;
fOut = null ;

} catch (IOException e) {
e . p r i n t S t a c k T r a c e () ;
i f (D) Log . e (TAG, " c l o s e () of f i l e f a i l e d " , e) ;

}
}

}
}

/**
* This thread runs during a connect ion with a remote device .
* I t handles t r a n s f e r of data to the UI A c t i v i t y .
*/

private c l a s s SendDataThread extends Thread {

// Constructor
public SendDataThread () {

i f (D) Log . i (TAG, " Create SendDataThread : ") ;
t h i s . s e t P r i o r i t y (Thread . MAX_PRIORITY) ;

}

public void run () {
i f (D) Log . i (TAG, "BEGIN mSendDataThread ") ;
byte [] data ;
Bundle b = new Bundle () ;
Message msg ;
//while data ready
while (! i s I n t e r r u p t e d ()) {

//send data to UI A c t i v i t y
t r y {

i f ((data = mBluetoothQueue . r e t r i e v e ()) != null) {

i f (mClient != null) {
t r y {

b . putByteArray (" data " , data) ;
msg = Message . obta in (null , MainActivity .

136

MESSAGE_READ) ;
msg . setData (b) ;
mClient . send (msg) ;
b . c l e a r () ;

} catch (RemoteException e) {
e . p r i n t S t a c k T r a c e () ;

}
}

}
} catch (InterruptedExcept ion e) {

// Restore the i n t e r r u p t e d s t a t u s
Thread . currentThread () . i n t e r r u p t () ;

}
}
i f (i s I n t e r r u p t e d ()) {

//cleanup
// i n d i c a t e process ended s u c c e s s f u l l y
i f (D) Log . i (TAG, " mSendDataThread ended s u c c e s s f u l l y ") ;

} // e l s e { }

}

}

/**
* Handler of incoming messages from c l i e n t .
*/

private c l a s s IncomingHandler extends Handler {
@Override
public void handleMessage (Message msg) {

switch (msg . what) {
case MSG_REGISTER_CLIENT :

mClient=msg . replyTo ;
break ;

case MSG_UNREGISTER_CLIENT :
mClient=null ;
break ;

case MSG_DEVICE_ADDRESS :
mAddress = msg . getData () . g e t S t r i n g (" s t r ") ;
// Get the BluetoothAdapter
mBluetoothAdapter = BluetoothAdapter . getDefaultAdapter () ;
// Get the BluetoothDevice o b j e c t
mDevice = mBluetoothAdapter . getRemoteDevice (mAddress) ;
i f (D) Log . d (TAG, " Device : " + mDevice) ;
connect (mDevice) ;
break ;

case STATE_DISCONNECTED:
i f (D) Log . d (TAG, "DISCONNECTED") ;
// stop a l l threads
stop () ;
break ;

case MSG_LOG_ON:
i f (D) Log . d (TAG, "LOG ON") ;
// s t a r t logging to f i l e
l o g S t a t e = t rue ;

break ;
case MSG_LOG_OFF:

i f (D) Log . d (TAG, "LOG OFF") ;
// stop logging to f i l e
l o g S t a t e = f a l s e ;
break ;

137

case MSG_SYNC_QUEUE:
// i f (D) Log . d (TAG, "SYNC QUEUE") ;
mBluetoothQueue . sync () ;
break ;

default :
super . handleMessage (msg) ;

}
}

}

/**
* Show a n o t i f i c a t i o n while t h i s s e r v i c e i s running .
*/

private void showNoti f icat ion () {
// N o t i f i c a t i o n t e x t
CharSequence t e x t = getText (R . s t r i n g . r e m o t e _ s e r v i c e _ s t a r t e d) ;

// Set the icon , s c r o l l i n g t e x t and timestamp
N o t i f i c a t i o n n o t i f i c a t i o n = new N o t i f i c a t i o n (R . drawable .

s ingle_ logo_launcher , t ex t , System . currentTimeMil l i s ()) ;

n o t i f i c a t i o n . f l a g s |= N o t i f i c a t i o n .FLAG_ONGOING_EVENT;
n o t i f i c a t i o n . f l a g s |= N o t i f i c a t i o n .FLAG_NO_CLEAR;

// The PendingIntent to launch P l o t A c t i v i t y i f the user s e l e c t s t h i s
n o t i f i c a t i o n

PendingIntent c o n t e n t I n t e n t = PendingIntent . g e t A c t i v i t y (this , 0 , new
I n t e n t (this , MainActivity . c l a s s) , 0) ;

// Set the i n f o f o r the views t h a t show in the n o t i f i c a t i o n panel .
n o t i f i c a t i o n . s e t L a t e s t E v e n t I n f o (this , getText (R . s t r i n g . s e r v i c e _ l a b e l) ,

t ex t , c o n t e n t I n t e n t) ;

// Send the n o t i f i c a t i o n .
// We use a s t r i n g id because i t i s a unique number . We use i t l a t e r to

cance l .
mNM. n o t i f y (R . s t r i n g . remote_serv ice_s tar ted , n o t i f i c a t i o n) ;

}
}

Listing: BluetoothQueue.java
package com . BioDataLogger ;

import j ava . u t i l . concurrent . ArrayBlockingQueue ;
import j ava . u t i l . concurrent . atomic . AtomicBoolean ;

import android . u t i l . Log ;
/**

* This Class c r e a t e s a FIFO queue f o r incoming data from Blue toothServ ice .
* @author Lars Jørgen Aamodt
*/

public c l a s s BluetoothQueue {

// t e s t v a r i a b l e s
private s t a t i c f i n a l S t r i n g TAG = " BluetoothQueue " ;
private s t a t i c f i n a l boolean D = f a l s e ;

//Data queue o b j e c t
private s t a t i c ArrayBlockingQueue <Byte > queue ;
private byte [] data ;
private Byte tmp = 0 ;
f i n a l AtomicBoolean syncON = new AtomicBoolean (f a l s e) ;
/**

* Constructor
*/

138

public BluetoothQueue () {
i f (D) Log . i (TAG, " c r e a t e BluetoothQueue ") ;
queue = new ArrayBlockingQueue <Byte >(3072) ;
data = new byte [5] ;

}

/**
* I n s e r t s the s p e c i f i e d element a t the t a i l of t h i s queue i f i t i s p o s s i b l e .
* @param b Byte array of data .
* @param i va l id data in data array .
*/

public void i n s e r t (byte [] b , i n t i) {

for (i n t n = 0 ; n< i ; n++) {
queue . o f f e r (b [n]) ;

}
// i f (D) Log . d (TAG, "Queue s i z e : " + queue . s i z e ()) ;

}

/**
* Gets data form the queue and re turns the c o r r e c t amount .
* @return byte Array of data or n u l l i f data not ready .
* @throws InterruptedExcept ion
*/

public byte [] r e t r i e v e () throws InterruptedExcept ion {
// i f not in sync mode
i f (! syncON . get ()) {

// t r y to take c o r r e c t amount of data from queue
for (i n t i =0 ; i < 5 ; i ++) {

tmp = queue . take () ;

data [i]= tmp ;

}

return data ;
} e lse

return null ;

}

/**
* Removes a l l of the elements form the queue
*/

public void c l e a r A l l () {
// i f (D) Log . i (TAG, " BluetoothQueue c l e a r ! ") ;
queue . c l e a r () ;

}

/**
* Stops r e t r i e v e and removes element form the queue in order to synchronize

data flow .
*/

public void sync () {
// Stop r e t r i e v e
syncON . s e t (t rue) ;

// while r e t r i e v e not running
while (syncON . get ()) {

// i f elements in queue
i f (queue . s i z e () > 10) {

// i f not on new data marker (.)
i f ((queue . peek () . intValue ()) != 0) {

// remove element and t r y again

139

queue . p o l l () ;

} e lse {
// i f on new data marker , remove marker and s e t sycnON to

f a l s e so r e t r i e v e can s t a r t working
queue . p o l l () ;
syncON . s e t (f a l s e) ;

}
}

}
}

/**
* @return The s i z e of the queue .
*/

public i n t g e t S i z e () {
return queue . s i z e () ;

}

// i f (D) Log . e (TAG, " syncOFF ") ;
// i f (D) Log . e (TAG, "Queue data : " + queue . t o S t r i n g ()) ;
// i f (D) Log . e (TAG, "Queue data : " + queue . t o S t r i n g ()) ;
// i f (D) Log . e (TAG, " Peek : " + (char) (queue . peek () . byteValue ())) ;
// i f (D) Log . e (TAG, "syncON ") ;
// i f (D) Log . i (TAG, " BluetoothQueue sync on ! "+ queue . s i z e () +" syncON = "+

syncON) ;
// i f (D) Log . d (TAG, "Queue data : " + queue . t o S t r i n g ()) ;
// i f (D) Log . d (TAG, " I n s e r t i n g ") ;
// i f (D) Log . d (TAG, " I n s e r t data : " +" ("+new S t r i n g (b , 0 , i) +") "+ i) ;

}

Listing: AndroidManifest.xml
<?xml version="1.0" encoding="utf−8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.BioDataLogger"
android:versionCode="1"
android:versionName="1.0" >

<uses−sdk android:minSdkVersion="8" />

<uses−permission android:name="android.permission.BLUETOOTH" />
<uses−permission android:name="android.permission.BLUETOOTH_ADMIN" />
<uses−permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />
<uses−permission id="android.permission.RAISED_THREAD_PRIORITY"/>

<application
android:debuggable="true"
android:icon="@drawable/logo_launcher"
android:label="@string/app_name" >
<activity

android:label="@string/app_name"
android:name=".StartActivity"
android:screenOrientation="landscape" >
<intent−filter >

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />
</intent−filter>

</activity>
<activity

android:theme="@style/Theme.NoBackground"
android:launchMode="singleTask"
android:name=".MainActivity"

140

android:screenOrientation="landscape" >
</activity>
<activity

android:name=".HelpActivity"
android:screenOrientation="landscape" >

</activity>
<activity

android:name=".DeviceListActivity"
android:configChanges="orientation|keyboardHidden"
android:label="@string/select_device"
android:theme="@android:style/Theme.Dialog" >

</activity>

<service
android:name="com.BioDataLogger.BluetoothService"
android:process=":remote" >

</service>
</application>

</manifest>

Listing: Adevice_list.xml
<?xml version="1.0" encoding="utf−8"?>
<!−− Copyright (C) 2009 The Android Open Source Project

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE−2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

−−>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent"
>
<TextView android:id="@+id/title_paired_devices"

android:layout_width="match_parent"
android:layout_height="wrap_content"
android:text="@string/title_paired_devices"
android:visibility="gone"
android:background="#666"
android:textColor="#fff"
android:paddingLeft="5dp"

/>
<ListView android:id="@+id/paired_devices"

android:layout_width="match_parent"
android:layout_height="wrap_content"
android:stackFromBottom="true"
android:layout_weight="1"

/>
<TextView android:id="@+id/title_new_devices"

android:layout_width="match_parent"
android:layout_height="wrap_content"
android:text="@string/title_other_devices"
android:visibility="gone"
android:background="#666"
android:textColor="#fff"
android:paddingLeft="5dp"

/>

141

<ListView android:id="@+id/new_devices"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:stackFromBottom="true"
android:layout_weight="2"

/>
<Button android:id="@+id/button_scan"

android:layout_width="match_parent"
android:layout_height="wrap_content"
android:text="@string/button_scan"

/>
</LinearLayout>

Listing: device_name.xml
<?xml version="1.0" encoding="utf−8"?>
<!−− Copyright (C) 2009 The Android Open Source Project

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE−2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

−−>
<TextView xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="wrap_content"
android:textSize="18sp"
android:padding="5dp"

/>

Listing: help.xml
<?xml version="1.0" encoding="utf−8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:background="@drawable/background"
android:orientation="vertical" >

<ImageView
android:id="@+id/logo"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="center_horizontal|top"
android:src="@drawable/logo" />

<TextView
xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/textview"
android:layout_width="match_parent"
android:layout_height="117dp"
android:layout_alignParentBottom="true"
android:gravity="center_horizontal"
android:text="@string/info2" />

</LinearLayout>

142

Listing: main_activity_menu.xml

<menu xmlns:android="http://schemas.android.com/apk/res/android">

<item android:id="@+id/bluetoothconnect"
android:title="Connect Bluetooth"/>

<item android:id="@+id/bluetoothdisconnect"
android:title="Disconnect Bluetooth"/>

<item android:id="@+id/exit"
android:title="Exit">

</item>
</menu>

Listing: plot.xml
<?xml version="1.0" encoding="utf−8"?>
<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@+id/layout_main"
android:layout_width="fill_parent"
android:layout_height="fill_parent" >

<com.BioDataLogger.PlotView
android:id="@+id/plotview"
android:layout_width="wrap_content"
android:layout_height="wrap_content" />

<TextView
android:id="@+id/connectText"
android:text="Not connected"
android:textColor="#ff0000"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="right|top"
android:gravity="center_horizontal"
android:padding="5dp"
android:textSize="15dp" />

<TextView
android:id="@+id/logText"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="left|top"
android:gravity="center_horizontal"
android:padding="5dp"
android:textSize="15dp" />

<TextView
android:id="@+id/plotText_1"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:paddingLeft="490dp"
android:paddingTop="53dp"
android:textSize="30dp" />

<TextView
android:id="@+id/plotText_2"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:paddingLeft="490dp"
android:paddingTop="200dp"
android:textSize="30dp" />

<TextView

143

android:id="@+id/errorText"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:gravity="center_vertical|center_horizontal"
android:textSize="50dp"
android:textStyle="bold" />

<Button
android:id="@+id/autozoom"
style="?android:attr/buttonStyleSmall"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="left|bottom"
android:text="AutoZoom" />

<ToggleButton
android:id="@+id/startlog"
style="?android:attr/buttonStyleSmall"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="right|bottom"
android:textOff="Start Log"
android:textOn="Stop Log" />

</FrameLayout>

Listing: start.xml
<?xml version="1.0" encoding="utf−8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:background="@drawable/background"
android:orientation="vertical" >

<ImageView
android:id="@+id/logo"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="center_horizontal|top"
android:paddingTop="30dp"
android:src="@drawable/logo" />

<TextView
xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/textview"
android:layout_width="match_parent"
android:paddingTop="20dp"
android:layout_height="100dp"
android:layout_alignParentBottom="true"
android:gravity="center_horizontal"
android:text="@string/info1" />

<LinearLayout
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:gravity="bottom"
android:orientation="horizontal" >

<Button
android:id="@+id/startPlot"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_weight="1"
android:text="Start" />

<Button

144

android:id="@+id/help"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_weight="1"
android:text="Help" />

</LinearLayout>

</LinearLayout>

Listing: strings.xml
<?xml version="1.0" encoding="utf−8"?>
<resources>

<string name="app_name">BioDataLogger</string>

<!−− StartActivity −−>
<string name="info1"></string>

<!−− HelpActivity −−>
<string name="info2">This application works as a display and data storage tool. For more information,

contact Lars JÃ¸rgen Aamodt at: L_J_Aamodt@hotmail.com</string>

<!−− BluetoothService −−>
<string name="remote_service_started">Service started</string>
<string name="service_label">BioDataLogger</string>

<!−− BluetoothService −−>
<string name="connected_to">Connected to: </string>

<!−− DeviceListActivity −−>
<string name="scanning">Scanning for devices...</string>
<string name="select_device">Select a device to connect</string>
<string name="none_paired">No devices have been paired</string>
<string name="none_found">No devices found</string>
<string name="title_paired_devices">Paired Devices</string>
<string name="title_other_devices">Other Available Devices</string>
<string name="button_scan">Scan for devices</string>

</resources>

Listing: theme.xml
<resources>

<style name="Theme.NoBackground" parent="android:Theme">
<item name="android:windowBackground">@null</item>

</style>
</resources>

145

146

Appendix C

PythonDevelopmentTool UML
and Code

C.1 UML

Figure C.1: UML diagram displaying the architecture of the Python
application.

147

C.2 Code

Listing: PythonDevelopmentTool.py
##
F i l e : PythonDevelopmentTool . py
P r o j e c t : FPGA Based Development Platform f o r Biomedical Measurements
#Author : Lars JÃ¸rgen Aamodt
##
!/ usr/bin/python
import threading
import Queue
import os
import time
from bluetooth import * #PyBluez
The recommended way to use wx with mpl i s with the WXAgg
backend .
import matplotlib
matplotlib . use ('WXAgg ')
matplotlib . interactive (True)
from matplotlib . figure import Figure
from matplotlib . backends . backend_wxagg import \

FigureCanvasWxAgg as FigureCanvas
import numpy
import wx
from UserString import MutableString
q = Queue . Queue ()

c l a s s BTThreadClass (threading . Thread) :

def __init__ (self) :
threading . Thread . __init__ (self)
self . stoped = True
self . connected = 0

def run (self) :

while True :
i f not self . stoped :

t r y :
data = self . sock . recv (5 1 2)
f o r i in data :

q . put (i , block = False)
except IOError :

p r i n t " pafsdaf "
r a i s e

def sock_connect (self) :
addr = " 0 0 : 0 6 : 6 6 : 4 3 : 0 F : 4 B"

nearby_devices = discover_devices (lookup_names = True , f lush_cache = ←↩
True , durat ion = 20)

p r i n t "############################"
p r i n t " found %d devices " % len (nearby_devices)
p r i n t "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−"
f o r addr , name in nearby_devices :
p r i n t " %s − %s " % (addr , name)

search f o r the SPP s e r v i c e
uuid = " 00001101−0000−1000−8000−00805F9B34FB "
service_matches = f i n d _ s e r v i c e (uuid = uuid , address = addr)
service_matches = find_service (uuid = uuid)

148

p r i n t service_matches
i f len (service_matches) == 0 :

p r i n t " couldn ' t f ind the s e r v i c e "
self . connected = 0
return False

first_match = service_matches [0]
port = first_match [" port "]
name = first_match ["name"]
host = first_match [" host "]

p r i n t " connect ing to \"%s \" on %s " % (name , host)
self . connected = name

Create the c l i e n t socket
self . sock=BluetoothSocket (RFCOMM)
self . sock . connect ((host , port))
re turn True

def isconnected (self) :
re turn self . connected

def connect (self) :
i f self . sock_connect () :

self . stoped = False

def disconnect (self) :
self . sock . close ()
self . connected = 0
self . stoped = True
self . join ()

c l a s s CanvasPanel (wx . Panel) :
def __init__ (self , parent) :

self . y1 = numpy . zeros (1 0 0) # y−array
self . len_y1 = len (self . y1)

self . y2 = numpy . zeros (1 0 0) # y−array
self . len_y2 = len (self . y2)

self . update_axes = False

self . background_ax = ' '
self . background_ay = ' '

wx . Panel . __init__ (self , parent)

self . figure = Figure (figsize=(6 , 5)) # Figure (dpi = 100)

self . ax = self . figure . add_subplot (2 1 1)
self . ax . set_xlabel ("X")
self . ax . set_ylabel ("Y")
self . ax . set_title (" PythonDevelopmentTool ")
self . ax . grid (True , color= ' black ')
#ax . se t_autosca ley_on (True)
self . ax . set_axis_bgcolor (' s l a t e g r a y ')

self . ay = self . figure . add_subplot (2 1 2)
self . ay . set_xlabel ("X")
self . ay . set_ylabel ("Y")
#ay . s e t _ t i t l e (" t e s t ")
self . ay . grid (True , color= ' black ')

149

self . ay . set_axis_bgcolor (' s l a t e g r a y ')

self . line1 , = self . ax . plot (range (self . len_y1) , self . y1 , ' yellow ')
self . line2 , = self . ay . plot (range (self . len_y2) , self . y2 , ' yellow ')

self . line1 . axes . set_ylim (0 , 5 0 0)
self . line1 . axes . set_xlim (0 , self . len_y1)
self . line2 . axes . set_ylim (0 , 5 0 0)
self . line2 . axes . set_xlim (0 , self . len_y2)

self . ax . set_autoscale_on (False)
self . ay . set_autoscale_on (False)

self . canvas = FigureCanvas (self , −1, self . figure)
self . sizer = wx . BoxSizer (wx . VERTICAL)
self . sizer . Add (self . canvas , 1 , wx . LEFT | wx . TOP | wx . GROW)
self . SetSizer (self . sizer)
self . Fit ()

def update_data (self , data , min1 , max1 , min2 , max2) :
i f self . background_ax == ' ' or self . background_ay == ' ' :

save a c lean background and save i t as a p i x e l b u f f e r
self . background_ax = self . canvas . copy_from_bbox (self . ax . bbox) # 11111
self . background_ay = self . canvas . copy_from_bbox (self . ay . bbox) # 11111

r e s t o r e the c lean background
self . canvas . restore_region (self . background_ax) # 11111
self . canvas . restore_region (self . background_ay) # 11111

update the data
self . y1 = numpy . insert (self . y1 , 0 , data)
self . y1 = numpy . delete (self . y1 , (self . len_y1−1))
self . y2 = numpy . insert (self . y2 , 0 , data)
self . y2 = numpy . delete (self . y2 , (self . len_y2−1))

p r i n t data

s e l f . l i n e 1 . s e t _ d a t a (s e l f . x , s e l f . y) # update the data
s e l f . l i n e 2 . s e t _ d a t a (s e l f . x , s e l f . y) # update the data
self . line1 . set_ydata (self . y1)
self . line2 . set_ydata (self . y2)

i f self . update_axes == True :
self . line1 . axes . set_ylim (min1 , max1)
self . line2 . axes . set_ylim (min2 , max2)
self . canvas . draw ()
self . update_axes = False

j u s t draw the animated a r t i s t
self . ax . draw_artist (self . line1)
self . ax . draw_artist (self . line2)

j u s t redraw the axes r e c t a n g l e
self . canvas . blit (self . ax . bbox)
self . canvas . blit (self . ay . bbox)

s e l f . canvas . draw ()

c l a s s MainFrame (wx . Frame) :

def __init__ (self , parent , id) :

150

wx . Frame . __init__ (self , parent , id , ' PythonDevelopmentTool ' , style= wx .←↩
SYSTEM_MENU | wx . CAPTION | wx . CLOSE_BOX) # s i z e =(500 ,800))

self . save = " "
self . past = " "

self . tmp_A = MutableString ()
self . tmp_B = MutableString ()
s e l f . tmp_C = MutableString ()

self . en_a = False
self . en_b = False
self . en_c = False

self . min1 = 0
self . max1 = 51
self . min2 = 0
self . max2 = 51

self . t1 = BTThreadClass ()
self . t1 . setDaemon (True)
self . t1 . start ()

self . create_status_bar ()
self . create_panel ()

self . fi = open (" PythonDevelopmentTool . t x t " , "w") # Open a f i l e
self . statusbar . SetStatusText (" Logg OFF" , 1)
self . statusbar . SetStatusText (" Not Connected " , 2)

self . timer = wx . Timer (self)
self . Bind (wx . EVT_TIMER , self . draw_plot , self . timer)
self . timer . Start (wx . TIMER_CONTINUOUS)

self . Bind (wx . EVT_CLOSE , self . OnClose)

def create_panel (self) :

self . panel = wx . Panel (self , style= wx . SUNKEN_BORDER)

self . CanvasPanel = CanvasPanel (self . panel)

self . hbox = wx . BoxSizer (wx . HORIZONTAL)

self . button_1 = wx . Button (self . panel , label= " c l e a r queue " , size = (9 0 , 3 0))
self . Bind (wx . EVT_BUTTON , self . clear_queue , self . button_1)
self . hbox . Add (self . button_1 , 0 , border=5 , flag=wx . ALL | wx .←↩

ALIGN_CENTER_VERTICAL)
self . hbox . AddSpacer (2 0)

self . button_2 = wx . Button (self . panel , label= " S t a r t Logg " , size = (9 0 , 3 0))
self . Bind (wx . EVT_BUTTON , self . toggle_logg , self . button_2)
self . hbox . Add (self . button_2 , 0 , border=5 , flag=wx . ALL | wx .←↩

ALIGN_CENTER_VERTICAL)
self . hbox . AddSpacer (2 0)

self . button_3 = wx . Button (self . panel , label= " Connect " , size = (9 0 , 3 0))
self . Bind (wx . EVT_BUTTON , self . toggle_connet , self . button_3)
self . hbox . Add (self . button_3 , 0 , border=5 , flag=wx . ALL | wx .←↩

ALIGN_CENTER_VERTICAL)
self . hbox . AddSpacer (2 0)

self . top_text = wx . StaticText (self . panel , −1, "Top P l o t : ")
self . hbox . Add (self . top_text , 0 , border=5 , flag=wx . ALL | wx .←↩

ALIGN_CENTER_VERTICAL)
self . hbox . AddSpacer (1)

151

self . y1max = wx . TextCtrl (self . panel , −1, "max" , size = (3 0 , 2 0))
self . hbox . Add (self . y1max , 0 , border=5 , flag=wx . ALL | wx .←↩

ALIGN_CENTER_VERTICAL)
self . Bind (wx . EVT_TEXT_ENTER , self . set_y1_max , self . y1max)
self . hbox . AddSpacer (2)

self . y1min = wx . TextCtrl (self . panel , −1, " min" , size = (3 0 , 2 0))
self . hbox . Add (self . y1min , 0 , border=5 , flag=wx . ALL | wx .←↩

ALIGN_CENTER_VERTICAL)
self . Bind (wx . EVT_TEXT_ENTER , self . set_y1_min , self . y1min)
self . hbox . AddSpacer (2 0)

self . Bottom_text = wx . StaticText (self . panel , −1, " Bottom P l o t : ")
self . hbox . Add (self . Bottom_text , 0 , border=5 , flag=wx . ALL | wx .←↩

ALIGN_CENTER_VERTICAL)
self . hbox . AddSpacer (1)

self . y2max = wx . TextCtrl (self . panel , −1, "max" , size = (3 0 , 2 0))
self . hbox . Add (self . y2max , 0 , border=5 , flag=wx . ALL | wx .←↩

ALIGN_CENTER_VERTICAL)
self . Bind (wx . EVT_TEXT_ENTER , self . set_y2_max , self . y2max)
self . hbox . AddSpacer (2)

self . y2min = wx . TextCtrl (self . panel , −1, " min" , size = (3 0 , 2 0))
self . hbox . Add (self . y2min , 0 , border=5 , flag=wx . ALL | wx .←↩

ALIGN_CENTER_VERTICAL)
self . Bind (wx . EVT_TEXT_ENTER , self . set_y2_min , self . y2min)
self . hbox . AddSpacer (2 0)

self . vbox = wx . BoxSizer (wx . VERTICAL)
self . vbox . Add (self . CanvasPanel , 1 , flag=wx . LEFT | wx . TOP | wx . GROW)
self . vbox . Add (self . hbox , 0 , flag=wx . ALIGN_LEFT | wx . TOP)

self . panel . SetSizer (self . vbox)
self . vbox . Fit (self)

def draw_plot (self , event) :

self . statusbar . SetStatusText (" queue s i z e : %s " % str (q . qsize ()) , 0)

t r y :
self . data = q . get (block = False)

p r i n t " past : %s " % s e l f . past

i f self . past == 'A ' :
self . en_a = True
self . en_b = False
self . en_c = False
self . tmp_B = MutableString ()
s e l f . tmp_C = MutableString ()

i f self . past == 'B ' :
self . en_a = False
self . en_b = True
self . en_c = False
self . tmp_A = MutableString ()
s e l f . tmp_C = MutableString ()

i f s e l f . past == 'C ' :
s e l f . en_a = Fa l se
s e l f . en_b = Fa lse
s e l f . en_c = True
s e l f . tmp_A = MutableString ()
s e l f . tmp_B = MutableString ()

152

i f self . en_a == True and self . data != 'A ' and self . data != 'B ' and ←↩
self . data != 'C ' :
self . tmp_A += self . data

i f self . en_b == True and self . data != 'A ' and self . data != 'B ' and ←↩
self . data != 'C ' :
self . tmp_B += self . data

i f s e l f . en_c == True and s e l f . data != 'A ' and s e l f . data != 'B ' and←↩
s e l f . data != 'C ' :

s e l f . tmp_C += s e l f . data

self . past = self . data

i f self . data == 'B ' :
i f len (self . tmp_A) > 0 :

self . CanvasPanel . update_data (float (self . tmp_A) , self . min1 ,←↩
self . max1 , self . min2 , self . max2) # jon l i s t to s t r i n g an ←↩
c a s t to f l o a t

i f self . save == True :
self . fi . write ("%s\n" % self . tmp_A)

e l s e :
i f len (tmp_0) > 0 :
s e l f . CanvasPanel . update_data (f l o a t (' ' . j o i n (s e l f . data)) ,←↩

s e l f . min1 , s e l f . max1 , s e l f . min2 , s e l f . max2) # jon l i s t to s t r i n g an←↩
c a s t to f l o a t

#
i f s e l f . save == True :
s e l f . f i . wri te ("% s\n" % (' ' . j o i n (s e l f . data)))
#
p r i n t f l o a t (' ' . j o i n (tmp_0))
tmp_0 = []

except Queue . Empty :
re turn

def clear_queue (self , event) :
with q . mutex : q . queue . clear ()
self . statusbar . SetStatusText (str (q . qsize ()) , 0)

def toggle_logg (self , event) :
btnLabel = self . button_2 . GetLabel ()
i f btnLabel == " S t a r t Logg " :

self . statusbar . SetStatusText (" Logg ON" , 1)
self . save = True
self . button_2 . SetLabel (" Stop Logg ")

e l s e :
self . statusbar . SetStatusText (" Logg OFF" , 1)
self . save = False
self . button_2 . SetLabel (" S t a r t Logg ")

def toggle_connet (self , event) :
btnLabel = self . button_3 . GetLabel ()
i f btnLabel == " Connect " :

self . statusbar . SetStatusText (" Connecting " , 2)
self . t1 . connect ()
i f self . t1 . isconnected () != 0 :

self . statusbar . SetStatusText (" Connected : %s " % self . t1 .←↩
isconnected () , 2)

self . button_3 . SetLabel (" Disconnect ")
e l s e :

self . statusbar . SetStatusText (" Not Connected " , 2)
self . button_3 . SetLabel (" Connect ")

e l s e :
self . statusbar . SetStatusText (" Not Connected " , 2)
self . t1 . disconnect ()
self . button_3 . SetLabel (" Connect ")

153

def set_y1_max (self , event) :
t r y :

self . max1 = int (self . y1max . GetValue ())
self . CanvasPanel . update_axes=True

except ValueError :
re turn

def set_y1_min (self , event) :
t r y :

self . min1 = int (self . y1min . GetValue ())
self . CanvasPanel . update_axes=True

except ValueError :
re turn

def set_y2_max (self , event) :
t r y :

self . max2 = int (self . y2max . GetValue ())
self . CanvasPanel . update_axes=True

except ValueError :
re turn

def set_y2_min (self , event) :
t r y :

self . min2 = int (self . y2min . GetValue ())
self . CanvasPanel . update_axes=True

except ValueError :
re turn

def create_status_bar (self) :
self . statusbar = self . CreateStatusBar (3)

def OnClose (self , event) :
dlg = wx . MessageDialog (self , "Do you r e a l l y want to c l o s e t h i s ←↩

a p p l i c a t i o n ? " ,
" Confirm E x i t " , wx . OK|wx . CANCEL|wx . ICON_QUESTION)

result = dlg . ShowModal ()
dlg . Destroy ()
i f result == wx . ID_OK :

self . timer . Stop ()
self . fi . close ()
i f self . t1 . isconnected () != 0 :

self . t1 . disconnect ()
self . Destroy ()

i f __name__== ' __main__ ' :

app=wx . App (0)
frame = MainFrame (parent = None , id=−1)
frame . Show (True)
app . MainLoop ()

154

Appendix D

Matlab and Simulink Code

D.1 Moving Average Filter Analysis Code

c l e a r ' a l l '

N = 2 0 0 ; %Number of points in f i l t e r

%Time
Fs = 1250 ; % Sampling Frequency
dt = 1/Fs ; % Seconds per sample
StopTime = 3 ; %seconds

t = (0 : dt : StopTime−dt) ;

%s in A
Fc_A = 2 5 ; %Frequency in Hz
x_A = s in (2 * pi * Fc_A *t) ;% Generate Sine Wave A

%MA f i l t e r
a=[1 zeros (1 , N−1)] ;%c o e f f i c e n t array of MA f i l t e r
b=(1/N) * ones (1 , N) ;%c o e f f i c e n t array of MA f i l t e r

out= f i l t e r (b , a , x_A) ;

f i g u r e (1)
p l o t (t , x_A) ;
t i t l e (' IN ')
gr id ' on '
a x i s ([0 1 −1.5 1 . 5])

f i g u r e (2)
p l o t (t , out) ;
t i t l e ('OUT ')
gr id ' on '

f i g u r e (3)
stepz (b , a , N , Fs) ;
gr id ' on '

f i g u r e (4)
impz (b , a , N) ;
gr id ' on '

f i g u r e (5)
freqz (b , a , 2^16 , Fs) ;% Compute frequency response H(w)

155

D.2 Lock-in Simulation

Figure D.1: Simulink simulation used to test the lock-in algorithm.

156

D.3 Calibration Code

Listing: Howland.m
r = [6 5 . 4 e3 , 9 4 . 7 4 e3 , 8 3 . 4 2 e3 , 1 1 1 . 8 8 e3 , 1 5 4 . 9 e3 , 2 4 0 . 3 e3 , 2 6 7 . 4 e3] ;
v=[64e−3 ,88e−3 ,80e−3 ,100e−3 ,132e−3 ,190e−3 ,210e−3];

f i g u r e ;
p l o t (r , v , ' o ')
% Turn on the grid
grid on ;

% Add t i t l e and a x i s l a b e l s
t i t l e (' R e s i s t an c e vs Voltage ' , ' f o n t s i z e ' , 10) ;
x l a b e l (' R_ { var } ') ;
y l a b e l (' U_r ') ;

Listing: Resistance.m
r_ = [2 3 9 , 4 2 6 . 9 , 6 7 4 , 8 1 2 . 7 , 1 1 8 4 , 2 . 9 5 e3 , 5 . 0 6 e3 , 1 1 . 0 4 e3 , 1 4 . 7 8 e3 , 1 7 . 7 9 e3 , 2 2 . 3 3 e3

, 3 0 . 2 e3 , 3 9 . 2 4 e3 , 4 6 . 3 3 e3 , 5 0 . 1 2 e3 , 5 5 . 4 4 e3 , 6 3 . 7 5 e3 , 6 4 . 3 5 e3 , 7 0 . 7 5 e3 , 8 2 . 9 3 e3←↩
, 1 2 1 . 8 3 e3] ;

r_m=[1365 ,2395 ,3796 ,4544 ,6543 ,16310 ,27970 ,60850 ,81520 ,98099 ,123099 ,166590 ,
216250 ,255160 ,276350 ,305740 ,350860 ,354560 ,390200 ,457250 ,673150] ;

p l o t (r_m , r_ , ' o ')
% Turn on the grid
grid on ;

% Add t i t l e and a x i s l a b e l s
t i t l e (' R e s i s t an c e vs Instrument Readout ' , ' f o n t s i z e ' , 10) ;
x l a b e l (' R_ { var } ') ;
y l a b e l (' Instrument Readout ') ;

Listing: Current.m
v_in_howland = [1 , 1 . 3 , 1 . 6 , 1 . 9 , 2 , 2 . 3 , 2 . 6 , 2 . 9 , 3 , 3 . 3 , 3 . 6 , 3 . 9 , 4] ;
i_m=[53450 ,74499 ,92386 ,110490 ,116240 ,134390 ,151744 ,170495 ,

177330 ,195350 ,212760 ,228450 , 2 3 4 3 6 0] ;

i_c = v_in_howland . / 2 . 5 e6 ;

p l o t (i_m , i_c , ' o ')
% Turn on the grid
grid on ;

% Add t i t l e and a x i s l a b e l s
t i t l e (' Instrument Readout vs Current ' , ' f o n t s i z e ' , 20) ;
x l a b e l (' Current ' , ' f o n t s i z e ' , 20) ;
y l a b e l (' Instrument Readout ' , ' f o n t s i z e ' , 20) ;

157

Listing: Potential.m
v_ = [−5e−3 ,−10e−3 ,−15e−3 ,−20e−3 ,−25e−3 ,−30e−3 ,−35e−3 ,−40e−3 ←↩

,−45e−3 ,−50e−3 ,−55e−3 ,−60e−3 ,−65e−3];
v_m=[−375984 ,−1008562 ,−1642293 ,−2274720 ,−2906748 ←↩

,−3539475 ,−4173850 ,−4805460 ,−5439850 ,−6072021 ,−6704987 ,−7339150 ,−7971650] ;
p l o t (v_ , v_m , ' o ')
% Turn on the grid
grid on ;

% Add t i t l e and a x i s l a b e l s
t i t l e (' Voltage vs Instrument Readout ' , ' f o n t s i z e ' , 20) ;
x l a b e l (' Voltage ' , ' f o n t s i z e ' , 20) ;
y l a b e l (' Instrument Readout ' , ' f o n t s i z e ' , 20) ;

158

Appendix E

LTspice Simulation

E.1 LTspice Simulation used to verify the values
used for the ADA4941

159

Figure E.1: LTspice Simulation used to verify the values used for the
ADA4941.

160

Appendix F

VHDL Code

F.1 Top File

161

162

Listing: AD5340.vhd
−− Author : Lars Jørgen Aamodt
−− Company : Univers i ty of Oslo
−− F i l e name : AD5340 . vhd
−− P r o j e c t : Master p r o j e c t
−− Function : Control c i r c u i t f o r the AD5340

l i b r a r y ieee ;
use ieee . std_logic_1164 . a l l ;
use ieee . numeric_std . a l l ;

e n t i t y AD5340 i s
PORT
(
sclk : in std_logic ; ←↩

−− System clock
DAC_clk : in std_logic ; ←↩

−− DAC clock
NCO_DATA : in std_logic_vector (11 downto 0) ; ←↩

−− Data from NCO to DAC ([1 1 : 0])
areset : in std_logic ;

DAC_BUF : out std_logic ;
DAC_CS_n : out std_logic ;
DAC_CLR_n : out std_logic ;
DAC_GAIN : out std_logic ;
DAC_LDAC_n : out std_logic ;
DAC_WR_n : out std_logic ;
DAC_DATA : out std_logic_vector (11 downto 0) ←↩

−− Data in to DAC (DA[1 1 : 0])
) ;

end e n t i t y AD5340 ;

a r c h i t e c t u r e Behavior of AD5340 i s

s i g n a l DATA_ff1 : std_logic_vector (11 downto 0) ;
s i g n a l DATA_ff2 : std_logic_vector (11 downto 0) ;
s i g n a l DATA_ff1_scaled : std_logic_vector (11 downto 0) ;

begin

−− convert to o f f s e t binary
DATA_ff2 <= DATA_ff1 xor " 100000000000 " ;

DAC_WR_n <= not DAC_clk ;

DAC_BUF <= ' 0 ' ;
DAC_CS_n <= ' 0 ' ;
DAC_CLR_n <= ' 1 ' ;
DAC_GAIN <= ' 0 ' ;
DAC_LDAC_n <= ' 0 ' ;

ff1 : process (sclk)
begin

i f rising_edge (sclk) then
DATA_ff1 <= NCO_DATA ;
DAC_DATA <= DATA_ff2 ;
end i f ;

end process ff1 ;

163

end a r c h i t e c t u r e Behavior ;

Listing: AD7766_A.vhd
−− Author : Lars Jørgen Aamodt
−− Company : Univers i ty of Oslo
−− F i l e name : AD7766_A . vhd
−− P r o j e c t : Master p r o j e c t
−− Function : Control c i r c u i t f o r the AD7766

l i b r a r y ieee ;
use ieee . std_logic_1164 . a l l ;
−−use i e e e . s t d _ l o g i c _ a r i t h . a l l ;
use ieee . numeric_std . a l l ;
use ieee . std_logic_unsigned . a l l ;

e n t i t y AD7766_A i s

port
(
reset : in std_logic ;
DRDY_n : in std_logic ; −− Data←↩

ready , a c t i v e low
SDO : in std_logic ; −− Data←↩

output , MSB f i r s t

sclk : in std_logic ; −− ←↩
System clock

SYNC_PD : out std_logic ; −− Sync←↩
/ powerdown

CS_n : out std_logic ; −− Chip←↩
s e l e c t , a c t i v e low

V_drive : out std_logic ;
disable : out std_logic ;
DataReadyADC : out std_logic ;
DataOut : out std_logic_vector (23 downto 0)−− ←↩

Output data

) ;

end AD7766_A ;

a r c h i t e c t u r e AD7766_arch of AD7766_A i s

s i g n a l bitcnt : std_logic_vector (4 downto 0) ;
s i g n a l resetcnt : std_logic_vector (11 downto 0) ;
s i g n a l shift_en : std_logic ;

−−typedef .
type statetype i s (Init , PowerUp , ReadInit , Read_st , FinRead , Wait_st) ;

s i g n a l state : statetype ;

begin

−− i n s t a n t i a t e SR_Serin_redge
SRin_Pout_reg : e n t i t y work . SRin_Pout_reg

port map (
clk => sclk ,

DataIn => SDO ,
shift_en=> shift_en ,
DataOut => DataOut

164

) ;

V_drive <= ' 1 ' ;
disable <= ' 0 ' ;

FSM_CONF_READ :
process (sclk , reset)
begin

i f (reset = ' 1 ') then
state <= Init ;

e l s i f rising_edge (sclk) then
−− s e t d e f a u l t values

cs_n <= ' 1 ' ;
sync_pd <= ' 1 ' ;
DataReadyADC <= ' 0 ' ;
shift_en <= ' 0 ' ;
bitcnt <= (others => ' 0 ') ;
resetcnt <= (others => ' 0 ') ;
state <= Init ;

case state i s

when Init =>
sync_pd <= ' 0 ' ;
i f (resetcnt= 4095) then

state <= PowerUp ;
e l s e

resetcnt <= resetcnt + 1 ;
state <= Init ;

end i f ;

when PowerUp =>
sync_pd <= ' 1 ' ;
state <= Wait_st ;

when ReadInit =>

i f drdy_n = ' 0 ' then
cs_n <= ' 0 ' ;
shift_en <= ' 1 ' ;
state <= Read_st ;

e l s e
state <= ReadInit ;

end i f ;

when Read_st => −− Reads 24 b i t s of va l id data from ADC
i f (bitcnt = 23) then

cs_n <= ' 1 ' ;
shift_en <= ' 0 ' ;
state <= FinRead ;

e l s e
cs_n <= ' 0 ' ;
shift_en <= ' 1 ' ;
bitcnt <= bitcnt + 1 ;
state <= Read_st ;

end i f ;

when FinRead =>
−− S e t s DataReady f l a g

shift_en <= ' 0 ' ;
DataReadyADC <= ' 1 ' ;
state <= Wait_st ;

when Wait_st =>
i f drdy_n = ' 1 ' then

state <= ReadInit ;
e l s e

165

state <= Wait_st ;
−−s t a t e <= ReadIni t ;

end i f ;

when others =>
state <= Init ; −− Faul t t o l e r a n c e

end case ;

end i f ;
end process FSM_CONF_READ ;

end AD7766_arch ;

Listing: AD7766_B.vhd
−− Author : Lars Jørgen Aamodt
−− Company : Univers i ty of Oslo
−− F i l e name : AD7766_B . vhd
−− P r o j e c t : Master p r o j e c t
−− Function : Control c i r c u i t f o r AD7766

l i b r a r y ieee ;
use ieee . std_logic_1164 . a l l ;
use ieee . numeric_std . a l l ;
use ieee . std_logic_unsigned . a l l ;

e n t i t y AD7766_B i s

port
(
reset : in std_logic ;
DRDY_n : in std_logic −− ←↩

Data ready , a c t i v e low
SDO_A : in std_logic ; −− ←↩

Data output , MSB f i r s t
SDO_B : in std_logic ; −− ←↩

Data output , MSB f i r s t
SDO_C : in std_logic ; −− ←↩

Data output , MSB f i r s t

sclk : in std_logic ; −− ←↩
System clock

SYNC_PD : out std_logic ; −− ←↩
Sync / powerdown

CS_n : out std_logic ; −− ←↩
Chip s e l e c t , a c t i v e low

V_drive : out std_logic ;
disable : out std_logic ;
DataReadyADC : out std_logic ;
DataOut_A : out std_logic_vector (23 downto 0) ;←↩

−− Output data
DataOut_B : out std_logic_vector (23 downto 0) ;←↩

−− Output data
DataOut_C : out std_logic_vector (23 downto 0) ←↩

−− Output data

) ;

end AD7766_B ;

a r c h i t e c t u r e AD7766_arch of AD7766_B i s

166

s i g n a l bitcnt : std_logic_vector (4 downto 0) ;
s i g n a l resetcnt : std_logic_vector (11 downto 0) ;
s i g n a l shift_en : std_logic ;

−−typedef .
type statetype i s (Init , PowerUp , ReadInit , Read_st , FinRead , Wait_st) ;

s i g n a l state : statetype ;

begin
−− i n s t a n t i a t e SR_Serin_regs
SRin_Pout_reg_A : e n t i t y work . SRin_Pout_reg

port map (
clk => sclk ,

DataIn => SDO_A ,
shift_en=> shift_en ,
DataOut => DataOut_A

) ;

SRin_Pout_reg_B : e n t i t y work . SRin_Pout_reg
port map (

clk => sclk ,
DataIn => SDO_B ,
shift_en=> shift_en ,
DataOut => DataOut_B

) ;

SRin_Pout_reg_C : e n t i t y work . SRin_Pout_reg
port map (

clk => sclk ,
DataIn => SDO_C ,
shift_en=> shift_en ,
DataOut => DataOut_C

) ;

V_drive <= ' 1 ' ;
disable <= ' 0 ' ;

FSM_CONF_READ :
process (sclk , reset)
begin

i f (reset = ' 1 ') then
state <= Init ;

e l s i f rising_edge (sclk) then
−− s e t d e f a u l t values

cs_n <= ' 1 ' ;
sync_pd <= ' 1 ' ;
DataReadyADC <= ' 0 ' ;
shift_en <= ' 0 ' ;
bitcnt <= (others => ' 0 ') ;
resetcnt <= (others => ' 0 ') ;
state <= Init ;

case state i s

when Init =>
sync_pd <= ' 0 ' ;
i f (resetcnt= 4095) then

state <= PowerUp ;
e l s e

resetcnt <= resetcnt + 1 ;
state <= Init ;

end i f ;

when PowerUp =>

167

sync_pd <= ' 1 ' ;
state <= Wait_st ;

when ReadInit =>

i f drdy_n = ' 0 ' then
cs_n <= ' 0 ' ;
shift_en <= ' 1 ' ;
state <= Read_st ;

e l s e
state <= ReadInit ;

end i f ;

when Read_st => −− Reads 24 b i t s of va l id data from ADC
i f (bitcnt = 23) then

cs_n <= ' 1 ' ;
shift_en <= ' 0 ' ;
state <= FinRead ;

e l s e
cs_n <= ' 0 ' ;
shift_en <= ' 1 ' ;
bitcnt <= bitcnt + 1 ;
state <= Read_st ;

end i f ;

when FinRead =>

shift_en <= ' 0 ' ;
DataReadyADC <= ' 1 ' ; −− S e t s DataReady f l a g
state <= Wait_st ;

when Wait_st =>
i f drdy_n = ' 1 ' then

state <= ReadInit ;
e l s e

state <= Wait_st ;
end i f ;

when others =>
state <= Init ; −− Faul t t o l e r a n c e

end case ;
end i f ;

end process FSM_CONF_READ ;

end AD7766_arch ;

Listing: AD7766_B.vhd
−− Author : Lars Jørgen Aamodt
−− Company : Univers i ty of Oslo
−− F i l e name : AD7766_B . vhd
−− P r o j e c t : Master p r o j e c t
−− Function : Control c i r c u i t f o r AD7766

l i b r a r y ieee ;
use ieee . std_logic_1164 . a l l ;
use ieee . numeric_std . a l l ;
use ieee . std_logic_unsigned . a l l ;

e n t i t y AD7766_B i s

port
(

168

reset : in std_logic ;
DRDY_n : in std_logic −− ←↩

Data ready , a c t i v e low
SDO_A : in std_logic ; −− ←↩

Data output , MSB f i r s t
SDO_B : in std_logic ; −− ←↩

Data output , MSB f i r s t
SDO_C : in std_logic ; −− ←↩

Data output , MSB f i r s t

sclk : in std_logic ; −− ←↩
System clock

SYNC_PD : out std_logic ; −− ←↩
Sync / powerdown

CS_n : out std_logic ; −− ←↩
Chip s e l e c t , a c t i v e low

V_drive : out std_logic ;
disable : out std_logic ;
DataReadyADC : out std_logic ;
DataOut_A : out std_logic_vector (23 downto 0) ;←↩

−− Output data
DataOut_B : out std_logic_vector (23 downto 0) ;←↩

−− Output data
DataOut_C : out std_logic_vector (23 downto 0) ←↩

−− Output data

) ;

end AD7766_B ;

a r c h i t e c t u r e AD7766_arch of AD7766_B i s

s i g n a l bitcnt : std_logic_vector (4 downto 0) ;
s i g n a l resetcnt : std_logic_vector (11 downto 0) ;
s i g n a l shift_en : std_logic ;

−−typedef .
type statetype i s (Init , PowerUp , ReadInit , Read_st , FinRead , Wait_st) ;

s i g n a l state : statetype ;

begin
−− i n s t a n t i a t e SR_Serin_regs
SRin_Pout_reg_A : e n t i t y work . SRin_Pout_reg

port map (
clk => sclk ,

DataIn => SDO_A ,
shift_en=> shift_en ,
DataOut => DataOut_A

) ;

SRin_Pout_reg_B : e n t i t y work . SRin_Pout_reg
port map (

clk => sclk ,
DataIn => SDO_B ,
shift_en=> shift_en ,
DataOut => DataOut_B

) ;

SRin_Pout_reg_C : e n t i t y work . SRin_Pout_reg
port map (

clk => sclk ,
DataIn => SDO_C ,
shift_en=> shift_en ,
DataOut => DataOut_C

169

) ;

V_drive <= ' 1 ' ;
disable <= ' 0 ' ;

FSM_CONF_READ :
process (sclk , reset)
begin

i f (reset = ' 1 ') then
state <= Init ;

e l s i f rising_edge (sclk) then
−− s e t d e f a u l t values

cs_n <= ' 1 ' ;
sync_pd <= ' 1 ' ;
DataReadyADC <= ' 0 ' ;
shift_en <= ' 0 ' ;
bitcnt <= (others => ' 0 ') ;
resetcnt <= (others => ' 0 ') ;
state <= Init ;

case state i s

when Init =>
sync_pd <= ' 0 ' ;
i f (resetcnt= 4095) then

state <= PowerUp ;
e l s e

resetcnt <= resetcnt + 1 ;
state <= Init ;

end i f ;

when PowerUp =>
sync_pd <= ' 1 ' ;
state <= Wait_st ;

when ReadInit =>

i f drdy_n = ' 0 ' then
cs_n <= ' 0 ' ;
shift_en <= ' 1 ' ;
state <= Read_st ;

e l s e
state <= ReadInit ;

end i f ;

when Read_st => −− Reads 24 b i t s of va l id data from ADC
i f (bitcnt = 23) then

cs_n <= ' 1 ' ;
shift_en <= ' 0 ' ;
state <= FinRead ;

e l s e
cs_n <= ' 0 ' ;
shift_en <= ' 1 ' ;
bitcnt <= bitcnt + 1 ;
state <= Read_st ;

end i f ;

when FinRead =>

shift_en <= ' 0 ' ;
DataReadyADC <= ' 1 ' ; −− S e t s DataReady f l a g
state <= Wait_st ;

when Wait_st =>
i f drdy_n = ' 1 ' then

170

state <= ReadInit ;
e l s e

state <= Wait_st ;
end i f ;

when others =>
state <= Init ; −− Faul t t o l e r a n c e

end case ;
end i f ;

end process FSM_CONF_READ ;

end AD7766_arch ;

Listing: delay_shiftreg.vhd
−− Author : Lars Jørgen Aamodt
−− Company : Univers i ty of Oslo
−− F i l e name : DAC5672 . vhd
−− Date : 2 5 . 0 4 . 2 0 1 2
−− P r o j e c t : Master p r o j e c t
−− Function :

l i b r a r y ieee ;
use ieee . std_logic_1164 . a l l ;
use ieee . numeric_std . a l l ;

e n t i t y delay_shiftreg i s

gener ic (
width : integer := 12) ;

PORT
(
clk : in std_logic ; ←↩

−− System clock 125 MHz

DATA_IN : in std_logic_vector (11 downto 0) ;
DATA_OUT : out std_logic_vector (11 downto 0)

) ;

end e n t i t y delay_shiftreg ;

a r c h i t e c t u r e Behavior of delay_shiftreg i s
type reg_shft i s array (width−1 downto 0) of std_logic_vector (11 downto 0) ;
s i g n a l shft_reg : reg_shft : = (o thers => x " 000 ") ;

begin

ff1 : process (clk)

begin

i f rising_edge (clk) then

shft_reg (0) <= DATA_IN ;
f o r i in width−2 downto 0 loop

shft_reg (i+1) <= shft_reg (i) ;
end loop ;
DATA_OUT <= shft_reg (width−1) ;
end i f ;

end process ff1 ;

171

end a r c h i t e c t u r e Behavior ;

Listing: MA.vhd
−− Author : Lars Jørgen Aamodt
−− Company : Univers i ty of Oslo
−− F i l e name : MA. vhd
−− P r o j e c t : Master p r o j e c t
−− Function : Perform moving average f i l t e r i n g
l i b r a r y ieee ;
use ieee . std_logic_1164 . a l l ;
use ieee . numeric_std . a l l ;

e n t i t y MA i s

gener ic (
width : integer := 1) ;

PORT
(
clk : in std_logic ; ←↩

−− System clock
data_clk : in std_logic ; ←↩

−− Data c lock
areset : in std_logic ;
test_sum : out std_logic_vector (22 downto 0) ; ←↩

−− Output f o r t e s t i n g purposes
DATA_IN : in std_logic_vector (23 downto 0) ; ←↩

−− Input data
DATA_OUT : out std_logic_vector (23 downto 0) ←↩

−− Output data
) ;

end e n t i t y MA ;

a r c h i t e c t u r e Behavior of MA i s
−−typedef .
type statetype i s (init , add , sub , div) ;
type reg_shft i s array (width−1 downto 0) of std_logic_vector (23 downto 0) ;

s i g n a l state : statetype ;
s i g n a l shft_reg : reg_shft : = (o thers => (others => ' 0 ')) ;
s i g n a l sum : signed (63 downto 0) : = (o thers => ' 0 ') ;

s i g n a l start_calc : std_logic := ' 0 ' ;
s i g n a l last_clk : std_logic := ' 0 ' ;
s i g n a l old_value : signed (23 downto 0) : = (o thers => ' 0 ') ;

begin

start_calc <= ' 1 ' when last_clk = ' 0 ' and data_clk = ' 1 ' e l s e ' 0 ' ;

−− R e g i s t e r used to hold the data values
s_reg :
process (data_clk , areset)
begin

172

i f (areset = ' 1 ') then
shft_reg <= (others => (others => ' 0 ')) ;

e l s i f rising_edge (data_clk) then
shft_reg (0) <= DATA_IN ;

f o r i in width−2 downto 0 loop
shft_reg (i+1) <= shft_reg (i) ;

end loop ;

end i f ;
end process s_reg ;

last_clk_reg :
process (clk , areset)
begin

i f (areset = ' 1 ') then
last_clk <= ' 0 ' ;

e l s i f rising_edge (clk) then
last_clk <= data_clk ;

end i f ;
end process last_clk_reg ;

−− R e g i s t e r used to hold the sub data value
old_value_reg :
process (data_clk , areset)
begin

i f (areset = ' 1 ') then
old_value <= (others => ' 0 ') ;

e l s i f rising_edge (data_clk) then
old_value <= signed (shft_reg (width−1)) ;

end i f ;
end process old_value_reg ;

FSM_MA :
process (clk , areset)
begin

i f (areset = ' 1 ') then

DATA_OUT <= (others => ' 0 ') ;
state <= init ;

e l s i f rising_edge (clk) then

case state i s

when init =>
i f (start_calc = ' 1 ') then

state <= add ;
end i f ;

when add =>
sum <= sum + signed (shft_reg (0)) ;
state <= sub ;

when sub =>
sum <= sum − signed (old_value) ;
state <= div ;

when div =>
test_sum <= std_logic_vector (sum / width) (22 downto 0) ;
DATA_OUT <= std_logic_vector (sum / width) (23 downto 0) ;
state <= init ;

173

when others =>
state <= init ; −− Faul t t o l e r a n c e

end case ;
end i f ;

end process FSM_MA ;
end a r c h i t e c t u r e Behavior ;

Listing: MAtwo.vhd
−− Author : Lars Jørgen Aamodt
−− Company : Univers i ty of Oslo
−− F i l e name : MA
−− P r o j e c t : Master p r o j e c t
−− Function : Perform moving average f i l t e r i n g

l i b r a r y ieee ;
use ieee . std_logic_1164 . a l l ;
use ieee . numeric_std . a l l ;

e n t i t y MAtwo i s

gener ic (
width : integer := 1) ;

PORT
(
clk : in std_logic ; −− ←↩

System clock
data_clk : in std_logic ; −− ←↩

Data c lock
areset : in std_logic ;
test_sum : out std_logic_vector (22 downto 0) ; −− ←↩

Output f o r t e s t i n g purposes
DATA_IN : in std_logic_vector (23 downto 0) ; −− ←↩

Input data
DATA_OUT : out std_logic_vector (31 downto 0) −− ←↩

Output data
) ;

end e n t i t y MAtwo ;

a r c h i t e c t u r e Behavior of MAtwo i s
−−typedef .
type statetype i s (init , add , sub , div) ;
type reg_shft i s array (width−1 downto 0) of std_logic_vector (23 downto 0) ;

s i g n a l state : statetype ;
s i g n a l shft_reg : reg_shft : = (o thers => (others => ' 0 ')) ;
s i g n a l sum : signed (63 downto 0) : = (o thers => ' 0 ') ;

s i g n a l start_calc : std_logic := ' 0 ' ;
s i g n a l last_clk : std_logic := ' 0 ' ;
s i g n a l old_value : signed (23 downto 0) : = (o thers => ' 0 ') ;

begin

start_calc <= ' 1 ' when last_clk = ' 0 ' and data_clk = ' 1 ' e l s e ' 0 ' ;

−− R e g i s t e r used to hold the data values

174

s_reg :
process (data_clk , areset)
begin

i f (areset = ' 1 ') then
shft_reg <= (others => (others => ' 0 ')) ;

e l s i f rising_edge (data_clk) then
shft_reg (0) <= DATA_IN ;

f o r i in width−2 downto 0 loop
shft_reg (i+1) <= shft_reg (i) ;

end loop ;

end i f ;
end process s_reg ;

last_clk_reg :
process (clk , areset)
begin

i f (areset = ' 1 ') then
last_clk <= ' 0 ' ;

e l s i f rising_edge (clk) then
last_clk <= data_clk ;

end i f ;
end process last_clk_reg ;

−− R e g i s t e r used to hold the sub data value
old_value_reg :
process (data_clk , areset)
begin

i f (areset = ' 1 ') then
old_value <= (others => ' 0 ') ;

e l s i f rising_edge (data_clk) then
old_value <= signed (shft_reg (width−1)) ;

end i f ;
end process old_value_reg ;

FSM_MA :
process (clk , areset)
begin

i f (areset = ' 1 ') then

DATA_OUT <= (others => ' 0 ') ;
state <= init ;

e l s i f rising_edge (clk) then

case state i s

when init =>
i f (start_calc = ' 1 ') then

state <= add ;
end i f ;

when add =>
sum <= sum + signed (shft_reg (0)) ;
state <= sub ;

when sub =>
sum <= sum − signed (old_value) ;
state <= div ;

when div =>

175

test_sum <= std_logic_vector (sum / width) (22 downto 0) ;
DATA_OUT <= std_logic_vector (sum / width) (31 downto 0) ;
state <= init ;

when others =>
state <= init ; −− Faul t t o l e r a n c e

end case ;
end i f ;

end process FSM_MA ;
end a r c h i t e c t u r e Behavior ;

Listing: MUL.vhd
−− Author : Lars Jørgen Aamodt
−− Company : Univers i ty of Oslo
−− F i l e name : MUL. vhd
−− P r o j e c t : Master p r o j e c t
−− Function : Multiply

l i b r a r y ieee ;
use ieee . std_logic_1164 . a l l ;
use ieee . numeric_std . a l l ;

e n t i t y MUL i s

PORT
(
clk : in std_logic ; ←↩

−− System clock
areset : in std_logic ;
DATA_IN_A : in std_logic_vector (11 downto 0) ;
DATA_IN_B : in std_logic_vector (11 downto 0) ;
DATA_OUT : out std_logic_vector (23 downto 0)
) ;

end e n t i t y MUL ;

a r c h i t e c t u r e Behavior of MUL i s

begin

ff1 : process (clk)
begin

i f rising_edge (clk) then
DATA_OUT <= std_logic_vector (signed (DATA_IN_A) * signed (DATA_IN_B)) ;

end i f ;

end process ff1 ;

end a r c h i t e c t u r e Behavior ;

Listing: remove_bias.vhd
−− Author : Lars Jørgen Aamodt
−− Company : Univers i ty of Oslo
−− F i l e name : remove_bias . vhd
−− P r o j e c t : Master p r o j e c t
−− Function : Remove Bias

176

l i b r a r y ieee ;
use ieee . std_logic_1164 . a l l ;
use ieee . numeric_std . a l l ;

e n t i t y remove_bias i s

gener ic (
width : integer := 1) ;

PORT
(
clk : in std_logic ; ←↩

−− System clock
data_clk : in std_logic ;
areset : in std_logic ;
DATA_IN : in std_logic_vector (23 downto 0) ;
DATA_OUT : out std_logic_vector (11 downto 0)
) ;

end e n t i t y remove_bias ;

a r c h i t e c t u r e Behavior of remove_bias i s
−−typedef .
type statetype i s (Init , add , sub , div , sub_mean) ;
type reg_shft i s array (width−1 downto 0) of std_logic_vector (23 downto 0) ;

s i g n a l state : statetype ;
s i g n a l shft_reg : reg_shft : = (o thers => (others => ' 0 ')) ;
s i g n a l sum : signed (63 downto 0) : = (o thers => ' 0 ') ;

s i g n a l start_calc : std_logic := ' 0 ' ;
s i g n a l last_clk : std_logic := ' 0 ' ;
s i g n a l old_value : signed (23 downto 0) : = (o thers => ' 0 ') ;
s i g n a l mean : std_logic_vector (23 downto 0) : = (o thers => ' 0 ') ;−−←↩

64

begin

start_calc <= ' 1 ' when last_clk = ' 0 ' and data_clk = ' 1 ' e l s e ' 0 ' ;

s_reg :
process (data_clk , areset)
begin

i f (areset = ' 1 ') then
shft_reg <= (others => (others => ' 0 ')) ;

e l s i f rising_edge (data_clk) then
shft_reg (0) <= DATA_IN ;

f o r i in width−2 downto 0 loop
shft_reg (i+1) <= shft_reg (i) ;

end loop ;

end i f ;
end process s_reg ;

last_clk_reg :
process (clk , areset)
begin

i f (areset = ' 1 ') then

177

last_clk <= ' 0 ' ;

e l s i f rising_edge (clk) then
last_clk <= data_clk ;

end i f ;
end process last_clk_reg ;

old_value_reg :
process (data_clk , areset)
begin

i f (areset = ' 1 ') then
old_value <= (others => ' 0 ') ;

e l s i f rising_edge (data_clk) then
old_value <= signed (shft_reg (width−1)) ;

end i f ;
end process old_value_reg ;

FSM_RB :
process (clk , areset)
begin

i f (areset = ' 1 ') then

DATA_OUT <= (others => ' 0 ') ;
state <= Init ;

e l s i f rising_edge (clk) then

case state i s

when Init =>
i f (start_calc = ' 1 ') then

state <= add ;
end i f ;

when add =>
sum <= sum + signed (shft_reg (0)) ;
state <= sub ;

when sub =>
sum <= sum − signed (old_value) ;
state <= div ;

when div =>

mean <= std_logic_vector (sum / width) (23 downto 0) ;−−sum / ←↩
width

state <= sub_mean ;

when sub_mean =>
DATA_OUT <= std_logic_vector (signed (DATA_IN) − signed (mean)) (23←↩

downto 12) ;
state <= Init ;

when others =>
state <= Init ; −− Faul t t o l e r a n c e

end case ;
end i f ;

end process FSM_RB ;
end a r c h i t e c t u r e Behavior ;

Listing: SRin_Pout_reg.vhd

178

−− Author : Lars Jørgen Aamodt
−− Company : Univers i ty of Oslo
−− F i l e name : SR_SerIn_redge . vhd
−− P r o j e c t : Master p r o j e c t
−− Function : S e r i a l in p a r a l l e l out s h i f t r e g i s t e r

l i b r a r y ieee ;
use ieee . std_logic_1164 . a l l ;
use ieee . std_logic_arith . a l l ;
use ieee . std_logic_unsigned . a l l ;

e n t i t y SRin_Pout_reg i s
gener ic (

width : integer := 24) ;

port
(
clk : in std_logic ;
DataIn : in std_logic ;
shift_en : in std_logic ;
DataOut : out std_logic_vector (width−1 downto 0)
) ;

end SRin_Pout_reg ;

a r c h i t e c t u r e SRin_Pout_reg_arch of SRin_Pout_reg i s

s i g n a l data_int : std_logic_vector (width−1 downto 0) ;
begin

SHIFT_REG :
process (clk)
begin

i f rising_edge (clk) then
i f (shift_en = ' 1 ') then

data_int (0) <= DataIn ;
f o r i in 0 to width−2 loop

data_int (i+1) <= data_int (i) ;
end loop ;

end i f ;

end i f ;
end process SHIFT_REG ;

DataOut <= data_int ;

end SRin_Pout_reg_arch ;

179

180

Appendix G

Nios II Firmware

G.1 Code

Listing: NiosII_Data_Acquisition.c
/* *
* F i l e : NiosI I_Data_Acquis i t ion . c
* P r o j e c t : FPGA Based Development Platform f o r Biomedical Measurements
* Author : Lars JÃ¸rgen Aamodt
* */

include " a l t _ t y p e s . h"
inc lude " sys/ a l t _ i r q . h"
inc lude " a l t e r a _ a v a l o n _ p i o _ r e g s . h"
inc lude < s t d i o . h>
include < s t r i n g . h>
include <unistd . h>
include " system . h"

/* A v a r i a b l e to hold the value of the t r i g g e r pio edge capture r e g i s t e r . */
v o l a t i l e i n t edge_capture ;

/* A pointer to the i n t e r f a c e UART. */
v o l a t i l e FILE * fp ;

/* Var iab les to hold the PIOs . */
alt_32 pio_0 ;
alt_32 pio_1 ;
alt_32 pio_2 ;
alt_32 pio_3 ;
alt_32 pio_4 ;

/* Handle i n t e r r u p t s */
s t a t i c void handle_trigger_interrupts (void * context , alt_u32 id)
{

/* c a s t the contex t pointer to an i n t e g e r pointer . */
v o l a t i l e i n t * edge_capture_ptr = (v o l a t i l e i n t *) context ;

/*
* Read the edge capture r e g i s t e r on the t r i g g e r PIO .
* S tore value .
*/
* edge_capture_ptr = IORD_ALTERA_AVALON_PIO_EDGE_CAP (TRIGGER_BASE) ;

181

/* Write to the edge capture r e g i s t e r to r e s e t i t . */
IOWR_ALTERA_AVALON_PIO_EDGE_CAP (TRIGGER_BASE , 0) ;

/* r e s e t i n t e r r u p t c a p a b i l i t y f o r the Button PIO . */
IOWR_ALTERA_AVALON_PIO_IRQ_MASK (0 , 0xf) ;

}

/* I n i t i a t e the t r i g g e r PIO*/
s t a t i c void init_trigger_pio ()
{

/* Recast the edge_capture pointer to match the a l t _ i r q _ r e g i s t e r () funct ion←↩
*/

void * edge_capture_ptr = (void *) &edge_capture ;
/* Enable t r i g g e r i n t e r r u p t . */
IOWR_ALTERA_AVALON_PIO_IRQ_MASK (TRIGGER_BASE , 0xf) ;
/* Reset the edge capture r e g i s t e r . */
IOWR_ALTERA_AVALON_PIO_EDGE_CAP (TRIGGER_BASE , 0x0) ;
/* R e g i s t e r the i n t e r r u p t handler . */
alt_ic_isr_register (TRIGGER_IRQ_INTERRUPT_CONTROLLER_ID , TRIGGER_IRQ , ←↩

handle_trigger_interrupts , edge_capture_ptr , 0x0) ;

}

/* I n i t i a t e the UART*/
s t a t i c void init_UART ()
{

//Open f i l e f o r reading and wri t ing " r +"
fp = fopen ("/dev/uart " , " r+") ;
//s e t b u f (fp , NULL) ;

i f (fp != NULL) {
printf ("UART OK \n") ;

}
e l s e {

printf ("UART ERROR \n") ;
}

}

/*Read data */
s t a t i c void pio_data () {

pio_0 = IORD_ALTERA_AVALON_PIO_DATA (PIO_0_BASE) ; // a l t _ 3 2

pio_1 = IORD_ALTERA_AVALON_PIO_DATA (PIO_1_BASE) ; // a l t _ 3 2

pio_2 = IORD_ALTERA_AVALON_PIO_DATA (PIO_2_BASE) ; // a l t _ 3 2

pio_3 = IORD_ALTERA_AVALON_PIO_DATA (PIO_3_BASE) ; // a l t _ 3 2

pio_4 = IORD_ALTERA_AVALON_PIO_DATA (PIO_4_BASE) ; // a l t _ 3 2

}

s t a t i c void initial_message ()
{

printf ("\n\n * \ n") ;
printf (" * Nios I I C o n t r o l l e r *\n") ;
printf (" * \ n") ;

}

// * * * * * * * * * * * MAIN * * * * * * * * * * * / /
i n t main (void) {

initial_message () ;

182

init_trigger_pio () ;

init_UART () ;

while (1)
{

i f (edge_capture == 0x1) {

pio_data () ;

f l o a t x = pio_1 ; //r es
f l o a t y = pio_2 ; //rec

f l o a t z = 2*sqrt ((y *y) + (x *x)) ;

f l o a t phase = atan (x/y) ;

// f l o a t xc = z * s i n (phase) ;
// p r i n t f (" pio_0 : %f \n " , abs ((f l o a t) pio_0)) ;
// p r i n t f (" pio_1 : %f \n " , (f l o a t) pio_1) ;
// p r i n t f (" pio_2 : %f \n " , (f l o a t) pio_2) ;
// p r i n t f (" pio_3 : %f \n " , (f l o a t) pio_3) ;
// p r i n t f (" pio_4 : %f \n " , (f l o a t) pio_4) ;
// p r i n t f (" Z : %f \n " , z) ;
// p r i n t f (" Phase : %f \n " , phase) ;
printf (" Reactance : %f \n" ,y) ;
printf (" R e s i s t an c e : %f \n" ,x) ;
printf (" P o t e n s i a l : %f \n" , (f l o a t) pio_0)) ;

char * msg_0 [5 0] ;
char * msg_1 [5 0] ;

/* Convert data to c h a r a c t e r array . */
snprintf (msg_0 , s i z e o f (msg_0) , "%f " , x) ;
snprintf (msg_1 , s i z e o f (msg_1) , "%f " , y) ;

/*Send data over UART*/
i f (fp != NULL)

{
fprintf (fp , "%s " , "A") ;
fprintf (fp , "%s " , msg_0) ;
fflush (fp) ;
fprintf (fp , "%s " , "B") ;
fprintf (fp , "%s " , msg_1) ;

} e l s e {
printf ("UART ERROR \n") ;

}

edge_capture = 0 ;
} //end i f

} // end while
fclose (fp) ;
re turn 0 ;

} // ene main

183

184

Appendix H

Analog Front-end Files

H.1 Schemetics Analog Front-end Files

185

H.2 PCB Analog Front-end

191

194

Appendix I

Data Acquisition Card Production
Files

I.1 Schemetics

195

I.2 PCB

203

I.3 Part List

206

