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Chapter 1

Introduction

1.1 Motivation

Full Configuration Interaction Monte Carlo (FCIQMC) is an ab initio method to calculate
ground state properties of quantum many body systems. The algorithm was first made fa-
mous by Booth et. al. (2009) [3], and has since then seen great success within the quantum
chemistry community. Our motivation was to implement FCIQMC and apply the algorithm
on a new physical system, namely two dimensional quantum dots in parabolic potentials.
This is a well explored physical system, which have been simulated using a range of nu-
merical methods like Variational Monte Carlo [11], Diffusion Monte Carlo [22], Coupled
Cluster [24] and Full Configuration Interaction [20, 15, 16], and therefore provides a good
benchmark for the FCIQMC algorithm. Furthermore, the degree of correlation can be tuned
by increasing or decreasing the strength of the confining potential, and thus allows us to
study how the algorithm performs with systems of varying correlation strength.

1.2 Achievements

Our main achievement is to successfully have implemented FCIQMC, which is a rather
novel algorithm with few implementations. The implementation was a challenging task,
and quite a lot of thinking and experimenting was necessary to find viable solutions. The
main obstacles was to find an efficient numerical representation of the state vectors with
a low memory footprint, and to develop a fast parallel algorithm with a small overhead
using a hybrid approach with multithreading and MPI. Some work has also been invested
in finding a practical and reliable way of analyzing the stochastic error of the so called
projected estimator of the energy and developing a fast algorithm for storing and retrieving
the Hamiltonian matrix elements.

We have studied how the algorithm performs when applied on quantum dots with a
different degree of correlation and a different number of particles. We believe that these
results can be generalized to other systems as well, and this may be seen as our main results.
We have also made a few predictions of the energy of quantum dots with NP ≤ 6 particles
using extrapolation of the energies, and have demonstrated that open shell Diffusion Monte
Carlo calculations of the same systems produce ground state energies that are slightly too
high.
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1.3 The structure of the thesis

This thesis is organized in six parts

I: In the first part we discuss the theoretical background for our project. An introduction
to quantum mechanics is followed by a short review of the physics of quantum dots.

II: In the second part we discuss different numerical many body methods such as Full
Configuration Interaction, Diffusion Monte Carlo and Hartree-Fock. It is important to
have a certain knowledge of these methods, both as a theoretical basis to understand
the FCIQMC algorithm and as a theoretical background when we interpret our results.

III: The third part is devoted to the theory and the numerical methods that is directly rele-
vant for the FCIQMC method. Three chapters are devoted to the FCIQMC algorithm,
the initiator adaption i-FCIQMC and sampling methods. In the last chapter we have
introduce an indexation and storage scheme for the Hamiltonian Matrix elements.

IV: In the fourth part we are dealing with methods to analyse output data from the simu-
lations. We have discussed how the statistical error can be calculated and how we can
fit parametrized curves to extrapolate the results.

V: In the fifth part we discuss different aspects of our implementation of the algorithm.
The numerical representation of the state vector and the parallelization of the algorithm
are discussed in the first chapters. Next we look at the class structure and implemen-
tation details. One chapter is devoted to benchmarking and testing of the code, and in
the last chapter we discuss how it can be modified to simulate other physical systems.

VI: In the last part we study how the algorithm performs when applied to two dimensional
quantum dots. This is an excellent test case since the degree of correlation in the
systems can be varied by changing the potential strength.We have demonstrated that
the code is reproducing Full Configuration Interaction, Coupled Cluster and Diffusion
Monte Carlo results, and we have calculated the ground state energies for a few open
shell systems with NP ≤ 6 particles by extrapolating the energies. We have also ex-
plored the scaling and efficiency of the algorithm for systems with a different number
of particles and different interaction strengths.
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Part I

General theory
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In this part we give a short introduction to non- relativistic quantum mechanics
and quantum many body theory. We will also introduce the so called second
quantized notation and discuss how quantum dots are modelled mathematically.

The following chapters are not in any way meant to be a thorough introduction
to the subjects that we discuss. Our goal here is twofold. First we want to
introduce the necessary concepts, theorems and equations that we need later in
the thesis, and second, we want to establish a certain mathematical notation.
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Chapter 2

A brief introduction to Quantum
Mechanics

This chapter is not meant to be a self-contained introduction to quantum mechanics, but
rather a brief introduction to the concepts that have a direct relevance to this thesis. Those
who are looking for a complete introduction to quantum mechanics are referred to an intro-
ductory text on the subject. See for example Ref. [31] for a thorough introduction to the
field. We will first state the fundamentals of quantum theory followed by the introduction
of a few important properties of quantum mechanical systems.

2.1 The postulates of quantum mechanics

Quantum mechanics is an axiomatic theory, meaning that it is based on a set of postulates
from which the theory is logically derived. In this chapter we are presenting the fundamental
axioms or postulates of quantum mechanics and explain their meaning. This will serve as
an extremely brief introduction to the main concepts of the theory.

The first postulate concerns the mathematical representation of a quantum mechanical
system.

Postulate 1: To every quantum system there is an associated separable infinite dimensional
complex Hilbert space H . A quantum state is represented as a normalized state vector
∣Ψ⟩ ∈ H .

The Hilbert space, also called the state space, is a linear vector space with an inner product,
and can be viewed as a generalization of Euclidian spaces. Hilbert spaces are characterized
by a set of properties that we will now present. Assume that the vectors {∣a⟩, ∣b⟩} are in H .
Then the inner product of two elements ∣a⟩, ∣b⟩ is denoted ⟨a∣b⟩, and obeys the following
relations

(i): The Hermitian symmetric property: ⟨a∣b⟩ = ⟨b∣a⟩∗,

(ii): Linearity in the first element : ⟨ca∣b⟩ = c⟨a∣b⟩,

(iii): Conjugate linearity in the second element : ⟨a∣cb⟩ = c∗⟨a∣b⟩,

(iv): Additivity in the first element: ⟨a1 + a2∣b⟩ = ⟨a1∣b⟩ + ⟨a2∣b⟩,
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(v): Additivity in the second element: ⟨a∣b1 + b2⟩ = ⟨a∣b1⟩ + ⟨a∣b2⟩.

(vi): Positivity: ⟨a∣a⟩ ≥ 0.

This is a general definition of Hilbert spaces, but as we will see later, the exact properties of
the state spaces are defined by the physical system itself.

Note that any linear combination of vectors in H (except the null vector) represents a
physical state. If we for example have a basis {∣i⟩}ni=0 for the state space, any state can be
represented as

∣Ψ⟩ =
n

∑
i=1
ci∣i⟩, (2.1)

where {ci} are complex weights, or amplitudes, with the property∑ni=1 ∣ci∣
2 = 1 to normalize

the state.
The next postulate concerns the joint Hilbert spaces of composite systems. An example

of such systems is the many electron quantum dots that we are dealing with in this thesis.

Postulate 2: If H1 and H2 are the Hilbert spaces of two quantum systems, then the Hilbert
space of the composite system is the tensor product H1 ⊗H2.

For example, for a system consisting of a number of distinguishable particles in the states
∣a⟩, ∣b⟩ and ∣c⟩, the composite state is the tensor product ∣Ψ⟩ = ∣a⟩⊗ ∣b⟩⊗ ∣c⟩. We will come
back to this subject later when we discuss many particle systems, and as we will see, this
theorem provides us with an easy way of constructing the Hilbert spaces of many particle
quantum dots.

The state vector encapsulates all there is to know about the physical system, but quantum
mechanical systems are not well defined in a classical sense where all measurable quantities
can be known simultaneously. They are abstract quantities that contain information about
the probability of the different outcomes of a measurement. The link between the abstract
state vectors and measurable quantities are defined by Hermitian1 operators as stated in the
third postulate.

Postulate 3: To every observable of a quantum mechanical system, there is associated
a linear Hermitian operator. The spectrum of eigenvalues of the operator represents the
measurable values of the observable.

An observable is defined as a measurable quantity such as the angular momentum or the
energy of the state. Hermitian operators have the properties that all eigenvalues are real
and that the eigenvectors span the space in which the operators act. An example is the
Hamiltonian operator, Ĥ which represents the energy of the state. Assume that the operator
Ĥ has the eigenvalues {εi}

n
i=1 and the eigenvectors {∣ϕi⟩}

n
i=1 which are a basis for H .

The eigenvalues represents the possible outcome of a measurement of the energy and the
corresponding eigenvectors are the states in which the observable is “sharp” or well defined.
The probability of measuring the energy εi is given by the function

P (εi) = ⟨Ψ∣ϕi⟩⟨ϕi∣Ψ⟩, (2.2)

1 An operator Ô is Hermitian if Ô† = Ô, where Ô† is the adjoint operator of Ô.
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which means that the energy is well defined only in the case that the state vector is parallel to
an eigenvector of Ĥ , or in the subspace spanned by the eigenvectors {∣ϕi1⟩, ∣ϕi2⟩, . . . ,} with
degenerated energies εi1 = εi2 = . . . . As a consequence of this, it is impossible to simulta-
neously measure the observables of two operators Ĥ and Ô with non-parallel eigenvectors,
or more precisely, which are not commuting [Ô, Ĥ] ≠ 0. This property is commonly known
as the uncertainty principle.

A measurement in quantum mechanics is a subtle concept which often gives rise to
philosophical difficulties. The fourth postulate bypasses these problems by providing an
operational definition of an ideal measurement.

Postulate 4: A ideal measurement of an observable o with the corresponding operator Ô
leaves the quantum system in the state ∣o⟩ where Ô∣o⟩ = o∣o⟩.

As an example, if the quantum state ∣Ψ⟩ is measured to have the energy εi, we say that
the state has collapsed into the corresponding eigen state ∣ϕi⟩. This is modeled as an in-
stantaneous process where the state changes from ∣Ψ⟩ to ∣ϕi⟩. Note that both the concept
of an ideal measurement and the idea of an instantaneous change of the physical state is
controversial, and that this is an active field of research (see for example Ref. [32]).

The fifth and last postulate states that the dynamics of a quantum system is described
by a famous partial differential equation.

Postulate 5: The time evolution of the state vector is described by the time dependent
Schrödinger equation.

The Schrödinger equation can be written

ih̵
∂

∂t
∣Ψ(t)⟩ = Ĥ ∣Ψ(t)⟩, (2.3)

where h̵ is the reduced Planck’s constant and Ĥ is the Hamiltonian operator. The quantum
mechanical wave function ∣Ψ(t)⟩ is a probability amplitude that describes the state of a
quantum mechanical system at time t. If ∣Ψ(t)⟩ is an eigenstate of the Hamiltonian Ĥ , then
∣Ψ(t)⟩ is said to be stationary and is represented by the wave function

∣Ψ(t)⟩→ ∣ϕi⟩e
−iεit/h̵, (2.4)

where {∣ϕi⟩} are the eigenstates of the Hamiltonian and {εi} are the eigenvalues

Ĥ ∣ϕi⟩ = εi∣ϕi⟩. (2.5)

Obviously, this can only be true if the Hamiltonian has no explicit time dependence. Since
the Hamiltonian operator is a hermitian operator, the set of eigenstates ∣ϕi⟩ is a basis. This
means that as long as the Hamiltonian operator is time independent, all quantum states can
be written as a linear combination of the stationary states

∣Ψ(t)⟩ =∑
i

∣φi⟩e
−iεit/h̵, (2.6)

which always solves the Schrödinger equation.
In this thesis we are only dealing with time independent quantum mechanical systems.

Therefore we are only solving the eigen value problem Eq. (2.5) which we will refer to as
the stationary Schrödinger equation from now on. Since the stationary states are eigenstates
of the Hamiltonian, the eigenvalues εi must be interpreted as the possible energies of the
system. The lowest eigenvalue εi will be referred to as the ground state energy of the system
and the corresponding eigenstate will be referred to as the ground state.
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2.2 Antisymmetric state vectors and fermions

A state vector which describes a system of identical particles can be shown to be either
symmetric or antisymmetric with regard to the interchange of two particles. And as we will
show in this section, this seemingly innocent property has important consequences for the
behaviour of quantum particles.

We will start with a short derivation. Consider an N particle quantum system of identi-
cal particles

∣Ψ⟩ = ∣1,2,3, . . . ,N⟩. (2.7)

This state must have the same physical properties when two particles are permuted, which
means that for any observable Ô,

⟨Ψ∣P̂ †
ijÔP̂ij ∣Ψ⟩ = ⟨Ψ∣Ô∣Ψ⟩, (2.8)

where P̂ij is the interchange operator which has the property that it interchanges particle i
and j. This equation has the solution

P̂ij ∣Ψ⟩ = ±∣Ψ⟩. (2.9)

All elementary particles are separated in two categories of particles called fermions, as for
example electrons, and bosons, with the property that

P̂ij ∣Ψ⟩ = −∣Ψ⟩ for fermions and P̂ij ∣Ψ⟩ = +∣Ψ⟩ for bosons. (2.10)

A state vector describing a system of fermions is therefore said to be antisymmetric with
regard to the exchange of two particles. A property of such states is that two identical
fermions never can be in the same quantum state. This is easy to see if we consider the
two particle state ∣1,1⟩ consisting of two identical fermions. If we apply the interchange
operator on this state we see that

∣1,1⟩ = P̂12∣1,1⟩ = −∣1,1⟩⇒ ∣1,1⟩ = 0, (2.11)

which shows that this state can not exist.

2.3 Spin and the spin statistics theorem

Spin is an intrinsic property of elementary particles which have no classic counterpart but
is a pure quantum phenomenon. The spin quantum number s can only have values s ∈ h̵n/2
where n is a positive integer and h̵ is the reduced Planck constant. Any given class of
elementary particles has a fixed spin value that can not be changed, and according to the
spin statistics theorem, all particles with half integer spins are fermions [31].

The spin of a single electron is described by a spinor ∣χ⟩ ∈ C2 which is usually repre-
sented as a linear combination of the eigen functions of the spin projection operator Ŝz

Ŝz ∣ ↑⟩ = s∣ ↑⟩, Ŝz ∣ ↓⟩ = −s∣ ↓⟩, (2.12)

and a many particle wave function has a spinor

∣χ⟩ ∈ {∣ ↑⟩, ∣ ↓⟩}⊗ {∣ ↑⟩, ∣ ↓⟩}⊗ {∣ ↑⟩, ∣ ↓⟩}⊗ . . .{∣ ↑⟩, ∣ ↓⟩}. (2.13)
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There is a magnetic moment associated to the spin of an electron. The magnetic moment
contribute to the total energy of an electronic system, but this effect is usually very small and
is often neglected. In this thesis, we use a Hamiltonian without a spin coupling, meaning
that we ignore the magnetic moment of the electrons. However, the spin of the particles still
have a very important impact on the behaviour of a quantum system. Because of the Pauli
exclusion principle, the many particle basis is limited to states where any one particle state
is occupied by at most one electron.

2.4 The many particle basis

The bosonic and fermionic many particle wave functions live in different Hilbert spaces and
follow different mathematical rules. We will only focus on fermionic systems since these
are the systems that we have dealt with in this thesis.

We assume that an orthonormal single particle basis is available

{∣ϕ1⟩, ∣ϕ2⟩, ∣ϕ3⟩, . . .} ∈ H1, (2.14)

where {ϕi} are eigenfunctions of the single particle hamiltonian ĤHO, and the spinors are
assumed to be contained in the single particle wave functions. According to the second
postulate, the many particle Hilbert space is

H = H1 ⊗H1 ⊗H1 ⊗ . . .H1. (2.15)

In the case that the single particle states are representing fermions, the many particle states
must be antisymmetric with regard to a permutation of two particles. The anti symmetric
Hilbert space of an N particle system is a subspace of H and can be written

HAS = {∣Ψ⟩ ∈ H ; P̂ij ∣Ψ⟩ = −∣Ψ⟩∀i ≠ j ∈ 1,2,3, . . . ,N} . (2.16)

To construct the antisymmetric states we will define the antisymmetrization operator Â.
And to do so, we must first define the permutation operator P̂i1,i2,...,iN which changes the
sequence of particles (1,2,3, . . . ,N) to (i1, i2, . . . , iN). Any permutation of the particles
can now be written as a product of p interchange operators

P̂i1,i2,...,iN = P̂m1,n1P̂m2,n2 . . . P̂np,mp , (2.17)

where the sign of the permutation is

Si1,i2,...,iN = (−1)p. (2.18)

The permutation operator is defined as

Â = ∑

All possible permutations P̂...

1
√
N !
P̂i1,i2,...,iNSi1,i2,...,iN , (2.19)

where 1/
√

(N !) is a normalization factor (note that the total number of possible permuta-
tions is N !). Since P̂ijÂ = −Â, we see that the states

∣ϕi1ϕi2ϕi3 . . . ϕiN ⟩ ≡ Â∣ϕi1⟩⊗ ∣ϕi2⟩⊗ ∣ϕi3⟩⊗ . . . ∣ϕiN ⟩, (2.20)
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are antisymmetric. The adjoint of Pij is the permutation operator defined by the inverse
permutation P −1

ij = Pji meaning that P T = P −1. Consequently, each permutation operator
is a unitary operator and therefore Â must be as well. Since Â is a unitary operator the
normalization and orthogonality of the product states are conserved.

The antisymmetrized product states, with i1 < i2 < i3 < . . . iN , constitute a basis for
HAS ,

HAS = span{∣ϕi1ϕi2ϕi3 . . . ϕiN ⟩; i1 < i2 < i3 < . . . iN}, (2.21)

where we have set i1 < i2 < i3 < . . . iN to assure that all particles are in a unique state and
that every state is represented only once.

The states ∣ϕi1ϕi2ϕi3 . . . ϕiN ⟩ are often written as determinants

∣ϕi1ϕi2ϕi3 . . . ϕiN ⟩ =
1

√
N !

det(ϕi1 , ϕi2 , ϕi3 , . . . , ϕiN ) ≡
1

√
N !

RRRRRRRRRRRRRRRRRRRRRR

ϕ
(1)
i1

ϕ
(1)
i2

. . . ϕ
(1)
iN

ϕ
(2)
i1

ϕ
(2)
i2

. . . ϕ
(2)
iN

⋮ ⋮

ϕ
(N)
i1

ϕ
(N)
i2

. . . ϕ
(N)
iN

,

RRRRRRRRRRRRRRRRRRRRRR
(2.22)

where the superscript (i) denotes the i’th state in a direct product. Determinants are very
useful since they have the desired antisymmetric properties, and the many particle state
vectors are often sloppily referred to as determinants.

2.5 The many particle operators

As we have already discussed, observables are represented by Hermitian operators which
map HAS to itself. Many particle operators are often categorized after the number of par-
ticles that are involved in an interaction. The one body operators involve single particle
interactions, the two body operators involve two particle interactions and so on. Our Hamil-
tonian, as we will see later, only contains one and two body operators, and we will therefore
take a closer look at these cases.

The one body operators takes the form

Ĉ = ĉ⊗ 1⊗ 1⊗ . . .1 + 1⊗ ĉ⊗ 1⊗ . . .1 + ⋅ ⋅ ⋅ + 1⊗ 1⊗ 1⊗ . . . ĉ, (2.23)

where ĉ is an operator in the single particle Hilbert space H1. On the single particle basis
{∣ϕi⟩} the operator is written

ĉ =∑
ij

∣ϕi⟩⟨ϕj ∣ ⟨ϕi∣ĉ∣ϕj⟩, (2.24)

and the amplitude for an interaction between the two many body states ∣ϕn1 . . . ϕnN ⟩ takes
the simple form

⟨ϕn1 . . . ϕnN ∣Ĉ ∣ϕm1 . . . ϕmN ⟩ =
N

∑
i,j=1

⟨ϕni ∣ĉ∣ϕmj ⟩. (2.25)
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A general two particle operator D̂ can be written as a sum of operators

D̂ =
1

2
∑
i≠j
D̂ij (2.26)

where Dij is defined on the two particle space H1 ⊗ H1 of particle i and j and can be
written on the form.

D̂ij = ∑
klmn

dklmn1⊗ . . .1⊗ ∣ϕk⟩⟨ϕm∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
i’th place

⊗1⊗ . . .1⊗ ∣ϕl⟩⟨ϕn∣
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
j’th place

⊗1⊗ . . .1, (2.27)

and the interaction amplitude is

⟨ϕn1 . . . ϕnN ∣D̂∣ϕm1 . . . ϕmN ⟩ =
N

∑
i,j,k,l=1

dninjmkml . (2.28)

The operators representing an observable must obviously map HAS to itself. This im-
plies, as is straight forward to show, that the operators must commute with the antisym-
metrization operator Â. This is always the case for the one body operator Ĉ, but for the two
body operator D̂ it sets some restrictions on the form of dklmn. In our case, the two body
operator is the Coulomb interaction for which dklmn = dmnkl, which means that D̂ and Â
commute. In fact, our Hamiltonian is completely symmetric with regard to the exchange
of two particles since all electrons have the same mass and charge. This means that the
interchange operators have no effect on the operator, and consequently it commutes with
the antisymmetrization operator.

2.6 The variational principle

The variational principle is a general property of quantum systems, and is also the foun-
dation of several numerical many body methods. It states that any state ∣Ψ⟩ ∈ H has an
expectation value for the energy ⟨Ψ∣Ĥ ∣Ψ⟩ which is larger or equal to the ground state en-
ergy. Furthermore, if the expectation value is equal to the ground state energy, ∣Ψ⟩ is a
ground state of the Hilbert space. We will show why this is true for nondegenerate ground
states. Assume that ∣Ψ⟩ is expanded in the basis of eigenfunctions {∣ϕi⟩} of the Hamiltonian
operator

∣Ψ⟩ =∑
i

ci∣ϕi⟩. (2.29)

The expectation value of the Hamiltonian is

⟨Ψ∣Ĥ ∣Ψ⟩ =∑
i

∣ci∣
2εi, (2.30)

where {εi} are the eigenvalues of Ĥ and {ci} are complex weights. Since the ground state
energy ε0 is smaller or equal to all other εi, the normalization requirement ∑i ∣ci∣2 = 1
implies that

∑
i

∣ci∣
2εi ≤ ε0, (2.31)

and only equal in the case that ∣c0∣ = 1 and ci = 0 for i > 0, in which case ∣Ψ⟩ is the ground
state ∣ϕ0⟩. The proof is easily generalized to systems with degenerate ground states, but in
this case the ground state is no longer unique.
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Chapter 3

A brief introduction to the second
quantization formalism

We will now introduce a formalism which is very useful when dealing with systems of many
interacting particles. The formalism will be presented very briefly and with no proofs. There
are numerous texts which give a good introduction to the second quantization formalism
together with relevant theorems and proofs. See for example Shavitt et. al. (2009) [33] or
Gross et. al. (1991) [9].

3.1 Introduction

The second quantization formalism makes use of creation and annihilation operators to add
or remove particles to a quantum state. The annihilation operator ai removes a state ϕi from
a state, and the creation operator a†

i adds a state ϕi,

a2∣ϕ1ϕ2ϕ3 . . . ϕN ⟩ = ∣ϕ1ϕ3 . . . ϕN ⟩, (3.1)

a†
2∣ϕ1ϕ3 . . . ϕN ⟩ = ∣ϕ1ϕ2ϕ3 . . . ϕN ⟩. (3.2)

By defining a set of anticommutation relations for these operators, we can ensure that the
state vectors have the correct antisymmetric properties. The following equations can be
shown to apply to fermionic systems

{a†
i , a

†
j} = {ai, aj} = 0, (3.3)

{a†
i , aj} = δij . (3.4)

It follows that

a†
i ∣ϕn1ϕn2ϕn3 . . . ϕnN ⟩ = 0 if i ∈ {n1, n2, . . . , nN} , (3.5)

ai∣ϕn1ϕn2ϕn3 . . . ϕnN ⟩ = 0 if i ∉ {n1, n2, . . . , nN} . (3.6)

As follows from Eqs. (3.3), (3.4), these relations assure that the state vectors have the correct
symmetry properties since any permutation of two different operators (particles) will lead to
a sign change. The antisymmetric properties are now contained in the algebraic expressions
for the state vectors. Also note that Eq. (3.3) is an expression of the Pauli principle.
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Although this is not strictly correct, these state vectors are often simply referred to as
determinants. The reason is that state vectors that are represented as determinants have
many of the same mathematical properties as the second quantization state vectors. We
will, in the rest of this thesis, comply to the sloppy language and refer to a general state
vector as a determinant. Any such determinant can be written

a†
n1
a†
n2
a†
n3
. . . a†

nN
∣ ⟩ = ∣ϕn1ϕn2ϕn3 . . . ϕnN ⟩, (3.7)

where the indices ni must be ordered in some way to make sure that each determinant is
only represented once. We use the ordering n1 < n2 < n3 < ⋅ ⋅ ⋅ < nN . The state ∣ ⟩ represents
the vacuum state which symbolizes that there are zero particles present in the system. Note
that the vacuum state is normalized ⟨ ∣ ⟩ = 1 and that an annihilation operator working on the
vacuum state, ai∣ ⟩, is defined to be zero.

An important property that follows from the anticommutation relations is that the or-
thogonality of the determinants are preserved. This can be shown by evaluating the inner
product of a†

m1 . . . a
†
mN ∣ ⟩ and a†

n1 . . . a
†
nN ∣ ⟩ which yields

⟨ ∣amN . . . am1a
†
n1 . . . a

†
nM ∣ ⟩ = δm1,n1 . . . δmN,nN , (3.8)

as follows from Eq. (3.4).

3.2 Operators in the second quantization notation

Operators can also be represented in terms of creation and annihilation operators. One body
operators can be written on the form

Ĉ =∑
ij

⟨ϕi∣Ĉ ∣ϕj⟩a
†
iaj , (3.9)

while two body operators can be written on the form

D̂ =
1

2
∑
ijkl

⟨ϕiϕj ∣D̂∣ϕkϕl⟩a
†
ia

†
jalak. (3.10)

The last two equations can be verified by considering the earlier section about many particle
operators. It is often convenient to rewrite the two body operators as

D̂ =
1

4
∑
ijkl

⟨ϕiϕj ∣D̂∣ϕkϕl⟩ASa
†
ia

†
jalak, (3.11)

⟨ϕiϕj ∣D̂∣ϕkϕl⟩AS ≡ ⟨ϕiϕj ∣D̂(∣ϕkϕl⟩ − ∣ϕkϕl⟩). (3.12)

A derivation of the above identities can be found in most texts covering many body quantum
mechanics, and a good reference is Shavitt (2009) [33].

The evaluation of expectation values of products of operators are often made much
simpler by finding the so called normal ordered form. We will make use of normal ordered
operators later, and we will therefore spend the rest of this section to define normal ordering.
A product of operators are said to be normal ordered when all creation operators are to the
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left of all annihilation operators. As an example, consider the operators Â, B̂, Ĉ which are
products of annihilation and creation operators

Â = a†
a1aa2, (3.13)

B̂ = a†
b1ab2, (3.14)

Ĉ = a†
c1ac2. (3.15)

The normal ordering of these operators are

{ÂB̂Ĉ} = (−1)pa†
a1a

†
b1a

†
c1aa2ab2ac2. (3.16)

This is a reordering where the annihilation operators are set to the right of the creation
operators, and p is the number of permutations necessary to reorder the operators. An
interchange of two creation or two annihilation operators would not destroy the normal
order, thus the normal ordering is not unique.

3.3 The time independent Wick’s theorem

Wick’s theorem provides an efficient way of calculating expectation values. We will state
this theorem without a proof, but the full proof can be found in many texts as for example
Gross et. al. (1991) [9]. Before we state the theorem we must introduce contractions. A
contraction of two creation or annihilation operators Â, B̂ is defined as

ÂB̂ = ÂB̂ − {ÂB̂} . (3.17)

Both Â and B̂ are either a creation or an annihilation operator, which means that there are
four possible combinations

a†
ia

†
j = a

†
ia

†
j − a

†
ia

†
j = 0, (3.18)

a†
iaj = aia

†
j − a

†
iaj = 0, (3.19)

aiaj = aiaj − aiaj = 0, (3.20)

a†
iaj = aia

†
j − (−)a†

iaj = {ai, a
†
j} = δij . (3.21)

Further more, contraction of operators within a normal product can be written

{Â . . . B̂ . . . Ĉ . . . D̂ . . . Ê . . . F̂} = (−1)pB̂D̂ĈÊ . . .{Â . . . F̂} , (3.22)

where p is the number of permutations which are needed to move the contracted operators
in front of the normal ordered product. Wick’s theorem says that a product of creation
and annihilation operators is equivalent to the normal ordered product plus the sum of the
normal ordered products with all possible contractions.

ÂB̂ . . . = {ÂB̂ . . .} + ∑
all single c.

{ÂB̂ . . . . . .} + ∑
all double c.

{ÂB̂ . . . . . . . . .} + . . . (3.23)

We can use Wick’s theorem to rewrite operators as a sum of normal ordered products. This
is a convenient form since vacuum expectation values ⟨ ∣{Â . . .}∣ ⟩ always are zero.
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3.4 Particle- hole formalism

Until now, we have used the vacuum state as the reference state. It is however often natural
to use other states as the reference state in which case it is convenient to use the so called
particle-hole formalism. Mathematically, the particle hole formalism is very similar to the
“vacuum reference” formalism, but some mathematical concepts, like normal ordering of
the operators and contractions, have to be redefined.

Assume that we want to use the state ∣c⟩ = a†
c1 . . . a

†
cN ∣ ⟩, where N is the number of

particles, as our new vacuum state, and define all other states relative to this state. The
states {∣ϕci⟩}

N
i=1 are now referred to as hole states while all other states are referred to as

particle states. In the rest of this section we will let indices i, j, k, l symbolize hole states
and indices a, b, c, d symbolize particle states. Now, any state can be written as an excitation
of the reference state

∣cab...ij... ⟩ ≡ a
†
aa

†
b . . . ajai∣c⟩. (3.24)

The creation operator a†
i is sometimes called a pseudo annihilation operator since it annihi-

lates a hole. Likewise, an annihilation operator of a hole state, ai, can be called a pseudo
creation operator since it creates a hole. The full set of psuedo operators are defined

b†
a = a

†
a

ba = aa
} (acts on particle states),

b†
i = ai
bi = a

†
i

} (acts on hole states). (3.25)

The exited states are now written

∣cab...ij... ⟩ ≡ b
†
ab

†
b . . . b

†
jb

†
i ∣c⟩. (3.26)

With this new set of operators, the anticommutation relations, contractions and Wick’s the-
orem will have exactly the same definition as in the “vacuum reference” formalism.
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Chapter 4

Mathematical Modelling of two
dimensional Quantum dots

4.1 Introduction

In the most general sense of the term, a quantum dot is a small quantum system which
is confined in space. But the term is most often used to describe electronic systems that
are trapped in semiconductor structures. During the last few decades, advanced processing
techniques have made it possible to manufacture artificial quantum dots which are trapped
in one or two spatial dimensions, and confinement to less than three dimensions was ex-
perimentally verified already in the early 1970s in GaAs-A1GaAs semiconductors [25].
Confinement by potentials set up by electrostatic gates also allows experimentalists to con-
trol their shape and size and the number of electrons which ranges from one to hundreds
[26].

Our idealized quantum dots are modelled as two dimensional systems, which can be
justified both theoretically and experimentally. As we will come back to later, our quantum
dot wave function is separable in the spatial dimensions. Consequently, if the component
perpendicular to the semiconductor layers are always in the ground state, this component
can then be left out of the description.

We will not discuss the “real” quantum dots any further, but will from now on concen-
trate on our idealized mathematical model. For more information on quantum dots we refer
to the review article of Ref.[26], which discusses both numerical and experimental results.

4.2 The Hamiltonian

The two dimensional quantum dots can be described by a Hamiltonian operator on the form

Ĥ = Ĥ0 + V̂ , (4.1)

where Ĥ0 is an one-body operator which accounts for the single particle kinetic energies
and the interaction with an external electromagnetic field, and V̂ is a two-body operator
which accounts for the Coulomb interaction between the electrons. The single particle
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Hamiltonian can be written on the general form

Ĥ0 →H0(r1, . . . , rN ,p1, . . . ,pN) =∑
i

(
1

m∗ [pi −
e

c
A(ri)]

2

+ Vext(ri)) , (4.2)

where A(r) is the vector potential of an external magnetic field, and (ri,pi) is the position
and momentum coordinates. The magnetic moment of the electrons is ignored, thus the
spin-spin and the spin-orbit couplings are assumed to be negligible. We also assume that
there is no external magnetic field and set the vector potential A(r) to zero.

The external electrostatic field Vext(r) is taken to be a parabolic potential. This is a
much used approximation in theoretical physics, since the shape of any conservative poten-
tial is approximately parabolic close to the minima. With these assumptions, the one-body
part of the Hamiltonian becomes

ĤH0 = T̂ + V̂ext, (4.3)

T̂ →∑
i

1

m
pi = −

h̵2∇2

2m
, (4.4)

V̂ext →
mω2

2
R2, R = (r1, . . . , rN), (4.5)

where ω is the oscillator frequency, h̵ is the reduced Planck constant and m is the electron
mass. To simplify the expressions we choose to measure energies in units of h̵ω and lengths
in the units of (h̵/(mω))1/2. The single particle Hamiltonian can then be written on the
dimensionless form

ĤHO(r) =
1

2
r2 −

∇2
r

2
, (4.6)

and the Coulomb operator can be written

V̂ →∑
i<j
V (ri, rj) =∑

i<j

λ

rij
, rij = ∣ri − rj ∣, λ =

1

h̵ω
(

e2

4πε0ε
) . (4.7)

4.3 The single particle wave functions

We will first take a look at the eigenstates of the single particle Hamiltonian Ĥ0 which we
will refer to as spin orbitals or simply as the single particle wave functions. We will later
use these to construct the many particle basis using the same strategy as we discussed in the
previous chapters. Since the Hamiltonian has no spin coupling, the electron spins does not
affect the description of the single electrons. Therefore, we will leave them out for now and
explicitly include them in the mathematical description in the next section where we discuss
the many particle basis.

We denote the single particle wave functions {ϕ1, ϕ2, . . .}. These are found by first
noting that the single particle Hamiltonian can be written as a sum

ĤHO =
1

2
∑
i

(x2i −
δ2

δx2i
) +

1

2
(y2i −

δ2

δy2i
) , ri = (xi, yi). (4.8)
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Figure 4.1: Illustration of the single particle basis, and an example of how the spin orbitals can be
indexed. Each arrow ↑ corresponds to a spin +1/2 state, and each ↓ corresponds to a spin −1/2 state.
Each vertical line corresponds to an orbital with a given magnetic quantum number m and principal
quantum number n. The numbers next to the arrows corresponds to the index of the spin orbital. For
example, ϕ0 has spin −1/2, m = n = 0 and ϕ10 has spin +1/2 and n = 0, m = 2.

Thus the solution is separable, and can be written as a product of functions that depends
only on one of the variables {xi} or {yi}. These are well known equations which describe
the behaviour of the so called quantum harmonic oscillator [31], and the solutions can be
represented in many ways. Because of the rotational symmetry of the quantum dots, it is
often convenient to represent the single particle wave functions as the eigenfunctions of
the angular momentum operator L̂Z which can be shown to commute with ĤH0. In two
dimensions and in polar coordinates ϕi can be written

ϕi(r)→ ϕn,m(r, θ) = [
2n!

(n + ∣m∣)!
]

1/2
1

2π
eimθr∣m∣L∣m∣

n (r2)e−r
2/2, r = ∣r∣ , (4.9)

which are the so called Fock- Darwin orbitals, and where Lm are the Laguerre polynomials.
Each i is mapped to a unique pair of quantum numbers (n,m), where m is the magnetic
quantum number and n is the principal quantum number

n ∈ 0,1,2, . . . , m ∈ {−n,−n + 2, . . . , n}. (4.10)

The single particle energy can be shown to be

∫ dr rdθ ϕ†
n,m(r, θ)HHO(r, θ)ϕn,m(r, θ) = 2n + ∣m∣ + 1, (4.11)

in units of h̵ω.

4.4 The many body wave functions

The many body wave functions are constructed from the harmonic oscillator eigenfunctions.
But to describe the many particle system, we must also include spin. Each single particle
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wave function has a triplet of quantum numbers (m,n, s) which uniquely specifies the
quantum state.

ϕi = ϕmi,ni ⊗ χsi , (4.12)

where χsi is the spinor. The N particle wave function is the determinant

∣Di⟩ = ∣ϕi1 , . . . , ϕiN ⟩ ≡
1

N !
det (ϕi1 , . . . , ϕiN ) , (4.13)

which we will write in second quantized form as

∣Di⟩ = a
†
i1
. . . a†

iN
∣ ⟩. (4.14)

4.5 The Normal ordered Hamiltonian

To simplify the calculation of different expectation values, we want to express the Hamil-
tonian on normal ordered form in the particle-hole formalism. Our Hamiltonian can be
written on the general form

Ĥ = ĤHO + V̂ =∑
pq

⟨ϕp∣ĤHO ∣ϕq⟩a
†
paq +

1

4
∑
pqrs

⟨ϕpϕq ∣V̂ ∣ϕrϕs⟩ASa
†
pa

†
qasar. (4.15)

We will now rewrite the Hamiltonian in normal ordered form in the particle-hole formalism.
We define the contractions

a†
paq = ⟨Dα∣a

†
paq − {a†

p, aq}∣Dα⟩, (4.16)

where ∣Dα⟩ can be any state

∣Dα⟩ = a
†
α1
a†
α2
. . . a†

αN
∣ ⟩. (4.17)

We use the convention that the indices

p, q, r, s ∈ [0,2M], (4.18)

can represent any single particle wave function while

i, j, k, l ∈ {α1, α2, . . . , αN},

a, b, c, d ∉ {α1, α2, . . . , αN}. (4.19)

Here, 2M is the total number of spin orbitals, and {α1, α2, . . . , αN} are the indices of the
occupied orbitals. Note that we do not necessarily take i, j, k, l to be states below the Fermi
level.

According to Wick’s theorem and using the fact that ∣ϕp⟩ are the eigenfunctions of ĤHO

we arrive at the expression

ĤHO =∑
pq

⟨ϕp∣ĤHO ∣ϕq⟩ ({a
†
paq} + {a†

paq}) =∑
p

⟨ϕp∣ĤHO ∣ϕp⟩{a
†
pap} +∑

i

⟨ϕi∣ĤHO ∣ϕi⟩.

(4.20)
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The Coulomb energy operator V̂ is also rewritten on normal form using Wick’s theorem.
Only the nonzero contractions are included in the derivation

V̂ =
1

4
∑
pqrs

⟨ϕpϕq ∣V̂ ∣ϕrϕs⟩AS × ({a†
pa

†
qasar} + {a†

pa
†
qasar} + {a†

pa
†
qasar}

+ {a†
pa

†
qasar} + {a†

pa
†
qasar} + {a†

pa
†
qasar} + {a†

pa
†
qasar}) (4.21)

=
1

4
∑
pqrs

⟨ϕpϕq ∣V̂ ∣ϕrϕs⟩AS{a
†
pa

†
qasar} +∑

pqi

⟨ϕpϕi∣V̂ ∣ϕqϕi⟩AS{a
†
paq}

+
1

2
∑
ij

⟨ϕiϕj ∣V̂ ∣ϕiϕj⟩AS . (4.22)

The total Hamiltonian can now be written

Ĥ =∑
p

⟨ϕp∣ĤHO ∣ϕp⟩{a
†
pap} +

1

4
∑
pqrs

⟨ϕpϕq ∣V̂ ∣ϕrϕs⟩AS{a
†
pa

†
qasar}

+∑
pqi

⟨ϕpϕi∣V̂ ∣ϕqϕi⟩AS{a
†
paq} +Eα (4.23)

Eα =∑
i

⟨ϕi∣ĤHO ∣ϕi⟩ +
1

2
∑
ij

⟨ϕiϕj ∣V̂ ∣ϕiϕj⟩AS . (4.24)

4.6 The Hamiltonian matrix elements

We will now use the normal ordered Hamiltonian to find the general expressions for the
Hamiltonian matrix elements ⟨Dα∣Ĥ ∣Dβ⟩. From Eq. (4.24) we see that only states that dif-
fers by less than three orbitals are connected which means that all non zero matrix elements
can be written either as a diagonal element

⟨Dα∣Ĥ ∣Dα⟩, (4.25)

as the amplitude of a single excitation

⟨Dα∣Ĥ{a†
aai}∣Dα⟩, (4.26)

or as the amplitude of a double excitation

⟨Dα∣Ĥ{a†
aa

†
baiaj}∣Dα⟩. (4.27)

Here we have used the same conventions for the indexing as in Eq. (4.19), with ∣Dα⟩ as
the reference state. The closed form expressions of the matrix elements are calculated by
inserting the normal ordered Hamiltonian (4.24). For the diagonal elements we obtain the
expression

⟨Dα∣Ĥ ∣Dα⟩ =∑
i

⟨ϕi∣ĤHO ∣ϕi⟩ +
1

2
∑
ij

⟨ϕiϕj ∣V̂ ∣ϕiϕj⟩AS . (4.28)

The single excitations have the amplitude

⟨Dα∣Ĥ{a†
aai}∣Dα⟩ =∑

pqj

⟨ϕpϕj ∣V̂ ∣ϕqϕj⟩AS{a
†
paq}{a

†
aai} =∑

j

⟨ϕaϕj ∣V̂ ∣ϕiϕj⟩AS , (4.29)
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and the double excitations have the amplitude

⟨Dα∣Ĥ{a†
aa

†
baiaj}∣Dα⟩ =

1

4
∑
pqrs

⟨ϕpϕq ∣V̂ ∣ϕrϕs⟩AS

×({a†
pa

†
qasar}{a

†
aa

†
baiaj} + {a†

pa
†
qasar}{a

†
aa

†
baiaj}

+{a†
pa

†
qasar}{a

†
aa

†
baiaj} + {a†

pa
†
qasar}{a

†
aa

†
baiaj})

= ⟨ϕaϕb∣V̂ ∣ϕiϕj⟩AS . (4.30)

The single particle energies ⟨ϕi∣ĤHO ∣ϕi⟩ are calculated using Eq. (4.11) while the anti-
symmetric Coulomb matrix elements ⟨ϕiϕj ∣V̂ ∣ϕiϕj⟩AS are defined as the integrals

⟨ϕpϕq ∣V̂ ∣ϕrϕs⟩AS = Ipqrs⟨χsp ∣χsr⟩⟨χsq ∣χss⟩ − Ipqsr⟨χsp ∣χss⟩⟨χsq ∣χsr⟩, (4.31)

Iklpq ≡
1

4
∫ dr1dr2ϕ†

k(r1)ϕ†
l (r2)V (r1, r2)ϕp(r1)ϕq(r2). (4.32)

where the spinors are orthonormal and obey the relation ⟨χs1 ∣χs2⟩ = δs1s2 . Kvaal (2008)
has shown how the integrals Iklpq can be efficiently calculated in Ref. [15]. In our imple-
mentation, we have used use the open source C++ library OpenFCI, which is described in
the same article, to calculate these integrals.
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Part II

Numerical many body methods
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Quantum many body systems are notoriously difficult to solve, and only the
simplest systems, such as the two particle quanum dot, can be solved on a
closed form. More complex systems are always solved using numerical meth-
ods, and in most cases some approximation or simplification must be done to
reduce the computational cost to a realistic level. Typical examples of such
approximations are basis truncations, meaning that the only a subspace of the
full state space is used. Another example is the fixed node approximation of
Diffusion Monte Carlo that we will discuss later in this chapter.

In this part we will take a closer look at three classes of many body methods,
namely Full Configuration Interaction Theory (FCI), Projector Monte Carlo
(PMC) methods and Hartree-Fock (HF) methods. These use different approaches
to calculate ground state values of different many body systems, and have dif-
ferent advantages and weaknesses. The reason why we want to present FCI and
PMC is that the Full Configuration Interaction Quantum Monte Carlo Method
(FCIQMC), which we will present in the next part, can be seen as a hybrid be-
tween these approaches. It shares some of the strengths and weaknesses of both
methods, and it is therefore instructive to take a closer look at these first. The
HF method is introduced because it provides a method to unitarily transform
the spin orbitals to a more favourable basis, which we hope will speed up the
convergence of our simulations.
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Chapter 5

The Full Configuration Interaction
method

5.1 Introduction to the method

In this section we will introduce a numerical method which is called Full Configuration
Interaction Theory (FCI). This is the conceptually simplest of the many body methods and
yields exact solutions to the stationary Schrödinger equation within a given subspace of the
full state space. To be more specific, FCI solves the eigen problem

P̂RĤP̂R∣Ψi⟩ = εi∣Ψi⟩, (5.1)

where P̂R is a projection operator 1 which projects the full Hilbert space onto a subspace
which we call the FCI space. These subspaces can be defined in several ways, and two
commonly used FCI spaces are the energy cut space PR and the direct product space MR,
which in our case are defined as

PR = span{∣Di⟩ ; ⟨Di∣ĤHO ∣Di⟩ ≤ R + 1} , (5.2)

MR = span{∣Di⟩ = ∣ϕn1ϕn2 . . . ϕnN ⟩ ; ⟨ϕni ∣ĤHO ∣ϕni⟩ ≤ R + 1} , (5.3)

where ∣ϕi⟩ are the harmonic oscillator eigenfunctions as defined earlier. Note that it is not
clear which of these truncations give the most accurate result in terms of the dimensionality
of the subspace. Although it can be argued that more physical relevant states are included in
the energy cut spaces, it is not obvious which of the truncations that is the most favourable
[14].

According to the variational principle, solving the eigen problem Eq. (5.1) is analogous
to solving the minimization problem [8]

E(R) = min(⟨Ψ∣P̂RĤP̂R∣Ψ⟩). (5.4)

This has two important implications. The first is that E(R1) ≤ E(R2) when R1 > R2, such
that the FCI ground state energy is either improved or unchanged when we increase the
size of the FCI space. Thus the FCI ground state energy can be systematically improved by

1The projection P̂ onto the subspace span{∣ϕi⟩} is defined as P̂ = ∑i ∣ϕi⟩⟨ϕi∣. Note that P̂ † = P̂ = P̂ P̂ .
The projection onto the excluded or truncated space Q̂ = 1 − P̂ has the same properties.
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Figure 5.1: Modelspaces P6, M6 and P12 for quantumdots with NP = 1 particle. Here PN and
MN is the energy cut space and the direct product space respectively, truncated on N + 1 shells.
Note that P6 ⊂M6 ⊂M12 and that in general PN ⊂MN ⊂MNNP

for all NP

increasing the number of shells in the truncated basis which makes it possible to check if the
energies have converged. And secondly, the method is variational, such that any FCI energy
sets an upper bound to the energies of a system. Variational methods makes it possible to do
a systematic search for lower ground state energies, knowing that the lower result always is
the better one.

Implementations of the FCI algorithm involves large scale diagonalization of the Hamil-
tonian matrix

Hij = ⟨Di∣P̂RĤP̂R∣Dj⟩. (5.5)

The most common method is to use the Lanczos algorithm [8], which requires at least two
vectors of length equal to the dimension of the FCI space to be stored. The problem is that
the dimensionality of the FCI spaces scales as

(
M

N
), (5.6)

where N is the number of particles and M is the number of spin orbitals in the basis [12].
This limits the FCI algorithm to small systems with only a few particles or crude approxi-
mations with a low R. As an example we look at the 6 particle quantum dot in 20 shells.
The basis is filtered such that only the states with m = s = 0 are included. The filtered basis
has a direct product space with dimensionality dim(M19) ∼ 4×1010 (see Tab. 5.1) which is
already at the absolute upper limit of what an FCI implementation can tackle on a modern
super computer [20].

5.2 Error analysis of the FCI energies

Kvaal (2009)[16] has analyzed the truncation error of the FCI method with the harmonic
oscillator basis in energy cut spaces and with Coulomb particle- particle interactions. A
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R dim(MR)

1 1
2 64
3 1490
4 16451
5 115148
6 594118
7 2459910
8 8621028
9 26502841
10 73293890
11 185741360
12 437408455
13 967633556
14 2028188748
15 4055864256
16 7782042912
17 14393796941
18 25765329848
19 44783684274
20 75798808967

Table 5.1: This table shows the dimension of “filtered” FCI spaces with differentR for a six particle
quantum dot. By filtered we mean that only the physically relevant states with m = s = 0 are
included. At R = 20, the dimensionality is already at the upper limit of what is possible to simulate
with FCI on high level supercomputing facilities. It is worth mentioning that the FCI energy at
R = 19 shells with the harmonic oscillator basis is 20.17H∗, approximately 10mH∗ higher that the
true ground state energy at approximately 20.16H∗. These results are listed in chapter .

parametrization of the approximate error of the energy as function of R is also derived.
Without going into details, we will present Kvaals error estimate. Kvaal has shown that the
following relation holds for two dimensional systems

∆E(R) ≤ [1 + ν(R)]
∞
∑

r=R+1
(NP + r) r

−c, (5.7)

where ∆E(R) is the error in the energy E(∞)−E(R) resulting from the basis truncation,
c is a real constant, ν(R) is an unknown function with the property

ν(R) Ð→
R→∞

0, (5.8)

and NP is the number of particles. Kvaal has analyzed the error in the energy cut basis,
but his results will also apply to FCI energies calculated in the direct product basis. The
reason for this is that the direct product basis energies are bounded from below and above
by energy cut energies since

PR ⊂ MR ⊂ PNPR. (5.9)

In other words, the direct product basis error will be somewhere in the range

[∆E(R),∆E(NPR)].
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The Hilbert spaces MR and PR is much closer in dimensionality than MR and PNPR. We
will therefore assume that we can use the same error formula for the spaces MR and PR.
As we will see later, this formula seems to hold very well for the systems we are studying.

We will also assume that ν(R) is negligible and rewrite Eq. (5.7) on the form

∆E ≈ b
∞
∑

r=R+1
(NP + r) r

−c, b ∈ R. (5.10)

This assumption is justified by Kvaal’s [16] results. He has performed FCI calculations on
two dimensional quantum dots in the energy cut basis with 3,4 and 5 particles, and for these
systems ν(R) is shown to be small. Also, since PR ⊂ MR, we expect ν(R) to decay even
faster in the direct product basis.

5.3 Extrapolation Formulas

We have used Eq. (5.10) to parametrize the energy as a function of the number of shells.

E(R) ≈ a − b
R

∑
r=1

(NP + r)r
−∣c∣, (5.11)

where a, b, c are real constants. This formula has an error ∼ E(R)ν(R), and consequently
it will become more accurate as R increases and ν(R) becomes small. This means that we
should avoid extrapolations with energies ⟨P̂RĤP̂R⟩ for small R.

We also want to find the extrapolated energy at R →∞ given that we know the optimal
values of a, b, c. We notice that E(∞) can be written in terms of the Riemann zeta function
ζ(c) such that

lim
R→∞

E(R) ≈ a − b[NP ζ(c) + ζ(c − 1)], (5.12)

where ζ(c) = ∑∞r=1 r
−c, which is known to converge for all c > 1.
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Chapter 6

Projector Monte Carlo Methods

6.1 Introduction

The projector Monte Carlo (PMC) Methods includes a range of methods which are tailored
to calculate properties of low energy states of quantum mechanical systems, and includes
algorithms like Diffusion Monte Carlo (DMC), Green’s Function Monte Carlo and the re-
cently developed Full Configuration Interaction Quantum Monte Carlo (FCIQMC). These
methods are all based on the same theoretical foundation, namely that the so called projec-
tion operator P̂t, will project out the lowest energy state in the Hilbert space. The projection
operator is defined as

P̂t = e
−t(Ĥ−S), S ∈ R, (6.1)

where S is a real shift of the energy which we will soon come back to, and the projected
state is

∣Ψ(t)⟩ = P̂t∣Ψ0⟩. (6.2)

Assumed that the initial state ∣Ψ0⟩ has a nonzero overlap with the ground state, the large
time ∣Ψ(t)⟩ will be proportional to the ground state. To see why this is so we consider the
general wave function

∣Ψ⟩ =∑
i

ci∣ψi⟩, (6.3)

where {∣ψi⟩} is the eigenfunctions of the Hamiltonian Ĥ with the corresponding eigenval-
ues {Ei}. The projected state can now be written

∣Ψ(t)⟩ = P̂t∣Ψ⟩ =∑
i

ci∣ψi⟩e
−t(Ei−s). (6.4)

The vector ci∣ψi⟩e−t(Ei−S) will decay to zero if Ei > S, will be constant if Ei = S and will
increase exponentially if Ei < S. In the case that S = E0 and the overlap between the initial
state and the ground state c0 is nonzero, it is evident that

lim
t→∞

P̂t∣Ψ⟩ = lim
t→∞
∑
i

e−(Ei−S)tci∣ψi⟩→ c0∣ψ0⟩. (6.5)

35



Also note that in the case of a S ≠ ε0, the ground state will still dominate since the ground
state always has the greatest exponent. The basic idea of PMC algorithms is to solve the
above equation by expressing the ground state as Markov chain, and to find the steady state
solution iteratively. This can be done by noting that

P̂nτ = e
−(Ĥ−S)nτ

= (P̂τ)
n, (6.6)

where τ is a small time step and n is a positive integer. By repeatedly multiplying with the
operator P̂τ we arrive at the large t solution

lim
n→∞

(P̂τ)
n
∣Ψ⟩→ ∣ψ0⟩. (6.7)

From this equation we see that we can express the time evolution of the projected state as a
Markov chain

∣Ψ(n+1)
⟩← P̂τ ∣Ψ

(n)
⟩, where lim

n→∞
∣Ψ(n)

⟩→ k∣ψ0⟩, k ∈ C. (6.8)

where the steady state solution is the ground state. This equation is the starting point for
all PMC algorithms. In general, the different PMC algorithms utilize different methods
to approximate the projection operator. For example in FCIQMC, the projection operator
is approximated as a first order Taylor expansion, while in DMC it is approximated as a
Green’s function.

We will look closer at two Projector Monte Carlo algorithms, namely DMC and FCIQMC.
We will first look at DMC and discuss some of the advantages and shortcomings of this al-
gorithm. This will also serve as an introduction to the next part where we give a thorough
presentation of the FCIQMC algorithm.

6.2 Diffusion Monte Carlo

In this section we will explain the basics of the DMC algorithm and also discuss the main
difficulties and sources of error.

6.2.1 The projection operator and the short time approximation

DMC finds the projected state by solving the integral

Ψ(R, t) = ∫ G(R,R′, t)Ψ(R′
)dR′, (6.9)

where G is the Green’s function

G(R,R′, t) = ⟨R∣e−t(Ĥ−S)∣R′
⟩ =∑

i

e−t(Ei−S)ψi(R′
)ψ∗i (R), Ψ(R) = ⟨R∣Ψ⟩. (6.10)

Because the eigenfunctions ∣ψi⟩ are orthogonal

∫ ψi(R)ψ∗j (R)dR = ⟨ψi∣ψj⟩ = δij , (6.11)

it is straight forward to show that

∫ G(R,R′, t)Ψ(R)dR′
=∑

i

ciψi(R)e−t(εi−S), (6.12)
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which is the definition of the projected state in Eq. (6.4).
This integral can be sampled directly using Monte Carlo techniques, but this has proven

to be an inefficient approach, mainly because the Green’s function contains singularities
that makes the simulations very unstable [10]. It is known to be a more efficient approach
to use a modified Green’s function and to solve the integral

f(R, t) = ∫ G̃(R,R′, t)f(R′,0)dR′, (6.13)

where

f(R, t) = ΨT (R)Ψ(R, t), (6.14)

G̃(R,R′, t) = ΨT (R)G(R,R′, t)
1

ΨT (R′)
. (6.15)

The trial wave function ΨT must be chosen as a wave function which closely resembles the
ground state for this approach to be efficient. As we see, Ψ(R, t) has exactly the same time
dependency as before.

By assuming that the Green’s function is constant during a time interval τ , it can be
shown that it can be written on the form [39]

G̃(R1,R2, τ) =Me−
1
2τ

∣R2−R1− 1
2

F(R1)∣
2

e
−τ[EL(R2)+EL(R1)

2
−S]

+O(τ2). (6.16)

whereM is a normalization factor. This is known as the short time approximation and is,
as we will discuss later, one of two main sources of numerical error. The first factor in eq.
(6.16) is a Gaussian distribution

N (R2,R1, τ) = e
− 1

2τ
∣R2−R1− 1

2
F(R1)∣

2

, (6.17)

where F is the so called quantum force

F(R) = 2
∇ΨT (R)

ΨT (R)
. (6.18)

The second factor is the so called the weight function

W(R2,R1, τ) = e
−τ[EL(R2)+EL(R1)

2
−ET ], (6.19)

where EL is the local energy

EL(R) =
ĤΨ(R)

Ψ(R)
. (6.20)

The trial wave function is constructed such that EL has no singularities, typically by in-
troducing the so called Jastrow factor, since this reduces the numerical instabilities of the
DMC algorithm.
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6.2.2 The Diffusion Monte Carlo Algorithm

In DMC, the function f(R, t) is represented as a distribution of walkers with the coordinates
{Ri}

N

i=1, such that

f(R, t) ≈ ∫ dR
1

N

N

∑
i=1
δ(R −Ri

), (6.21)

which is only exact in the limit N → ∞. The walkers follow a set of dynamical rules
which are derived from Eqs. (6.16), (6.13), and will converge to a distribution which is
proportional to ΨT (R)ψ0(R). We will now summarize the DMC algorithm in a few steps
to illustrate how it works.

(i): First, the initial distribution is chosen to be f(R,0) = ∣Ψ(R)∣2, which should be
close to the ground state. Such distributions are typically obtained using variational
techniques like Variational Monte Carlo [10]. A number of N samples (or walkers)
{Ri

0}
N

i=1 are drawn from this distribution.

(ii): During a single time step, f evolves according to the equation

f(R, τ(n + 1)) = ∫ dR′G̃(R,R′, τ)f(R′, τn)

= ∫ dR′
N (R,R′, τ)W(R,R′, τ)f(R′, τn). (6.22)

In the limit of a large number of walkers, f(R, τ(n+ 1)) is proportional to the distri-
bution

{W(Ri
n+1,R

i
n, τ)}

N

i=1 , (6.23)

where Ri
n+1 is sampled from the probability distributionN (R,Ri

n). Instead of storing
the weightsW each walker is either cloned or removed from the simulation according
to the branching rule:

• Calculate the number Mi = floor(W(Ri
n+1,R

i
n, τ) + (U − 1/2)) where U is a

random uniform between 0 and 1.

• If Mi = 0 the i’th walker is removed from the simulation. If M > 1, M − 1 new
walkers are added to the simulation in the same coordinate as the i’th walker.

In the limit of a large number of walkers, this yields the correct results since

⟨floor(a + (U − 1/2)⟩ = a, (6.24)

for any number a.

(iii): The shift S should be equal to E0 to project out the ground state. But since E0 is
unknown S is adjusted to stabilize the population of walkers. From Eq. (6.4) we
see that a large S results in a population growth and vice versa, and that the S that
keeps the number of walkers constant is the ground state energy. For this purpose it
is common to use an equation on the form [10]

S ← S −
k

τ
log(

NW

NP
), (6.25)
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where NW is the current number of walkers, NP is the desired number of walkers
and k is some real number which should be chosen such that the fluctuations of S are
minimized.

(iv): Steps (ii), (iii) are repeated a number of times to thermalize the distribution. After
this step, the distribution should be ΨT (R)ψ0(R).

(v): When the thermalization is finished, one starts collecting observables. As an example,
the energy can be found by taking the average of the shift S during a simulation.

(vi): Steps (ii), (iii) and (v) are repeated until a sufficient number of samples are collected.

There are many details and possible optimizations that are left out here, but a thorough
discussion of this algorithm can be found in Res. [39].

6.2.3 Systematic errors

DMC is subject to a time step error which stems from the short time approximation of the
Green’s function, but this problem can often be overcome by extrapolating the results to the
limit τ → 0. More severe is the so called sign problem, which is the main difficulty of DMC
and PMC methods in general, and which is connected to the antisymmetry of fermionic
wave functions. As we remember, fermionic wave functions with identical particles must
be antisymmetric with regard to the exchange of two particles, which means that such wave
functions has regions of both negative and positive sign. These regions are separated by
the nodal surfaces where ψ0 = 0 and changes its sign (has a nonzero gradient). In fact,
the product f = ΨTψ0 should be negative in the regions where ΨT and ψ0 have different
signs. From our interpretation of f as a distribution of walkers, it is restricted to be positive
everywhere, meaning that our algorithm only can be exact in the case where ΨT and ψ0

have exactly the same nodal surfaces or ψ0 is positive everywhere (bosonic systems).
The first to propose a method to deal with the sign problem was Anderson (1975) [1]

who setW = 0 (removing the walker) for any step crossing a node of the trial wave function,
thus imposing the nodal surfaces of the trial function. By using the fixed node approxima-
tion, the assumption is made that ΨT has the same nodes as ψ0. This is the only fundamental
assumption made in the theory behind DMC, and if the exact nodes ψ0 where known, DMC
would in principle be exact for systems of identical fermions.

The fixed node approximation is shown to produce energies that are higher than the
ground state [27], thus the method is variational. However, since there are no system-
atic methods of improving the nodes, the method is not systematically improvable and this
means that it is difficult to control the fixed node error.
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Chapter 7

The Hartree-Fock method

7.1 Overview

The Hartree- Fock (HF) method [12], is an approximate method to solve the Schrödinger
equation, and can be seen as a mean field approximation where the interactions between
the particles are replaced by an averaged interaction. The result is that the many particle
problem is effectively reduced to a single particle problem where each particle only sees
the mean field. The HF method is numerically cheap, but since the method includes only
selected correlations, it does in general provide less accurate results than FCI or the DMC.

Formally, the HF ansatz assumes that the wave function can be written as a single de-
terminant

∣ΨHF ⟩ = ∣ϕ̃1, . . . , ϕ̃NP ⟩, (7.1)

where NP is the number of particles in the system. The HF determinant ∣ΨHF ⟩ is the
determinant that solves the equation

EHF = min [⟨ΨHF ∣Ĥ ∣ΨHF ⟩] . (7.2)

According to the variational principle, this is the single determinant with the energy that is
closest to the ground state energy. In practice, the HF determinant can be found by varying
the single particle basis {ϕj}

M
i=1

∣ϕ̃i⟩ =∑
j

Cij ∣ϕj⟩, (7.3)

where the basis {ϕ̃j}
M
i=1 that solves Eq. (7.2) is the so called HF basis, and Cij is unitary in

the sense that

∑
j

C∗
ijCjk = 1. (7.4)

Note that unitarity assures that expectation values and the normalization of the wave func-
tion are conserved.

The reason why we are interested in the HF method is that it can be used to optimize the
single particle basis. The HF basis yields a better starting point for other numerical methods
compared with the harmonic oscillator basis. The HF basis is routinely used together with
Diffusion Monte Carlo [22], Coupled Cluster Theory [24], Full Configuration Interaction
Quantum Monte Carlo [3] as well as other numerical many body methods.
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7.2 The Roothaan-Hartree-Fock equations

In this section we will take a closer look at how the minimization of the single determinant
energy can be performed numerically. We will see that the most costly operation is the
diagonalization of an M ×M matrix, where M is the number of single particle orbitals in
the basis. Note that M never becomes very large, and that even for simulations with 30
shells, M does not exceed 103.

For a Hamiltonian on the form Ĥ = ĤHO + V̂ , where ĤHO is an one-body operator and
V̂ is a two-body operator, it can be shown that the minimimization problem of Eq. (7.2) can
be written as an eigenvalue problem [30]

∑
γ

HHF
αγ Cκγ = ekCκα, (7.5)

HHF
αγ = ⟨ϕα∣ĤHO ∣ϕγ⟩ +

NP

∑
α=1
∑
βδ

C∗
αβCαδ⟨ϕαϕβ ∣V̂ ∣ϕγϕδ⟩AS , (7.6)

which can be expressed as a matrix equation

HHFC = Ce, (7.7)

where e is a diagonal matrix and C and HHF are matrices with elementsCij andHHF
ij . This

equation is a non linear eigenvalue problem that must be solved iteratively. The columns
of C and the diagonal elements of e are simply the eigenvectors and the eigenvalues of the
matrix HHF , and can thus be found by diagonalizing HHF . However, HHF is dependent
on the elements of C, and must be recalculated every time C is updated. This iterative
procedure will converge to the self consistent solution when certain stability criteria are
fulfilled. The convergence properties are discussed in Ref. [12].
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Part III

Full Configuration Interaction
Quantum Monte Carlo
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Full Configuration Interaction Quantum Monte Carlo (FCIQMC) is an “ab ini-
tio” method which is rooted in basic quantum mechanical principles without
making any assumptions or approximations. The FCIQMC algorithm promises
to calculate the exact Full Configuration Interaction (FCI) value within a given
Hilbert space, but usually at a much lower computational cost than FCI meth-
ods. Similar to the approach used in DMC, the ground state is found by cal-
culating the projected state P̂t∣Ψ⟩, but the integration is not performed in the
coordinate space but in the discrete space of Slater determinants. Because of
the inherent anti- symmetric properties of this basis, the infamous sign problem
is not as severe for FCIQMC as for other projector methods. See for example
Ref. [13] for a thorough analysis of this subject.

The algorithm was first made famous by Booth et. al. (2009) [3]. They were
able to find the FCI values for different molucules in very large Hilbert spaces,
like for example the NaH molecule with an FCI basis of more than 1012 deter-
minants. Although these results are impressive and far out of the scope of FCI,
the basic FCIQMC algorithm is limited due to the unfavourable scaling with
increased basis sizes. In 2010, an improvement to the algorithm was proposed
by Cleland et. al. [4]. The improved algorithm, dubbed i-FCIQMC, made it
possible to do simulations with Hilbert spaces vastly larger than the original
algorithm could handle. A series of articles have since then been published
where the new method is applied to different systems, and produce what are
believed to be nearly unbiased results. It is worth mentioning the article by
Shepherd et. al. (2012) [34], where ground state values of the homogenous
electron gas with a Hilbert space with 10108 determinants are calculated.

In the following chapters, we aim to give a thorough introduction to the FCIQMC
algorithm and the optimized algorithm i-FCIQMC.
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Chapter 8

The FCIQMC algorithm

In this chapter will use the following notation. The general wave function is written as

∣Ψ⟩ =∑
i

vi∣ψi⟩, (8.1)

where {vi} are complex coefficients and {ψi} is the eigenfunctions of the Hamiltonian
with the corresponding eigenvalues {Ei}. The ground state is expanded in the determinants
{∣Di⟩}, which is constructed from the spin orbitals {ϕi}.

ψ0 =∑
i

Ci∣Di⟩, (8.2)

the CI coefficients of the ground state wave function satisfy the stationary Schrödinger
equation in terms of the eigenvalue problem

∑
j

⟨Di∣Ĥ ∣Dj⟩Cj = E0Ci, (8.3)

where E0 is the lowest eigenvalue of Ĥ on the FCI basis.

8.1 The mathematical approach

From the last chapter we remember that the projected state can be found by iterating over
the equation

∣Ψ(n)
⟩← P̂τ ∣Ψ

(n)
⟩, (8.4)

where limn→∞ ∣Ψ(n)⟩ is proportional to the ground state ∣ψ0⟩ if the overlap ⟨Ψ(0)∣ψ0⟩ is
different from zero and the energy shift S of the projection operator P̂τ = e−τ(Ĥ−S) is equal
to the ground state value E0. Our first aim is to formulate this equation in the FCI basis and
in terms of the coefficients Ci. The projection operator is approximated as the first order
Taylor expansion

P̂τ = 1 − (Ĥ − S)τ +O([Ĥ − S]2τ2). (8.5)

We now apply this operator on the initial state expressed on the FCI basis

∣Ψ(n)
⟩→∑

i

C
(n)
i ∣Di⟩, (8.6)
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and end up with the expression

∑
i

C
(n+1)
i ∣Di⟩ ≈ (1 − (Ĥ − S)τ)∑

i

C
(n)
i ∣Di⟩ (8.7)

⇓

C
(n+1)
i ≈ C

(n)
i −∑

j

(Hij − ∂ijS)τC
(n)
j

= C
(n)
i − (Hii − S)τC

(n)
i −∑

j≠i
HijτC

(n)
j . (8.8)

Here we have used Hij = ⟨Di∣Ĥ ∣Dj⟩. We will from now on omit the index n in our
equations.

A DMC inspired approach is used to find the steady state solution of Eq. (8.8). The
coefficients {Ci} are represented by a population of NW walkers α which are distributed
on the determinants Diα and with a sign sα = ±. The amplitude Ci is then defined to be

Ci ∝ ni =∑
α

sαδiiα , (8.9)

which is a signed sum where two walkers of opposite signs on the same determinant will
make zero contribution, and the number of walkers is

NW =∑
i

∣ni∣. (8.10)

Similar to DMC, we define a set of dynamical rules of such a nature that the walkers con-
verge to a distribution ⟨ni⟩∝ Ci. These dynamical rules are derived from the two last terms
of the right hand side of Eq. (8.8) which describes the rate of which Ci changes. The first
of these therms is

pd(i∣i) = τ(Hii − S), (8.11)

where S is the real shift from the projection operator and τ is the timestep. This term rep-
resents the rate of which Ci is projected on it self. Numerically it represents the probability
for a walker to either be copied (cloned) or to be removed from the simulation (killed). If
pd(i∣i) < 0 the walker is cloned with probability ∣pd(i∣i)∣ and if pd(i∣i) > 0 the walker is
killed with the probability pd(i∣i). The second term is

pd(i∣j) = τHij , i ≠ j, (8.12)

which is the rate of which otherCj≠i is projected ontoCi. We say that pd(i∣j) represents the
probability that a walker on ∣Dj⟩ (the parent) spawns a walker on ∣Di⟩ (the child). Note that
the newly spawned walkers can have both a positive and a negative sign. From Eq. (8.8)
we see that the child must have the opposite sign of its parent if pd(i∣j) is negative, and the
sign same if pd(i∣j) is positive. If two walkers with the opposite sign happen to populate
the same determinant ∣Di⟩, these walkers add zero to the amplitude Ci, and both walkers
can therefore be removed from the simulation.

The sums over all elements τHij involve O(dim(H ) × Nw) operations since the
spawning probabilities from all walkers to all determinants must be evaluated. This is a
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numerically expensive task since both dim(H ) and Nw can be very big, and for large sim-
ulations we often have that dim(H ) ≥ 1010 and NW ≥ 107. According to Booth et. al. [3]
it is numerically more efficient to sample the sum

∑
j
∑
i≠j
τHijCj →∑

j

τHsjCj/pgen(s∣j), where ∑
s

pgen(s∣j) = 1, (8.13)

reducing the number of operations to O(Nw) for each iteration. Even though the number
of iterations before convergence will increase, the cost of each iteration will become so
much cheaper that the overall numerical efficiency is improved. In Eq. (8.13) pgen(s∣j) is
the suggestion probability of s from j, and this equation is only correct when pgen(s∣j) is
different from zero for all connected determinants ∣Dj⟩ and ∣Ds⟩

pgen(s∣j) ≠ 0 ∀ ⟨Dj ∣Ĥ ∣Ds⟩ ≠ 0. (8.14)

In principle, there is no other constraint on pgen(s∣j), and as long as the number of iterations
is large enough the simulations will eventually converge to the correct results, but in practice
certain choices of suggestion probability distributions will lead to a more efficient sampling.
We will return to this topic in a later chapter.

8.2 Population control and the statistical estimators

As in DMC, we do not know the shift S = E0 that gives the desired convergence to the
ground state distribution. The population of walkers will increase if the shift S is larger
than the ground state energy E0 and decrease if S is smaller than E0. We can therefore
control the population by varying S. We use the formula of Umrigar et. al. [39] which has
been used for population control in the context of DMC

S → S(i)
= S(i−1)

−
ξ

τ
log

⎡
⎢
⎢
⎢
⎢
⎣

N
(i)
W

N
(i−1)
W

⎤
⎥
⎥
⎥
⎥
⎦

, (8.15)

where ξ is a real number of which the optimal value must be found by experiment, andN (i)
W

and S(i) are the population and shift at the time iτ . According to Eq. (6.5), the shift S that
stabilizes the number of walkers is the ground state energy, and this means that the above
equation provides us with a measure of the ground state energy E0.

We use two different statistical estimators to calculate the energy. The first is the one
that we just mentioned, which can be taken as the long time average of the shift

E0 ≈ ⟨S⟩ = (1/N)
N

∑
i=1
S(i), (8.16)

and which we will refer to as the generational estimator of the energy. The second is the
projected estimator that is calculated by sampling the projected energy

E0 =
⟨D0∣Ĥ ∣ψ0⟩

⟨D0∣ψ0⟩
=

⟨D0∣Ĥ∑iCi∣Di⟩

⟨D0∣∑iCi∣Di⟩
. (8.17)
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We rewrite the operator on the form

E0 ≈⟨EP ⟩ =H00 +∑
i≠0
H0i⟨ni⟩/⟨n0⟩, (8.18)

which means that we need to sample n0 and ∑i niH0i each iteration. These estimators are
statistical measures, and there will always be a certain statistical error associated with them.
In a later chapters we will discuss how the statistical errors can be calculated. It is also worth
commenting that these two estimators, as we will see, to a large degree are uncorrelated and
therefore supplement each other in a valuable way.

8.3 The FCIQMC algorithm and simulation procedures

The first step of a simulation is always to initialize a population of walkers. Before we start
collecting statistical samples, the population must be brought to the steady state distribu-
tion of Eq. (8.4), which can be done by following a simple procedure which we will now
describe. First, we start with one walker on the Fermi determinant ∣D0⟩, and a shift that is
larger than E0 to increase the spawning probability and obtain a rapid population growth.
When NW has reached a predetermined value, we start varying the shift S according to Eq.
(8.16) to keep the population constant. After the population has reached the desired number
of walkers, the simulation still have to run for a while to assure that the population is prop-
erly thermalized. The thermalization phase is assumed to be finished when the fluctuations
of the instantaneous values of the projected energy and the shift are stabilized around some
energy.

For each iteration of the simulation, the following five steps are performed:

1. (Die/clone/spawn): Each walker lives permanently on the slater determinant where it
was spawned. Cycle over all walkers i and do:

a. Attempt to kill or clone the walker. First pd(i∣i) = τ(Hii − S) is calculated. If
pd(i∣i) < 0 the walker is killed with probability ∣pd(i∣i)∣ and if pd(i∣i) ≥ 0 the
walker is cloned with probability pd(i∣i).

b. Attempt to spawn a new walker on a connected determinant ∣Dj⟩ with the prob-
ability τ ∣Hji/pgen(j∣i) where pgen(j∣i) is the generation probability of i from j.
The child has the same sign as its parent if Ps is positive and the opposite sign
otherwise.

2. (Annihilate): Annihilate pairs of walkers of opposite sign that lives on the same de-
terminant.

3. (Update S): Two possible strategies: 1) In constant shift (S) mode, do nothing, 2) in
constant population (Nw) mode, adjust S to keep Nw constant.

4. (Sample statistical estimators): Store samples to calculate the energy. We need to
store the shifts S(i) to calculate the generational estimator, and n(i)

0 and∑i niH
(i)
0i to

calculate the projected energy.

5. (Additional rule): The efficiency of the algorithm can be improved considerably if ad-
ditional rules for the walker dynamics are implemented. The most used optimization
of the algorithm, i-FCIQMC, will be discuss in Chapter 9.
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This algorithm is also illustrated in the flowchart in Fig. 8.1.

8.4 Convergence criteria and the time step error

The projection operator P̂τ will always project out the ground state regardless of the size of
the time step τ , but this is not the case when the projection operator is approximated as the
first order Taylor expansion

P̂τ = e
−(Ĥ−S)τ

≈ 1 − (Ĥ − S)τ. (8.19)

To analyze the convergence criteria we can equally well view the Taylor expansion as our
new projection operator instead of analyzing the truncation error. The stationary states ∣ψi⟩
are eigenstates of the projection operator as well as its first order Taylor expansion, and the
eigenvalue equations are

[1 − (Ĥ − S)τ]∣ψi⟩ = [1 − (Ei − S)τ]∣ψi⟩. (8.20)

Recall that FCIQMC will project out the state

[1 − (Ĥ − S)τ]n∣D0⟩ =∑
i

[1 − (Ĥ − S)τ]nvi∣ψi⟩

=∑
i

[1 − (Ei − S)τ]
nvi∣ψi⟩, S ≈ E0,∑

i

∣vi∣
2
= 1, (8.21)

which will converge to the ground state only in the case that the absolute values ∣1 − (Êi −
S)τ ∣ are smaller than one for all i > 0. This sets the upper bound for the time step

τ < τm = 2/(Em − S), Em = max ⟨ψi∣Ĥ ∣ψi⟩, (8.22)

where Em is bounded in our truncated FCI spaces. Since we do not know the value of the
excited energies we can not compute τm. But in general we can conclude that τm decreases
when Em increases, as for example when we increase the number of particles, the number
of shells or the interaction strength. In our simulations, we have used a timestep τ = 10−3

or smaller, which means that Em in practice can be larger than 2 × 103H∗, which is greater
than the most excited energies Em in any of the FCI spaces that we have used.

Note that there is no time step error, and as long as the time step is smaller than τm, the
simulations will converge to the exact ground state. This is a consequence of the fact that
the projected estimator and its first order Taylor expansion have the same eigenstates.

8.5 The FCIQMC sign problem

Walker annihilation is a necessary ingredient of the FCIQMC algorithm, and as we will
show, if we had turned off the annihilation the simulations would not converge to the ground
state. Thus, when the number of walkers is “small” and the density of walkers becomes too
low for efficient annihilation, the simulations will no longer yield the correct results. Note
that this problem does not occur in DMC where most system can be sampled using a small
number of walkers. The reason is that the walkers do not carry a sign as in FCIQMC,
but instead the sign structure of the wave function is forced by applying the fixed node
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Figure 8.1: Flowchart that illustrates the basic FCIQMC algorithm.
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approximation. To explain the mechanisms behind the FCIQMC sign problem, we take a
closer look at what would happen if we turned off annihilation. This will also provide an
explanation of why the simulations do not converge to the ground state when the number of
determinants is too low. To analyze this situation we will follow the derivation of Spencer
et. al. [36].

Assume that n+i and n−i represents the positive and the negative population of walkers
on the determinant ∣Di⟩. We define the “transition matrix”

Tij = −(Hij − δijS) = T
+
ij − T

−
ij , (8.23)

where T+ij = max (Tij ,0) and T−ij = ∣min (Tij ,0)∣. From Eq. (8.8) we see that after one
iteration, the distributions will change from n+ to n+i +∆n+i and from n− to n−i +∆n−i where

∆n+i = τ∑
j

[T+ijn
+
j + T

−
ijn

−
j ] , (8.24)

∆n−i = τ∑
j

[T+ijn
−
j + T

−
ijn

+
j ] . (8.25)

We rearrange these equations on the form

∆n+i +∆n−i = τ∑
j

[T+ij + T
−
ij] [n

+
j + n

−
j ] , (8.26)

∆n+i −∆n−i = τ∑
j

[T+ij − T
−
ij] [n

+
j − n

−
j ] , (8.27)

which tells us how the distributions n+i +n
−
i and n+i −n

−
i will evolve. Here n+i ±n

−
i represents

the distribution without annihilation (+) and with annihilation (−). The steady state solutions
are the eigenstates of the operators

P +
ij = 1 + τ∑

j

[T+ij + T
−
ij] , (8.28)

P −
ij = 1 + τ∑

j

[T+ij − T
−
ij] , (8.29)

with the corresponding eigenvalues e+ and e−, and it can be shown that e+ ≥ e− (See Ref.
[36] for the proof). Thus, if we turn off annihilation, n+ + n− will become exponentially
larger than n+−n−. It is in principle still possible to find n+−n− by subtracting the negative
population n− from the positive population n+, but in practice n+ − n− will be lost due to
statistical noise. Note that P −

ij is simply the first order Taylor expansion of the projection
operator which means that n+ − n− is the ground state distribution.

We have now demonstrated that the sign problem in FCIQMC stems from the emer-
gence of the dominant eigenstate of the operator P +, while the desired state is the dominant
eigenstate of the operator P −. In a simulation, the growth rate of these eigenstates will be
proportional to the corresponding eigenvalues e+ and e−.

According to Spencer et. al. , if e+ is much larger than e−, a large concentration of walk-
ers is typically necessary to achieve a high enough rate of annihilation events. Such systems
are said to have a severe sign problem, and are not easily simulated with the FCIQMC al-
gorithm. They also comment that it is difficult to predict the severity of the sign problem
for a specific system. A difficult system is not necessarily a highly correlated system, but
the sign problem rather depends on the structure and occurrence of negative elements in the
Hamiltonian matrix.
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Figure 8.2: A typical evolution of the population size in a simulation where S is kept constant at a
value that is slightly greater than the ground state. In the first phase of the simulation the population
is too small for efficient annihilation, and the population grows exponentially with a growth rate e+.
When the population reaches a certain limit, annihilation events become more probable, and the state
n+ − n− emerges. The population growth is still exponential, but with a lower growth rate e−, and
this can be observed as a plateau in the population size. If the plateau occurs at a large population
relative to the dimension of the Hilbert space, the sign problem is severe.
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Chapter 9

Initiator-FCIQMC

As we discussed in the last chapter, the number of walkers must be above a certain threshold
NC for the population to converge to the ground state distribution. This threshold is, as we
will see later, system dependent and often close to the number of determinants in the FCI
space. In practice this is the main limitation of FCIQMC since the numerical cost increase
as a function of the number of walkers.

Cleland et. al. (2010) [4] demonstrated that by introducing a set of new dynamical
rules for the walkers, the performance of the algorithm can be improved drastically while
still obtaining results with a precision of 10−3 Hartree or better. The number of walkers
that is necessary in such simulations are typically several orders of magnitude smaller than
NC . The improved algorithm is called initiator-FCIQMC or i-FCIQMC, and is identical
to FCIQMC except that we use different rules to calculate the spawning probability. In
essence, only walkers that fulfill certain criteria are allowed to spawn on determinants which
are previously unpopulated, and such walkers are called initiators.

First, a so called initiator space is defined. This is a set of determinants which are
assumed to have a relatively large average population (large ampiludes ∣Ci∣). All walkers
that live on a determinant in the initiator space become initiators, and initiators follows the
same rules as walkers in the basic FCIQMC algorithm. The first rule of i-FCIQMC concerns
the non-initiators and states:

● (Spawning rule I): Non-initiators are only allowed to spawn on determinants that are
previously populated.

With this rule the Hilbert space is in effect reduced to the states in the initiator space and
the single and double excitations of these. Next, two additional rules are added to improve
the energy and to give the walkers access to the entire FCI space:

● (Dynamic enlargement of the initiator space): All determinants ∣Di⟩ with a population
∣ni∣ > NI are automatically included in the initiator space for as long the population is
above this limit. Here ni is the signed population of ∣Di⟩ and Ni is a positive integer that
we will refer to as the initiator threshold. The initiator threshold is set before a simulation.
Note that with NI = 1 i-FCIQMC is identical to FCIQMC.

● (Spawning rule II): If the absolute value of sum of all walkers that are spawned on an
unpopulated determinant by non- initiators is larger than two, then the spawning event is
accepted.
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Although the initiator adaption of the algorithm has been shown to increase the efficiency,
it is only correct according to Eq. (8.8) in the limit of a large number of of walkers. In this
case the initiator space will grow to include the entire FCI space, and i-FCIQMC will tend
to FCIQMC. This means that the i-FCIQMC energies are systematically improvable and
that the so called initiator error will decay to zero when the number of walkers is increased.

9.1 The initiator spaces

The initiator spaces are defined using a so called Complete Active Space (CAS) criterion,
which is often used within quantum chemistry together with methods like many-body per-
tubation theory or the configuration interaction method to pick out physically relevant states
of a Hilbert space [12]. The CAS is defined by specifying two set of orbitals, the frozen and
the active orbitals. The CAS is the set of determinants where:

(i): The frozen orbitals are doubly occupied (by both a spin up and a spin down electron).

(ii): The rest of the electrons are occupying one of the active orbitals.

In our simulations, the frozen orbitals are chosen to be the lowest lying orbitals in the NF

first shells and the active space consists of all orbitals in the NA first shells. Here NF and
NA are preset parameters which defines the CAS. See Fig 9.1 for an illustration.

Because of the dynamic enlargement of the initiator space, the final result will be the
same regardles of which CAS we choose. But, as Cleland et. al. [4] has demonstrated, an
appropriate CAS might sometimes improve the convergence.
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Figure 9.1: These figures are schematic representations of the three determinants ∣DA⟩, ∣DB⟩ and
∣DC⟩ of a four particle system. Here R is the shell number and m is the magnetic quantum number.
The vertical lines represents an orbital that can be occupied by a spin up (↑) and a spin down (↓)
electron. The CAS is defined by the frozen orbitals which are the two spinorbitals with the lowest
energy, and the active orbitals which are all states in the second, third and fourth shell. The determi-
nant ∣DA⟩ is in the CAS since both of the frozen spin orbitals are occupied. The determinant ∣DB⟩

is not in the CAS space since there are one electron which is occupying an orbital which is neither
an active orbital or a frozen orbital. The determinant ∣DC⟩ is not in the CAS since only one of the
frozen orbitals are occupied.
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Chapter 10

Sampling rules

10.1 The suggestion probability distribution

Recall that earlier in this part we introduced the suggestion probability pgen(i∣j) which is
the probability of sampling (trying to spawn a walker on) the determinant ∣Di⟩ from the
determinant ∣Dj⟩. Before we can implement the algorithm it is necessary to find a “smart”
suggestion probability, and there are two main factors that should be considered.

(i): From a sampling perspective, there exist certain suggestion probabilities that are more
favourable than others. For example, using a pgen where the most physically relevant
states have a larger probability of being sampled is expected to lead to a faster con-
vergence in terms of the number of iterations. This method is commonly referred to
as importance sampling [10].

(ii): We must find a pgen(i∣j) that can be sampled with a low numerical cost. As an
example of the opposite, assume that we want to use a pgen(i∣j) where all connected
determinants ∣Di⟩ (⟨Di∣Dj⟩ ≠ 0) have an uniform probability. This might be efficient
from a sampling perspective but not from a numerical perspective. The reason is that
we would have to explicitly find all connected determinants which is a numerically
expensive operation.

We have used a strategy that was introduced by Booth et. al. (2009) [3], where the sugges-
tion probability distribution has the form

pgen(i∣j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ps ×Aj(pk), for ∣Di⟩ = (−)pa†
pak∣Di⟩, p ≠ q,

(1 − ps) ×Bj(pqkl), for ∣Di⟩ = (−)pa†
pa

†
qalak∣Dj⟩, {k, l} ∩ {p, q} = 0,

0, otherwise.
(10.1)

Here ps is a predetermined probability which represents the probability of a single excitation
versus a double excitation, and Aj(pk) and Bj(pqkl) are probability distributions which
we will look closer at in the next section. Only single and double excitations are included
here since all pairs of unconnected determinants corresponds to a spawning probability
pd(i∣j)∝Hij = 0. The sampling will be correct regardless of the choice of ps, but optimally

55



it should reflect the “true” probability of a single excitation. Since the single excitations are
more probable than the double excitations, it is natural to choose a ps that is close to one,
but a bad choice of ps would, at least in principle, only lead to a less efficient sampling
and a slower convergence. The distributions Aj(pk) and Bj(pqkl) are chosen such that
they are numerically cheap to sample. But the resulting suggestion probability distribution
pgen(i∣j) is not based on any sampling considerations and will probably not give the fastest
convergence in terms of the number of iterations.

10.2 Sampling of the suggestion probabilities

We will now discuss the distributions Aj(pk) and Bj(pqkl) and show how they can be
sampled in an efficient manner. In the case of a single excitation, one occupied orbital ϕk
is chosen with the uniform probability Ai(k) = 1/NP , and a new orbital ϕp is then picked
randomly from the set

S0 = {ϕp ; a†
pak∣Di⟩ ∈ H , p ≠ k} . (10.2)

The conditional probability of drawing p is Aj(p∣k) = 1/size(S0) and the total probability
becomes

Aj(pk) = Aj(p∣k)Ai(k) = [NP × size(S0)]−1. (10.3)

In the case of a double excitation, two random occupied orbitals ϕk, ϕl are chosen with
the uniform probability

Bj(kl) = (
NP

2
)

−1
=

2

[NP (NP − 1)]
(10.4)

We now need to consider if there are any constants on which q we can pick. We must find
the subset S1 of orbitals that fulfills these constraints and pick a random orbital ϕq ∈ S1
with the probability

Bj(q∣kl) = 1/size(S1). (10.5)

The next step is to follow the same procedure for p. We find the subset S2 of orbitals that
fulfills our constraints given that ϕq is already picked, and pick a random ϕp ∈ S2 with the
probability

Bj(p∣qkl) = 1/size(S2). (10.6)

Since the probability of drawing the pair (p, q) in general is dependent of which order they
are picked, we must explicitly calculate the probability of drawing p, q in the reverse order.
We follow the same procedure as above and find

Bj(p∣kl) = 1/size(S3), (10.7)

Bj(q∣pkl) = 1/size(S4). (10.8)

The total probability becomes

Bj(pqkl) = Bj(kl)(Bj(q∣pkl)Bj(p∣kl) +Bj(p∣qkl)Bj(q∣kl)). (10.9)
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10.3 Finding the sets Sn
As many criteria as possible should be set to reduce the number of elements in the sets
Sn. We must only make sure that pgen(i∣j) ≠ 0 when the spawning probability pd(i∣j) ≠ 0,
otherwise the sampling will be erroneous. If pgen ≠ 0 and pd(i∣j) = 0 the spawning step will
be rejected, and the sampling will be less than optimal but will still give the correct result.
For two dimensional quantum dots, the following quantities are conserved in an interaction

mp =mk, sp = sk (single excitation), (10.10)

mp +mq =mk +ml, sp + sq = sk + sl (double excitations) , (10.11)

where mi and si is the magnetic quantum number and the spin of the i’th orbital. We will
use these conservation rules and outline a simple procedure to find the sets Sn.

In the case of a single excitation, assume that we have annihilated an orbital ϕk, then
S0 is calculated

S
+
0 = {ϕi,mi =mk, si = sk}, (10.12)

S0 = S
+
0 /T , (10.13)

where T is the set of all occupied orbitals in ∣Dj⟩ and S+0 /T is the set S+0 where all elements
which are in T are removed.

In the case of a double excitation, assume that we have drawn two occupied orbitals
ϕk, ϕl with opposite spins. Then we have the restrictions that

If sk ≠ sl ⇒

∣mk +ml −mq ∣ ≤ R, (10.14)

where R is the absolute value of the largest m in our basis. The smallest and the largest
allowed magnetic quantum number mMIN ,mMAX can be found

If sk ≠ sl ⇒,

mMIN = max(−R,mk +ml −R), (10.15)

mMAX = min(R,mk +ml +R). (10.16)

In the case where the two orbitals k, l have the same spins, it is possible to improve Eq.
(10.14) slightly

if sk = sl,

⇒ ∣mk +ml −mp∣ < R, (10.17)

which gives

If sk = sl ⇒

mMIN = max(−R + 1,mk +ml −R), (10.18)

mMAX = min(R − 1,mk +ml +R). (10.19)

The set S1 is now defined as

S
+
1 = {ϕi;mi ∈ [mMIN ,mMAX], si ∈ {sk, sl}}, (10.20)

S1 = S
+
1 /T , (10.21)
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and the set S2 is defined as

S
+
2 = {ϕi,mi =mk +ml −mq, si = sk + sl − sq}, (10.22)

S2 = S
+
2 /{T , ϕq}. (10.23)

If either S1 = 0 or S2 = 0, the spawning event is rejected. The sets S3 and S4 are calculated
in the same way by interchanging p and q in the equations above.

Excited state: ∣nm⟩ Suggestion probability/(1 − ps) = B0(nm01)

∣ϕ2ϕ5⟩ 1/18
∣ϕ3ϕ4⟩ 1/18
∣ϕ6ϕ11⟩ 2/18
∣ϕ7ϕ10⟩ 2/18
∣ϕ8ϕ9⟩ 2/18
∣ϕ12ϕ19⟩ 2/18
∣ϕ13ϕ18⟩ 2/18
∣ϕ14ϕ17⟩ 1/18
∣ϕ15ϕ16⟩ 1/18
∣ϕ2ϕ17⟩ 1/18
∣ϕ3ϕ16⟩ 1/18
∣ϕ4ϕ15⟩ 1/18
∣ϕ5ϕ14⟩ 1/18

Table 10.1: Example of the suggestion probabilities of double excitations from the reference de-
terminant ∣01⟩ which is described by the probability distribution B0(nm01) (see: Eq. (10.1)). The
system is a two particle quantum dot with four shells in the basis, and the spin orbitals ϕi are enu-
merated as in Fig. 4.1. Only the states where the total spin and magnetic quantum number are
conserved is included. The probabilitiesB0(nm01) are calculated using the rules of the last section.
Note that the suggestion probability of a state has no connection to how physically important it is.
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Chapter 11

Storing and accessing the Coulomb
matrix elements

The Coulomb matrix elements (CME)

vijkl ≡ ⟨ϕiϕj ∣V̂ ∣ϕkϕl⟩AS , (11.1)

must be available every time the spawning probability is calculated. It is therefore critical
for the speed of the code to be able to access them quickly. Calculation of the CME on the
fly is very inefficient. Storage of the CME in an array is much faster but it is not straight
forward to find an efficient way of addressing and accessing them.

One way is to store all nonzero matrix elements in one array and the corresponding
occupations ijkl in a second array. The address of the matrix element can then be obtained
by finding the index of the corresponding occupations numbers in the occupations array.
This method has the advantage that only the nonzero elements are stored and the drawback
that all occupations must be stored as well and that a numerically expensive search must be
performed on the occupations array.

In this section we will show how it is possible to map each of the nonzero matrix ele-
ments to a unique address. The advantages are that the expensive search and the storage of
the occupations array is omitted.

11.1 Indexing scheme

In this section we will refer to the states ∣ϕiϕj⟩ as the spinless wave functions, meaning that
any of the coulomb matrix elements can have 16 different spin configurations. Only 6 of
these are permitted, namely those where the total spin is conserved. In addition, the matrix
elements are unchanged if the spin projection of the states is polarized, reducing the number
of unique elements to 3. We will enumerate the three allowed pairs of spin configurations
in the following way

ns(ijkl) = 0 if (si, sj , sk, sl) ∈ {(↑, ↓, ↓, ↑), (↓, ↑, ↑, ↓)}, (11.2)

ns(ijkl) = 1 if (si, sj , sk, sl) ∈ {(↑, ↓, ↑, ↓), (↓, ↑, ↓, ↑)}, (11.3)

ns(ijkl) = 2 if (si, sj , sk, sl) ∈ {(↑, ↑, ↑, ↑), (↓, ↓, ↓, ↓)}. (11.4)
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When we want to specify the spin configuration of the orbitals we will denote the matrix
element

v
ns(ijkl)
ijkl . (11.5)

From the definition

vijkl = ∫ dxdyψ†
i (x)ψ†

j(y) [ψl(y)ψk(x) − ψk(y)ψl(x)] , (11.6)

it is clear that

vijkl = vjilk = vklij = vlkji = −vjikl = −vijlk = −vklji = −vlkij . (11.7)

From the above symmetries we see that most matrix elements can be represented in multiple
ways. For numerical reasons we want to construct a set where each element is represented
only once. First we define the mapping f(ijkl) which is a reordering of the indices ijkl
where only three operations are allowed to permute the indices:

• Changing the positions of the two first indices with the two last.

• Interchanging the two first indices.

• Interchanging the two last indices.

The reordered indices must fulfill one of the three equations below:

Case I:

i ≤ j ≤ k ≤ l.

Case II:

i < j > k ≤ l where i < k.

Case III:

i < j > k < l where i = k, j ≤ l. (11.8)

It can be shown that

f(ijkl) = f(jilk) = f(klij) = f(lkji)

= f(jikl) = f(ijlk) = f(klji) = f(lkij), (11.9)

meaning that each unique element given the symmetries of Eq. (11.7) is represented exactly
once in the set of vijkl∈F where F is the set of all possible combinations f(ijkl). We define
p(ijkl) to be the number of permutations that are necessary to arrange the indices in the
desired order. Any matrix element can now be written

vijkl = (−1)p(ijkl)v
ns(f(ijkl))
f(ijkl) , (11.10)

where we have included the spin configuration in the superscript.
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11.2 Mapping of the indices to a pointer

It is possible make a mapping of the indices (ijkl) to memory addresses in such a way that
none of the matrix elements of Eq. (11.10) are represented more than once, and we will
now explain how this is done.

We store all elements with an address that is stored as (in C++ notation)

(*(P[n_S] + n_G)+n_I), (11.11)

where P is an array of double pointers 1 and n_S, n_G and n_I are non-negative integers.
First n_S is calculated according to Eq. (11.2)-(11.4)

n_S← ns(ijkl). (11.12)

Next we find (i′j′k′l′) ← f(ijkl) according to Eq. (11.8)). The indices j′, k′, l′ (case I,II
of Eq. (11.8)) or j′, l′ (case III of Eq. (11.8) ) are mapped to the integer n_G, where the set
of all possible n_G consists of all integers in an interval that start at 0. We will show how
to find N_G later in this chapter.

Next we find nI which is the number of orbitals ϕm withm < i′ and a magnetic quantum
number

mi′ =mk′ +ml′ −mj′ . (11.13)

Note that n_I can be all integers between 0 and j′ in case I, between 0 and k′ in case II and
between 0 and l′ in case III .

Since both N_G and N_I always occupy all values in an interval beginning at 0, all
addresses of (11.11) corresponds to exactly one matrix element vns(f(ijkl))

f(ijkl) which means
that this is a space efficient way of storing the CME.

11.3 Graphical representation of model spaces

The method of mapping the indices j, k, l or j, l to n_G is inspired by a method that is
outlined by Ref. [12], where it is demonstrated how one can map general determinants to
an index. A short introduction to this method follows.

Assume a three particle state ∣n0n1n2⟩ where n0 < n1 < n2 and ni ∈ [0,5]. First we
note that all possible determinants can be represented by one path in Fig. 11.1. All paths
that start in the upper left circle and end in the lower left circle, and follow the direction of
the arrows through the circles, represents a determinant. The occupation number ni is equal
to the value of n at the circle where one moves from the row marked (ni) to the next row,
and the index can be found by summing the arrow weights (the number above the arrows)
along the path. In this case it is easy to check that all paths corresponds to a unique index
and that n0 < n1 < n2. As an example, the determinant ∣124⟩ is represented by the path
marked up by the double headed arrows in Fig. 11.1. The index of the path is found by
summing the arrow weights and as we see from the figure the index is 1 + 1 + 4 = 6.

We need two rules to construct the tables Fig. 11.1. First note that the circled numbers
represents the total number of paths leading from the upper left circle. To find this number

1In C++ this array is declared as double*** P.
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Case I:
n n0 n1 n2

0 1

↡
0
↘

1 1 1

↓
1
� ↓

0
↘

2 1 2 1
2
↘ ↓

1
� ↓

0
↘

3 3 3 1
3
↘ ↡

1
↘ ↓

4 6 4
4
� ↓

5 10

Figure 11.1: Each path that can be made by following the arrows from the upper left corner to the
lower right corner represents a three particle state ∣n0n1n2⟩ where n0 < n1 < n2 and ni ∈ [0,5]. The
occupation number ni is equal to the value of n at the circle where one moves from the row marked
(ni) to the next row. Each such path can be mapped to an index, and these indices occupy all values
in an interval that starts on zero. The index can be found by summing the numbers above the arrows
along the path, and all paths corresponds to a unique index. For example, ∣124⟩ is represented by the
path marked up by the double headed arrows, and the index is 1 + 1 + 4 = 6.

one simply adds the numbers circles from which one can move to the given circle. The
numbers above the arrows is the difference between the circled number at the start and at
the end of the arrow, and appears when one moves from one row to the next in the table.

In simulations, we would initialize the matrix of the arrow weights

MGRMS =
⎛
⎜
⎝

0 0 0
1 1 1
2 3 4

⎞
⎟
⎠
. (11.14)

The index of a determinant (path) ∣n0n1n2⟩ can then be calculated

MGRMS(n0,0) +MGRMS(n1 − 1,1) +MGRMS(n2 − 2,2). (11.15)

11.4 The arrow weight matrices

In our case we need to make tables and arrow weight matrices for the three cases of Eq.
(11.8)

Case I: All paths j ≤ k ≤ l, i ≤ j are represented in the Fig. 11.2. The arrow weights are
marked as M I

i,j . By following the rules introduced in the last section, it is easy
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to verify that

M I
0,i = 0, M I

0,i =M
I
0,i−1 + 1, (11.16)

M I
i,0 =M

I
i−1,0 +M

I
i,j−1 for i ≠ 0, j ≠ 0, (11.17)

NI =M
I
N0−1,0 +M

I
N0−1,1 +M

I
N0−1,2, (11.18)

where NI is the number of possible paths. The index N_G can be calculated by
summing the matrix elements

N_G =M I
j,0 +M

I
k,1 +M

I
l,2. (11.19)

Case I:
n j k l

0 1
MI

0,0
→

MI
0,1
→

MI
0,2
→

↓ ↓ ↓ ↓

1
MI

1,0
→

MI
1,1
→

MI
1,2
→

↓ ↓ ↓ ↓

2
MI

2,0
→

MI
2,1
→

MI
2,2
→

↓ ↓ ↓ ↓

⋮ ⋮ ⋮ ⋮

No − 1
MI
N0−1,1

→
MI
No−1,1
→

MI
No−1,2
→ NI

Figure 11.2: All paths j ≤ k ≤ l, i ≤ j are represented here. See the explanation in the text.

Case II: Figure 11.3 contains all paths j > k ≤ l, i < k. The first row (n = 0) is empty
since i < k. In this case the arrow weight matrix can be constructed by using the
following rules:

M II
0,i =M

II
1,i = 0, (11.20)

M II
i,o = i −No − 1, for i > 1, (11.21)

M II
2,1 =M

II
2,2 = No − 1, (11.22)

M II
i,1 = No − 1 − i for i ∈ [3,No − 2], (11.23)

M II
i,2 =M

II
i−1,2 +M

II
i,1 for i ∈ [3,No − 2], (11.24)

M II
No−1,2 =M

II
No−2,2 +M

II
No−2,1 + 1. (11.25)

The index N_G is calculated

N_G =M II
j,0 +M

II
k,1 +M

II
l,2 +NI , (11.26)

NI is added to start the indexing at the last index if case I. Total number of paths
is

NII =M
II
0,N0−1 +M

II
1,N0−2 +M

II
2,No−1 + 1. (11.27)
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Case II:
n j k l
0

1
MII

11
→

MII
12
→

MII
20

↗ ↑ ↓ ↓

2
MII

21
→

MII
22
→

↑
MII

30

↗ ↑ ↓ ↓

3
MII

31
→

MII
32
→

⋮ ⋮ ⋮ ⋮ ⋮

↑

MII
No−3,0

↗ ↑ ↓ ↓

No − 3
MII
No−3,1
→

MII
No−3,2
→

↑

MII
No−2,0

↗ ↑ ↓ ↓

N0 − 2
MII
No−2,1
→

MII
No−2,2
→

↑

MII
No−1,0

↗ ↓ ↓

No − 1
NI
→ 1

MII
No−1,2
→ NII

Figure 11.3: All paths j > k ≤ l, i < k are represented here. See the explanation in the text.

Case III: Figure 11.4 contains all paths j ≤ l, i < j. The first row (n = 0) is empty since
i = k < j. The arrow weight matrix can be constructed in the same way as
M I
i,j . The index N_G can be calculated using the tho first columns of M I and

subtracting 1 from j and l since both i, j must be larger than zero (see the table
below)

N_G =M I
j−1,0 +M

I
l−1,1 +NI +NII , (11.28)

where NI and NII is added to start the indexing at the last index if case II.

11.5 Memory requirements and numerical speed

The memory used to store the CME increases rapidly as a function of the basis size, but he
memory requirements are still acceptable. For example, for a basis with 28 shells, there are
57 × 106 CME and 33 × 106 pointers which requires about 1.2GB of memory. The array
weight matrices are very small, and with 28 shells the largest of these have the dimensions
406 × 3.

In our implementation of the algorithm, a total of 6 if-tests and a little less than 4 array
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Case III:
n j l
0

1
NIII
→ 1

MIII
1,0
→

MIII
1,1
→

↓ ↓ ↓

2
MIII

2,0
→

MIII
2,1
→

↓ ↓ ↓

3
MIII

3,0
→

MIII
3,1
→

↓ ↓ ↓

⋮ ⋮ ⋮

No − 1
MIII
No−1,0
→

MIII
No−1,1
→ NIII

Figure 11.4: All paths j ≤ l, i < j are represented here. See the explanation in the text.

lookup on average (in the small weight matrices) are necessary to retrieve the address of a
CME. This is the same for all systems regardless of the size of the basis.

11.6 Generalisation to other systems

It should be straight forward to generalize this method to other systems.The only require-
ment is that the matrix elements have the same symmerties (see: Eq. (11.7)) with regard
to the spatial part of the single particle wave functions. Other quantum numbers should in
general be possible to account for by redefining the array nI .
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Part IV

Data analysis

66



A large amount of data is collected during an FCIQMC simulation. The cal-
culated observables are based on statistical measures, like the generational es-
timator and the projected estimator which we introduced in the last chapter.
These are only interesting if we can find a reliable measure of the precision
of the results. In the first chapter, we introduce a numerically efficient way
of estimating the statistical error. This method was discussed in an article by
Flyvbjerg and Pedersen (1989) [5], and we will simply refer to it as Flyvbjerg-
Pedersen analysis or blocking analysis. We will first discuss this method in a
general context, and then how in can be used to calculate the statistical error of
the generational and the projected estimator.

We will then discuss curve fitting. In section 5.3, we introduced a formula that
can be used to extrapolate the energies of finite Hilbert spaces to the limit of
an infinite basis. But to do so, we need to fit a parametrized function to a set of
datapoints. Least square fitting is an efficient method of curve fitting, and we
will introduce this method in the second chapter in this part.
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Chapter 12

Statistical analysis

A large amount of data is generated during a simulation, and observables are calculated on
the basis of mean values of different data sets. These estimates are only interesting if we
can find a reliable measure of the precision of the results. The standard way of doing this is
to calculate the statistical error ε, which is defined as the standard deviation of the sample
mean for a given number of samples. In this section we will show how the statistical error
can be estimated using Flyvbjerg-Petersen analysis[5], and also discuss complications that
arise when we calculate the statistical error of the projected energy.

12.1 The statistical error

Assume that we have drawn a number of samples {xi, x2, . . . , xn} from the statistical dis-
tribution p(x), and that we want to estimate the statistical error ε of the mean

f =
1

n

n

∑
i=1
fi, fi ≡ f(xi). (12.1)

We further assume that the sampling is ergodic, such that limn→∞ f is equal to the ensamble
average

⟨f⟩ = ∫ dxp(x)f(x). (12.2)

The mean f is a fluctuating quantity for real data sets where n <∞, and the statistical error
ε is defined as the standard deviation of f . We first calculate the variance

ε2 = ⟨f
2
⟩ − ⟨f⟩2. (12.3)

By inserting Eq. (12.1) into Eq. (12.3) it is straight forward to show that

ε2 = ⟨[
1

n

n

∑
i=1
fi]

2
⟩ − ⟨

1

n

n

∑
i=1
fi⟩

2
=

1

n2

n

∑
i,j=1

γij , γij = ⟨fifj⟩ − ⟨fi⟩⟨fj⟩. (12.4)

Further manipulation of this expression give

ε2 =
1

n2

⎡
⎢
⎢
⎢
⎢
⎣

n

∑
i=1
γii + 2

n

∑
i=1

n

∑
j=i+1

γij

⎤
⎥
⎥
⎥
⎥
⎦

=
1

n2
[nγ0 + 2

n−1
∑
t=1

(n − t)γt] , (12.5)
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here γt is the correlation function

γt = γij , t = ∣i − j∣, (12.6)

where the correlation only depends on the “time” t between the samples. Now we can write

ε2 =
1

n
[γ0 + 2

n−1
∑
t=1

(1 − t/n)γt] . (12.7)

For uncorrelated data sets γt = 0 for t ≠ 0 and the formula becomes very simple, and the
expression for the statistical error can be reduced to the simple form

ε =
γ0
√
n
, (12.8)

where γ0 is the standard deviation of f which can be estimated by taking the standard
deviation of the data set {f0, f1, . . . , fn}.

12.2 Flyvbjerg-Petersen analysis

The samples from concurrent iterations in an FCIQMC simulation are heavily correlated.
This is due to the fact that the distribution of walkers fluctuates slowly around an equilibrium
distribution, and therefore we can not use the simple expression of Eq. (12.8). We will
now introduce the Flyvbjerg-Petersen analysis[5], which is a method where the statistical
error can be found without explicitly calculating the correlation function γt and at a low
computational cost.

Assume that the data set {f1, f2, f3, . . . , fn} is transformed into a new data set that is
half the size {f

(2)
1 , f

(2)
2 , f

(2)
3 , . . . , f

(2)
n/2} where

f
(2)
i =

1

2
(f2i−1 + f2i) . (12.9)

The key point is that the mean and the statistical error are invariant under this transformation
such that

f = f (2), ε = ε(2). (12.10)

When we do this transformation repeatedly, we get the data sets

{f
(2m)
1 , f

(2m)
2 , f

(2m)
3 , f

(2m)
n/2m} , m = 1,2,3,4, . . . . (12.11)

and it is proved by induction that all of these data sets have the same mean and statistical
error. As we increase m, the correlation between the samples f (2m)

i and f (2m)
i+1 will become

smaller. And therefore, as we see from Eq. (12.7),

ε(2
m)

= σ(2m)
/
√
n/2m → ε as m becomes large. (12.12)

We now see that we can find the error ε by calculating a series of values ε(2
m) with increas-

ing m until it converges to ε. The estimated error will then increase until the point where
it remains fixed within statistical fluctuations. This procedure can be performed by writing
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a small computer program that repeatedly transforms the initial data set according to Eq.
(12.10) and calculates ε(2

m).
Note that the statistical error of ε2

m
can be estimated using the formula

ε2
m

≈
σ2

m

√
n/2m

⎛

⎝
1 ±

1
√

2(n/2m))

⎞

⎠
. (12.13)

See [5] for a justification of this formula.

12.3 Flyvbjerg-Pedersen analysis for FCIQMC

To calculate the statistical error of the shift S, we store its value each iteration, and use
blocking analysis to calculate the error after the simulation has finished. Since we only
store one sample each iteration, the amount of data that needs to be stored is small.

It is somewhat more complicated to calculate the statistical error of the projected energy.
This is due to the fact that the projected energy is a function of two stochastic variables.
Recall that the projected energy can be written

⟨Ep⟩ =
∑j∈CH0j⟨nj⟩

⟨n0⟩
, (12.14)

where C is the set of the indices of all determinants that are connected to the reference
determinant D0

C = {j ; ⟨D0∣Ĥ ∣Dj⟩ ≠ 0} . (12.15)

Each iteration i, we save the two quantities

Ei ≡∑
j∈C
H0jn

(i)
j , and Gi ≡ n

(i)
0 . (12.16)

The projected energy can be written as a function of these quantities

⟨Ep⟩ =
∑
N
i=1Ei/N

∑
N
i=1Gi/N

=
∑
N
i=1Ei

∑
N
i=1Gi

. (12.17)

However, we can not use the blocking algorithm on ⟨EP ⟩ because there is no simple way to
split up the fraction of the sums into blocks. We have instead sorted the individual stochastic
variables in blocks E(n)

i and G(n)
i

E
(n)
i ≡

1

n

ni

∑
k=n(i−1)+1

Ei, (12.18)

G
(n)
i ≡

1

n

ni

∑
k=n(i−1)+1

Gi, (12.19)

with i ∈ [1,N/n], (12.20)

such that the projected energy can be written

⟨EP ⟩ ≈
∑
M
i=1E

(n)
i

∑
M
i=1G

(n)
i

=
1

M

M

∑
i=1

E
(n)
i

G
(n)
i

+ ξn, M = N/n. (12.21)
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and the sample variance

Var
⎡
⎢
⎢
⎢
⎢
⎣

∑
M
i=1E

(n)
i

∑
M
i=1G

(n)
i

⎤
⎥
⎥
⎥
⎥
⎦

= Var
⎡
⎢
⎢
⎢
⎢
⎣

1

M

M

∑
i=1

E
(n)
i

G
(n)
i

+ ξn

⎤
⎥
⎥
⎥
⎥
⎦

= Var
⎡
⎢
⎢
⎢
⎢
⎣

1

M

M

∑
i=1

E
(n)
i

G
(n)
i

⎤
⎥
⎥
⎥
⎥
⎦

+Var [ξn] + 2Cov
⎡
⎢
⎢
⎢
⎢
⎣

1

M

M

∑
i=1

E
(n)
i

G
(n)
i

, ξn
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In the case that the statistical fluctuations of ξn are much smaller than the statistical fluctu-
ations of the sample mean, as we see from the above equation, the statistical error can be

estimated by doing blocking analysis on the dataset {E(n)
i /G

(n)
i }

N/n

i=1
threating E(n)

i /G
(n)
i

as a single stochastic variable. We will now find an expression for ξn, and show that it in
fact can be neglected.

The error ξn can be found by considering the Taylor expansion of the projected esti-
mator. We let µE be the sample mean of {Ei} and µG be the sample mean of {Gi}. The
multivariate Taylor expansion of the fraction E(n)
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i around the point (µE , µG) is
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The zeroth, first and second order terms are
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We want to find the Taylor expansion of the sum (1/M)∑
M
i=1(E
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i ). This is a mul-

tivariate Taylor expansion T̃ in the variables (E
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The zeroth order term is
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which is exactly the projected energy. The first order contribution disappears since
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This means that the leading term in the error ξn is the second order term
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where Var(G(n)) is the variance of the data set {G(n)
1 , . . . ,G

(n)
M }Ni=1 and Cov(E(n),G(n))

is the covariance of the data sets {G
(n)
1 , . . . ,G

(n)
M }Ni=1 and {E
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now shown that ξn has a leading term
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), (12.31)

which, for the systems we have treated, is a very small number. Note that typical values for
the means are µG ∼ 103-105 and µE/µG ∼ 10−1-10. The fluctuations of ξn are expected
to be much smaller than the fluctuations of the projected estimator and can therefore be
neglected when we calculate the statistical error. As we can see from Fig. 12.2, ξn falls off
as a function of n which means that it is favourable to use a large n. We therefore leave
the block size at one, and increase n instead. This is analogous to increasing the block
size when ξn is negligible, but in the case of a large ξn we would see a convergence of the
statistical error in terms of this variable as well.

Figure 12.1: Blocking analysis of the of the projected estimator ⟨EP ⟩ and the generational estimator
⟨S⟩. We see convergence at ∼ 1 mili-Hartree for both estimators. The blocksize n is doubled between
each data point.
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Figure 12.2: The error ξn as a function of n, where n is the blocksize. Both of these are defined
in Eq. (12.21). The error is in units of Hartree, and is very small compared to the projected energy
which is close to 20 Hartree.
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Chapter 13

Curve fitting

We will here introduce the least square method which is a method of fitting parametrized
functions to data points. This section is to a large degree based on the note on least square
methods by Richter (1995) [28] and the article on the Levenberg-Marquardt algorithm by
Marquardt (1963) [17].

13.1 The least square method

Assume that we have a set of points {(xi, yi)}
n
i=1, and that we want to fit to the function

y(x,a), a = (a1, a2, . . . , am) to these points with respect to the parameters ai. A common
optimization method is the least squares method, where the optimal values for ai are found
by minimizing the function

M(a) =
n

∑
i=1

[y(x,a) − yi]2

σ2i
, (13.1)

where σi is the standard deviation of the value yi. The minima is found at the point a0 where

[
δM(a)
δai

]
a0
= 0∀ i ∈ [1,m] . (13.2)

We will first look at the linear least square problem where y(x,a) can be written as a
linear function. This is the starting point for nonlinear least square problems as well since
all functions can be approximated as a first degree Taylor polynomial close to a minima.
The linear y(x,a) is written

y(xj ,a) =
m

∑
i=1
aifi(xj) =∑

i

aiFji, (13.3)

which can be rewritten as the matrix equation

y = Fa. (13.4)

Eq. (13.1) can also be written as a matrix equation

M(a) = (b −Xa)T (b −Xa) , (13.5)
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where b is a vector with the components bi = yi/σi and X is a matrix Xij = fj(xi)/σi. The
minima is found when Eq. (13.2) is fulfilled. Derivation with respect to ai now yields

0 = 2XT
(b −Xa0)

⇒ XTXa0 = XTb

⇒ a0 = (XTX)
−1Xb = CXTb. (13.6)

This problem can be solved efficiently on a computer using standard methods. See for
example [8] for a detailed description.

The nonlinear problem is typically solved by using an iterative algorithm that searches
for the minima of M(a) in the parameter space of a. One class of such methods are
the gradient methods, where one repeatedly steps in the direction of the negative gradi-
ent a ← a − k∇aM(a), until the minima is found. Another class of iterative methods are
the Gauss-Newton methods, where the strategy is to expand the nonlinear function as a first
order Taylor polynomial and solve it as a linear least square problem. The procedure is
repeated until convergence. The most popular least squares algorithms, like the Levenberg-
Marquardt method [17], combines the individual strengths of these algorithms. Several
highly optimized implementations of the Levenberg-Marquardt algorithm are available as
for example the MinPack library, or its Python wrapper curve_fit in the SciPy library.

13.2 Error analyses of the least square fit

In this section we will only look at the nonlinear problem. More specifically, we want to
calculate the error of the extrapolated function y(x,a) at a point x based on the standard
deviations σi of the data.

When we get sufficiently close to the minima a0, the y(x,a) and M(a) can be written
as first order Taylor expansions

y(x,a) = y(x,a0) + (a − a0)Td(x,a0), (13.7)

M(a) =M(a0) + (a − a0)TH(a0)(a − a0), (13.8)

where H(a) has elements Hij and d(x,a) has elements di

di =
δy(x,a)
δai

, Hij =
δ2M(a)
δaiδaj

. (13.9)

If we now substitute f(x)→ d(x,a0) in Eq. (13.3) we get

Xij =
1

σi

δy(xi)

δaj
. (13.10)

Now it is easy to see that we end up with the same expression for the minima as in the linear
case

a = CXTb. (13.11)

An infinitesimal change in a0 is written

∂a = CXT∂b. (13.12)
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The covariance matrix σ2a with elements σaij is

σ2a = ⟨∂a∂a⟩ = ⟨C(XT∂b)(XT∂b)TC⟩

= CXT
⟨∂b∂bT ⟩XCT . (13.13)

The matrix ⟨∂b∂bT ⟩ has the elements ⟨(∂yi/σi)(∂yj/σj)⟩. Here {yi} are assumed to be
statistically independent variables, which means that

⟨(∂yi/σi)(∂yj/σj)⟩ = δij (13.14)

⇒ ⟨∂b∂bT ⟩ = 1, (13.15)

and

σ2a = CXTXCT
= CC−1CT

= C. (13.16)

This result allows us to calculate the covariance matrix σ2y(x,x
′,a) = ⟨∂y(x,a)∂y(x′,a)⟩

which in the special case that x = x′ is the variance of y(x,a).

σ2y(x,x
′,a) = ⟨∂y(x,a)∂y(x′,a)⟩

=
m

∑
i=1

m

∑
j=1

⟨
δy(x,a)
δai

δy(x′,a)
δaj

∂ai∂aj⟩

=
m

∑
i=1

m

∑
j=1

⟨∂ai∂aj⟩
δy(x,a)
δai

δy(x′,a)
δaj

= d(x′,a)TCd(x,a), (13.17)

which means that the standard deviation of y(x,a) can be written

σ2y(x,x,a) =
√

d(x,a)TCd(x,a). (13.18)

13.3 Error analysis of E(R)

We will use Eq. 13.18 from the last section to find the estimated error of the parametrized
energy E(R) defined in Eq. (5.11) at R →∞. The error vector d with the elements di is

di = [
δE

δai
]
a=a0

. (13.19)

For the parametrized function for the error E(R) we find the elements di:

[
δE(R)

δa
]

a=a0
= 1, (13.20)

[
δE(R)

δb
]

a=a0
= −b0

R

∑
r=1

(N + r)r−c0 , (13.21)

[
δE(R)

δc
]

a=a0
= −b0

R

∑
r=1

log(c0)(N + r)r−c0 . (13.22)

<++> The error is always converging at a large R. We already know that ∑Rr=1 r
−(c0−1)

converges for c > 2. The sum ∑Rr=1 log(r)r−c0 will also converge since it is bounded by
∑
R
r=1 r

−(c0−1).
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Part V

Implementation of the FCIQMC
algorithm
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In this part we aim to give an overview of our implementation of FCIQMC.
The code is written in C++, and is tailored to calculate energies of the station-
ary states of 2-dimensional open shell quantum dots. It is organized in separate
interchangeable modules, meaning that it relatively easily can be modified to
tackle other systems such as 3-dimensional quantum dots, molecules or atomic
nuclei, and is fully parallelized using a hybrid approach which combines mul-
tithreading and parallelization with MPI.

The main ideas behind the algorithm is more or less explained in part III, but
there are several aspects of the implementation that we want to discuss further
such as the numerical representation of the determinants and the state vectors,
the code structure, parallelization, optimizations etc.

In the first three chapters we give an overview of our implementation. First
we write about the numerical representation of the state vector followed by a
description of how we have implemented the basic (sequential) algorithm and
how we have implemented the parallel algorithm. After reading these chapters,
one should have a general understanding of how our implementation works. In
the fourth chapter we look closer at the code. We present the class structure
and provide details about the different classes. This chapter should give a good
understanding of how the code is structured and what responsibilities of the
different classes are. In the fifth chapter we have presented some benchmarks
and discuss the efficiency of the program. We have also looked at different run
time parameters, and how they should be tuned to optimize the performance
of the code. The sixth and last chapter contains a short discussion of how the
code should be modified in we want to simulate different systems than the two
dimensional quantum dots.
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Chapter 14

Numerical representation of the
determinants, the basis and the state
vector

14.1 The determinants

A large part of the of the code is devoted to manipulating, sorting, reading from and trans-
ferring information about determinants and their populations. It is therefore crucial for the
efficiency of the code that we find a smart way of representing them numerically, which is
both space efficient and computationally fast. We have chosen to store the determinants as
binary strings, ”bϕ0 , bϕ1 , . . . , bϕ2M

”, with the same number of elements as the number of
spin orbitals 2M that are accessible in the basis. The bit bϕi here represents the i’th orbital,
and is set to 1 if the orbital is occupied and 0 otherwise. As an example, the state

∣Di⟩ = ∣ϕ0, ϕ1, ϕ3, ϕ5⟩, ϕi ∈ {ϕ0, ϕ1, ϕ2, . . . , ϕ2M} (14.1)

would be represented as the binary string

∣Di⟩→ ”bϕ0bϕ1bϕ2bϕ3 . . . bϕ2M
” = ”1 1 0 1 0 1 0 0 0 0 0 . . .0” (14.2)

Note that in the direct product basis, the number of possible combinations of ”bϕ0 , . . . , bϕ2M
”

is exactly the number of determinants in the basis, which means that this is the most space
efficient way of storing the determinants. We have chosen to use the C++ container class
sdt::bitset to store the binary strings. This class is optimized to be space efficient,
and each element occupies only one bit of memory. Note that bool, which probably is
the most used type for storing bits, usually occupies 8 bits memory per bit of information.
Low memory usage is an important consideration when optimizing the code for parallel
computations since we want to minimize the communication overhead.

For numerical reasons that will be made clear in the next chapter, we want to keep the
determinants ordered. We have therefore defined the operator < as

∣ϕa1ϕa2 , . . . , ϕaNP ⟩ < ∣ϕb1ϕb2 , . . . , ϕbNP ⟩ only if

22M−a1 + 22M−a2 + ⋅ ⋅ ⋅ + 22M−aNP < 22M−b1 + 22M−b2 + ⋅ ⋅ ⋅ + 22M−bNP , (14.3)
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and we define the determinants {∣Dn1⟩, ∣Dn2⟩, . . .} to be sorted when ∣Dni⟩ < ∣Dni+1⟩.
In the rest of this thesis, when we say that a determinant is greater or lesser than another
determinant or that a set of determinants are sorted, we are referring to this equation.

14.2 The single particle basis

We keep 2M spin orbitals in our basis, each identified by its index i ∈ [0,2M − 1]. Each
spin orbital ϕi is uniquely represented by the triplet (m,s,n), where m is the magnetic
quantum number, s is the spin and n is the principal quantum number. Given the index i,
the triplet (m,s,n) is stored in the following way:

(i): ϕi has spin ↑ if i is odd and ↓ if i is even.

(ii): The quantum numbers n and m are stored in two arrays of length M .

int *pi_m = new int[M];
int *pi_n = new int[M];

The magnetic quantum number of orbital i is stored as the floor(i/2)’th element in
pi_m, and the principal quantum number is stored as the floor(i/2)’th element in
pi_n.

14.3 The state vector

The state vector is represented by the signed population of walkers that populate different
determinants. Assume that ND is the number of populated determinants. We store the
determinants as the ND first elements of a bitset array.

bitset<N> *pb_determinants = new bitset<N>[i_ndmax];

And the signed population of walkers is stored as the ND first elements of a long array.

long *pl_population = new long[i_nwmax];

Here the population of pb_determinants[i] is stored as pl_population[i].
The number of populated determinants ND will vary from one iteration to the next,

but usually only a fraction of the total number of determinants in the basis are populated.
So every iteration these arrays have to be rearranged, such that the populated determinants
always are stored as the ND first elements.
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Chapter 15

A single FCIQMC iteration

The aim of this chapter is to explain how the sequential FCIQMC algorithm has been imple-
mented. We will do this by going through a single iteration of the algorithm, which includes
the kill/clone, spawn and annihilation step.

Assume that we start with a population of walkers {ni0 , ni1 , . . . , niND} where ni is the
signed population of the determinant ∣Di⟩. As we already have discussed, the population is
represented by two vectors

pb_determinant[m] ← ∣Dim⟩, (15.1)

pl_population[m] ← nim . (15.2)

We further assume that the determinants are indexed and sorted such that ∣Dim⟩ < ∣Din⟩ if
m < n. During an FCIQMC iteration, we loop through all determinants

∣Dα⟩, α = i1, i2, . . . , iND , (15.3)

where each determinant is constructed from the orbitals {ϕα1 , . . . , ϕαNP }

∣Dα⟩ = ∣ϕα1 , . . . , ϕαNP ⟩. (15.4)

A: The kill/clone and spawn steps:

For each element we perform the following steps:

1: Calculate the killing/cloning probability:

We first calculate and store the diagonal matrix element ⟨Dα∣Ĥ ∣Dα⟩

p_dp← ⟨Dα∣Ĥ ∣Dα⟩, (15.5)

which is given by Eq. (15.6)

⟨Dα∣Ĥ ∣Dα⟩ =

NP

∑
i=1

⟨ϕαi ∣ĤHO ∣ϕαi⟩ +
1

2

NP

∑
ij=1

⟨ϕαiϕαj ∣V̂ ∣ϕαiϕαj ⟩AS . (15.6)

The kill/clone probability is now calculated according to Eq. (8.11).

d_pd = d_dt*(d_pd-dS);

Here d_dt← τ is the timestep and d_dS← S is the shift.
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2: Loop over all walkers on ∣Dα⟩:

We then enter a loop where we do the kill/clone and spawn step for all walkers on the current
determinant ∣Dα⟩. We let

i_loopw← ∣nα∣, (15.7)

and enter the loop:

for (; i_loopw>0; i_loopw--)

● 2a: Perform the spawning step:

We attempt to spawn walkers on a connected determinant ∣Dβ⟩. As we discussed in
chapter 10, we let ∣Dβ⟩ be a single excitation of ∣Dα⟩ with probability ds and a double
excitation with probability (1 − ds). We draw a random uniform χ ∈ [0,1] and if χ < ds
we try to spawn walkers on a determinant

∣Dβ⟩ = (−1)Pa†
pak∣Dα⟩, (15.8)

and else we try to spawn walkers on a determinant

∣Dβ⟩ = (−1)Pa†
pa

†
qakal∣Dα⟩, (15.9)

where k, l, p, q are sampled according to the rules that we set up in chapter 10, and P is
the number of permutations that are necessary to rearrange the annihilation and creation
operators. We spawn nspawned new walkers, where

nspawned = floor (∣pd(β,α)∣ + 1) . (15.10)

and pd(β,α) is calculated according to Eq. (8.12)

pd(β∣α) = τ⟨Dα∣Ĥ ∣Dβ⟩/pgen(β∣α). (15.11)

Here pgen(β∣α) is the sampling probability of determinant ∣Dβ⟩ from determinant ∣Dα⟩

which we also discussed in chapter 10. The off diagonal matrix element ⟨Dα∣Ĥ ∣Dβ⟩ is
calculated according to Eq. (4.29)

⟨Dα∣Ĥ{a†
pak}∣Dα⟩ =

NP

∑
j=1

⟨ϕpϕαj ∣V̂ ∣ϕkϕαj ⟩AS , (15.12)

in the case of a single excitation and Eq. (4.30)

⟨Dα∣Ĥ{a†
pa

†
qakal}∣Dα⟩ = ⟨ϕpϕq ∣V̂ ∣ϕkϕl⟩AS , (15.13)

in the case of a double excitation. If a spawning event is successful, we store the newly
spawned walkers on the arrays: pb_new and ppl_new. The first is an 1×nmax bitset
array which stores the determinant ∣Dβ⟩, and the second is a 2 × nmax long array that
stores the signed number of new walkers, and the integer nmax is a preset value that
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sets the size of the array. The newly spawned walkers and whether their parents were
initiators, are stored according to the following rules:

pb_new[l_nnew]← ∣Dβ⟩ (15.14)

if ∣Dα⟩ is an initiator: (15.15)

ppl_new[0][l_nnew]← nspawned,

ppl_new[1][l_nnew]← 0,

else if ∣Dα⟩ is a non-initiator:

ppl_new[0][l_nnew]← 0,

ppl_new[1][l_nnew]← nspawned, (15.16)

l_nnew← l_nnew + 1. (15.17)

Here l_nnew is an integer that we use to count the number of newly spawned walkers.
This parameter is set to zero at the beginning of each FCIQMC iteration.

Note that according to the spawning rules of i-FCIQMC, we need to know if the parent
of a walker is an initiator, the total number of non- initiators trying to spawn on the
same determinant and whether ∣Dβ⟩ was previously populated before we can say if the
spawning event was successful. Consequently, we do not know whether a spawning event
was successful before after an iteration.

● 2b: Perform the kill/clone step:

We try to kill or clone a walker with the probablity d_pd ← Pd(α∣α). Remember that
d_pd is already calculated and stored, and is equal for all walkers on the current deter-
minant. We now attempt to kill or spawn walkers according to the following rules:

first draw a random uniform χ ∈ [0,1] (15.18)

if d_pd > χ:

pl_population[α]− = sign(nα) ∗ floor(∣d_pd∣ + 1), (15.19)

else if ∣d_pd∣ > χ:

pl_population[α]+ = sign(nα) ∗ floor(∣d_pd∣ + 1). (15.20)

where nα is the signed population on ∣Dα⟩.

B: The annihilation step:

When we have run through the previous steps for all determinants, we must annihilate all
pairs of walkers of opposite signs that populate the same determinant. We have chosen
to do this in the following way: We first sort the arrays that contain the newly spawned
walkers pb_new, ppl_new. The determinants array are sorted in ascending order, and
the population arrays are reordered in exactly the same way. Note that these arrays might
contain equal determinants, in which case we sum the populations and remove the duplicate.
For example, it might happen that

pb_new[i] = pb_new[j], (15.21)
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and in this case we sum

ppl_new[0][i]+ = ppl_new[0][j], (15.22)

ppl_new[1][i]+ = ppl_new[1][j], (15.23)

remove pb_new[j], pb_new[0][j] and pb_new[1][j] from the simulation and
subtract one from l_nnew (remember that l_nnew is the total number of spawning events).
After this step we end up with a sorted determinants array

pb_new[i] < pb_new[i+1] for all i ∈ [0,l_nnew-2], (15.24)

and where ppl_new[0][i] and ppl_new[0][i] contain all walkers spawned on
pb_new[i] from initiators and non- initiators respectively.

The next step is now to merge the arrays of old and newly spawned walkers. We make
use of temporary arrays pb_temp and pl_temp, and copy both the old and new deter-
minants to these arrays. This must be done according to the rules of the initiator adaption
of FCIQMC. This part of the algorithm is most easily understood by reading the C++ code
which we have pasted below. Here l_ndet is the number of elements in the arrays that
stores the old determinants and l_nnew is the number of elements in the sorted list of
newly spawned walkers.

long i = 0, j = 0, n = 0, l_temp;
while ( (i<l_ndet) && (j<l_nnew) )
{

if < ... pb_determinants[i] == pb_new[j] ... >
{

pb_temp[n] = pb_determinants[i]; //old determinants
pl_temp[n] = pl_population[i];
// here all attempts to spawn is accepted since the
// determinant was previously populated
pl_temp[n] += ppl_new[j][0];
pl_temp[n] += ppl_new[j][1];

i++;
j++;

}
else if < ... pb_determinants[i] > pb_new[j] ... >

{
l_temp = 0;
// initiators are always allowed to spawn
l_temp += ppl_new[j][0];
// non initiators are only allowed to spawn if
// the absolute value of the sum of new walkers
// is larger than one
if ( abs(ppl_new[j][1]) > 1 )
{

l_temp += ppl_new[j][1];
}
pb_temp[n] = pb_new[j];
pl_temp[n] = l_temp;
j++;

}
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else \\( < ... pb_determinants[i] < pb_new[j] ... > )
{

//old determinants
pb_temp[n] = pb_determinants[i];
pl_temp[n] = pl_population[i];
i++;

}
// if the population is larger than 0, accept the determiant
if ( pl_temp[n] != 0 )
{

n++;
}

}

Now, either all old walkers or all new walkers are copied to the temporary arrays. The next
step is to copy the rest of the walkers:

if (i==l_ndet)
{

while (j<l_nnew) // all old walkers are already copied
{

pb_temp[n] = pb_new[j];
pl_temp[n] = ppl_new[j][0];
if ( abs(ppl_new[j][1])>1 )
{

pl_temp[n] += ppl_new[j][1];
}
j++;
if ( pl_temp[n] != 0 )
{

n++;
}

}
}
else if ( j==l_nnew )
{

while ( i<l_ndet) // all new walker are already copied
{

pb_temp[n] = pb_determinants[i];
pl_temp[n] = pl_population[i];
i++;
if ( pl_temp[n] != 0 )
{

n++;
}

}
}

Now, all determinants are contained in the n first elements of the temporary arrays. We fin-
ish by swapping the pointers of the temporary arrays and the populations and determinants
arrays, and reset the number of walkers and determinants.
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//reset number of determinants
l_ndet = n;
l_nnew = 0;

//Pointer swapping
bitset<N> *pb_sswap = pb_determinants;
pb_determinants = pb_temp;
pb_temp = pb_swap;

long *pl_swap = pl_population;
pl_population = pl_temp;
pl_temp = pl_swap;

C: Varying the shift:

The last step is to vary the shift S to stabilize the populatios. We assume that the old
number of walkers is already stored as l_oldnumwalkers. The new number of walkers
l_numwalkers can be calculated:

l_numwalkers = 0;
for (int i=0; i<l_ndet; i++)

l_numwalkers += abs(pl_population[i]);

The new shift is now calculated according to Eq. (8.16).
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Chapter 16

Parallelization

16.1 Introduction

Parallelization allows simulations on multicore computers or clusters of interconnected
computers or nodes. There are two main models of parallel computing, the shared memory
model and the distributed memory model, which are based on different underlying memory
architectures. Shared memory programs communicate by changing shared memory vari-
ables and distributed memory programs communicate via message passing. On multicore
computers, we can choose whether to use a shared or a distributed memory model. On
computational clusters, where the memory is only accessible to the cores on each node, a
distributed memory model must be chosen. When we implemented FCIQMC, we found
that it was necessary to use a composite approach combining the shared and the distributed
memory models. For simulations with a large set of basis functions, the amount of memory
needed to store the Coulomb matrix elements is so large that at least some of the cores have
to share memory. Distributed memory parallelization was implemented because we wanted
the code to run on computational clusters with many nodes.

FCIQMC is in principle a highly paralellizable algorithm. The most time consuming
part of the algorithm is the clone/kill and spawn steps which must be calculated for a large
number ∼ 105 − 108 of walkers. These calculations are independent of each other and
can therefore be run in parallel without any communication between the processes. The
annihilation step does however include a lot of communication and therefore induces a
significant communication overhead. In this chapter we will discuss these issues along with
other details of the parallelization of algorithm.

16.2 Numerical libraries

We have used the library OpenMP[21] which is an interface for shared memory paralleliza-
tion. More specifically, it is an implementation of multithreading which is a method where
several lightweight processes or threads are started and allocated to different cores.

OpenMP has been implemented using a coarse grained model where the threads only
share a minimum of objects and variables, as for example the Coulomb matrix elements
and the list of walkers. This was done to minimize the number of locks and mutex’es
(critical and atomic clauses in OpenMP) that are necessary to avoid conflicting read and
write operations to the same memory locations.
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MPI is an abbreviation for Message Passing Interface and is a library specification which
provides an interface for synchronization and communication between processes with dis-
tributed memory. The MPI standard defines the syntax and the semantics of a number of
library routines and has several implementations, among others OpenMPI[7] which we have
used in our code.

16.3 The distribution of walkers on the MPI tasks

Due to the annihilation step in the FCIQMC algorithm, we need a fast method to search
through the population and find all walkers that reside on any given determinant, and this
becomes more difficult when we run the code with many MPI tasks. This problem can be
solved by distributing the determinants in a specific way which we will now discuss.

We assume that the determinants are enumerated such that

∣Di⟩ < ∣Di+1⟩, (16.1)

where the operator < is defined in Eq. (14.3), and that the walkers are distrubuted on mul-
tiple MPI tasks which are enumerated 1,2,3, . . . . The determinants {∣Di1⟩, ∣Di2⟩, . . .}, are
sorted and distributed such that only walkers that populates determinants ∣Di⟩ with i in
some interval [M(n − 1) + 1,M(n)] populates MPI task n. The array

V = (∣DM(1)⟩, ∣DM(2)⟩, . . . , ∣DnD⟩), (16.2)

now keeps the information about where a determinant, if it is populated, is stored. To make
this information accessible to all processes we distribute V to the MPI tasks.

Figure 16.1: This figure shows schematically how the determinants are distributed on the MPI tasks.
The determinants are sorted such that all determinants on MPI task i are larger than ∣DM(i−1)⟩ and
smaller than or equal to ∣DM(i)⟩.
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16.4 Load balancing

The process of distributing the walkers such that the workload is the same on all threads is
referred to as load balancing. All threads have to wait for the last thread to finish at the end
of an iteration, which means that the numerical efficiency will suffer if the computational
load is not evenly distributed. The load balancing of the OpenMP threads and the MPI tasks
follow the same principles, and in this section we will refer to both the MPI tasks and the
threads as processes.

Each process i receives a number N (i)
W of walkers that populates a number N (i)

D of
determinants. Ideally, the walkers should be distributed in such a way that all processes
spend the same time processing the walkers. However, this is not straight forward since the
CPU time needed to process one walker is dependent on many different factors. We have
assumed that the computation time for a set of N (i)

W walkers living on N (i)
D determinants is

tCPU(N
(i)
W ,N

(i)
D )∝ kWN

(i)
W + kDN

(i)
D + const, (16.3)

where kW , kD are implementation and system dependent parameters. We think this is a
reasonable assumption since the number of calls to the most costly functions, which are
the functions that calculate the kill/clone and spawn probabilities, are linearly dependent of
N

(i)
D and N (i)

W . According to Eq. (16.3), the walkers should ideally be distributed to the
processes i =,1,2,3, . . . ,Nprocs in such a way that

N
(a)
W kW +N

(a)
D kD =

Nprocs

∑
i=1

(N
(i)
W kW +N

(i)
D kD)/Nprocs, ∀a ∈ [1,Nprocs]. (16.4)

The constants kW and kD are found empirically. In practice we set kW = 1 and optimize
kD. This parameter is system dependent, and the optimal value should ideally be found for
each new simulation.

16.5 The program flow

In this section, we will look at the work flow and how the walkers are administrated by the
parallelized program. Together with the last chapter where we described how the sequential
algorithm is implemented, this section should give a more or less complete picture of how
we have implemented the FCIQMC algorithm. We do not provide programming details or
code examples here, but these can be found in the next chapter where we discuss the C++
code.

In figure 16.2, one iteration of the code is schematically illustrated in four steps A,B,C
and D, and these steps are explained in detail below.

A: We start with a certain number of walkers on each MPI task. The walkers populate
the determinants ∣Di1⟩, ∣Di2⟩, . . . , which are sorted and distributed on the different MPI
tasks. The MPI tasks are load balanced in accordance with Eq. 16.4.

The first step is, on each MPI task, to distribute the walkers to the threads in such a way
that they are load balanced.

B: Each thread performs the clone/kill and spawn steps on its list of walkers by using the
sequential algorithm.
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C: After the previous step, all MPI tasks now have two lists of walkers. The first is the
old list of walkers minus the killed walkers and plus the cloned walkers. These walkers
are situated on the correct MPI task since the cloned walkers populates the same deter-
minants as their parents. The second list consists of the newly spawned walkers which
populates different determinants than their parents. These walkers must be sent to the
MPI task where their resident determinants are listed, sorted and merged with the old
list of walkers.

As we discussed in the last chapter, the newly spawned walkers are stored in the arrays
pb_new and pl_new. And it is the elements of these arrays that must be redistributed.
After the redistribution, the walkers are merged with the old populations and determi-
nants arrays in the same way as we described in the last chapter 1 .

D: The number of walkers and determinants on the different MPI tasks may now have
changed. The MPI tasks are load balanced by redistributing the determinants. Because
of the way the determinants are sorted, only the first/last determinants are transmitted,
and only to or from the last/next MPI task.

Except for the additional steps that must be taken to redistribute the newly spawned walkers
and load balance the nodes and the threads, the parallel algorithm is more or less identical
to the sequential algorithm.

1We discussed this in the last chapter under point B (the annihilation step).
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Figure 16.2: This figure is explained in the text in section 16.5
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Chapter 17

Organization of the code and the
classes

In this chapter we will look closer at the C++ code, and show how the code is structured.
Note that with exception of the main function, there is no part of the code that is not part
of a class. In this chapter each of the classes has its own section where we describe the
functionality of the class, what classes it instantiates and so on.

17.1 Overview

The code is organized in the following classes

• runSimulation: This class contains the main loop and coordinates the other
classes.

• walkerContainerClass: Keeps informations about the population of walkers.

• sortWalkers: Sorts the new walkers and merges them with the list of old walkers.

• loadBalanceThreads: Distributes the walkers to the threads.

• walkerDistribution: Distributes the walkers to the MPI tasks.

• walkerPropagator: Runs through a list of walkers and performes the killing
cloning and spawning steps.

• hamiltonianElements: Calculates the hamiltonian elements ⟨Di∣Ĥ ∣Dj⟩.

• libGRIE: Tabulates and stores the Coulomb matrix elements.

• inputVars: Reads and stores the preset run parameters.

• initSimulation: Initializes the basis and some run time parameters.

In addition, the library OpenFCI [15] are used to calculate the Coulomb integrals, and
the library CRandomMersenne [6] to generate random numbers. The random number
generator that we have used is an implementation of the Mersenne Twister algorithm [18]
which is considered to be a fast algorithm that produces random numbers of high quality.

The simulator is wrapped in a python code that compiles the C++ code, starts simula-
tions, organizes, analyzes and plots the output data etc.
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Figure 17.1: UML Class Diagram. Some classes are not included like initSimulation,
CRandomMersenne, OpenFCI and inputVars.
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17.2 The initSimulation class

This class initiates the libGrie class which contains the Coulomb matrix elements and the
arrays pi_m and pi_n which contains the quantum numbers of the single particle orbitals.
It also sets the seed 1 of the random number generator and some other run time parameters.

17.3 The runSimulation class

This class coordinates the other classes and contains the main loop of the program. The
classes walkerContainerClass and libGRIE are instantiated before we enter the
main loop, and are shared between all threads. We then enter the function run which can
be summarized as follows:

(I): A number i_numthreads of threads are spawned and the program enters the par-
allel section.

(A): The class walkerPropagator are instantiated within each thread. Each of
these classes recieves a pointer to the libGRIE object to be able to access the
shared Coulomb matrix elements.

(B): Each thread allocates memory for intermediate storage of newly spawned walk-
ers. This is done to prevent data races among the threads.

(C): The program enters the main loop

(i): Each thread calls the walkerPropagator::singleStep() func-
tion to do a single FCIQMC iteration.

(ii): The newly spawned walkers are written to the shared arrays ppd_new
and pb_new of the class walkerContainerClass .

(iii): The program enters a sequential section where only one of the threads
does work
(a): The walkerContainerClass object redistributes the new walk-

ers to the different MPI task. It then loadbalance the MPI tasks, and
the threads of the individual tasks.

(b): Statistics are collected from all MPI tasks and written to an output
file.

17.4 The walkerContainerClass class

This class holds four public arrays and one public vector that stores all information about
the current population of walkers, the newly spawned walkers and the load balancing of the
threads. It instantiates the classes walkerDistribution and sortWalkers, which
sorts the walkers, redistributes the walkers on the different MPI tasks and merge the list of
old and new walkers.

The state vector is represented by two arrays. The first is a bitset array which stores
the populated determinants, and the second is a long array which stores their populations.

1 The random number generator is initialized with an integer that is called a seed. The sequence of random
numbers that are produced by the random number generator depends on the value of the seed.
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bitset<N>* pb_determinants = new bitset<N>[i_ndmax];
long* pl_population = new long[i_nwmax];

The variable l_ndet tells us how many different determinants that have a non zero popula-
tion. These determinants are always stored in the l_ndet first entries of pb_determinants
and pl_population .

The newly spawned walkers are stored on the two arrays

bitset<N>* pb_new = new bitset<N>[i_maxnspawn];
long** ppl_new = new long[i_maxnspawn];

Assume a spawning event where ∣n∣ walkers are spawned on the determinant ∣Dj⟩ from the
determinant ∣Di⟩, and that this is the i_nnew’th spawning event. The sign of n can be
positive or negative depending of the sign of the spawned walkers. The information about
the spawning event is stored in the following way:

pb_new[i_nnew]← ∣Dj⟩.

If ∣Di⟩ is an initiator:

ppl_new[i_nnew][0]← n

ppl_new[i_nnew][1]← 0

If ∣Di⟩ is a non-initiator:

ppl_new[i_nnew][0]← 0

ppl_new[i_nnew][1]← n

These arrays must be available when the new list of walkers are merged with the old list
of walkers. Often, a walker is spawned on a determinant that is listed on a different MPI
task, and there is no way of finding out if the spawning event was successful until the new
walkers are redistributed.

The loadbalancing of the threads are calculated by the class loadBalanceThreads
and the information about how the walkers are distributed is stored on the vector

vector<loadBalThr> wdistthr;

which has the same number of elements as the number of OpenMP threads. wdistthr[i]
contains the information about which walkers that are processed by thread i and is an
instance of the struct

struct loadBalThr
{

unsigned long first;
unsigned long ndet;
long nwfirst_thrd;
long nwlast_thrd;

};

where first is the index of the first determinant to be processed, and ndet is the number
of determinants. The walkers on the first and the last determinant on a thread can be split
between two threads. nwfirst_thrd and nwlast_thrd is the number of walkers on
the first and the last determinant that should be processed by the current thread. wdistthr
is reset every time the function loadBalance is called.
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17.5 The sortWalkers class

This class sorts the spawned walkers and merges the lists of new and old walkers.
The functor LessThan finds the smallest of two determinants. This is a class where

the operator () is overloaded with function that compares two determinants given their
indices.

class LessThan
{

private:
bitset<N> b_tmp;
unsigned int l_tmp;
bitset<N>* pb_dets;

public:
LessThan (bitset<N>* pb_dets) { this->pb_dets = pb_dets; }
bool operator()

(const unsigned long lhs, const unsigned long rhs);
};

The comparison of the determinants can be efficiently performed by using bit operations.
The next example shows how the xor operator (represented by ^ in C++) can be used to
find the “smallest” of the two determinants b_lhs and b_rhs.

bool operator()(const unsigned long lhs, const unsigned long rhs);
{

b_tmp = (pb_dets[rhs]^pb_dets[lhs]);
l_tmp = b_tmp._Find_first();
if (l_tmp==N)

return false;
else if (pb_dets[rhs].TEST(l_tmp))

return false;
else

return true;
}

Here _Find_first() returns either the index of the first bit equal to 1, or N if all bits are
0, where N is the template parameter of the bitset objects which equals the number of
spin orbitals in the basis. The function lhs.test(k) returns true if the k’th bit of lhsis
set, and false otherwise. The class LessThan is instantiated with a pointer to the first first
determinant in pb_determinant or pb_new. This allows us to test if determinant i is
smaller than determinant j using the following notation

LessThan lessthan(&pb_determinant[0]);
bool b_lessthan = lessthan(i,j);

Instead of sorting the bitset array directly, we now sort an array ul_index with ordered
indices in the range [1, . . . ,ND], where ND is the number of determinants that are to be
sorted. The order of he sorted indices tells us how to reorder the determinants afterwards.
This is faster and more practical for many reasons. Most importantly, when N is large it is
much more time consuming to sort the bitset array directly simply because more data
needs to be moved around.
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The function orderIndices initialise ul_index array and sort it by using the C++
Standard Template Library function std::sort 2.

for (unsigned long i=0; i<n; i++)
ul_index[i] = i;

std::sort(&ul_index[0], &ul_index[n], LessThan(pb_new) );

Note that we pass the functor LessThan as an argument. This is a method to overload the
operator < with the operator () of the LessThan class.

The function reorderWalkers reorder the newly spawned determinants after the
array ul_index is sorted. Determinants that is represented more than once are merged
and the their populations are summed. To do the reordering of the arrays efficiently, we
copy the determinants array and the populations array to an intermediate array and swap
pointers.

The function mergeNewAndOldmerges the old list of determinants and a list of sorted
walkers according rules of initiator-FCIQMC. We use intermediate arrays and pointer swap-
ping in this function as well.

17.6 The walkerDistribution class

This class take care of the distribution of walkers and determinants on the different MPI
tasks. Most of the MPI communication is handled here.

As discussed earlier, the determinants are sorted and distributed on the different MPI
tasks. Every iteration, the newly spawned walkers are sent to the MPI task where their host
determinant is listed. To know where to sent the walkers, each MPI task must be aware of
which determinants that are listed on which MPI task. This information is, as we discussed
in section 16.3, contained in the array

bitset<N>* pb_lastdet = new bitset<N>[i_numthreads];

which contains the greatest determinant on each of the MPI tasks.
After the spawning step, each new walker is sorted according to which determinant it

populates. When the walkers are sorted, we only need find the first and the last determinant
of the interval that we want to transmit to each of the MPI tasks. For this purpose we use
the STL binary search function std::lower_bound. Similar to what we did in the last
section, we overload std::lower_bound with a functor that defines the < operator.

This class also redistributes the determinants when the MPI tasks are load balanced.

17.7 The loadBalanceThreads class

This class is responsible for the load balancing of the threads. The function loadBalance
finds the distribution of walkers according to Eq. (16.4).

2 std::sort is an implementation of the so called introsort algorithm [19], which is a fast sorting algo-
rithm with a worst case scaling of O(N log(N)).
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17.8 The walkerPropagator class

This class performs a single FCIQMC step, and is instantiated on all threads. Each object of
this class receives the list of walkers that is distributed to the threads by the loadbalance
class. It calculates the spawning, killing and cloning step according to the FCIQMC algo-
rithm.

The function singleStep runs through the list of determinants. For each determinant
i the following steps are performed:

(i:) Call the class hamiltonianElements and calculate the diagonal matrix element
⟨Di∣Ĥ ∣Di⟩.

(ii:) Call the function updatePojectedEnergy to accumulate the projected energy if
∣D0⟩ is connected to ∣Di⟩.

(iii:) Run through the list of all walkers j on determinant i

(a) Assume that the preset probability of a single excitation is ds.

If U < ds try to do a single excitation

Else try to do a double excitation.

where U is a random uniform ∈ (0,1). Then call sampleProjector which
draws the new determinant a†

par ∣Di⟩ or a†
pa

†
qaras∣Di⟩ and calculates the sugges-

tion probability, and trySingleExcitation or tryDoubleExcitation
which calculates the Coulomb matrix elements and the excitation amplitude,
“rolls the dice” and spawns new walkers.

(b) Try to kill or clone a walker. Draw a random uniform U ∈ [0,1] and calculate
dp = −τ(⟨Di∣Ĥ ∣Di⟩ − S).

If ⟨Di∣Ĥ ∣Di⟩ < 0 then remove the walker if ∣⟨Di∣Ĥ ∣Di⟩∣ > U .

Else if ⟨Di∣Ĥ ∣Di⟩ > 0 then add a walker if ⟨Di∣Ĥ ∣Di⟩ > U .

Adding or removing a walker is done by adding to or subtracting from the i’th
element of the populations array.

We will take a closer look at the function sampleProjector. This function draw a
random determinant that is connected to Di, and calculate the suggestion probability. For a
single excitation we call

double walkerPropagator<N>::sampleProjector(
const int iact_w,
int &ia1,
int &ic1)

Where iact_w is the index of the determinant, and ia1,ic1 is changed to the indices of
the annihilated and created orbitals. For a double excitation the function is overloaded with
two more indices ia2 and ic2.

First we pick a random orbital to be annihilated and store it as ai1
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ia1 = o_random.IRandomX(1,inum_part);
//find the position of the i’th set bit
i = b_slater_active._Find_first();
for (j=1;j<ia1;j++)

i = b_slater_active._Find_next(i);
ia1 = i;

where _Find_first() and _Find_next(i) are highly optimized functions of the
bitset class that finds the first bit or the first bit after the i’th bit that is set. Then we con-
struct a bitset b_slatertemp which contain all orbitals that preserve the total magnetic
quantum number and the spin

//find the magnetic quantum number of the new state
ima = pi_m[ia1/2];
//the spin must be the same as that of the annihil. orb
if (ia1%2) //ic1 is spin down (1)

b_slatertemp = pbamc_dwn[ima+ir]&~b_slater_active;
else //ic1 is spin up (0)

b_slatertemp = pbamc_up[ima+ir]&~b_slater_active;

The bitsets pbamc_up[ima+ir] / pbamc_dwn[ima+ir] contains all orbitals with a
magnetic quantum number ima and spin up / down. These bitsets are initialized when the
class is instantiated. b_slater_active is the active determinant ∣Di⟩ and pi_m is the
array containing the magnetic quantum number of the orbitals.

We count the number of orbitals in this set. This number must be known to calculate
the suggestion probability.

idim_S5 = b_slatertemp.count();
if (idim_S5==0) {return -1;}

Then we pick a random orbital from this set.

//pick random from S5
ic1 = o_random.IRandomX(1,idim_S5);
//find the position of the i’th set bit
i = b_slatertemp._Find_first();
for (j=1;j<ic1;j++)

i = b_slatertemp._Find_next(i);
ic1 = i;
return static_cast<double>(inum_part*idim_S5);

The suggestion probability for the single excitations is the return value divided by the pre-
determinad probability of a single excitation ps.

The same strategy is used to find the doubly excited determinants and their suggestion
probability.

17.9 The hamiltonianElements class

This class calculates the elements of the Hamiltonian matrix, and is instantiated by the
walkerPropagator class. It communicates with the libGRIE class that holds the
Coulomb matrix elements.
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17.10 The libGRIE class

This class tabulates the Coulomb matrix elements using the indexing scheme that is de-
scribed in section 11. This class is only instantiated once on each MPI task.

The reason why the libGRIE object is shared among the threads is that the amount of
memory needed to store the Coulomb matrix elements can become several GB for large R.
If each thread where to store its own libGRIE object the memory footprint of the program
would become very large.

The class variables are not changed after the initialization. This means that several
threads can access the class methods simultaniously without risking the occurrence of race
conditions. Thus, sharing an object of the class between the threads will not slow down the
code.

17.11 The inputVars class

This class reads runtime parameters from a text file and stores them as class variables.
Instead of passing the runtime parameters around in the program, we pass an object of this
class.
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Chapter 18

Benchmarking the Code

In this chapter we have tested the efficiency of the code, both sequentially and with OpenMP
and MPI, and which effect different run time parameters have on the execution time.

18.1 Hotspots by CPU usage

The hotspots are the most CPU intensive parts of the code. These are the parts of the code
that we would gain the most from optimizing. To find the hotspots we have performed a
tests on a single workstation. MPI was not used in this test, but the scaling with MPI is
reviewed separately later in this chapter.

(i:) class walkerPropagator 38% of total CPU time of which

68% was spent in the function sampleProjector. which calculates the genera-
tional probabilities pgen for the single and the double excitations.

(ii:) class CRandomMersenne 30% of total CPU time. This is the random number
generator generating random uniforms.

(iii:) class libGRIE 20% of total CPU time of which

close to 100% was spent in the function getCoulIE. This function finds the
Coulomb matrix elements given the indices (p, q, r, s) of the annihilated and cre-
ated orbitals.

(iv:) class hamiltonianElements 7% of total CPU time of which

94% was spent in the function getSingleExcitationAmplitudewhich cal-
culates the amplitudes ⟨Di∣Ĥ {a†

par} ∣Di⟩.

6% was spent in the function getDiagonalElementwhich calculates ⟨Di∣Ĥ ∣Di⟩

(v:) The remaining CPU time was mainly spent waiting because the threads had different
workloads. The sortWalkers class and the loadBalanceThreads class spent less than
1% of the total run time.
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As we see, the calculation of the generational probabilities pgen, the generation of random
uniforms and accessing the Coulomb matrix elements is the most time consuming part of
the code.

The sampleProjector method is believed to be reasonably fast, and it is difficult
for us too see how this function could be further optimized. It is however clear that the over-
all performance of the code would improve much from such optimizations, and alternative
sampling methods might be an interesting subject for future studies. The random number
generator is a highly optimized implementation of the well known Mersenne-Twister al-
gorithm, which we believe to be a good choice for our implementation. Although faster
algorithms exists, this one does not compromise on the quality of the random numbers.
We have also invested much effort in optimizing the method getCoulIE that returns the
Coulomb matrix elements, and we do not know any other method that is faster than ours for
this purpose.

18.2 Scaling with openMP and MPI

Because of the serial sections of the code, the computational efficiency will only increase up
to a certain number of nodes and cores. The total run time can not be less that the execution
time of the serial part of the code, and the performance gain of adding an extra node falls
rapidly close to this limit. This relationship is described by Amdahls law which states that
if the serial part of the code spends s of the total run time, the speedup with n processes is
n/(1 + s[n − 1]) which converges to 1/s for large n.

The walkers on a single determinant can be split between threads but not between MPI
tasks. This means that the best possible speedup for a system with NW walkers in total
and nm walkers on the most populated determinant is of order NW /nm. If we increase
the number of MPI tasks beyond roof[NW /nm], we will not see any speedup. This means
that a simulation will always be limited by the most populated MPI task with nm walkers,
and that simulations with many walkers on few determinants should be run with as many
threads as possible per MPI task.

The speedup as a function of the number of OpenMP threads and as a function of MPI
tasks is shown in Fig. 18.1. This plot shows that the MPI implementation is efficient
and indicates that the communication overhead is small. But even if the system which
we have simulated here scales well with MPI, this result does not necessarily apply to all
systems. There are many factors which affect the amount of communication between the
nodes and the communication overhead. For example, we would expect less communication
with systems that are weakly correlated since the spawning probabilities on average are
smaller (Hamiltonian matrix closer to diagonal form). Likewise, if the fluctuations in the
distribution is small, we would expect less communication since the determinants would
have to be redistributed less often. These characteristics are system dependent and difficult
to predict.

Among the tunable parameters which affect the amount of communication is the time
step τ , the determinant load parameter kD and the redistribution threshold. The time step
affects the walker dynamics, and there exists an optimal parameter from a sampling per-
spective. But when we run the code on many nodes, the time step is proportional with the
spawning rate, and should therefore be kept low to minimize the communication overhead.
The optimal values for τ , kD and the redistribution threshold are system dependent, and
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should ideally be optimized for each new system.

(a)

Figure 18.1: (MPI) Wall time of simulations with a different number processes or MPI tasks. All
MPI tasks run on different nodes to maximize the communication overhead. (OpenMP) CPU time
of simulations with a different number of cores. All runs performed on a single node. (Ideal scaling)
The best possible parallel scaling is n−1, where n is the number of MPI tasks or threads.

18.3 Scaling with the number of walkers

As we have argued earlier (see section 16.4), we would expect the run time of the part of the
code that handles the kill/clone and spawn steps to scale linearly with the number of walkers
and the number of determinants. The scaling of the part that handles sorting, annihilation
and redistribution of walkers is more difficult to predict, but is expected to have a worst
case scaling of O(N log(N)) 1 with both the number of newly spawned determinants and
the total number of determinants. However, the dependency of the number of determinants
on the number of walkers is system dependent and not generally known. Furthermore, this
part of the code is not parallelized with OpenMP, and could therefore have a large negative
impact on the overall run time.

Our experience from simulations is that given that the number of nodes are kept con-
stant, the computation time scales close to linearly with the number of walkers. This is
illustrated in Fig 18.2 where we have plotted the run time of simulations of different sys-
tems as a function of the number of walkers.

1 The sort algorithm has a worst case scaling of O(N log(N)) where N is the number of determinants
that are to be sorted. We use C++ Standard Library function std::sort which is an implementation of the
introsort algorithm [19].
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Figure 18.2: Scaling of the algorithm when the number of walkers are increased for systems with a
different number of particles NP , number of shells R + 1, spin s and magnetic quantum number m.
All systems have an oscillator frequency ω = 1 and are run with the same number of iterations. As
we see from this figure, the run time t seems to have a linear dependency of the number of walkers.

18.4 The determinant load parameter and the redistribution
threshold

The CPU time of simulations with different values for the determinant load parameter kD is
illustrated in Fig. 18.3. The optimal value for this parameter differs from system to system,
thus it should ideally be tuned for each new system. But as this is a very time consuming
task we have used a fixed value kD = 1.4 in most simulations.

When it comes to the redistribution threshold, we have found that using a value ∼ 10−2

is efficient for the systems that we have simulated. We have used a redistribution threshold
of 0.03 for all simulations.
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Figure 18.3: Different simulations where all runtime parameters are the same except the load weight
parameter kD. This parameter determines how the nodes are load balanced as defined in Eq. (16.4).
As we see, the CPU time is at its minima at kD ≈ 1.4. This number is however system dependent,
and ideally each new system should be minimized with respect to kD to optimize the numerical
speed.
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Chapter 19

Modifying the code to simulate other
systems

Our code is tailored to simulate two dimensional quantum dots, but it is straight forward to
modify it to handle other systems like atoms, molecules or nuclei. In this short chapter we
are looking closer on how this can be done.

Assume that we want to apply the FCIQMC code to an arbitrary system. To do so,
we need to know the Hamiltonian matrix in the basis of the determinants {∣Di⟩} which
are constructed from the single particle wave functions {∣ϕi⟩}. In addition we need to
keep track of the quantum numbers n,m, s, . . . of the single particle wave functions. To
be able to sample the spawning step efficiently, we must also know which quantities that
are conserved in an interaction ⟨Di∣Ĥ ∣Dj⟩. These properties differs from one quantum
mechanical system to the next, and the code has to be modified if the quantum numbers or
the conservation rules are different from the two dimensional parabolic quantum dots which
we have simulated.

Only a few functions and classes will have to be modified or rewritten to simulate dif-
ferent many body systems. As we already have discussed, we store the quantum num-
bers on arrays pi_n and pi_m. If the new system have additional quantum numbers,
more such arrays would have to be introduced, and the classes walkerPropagator and
hamiltonianElement would have to undergo some small changes. In addition we
would have to change the following classes and functions:

1. The function walkerPropagator::sampleProjector.

This function samples the suggestion probabilities (see: chapter 10) and has to be
rewritten if the new system has different symmetries. Generally, only determinants
∣Di⟩, ∣Dj⟩ where certain quantities are conserved are connected, and only connected
determinants should be sampled when we try to spawn new walkers.

2. The class hamiltonianElement.

This class has to be rewritten to calculate the Hamiltonian matrix elements of the new
system.

3. The class libGRIE.

This class must be replaced with a class that stores or calculates the Coulomb matrix
elements (or mode generally the interaction matrix elements) of the new system.
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4. The class initSimulation.

This class initiates the arrays pi_m and pi_n which contains the quantum numbers
and has to be rewritten.

All the classes that administrates the walkers (walkerContainerClass, loadBalanceThreads,
sortWalkers and walkerDistribution), and the runSimulation class would
be left unchanged.
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Part VI

Results
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In this part we discuss the results of a series of simulations with the FCIQMC
algorithm and the optimized algorithm i-FCIQMC. We test the algorithm, dis-
cuss its advantages and disadvantages and compare it to other numerical meth-
ods, and we have also made a few predictions for different open shell systems.

The first chapter is devoted to testing and validating the program, and we show
that our code reproduces known results with a high accuracy. In the next two
chapters, we look at how the code performs with different systems with a vary-
ing degree of correlation and a different number of particles. In the fourth and
fifth chapter we look closer at different methods to optimize the algorithm.More
specifically, we study the convergence of the results of simulations with i-
FCIQMC, with both the plain harmonic oscillator basis and with a Hartree-
Fock basis. In the sixth chapter we calculate the extrapolated energies of dif-
ferent open shell systems and compare the results to Diffusion Monte Carlo
(DMC) resuls. We also discuss the validity of the extrapolation formula and
discrepancies between our results and the DMC energies.

At last we summarize and discuss our results together with what we believe are
interesting furure prospects.
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Chapter 20

Validating the code

20.1 Introduction

To validate the code we have found some cases where we know the “correct” outcome of a
simulation. In some cases there exist closed form expressions which provides us with the
exact result and in other cases we have compared with values from other numerical methods
which ought to give the same outcome. We know that the FCIQMC energy should converge
to the Full Configuration Interaction (FCI) energy within a given Hilbert space. An obvious
way to validate the code is therefore to compare our results with FCI energies. We have
compared our energies to the results of Refs. Kvaal 2006 [15], Rontani et. al. (2006) [29]
and Olsen (2012) [20] which have performed FCI simulations with the same Hilbert spaces
as we study. In the case of the two particle quantum dot, the closed form expression of
the energy for certain values of the oscillator frequency ω is known [37]. For example,
the two particle ω = 1 quantum dot has a ground state energy of exactly 3 Hartree (H).
Because of the relatively small dimensionality of the Hilbert spaces of this system, we can
do simulations with a high number of shells and a high accuracy.

The situation is different for the initiator adaption of the algorithm, i-FCIQMC. We
do not even know the closed form expression of the underlying projection operator, and
consequently it is difficult to find any good test cases. The only method we have found
to test our implementation is to check that the energies actually converge to the FCIQMC
value in the limit of a high number of walkers and a low initiator limit.

20.2 FCIQMC

20.2.1 A simple system, two electrons in two shells

The first test to validate the code was to compare with the FCI ground state energy of the
two particle system in two shells with an oscillator frequency ω = 1. In two shells, the single
particle basis consists of only six spin orbitals

{ϕ1, ϕ2, ϕ3, . . . , ϕ6}, (20.1)

and the Hilbert space is spanned by the three determinants which have a total spin and
magnetic quantum number equal to zero

H = {∣ϕ1, ϕ2⟩, ∣ϕ3, ϕ6⟩, ∣ϕ4, ϕ5⟩} = {∣1⟩, ∣2⟩, ∣3⟩}. (20.2)
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The Hamiltonian matrix is a 3 × 3 matrix with the elements

Hi,j = ⟨i∣Ĥ ∣j⟩, i, j ∈ [1,3], (20.3)

The numerical value of the matrix elements is generated with OpenFCI, and we find the
ground state energy to be 3.15233 . . .H , a result which is reproduced with our code.

20.2.2 Comparing FCIQMC energies and FCI energies

The next test was to compare FCIQMC energies to the results of Refs. [15, 20, 29] which
have used FCI to calculate ground state energies of parabolic quantum dots. In Tab. 20.1,
the results of a small series FCIQMC runs are listed and compared with FCI results. The
FCI results was in most cases reproduced with a small error in the range of 0.6 mH or less.
The exception is the simulations of the 5 particle quantum dots with R = 5, where the FCI
energies are significantly lower. Note that the results still agree to within 1 mH , and that
the FCI results for the same system are reproduced with R = 7. When the differences are so
small, it is difficult to discuss them further without an error estimate for the FCI results.

All Refs. have used the Lanczos algorithm, which is an iterative procedure where a tridi-
agonal matrix which is similar to the Hamiltonian matrix is constructed. The eigenvalues
of this matrix are expected to converge to the energy spectrum of the Hamiltonian. When
the difference between the estimated ground state energy from one iteration to the next is
smaller than some preset value δk, the simulation is assumed to have converged. But δk does
not set an upper bound for the error. Olsen(2012) [20] demonstrated that for some systems
the energy seems to converge to one value before it suddenly drops and converges to the
“real” ground state value. As an example, for the four particle quantum dot with m = s = 0
and ω = 1/

√
6, Refs. [15, 29] found a ground state energy of approximately 0.6581H while

the “true” value is 0.0016H lower at 0.6566H . In this case, a δk smaller than 10−7H was
needed for the simulation to converge to the lower value (which was the same groundstate
energy as the FCIQMC algorithm found for this system). The convergence criteria for the
energy δk is only provided by Olsen [20], which used a value of 10−6H/ω2 in most simu-
lations. Although it is possible to estimate the Lanczos error [8], only Olsen has discussed
this subject, and none of the references have included the errors of their results.

R = 5 R = 5 R = 5 R = 7 R = 7 R = 7
N ω m 2s ⟨S⟩ ⟨Ep⟩ FCI ⟨S⟩ ⟨Ep⟩ FCI

2 1 0 0 3.0140(6) 3.0136(1) 3.01363 (†) 3.0091(4) 3.0091(1) 3.00924 (†)

2 1/4 0 0 0.9334(2) 0.9335(1) 0.933399 (†) 0.9323(2) 0.9323(1) 0.932331 (†)

3 1/16 1 1 0.69029(4) 0.69025(8) 0.690300 (†) 0.69008(5) 0.69021(9) 0.690159 (†)

3 1/16 0 3 0.69087(3) 0.69089(2) 0.690893 (†) 0.69080(3) 0.69079(2) 0.690789 (†)

4 1/36 0 0 0.65672(5) 0.6562(4) 0.656630 (∗) 0.65546(5) 0.6557(6) 0.655454 (∗)

4 1/36 0 2 0.65674(4) 0.6563(3) 0.65669 (‡) 0.65551(5) 0.6550(5) 0.65550 (‡)

5 1/4 0 5 5.2887(1) 5.2886(1) 5.28773 (†) 5.2825(1) 5.2825(1) 5.28248 (†)

5 1/16 0 5 1.84080(4) 1.8409(1) 1.83971 (†) 1.83132(4) 1.8314(2) 1.83141 (†)

Table 20.1: Here and m,s and ω are the magnetic quantum number, the spin and the oscillator
frequency, andR+1 the number of shells. ⟨S⟩ and ⟨Ep⟩ are the statistical and generational estimator,
and energies are in units of Hartree. The FCI energies are provided by [15] (†), [29] (‡) and [20]
(∗). Note that the number of digits of the FCI energies does not reflect the accuracy of the results.
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20.2.3 Testing FCIQMC energies against analytical results

In the article by Taut [37], it is shown that the ground state energy of the two particle
quantum dot with ω = 1 is exactly 3H . We have performed a series of simulations with
R = 5,10,15,20,25 and 30 to check whether the energy converges towards the exact result.
The energy is improved every time we increase the number of shells, and with R = 30
the energy is approximately 2mH too high. Also note that, as will be discussed later, the
extrapolated energy (using Eq. (5.11)) yields an energy 3.0000(1)H . The results are listed
in Tab. 20.2 and illustrated in Fig. 25.2.

R ⟨S⟩ ⟨EP ⟩

5 3.0133(6) 3.00136(1)
10 3.0059(6) 3.0063(2)
15 3.0037(7) 3.0036(2)
20 3.0028(8) 3.0028(2)
25 3.0019(4) 3.0021(1)
30 3.0016(3) 3.0018(1)

Table 20.2: Simulations with two particle quantum dots with spin and magnetic quantum number
m = s = 0 and different number of shells R+1 in the basis. All listed energies have units of Hartree.
The exact result in the limit R →∞ is 3 Hartrees.

20.3 i-FCIQMC

To ensure that the i-FCIQMC energy has converged, a series of simulations must be run
with an increasing number of walkers. When both ⟨S⟩ and ⟨EP ⟩ are converged to the same
energy, we can assume that the energy has converged to the FCIQMC value. Based on the
results of Ref. [4], we would also expect this to happen with a number of walkers that is
smaller that NC . We have observed this behaviour for all i-FCIQMC simuations that we
have performed. As an example we will look at the 5 particle quantum dot with ω = 1
and 2s = m = 1 in 9 shells. We have used the FCIQMC result with 5 × 105 particles as a
benchmark for the energy. The FCI space consists of 6.5×105 determinants and the critical
number of walkers is approximately 1.3×105. As we see from Fig. 20.1, FCIQMC must be
run with at least the critical number of walkers to converge while the i-FCIQMC energies
converges at a much lower number of walkers. Already at 104 walkers the i-FCIQMC
energy is within a few mH from the FCIQMC result, and as the number of walkers is
increased the errorbars gets smaller.
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(a) NI = 1

(b) NI = 2

(c) NI = 3

Figure 20.1: Simulations for systems with 5 particles, 9 shells, magnetic quantum number and spin
m = s = 1 and a Hilbert space with a dimensionality dim(H ) = 6.5 × 105. The critical number
of walkers is NC ≈ 1.3 × 105. Here ⟨S⟩ is the generational estimator and ⟨EP ⟩ is the projected
estimator while conv is the “exact” FCI value at 14.9830(5)H . Here we have used results from an
FCIQMC simulation with 5 × 105 walkers as the exact energy. All simulations are run with 2 × 106

iterations.
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Chapter 21

The statistical estimators

In this section we will discuss the behaviour of the generational estimator ⟨S⟩ and the pro-
jected estimator ⟨EP ⟩. We have included results from simulations of different 2 particle
systems with 8 shells and different oscillator frequencies ω. Although these systems have a
very small Hilbert space with only 104 determinants in the basis, the statistical estimators
show the same general behaviour as we have seen for other systems. We have run 4 simula-
tions with 104 walkers which is well above the critical number of walkers that is necessary
for the energies to converge. The value for ω is set to different values, 10.0, 1.0, 0.1 and
0.01, otherwise all parameters are the same. The results are listed in Tab. 21.1 and as we
see, both the projected estimator ⟨Ep⟩ and the generational estimator ⟨S⟩ converges to the
FCI value.

First, notice that the relative error (measured as a fraction of the total energy) of both
estimators gets larger for smaller ω. This is a general trend in our simulations, and might
be explained as a consequence of the degree of correlation in the systems. For high ω the
system is weakly correlated, and excitations will be less probable. In this case, most of the
walkers will presumably be concentrated in a smaller part of the Hilbert space. In a strongly
correlated system, the walkers will presumably be more spread out in the Hilbert space, and
one can say (with a little sloppiness) that we are sampling a larger number of determinants
with the same number of walkers.

From Tab. 21.1 we also see that the projected estimator ⟨Ep⟩ gives the best energy esti-
mate for large ω, while the generational estimator ⟨S⟩ does for small ω. This is illustrated
in Fig. 21.1 where the fluctuations Ep gradually become larger than the fluctuations of S as
we decrease ω. There may be several reasons why the statistical estimators have a different
dependence of the oscillator frequency ω. First, the projected estimator does only depend
on walkers that populates determinants that are connected to the reference determinant ∣D0⟩

while the generational estimator depends on the total population. This means that for most
systems, the projected estimator are calculated on basis of a subset of the population. (This
does not apply to the two particle system where all determinants are connected to ∣D0⟩).
Second, the general estimator is sensitive to the total number of walkers while the projected
estimator is sensitive to the shape of the distribution. And third, the projected estimator
is extra sensitive to the number of walkers n0 on the reference determinant ∣D0⟩ since it
appears in the denominator in the expression for the projected energy. If n0 gets to small,
we would expect the projected estimator to have a large error. It should be commented that
systems where the ∣D0⟩ component of the ground state is small, may require a very large
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population to acquire a sufficiently large n0.

ω ⟨n0⟩/⟨NW ⟩ ε⟨S⟩/ε⟨Ep⟩ FCI [20] ⟨S⟩ ⟨Ep⟩

10.0 0.69 20 – 23.6772(40) 23.6771(2)
1.0 0.47 6 3.0092637. . . 3.0094(6) 3.0092(1)
0.1 0.37 2.5 – 0.4413(10) 0.4412(5)

0.01 0.15 0.5 0.073835. . . 0.07387(3) 0.07380(6)

Table 21.1: The ratio of the population on the reference determinant to the total population
⟨n0⟩/⟨NW ⟩ and ratio of the error of the generational estimator to the statistical estimator ε⟨S⟩/ε⟨Ep⟩
increase as we decrease the oscillator frequency ω. Thus the generational estimator will give a bet-
ter estimate of the energy than the projected estimator when ω is small. FCI energies were only
available for ω = 1 and 0.1. All energies are in units of Hartree.

Having two different estimates for the energy is valuable as it heightens our confidence
in the results. In fact, in the case that the estimators does not agree we can assume that the
simulations are not converged. The estimators are only, as we can see from their definitions,
expected to give the same result in the case that the distribution of walkers resembles the
ground state of the given Hilbert space.
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(a) ω = 10

(b) ω = 1

(c) ω = 0.1

(d) ω = 0.01

Figure 21.1: The instantaneous value of the projected energy Ep(τ) and the shift S(τ) during
5 × 104 iterations for simulations with different oscillator frequencies ω. All energies are in units
of Hartree. The fluctuations in Ep(τ) becomes larger relative to the fluctuations in S(τ) as we
decrease ω. All simulations are with two particle quantum dots with spin and magnetic quantum
number s =m = 0 and with eight shells in the basis.
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Chapter 22

The scaling of the algorithm

In this chapter we will discuss how the algorithm scales with the basis size, the oscillator
frequency (which is linked to the degree of correlation), the number of walkers and also the
number of particles.

22.1 The critical number of walkers

The number of walkers NC that is necessary for the energy to converge is a system and
basis dependent parameter which we will refer to as the critical number of walkers. The
strength of the FCIQMC algorithm is that NC often is much smaller than the number of
determinants in the basis dim(H ). The algorithm is only efficient for systems where the
NC/dim(H ) ratio is small, and it is therefore of interest to study the dependency of this
ratio on different parameters.

As demonstrated in Fig. 22.1 and described in section 8.5, the critical number of walkers
can be found by performing a simulation with a fixed shift S close to the ground state value.
In the beginning of the simulation, the spawning events will be much more frequent than the
annihilation events and the population will grow rapidly. But when the number of walkers
is large enough, the annihilation events will become more probable, and the population will
eventually reach a plateau.

If the number of walkers is smaller than NC , the long time average of the distribution
of walkers will generally not converge to the ground state distribution. The annihilation
between positive and negative walkers will be inefficient, and as we discussed in section
8.5, annihilation is neccessary for convergence to the ground state.

As illustrated in Fig. 22.2, the critical number of walkers is both dependent on the
dimensionality of the basis and the oscillator frequency ω. When the basis is truncated
on a higher shell number R, or when the oscillator frequency ω is decreased, the critical
number of walkers NC increases. This is not very surprising since the walkers presumably
are spread out on more determinants in both cases, either because more determinants are
available in the basis or because the correlations between the electrons are stronger.

22.2 Scaling of the FCIQMC algorithm

We have found that the critical number of walkersNC has a linear relationship to the dimen-
sionality of the Hilbert space dim(H ). This is illustrated in Fig. 22.3(a). This figure also
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(a) FCIQMC simulation with constant S ≈ E0

(b) FCIQMC energies.

Figure 22.1: FCIQMC simulations of 6 particle quantum dots with m = 2s = 0 and an oscillator
frequency ω = 1. In plot (a) we see that the number of walkers NW reaches a plateau at NW ≈

9×105 which is the critical number of walkers NC . The population growth is still exponential when
NW > NC , but with a smaller exponent. As plot (b) shows, the FCIQMC (NI = 1) energy does not
converge before the number of walkers is close to NC . The energies are in units of Hartree (H)

shows that NC increase faster as a function of dim(H ) for systems with a low oscillator
frequency ω. As an example, the three particle quantum dot with ω = 0.25 requires a NC

which is close to 20 times as large as for the ω = 1 quantum dot.
The slope of NC as a function of dim(H ) for a given system is a measure of the

efficiency of FCIQMC. Since the run time of a simulation is roughly proportional to the
number of walkers, it is a direct measure of the computational cost. Fig. 22.3(b) shows
the numerical value of the slope for different quantum dots with the same ω. As this plot
illustrates, some of the systems scales more favourably than others. The extremes are the
3 and 4 particle quantum dots, where the slopes differs by two orders of magnitude. It
is interesting to notice that the four particle system is a difficult system for the Lanczos
algorithm (FCI) as well. This is discussed by Ref. [20] and in section 20.2.2.
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(a) Simulations with different R.

(b) Simulations with different ω.

Figure 22.2: Simulations of 3 particle quantum dots with a fixed shift S ≈ E0 and a spin and
magnetic quantum number m = 2s = 1. The critical number of walkers NC is marked by a plateau
in the number of walkers. NC increase when the shell number R is increased or when the oscillator
frequency ω is decreased. The reason that the population is less smooth here than in Fig. 22.1 is that
NC is smaller and consequently the statistical fluctuations become larger.

119



22.3 Concluding remarks

We have observed that the critical number of walkers is approximately linearly dependent
of the basis size NC ≈ sdim(H ). The slope s is a system dependent parameter which
increases when ω is decreased. Based on our results we can not see any relationship between
s and the number of particles in the system. This is a weak result since we only have
taken the slope of NC for four systems. As we discussed in section 18.3 the run time is
approximately linear with the number of walkers. This means that the algorithm scales as
O(dim(H )).
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(a) NC as a function of dim(H ) for 3 particle quantum dots with m = 2s = 1.

(b) The slope of NC as a function of dim(H ). ω = 1 for all quantum dots.

Figure 22.3: (a): Simulations of 3 particle quantum dot with a magnetic and spin quantum number
m = 2s = 1 with different oscillator frequencies ω. The critical number of walkersNC was calculated
with a fixed shift S ≈ E0. The critical number of walkers is plotted against the dimensionality of the
Hilbert space, and as we see there is a linear relationship, but with a different slope for different ω.
(b): The slope of NC as a function of dim(H ) is a measure of how easily the system is threated by
the FCIQMC algorithm. The slopes have been calculated with a fixed shift S which is approximately
1% higher that the ground state energy.
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Chapter 23

Convergence of the i-FCIQMC
energies

Simulations with the initiator adaption of FCIQMC converges with a number of walkers
NW less than the critical number of walkers NC , but at the cost of introducing an initiator
error. As we discussed in chapter 9, the initiator error will disappear when the number of
walkers NW is large enough. By running a series of simulation with an increasing number
of walkers, we would therefore expect the energy to converge as the initiator error becomes
small. This provides us with a simple procedure to find the unbiased energy.

As an example, we will look at simulations of a five particle quantum dot with spin and
magnetic quantum numbersm = 2s = 1 and with 24 shells in the basis. The Hilbert space of
this system has a dimensionality dim(H ) = 3.5 × 109, and the critical number of walkers
is NC ∼ 3 × 108 assumed that NC scales linearly with dim(H ). We have run one series of
simulations with an initiator threshold 1 NI = 4 and one with NI = 12, and with a varying
number of walkers in the rangeNW ∈ [5×104,2×106]. The results are plotted in Fig. 23.1.

At a low number of walkers the initiator error is large, but eventually the energies seems
to have converged within the statistical fluctiations. This happened at NW = 4 × 104 for
the NI = 4 simulations and at NW = 8 × 104 for the NI = 12 simulations. This is between
two and three orders of magnitude less than NC , and demonstrates that i-FCIQMC is a very
efficient optimization for this system.

With NI = 4 and NW ≤ 4 × 104, the distribution of walkers did not equilibriate. This
could be observed by monitoring the population of the reference determinant n0 which
fluctuated around zero. We believe that the reason is that the density of walkers was too low
for efficient annihilation, similar to what happens in a FCIQMC simulation when NW <

NC . This did not happen withNI = 12, in which case n0 was stable already atNW = 2×104.
The simulations converged at a lower number of walkers when we used a high NI , but at
the cost of a large initiator error. In fact, both with NI = 4 and NI = 12 approximately
8 × 105 walkers was required before the energy could be established with an error smaller
than one mili-Hartree.

As we have demonstrated here, the i-FCIQMC energies converge when we increase the
number of walkers. In our simulations we have assumed that the energies are converged
when the following criteria are fulfilled:

1Remember that the initiator threshold NI is the population limit where a determinant is added to the
initiator space. This was discussed in chapter 9.
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(i): The statistical estimators ⟨S⟩ and ⟨EP ⟩ yields the same result.

(ii): The statistical estimators are constant within the statistical error when we increase the
number of walkers.

We have chosen to use small values for NI less than or equal to four in all simulations. The
reason is twofold. First, using a large NI is an uncontrolled approximation, and we do not
know how it affects our results. Second, our experience is that even though the simulations
converge at a lower number of walkers with a large NI , the initiator error may be large, and
the number of walkers that is needed for the energies to converge to the FCI energy may be
the same or even larger.
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(a) NI = 4

(b) NI = 12

Figure 23.1: Simulations of a five particle quantum dot with 24 shells in the basis and with magnetic
and spin quantum numbers m = 2s = 1. The vertical axis are in units of Hartree. All runs are
performed with the same number of iterations (2×106). For this system the dimension of the Hilbert
space is dim(H ) = 3.5×109 and the critical number of walkers isNC ∼ 3×108. We have plotted the
generational estimator ⟨S⟩ and the projected estimator ⟨EP ⟩ as a function of the number of walkers
NW with different initiator thresholdsNI . Conv is the best i-FCIQMC result. Note that the energies
converge at NW << NC .
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Chapter 24

Simulations with a Hartree Fock
basis

As we have seen, FCIQMC and i-FCIQMC enable us to calculate the FCI energies of sys-
tems which are far out of the scope of conventional diagonalization methods like the Lanc-
zos algorithm. But we have also seen that the critical number of walkers together with the
numerical cost, increases very fast as we increase the number of shells or the number of
particles. In an attempt to improve the convergence we have looked at the effect of using a
Hartree- Fock (HF) basis instead of the plain harmonic oscillator (HO) basis. We have run
tests with a six particle R = 9, ω = 1,m = s = 0 quantum dot with both the HF basis and the
HO basis to compare the results. Since the HF basis is simply a unitary transformation of
the HO basis, we would expect to get the exact same energies.

The first test was to find the critical number of walkers NC . Surprisingly, NC was a
little higher with the HF basis than with the HO basis, with NC ≈ 8× 106 and NC ≈ 9× 106

respectively. This indicates that the plain FCIQMC algorithm would require approximately
the same number of walkers to converge with both the HF basis and the HO basis.

The next test was to run two series of i-FCIQMC simulations with identical run time
parameters, one with the HF basis and one with the HO basis. The results are plotted in
Figs. 24.1 and 24.2 and clearly shows that the statistical errors becomes much smaller with
the HF basis. Figure 24.2 shows that the statistical error of the projected energy is almost
one order of magnitude smaller with the HF basis than with the HO basis. In fact, since the
numerical error is proportional to

ε∝ n−1/2, (24.1)

where n is the number of iterations, we would need 100 times as many iterations to reduce
the error with one order of magnitude. And in this sense, implementing the HF basis is a
large optimization.

The total run time of these simulations were relatively small. As an example, the total
run time withNW = 5×104 on 32 cores was approximately 19 hours (36 minutes wall time).
The energy of this simulation were converged and the projected estimator had a statistical
error of 0.4 mili-Hartree (H). As a comparison, Olsen [20] have run simulations with the
exact same system, but with a HO basis with effective interactions 1 . This simulation spent

1 The HO basis with effective interaction is a transformed HO basis, and was shown by Olsen [20] to speed
up the convergence of the Lanczos algorithm considerably. Effective interactions are explained by Ref. [15].
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a total run time of 13500 hours. Although the FCI simulation maybe would converge faster
with a HF basis, this results clearly demonstrates that i-FCIQMC is much more efficient for
this system.

Note that we have only performed simulations with a HF basis on this particular system,
and we have yet to test how it works with other systems.

(a) HO basis.

(b) HF basis.

Figure 24.1: These plots shows the convergence of the projected estimator ⟨EP ⟩ and the genera-
tional estimator ⟨S⟩ for simulations with six particles, m = s = 0, an oscillator frequency ω = 1,
an initiator threshold NI = 3 and a basis truncated at ten shells. The exact value (Conv.) is taken
to be the energy with the smallest error. Note that the y-axis of the lower the plot are zoomed in
to a smaller scale. The simulations with the HF basis have a much smaller statistical error than the
simulations with the HO basis.
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(a) Convergence of EP

(b) The statistical error of ⟨EP ⟩

Figure 24.2: These plots shows the convergence of the projected energy for simulations with six
particles, m = s = 0 an oscillator frequency ω = 1, an initiator thresholdNI = 3 and a basis truncated
at ten shells. The exact value is taken to be the energy with the smallest error. We have run the
simulations both with the harmonic oscillator (HO) basis and the Hartree Fock (HF) basis. The
filtered Hilbert space of this systems has 2.3 × 107 determinants and the critical number of walkers
is ∼ 8×106 for the HO basis and ∼ 9×106 for the HF basis. We see that the error is almost one order
smaller for the simulations performed with the HF basis.
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Chapter 25

Extrapolated energies

25.1 Introduction

The FCIQMC energies set an upper bound to the ground state energy, but are limited by
the basis set incompleteness of the FCI spaces. We have used the results of Ref. [16] and
section 5.3 to extrapolate the energies to the limit of a complete basis. Extrapolation of the
energy is common practice in quantum chemistry [12], and provides a systematic way of
improving the energies.

In this section, we will calculate a set of extrapolated energies and compare these to
Diffusion Monte Carlo (DMC) energies which are not affected by a basis incompleteness
error. We use the extrapolation formula Eq. (5.11)

E(R) ≈ a − b
R

∑
r=1

(N + r)r−c, (25.1)

where N is the number of particles, R + 1 is the number of shells and a, b, c ∈ R are
constants. A curve fit of the FCIQMC values to E(R) yields the optimal parameters a, b, c.
The extrapolated energy is taken at the limit R → ∞, and the error is estimated using Eqs.
(13.18) and (13.22) assuming that Eq. (25.1) is exact.

As we discussed earlier, the extrapolation formula has an uncontrolled error ∝ ν(R)

where ν(R) is an unknown function. ν(R) is however assumed to fall off quickly as a
function of R. This is justified by the results of Kvaal [16] together with general consid-
erations about the form of the function. As we will see in this section, this assumption
seems to hold well for the systems that we have threated. To minimize ν(R) and reduce the
extrapolation error, we have only used energies calculated with R ≥ 5.

25.2 Testing the extrapolation formula

Fig. 25.1 shows the fitted curves of the extrapolation formula to energies from a series of
simulations. All energies are calculated with i-FCIQMC with an initiator threshold NI = 4
and a different number of walkers NW to assure that the energies are properly converged.
The correspondence between the data points and the fitted curves are very good, indicating
that Eq. (5.11) applies well to the direct product spaces and that ν(R) indeed is small.
This impression is strengthened by the numerical values of the extrapolated energies of
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the 2 and 6 particle quantum dots with an oscillator frequency ω = 1 which shows a good
correspondence with the results of Refs. [24, 20, 37]. The extrapolated energy of the two
particle quantum dot is 3.0000(1) Hartree (H) which is very close to the exact result of
3H [37]. The extrapolated energy for the 6 particle quantum dot is 20.160(1)H whereas
the DMC result is 20.1597(2)H and the coupled cluster 1 result is 20.1582 [24]. The
convergence of the energy for the two and six particle systems are illustrated in Fig. 25.2.

25.2.1 Open shell results for ω = 1/1.892

We have run a series of simulations in an attempt to reproduce the results of Pederiva et.
al. (2000) [22, 23]. Pederiva et. al. have run DMC simulations with single and multi
determinant wave functions on open shell systems. These results are as far as we know not
reproduced in any other articles, and it is therefore interesting on its own to find out whether
FCIQMC yields the same results. Even if the DMC calculation minimize the energy for a
given set of nodes, the nodes imposed by the guiding wave function is an uncontrolled
approximation. FCIQMC on the other hand is free of approximations and is systematically
improvable, but is limited by a much higher computational cost. As we see from Tab. 25.2,
the results for the two particle quantum dot is in good agreement with the DMC results. The
three and five particle results are however significantly lower. We also see that the lowest
FCIQMC value is lower than the DMC values for the three and four particle systems, and
since our energies are variational, this indicates that the DMC values are too high.

Np m 2s E(∞) Lowest FCIQMC DMC (Ref. [22, 23])

2 0 0 1.0219(2) 1.0222(1) 1.02164(1)
3 1 1 2.2314(3) 2.2326(1) 2.2339(1)
4 0 0 3.7138(3) 3.71508(2) (*)
5 1 1 5.5302(2) 5.5327(3) 5.5338(1)

Table 25.1: Open shell results with a different number of particles NP and with an oscillator
frequency ω = 1/1.892. The three and the five particle results are significantly lower than the DMC
results. Since the lowest FCIQMC energies are variational, this suggests that the DMC results are
too high for these systems. The result marked with (∗) is not available. We found that there exists
an erratum [23] to the article by Pederiva et. al. [22] where they correct some of the energies. Here
they write that the energies of the four particle states with m = s = 0 and m = 0,2s = 2 are nearly
degenerated, and that the m = 0,2s = 2 state is the ground state with an energy 3.7145(1)H . The
energy of the m = s = 0 state in the first article was not correct. We unfortunately found out too late
to do simulations with the m = 0,2s = 2 state.

25.2.2 Open shell results for ω = 1

We have also included the open shell results of the ω = 1 simulations for up to six particles.
Only the closed shell results (with two and six particles) have been found in published
articles [24, 20, 37]. And as we already have discussed, these results correspond very well
with our FCIQMC energies.

1The coupled cluster energies was obtained with CCSD(T) and a basis with effective interactions. We have
not written about the coupled cluster method in this thesis, but a good introduction is provided in Ref. [33].
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NP m 2s E(∞) Lowest FCIQMC DMC (Ref. [24])

2 0 0 3.0000(3) 3.0018(1) 3.00000(3)
3 1 1 6.3564(2) 6.3596(3)
4 0 0 10.2635(5) 10.2684(4)
5 1 1 14.9489(6) 14.9570(7)
6 0 0 20.160(1) 20.171(2) 20.1597(2)

Table 25.2: Open shell results with a different number of particles NP and with an oscillator
frequency ω = 1. We have only found published energies for the closed shell results. These results
are reproduced by FCIQMC.

25.3 Summary and Comments

This chapter contains two main results that we want to emphasize. The first concerns the va-
lidity of the extrapolation formula (5.11) and the second concerns the discrepancies between
the DMC energies and the FCIQMC energies for the open shell quantum dots.

As we discussed in section 5.3, Kvaal [16] has derived a closed form expression for the
basis incompleteness error. This expression has however an unknown factor (1 + ν(R))

where ν(R) is assumed to be negligible, and is only proved to be valid for the energy cut
spaces. Kvaal has used FCI calculations to show that his formula applies well to various
three, four and five particle quantum dots. But due to the high numerical cost of the FCI
method, he was only able to study these systems with “small” FCI spaces. The FCIQMC
method has a much lower numerical cost, and we were therefore able to test Kvaal’s formula
with much larger FCI spaces. Our results indicate that Kvaal’s formula applies well to the
direct product spaces, and that the error ν(R) is negligible for the FCI spaces that we have
studied.

Next, we want to comment on the differences between the FCIQMC and the DMC re-
sults. Our results indicate that some of the open shell DMC results of Pederiva et. al.
(2000) [22] are to high. These are the three and five particle results for the ω = 1/1.892

quanum dots, for which we have seen that the DMC energies are significantly higher than
our FCIQMC energies. Furthermore, the FCIQMC energies are variational which indicates
that the DMC energies are too high. The most important source of error in a DMC calcu-
lation is the fixed node error, and it is therefore reasonable to assume that this is the reason
why the DMC energies are too high. This would suggest that the nodes need to be optimized
either by using a multi determinant trial wave function or by finding a more optimal single
particle basis. Note that Pederiva et. al. [22] have used single determinant wave functions
for the three and five particle systems, and a single particle basis which is optimized using
Density Functional Theory calculations.
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(a) ω = 1.

(b) ω = 1/1.892 ≈ 0.28.

Figure 25.1: Plots of the parametrized error ∆E = E(R) − E(∞) where E(R) is calculated
according to the extrapolation formula Eq. (5.11). R + 1 is the number of shells in the basis, ω is
the oscillator frequency and the error are in units of Hartree. The datapoints to which the curves
are fitted are plotted with errorbars. These are the FCIQMC energy minus the extrapolated energy
at infinity E(∞). As we see, the correspondence between the parametrized energy E(R) and the
FCIQMC energies is very good.
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(a) 2 particle results, ω = 1.

(b) 6 particle results, ω = 1.

Figure 25.2: These plots shows the convergence of the FCIQMC energies as we increase the number
of shells R + 1. The lines labelled “DMC” are the Diffusion Monte Carlo energies of Ref. [24], and
the lines labelled “Fitted curve” are calculated according to the extrapolation formula Eq. (5.11).
For R →∞ the parametrized functions converge to 3.0000(1)H for two particles and 20.160(1)H
for six particles. The exact results are 3H in the two particle case and in the six particle case the best
value is the DMC result at 20.1597(2)H .
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(a) 3 particle results, ω = 1/1.892, 2s =m = 1.

(b) 5 particle results, ω = 1/1.892, 2s =m = 1.

Figure 25.3: These plots shows the convergence of the FCIQMC energies as we increase the number
of shells R + 1. The lines labelled “DMC” are the Diffusion Monte Carlo energies of Ref. [22,
23], and the lines labelled “Fitted curve” are calculated according to the extrapolation formula Eq.
(5.11). FCIQMC converges to lower energies than DMC [22, 23] which are 2.2339H for the three
particle quantum dot and 5.5338(1)H for the five particle quantum dot. The data points represent
the FCIQMC energies, and since these are variational the DMC energies appears to be too high.
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Chapter 26

Conclusions and perspectives

We will in this chapter sum up our main achievements and results, and discuss prospects for
further work.

26.1 Summation and achievements

Our initial motivation was to implement the FCIQMC algorithm and apply it to quantum
dots. We have written a fully parallelized C++ code from scratch which is scaling well up
to several hundred cores. This may be seen as our main achievement, and has been the part
of this project in which we have invested the most work. In this part we have validated the
code by demonstrating that it reproduces FCI energies, and by showing that the i-FCIQMC
energies converge to the FCIQMC energies when the number of walkers is sufficiently large.
We have also applied the algorithm on a new physical system, namely the two dimensional
quantum dots, which to our knowledge has not been studied with FCIQMC before.

We have found that the efficiency of the algorithm is highly system dependent. We used
the ratio of the critical number of walkers NC to the number of determinants in the basis
dim (H) as a measure of the efficiency of the algorithm. This is a valid measure since the
run time of the simulations is roughly proportional to the number of walkers. The algorithm
was shown to scale as sdim (H ) where s is a system dependent parameter. We have found
that s is larger for systems with a low oscillator frequency ω (strong correlations), but we
were not able to see any systematic relationship to the number of particles in the system.

We have also tested our implementation of the i-FCIQMC algorithm, and demonstrated
that for the five particle system with m = 2s = 1 and 24 shells in the basis, the algorithm
converged within mili-Hartree precision with less than 106 walkers while the critical number
of walkers NC was more than two orders of magnitude larger. We also did some runs with
a Hartree- Fock (HF) basis for the six particle quantum dot with m = s = 0 and ten shells.
Although the critical number of walkers did not decrease, the statistical error was measured
to be almost one order of magnitude smaller with the HF basis than with the HO basis.

At last, we estimated FCI energies in the limit of an infinite basis E(∞) by fitting the
extrapolation formula Eq. 5.3 to FCIQMC energies. This formula was derived by Kvaal
[16], but was only shown to be correct for energy cut spaces. Our results indicate that it
applies to direct product spaces as well. The parametrized curves show a seemingly perfect
fit to the FCIQMC energies up to a high number of shells and the extrapolated energies
reproduce Diffusion Monte Carlo and Coupled Cluster results for the closed shell quantum
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dots [24, 23]. However, the Diffusion Monte Carlo results for open shell quantum dots with
ω = 1/1.892 [22, 23] was higher than the FCIQMC energies. Since the FCIQMC energies
are variational, this indicates that the DMC results are too high.

26.2 Ideas and prospects

As we saw in the last part, implementing the Hartree-Fock(HF) basis resulted in a much
faster convergence of the FCIQMC energies. The first step to improve the performance of
the program would therefore be to do simulations with an improved basis. In addition to the
HF method, it is also possible to optimize the basis using more refined methods like Density
Functional Theory calculations [12].

As the FCIQMC algorithm is a relatively new algorithm, it has only been applied to a
limited range of systems. And since this algorithm has different strengths and weaknesses
compared to other many-body methods, it might be possible to gain new insights by apply-
ing it to new systems. To my knowledge, FCIQMC has been applied to a range of atoms
and molecules (see for example [3, 4]), the homogeneous electron gas [34] and a range of
solids [2], but not to nuclear systems.

One application of the algorithm that could be interesting is to study three-body forces.
The number of Hamiltonian matrix elements increases drastically when three body forces
are included, and as a consequence, the numerical cost of methods like FCI or Coupled
Cluster blows up. Assumably, with the FCIQMC method, it might be possible to include
three-body forces without a large increase in the numerical cost. The reason is that the three-
body interactions are less probable than the one or two body interactions. From a sampling
perspective, this means that triple excitations should be sampled less often than the single
and double excitations. So even if the three body forces are numerically more expensive to
sample, they will not necessarily add very much to the overall numerical cost. Note that this
is the same as we do when we sample the one-body and two-body interactions, and choose
a high probability (ps) for the single excitations (see chapter 10).

26.3 Concluding remarks

As we have seen, the FCIQMC algorithm enables us to calculate FCI energies for systems
with Hilbert spaces that are far out of the scope of “brute force” diagonalization algorithms
like the Lanczos algorithm. But as we saw in the last chapter, the energy converges very
slowly as a function of the basis size. And although we can do simulations with large
Hilbert spaces, the exact ground state can only be estimated by extrapolating the energies
to the complete basis. FCIQMC is a good complement to the Lanczos algorithm, which we
believe is more practical for “small” Hilbert spaces as it automatically calculates a spectrum
of excited energies. Both of these algorithms provide good benchmarks for other many body
methods that operate in a Slater determinant basis since they yield unbiased energies within
a given Hilbert space.

We would also like to comment on the development of FCIQMC and related algorithms.
As the algorithm is relatively new, we currently see a lot of development and new applica-
tions of the algorithm. See for example the article by Booth et. al. (2013) [2] where the
algorithm is applied to a range of solids. Recently, several new algorithms have appeared
which also do stochastic sampling of discrete Hilbert spaces with walkers. Examples are the
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stochastic extension of the Lanczos algorithm Shimizu et. al. (2013) [35], and stochastic
coupled cluster Thom (2010) [38]. This is an exciting field where there currently is many
new ideas and a lot of development happening.
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Part VII

Appendix
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Appendix A

Running the code

The code is wrapped in a python runFCIQMC.py script that generates a headerfile and a
.ini file with run time parameters. Template parameters must be available at compile time.
Therefore the bitset template parameter N, is written to the headerfile as a precompilator
definition.

The following parameters must be set before each simulation

●: i_r: The number of shells in the basis −1.

●: i_maxndets: The maximum number of determinants that can be stored on each MPI
task.

●: d_dt: The time step τ .

●: d_lambda: The interaction strength λ = 1/ω2.

●: i_ranseed:The random seed. If this parameter is set to −1, the random seed is set
equal to the system time.

●: i_limit_nw: When the number of walkers reaches this limit, we start variyng the
shift parameter to control the number of walkers.

●: i_num_loops: The total number of FCIQMC loops.

●: i_n_start_coll_e: The number of iterations where we start to collect energy.

●: d_ds: The initial energy shift S.

●: i_initiatorlimit: When the population of walkers on a determinant reaches this
limit, the determinant is added to the initiator space.

●: s_initial_state: The reference determinant and the initial state in our simula-
tions. Ex: ∣ϕ0, ϕ2⟩ =’0,2’.

●: s_frozen_orbs: The frozen spin orbitals of the CAS. Ex: If the spin osbitals ϕ1, ϕ2

are frizen, we set this variable to ’1,2’.

●: i_active_orbs: The number of the highest spin orbital in the CAS space.

●: b_writeodata: Set to True to write the simulation data to file.
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●: d_detweight: The load weight parameter. Find the best value to optimize the load
balancing.

●: d_redistlimit: The maximal relative difference between the load weight of two
MPI tasks before we redistribute the determinants.

●: i_numthreads: The number of threads. Overridden by the enviromental variable
OMP_SET_NUM_THREADS.

The following example shows how the runtime parameters are set

#example run script runscript6particles.py
import runFCIMC as r
from math import sqrt

r.b_writeodata = True #write output data to file

r.i_maxndets = 1e7 #size of determinants arrays
r.i_num_loops = 5e4 #number of loops
r.i_n_start_coll_e = 1e4 #start collecting energy

r.d_detweight = 1.4 # load balancing parameter
r.d_redistlimit = 0.04 # relative load weight difference before

load balancing of MPI tasks

r.delta_t = 0.001 #timestep
r.d_ds = 27 #initial energy shift

r.d_lambda = 1 # interaction strength (= 1/sqrt(omega))
r.i_r = 10 # number of shells-1 in the basis
r.s_initial_state = ’0,1,2,3,4,5’

r.i_initiatorlimit = 4 #i-FCIQMC initiarot limit
r.i_active_orbs = 11 #active orbitals in the CAS 0,1,2,3,..,11
r.frozen_orbs = ’0,1’ #frozen orbitals in the CAS

#the name of the simulations (and the outputfiles)
simulationtag = ’6particles_example’
#simulation tag set to yyyy_dd_mm_ss by defaulth in not specified
r.geninifiles(simulationtag)

.ini file and the header file can is created when we call the function geninifiles. The
code can now be run from the command line with the following commands.

user@host:$ python runscript6particles.py
user@host:$ make run

The outputdata will be stored to the file 6_particles_example.dat.

139



Bibliography

[1] J. B. ANDERSON, A random-walk simulation of the schrödinger equation: H+
3 , The

Journal of Chemical Physics, 63 (1975), p. 1499.

[2] G. H. BOOTH, A. GRUNEIS, G. KRESSE, AND A. ALAVI, Towards an exact descrip-
tion of electronic wavefunctions in real solids, Nature, 493 (2013), p. 365.

[3] G. H. BOOTH, A. J. W. THOM, AND A. ALAVI, Fermion monte carlo without fixed
nodes: A game of life, death, and annihilation in slater determinant space, The Journal
of Chemical Physics, 131 (2009), p. 054106.

[4] D. CLELAND, G. H. BOOTH, AND A. ALAVI, Communications: Survival of the
fittest: Accelerating convergence in full configuration-interaction quantum monte
carlo, The Journal of Chemical Physics, 132 (2010), p. 041103.

[5] H. FLYVBJERG AND H. G. PETERSEN, Error estimates on averages of correlated
data, The Journal of Chemical Physics, 91 (1989), p. 461.

[6] A. FOG, [software] CRandomMersenne version 2.01. 2010-08-03, 2013. A C++
library to calculate random numbers using the Mersenne Twister algorithm. http:
//www.agner.org/random.

[7] E. GABRIEL, G. E. FAGG, G. BOSILCA, T. ANGSKUN, J. J. DONGARRA, J. M.
SQUYRES, V. SAHAY, P. KAMBADUR, B. BARRETT, A. LUMSDAINE, R. H. CAS-
TAIN, D. J. DANIEL, R. L. GRAHAM, AND T. S. WOODALL, Open MPI: Goals,
concept, and design of a next generation MPI implementation, in Proceedings, 11th
European PVM/MPI Users’ Group Meeting, Budapest, Hungary, September 2004,
p. 97.

[8] G. H. GOLUB AND C. F. VAN LOAN, Matrix Computations (Johns Hopkins Studies
in Mathematical Sciences)(3rd Edition), The Johns Hopkins University Press, 3rd ed.,
Oct. 1996.

[9] E. GROSS, E. RUNGE, AND O. HEINONEN, Many-particle theory, A. Hilger, 1991.

[10] B. L. HAMMOND, W. A. LESTER, AND P. J. REYNOLDS, Monte Carlo Methods in
Ab Initio Quantum Chemistry, World Scientific, 1994.

[11] A. HARJU, Variational monte carlo for interacting electrons in quantum dots, Journal
of Low Temperature Physics, 140 (2005), p. 181.

140

http://www.agner.org/random
http://www.agner.org/random


[12] T. HELGAKER, P. JØRGENSEN, AND J. OLSEN, Molecular Electronic Structure The-
ory, John Wiley & Sons, LTD, Chichester, 2000.

[13] M. H. KOLODRUBETZ, J. S. SPENCER, B. K. CLARK, AND W. M. FOULKES, The
effect of quantization on the full configuration interaction quantum monte carlo sign
problem, The Journal of Chemical Physics, 138 (2013), p. 024110.

[14] S. KVAAL, Analysis of many-body methods for quantum dots, PhD thesis, University
of Oslo, Norway, 2008.

[15] S. KVAAL, Open source FCI code for quantum dots and effective interactions.
arXiv:0810.2644v1, 2008.

[16] S. KVAAL, Harmonic oscillator eigenfunction expansions, quantum dots, and effec-
tive interactions, Physical Review B, 80 (2009), p. 045321.

[17] D. W. MARQUARDT, An Algorithm for Least-Squares Estimation of Nonlinear Pa-
rameters, SIAM Journal on Applied Mathematics, 11 (1963), p. 431.

[18] M. MATSUMOTO AND T. NISHIMURA, Mersenne twister: a 623-dimensionally
equidistributed uniform pseudo-random number generator, ACM Transactions on
Modeling and Computer Simulation, 8 (1998), p. 3.

[19] D. MUSSER, Introspective sorting and selection algorithms, Software Practice and
Experience, 27 (1997), p. 983.

[20] V. K. B. OLSEN, Full configuration interaction simulation of quantum dots, Master’s
thesis, University of Oslo, 2012.

[21] OPENMP ARCHITECTURE REVIEW BOARD, OpenMP Application Program Inter-
face Version 3.1, 2011.

[22] F. PEDERIVA, C. J. UMRIGAR, AND E. LIPPARINI, Diffusion monte carlo study of
circular quantum dots, Physical Review B, 62 (2000), p. 8120.

[23] , Erratum: Diffusion monte carlo study of circular quantum dots [physical review
b 62, 8120 (2000)], Physical Review B, 68 (2003), p. 089901.

[24] M. PEDERSEN LOHNE, G. HAGEN, M. HJORTH-JENSEN, S. KVAAL, AND F. PED-
ERIVA, Ab initio computation of the energies of circular quantum dots, Physical Re-
view B, 84 (2011), p. 115302.

[25] M. A. REED, J. N. RANDALL, R. J. AGGARWAL, R. J. MATYI, T. M. MOORE,
AND A. E. WETSEL, Observation of discrete electronic states in a zero-dimensional
semiconductor nanostructure, Physical Review Letters, 60 (1988), p. 535.

[26] S. M. REIMANN AND M. MANNINEN, Electronic structure of quantum dots, Reviews
of Modern Physics, 74 (2002), p. 1283.

[27] P. J. REYNOLDS, D. M. CEPERLEY, B. J. ALDER, AND W. A. LESTER, Fixed-node
quantum monte carlo for molecules., The Journal of Chemical Physics, 77 (1982),
p. 5593.

141



[28] P. RICHTER, Estimating errors in least-squares fitting, The Telecommunications and
Data Acquisition Progress Report 42-122, (1995), p. 107.

[29] M. RONTANI, C. CAVAZZONI, D. BELLUCCI, AND G. GOLDONI, Full configuration
interaction approach to the few-electron problem in artificial atoms, The Journal of
Chemical Physics, 124 (2006), p. 124102.

[30] C. C. J. ROOTHAAN, New developments in molecular orbital theory, Rev. Mod. Phys.,
23 (1951), p. 69.

[31] J. J. SAKURAI, Modern Quantum Mechanics (Revised Edition), Addison Wesley,
2 ed., Sept. 1993.

[32] M. SCHLOSSHAUER, Decoherence: And the Quantum-To-Classical Transition, The
Frontiers Collection, Springer, 2007.

[33] I. SHAVITT AND R. BARTLETT, Many-Body Methods in Chemistry and Physics:
MBPT and Coupled-Cluster Theory, Cambridge Molecular Science, Cambridge Uni-
versity Press, 2009.

[34] J. J. SHEPHERD, G. H. BOOTH, A. GRUNEIS, AND A. ALAVI, Full configuration in-
teraction perspective on the homogeneous electron gas, Physical Review B, 85 (2012),
p. 081104.

[35] N. SHIMIZU, T. MIZUSAKI, AND K. KANEKO, Stochastic extension of the lanczos
method for nuclear shell-model calculations with variational monte carlo method,
Physics Letters B, 723 (2013), p. 251.

[36] J. S. SPENCER, N. S. BLUNT, AND W. M. FOULKES, The sign problem and popula-
tion dynamics in the full configuration interaction quantum monte carlo method, The
Journal of Chemical Physics, 136 (2012), p. 054110.

[37] M. TAUT, Two electrons in an external oscillator potential: Particular analytic solu-
tions of a coulomb correlation problem, Physical Review A, 48 (1993), p. 3561.

[38] A. J. W. THOM, Stochastic coupled cluster theory, Phys. Rev. Lett., 105 (2010),
p. 263004.

[39] C. J. UMRIGAR, M. P. NIGHTINGALE, AND K. J. RUNGE, A diffusion Monte Carlo
algorithm with very small time-step errors, The Journal of Chemical Physics, 99
(1993), p. 2865.

142


	Introduction
	Motivation
	Achievements
	The structure of the thesis

	I General theory
	A brief introduction to Quantum Mechanics
	The postulates of quantum mechanics
	Antisymmetric state vectors and fermions
	Spin and the spin statistics theorem
	The many particle basis
	The many particle operators
	The variational principle

	A brief introduction to the second quantization formalism
	Introduction
	Operators in the second quantization notation
	The time independent Wick's theorem
	Particle- hole formalism

	Mathematical Modelling of two dimensional Quantum dots
	Introduction
	The Hamiltonian
	The single particle wave functions
	The many body wave functions
	The Normal ordered Hamiltonian
	The Hamiltonian matrix elements


	II Numerical many body methods
	The Full Configuration Interaction method
	Introduction to the method
	Error analysis of the FCI energies
	Extrapolation Formulas

	Projector Monte Carlo Methods
	Introduction
	Diffusion Monte Carlo
	The projection operator and the short time approximation
	The Diffusion Monte Carlo Algorithm
	Systematic errors


	The Hartree-Fock method
	Overview
	The Roothaan-Hartree-Fock equations


	III Full Configuration Interaction Quantum Monte Carlo
	The FCIQMC algorithm
	The mathematical approach
	Population control and the statistical estimators
	The FCIQMC algorithm and simulation procedures
	Convergence criteria and the time step error
	The FCIQMC sign problem

	Initiator-FCIQMC
	The initiator spaces

	Sampling rules
	The suggestion probability distribution
	Sampling of the suggestion probabilities
	Finding the sets Sn

	Storing and accessing the Coulomb matrix elements
	Indexing scheme
	Mapping of the indices to a pointer
	Graphical representation of model spaces
	The arrow weight matrices
	Memory requirements and numerical speed
	Generalisation to other systems


	IV Data analysis
	Statistical analysis
	The statistical error
	Flyvbjerg-Petersen analysis
	Flyvbjerg-Pedersen analysis for FCIQMC

	Curve fitting
	The least square method
	Error analyses of the least square fit
	Error analysis of E(R)


	V Implementation of the FCIQMC algorithm
	Numerical representation of the determinants, the basis and the state vector
	The determinants
	The single particle basis
	The state vector

	A single FCIQMC iteration
	Parallelization
	Introduction
	Numerical libraries
	The distribution of walkers on the MPI tasks
	Load balancing
	The program flow

	Organization of the code and the classes
	Overview
	The initSimulation class
	The runSimulation class
	The walkerContainerClass class
	The sortWalkers class
	The walkerDistribution class
	The loadBalanceThreads class
	The walkerPropagator class
	The hamiltonianElements class
	The libGRIE class
	The inputVars class

	Benchmarking the Code
	Hotspots by CPU usage
	Scaling with openMP and MPI
	Scaling with the number of walkers
	The determinant load parameter and the redistribution threshold

	Modifying the code to simulate other systems

	VI Results
	Validating the code
	Introduction
	FCIQMC
	A simple system, two electrons in two shells
	Comparing FCIQMC energies and FCI energies
	Testing FCIQMC energies against analytical results

	i-FCIQMC

	The statistical estimators
	The scaling of the algorithm
	The critical number of walkers
	Scaling of the FCIQMC algorithm
	Concluding remarks

	Convergence of the i-FCIQMC energies
	Simulations with a Hartree Fock basis
	Extrapolated energies
	Introduction
	Testing the extrapolation formula
	Open shell results for = 1/1.892
	Open shell results for = 1 

	Summary and Comments

	Conclusions and perspectives
	Summation and achievements
	Ideas and prospects
	Concluding remarks


	VII Appendix
	Running the code


