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Abstract

The purpose of this thesis is to examine the temporal evolution of open quantum systems,
and to give the reader an introduction to this �eld. We will discuss why this can not be
treated in the same manor as the evolution of closed systems, and I will provide an overview
of some of the alternatives. In particular it will be emphasized that some of these have a
non-Markovian character while others are Markovian. We will discuss the conditions under
which these descriptions may be applied, and they will be illustrated using two very simple
models of open systems: an open two-level system and an open harmonic oscillator. These
models will also be used to illustrate particular characteristics that open systems have relative
to closed ones, such as decay, damping, heating and decoherence.
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Chapter 1

Introduction

Since the 1920s the successes of Quantum mechanics have been many and substantial. It has allowed
for the successful description, understanding and prediction of a vast list of phenomenons originating in
the microscopic world. This list includes among several others such things as chemical reactions and
molecular structure, the interactions between light and matter as applied for instance in a laser, as well
as the electronic properties of di�erent materials. That is, for instance the characteristics of conductors,
semiconductors and insulators.

It has also allowed us to understand di�erent forms of radioactive decay and other nuclear processes,
the behavior and organization of the smallest building blocks of our universe: the elementary particles,
and the crucially important processes occurring in the universe in the earliest moments after its creation.
It is clear that when it comes to describing the world of the very small, Quantum mechanics gives the rules
by which one must play. In later years, there has also been increasing experimental evidence of manifestly
quantum mechanical concepts, such as superposition and entanglement, applying also to macroscopic
objects at su�ciently low temperatures.

Quantum mechanics is an abstract formalism that provides a set of rules by which it is possible to
determine the observable values of di�erent properties of physical systems, as well as the probabilities for
observing each of these values. Given appropriate knowledge of the internal interactions of the system, it
can also predict the temporal development of these probabilities. In almost all cases quantum mechanics
can only predict probabilities of observations, and it is thus a manifestly indeterministic theory. Quantum
mechanics also strongly suggests that no useful improvement of this indeterminism is possible. Also, as
long as it remains correct in its predictions and one has su�cient knowledge of the relevant interactions,
quantum mechanics can in principle answer any question about nature that is experimentally testable.

The rules of quantum mechanics is thus seen to be a tool of overwhelming power in the investigations
of a physicist interested in the microscopic world, and also obviously to a chemist or material scientist.
However, in several cases it is important to take into account a crucial point concerning these rules: The
fundamental postulates of quantum mechanics (as they are known) are formulated under the assumption
that the physical system to be described is closed. That is, it it is assumed that the physical system does
not interact at all with the rest of the world. In particular this applies, as we will see, to the postulate of
time development.

In the very limited sense that standard quantum mechanics does allow for an external environment
(that is, an additional system not included in the model), it is assumed that this environment can be
described using classical physics. In this case, although the environment may have a strong e�ect on the
quantum system to be analyzed, it is not itself a�ected in return. An example of the later case would
be an atom placed in a laser beam, where the beam can be described as a classical electromagnetic �eld,
which is not at all a�ected by the behavior of the quantum mechanical atom.

It is not hard to see that this is never a truly realistic assumption. Except for maybe the entirety of
the universe, any physical system has an environment, and it is always interacting with it. Being both
a�ected by it and a�ecting it back in return. Rather than this assumption ever being truly ful�lled, its
justi�cation is instead that the interaction with the environment can often be assumed to be so weak
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that the quantum object will not be signi�cantly a�ected during the timescales over which important
properties are determined. In some cases however, even this will not be the case and it becomes necessary
to in some way take the e�ects of the environment more explicitly into account. Such cases are referred
to as open, and it is these and the theory and methods used for describing them that this text will be
devoted to.

When the interactions between a quantum object and its environment becomes signi�cant, they may
have many important and interesting consequences. The environment may absorb energy from the object,
a phenomenon which is seen for instance when an atom emits a photon of light, or in the even more familiar
case of friction. Obviously, this �ow of energy could also go the other way. In addition, random in�uences
from the environment could cause the quantum object to undergo di�usion and thus dramatically change
its characteristic motion over long timescales.

Another consequence of openness, which unlike the previous ones is exclusive to quantum mechanics is
that of decoherence. In the most general meaning of the word decoherence is the transition from pure states
to mixed states due to entanglement with the environment. It has been noted by Zurek[15] that this often
picks out a particular set of states that are 'more classical' than others. Thus, decoherence could in many
ways be said to be the process by which a quantum object 'looses its quantumness'. An understanding
of this process is therefore very important for instance in relation to technological applications that rely
heavily on the properties of quantum mechanics.

In this thesis I will examine in particular the time development of open systems. The major di�erence
between the temporal evolutions of open and closed systems is precisely that open systems undergo
decoherence: pure states do not nescessarily remain pure. This means that the theory of open systems
can not be formulated in the standard formalism of state vectors, but must instead be described in terms
of the more general state operator formalism. More importantly it means that the time development
of open systems is not unitary, and thus these systems do not obey the time development postulate of
standard quantum mechanics. It thus becomes a natural question what we are to replace this with in the
theory of open systems. This is in a way the main question to be treated by the thesis.

We will encounter several alternative generalizations of this postulate. Some of these will generalize
the postulate only in its integral form (which simply states that a quantum mechanical state develops
unitarily) and some will generalize the corresponding di�erential form, that is the Schrödinger equation (or
the Liouville equation in the state operator formalism). A major point will be that these can be classi�ed
as either Markovian or non-Markovian descriptions of the time development: A Markovian description is
a description where it is explicitly assumed that the future states can be determined from the present one.
A non-Markovian description is a description where this is not necessarily the case, so that information
about the entire past may be needed.

The development of a closed quantum system is Markovian, but it is not hard to see that open quantum
systems very well might need a non-Markovian description. This is because the environment will be able
to store information about the objects past. If this information is only available in the environment, and
later leaks back into the system then clearly the resulting state of the system can not be determined in a
Markovian fashion. From these arguments alone we would expect that time development in open systems
must almost exclusively be described in a non-Markovian manor. But the situation is not as bad as this:
We will see that open systems can often be described Markovianly in a way that is even 'exact', in the
sense that it is in agreement with a unitary model of a total system consisting of the open system plus an
environment.

This exact Markovian description does however not always exist, and it must in any case be derived
from a non-Markovian description which is again 'exact'. The general non-Markovian descriptions can
be seen to apply to all models, but we must typically make some assumptions about the initial state.
The non-Markovian framework is thus seen to indeed be the most general, whereas the Markovian one is
simpler to apply and has a more intuitive interpretation. The later is particular the case in connection
with a particular Markovian approximation scheme known as the Lindblad equation.

In addition to the Markovian and non-Markovian character of the time development, I will also brie�y
discuss some further characteristics of this development relative to closed systems. As mentioned this
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includes things like decay and incoherent transfer, frictional damping and other forms of energy loss,
heating and cooling as well as decoherence and Zureks 'Pointer basis' concept. Particularly the later is
something I would have liked to give much more attention. In particular I would have liked to include
a chapter on the role that this plays in connection with the quantum classical border, which has long
been a particular interest of mine. Sadly however, I have not been able to devote any space for this very
interesting subject, as I have instead chosen to focus mainly on the fundamental description of the time
development, and in particular on the issue of Markovian versus non-Markovian descriptions.

Having introduced the subjects that will be discussed in the thesis, I will now provide a short outline
of its organization. The main text is divided into two parts: Part I, which deals with general descriptions
of time development in open systems, and Part II in which I threat two concrete models for purposes of
illustration. In addition to this, chapter 2 contains some necessary prerequisite material which is typically
not included in �rst courses on quantum mechanics. The most important elements are the density operator
formalism, some mathematical formalism required for the description of composite systems, and �nally
some notes about the coherent state representation of harmonic oscillators.

Part I consists of three chapters. In chapter 3.1 I introduce the questions connected to the time
development of open systems, and I discuss the �rst attempt to generalize the time development postulate
of closed systems: namely the Kraus decomposition. In chapter 4 I discuss the Markovian frameworks
for describing open systems, while in chapter 5 I discuss a particular non-Markovian framework. Part of
this chapter will actually be devoted to discussing how this description can be used to derive an exact
Markovian description that applies in many cases.

Part II contains only two chapters, each of which contains a treatment of one particular model. In
chapter 6 I will discuss a simple model of an open two-level system. This model is something that is
included in many standard texts on quantum mechanics in order to discuss in the simplest possible model
the phenomenon of decay. The typical assumption about such decay is that it is exponential, and this
is something that I will look into. The model of chapter 6 is also the one that will mainly be used to
illustrate the di�erent Markovian and non-Markovian descriptions of time development.

The model of chapter 7, which is a very simple model of a harmonic oscillator, will mainly be used to
illustrate additional characteristics of open systems: We will here see an example of mechanical damping,
e�ects of �nite temperature, and also we will study decoherence. In particular we will look at two examples
of Zurek's so called 'pointer bases'. A major part of the chapter will be devoted to the calculation of
an exact solution, so that we can see how this is distinguished in particular from a particular Markovian
approximation scheme.

Finally, in chapter 8 I will give a review of the conclusions and discussions that arose during the main
text. I will also discuss some arising questions, and further work that could have been done if more time
had been available.
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Chapter 2

Prerequisite material

The reader of this thesis is assumed to have a basic understanding of quantum mechanics to the degree
one would have after at least one introductory course on the subject. It is assumed that he/she is familiar
with the fundamental postulates of the theory in their standard formulation, Hilbert spaces and the
mathematics of these, and also with Dirac's Bra-ket notation. In this thesis we will however encounter
certain concepts that go beyond the standard subjects of introductory courses. This includes in particular
the coherent state representation of harmonic oscillators, the formalism of density operators as well as
concepts such as tensor product and partial trace, which are connected to the description of composite
systems. In order for the reader to have a basic understanding also of these subjects before he/she begins
reading the main text, I will provide a short explanation of the necessary prerequisites in this chapter.

2.1 Density operator formalism

As the reader should be familiar with, the standard description of quantum mechanical states are in
terms of wave functions or state vectors. However, the accessible knowledge about a quantum system can
not always be parametrized by such a state, which is frequently referred to as a 'pure' state. Consider
for instance a situation where a system is prepared either in a state |a〉 or |b〉 with 50% probability for
each, and where the actual result is unknown. Can this situation be described somehow using a quantum
mechanical state? Well, unless we happen to have |a〉 = |b〉 there is no state vector that will give a
satisfactory description of this, and so the situation can not be described by a 'pure' state. This is why we
introduce what is called mixed states, which are described by state operators or density operators instead
of state vectors.

Density operators are a more general description of quantum mechanical states, since these can be
used to describe both pure and mixed states. In the case of a pure state there must obviously be some
connection between the state operator and the state vector descriptions. Let us begin by explaining this:
If the state vector of a system is |ψ〉, then the state operator is simply ρ = |ψ〉 〈ψ|. Now, remember that
in the pure state formalism the probability of �nding the system in some state |φ〉 in a measurement is
given by p = |〈φ|ψ〉|2. This can be rephrased as p = 〈φ|ψ〉〈ψ|φ〉 = 〈φ| ρ |φ〉, which is the general formula
for such probabilities in the state operator formalism.

Given this, it is easy to see that this formalism can be generalized to situations such as the one above,
where the system is in the pure states |a〉 or |b〉, each with a probability of 1/2. The state operator
describing this 'mixed' state is simply ρ = 1

2 |a〉 〈a|+
1
2 |b〉 〈b|. We can see this by applying the mentioned

probability formula to this operator. According to this formula, the probability of �nding the system in
the pure state |φ〉 in a measurement is 〈φ| ρ |φ〉 = 1

2 |〈φ|a〉|
2 + 1

2 |〈φ|b〉|
2, which is precisely what it should

be. In general, if a system is prepared in pure states |i〉 with probability pi, the state operator will be

ρ =
∑
i

pi |i〉 〈i| , (2.1)

15
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It is clear that a state operator must always satisfy two particular conditions. First, it must be a
positive operator. That is, for any state vector |ψ〉 we must have 〈ψ| ρ |ψ〉 ≥ 0. The reason for this, is
that this is the general probability formula, and any probability must be larger than zero. Secondly, the
operator must have trace 1. That is, it must satisfy the relation

Tr ρ =
∑
i

〈i| ρ |i〉 = 1, (2.2)

where |i〉 forms a orthonormal basis of the involved Hilbert space. The reason for this is that such a
basis forms all the possible outcomes of a particular measurement, and so their probabilities must sum to
1. Any operator that satis�es these two requirements is in fact a valid state operator. It can always be
written either in the form 2.1 or as a similar expression involving an integral.

In particular, if the state operator describes a thermal state, then it may be written as

ρ =
∑
i

pi |Ei〉 〈Ei| , (2.3)

where the set {|Ei〉} is a basis of energy eigenvectors with Ei the corresponding eigen values, and the
probabilities pi are proportional to the Boltzmann factors e−βEit. Here β is related to the temperature
of the thermal state through the de�nition β = 1

kBT
, where kB is Boltzmann's constant and T is the

temperature. It is easily seen that 2.3 can be expressed simply as

ρ =
1

Z
e−βH , (2.4)

where H is the systems Hamiltonian and Z is a normalization factor which is known as the partition
function. From 2.2 we see that

Z(β) = Tr e−βH . (2.5)

2.1.1 The fundamental postulates

The fundamental postulates of quantum mechanics are usually formulated using state vectors, but it is
fully possible to reformulate these completely in terms of the density operator formalism. I will do this
here, since it will give the reader an increased understanding of the formalism and because it is this
formulation that will form our starting point when we wish to generalize the quantum mechanical theory
to open systems. Note that all of the following postulates can be derived from the standard formulation
using the rules and de�nitions above.

Postulate 1: Quantum mechanical states. The state of a quantum mechanical system is described
by a positively de�nite density operator ρ with trace 1.

Postulate 2: Measurable quantities. Any measurable quantity a of a quantum systems is associated
to a Hermitian operator A. The only possible outcomes of a measurement of this quantity are the
eigenvalues of A. The operator A can be written as either a sum or an integral of terms of type a′P ′,
where a′ is an eigen value, and P ′ the projection operator onto the corresponding eigenspace. This
projection operator is associated to the proposition 'Measurement of a gives result a′' (see Postulate
3).

Postulate 3: Probabilities. Any proposition q about measurements on a quantum system is associated
to a projection operator Pq = P 2

q . The probability of the proposition q being true in a concrete
measurement is given by pq = TrPqρ. In the event that the proposition q corresponds to a single
pure state |q〉, this expression becomes pq = 〈q| ρ |q〉.

Postulate 4: Expectation values. If a measurable quantity a is associated to the Hermitian operator
A, then the expectation value of the quantity a in a concrete measurement is given by 〈a〉 = TrAρ.
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Postulate 5: Time development (in the Schrödinger picture). The time development of a quan-
tum mechanical system is described by a unitary time development operator U(t). If the initial
state of the system is described by the density operator ρ(0), then the state at time t will be
ρ(t) = U(t)ρ(0)U(t)†. Since U(t) is normally assumed to be di�erentiable, we may de�ne the Hamil-
tonian operator H(t) as H(t) = ~iU̇(t)U(t)†. The state operator ρ(t) then satis�es the quantum
mechanical Liouville equation ρ̇ = − i

~ [H, ρ].

Postulate 6: The collapse postulate. Immediately after a measurement is performed the quantum
mechanical state goes through an instantaneous and irreversible change referred to as a 'collapse'.
In the density operator formalism the state after the collapse depends on whether the result of the
measurement is read or discarded. If it is discarded the new state will be ρ′ =

∑
i PiρPi, where Pi are

the projection operators corresponding to all the possible measurement results. If the measurement
result is read, then the new state will be ρ′ = PmρPm/TrPmρ, where Pm is the projection operator
corresponding to the actual result.

for a more comprehensive discussion of the density operator formalism, see for instance [7] or [1].

2.2 Quantum mechanics of composite systems

2.2.1 Tensor products and tensor product spaces

Going back to the pure state formalism now for a while, let us assume that we have two quantum systems
A and B. The pure states of A are described by vectors in a Hilbert space HA, while the pure states of B
are described by vectors in a Hilbert space HB. But what about the pure states of the composite system
C = A ∪ B? What Hilbert space do they form? The answer is that they form the tensor product space
HC = HA ⊗HB.

The tensor product space is a new Hilbert space which is de�ned more or less through the requirement
that if {|a〉 : a ∈ A} is a basis of HA and {|b〉 : b ∈ B} is a basis of HB, then {|a〉 ⊗ |b〉 : a ∈ A, b ∈ B}
forms a basis for HA ⊗ HB. In this de�nition we have also introduced the tensor product between two
vectors: Given a vector |a〉 in HA and a vector |b〉 in HB, the tensor product |a〉 ⊗ |b〉 is a vector in the
tensor product space HA ⊗HB. The tensor product is bilinear, meaning that

(e |a〉)⊗ |b〉 = |a〉 ⊗ (e |b〉) = e |a〉 ⊗ |b〉 , (2.6)

(|a〉+ |c〉)⊗ |b〉 = |a〉 ⊗ |b〉+ |c〉 ⊗ |b〉 and (2.7)

|a〉 ⊗ (|b〉+ |d〉) = |a〉 ⊗ |b〉+ |a〉 ⊗ |d〉 . (2.8)

We may de�ne the inner product of vectors in the tensor product space through the simple relation
(〈a′| ⊗ 〈b′|)(|a〉 ⊗ |b〉) = 〈a′|a〉〈b′|b〉. Here 〈a′| ⊗ 〈b′| should be interpreted simply as the dual vector of
|a′〉 ⊗ |b′〉. We may also de�ne the tensor product of two operators acting on HA and HB through the
relation (A ⊗ B) |a〉 ⊗ |b〉 = A |a〉 ⊗ B |b〉. Note that linearity makes this an unambiguous de�nition of
A ⊗ B, and that all operators acting on HA ⊗ HB may be written as a sum of operators in this 'tensor
product form'.

When working with tensor product spaces it is often useful to extend the algebra of operators, bras
and kets a little bit. For instance, if |a′〉 is a vector in HA, then it is sometimes useful to de�ne the action
of 〈a′| on vectors in HA ⊗HB. This can be done through the relation 〈a′| (|a〉 ⊗ |b〉) = 〈a′|a〉 · |b〉, which
again is an unambiguous de�nition due to linearity. Several relations like this are shown in the list below,
where it is assumed that |a〉 and |a′〉 are vectors in HA, |b〉 and |b′〉 are vectors in HB and that A and B
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are operators acting on HA and HB respectively:〈
a′
∣∣ (|a〉 ⊗ |b〉) =〈a′|a〉 |b〉 , (2.9)〈

b′
∣∣ (|a〉 ⊗ |b〉) =〈b′|b〉 |a〉 , (2.10)

(
〈
a′
∣∣⊗ 〈b′∣∣) |a〉 =〈a′|a〉

〈
b′
∣∣ , (2.11)

(
〈
a′
∣∣⊗ 〈b′∣∣) |b〉 =〈b′|b〉

〈
a′
∣∣ , (2.12)

A(|a〉 ⊗ |b〉) =A |a〉 ⊗ |b〉 , (2.13)

B(|a〉 ⊗ |b〉) = |a〉 ⊗B |b〉 , (2.14)

(
〈
a′
∣∣⊗ 〈b′∣∣)A =

〈
a′
∣∣A⊗ 〈b′∣∣ , (2.15)

(
〈
a′
∣∣⊗ 〈b′∣∣)B =

〈
a′
∣∣⊗ 〈b′∣∣B, (2.16)〈

a′
∣∣ (A⊗B) |a〉 =

〈
a′
∣∣A |a〉B, (2.17)〈

b′
∣∣ (A⊗B) |b〉 =

〈
b′
∣∣B |b〉A. (2.18)

For an extended discussion of tensor products and tensor product spaces, see [1].

2.2.2 Partial traces and reduced density operators.

Remember that the trace of an operator O acting on a Hilbert space H is de�ned as

TrO =
∑
i

〈i|O |i〉 , (2.19)

where {|i〉} forms an orthonormal basis of H. If O actually acts on the tensor product space HA ⊗HB,
then taking into account the lower most de�nitions of 2.9 we may de�ne the partial traces of O as the
operators given by

TrAO =
∑
a

〈a|O |a〉 and (2.20)

TrB O =
∑
b

〈b|O |b〉 , (2.21)

where {|a〉} and {|b〉} are assumed to form orthonormal bases of HA and HB respectively. Note that the
de�nition 2.20 clearly implies that

TrO = Tr TrAO = Tr TrB O. (2.22)

In addition to this, the following simple demonstration shows that a partial trace of a possitive operator
will itself be positive:

〈ψ|TrAρ |ψ〉 =
∑
a

(〈a| ⊗ 〈ψ|)ρ(|a〉 ⊗ |ψ〉 ≥ 0. (2.23)

These relations means that if we have a density operator ρC of the composite system C = A∪B (that
is, an operator acting on HC = HA ⊗ HB that has trace 1 and is positively de�nite), then we get new
density operators by taking the partial traces of ρC . These are referred to as the reduced density operators,
reduced state operators or just reduced states of the systems A and B. To write things out explicitly, the
reduced state ρA of A and the reduced state ρB of B are de�ned as

ρA = TrB ρC , (2.24)

ρB = TrA ρC . (2.25)
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Take note that these operators are indeed acting on the correct Hilbert spaces HA and HB respectively.

So what is the signi�cance of the reduced states ρA and ρB? Well, it turns out that if one is really
only interested in for instance the properties of system A, then all of these are in fact completely described
by the reduced state ρA. Obviously it is the same way if one is only interested in system B. Note that
something similar does not exist in the pure state formalism: Given some pure state |ψ〉 in HA ⊗ HB,
there is in general no single pure state |a〉 in HA that shares all the properties of A with |ψ〉.

As for ρC and ρA however, this is in fact the case. We may show this by proving that any proposition
q about A has the same probability for being true given the state ρA as the state ρC . Using Postulate 3
from above, this is easily done:

pq =TrPqρA = TrPqTrBρC

=Tr
∑
b

Pq 〈b| ρC |b〉 = Tr
∑
b

〈b|PqρC |b〉

=TrTrBPqρC = TrPqρC = pq. (2.26)

Here Pq acts only on HA since q is a proposition about A. In the theory open systems, where the quantum
system S of interest is coupled to an environment E that we are not really interested in, this result is
obviously very useful. In fact this is the main reason why the density operator formalism is so important
in the theory of open systems.

For a more general discussion of the properties of reduced states, the reader is again referred to [7] or
[1].

2.3 The two level system and Harmonic oscillator

In this �nal section of the prerequisites chapter, I will give a very rapid review of the description of two
central quantum mechanical models: the two level system and harmonic oscillator. This is because these
will be the two models I will use for illustration of the theory in the main text. There, the two systems
will obviously be regarded as open systems, whereas in this review they are simply the standard closed
system models. These models are studies in as good as all texts on quantum mechanics, such as [5][1][7].

2.3.1 The two level system

The two level system is just like the name suggests simply a system with two, and only two, distinct states.
These states are often, but not always, assumed to have di�erent energy. They then form two di�erent
energy levels, which is the origin of the name. The Hilbert space of this model is simply a standard two
dimensional vector space with an inner product. Low dimensional systems like this are typically described
using the matrix representation, where the kets are represented as column vectors, the bras as row vectors
and the operators as square matrices. In this case all of these have dimension two.

The vectors corresponding to the two states form an orthonormal basis for the Hilbert space. These
two states are often denoted |1〉 and |2〉, |↓〉 and |↑〉, |g〉 and |e〉 or something similar. In the matrix
representation they are typically written as

|1〉 = |↓〉 = |g〉 =

(
0
1

)
, and (2.27)

|2〉 = |↑〉 = |e〉 =

(
1
0

)
(2.28)

In addition to this there exists a standard notation for certain operators acting on these states, or
more precisely on the associated Hilbert space spanned out by them. In the matrix representation, the
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standard nomenclature is

Pe =

(
1 0
0 0

)
= |e〉 〈e| , (2.29)

Pg =

(
0 0
0 0

)
= |g〉 〈g| , (2.30)

σ+ =

(
0 1
0 0

)
, (2.31)

σ− =

(
0 0
1 0

)
, (2.32)

σx =

(
0 1
1 0

)
= σ+ + σ−, (2.33)

σy =

(
0 −i
i 0

)
= −iσ+ + iσ−, and (2.34)

σz =

(
1 0
0 −1

)
. (2.35)

The matrices σx, σy and σz are frequently denoted the Pauli matrices. One particular system that may
be described by this model is a spin half system, where these matrices are connected respectively to the
x, y and z components of the angular momentum.

Typically, the Hamiltonian of the system is taken to be proportional to σz, as in for instance H = ∆σz,
which would describe a system with two energy levels separated by 2∆. If the Hamiltonian has terms
that are proportional to σx or σy, then the states |e〉 and |g〉 are not energy eigenstates.

2.3.2 The Harmonic oscillator and the coherent state representation

The Harmonic oscillator is a system described by a Hamiltonian of type

H =
1

2m
p2 +

1

2
mω2x2, (2.36)

where x and p are operators satisfying the canonical commutation relations [x, p] = ~i. In classical
mechanics this Hamiltonian describes a system that follows the equation ẍ = −ω2x, and thus undergoes
simple oscillatory motion. An example could for instance be a mass in a spring. The reader should already
be familiar with this.

In quantum mechanics, a Hamiltonian of this form leads to a system with a discrete but in�nite
number of energy levels. The system has a lowest energy level (a ground state), but no highest. The
spacing between the levels is constant and equal to ~ω. The ground state has energy ~ω/2. Due to this
regularity, one may de�ne the so called number operator N = H/~ω − 1

2 . This operator has integer
eigenvalues n in the range from 0 to in�nity, and it counts the number of excitations of the oscillator,
or equivalently how many energy levels it is currently above the ground state. The energy of this state
may be found through the formula E = ~ω(n+ 1/2). The harmonic oscillator Hamiltonian is sometimes
simply written as H = ~ωN , where the ground state energy is omitted.

If this representation of the Hamiltonian is used, then the thermal states of the oscillator will be given
by the expression

ρ =
1

Z
e−β~ωN . (2.37)
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From 2.5 we see that the partition function Z is simply

Z(β) =
∑
n

e−β~ωn =
1

1− e−β~ω
, (2.38)

so that in fact

ρ = (1− e−β~ω)e−β~ωN . (2.39)

The number operator may also be written as N = a†a, where a and a† are adjoint operators known
as the annihilation and creation operator. These operators may be de�ned in terms of the canonical
operators x and p through the formulas

a =
mωx+ ip√

2m~ω
(2.40)

a† =
mωx− ip√

2m~ω
(2.41)

[5]. From this it can be shown that they satisfy the commutation relation [a, a†] = 1. The annihilation
operator a lowers the energy by one level, or equivalently it annihilates one excitation. The creation
operator a† increases the energy by one level, or equivalently it creates one excitation[5]. Note that if the
oscillator is actually a mode in some bosonic quantum �eld, then these excitations are in fact particles.

The annihilation operator a also has eigenvectors and eigenvalues. Unlike the eigenvalues ofN however,
the ones of a are complex and form a continuum instead of a discrete set. These eigenvectors are known
as coherent states. A common way to represent these states is to introduce the unitary displacement

operator

D(z) = eza
†−z?a = e−

1
2
|z|2eza

†
e−z

?a, (2.42)

where we have employed the so called Bacer-Cambell-Hausdorf formula, which states that if two operators
A and B satis�es the relations [A, [A,B]] = [B, [A,B]] = 0, then eAeB = eA+B+ 1

2
[A,B].

Using this operator we may de�ne the coherent state |z〉 as

|z〉 = D(z) |0〉 , (2.43)

where |0〉 is the ground state (frequently denoted the vacuum). It can be shown that the displacement
operators D(z) satis�es the relation

D(z)†aD(z) = a+ z (2.44)

[7]. In particular this means that

a |z〉 = aD(z) |0〉 = D(z)(a+ z) |0〉 = zD(z) |0〉 = z |z〉 , (2.45)

which demonstrates that the coherent states are indeed eigenvectors of the annihilation operator a, and
that the eigenvalue is z.

It should be noted that two coherent states are not orthogonal. In fact, it can be shown[7] that the
overlap between a coherent state and an eigenvector |n〉 of the number operator is

〈n|z〉 =
zn√
n!
e−

1
2
|z|2 , (2.46)

and accordingly the overlap between two coherent states |z〉 and |w〉 is

〈w|z〉 = 〈w|
∑
n

|n〉 〈n| |z〉 =
∑
n

w?nzn

n!
e−

1
2
|z|2e−

1
2
|w|2 = e−

1
2
|z|2+w?z− 1

2
|w|2 . (2.47)
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Even though the coherent states are not orthogonal they still form a basis for the Hilbert space of
the oscillator. This basis is however overcomplete, in the sense that vectors may not be expanded in this
basis in a unique way. While the identity relation of orthogonal bases like for instance momentum states
satis�es identity relations of type ∫ ∞

−∞
dp |p〉 〈p| = I, (2.48)

the coherent states instead satis�es the relation∫
C
d2z |z〉 〈z| = π (2.49)

[7]. In particular this means that one of the (non unique) ways of expressing a general state |ψ〉 as a linear
combination of coherent states, is through the formula

|ψ〉 =

∫
C

d2z

π
|z〉 〈z|ψ〉, (2.50)

which is known as the coherent state representation[7].
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The general theory of open systems
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Chapter 3

Introduction to open quantum systems

3.1 Time development in open systems

In section 2.1.1 we saw the fundamental postulates of quantum mechanics written in terms of density
operator formalism. However, this formulation just like any other assumes the system under study to be
closed. That is, it assumes that as opposed to an open system, it does not interact with its surroundings.
To be more precise, this is assumed in the 5. postulate which discusses time development. There is no
reason to assume that the remaining postulates would in any way be a�ected by interactions with an
environment, but the 5. postulate would be strongly a�ected by this: In open systems the unitarity of
time development will in general break down, as I shall soon demonstrate.

Given then that the time development postulate is really limited to closed systems, one might wonder
whether one can at all justify using this to describe systems in the real world. After all, apart from perhaps
the universe in its totality, no system is truly closed in this sense. Thus, the assumption must always be
an approximation only. Quite often however, it will be a very good approximation. The reason for this
is that in many cases the interactions with the environment are very weak, and they induce signi�cant
changes in the system only after times that are much longer than the duration of a typical experiment.
There will however obviously also be cases where this is not true. That is, where the interactions with
the environment are so strong, or alternatively the experiment is carried out over such a long time that it
will be signi�cantly a�ected by these interactions. In such cases one must take explicitly in account the
open nature of the system.

Such open systems is the subject of this thesis, and especially their time development. One might say
that the central question to be treated, is what we are to replace the time development postulate with
when we are dealing with open systems. Other connected subjects to be treated are the characteristics of
the time development of open systems and how this di�ers from closed systems, together with a discussion
of the methods one might use to �nd this development.

But �rst we should go into some more detail of what is meant by an open system, and how we are
to describe these. As mentioned an open system is a system that is interacting with its surrounding
environment. In a real physical system this surrounding environment would simply be the rest of the
world. To be more precise about this description, we denote the the system S, and we say that it is
coupled to an environment E. The system S together with its environment forms the total system T .
As explained in section 2.2.1, T will have a corresponding Hilbert space HT = HT ⊗ HE , where HS is
the Hilbert space of S and HE is the Hilbert space of E. We treat the total system T = S ∪ E as being
closed. This allows us to assume that it evolves unitarily as described by the standard time development
postulate.

In this part, where we discuss the general properties of open systems, the justi�cation for treating
T as closed is simply that we take E to be the entire rest of the world. This means that T will in fact
be the entire universe, and thus a closed system. If not a certainty this is at least a very very natural
assumption. However, in an actual application of this idea, where we perhaps wish to derive a description
of S from a description of T in some way, the same justi�cation does not work equally well. In such a
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case, where we would need a concrete model of E we could not let this be the entire rest of the world: At
the present time we are sadly not so fortunate as to know either the state nor the Hamilton operator of
the entire universe. And even if we did, it would surely not be possible to take all of this information into
account in any meaningful way.

In fact, in practical calculations we can really only include the most immediate environment of S in
our model of E. Thus we will need another justi�cation for treating S ∪E as closed, which is what I will
attempt to provide in the following: In realistic situations the immediate environment E of S must be
assumed to be a macroscopic system in a state which will usually be thermal. As long as E is su�ciently
large and in equilibrium with the rest of the world (R), the interactions with R can only produce small
perturbations in the state of E. In order for such small perturbations to have any signi�cant e�ect on S,
they would have to be correlated with it in some way. Such correlations are highly unlikely to exist unless
they are made by intent. If such intent exists, then it must obviously be included in the model of either
S or E.

To exemplify this, consider an atom A in an exited state. This atom will be coupled to the electromag-
netic �eld, and so given su�cient time it must emit a photon and fall into its ground state. In a model
capable of reproducing this behavior we must obviously include the electromagnetic �eld, but what about
other objects? This could for instance be additional atoms which are not themselves coupled to A, but
are coupled to the electromagnetic �eld. Must they also be included in the model? After all these extra
atoms could scatter the photon in such a way that it is sent back to A and re-excites it.

Well, if they are very close to A, then the atoms must be considered part of As immediate environment,
and so they must be included if high accuracy is required. If they are distant, then the scattered parts of
the photon will have an incredibly small amplitude when returning to A, and the e�ect on the state will
be negligible. That is, the probability of excitement will be vanishingly small. If however the extra atoms
are arranged in a particular way, such as for instance forming a spherical mirror with its center in A, then
the entire photon would return to A at the same time, and re-excitement would be as good as certain.

The photon, which is a small perturbation of the electromagnetic �eld, would then be correlated with
A and the origin of this correlation, the mirror, would have to be included in the model. Note that any
such con�guration of atoms is extremely unlikely to exist unless it has actually been placed there by an
experimentalist. That is, it is made by intent, so that whether it is to be included in the model or not
becomes a rather stupid question.

Having now justi�ed the treatment of the total system T as closed, we may return to our discussion
of the properties of the open system S. Seeking as we do to �nd some general description of the time
development of this, we may take to our advantage the assumption that T develops unitarily. In fact, we
can even use this to �nd an exact expression for this development: Let ρT (0) be the initial state operator
of the full system T . Let U(t) be the time development operator of T . Then from the 5. postulate of
2.1.1 the state of the full system at time t will be ρT (t) = U(t)ρT (0)U †(t). From 2.24 and the belonging
discussion we see that the reduced state of the system S can be found through the formula ρS = TrEρT .
This means that the state of ρS at time t will in fact be

ρS(t) = TrE(U(t)ρT (0)U †(t)), (3.1)

which is the most general description of the time development of an open quantum system. There is
however one problem with this expression. This is that the involved operators U(t) and ρT (0) belong to
the total system T . I will soon explain why this is problematic, but �rst I will use 3.1 to demonstrate an
earlier assertion: namely that the the development of the reduced system S will in general not be unitary.

To do this, we keep in mind that a unitary development will turn pure states into pure states: Any
pure state |ψ〉 is taken to a new pure state U(t) |ψ〉. Thus, all we need to do to demonstrate that 3.1 does
not in general describe a unitary development of ρS(t), is to show that this development may take a pure
state at t = 0 to a mixed state at a later time. This is easy to do by a simple example: Let the system
S consist of a simple two level system having the two states |↑〉 and |↓〉. Let also the environment E be
described simply by a system of the same type. The total system T will then have four tensor product
states, which are named |↑↑〉, |↓↑〉, |↑↓〉 and |↓↓〉 in the obvious fashion.
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We now assume that at some particular time t the unitary time development operator U(t) takes
the state |↑↑〉 to the new state (|↑↑〉 + |↓↓〉)/

√
2. Expressed using density operators this means that if

ρT (0) = |↑↑〉 〈↑↑|, then ρT (0) = U(t)ρT (0)U †(t) = (|↑↑〉+ |↓↓〉)(〈↑↑|+ 〈↓↓|)/2. It is now easy to see that
ρS(0) = TrEρT (0) = |↑〉 〈↑| which is a pure state, while ρS(t) = TrEρT (t) = (|↑〉 〈↑|+ |↓〉 〈↓|)/2 which is a
mixed state. Thus the time development of S can not be unitary.

Even so, one of the simplest ways of dealing with environmental e�ects is to make a modi�cation of the
Hamiltonian, and thus keep the unitary development. As demonstrated above such a model would not be
able to account for all the e�ects of openness. But as long as what one might call the unitary contribution
from the environment is the most important one, the model could be expected to work quite well. A
typical modi�cation one could make is to add to the Hamiltonian HS of S the term TrE (HSEρE(t)),
with HSE being the interaction part of the Hamiltonian of the full system S ∪E, and ρE(t) being a time
dependent state of the environment.

Doing this corresponds essentially to assuming that although the environment may have a strong
e�ect on S, it is not in any signi�cant way a�ected back in return. In other words we are in a way
assuming the environment to be a 'classical' system. The modi�cation above is in fact precisely what
one does whenever one creates a model where the quantum system is being a�ected by some classical
background. This classical background could for instance be an electromagnetic �eld of some sort. In this
case TrE (HSEρE(t)) would simply be HSE , but with the electromagnetic �eld operator replaced by its
average. Making this kind of approximation is typically denoted semiclassical theory.[5]

In this Thesis we will however go beyond semiclassical approximations like this. We are interested in
more realistic ways to model open systems, and so using unitary models is not an option. As mentioned
above, the most realistic and most general model is 3.1. So why can we not simply apply this directly?
Well, in some very simple cases we can. We shall see examples of this later, as this will be applied to both
of my two example models. Nevertheless, it is important to realize that the direct application of 3.1 is
limited to very simple models of the environment E, and very simple models of the interactions between
E and S. The application of this formula involves solving the Shrödinger equation for the full system T,
which in realistic models would be impossible due to this system having a macroscopic number of degrees
of freedom. In addition to this, the partial trace in 3.1 might also be a quite messy calculation, as will be
seen in the chapter on the open harmonic oscillator.

What one is really interested in then, is some method that reproduces (or at least approximates) the
behavior of ρS without taking the degrees of freedom of E explicitly into account. In a sense what we want
is a generalization of the standard time development postulate ρ(t) = U(t)ρ(0)U †(t), and preferably a
generalization also of the Shrödinger or Liouville equations. We will return to the question of a generalized
Shrödinger equation later, but for now let us concentrate on whether we can generalize the unitary time
development formula. One possible such generalization is known as the Kraus decomposition and will
be treated in the next section. There it will be demonstrated that the exact development of ρ(t) can be
written in such a Kraus form, provided that we make one additional assumption:

In 3.1, the initial state of the full system T is completely general, so that the system S may have both
classical and quantum mechanical correlations with the environment. To get the expression on Kraus
form we will assume instead that there are no correlations of any type at t = 0. That is we assume that
the initial state factorizes as ρT (0) = ρS(0)⊗ ρE(0). This will turn 3.1 into

ρS(t) = TrE(U(t)(ρS(0)⊗ ρE(0))U †(t)), (3.2)

which, if ρE(0) is regarded as �xed, expresses ρS(t) in terms of ρS(0) alone. This is of course a necessity
to construct a meaningful generalization of the formula ρ(t) = U(t)ρ(0)U †(t). Another way of thinking of
this is that 3.2 de�nes a map taking ρS(0) to ρS(t). Since in this case the map is actually linear, it can
be thought of as an operator Gt acting on the space of state operators. Such an operator acting on other
operators is often referred to as a super operator.

At �rst glance the assumption of factorizing initial conditions might seem to greatly reduce the gen-
erality of our treatment. We would after all expect interactions with the environment to cause any open
system to form correlations with this. However, the situation is actually not as bad as it seems. As long as
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the interactions are relatively weak, then so will typically also the correlations be. Thus, the consequences
of ignoring these will not be all that dramatic. In this thesis we shall almost always assume factorizing
initial conditions. Even so, some of the methods to be discussed can be generalized to descriptions that
does not assume this condition, and in particular there are good reasons to believe that the Kraus form
holds more generally. This will be discussed in more detail in the next section.

3.2 Kraus Decomposition

To get 3.2 in the form known as Kraus decomposition[1], we begin by diagonalizing ρE(0) and ρS(0) to
get

ρE(0) =
∑
i

pi |i〉 〈i| , (3.3)

ρS(0) =
∑
k

qk |k〉 〈k| , (3.4)

with {|i〉} an orthonormal basis for HE consisting of eigenvectors of ρE(0), and {|k〉} an orthonormal
basis for HS consisting of eigenvectors of ρS(0). Then, we de�ne the operators Uij(t) on HS by

Uij(t) = 〈i|U(t) |j〉 , (3.5)

with |i〉 and |j〉 from the eigenvector basis {|i〉}. We can then write 3.2 as

ρS(t) =
∑
i

〈i| (U(t)(ρS(0)⊗ ρE(0))U †(t)) |i〉 =
∑
ij

pj 〈i|U(t)(ρS(0)⊗ |j〉 〈j|)U †(t) |i〉 (3.6)

=
∑
ijk

pjqk 〈i|U(t)(|k〉 〈k| ⊗ |j〉 〈j|)U †(t) |i〉 =
∑
ijk

pjqk(〈i|U(t) |k〉 ⊗ |j〉)(〈k| ⊗ 〈j|U †(t) |i〉)

=
∑
ijk

pjqkUij(t) |k〉 〈k|U †ij(t) =
∑
ij

pjUij(t)ρS(0)U †ij(t).

Further de�ning Vij =
√
pjUij we will get

ρS(t) =
∑
ij

Vij(t)ρS(0)V †ij(t). (3.7)

The operators Vij also satisfy the relation∑
ij

V †ijVij =
∑
j

pj
∑
ik

U †ij |k〉 〈k|Uij =
∑
j

pj
∑
ik

〈j|U †(|k〉 〈k| ⊗ |i〉 〈i|)U |j〉 (3.8)

=
∑
j

pj 〈j|U †U |j〉 =
∑
j

pj 〈j| IT |j〉 =
∑
j

pjIS = IS ,

with IT the identity operator on HT and IS the identity operator on HS . Now simply re-indexing our V
operators, we get the Kraus form of the time development:

ρS(t) =
∑
i

Vi(t)ρS(0)V †i (t), with (3.9)

∑
i

V †i (t)Vi(t) = I. (3.10)
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Note that if we limit the number of V operators to one, we recover the old unitary time development of
closed systems so that unitary development is in fact a special case of the Kraus decomposition.

3.9 can however also describe processes that does not conserve the purity of states, and thus it is
more general. Also, as I have already mentioned, even though the derivation above was given under the
assumption that the initial state factorizes there are reasons to believe that 3.9 is more general. This
is because given certain conditions this expression is actually the most general expression one can have
for the time development of a state operator. Aspects of these conditions will be discussed in the next
section, but �rst we will state and prove the full theorem of Kraus Decomposition.

Theorem 1. Kraus Decomposition.
Let L(H) be the space of linear operators A on a Hilbert space H. Let L : L(H) → L(H) be a map

from L(H) to itself. Then L can be written in Kraus form:

L(A) =
∑
i

ViAV
†
i , with (3.11)

∑
i

V †i Vi = I, (3.12)

if and only if the following conditions are satis�ed:

(a) L is linear. That is, L is a super operator acting on L(H).

(b) L is trace preserving.

(c) L is completely positive, meaning that given any additional Hilbert space H2, the linear map L⊗I :
L(H⊗H2)→ L(H⊗H2) is positive.

Proof. The proof is based on one that is found in [2]. A similar proof can also be found in [10]. Let us
�rst verify that a map in Kraus form satis�es the conditions above. The condition of linearity is obviously
satis�ed, and to check the second condition we do the following simple calculation:

Tr

(∑
i

ViAV
†
i

)
=
∑
i

TrAV †i Vi = TrA
∑
i

V †i Vi = TrA. (3.13)

The �nal condition is also easily veri�ed by �rst noting that the map L ⊗ I can be written as

(L ⊗ I)A′ =(L ⊗ I)
∑
j

Aj ⊗A2j =
∑
j

(LAj)⊗A2j =
∑
ij

(ViAjV
†
i )⊗A2j (3.14)

=
∑
ij

(Vi ⊗ I)(Aj ⊗A2j)(Vi ⊗ I)† =
∑
i

(Vi ⊗ I)A′(Vi ⊗ I)†.

For any vector |ψ〉 ∈ H ⊗H2 now de�ning |ψi〉 = (Vi ⊗ I)† |ψ〉, we �nd that for A′ positively de�nite, we
get

〈ψ| (L ⊗ I)A′ |ψ〉 =
∑
i

〈ψ| (Vi ⊗ I)A′(Vi ⊗ I)† |ψ〉 =
∑
i

〈ψi|A′ |ψi〉 ≥ 0, (3.15)

thus demonstrating that L ⊗ I takes positive de�nite operators to positive de�nite operators.
Let us now take the implication the other way, and derive that any map satisfying these conditions can

be written in Kraus form. Here this will only be done under the assumption that H is �nite dimensional.
Assume that L is a map satisfying the conditions above. Let H′ be an identical copy of H, and let |i〉 and
|i′〉 be orthonormal bases for H and H′ respectively. Further, de�ne the vector

|φ〉 =
∑
i

|i〉 ⊗
∣∣i′〉 , (3.16)
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and the operator

σ = (L ⊗ I) |φ〉 〈φ| , (3.17)

Since |φ〉 〈φ| is positive de�nite, condition c gives that so must σ be. σ is also Hermitian, since any positive
operator must be Hermitian. To see this, we note that any operator O can be written as the sum of a
Hermitian operator H and an anti-Hermitian operator A, so that

〈ψ|O |ψ〉 = 〈ψ|H |ψ〉+ 〈ψ|A |ψ〉 . (3.18)

SinceH has only real eigenvalues andA has only imaginary, 〈ψ|H |ψ〉must be real and 〈ψ|A |ψ〉 imaginary.
If O is positive, then 〈ψ|O |ψ〉 is positive and thus real. This means that 〈ψ|A |ψ〉 = 0 for all |ψ〉, so that
in particular all the eigenvalues of A are zero. Thus, clearly A = 0 and O = H is Hermitian.

Knowing then that σ is Hermitian, it must have a spectral decomposition

σ =
∑
k

σk |k〉 〈k| , (3.19)

with |k〉 being an orthonormal basis of eigenvectors. The positivity also means that that all the σk ≥ 0.
This means that 3.19 can in fact be written

σ =
∑
k

|φk〉 〈φk| , (3.20)

where we have de�ned |φk〉 =
√
σk |k〉.

Next, we introduce the conjugate linear map W : H → H′, de�ned by

W (
∑
i

ci |i〉) =
∑
i

c?i
∣∣i′〉 , (3.21)

which we see will have the property that〈
i′
∣∣W (|ψ〉) = c?i = 〈ψ|i〉. (3.22)

Finally we de�ne our Kraus operators Vk by

Vk |ψ〉 = (W (|ψ〉))† |φk〉 . (3.23)

Using these, we �nd∑
k

Vk |ψ〉 〈ψ|V †k =
∑
k

W (|ψ〉)† |φk〉 〈φk|W (|ψ〉) = W (|ψ〉)†σW (|ψ〉) (3.24)

=W (|ψ〉)†(L ⊗ I) |φ〉 〈φ|W (|ψ〉) =
∑
ij

W (|ψ〉)†(L ⊗ I) |i〉 ⊗
∣∣i′〉 〈j| ⊗ 〈j′∣∣W (|ψ〉)

=
∑
ij

(L |i〉 〈j|)W (|ψ〉)†
∣∣i′〉 〈j′∣∣W (|ψ〉) =

∑
ij

(L |i〉 〈j|)〈i|ψ〉〈ψ|j〉

=L
∑
ij

〈i|ψ〉〈ψ|j〉 |i〉 〈j| = L(|ψ〉 〈ψ|),

thus demonstrating the Kraus form for pure states. Since any state can be written as a linear combination
of pure states, linearity of L implies that theorem 1 holds for all states.
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3.3 Discussion of the conditions for Kraus Decomposition

Using theorem 1 we could have derived 3.9 in a much simpler fashion: It is easily seen that the map
taking ρ(0) → ρ(t) in 3.2 satis�es all the conditions of the theorem, so that 3.9 follows directly. In fact
theorem 1 can be used to argue for a time development on this form in a much wider setting than that
of factorizing initial conditions: we will have such time development as long as it satis�es the conditions
a - c, no matter the initial conditions. To write things out explicitly, the development of an open system
will have the form 3.9 if and only if

(a) The state at times t can be expressed as a function of the initial state: ρS(t) = Gt(ρS(0)).

(b) The functions Gt are linear: Gt(A) = GtA.

(c) Gt are trace preserving.

(d) Gt are completely positive.

Of these conditions we note that already the �rst one is discussable: The reduced state of S will not
only depend on the initial state of S, but on the state of the full system T . In order to claim that it is a
function of the reduced state alone we must regard the remaining information as �xed in some way. When
the initial state is in factorized form, as in 3.2 this can be done by simply regarding ρE(0) as �xed. In
the more general case however, it is di�cult to see precisely what it is we should regard as �xed. Due to
the ambiguity of this condition and the linearity condition which is strongly connected to it, I will delay
the discussion of these until after I have dealt with the two remaining ones, which are much simpler.

First, there is not even much to say about c. It must obviously be satis�ed since any valid state
must develop into another valid state operator with trace 1, and linearity (if we accept this) gives that all
other traces must then also be preserved. Condition d must also always be satis�ed: First, we note that
this would have been easy to see if the condition had involved just plain positivity instead of the more
complicated 'complete positivity'. Then this would have followed simply from the fact that any state
operator, which is positive, must develop into another positive state operator. Also, any non zero positive
operator with a trace can be rescaled to form a density operator.

Concerning this, one might ask why it is at all necessary to demand complete positivity instead of
just plain positivity. I at least, would say it seems intuitive that the later should imply the former (the
de�nition of complete positivity is explained in condition c of Kraus' theorem). The answer is that in this
case as in many others intuition is simply wrong. It does in fact not: A simple example of a map which
satis�es conditions a - c as well as positivity, but which is never the less not completely positive is to take
the transpose of an operator with respect to some basis:

LT (A) =
∑
ij

|i〉 〈j|A |i〉 〈j| (3.25)

This map is obviously linear, and it is easy to verify that it is trace preserving. Positivity also follows
easily from the de�nition: 〈ψ| LT (A) |ψ〉 becomes 〈φ|A |φ〉, where |φ〉 =

∑
i〈ψ|i〉 |i〉. Complete positivity

however is not satis�ed, as will now be demonstrated. The example is taken from [10].

Consider a simple two level system, and de�ne LT as the transpose with respect to the basis {|1〉 , |2〉}
of this space. We let also the second Hilbert space H2 from condition c in theorem 1 describe such a two
level system, and we look at the e�ect of the map LT ⊗ I on the state operator corresponding to the
maximally entangled state 1√

2
(|1〉 ⊗ |2〉+ |2〉 ⊗ |1〉). This operator will be

ρ =
1

2
(|1〉 〈1| ⊗ |2〉 〈2|+ |1〉 〈2| ⊗ |2〉 〈1|+ |2〉 〈1| ⊗ |1〉 〈2|+ |2〉 〈2| ⊗ |1〉 〈1|), (3.26)
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which means we will have

(LT ⊗ I)ρ =
1

2
(LT (|1〉 〈1|)⊗ |2〉 〈2|+ LT (|1〉 〈2|)⊗ |2〉 〈1| (3.27)

+ LT (|2〉 〈1|)⊗ |1〉 〈2|+ LT (|2〉 〈2|)⊗ |1〉 〈1|)

=
1

2
(|1〉 〈1| ⊗ |2〉 〈2|+ |2〉 〈1| ⊗ |2〉 〈1|+ |1〉 〈2| ⊗ |1〉 〈2|+ |2〉 〈2| ⊗ |1〉 〈1|).

We now de�ne the vector |ψ〉 = |1〉 ⊗ |1〉 − |2〉 ⊗ |2〉, and it is easily seen that

〈ψ| (LT ⊗ I)ρ |ψ〉 = −1, (3.28)

which means (LT ⊗ I)(ρ) is not positively de�nite even though ρ, as a valid state operator is. This again
means LT ⊗ I is not a positive map, and �nally that LT is not completely positive.

Knowing then that complete positivity is not equivalent to positivity, we will need to explain in some
other way why condition d must be satis�ed. To do this, we expand our total system T by a third system
S2 which is not coupled to it, and discuss the development of S ∪S2. If the development of S is described
by Gt, the development of S ∪ S2 will be given by the super operator Gt ⊗ I, since S2 is not a�ected by
the time development. We assume here not only that S2 does not interact with S, but also that it has
no self-contributions to the Hamiltonian. Now, the map Gt ⊗ I takes the initial state of S ∪ S2 to the
state at time t, and thus it sends valid state operators to valid state operators. As was explained above
this means that Gt ⊗ I must be positive. Since the system S2 can be described by a Hilbert space of any
dimension, the condition follows.

By the preceding discussion, we see that if a and b are assumed, the conditions c and d must be
satis�ed by any valid development of a state operator. Having now dealt with this, we may turn back to
the conditions a and b themselves. As already mentioned, to assume condition a is the same as to in some
way regard the information of ρT that is not contained in ρS as being �xed. This statement is obviously
very imprecise, and it can obviously be interpreted in a large number of ways. It is not hard to realize
that whether the functions Gt are linear will depend on precisely what way we regard this information as
being �xed. With other words, the questions of whether the conditions a and b are justi�ed are strongly
connected.

Before we go into this however, we should say something about why we would at all expect Gt to be
linear. Well, �st of all we know that closed systems develop linearly. Assuming that open systems also do
this would then be the simplest generalization. Secondly, it is possible to prove this as long as one limits one
self to what is called convex linearity. This means that in the linearity condition Gt(aA+bB) = aGtA+bGtB
we demand the coe�cients a and b to be positive and sum to 1. These coe�cients can then be interpreted
as probabilities, while the state operator C = aA + bB can be interpreted as representing a situation
where the system S is prepared in the state A with probability a and in the state B with probability
b. At time t it will then be in the state GtA with probability a and GtB with probability b. The actual
state operator will then be aGtA + bGtB, which proves convex linearity. However, to demand this type
of probabilistic interpretation of the state operators actually means we are limiting the possible ways in
which the external information can be �xed.

In [2] and [10] it is in fact claimed that convex linearity is all that is needed for Kraus decomposition.
Upon examining their proof one will however discover that this actually requires full linearity. More
precisely this is in the equivalent of equation 3.24, where linearity beyond just convex is clearly employed.
Because of this I have chosen to write down full linearity as the condition for Kraus decomposition, as is
also done in [11]. The condition is thus in need of further justi�cation.

One possible way of regarding the external information as �xed, which is used at one place in [2], is
to introduce a reference state b of the environment E. For instance b could simply be ρE(0) = TrSρT (0).
What one then chooses to regard as �xed, is the operator QρT (0) = ρT (0)− ρS(0)⊗ b. The notation here
will be explained in a later chapter. In this one the important point is just that when QρT (0) is �xed,
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ρS(t) can be expressed as a function of ρS(0) through the relation

ρS(t) = Gt(ρS(0)) = TrE(U(t)(ρS(0)⊗ b)U †(t)) + TrE(U(t)(QρT (0))U †(t)). (3.29)

We note however that the map Gt is in this case not linear, since it contains the inhomogeneous term
TrE(U(t)(QρT (0))U †(t)). Thus Gt obviously does not satisfy the conditions for Kraus decomposition. In
fact 3.29 violates also convex linearity, so that the probability interpretation can not be used.

If we wish the probability interpretation to apply, and in particular if we want Gt to satisfy the
conditions for Kraus decomposition, we must clearly �nd some other way of regarding the Environmental
information as �xed. Let us examine precisely what it is we need: We want to express ρS(t) as a function
of ρS(0), whereas in reality it is a function of ρT (0). Clearly the way to solve this is to assume that ρT (0)
is itself a function of ρS(0): that is ρT (0) = L(ρS(0)). This is in fact precisely what was done in 3.29,
with the function L being simply L(ρ) = ρ⊗ b+QρT (0).

However, with this choice for L, Gt did not satisfy the conditions for Kraus decomposition. It is
not hard to see that if we want to satisfy these conditions, the map L must also satisfy the same three
conditions of linearity, trace preservation and complete positivity. In addition to this it must clearly also
satisfy the condition that TrELA = A, since this must be the case if it takes ρS(0) to ρT (0). The case of
factorizing initial conditions gives the simplest example of a map L that satis�es all of these conditions:
In this case is is simply given by LA = A ⊗ ρE(0). Other examples are di�cult to construct explicitly,
but the mentioned constraints of the map L are certainly not so limiting as to exclude their existence.

Having now gone through each of the conditions for Kraus decomposition in some detail, we are ready
to make some conclusion as to whether they are justi�ed. The answer seems to be that this depends
entirely on the way in which the external information is �xed: As long as one can do this in the right way,
one can make sure that the Kraus conditions are satis�ed. And if this is not done in the right way it is
easy to construct examples where they are not. However, since the way we �x this external information is
to a large degree up to ourselves, it is perhaps not so unreasonable to assume that we can always do this
in such a way that the Kraus conditions hold. If this is indeed the case, then it is well justi�ed to take 3.9
to be the correct generalization of unitary time development for open systems. In this thesis, we shall in
any situation where we have a concrete model for T assume factorizing initial conditions, in which case
3.9 is in any case certain to hold.
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Chapter 4

Markovian descriptions of open systems

4.1 Markovianness and Quantum Dynamical Semigroups

In the previous chapter we came to the conclusion that the best generalization of the unitary time devel-
opment postulate |ψ(t)〉 = U(t) |ψ(0)〉 or alternatively ρ(t) = U(t)ρ(0)U(t)†, is the Kraus decomposition
3.9. In the case of closed systems, unitary time development can be used to derive the existence of
di�erential equations describing the development of the state. In the pure state formulation this is the
Schrödinger equation, ~i|ψ̇〉 = H |ψ〉, while in the density operator formulation it is the quantum Liouville
equation, ~iρ̇ = [H, ρ]. The Hamiltonian operator H is de�ned from the time development operator U(t)
by H(t) = ~iU̇(t)U(t)†.

With this in mind, it becomes a natural question to ask whether the Kraus decomposition 3.9 can be
used to argue for the existence of a di�erential equation describing the development of states also in open
systems. The answer turns out to be no. 3.9 is not enough to assure the existence of such an equation,
and indeed not all open systems can be described by a di�erential equation. The reason for this is that
for a system to be described by a di�erential equation, it must be manifestly Markovian. This means that
it must be possible to determine the state at time t from the state at any earlier time t′.

3.9 merely says it is possible to determine the state at time t from the state at time 0, and thus it
is not necessarily Markovian. Of course, on a super�cial level this seem to be the case also for closed
systems, since the time development postulate |ψ(t)〉 = U(t) |ψ(0)〉 expresses |ψ(t)〉 in terms of |ψ(0)〉. It
is however easy to see that closed systems are in fact Markovian. This is due to the fact that unitary
operators are always invertible, so that one can actually express |ψ(t)〉 in terms of the state at any time

t′ through the simple relation |ψ(t)〉 = U(t) |ψ(0)〉 = U(t)U †t′ |ψ(t′)〉.
The time development operator Gt de�ned by 3.9 is however not necessarily invertible. Thus, if we

wish to make use of Markovianness we will have to make this an assumption. This chapter deals with
the description of open systems where this assumption is made. I should stress however that this is not
always justi�ed: When a system is coupled to an environment, as is the case with open systems, it is
reasonable to believe that the environment will be able to act as a memory, since it is capable of storing
information about the system. It would then seem that the systems behavior could be in�uenced by its
past states through this external memory, and not only by its present state. As we will see it turns out
even so that open systems often has an exact Markovian description. This is however not always the case,
so if one wishes a completely general description this can not be Markovian. A particular non-Markovian
description will be dealt with in the next chapter.

In addition to Markovianness we will also assume linearity. This is already assumed in the Kraus
form, and so in generalizing this to a Markovian expression we might as well keep this assumption. In
total then, we assume that for any pair of times 0 ≤ t′ ≤ t we can express the state ρ(t) as

ρ(t) = Gt′→tρ(t′). (4.1)

The set of super operators Gt′→t obviously satis�es

Gt′→t′′Gt→t′ = Gt→t′′ (4.2)

35
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for any t ≤ t′ ≤ t′′. If they in addition to this are trace preserving and completely positive they are referred
to as a quantum dynamical Semigroup[1][2]. This name makes reference to the concept of an algebraic
semigroup, which is a mathematical structure that has all the same properties of a group, except that all
elements does not necessarily have an inverse. This is of course because 4.2 is a sort of group property,
while at the same time there is no guaranty that the operators are invertible.

One should note that one does loose generality by assuming that a Markovian development is a
quantum dynamical semigroup. Obviously Gt′→t will have to be trace preserving, but they need not be
completely positive nor even positive. The reader might �nd this somewhat puzzling, since this condition
was easily shown to be true in the case of the original Kraus form 3.9. Should this argument not be
generalizable to the Markovian case? Well, in fact no. An important point in the original demonstration
was that Gt acts on the states at t = 0, at which the system can be in any state. All of these must then be
sent to positive operators. However, at later times t′ only states that are in the image of Gt′ are possible,
and thus we have no guarantee that states outside of this image will develop into positive operators.

Thus the operators Gt′→t need not necessarily be positive, and in the cases where the open system has
an exact Markovian description they are in fact often not. Quite often however Markovian descriptions
are based on an approximation where one assumes that the memory of the environment is 'short'. This
short memory could also be used to argue that the environment in a way 'does not know what time it is',
so that the maps Gt′→t can only depend on time di�erences. That is, we would have Gt′→t = Gt−t′ . In this
case they would have to be completely positive since the operators Gt are. If this is the case they will form
a quantum dynamical semigroup, and in particular they satisfy the conditions for Kraus decomposition
so that 4.1 becomes

ρ(t) =
∑
i

Vi(t, t
′)ρ(t′)Vi(t, t

′)†, with (4.3)

∑
i

Vi(t, t
′)†Vi(t, t

′) = I. (4.4)

In section 4.3 I will show that equation 4.3 can be used to derive a generalization of the Schrödinger/Liou-
ville equation.

For now however let us return to general Markovian operators Gt′→t that does not necessarily form a
dynamical semigroup. As long as these operators are di�erentiable, 4.1 can always be used to derive a
di�erential equation for ρS(t): We de�ne the Markovian generator Mt in the following way:

Mt =
d

dt′
Gt→t′

∣∣
t′=t

. (4.5)

From this and 4.1 we see that ρS(t) will in fact satisfy the equation

ρ̇S =MtρS . (4.6)

Of course this expression in a way already forms a generalization of the Liouville equation. But this
expression is really to general to be used for practical modeling: We have no idea how to choose the
generator Mt so as to make sure the states develop in a meaningful way where they remain positively
de�nite. When we start out with a quantum dynamical semigroup however, the generator can be put
into a standard form that always has this property. Just like the Liouville equation and the Kraus
decomposition 3.9 this standard form also has the advantage that it is expressed in terms of operators
acting on the Hilbert space HS .

4.2 Markovianness and invertibility.

I mentioned above that the reason unitary time development is by necessity Markovian is that unitary
operators are always invertible, and similarly that open systems are not necessarily Markovian since the
time development operators Ġt are not necessarily invertible. However, if they happen to be invertible
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then the development will be Markovian. This can be shown in precisely the same way as in the unitary
case: Assume that for t > 0 our open system S has the development ρS(t) = Gtρ(0). Assume further
that in the range 0 ≤ t ≤ T these operators are invertible. In this range, ρS(t) can be expressed as
ρS(t) = GtG−1

t′ ρS(t′). If we now simply de�ne GtG−1
t′ = Gt′→t, we see that this becomes 4.1, our de�nition

of Markovianness. This means that as long as the operators Gt are in fact invertible, the system has (in
principle) an exact Markovian description.

Concerning this, two points should be noted: First, even if the original operators Gt satis�es the
conditions for Kraus decomposition, the operators GtG−1

t′ = Gt′→t need in general not. The reason for this
was explained above. Secondly, we should note that it is no at all unreasonable to assume the operators
Gt to be invertible in some interval 0 ≤ t ≤ T . As long as we assume the system S to have �nite dimension
N this is in fact even provable:

In this case the operators Gt will have well de�ned determinants. Since the determinants are continuous
functions of the operators and the operators are assumed to vary continuously with time, the determinant
DetGt must also vary continuously with time. Since DetG0 = Det I = 1 (I being the identity super
operator) and we must have DetGt = 0 in order for Gt not to be invertible, it follows that Gt must be
invertible in some interval after 0.

I do not know if this proof can be generalized to in�nite dimensional systems, and under full generality
I would in fact expect that it can not. However, I would also expect that the result only fails under
very special circumstances. So I would say it is always well justi�ed to assume invertibility, and thus
Markovianness in some interval 0 ≤ t ≤ T . As of yet this does of course not have any practical applications,
since we know of no way to �nd this description. In particular we have no way to �nd the generatorMt.
In the next chapter we will however see that this generator can actually be approximated in a systematic
fashion.

Having now demonstrated that invertible time development implies Markovianness, we might wonder
whether these two properties are even equivalent. That is, we might wonder whether Markovianness also
implies invertibility. In general this is of course not the case: There is no way to argue from 4.1 alone
that the operators Gt′→t must be invertible. However, if we also assume di�erentiability, so that the
development is described by 4.6, then invertibility becomes at least very plausible.

To see this, we note that 4.6 implies that the operators Gt′→t will themselves satisfy the equation

Ġt′→t =MtGt′→t, (4.7)

with the initial conditions Gt′→t′ = I. Under the assumption of existence and uniqueness of solutions (and
of course any self respecting physicist would take a suggestion to the contrary as a personal insult), this
initial value problem can be used to de�ne Gt′→t also for t < t′. It then seems very intuitive that the
operator Gt→t′ should be the inverse of Gt′→t, and in fact this can be demonstrated to be the case:

First, take note that if the solution to 4.7 is unique under the initial condition Gt′→t′ = I, then it must
also be unique under any other initial condition. This follows simply from linearity, since one can just add
together solutions to obtain new initial values. Next, consider the product of operators Gt′→t′′Gt′′→t. This
product clearly satis�es the equation d

dt′′Gt′→t′′Gt→t′ = Mt′′Gt′→t′′Gt→t′ , as well as the initial condition
Gt′→t′Gt→t′ = Gt→t′ . The uniqueness of solutions to this initial value problem them implies that the
product must equal the operator Gt→t′′ . Now simply setting t′′ = t, we see that Gt→t′ is indeed the inverse
of Gt′→t.

Of course this argument hinges greatly on the assumption of existence and uniqueness of solutions to
4.7. This can however be safely assumed as long as the generators Mt satis�es appropriate conditions
of continuity. To summarize then, we see that Markovianness and invertibility can be thought of as
equivalent,but only if we make additional assumptions of di�erentiability and continuity of the operators
Mt.
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4.3 The Lindblad equation

I mentioned in the preceding that we can derive a generalization of the Liouville equation if we assume that
the system S is described by a quantum dynamical semigroup. This equation is known as the Lindblad
equation. A quantum dynamical semigroup can be expressed using the Lindblad Equation as long as the
super operators Gt′→t are bounded. This was in fact proven by Lindblad[8], which is why the equation
was named after him. I will now state this theorem, but the proof will only be given for �nite dimensional
Hilbert spaces.

Theorem 2. Lindblad Equation.
Assume that some state operator ρ(t) acting on a Hilbert space H has a time development that can be

expressed as 4.3. Assume further that the operators Vi in this expression are bounded and di�erentiable.
Then ρ(t) satis�es the Lindblad Equation, which can be expressed using either of the two following standard
forms:

ρ̇ = − i
~

[H, ρ] +
∑
ij

aij(FiρF
†
j −

1

2
{F †j Fi, ρ}), (4.8)

ρ̇ = − i
~

[H, ρ] +
∑
i

γi(AiρA
†
i −

1

2
{A†iAi, ρ}), (4.9)

where H is a Hermitian operator, γi > 0 and TrF †i Fj = TrA†iAj = δij . Also, H, aij , γi and Ai may in
general depend on time, while the operators Fi does not.

Proof. The proof will only be given in the case where H has �nite dimension. It is a slightly modi�ed
version of one that is fond in [2]. Let us denote the dimension N . The space L(H) of linear operators on
H then forms a N2 dimensional space. We de�ne an inner product on this space as TrA†A, and we pick
a basis for L(H) which is orthonormal with respect to this inner product. We speci�cally pick one of the
basis vectors to be 1√

N
I, and we denote the remaining N2− 1 operators as Fi. Note that these operators

being ortogonal to 1√
N
I means that they are traceless. The Vi operators from 4.3 can then be expanded

as

Vj =
1

N
(TrVj) · I +

∑
i

(
TrF †i Vj

)
· Fi, (4.10)

which means we can rewrite this equation as

ρ(t) =
1

N2

∑
i

|TrVi|2 · ρ(t′) +
1

N

∑
ij

(TrViTrV †i Fj · ρ(t′)F †j + TrV †i TrF †j Vi · Fjρ(t′)) (4.11)

+
∑
ijk

TrF †j ViTrV †i Fk · Fjρ(t′)F †k

= fρ(t′) + Fρ(t′) + ρ(t′)F † +
∑
jk

cjkFjρ(t′)F †k ,

where we have now de�ned

f =
1

N2

∑
i

|TrVi|2, (4.12)

F =
1

N

∑
ij

TrV †i TrF †j Vi · Fj , (4.13)

cjk =
∑
i

TrF †j ViTrV †i Fk. (4.14)
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We then take the derivative of 4.11 with respect to t at t = t′ to get

ρ̇ = ḟρ+ Ḟ ρ(t′) + ρ(t′)Ḟ † +
∑
ij

ċijFiρF
†
j = − i

~
[H, ρ] + {G, ρ}+

∑
ij

aijFiρF
†
j , (4.15)

with further de�nitions of the Hermitian operators H and G, and the coe�cients aij :

H =
~
2i

(Ḟ † − Ḟ ), (4.16)

G =
1

2
(ḟ I + Ḟ † + Ḟ ), (4.17)

aij = ċij . (4.18)

The maps 4.3 preserves traces, so we must have

d

dt
Trρ = 2TrGρ+

∑
ij

aijTrFiρF
†
j = Tr(2G+

∑
ij

aijF
†
j Fi)ρ = 0. (4.19)

Since this means that the operator 2G+
∑

ij aijF
†
j Fi is orthogonal to all operators it must be identically

0, so that G = −1
2

∑
ij aijF

†
j Fi. This �nally gives us the Lindblad equation in its �rst standard form 4.8.

Next, we want to demonstrate that the N2 − 1×N2 − 1 matrix a of the coe�cients aij is Hermitian
and positive de�nite. We �rst show this for the corresponding matrix c of the coe�cients cij . Hermiticity
follows straight forward from the de�nition 4.14, and to prove positivity we calculate

v†cv =
∑
jk

v?j cjkvk =
∑
jk

v?j
∑
i

TrF †j Vi · TrV †i Fkvk (4.20)

=
∑
i

Tr
∑
j

v?jF
†
j Vi · Tr

∑
k

V †i Fkvk =
∑
i

|Tr
∑
j

v?jF
†
j Vi|

2 ≥ 0,

for any vector v. Hermiticity of a now also follows straight forward from 4.18 and the Hermiticity of c.
To show positivity we �rst calculate

cjk(t, t) =
∑
i

TrF †j ViTrV †i Fk =
∑
lm

〈l|F †j

(∑
i

Vi |l〉 〈m|V †i

)
Fk |m〉 (4.21)

=
∑
lm

〈l|F †j |l〉 〈m|Fk |m〉 = TrF †j TrFk = 0,

which means we have v†c(t, t)v = 0 for all v. Since v†c(t, t′)v ≥ 0 for t′ > t, this further means we must
have

d

dt′
v†c(t, t)v = v†a(t)v ≥ 0. (4.22)

The fact that a is Hermitian and positive means we can diagonalize it as a = uγu†, or

aij =
∑
k

uikγku
?
jk, (4.23)

γk ≥0. (4.24)

Inserting this into 4.8 while de�ning the operators

Aj =
∑
i

uijFi (4.25)

then gives us the Lindblad equation in its second standard form 4.9.
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As mentioned the full proof in [8] expands this result to in�nite dimensional systems, but only when
the Kraus operators are bounded. Of course one can not generally expect this to be the case, but the
fact is that there are no examples of a physically relevant quantum dynamical semigroup where it can
not be expressed using the Lindblad equation[2]. This is the case even when the Kraus operators are not
bounded. So even though we have no formal proof to support us in all cases: if we wish to study quantum
dynamical semigroups we can usually assume the Lindblad equation to be well suited.

Of course, not all open quantum systems can be described using a quantum dynamical semigroup,
and in these cases we can neither assume the Lindblad equation to apply. In particular this will be the
case if the system does not satisfy the Markovian condition 4.1, or if the super operators Gt′→t are not
completely positive.

Finally I should mention that the constituents of 4.9 have simple interpretations that are useful for
modeling: We �rst note that if all the γi are set to 0, the equation reduces to the standard Liouville
equation with H being the Hamiltonian. It is then reasonable to keep the interpretation that H is a
Hamiltonian describing unitary processes also in the general case. Terms involving the operators Ai are
what separates 4.9 from the standard unitary equation, and thus these operators must describe non-
unitary processes. It then becomes reasonable to interpret the positive coe�cients γi simply as the rates
by which these processes occur. This will later be exempli�ed.

4.4 The Red�eld equation

The Lindblad equation described in the previous section is an example of an attempt to describe open
quantum systems using a di�erential equation. The derivation of this equation was merely based on a set of
more or less justi�ed assumptions about the development, which in particular involved the condition that
it forms a quantum dynamical semigroup. It did not in any way involve a discussion of the development
of the total closed system T . Thus we have as of yet no information about the connection between the
Markovian description of the reduced system S and the unitary development of T .

Note that his connection is something we would like to understand, since our present day understanding
of elementary interactions are formulated in terms of unitary models. Given a particular quantum system
S coupled to a particular type of environment E we might have a good understanding of the interactions
between these, and we could thus easily construct a unitary model for the total system T in terms of
some Hamiltonian HT . It would then be nice to have some way to turn this model into a model for S
alone, since this would then be a model based on fundamental principles. Sadly, the Lindblad equation
4.9 provides no such way.

Luckily there does exist ways to reduce the model for T into models for S alone. However, in order
for such descriptions to both be exact and completely general they must be able to deal also with non-
Markovian behavior. This means they can not be formulated in terms of a simple di�erential equation
like 4.9 since these always gives rise to Markovian behavior. The treatment of such methods will therefore
be postponed to the next chapter. One can of course reduce the generality of the description to only
encompass systems that have invertible time development operators Gt, so that as explained in section
4.2 they can be treated as Markovian. In these cases it turns out one can �nd a reduced description of
S in terms of a di�erential equation of type 4.6 that is still exact. The derivation of this however, relies
heavily on the mentioned Non-Markovian method, and this to will be postponed to the next chapter.

Finally, we might reduce the requirement that the description be exact, and base the derivation only
on some heuristically justi�ed approximations. This is what we will do in this section, and the equation
to be derived is known as the Red�eld equation[2] due to its original derivation by Red�eld[12]. The
approximations that are used are based on the assumption that the interactions with the environment
are weak, or alternatively that the environment is large. I stress again that the justi�cations I will give
for these approximations are meant to be heuristic only. A more rigorous argument can be provided by
starting out with the exact Markovian equation I mentioned earlier. This will also be done in the next
chapter.

Now, assume that we are given some open system S coupled to an environment E, and that they are
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described by the Hamiltonian HT = HS + HE + HSE . Assume further that we have factorizing initial
conditions as in 3.2. The Red�eld equation will be expressed in the interaction picture. In this picture
the total system T will satisfy the interaction picture Liouville equation i~ρ̇T = [HSE , ρT ]. We integrate
this equation from 0 to t and insert the result back into the original equation. This gives us

ρ̇T =
1

i~
[HSE(t), ρS(0)⊗ ρE(0)]− 1

~2

∫ t

0
[HSE(t), [HSE(t′), ρT (t′)]]dt′. (4.26)

Now, in addition to the assumption of weak interactions we also assume that TrE(HSEρE(0)) = 0. This
assumption is also made in the entire next chapter, and it will be justi�ed there (see equation 5.2). With
this assumption in mind, we now take the partial trace over E of 4.26 and get

ρ̇S = − 1

~2

∫ t

0
TrE [HSE(t), [HSE(t′), ρT (t′)]]dt′. (4.27)

This is clearly an exact di�erential equation for ρS , but it depends explicitly on the state of the full
system T . We thus make our �rst approximation, which is to say that if the environment is large and the
interactions with it are weak, then the state of the environment will only be very weakly perturbed from
its free evolution. In the interaction picture we may then approximate ρT as ρT (t) = ρS(t)⊗ρE(0), which
turns 4.27 into

ρ̇S =− 1

~2

∫ t

0
TrE [HSE(t), [HSE(t′), ρS(t′)⊗ ρE(0)]]dt′ (4.28)

=− 1

~2

∫ t

0
TrE [HSE(t), [HSE(t− t′), ρS(t− t′)⊗ ρE(0)]]dt′.

Considering ρE(0) as �xed, this equation depends only on the state of S, which is already a signi�cant
simpli�cation. However, the equation takes the form of an integro-di�erential equation involving the states
ρS(t′) at earlier times than t. These types of equations are often referred to as memory equations[1], and
they are obviously not Markovian.

In the next chapter these types of equations will be discussed in larger detail, but here we will make
a second approximation in order to get a Markovian equation: if again the environment is big, then we
expect information absorbed from S to di�use around this in such a way as to be less and less available to
a�ect the future behavior of S. In e�ect we expect the environment to 'forget' the information of S over
some characteristic time. If the interactions are weak, we also expect the state of S to change little over
this time. What this means concretely is that we expect the last integral in 4.28 to only get signi�cant
contributions from times t′ where ρS(t − t′) ≈ ρS(t). This suggests that our �nal approximation should
be to replace ρS(t− t′) with ρS(t). This �nally gives us the Red�eld equation:

ρ̇S = − 1

~2

∫ t

0
TrE [HSE(t), [HSE(t− t′), ρS(t)⊗ ρE(0)]]dt′, (4.29)

which is Markovian. If the memory loss of the environment is very fast we can make even a further
approximation, which is to set the integration limit to in�nity:

ρ̇S = − 1

~2

∫ ∞
0

TrE [HSE(t), [HSE(t− t′), ρS(t)⊗ ρE(0)]]dt′. (4.30)

This equation only depends on t through the operators, so that if the original Hamiltonian HT in the
Schrödinger picture does not depend on time, then unlike 4.29, 4.30 would give rise to time translationally
invariant behavior. Since this really simpli�es the process of solving the equation, and the justi�cation
for 4.30 is really only based on the same approximations as 4.29 in any case, 4.30 is the equation one
typically uses in practice.

We now have two di�erent Markovian di�erential equations describing the development of an open
quantum system: The Lindblad equation, which is simply based on the assumption that the open system
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forms a quantum dynamical semigroup, and the Red�eld equation which is based on approximations of
the unitary development of the total system T . It then becomes a natural question whether there is
any connection between these equations. In particular we wonder whether the Red�eld equation can be
written in Lindblad form as 4.9. This is essentially the same as asking whether the Red�eld equation
describes a quantum dynamical semigroup.

Well, we already know it is Markovian and it is easily shown that it preserves traces, so the real
question is whether it is completely positive. As explained 4.30 very well might have a time independent
generator (in the Schrödinger picture). As explained in section 4.1 this would mean the development
would have to be completely positive in order for state operators to remain state operators. This however
does not actually guarantee the condition: 4.30 is based on approximations, and we thus have no reason
to expect it to preserve state operators as state operators in any more than an approximate sense.

And indeed, according to [4] one can easily construct examples where the Red�eld equation does not
result in time development that is completely positive. Thus, the Red�eld equation does not in general
describe a quantum dynamical semigroup, and in particular it can not generally be written in Lindblad
form. However, it also turns out that it can always be written is such a form, provided we make one
additional approximation: The Red�eld equation it self is based on the assumption that the interaction
strength is much weaker than a characteristic energy in the environment E (we will get back to this in
the next chapter), but to guarantee that it can be written in Lindblad form we must also assume the
interaction strength to be much weaker than a characteristic energy in the system S.

More speci�cally we assume the interaction strength to be much smaller than the typical spacing of
energy levels in S. This allows us to ignore interactions which does not conserve the total energy of S and
E, an approximation that is some times referred to as the the rotating wave approximation[2]. In [2] this
is used together with the Red�eld equation 4.30 to derive an equation on the form 4.9 under otherwise
completely general conditions. In both of the two models to be studied in this thesis, the rotating wave
approximation will be made already at the level of the Hamiltonian HT .



Chapter 5

A Non-Markovian description of open

systems

5.1 The Nakajima Zwanzig equation

In the previous chapter we saw two examples of approximate Markovian di�erential equations (so called
master equations) for the state operator ρ of an open system: The Lindblad equation 4.9 was based on
the assumption that the development must form a quantum dynamical semigroup, while the Red�eld
equation 4.30 was based on the unitary development of the total system T . I also mentioned that under
certain assumptions of invertibility, there exists in principle a Markovian generator that describes the
system exactly.

In the general case however, where cases without such invertibility must also be included, the system
can not necessarily be described in a Markovian fashion. In particular it can not be described by a
di�erential equation, since these are Markovian by their very nature. Thus, some other type of description
must be used. The particular description that will be employed in this chapter, is the use of an integro-
di�erential equation: a so called memory equation. Typically this would be an equation on the form

ẋ(t) =

∫ t

t0

f(t, s, x(s))ds, (5.1)

where the function f(t, s, x) is known as the memory kernel. In fact, I brie�y mentioned such equations
earlier: Equation 4.28, which was just a step in a heuristic argument of the Red�eld equation, is clearly
an example of such an equation. This equation is however based on precisely the same approximations as
4.30 itself: It assumes the environment to be unperturbed by the interaction with S, and it is therefore
only valid in the weak interaction limit. It can thus never really be expected to form a much better
description than the Markovian Red�eld equations 4.30 or 4.29.

It turns out however that there exists an equation of type 5.1 that describes open systems in an exact
manor. To be more precise, given some unitary model of the total system T = S ∪ E, the state operator
ρ(t) that solves this equation is the one found from 3.1. This equation is known as the Nakajima Zwanzieg
equation[2][9][16]. Its most general formulation can in fact even be applied to systems with completely
general initial conditions. In this case however, the equation has inhomogeneous terms and is thus not
linear. This means the solution can not be written in Kraus form, and in addition it of course complicates
the solution.

Because of this we will in this thesis specialize the equation to factorizing initial conditions, in which
case the function f(t, s, x) and thus the entire equation will be linear. For the general discussion see [2].
In addition to factorizing initial conditions we will also assume that

TrE (HSEρE(0)) =
∑
i

Pi 〈i|HSE |i〉 = 0, (5.2)

43
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where the basis |i〉 diagonalizes ρE(0), Pi are the corresponding eigenvalues and HSE is the interaction
part of the Hamiltonian HT = HS +HE +HSE of T . That is, the part of the Hamiltonian that describes
interactions between S and E. Note, that 5.2 is also the same as saying that TrE (ρE(0)HSE) = 0. This
condition was also used in section 4.4. The justi�cation was however delayed to this chapter, and this is
what I will now attempt:

It seems of course like a weird condition to impose, but it is actually very plausible. The reason
for this can be summarized in three points. First, the state ρE(0) is often a thermal state, while the
interaction operator HSE is often a sum of terms on the form AS ⊗ BE where 〈BE〉 = 0 in thermal
states. For instance, in quite a lot of models BE is simply a creation or annihilation operator of some
harmonic oscillator. Secondly even if it is not exactly the case, it can be a good approximation. When the
interactions between S and E are weak, the expectation value of HSE can be assumed to be essentially
zero compared to other relevant quantities.

The third and most important point however, is that as long as the initial state ρE(0) of the envi-
ronment is given, one can always force this condition to be true by doing some shu�ing of the terms
in the Hamiltonian HT . In fact, all one needs to to is to add the term TrE (HSEρE(0)) to the system
Hamiltonian HS , while subtracting it from HSE . This leaves the dynamics of the total system invariant,
while it also assures the ful�llment of condition 5.2. Note that doing this and then simply ignoring the
interactions would correspond to a semiclassical approximation.

Now that I have stated the conditions under which the equation will be derived, we may turn to
de�ning a few symbols that will be useful during this derivation. First, we de�ne the super operator P
acting on the state operator space of the total system T = S ∪ E as

PρT =
(
TrE ρT

)
⊗ ρE(0), (5.3)

with ρE(0) being the initial state of the environment. That is, the total system starts out in the factorized
form ρT (0) = ρS(0) ⊗ ρE(0). In addition to P, we also de�ne the super operator Q = I − P (where
I is again the identity super operator), and to shorten the notation also the super operator L given by
LρT = − i

~ [HSE , ρT ]. We shall refer to L as the Liouville operator. It is not di�cult to see that condition
5.2 now gives us the operator identities PLP = 0, QLP = LP and PLQ = PL. These will be used at
several occasions in this chapter.

The next thing we do, is to de�ne two di�erent time development operators. These are Gt→t′ and
Gt→t′ . G is the actual time development operator of the total system T . It is given by Gt→t′ρT =
U(t, t′)ρTU

†(t, t′), and in the interaction picture it obeys the di�erential equation Ġ = LG. G on the
other hand, we de�ne to obey the slightly modi�ed di�erential equation Ġ = QLG. Like G it is also
subject to the initial condition Gt→t = I.

With these de�nitions in place we are �nally ready to write down the Nakajima Zwanzig equation.
We will formulate the equation in terms of the operator PρT . Note however that there is a bijective
relationship between PρT and ρS by the relations PρT = ρS ⊗ ρE(0) and ρS = TrEPρT . This means that
the Nakajima Zwanzieg equation can easily be reformulated as an equation for ρS .

Theorem 3. Nakajima Zwanzig equation.
Let T be a closed quantum system consisting of two subsystems S and E, so that HT = HS⊗HE . Let

the state operators ρT (t) of T have a unitary time development which in the interaction picture is given by
the equation ρ̇T = LρT , where the Liouville operator L(t) is de�ned above. Assume further that at t = 0
ρT factorizes as ρT (0) = ρS(0) ⊗ ρE(0), which can obviously be reexpressed as ρT (0) = PρT (0). Then
still in the interaction picture, the operator PρT (t) = ρS(t) ⊗ ρE(0) will be a solution to the Nakajima

Zwanzieg equation:

d

dt
PρT (t) =

∫ t

0
K(t, t′)PρT (t′)dt′, (5.4)

where the memory kernel K(t, t′) is given by

K(t, t′) = PL(t)Gt′→tQL(t′)P. (5.5)

The involved operators P, L, Gt′→t and Q are all de�ned above.
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Proof. The derivation is based on one that is found in [2]: In the interaction picture the total system T
obeys as mentioned the equation ρ̇T = − i

~ [HSE , ρT ] = LρT . By applying the two super operators P and
Q to this equation, we end up with the two equations

d

dt
PρT = PLρT = PLPρT + PLQρT , (5.6)

d

dt
QρT = QLρT = QLQρT +QLPρT , (5.7)

which can be interpreted as coupled linear equations for the two operators PρT and QρT . The second of
these can be solved to give

QρT =

∫ t

0
Gt′→tQL(t′)PρT (t′)dt′. (5.8)

To verify that this is indeed a solution, we �rst note that it has the correct initial value, since QρT (0) =
ρT (0)− PρT (0) = ρS(0)⊗ ρE(0)− (TrE ρT (0))⊗ ρE(0) = 0. Secondly, we di�erentiate to get

d

dt
QρT =

d

dt

∫ t

0
Gt′→tQL(t′)PρT (t′)dt′ =

∫ t

0
Ġt′→tQL(t′)PρT (t′)dt′ + Gt→tQL(t)PρT (t)

=

∫ t

0
QLGt′→tQL(t′)PρT (t′)dt′ +QLPρT = QLQρT +QLPρT . (5.9)

This solution can then be inserted in the �rst equation, which results in the equation

d

dt
PρT = PLPρT +

∫ t

0
PL(t)Gt′→tQL(t′)PρT (t′)dt′ =

∫ t

0
PL(t)Gt′→tQL(t′)PρT (t′)dt′, (5.10)

where the identity PLP = 0 has been used.

As mentioned, one can easily reformulate 5.4 in terms of ρS . This equation would then be an exact
memory equation for this operator, in the sense that it is equivalent to 3.2. However, whereas 3.2 would
involve solving the Schrödinger equation of the total system T , 5.4 equation has the advantage of not
explicitly containing any environmental degrees of freedom. This advantage is however far from as big
as it might seem, since in order to apply it we would have to �nd an explicit expression for the memory
kernel K(t, t′). This would involve calculating the super operator Gt→t′ by solving the equation Ġ = QLG.
Obviously this equation still involves the environmental degrees of freedom, and can be expect to be just
as di�cult to solve as the Schrödinger equation.

It would seem then that we have not at all gained particularly much by deriving the Nakajima Zwanzig
equation, but this is not quite the case: Even though the equation it self is in most cases not practically
applicable, it is still an important theoretical tool. Primarily this is as a starting point for the rigorous
derivation of approximation schemes that are in fact practically applicable. This will be exempli�ed in
the following sections.

5.2 Perturbative expansion of the Memory kernel

An obvious solution to the problem of �nding the super operator Gt→t′ , is to simply make a perturbative
expansion of it. Gt→t′ satis�es the equation Ġ = QLG, and the initial condition Gt→t = I. This means it
can be expanded in pretty much the same way as the unitary time development operator U(t) is expanded
in standard time dependent perturbation theory: We integrate the di�erential equation to get the integral
equation

Gt→t′ = I +

∫ t′

t
QL(s)Gt→sds. (5.11)
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Note that this equation de�nes an expression for Gt→s which can be inserted on its own right hand side.
If we iterate this procedure a total of N times we get

Gt→t′ =
N∑
n=0

∫ t′

t

∫ t1

t
· · ·
∫ tn−1

t
QL(t1) · · · QL(tn)dtn · · · dt1

+

∫ t′

t

∫ t1

t
· · ·
∫ tn−1

t
QL(t1) · · · QL(tn)Gt→tndtn · · · dt1. (5.12)

Assuming that the last term approaches 0 as N →∞ (which is the condition for convergence), then Gt→t′
can be expressed as the in�nite series

Gt→t′ =
∞∑
n=0

∫ t′

t

∫ t1

t
· · ·
∫ tn−1

t
QL(t1) · · · QL(tn)dtn · · · dt1. (5.13)

This expression can be inserted in 5.5 to give

K(t, t′) =

∞∑
n=0

∫ t

t′

∫ t1

t′
· · ·
∫ tn−1

t′
PL(t)QL(t1) · · · QL(tn)QL(t′)Pdtn · · · dt1, (5.14)

an expression that can be truncated at any n to give a practically calculable approximation. In particular,
if we include only the n = 0 term we �nd

TrEK(t, t′)PρT (t′) = TrEL(t)QL(t′) (ρS(t′)⊗ ρE(0)) = TrEL(t)QL(t′)P (ρS(t′)⊗ ρE(0))

= TrE
(
L(t)L(t′) (ρS(t′)⊗ ρE(0))

)
, (5.15)

where the identity QLP = LP has been used. This expression can be seen to be identical to the integrand
in 4.28, so that this equation would be reproduced if the n = 0 term was all we included in 5.4. This
means that 4.28, our �rst encounter of a memory equation can in fact be interpreted as the lowest order
approximation to the Nakajima Zwanzieg equation.

Whenever we express some object using a perturbative expansion like 5.14, we should ask our selves
what is the conditions for this expression to be useful. That is to say, essentially what we are wondering
is under what conditions the expansion converges after a relatively small n. The usual assumption is
that this will be the case when one has a su�ciently small 'smallness parameter'. That is, the parameter
who's order increases for each term. In 5.14 we see that each term contains a larger number of Liouville
operators L(t), so that we could take the smallness parameter to be proportional to these. The Liouville
operators are again expressed using the interaction operatorsHSE , so that in fact we can take the smallness
parameter to be proportional to the interaction strength.

We thus conclude that 5.14 becomes useful when we have relatively weak interactions. This however
introduces a new question: We could also attempt to �nd the development of ρ(t) by using standard
time dependent perturbation theory of the time development operator U(t) of the total system T . This
method, which is one of the standard techniques for approximating the development of interacting quan-
tum systems, also works best when the interactions are weak. It then initially seems we would gain little
by using 5.14 together with 5.4 instead of simply employing standard perturbation theory. This is partic-
ularly the case since in applying standard perturbation theory we would not have to solve any additional
complicated integro di�erential equations like 5.4.

So why then would we claim 5.14 to be useful? Well, the story is actually a bit more complicated.
Something we completely forgot to consider in the preceding discussion is how the convergence of the
expansion varies with time. Standard perturbation theory works best for relatively short times t. The
reason for this is that the error of the expression in general will increase approximately as tn. 5.14 however,
is based on the expansion 5.13. The error of that expansion is seen from 5.12 to be an integral over an
n-dimensional simplex with sides of length t− t′, and thus it should increase with (t− t′)n. In fact, since
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one will get the standard perturbation expression for U(t) from 5.12 by simply making the substitutions
Gt→t′ → U(t), t′ → t, t→ 0 and QL → HSE , this also shows that the error of U grows like tn as stated.

Since 5.14 is found by inserting 5.13 in 5.5, the error of this expression clearly also grows like (t− t′)n.
This means that as opposed to standard perturbation theory, it is not whether t is small or large that
matters to the usefulness of the method, but instead in what range of t and t′ the major contribution to
the integral in 5.4 comes from: If K(t, t′) is very small in all regions except where t and t′ are close, then
we can expect good convergence irrespectively of the values these parameters have individually. Thus we
may conclude that the advantage of the perturbation method discussed in this section to the standard
method, is that the region of fast convergence is not limited to short times.

The convergence will however as mentioned be strongly a�ected by the t, t′ region where K(t, t′) is
signi�cantly large. We should discuss this in some detail: Let us assume that K(t, t′) is by a signi�cant
amount largest in a region where |t− t′| < τ , that is we assume K(t, t′) to be damped over some charac-
teristic time scale τ which could be interpreted as the e�ective length of the systems memory. With this
assumption, the condition for having fast convergence in applying 5.14 can be formulated simply as the
requirement that τ should be su�ciently small.

Small when compared to what? Well if we insert 5.14 in 5.4, then upon examining the terms it seems
that each integration should contribute a factor proportional to V/~ · τ , where V is some characteristic
interaction strength of HSE . Since each new term contains one more such integration this means that
the resulting expansion is in fact an expansion in this dimensionless parameter. We thus conclude that
we have fast convergence when τ is su�ciently small compared to ~/V . In standard perturbation theory
we can use a similar argument to argue that it is in fact t that must be small compared to ~/V , again
pointing out how the convergence of that method is highly time sensitive.

Another way to formulate this is as follows: I mentioned above that both of the two perturbation
methods are best in the weak interaction limit. We see now that this is true, but also that there is a
di�erence in the explicit condition: standard perturbation theory works best when the interactions are
weak in comparison to ~/t, while the expansion of the memory kernel works when they are weak in
comparison to ~/τ . Now, in [2] and [1] it is claimed that τ ∼ ~/∆E, with ∆E being a characteristic
width of the energy spectrum of the environment E. I will make no attempt to show that this is true
in general, but I will demonstrate that it is indeed the case when dealing with a speci�c example: the
two level model. This will be done in the next chapter, where it will be a major point. In any case, this
means that the condition for quick convergence of the memory kernel expansion is simply that V must be
su�ciently small when compared to ∆E.

As long as this is the case, and we are dealing with dynamics that are truly non-Markovian, this
expansion seems in fact like the best way of treating open systems. Provided of course that we have a
believable unitary model of the total system T , and that this is to di�cult to solve exactly. However,
as I have mentioned at several occasions: open system are in fact often not truly non-Markovian, since
it is in principle possible to �nd a Markovian generator that describes them exactly. In these cases it
seems like somewhat of an overkill to use complicated integro-di�erential equations like 5.4. Instead it
would be nice if we could somehow approximate the Markovian generator, since we could then treat the
problem using just normal di�erential equations. In the last section of this chapter I will show that such
an approximation scheme actually do exist, but �rst I will spend a section on the discussion of the exact
generator itself.

5.3 Exact Markovian equation

In section 4.2 I tried to argue that under certain assumptions Markovianness is equivalent to the invert-
ibility of the time development operators. I also demonstrated that even without these assumptions, such
invertibility certainly implies Markovianness. So let us now assume that we have some general linear
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integro-di�erential equation

ẋ =

∫ t

0
K(t, t′)x(t′)dt′ (5.16)

that de�nes a time development operator g(t) that is left invertible. Then according to the arguments of
section 4.2, the development of x(t) should be Markovian. Since it in this case is clearly also di�erentiable,
there should exist some Markovian generatorM(t) that describes the system through the equation ẋ =
M(t)x. Can we �nd an expression for this generator in terms of the previously encountered operators?
Yes. It is in fact easily seen that this can be done, and that the expression is simply

M(t) =

∫ t

0
K(t, t′)g(t′)dt′g−1(t) =

∫ t

0
K(t, t′)gt→t′dt

′, (5.17)

where we have again de�ned gt→t′ = g(t′)g−1(t). That this is indeed the Markovian generator can be
veri�ed by simply inserting the expression in ẋ =M(t)x, and comparing with 5.16.

Specializing to our topic of interest: open quantum systems, the discussion remains essentially the
same. The di�erences being just that x is replaced with ρ, and that K(t, t′) is now the (exact) Nakajima
Zwanzieg kernel. In particular 5.17 remains as it stands. However, this exact expression for the Markovian
generator is not practically applicable: First of all it involves the exact Nakajima Zwanzieg kernel, which
is it self not explicitly calculable. This problem was however dealt with in the previous section. A
problem that is much bigger, is that the expression involves the operators g(t) and g−1(t), which are
clearly unknown. In fact, had we known any of these operators the problem of interest would already be
solved.

Thus, the only usefulness of 5.17 lies in taking it as a starting point for some approximation scheme.
Truth to be told, [2] which is my primary source on this topic, does not even mention this equation. And
neither does any other sources I have seen. In [2] there is however derived an expansion of the Markovian
generator, which to the highest explicitly calculated order can be seen to be identical to the one I will
derive from 5.17 in the next section. In [2] a completely di�erent starting point is used for deriving this
expansion: There it is shown that the exact Markovian generator is given by the expression

M(t)ρS(t) = TrEL(t)(1− Σ(t))−1ρS(t)⊗ ρE(0), (5.18)

where the operator Σ(t) is de�ned as

Σ(t) =

∫ t

0
Gt′→tQL(t′)PGt→t′dt′, (5.19)

and it is assumed that 1− Σ(t) is invertible. Clearly, it must be possible to derive this from 5.17, but it
is in fact far easier to derive it directly from the equations 5.6 and 5.7, which is what is done in [2]. Here
however we shall do neither, since we will in fact not have any need for this expression. My starting point
will instead be 5.17, together with a perturbation expansion of gt→t′ .

5.4 Perturbative expansion of the Markovian generator

Clearly, the super operator g(t) must satisfy the equation

ġ(t) =

∫ t

0
K(t, t′)g(t′)dt′, (5.20)

since then x(t) = g(t)x(0) will satisfy 5.16. It is then easily seen that as long as g−1(t) exists, the operator
gs→t = g(t)g−1(s) must satisfy essentially the same equation:

ġs→t = ġ(t)g−1(s) =

∫ t

0
K(t, t′)g(t′)dt′g−1(s) =

∫ t

0
K(t, t′)gs→t′dt

′, (5.21)
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independently of whether s < t. This equation may be integrated to give

gs→t = I +

∫ t

s

∫ r

0
K(r, t′)gs→t′dt

′dr, (5.22)

an expression that may be iterated in the standard fashion of perturbation theory to give

gs→t =

∞∑
n=0

∫ t

s

∫ r1

0

∫ t1

s
· · ·
∫ tn−1

s

∫ rn

0
K(r1, t1) · · · K(rn, tn)dtndrn · · · dt1dr1, (5.23)

provided of course that the series converges. This expression may then be inserted in 5.17 to �nally give

M(t) =

∞∑
n=0

∫ t

0

∫ t′

t

∫ t1

0

∫ t′1

t
· · ·
∫ t′n−1

t

∫ tn

0
K(t, t′)K(t1, t

′
1) · · · K(tn, t

′
n)dt′ndtn · · · dt′1dt1dt′. (5.24)

This equation is a general expansion of the Markovian generator of any equation on the form 5.16
where the development is invertible. We will soon turn to specializing this to the theory of open quantum
systems, but �rst we will again discuss the parameter ranges in which this expansion is useful: In much
the same way as was done in section 5.2, one can argue that low n truncations of 5.23 will be justi�ed
when the contributing ti are all close to s. In order for this to be the case, t must be close to s, and
secondly the kernel K(r, t) must be quickly damped when r departs from t.

For truncations of 5.24 to be justi�ed, it is then easily seen that precisely the same conditions are
needed: K(t, t′) must be quickly damped, and the contributing t′ must be close to t. The later will
however be a consequence of the rapid damping of K(t, t′), so that this is in fact the only condition for
truncations to be good approximations. Note also that this is in fact the same condition that was found
for truncations of the memory kernel expansion 5.14 to be valid.

Let us now return the discussion of Markovian generators to the subject of the thesis: open quantum
systems. The easiest way of doing this, is to order by order insert the expansion 5.15 of the memory kernel
into the expansion 5.24 of the Markovian generator. It is di�cult to write down the general result, but it
is easy to �nd concrete terms to a quite high order in the Liouville operators L(t). To illustrate this I will
�nd all terms to the sixth order. The reader should be warned that the following will be fairly technical.

Let us denote the n'th order term of M(t) by Mn(t) and the nth order term of K(t, t′) by Kn(t, t′).
From 5.24 we then have to the sixth order

M(t) =M2(t) +M3(t) +M4(t) +M5(t) +M6(t) + · · ·

=

∫ t

0
K2(t, t′) +K3(t, t′) +K4(t, t′) +K5(t, t′) +K6(t, t′) + · · · dt′

+

∫ t

0

∫ t′

t

∫ t1

0

(
K2(t, t′) +K3(t, t′) +K4(t, t′) · · ·

) (
K2(t1, t

′
1) +K3(t1, t

′
1) +K4(t1, t

′
1) · · ·

)
dt′1dt1dt

′

+

∫ t

0

∫ t′

t

∫ t1

0

∫ t′1

t

∫ t2

0

(
K2(t, t′) + · · ·

) (
K2(t1, t

′
1) + · · ·

) (
K2(t2, t

′
2) + · · ·

)
dt′2dt2dt

′
1dt1dt

′ + · · ·

=

∫ t

0
K2(t, t′) +K3(t, t′) +K4(t, t′) +K5(t, t′) +K6(t, t′) + · · · dt′

+

∫ t

0

∫ t′

t

∫ t1

0
K2(t, t′)K2(t1, t

′
1) +K2(t, t′)K3(t1, t

′
1) +K3(t, t′)K2(t1, t

′
1)

+K2(t1, t
′
1)K4(t1, t

′
1) +K4(t, t′)K2(t1, t

′
1) +K3(t, t′)K3(t1, t

′
1) + · · · dt′1dt1dt′

+

∫ t

0

∫ t′

t

∫ t1

0

∫ t′1

t

∫ t2

0
K2(t, t′)K2(t1, t

′
1)K2(t2, t

′
2) + · · · dt′2dt2dt′1dt1dt′ + · · · (5.25)
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Collecting terms of the same order, we �nd

M2(t) =

∫ t

0
K2(t, t′)dt′ (5.26)

M3(t) =

∫ t

0
K3(t, t′)dt′ (5.27)

M4(t) =

∫ t

0
K4(t, t′)dt′ +

∫ t

0

∫ t′

t

∫ t1

0
K2(t, t′)K2(t1, t

′
1)dt′1dt1dt

′ (5.28)

M5(t) =

∫ t

0
K5(t, t′)dt′ +

∫ t

0

∫ t′

t

∫ t1

0
K2(t, t′)K3(t1, t

′
1) +K3(t, t′)K2(t1, t

′
1)dt′1dt1dt

′ (5.29)

M6(t) =

∫ t

0
K6(t, t′)dt′

+

∫ t

0

∫ t′

t

∫ t1

0
K2(t, t′)K4(t1, t

′
1) +K4(t, t′)K2(t1, t

′
1) +K3(t, t′)K3(t1, t

′
1)dt′1dt1dt

′

+

∫ t

0

∫ t′

t

∫ t1

0

∫ t′1

t

∫ t2

0
K2(t, t′)K2(t1, t

′
1)K2(t2, t

′
2)dt′2dt2dt

′
1dt1dt

′ (5.30)

From 5.15 we also see that

K2(t, t′) = PL(t)QL(t′)P (5.31)

K3(t, t′) =

∫ t

t′
PL(t)QL(t1)QL(t′)Pdt1 (5.32)

K4(t, t′) =

∫ t

t′

∫ t1

t′
PL(t)QL(t1)QL(t2)QL(t′)Pdt2dt1 (5.33)

K5(t, t′) =

∫ t

t′

∫ t1

t′

∫ t2

t′
PL(t)QL(t1)QL(t2)QL(t3)QL(t′)Pdt3dt2dt1 (5.34)

K6(t, t′) =

∫ t

t′

∫ t1

t′

∫ t2

t′

∫ t3

t′
PL(t)QL(t1)QL(t2)QL(t3)QL(t4)QL(t′)Pdt4dt3dt2dt1. (5.35)

Inserting this in the equations 5.26 to 5.30 and applying the identities QLP = LP and PLQ = PL we
�nally get

M2(t) =

∫ t

0
PL(t)L(t′)Pdt′ (5.36)

M3(t) =

∫ t

0

∫ t

t′
PL(t)L(t1)L(t′)Pdt1dt′ (5.37)

M4(t) =

∫ t

0

∫ t

t′

∫ t1

t′
PL(t)L(t1)QL(t2)L(t′)Pdt2dt1dt′

+

∫ t

0

∫ t′

t

∫ t1

0
PL(t)L(t′)PL(t1)L(t′1)Pdt′1dt1dt′ (5.38)

M5(t) =

∫ t

0

∫ t

t′

∫ t1

t′

∫ t2

t′
PL(t)L(t1)QL(t2)QL(t3)L(t′)Pdt3dt2dt1dt′
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+

∫ t

0

∫ t′

t

∫ t1

0

∫ t1

t′1

PL(t)L(t′)PL(t1)L(t̄1)L(t′1)Pdt̄1dt′1dt1dt′

+

∫ t

0

∫ t′

t

∫ t1

0

∫ t

t′
PL(t)L(t̄1)L(t′)PL(t1)L(t′1)Pdt̄1dt′1dt1dt′ (5.39)

M6(t) =

∫ t

0

∫ t

t′

∫ t1

t′

∫ t2

t′

∫ t3

t′
PL(t)L(t1)QL(t2)QL(t3)QL(t4)L(t′)Pdt4dt3dt2dt1dt′

+

∫ t

0

∫ t′

t

∫ t1

0

∫ t1

t′1

∫ t̄1

t′1

PL(t)L(t′)PL(t1)L(t̄1)QL(t̄2)L(t′1)Pdt̄2dt̄1dt′1dt1dt′

+

∫ t

0

∫ t′

t

∫ t1

0

∫ t

t′

∫ t̄1

t′
PL(t)L(t̄1)QL(t̄2)L(t′)PL(t1)L(t′1)Pdt̄2dt̄1dt′1dt1dt′

+

∫ t

0

∫ t′

t

∫ t1

0

∫ t

t′

∫ t1

t′1

PL(t)L(t̄1)L(t′)PL(t1)L(¯̄t1)L(t′1)Pd¯̄t1dt̄1dt
′
1dt1dt

′

+

∫ t

0

∫ t′

t

∫ t1

0

∫ t′1

t

∫ t2

0
PL(t)L(t′)PL(t2)L(t′1)PL(t2)L(t′2)Pdt′2dt2dt′1dt1dt′. (5.40)

Quite often the identity PLP = 0 can be extended to similar expressions involving any odd number of
Ls. In that caseM3 andM5 would be zero just likeM1.

If we truncate the expansion already after the lowest order termM2, the Markovian equation for ρS
becomes

ρ̇S = TrEM2(ρS ⊗ ρE(0)) = TrE

(∫ t

0
L(t)L(t′)dt′(ρS ⊗ ρE(0))

)
. (5.41)

If we insert the de�nition L(t)ρ = −i/~ · [H, ρ] in this, the equation can be seen to be identical to the
Red�eld equation 4.29. With this we �nally have the more rigorous derivation of the Red�eld equation
that was mentioned in the previous chapter: It is simply the lowest order term in a perturbation expansion
of the exact Markovian generator. The expansion 5.25 is best for short memory kernels. In order for it to
be a good approximation to include only the lowest order term like this, this memory kernel must be very
short indeed. If this is the case, then it is also reasonable to assume that it will be a good approximation
to set the upper integral limit to in�nity. If this is done, we will once again get 4.30.

In the previous section, I mentioned that an expansion of the form 5.36 is derived also in [2]. There
however with a slightly di�erent starting point. Obviously this expansion should be compared with the
one I have found my self. Actually, in [2] the calculation is only done to the 4. order, so that obviously
this will be the highest order to which the comparison can be made. To that order the expressions are in
fact completely identical, but in order to see this we must �rst rewrite the third and fourth order terms:

It is not hard to convince one self that in general∫ a

0

∫ a

y
f(x, y)dxdy =

∫ a

0

∫ x

0
f(x, y)dydx. (5.42)

Both integrals simply expresses a 2 dimensional integral over a triangle with corners in (0,0), (0,a) and
(a,a). This can be applied directly to 5.37 to get

M3(t) =

∫ t

0

∫ t1

0
PL(t)L(t1)L(t′)Pdt′dt1. (5.43)
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5.42 can also be used to rewrite 5.38, though this is not quite as straight forward:

M4(t) =

∫ t

0

∫ t

t′

∫ t1

t′
PL(t)L(t1)QL(t2)L(t′)Pdt2dt1dt′ +

∫ t

0

∫ t′

t

∫ t1

0
PL(t)L(t′)PL(t1)L(t′1)Pdt′1dt1dt′

=

∫ t

0

∫ t1

0

∫ t1

t′
PL(t)L(t1)QL(t2)L(t′)Pdt2dt′dt1 −

∫ t

0

∫ t1

0

∫ t1

0
PL(t)L(t′)PL(t1)L(t′1)Pdt′1dt′dt1

=

∫ t

0

∫ t1

0

∫ t2

0
PL(t)L(t1)QL(t2)L(t′)Pdt′dt2dt1 −

∫ t

0

∫ t1

0

∫ t′

0
PL(t)L(t′)PL(t1)L(t′1)Pdt′1dt′dt1

−
∫ t

0

∫ t1

0

∫ t1

t′
PL(t)L(t′)PL(t1)L(t′1)Pdt′1dt′dt1

=

∫ t

0

∫ t1

0

∫ t2

0
PL(t)L(t1)QL(t2)L(t′)P − PL(t)L(t2)PL(t1)L(t′)Pdt′dt2dt1

−
∫ t

0

∫ t1

0

∫ t′

0
PL(t)L(t′)PL(t1)L(t′1)Pdt′dt′1dt1

=

∫ t

0

∫ t1

0

∫ t2

0
P
(
L(t)L(t1)QL(t2)L(t′)− L(t)L(t2)PL(t1)L(t′)− L(t)L(t′)PL(t1)L(t2)

)
Pdt′dt2dt1

(5.44)

5.43 and 5.44 can be seen to be completely identical to the third and fourth order expressions found in [2].
Also, 5.36 is identical to the second order expression in [2], without any need of rewriting. This clearly
indicates that this method is equivalent to the one applied there.

Finally, I should say some words concerning the reason why I use this method to �nd the perturbation
expansion instead of the one applied in [2]. Well, �rst of all it is simply because I �nd this method simpler,
more direct and less cumbersome. Secondly, when using this method it is easier to see that the existence
of Markovian expansions like this is not something that is limited to the theory of open quantum systems:
As mentioned in section 5.3, any system that is described by a memory equation on the form 5.16 and
has an invertible time development has an exact Markovian generator that can be expanded as 5.24. In
fact, it is this expression that will be employed in this thesis. 5.36 to 5.40 was only calculated to show
that this method can be applied very generally.

When using this method it is also possible to stress that it is the damping time τ of the memory kernel
that determines the convergence, and not the time t since initialization. This is harder when using the
method in [2], since this makes an expansion around the initial time t = 0. Finally, when taking 5.17 as
the starting point of the expansion, it becomes clear that it is the invertibility of the time development
operator g(t) that is the necessary requirement. As was discussed in 4.2 this is under quite believable
conditions a requirement of Markovianness in any case. In addition, invertibility of these operators were
found to be a justi�able assumption in many cases, at least in some �nite interval. When starting instead
with 5.18 as in [2] however, it is the operator 1 − Σ(t) that must be invertible. Due to the somewhat
abstract de�nition of this operator it is di�cult to see whether this is a believable assumption, and how
it connects with Markovianness in general.
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Chapter 6

Decay of a two-level system

6.1 Description of the model

The �rst example of an open system I will treat is one of the simplest one imaginable: To obtain this we
choose for the system S the simplest possible quantum mechanical object, the two-level system, and we
couple it to one of the simplest possible environments, namely a bath of harmonic oscillators. To make
the model even simpler we assume the bath to initially be in the vacuum state.

Now, this being such a simple model one might wonder whether it actually describes anything useful.
The answer turns out to be that it does. Those already familiar with some quantum mechanics will
recognize this as the model that is normally used to describe the decay of some high energy physical state
into a lower one. For instance this could be an excited atom emitting a photon to fall into its ground
state, or a radioactive nuclei emitting some kind of radiation to decay into a lighter isotope.

Let us describe the model in detail: We denote the two-level system S and the bath E. Let the two
levels of S, |g〉 and |e〉 have energies 0 and E0 respectively. Let σ+ be the raising operator and Pi the
projection operator on the state i. Further, we let E consist of a set of oscillators indexed by k. The
frequency of the oscillators are ωk, and we name the annihilation operators ak and the number operators
Nk. Finally, we write up an expression for the systems Hamiltonian:

H = HS +HE +HSE = E0Pe +
∑
k

~ωkNk +
∑
k

(wkakσ+ + w?ka
†
kσ−), (6.1)

where the interaction terms are contained in HSE . In principle we could also have interactions of the
form aiσ− or a†iσ+, but in this model we assume that the energy E0 is large compared to the interaction

strength. Interactions on the form aiσ− or a†iσ+ correspond to transitions between states with an energy
di�erence of E0 + ~ωk ≥ E0, which would then be strongly damped. We therefore ignore these terms, an
approximation often referred to as the rotating wave approximation[2], because it in the theory of NMR
corresponds to replacing linear polarized with circular polarized, or rotating radio waves.

We now further limit our study to the case where the bath is initially in the vacuum state. The
interaction above only allows for two types of transfer: exiting S while deexciting the bath, and deexciting
S while exiting the bath. Since the system only has two levels this means that if the bath starts out in the
vacuum state, it can never contain more than a single excitation. To phrase things more mathematically:
if the total system starts out in the subspace of its Hilbert space where either the two-level system is
excited and the bath in its vacuum state, or the two-level system is in the ground state and the bath
contains one excitation, then it can never leave this subspace. In addition to these states we also include
in this subspace the state where both S and E are in the ground state. This state only interacts with
itself, and so the subspace is still closed.

Assuming then that we are in this subspace, we can rewrite the Hamiltonian slightly. We now refer to
the state where the two-level system is excited and the bath is in vacuum as |e〉, and the state where they
are both in the ground state as |g〉. The state where the two-level system is in the ground state, oscillator
k is in the �rst excited level and all other oscillators are in the vacuum state we call |k〉. All vectors in
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our subspace can now be expanded as c |e〉+ cg |g〉+
∑

k ck |k〉, while the Hamiltonian can be rewritten

H = E0 |e〉 〈e|+
∑
k

~ωk |k〉 〈k|+
∑
k

(wk |e〉 〈k|+ w?k |k〉 〈e|). (6.2)

6.2 Outline of the chapter

As already mentioned this model is used in many texts on quantum mechanics[5][1] to study the decay
of a high energy state, and in particular to �nd an expression for the decay rate. The most common way
of performing this analysis is through the use of �rst order perturbation theory, and this is also where I
will start. This will be done in section 6.3. Here we will discuss the behavior of the probability P (t) for
remaining in the excited state |e〉 when t is very small. In connection with this we will also have our �rst
meeting with two important time scales that characterizes this model, and the consequences of whether
these time scales are separated. In particular we shall see that the nominal result, known as Fermi's
Golden rule relies on such a separation of time scales.

This time scale separation will be seen to be the same one that is required for the Red�eld equation
described in section 4.4 to be a good approximation. In section 6.4 we will therefore assume that this
separation applies and use the Red�eld formalism to extend the results of the preceding section beyond
very short times. We will see that this formalism results in exponential decay, in agreement with the
typical assumption and the experimental observations. We will analyze the system using both 4.29 and
4.30.

I stress again that the Red�eld formalism is only valid when there is time scale separation, or equiva-
lently in the limit of weak interactions. We thus still do not have any knowledge of how the decay proceeds
over long time scales when this condition is not satis�ed. In section 6.5 we will study also these cases by
using exact diagonalization. This method however requires us to assume that the environment E only
contains a �nite number of oscillators. When studying the decay of a two-level system the most realistic
assumption is that the oscillators form a continuum. So in this sense the exact diagonalization results are
still only approximations, and most interesting in the limit where the energy/frequency spacing between
the oscillators goes to 0.

By comparison with the Red�eld solutions we shall �nd that the diagonalization results seem to be
largely in agreement with the continuum limit in a time interval of length 2π/δω, δω being the frequency
spacing between the oscillators. We can then also study the strongly interacting cases in this range, and
we �nd that in contrast to the weakly interacting cases they do not evolve exponentially. In addition do
this we will also have a short look at the agreement between the Red�eld solution and diagonalization in
relation to the shift of energy (Lamb shift) in the two-level system due to the environmental coupling.

In section 6.6 we will study the system using another exact method, namely by the use of an integro
di�erential equation of the type described in chapter 5. We shall however not use the Nakajima Zwanzieg
equation, which will instead be delayed to section 6.7. This is because it turns out that this model can
be completely described in terms of a simple scalar memory equation with an exactly calculable kernel.
That this o�ers great advantages to the Nakajima Zwanzieg equation should be obvious.

We will use the memory equation approach to study three di�erent questions: First, we will analyze
what I have chosen to call the Markovian limit. Here we will see that we can use the memory equation
to see very directly why it is that the time scale separation/weak interactions condition leads to an
approximate Markovian description and exponential decay. Secondly we will see that when t → ∞ the
memory equation sometimes admits exact exponential solutions. This causes us to suspect that these
solution will form the asymptotic development of the system, so that we in this asymptotic limit still have
exponential decay even when we have strong interactions.

The question of whether this is the case will be treated by numerically analyzing the behavior of the
decay for very long times (on the order of 10 life times). This will also be done using the memory equation,
which can be solved numerically using a Laplace transform. To increase our faith in these solutions we
also compare them with diagonalization results. This will however only be done at modest time scales (∼
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4 life times), since it is to numerically demanding to extend the diagonalization solutions to large times
without reducing accuracy.

The third subject to be treated using the memory equation approach is in fact precisely the long
time behavior of the diagonalization results. As mentioned above these solutions (which are exact if we
assume the environment to consist of a �nite number of oscillators) only agree with the continuum limit
in the interval [0, 2π/δω]. After this interval the development completely changes character. In addition
it seems that these abrupt changes in behavior repeat them selves with period π/δω. We will see that this
can be explained by the fact that for the type of oscillator distributions used in the diagonalization, the
memory kernel becomes periodic and that the period is precisely this quantity. In the weak interaction
limit this periodic memory kernel can be approximated by a sum of delta functions. We will use this to
obtain an analytic expression for the development in this limit. This expression will be compared with
the diagonalization results.

In section 6.7 we will as mentioned study the system using the Nakajima Zwanzieg equation. This is
mainly to check that this is in agreement with the earlier results, as it will not give us any new information
about the system. The kernel of the equation will be calculated only to the fourth order.

In section 6.8 we use a Markovian expansion as described in section 5.4. We will however not use
the particular generator for the state operator ρ which is described there and is based on the Nakajima
Zwanzieg equation. Instead we will apply the same general method to the earlier described scalar memory
equation. This greatly reduces the di�culty, and allows us to go to a quite high order by doing some
systematic rewritings. The solutions found using this method will be compared with the solutions of the
memory equation it self. As this expansion of the generator works for arbitrarily large times, it will also
be used to get a second opinion on the asymptotic development.

6.3 Analysis by �rst order perturbation

In �rst order perturbation theory we have simple expressions for the transition amplitudes between di�er-
ent states. Let us say the system starts out in state |i〉, and we want to know the probability amplitude
for having the state |f〉 after some time t. Both |i〉 and |f〉 are eigenstates of the non-interacting part
H0 of the Hamiltonian. Then according to the approximation scheme of �rst order perturbation[5], the
amplitude is given by

ai→f = δif +
1

i~

∫ t

0
〈f |HSE |i〉 ei(Ei−Ef )τ/~dτ. (6.3)

In our case we are particularly interested in the transition amplitude from the state |e〉 to one of the states
|k〉. We then need to calculate the quantity 〈k|HSE |e〉. It is easily seen from 6.2 that this is simply w?k.
So we get

ae→k =
1

i~

∫ t

0
w?ke

i(E0/~−ωk)τdτ =
w?k
i~
ei(E0/~−ωk)t − 1

i(E0/~− ωk)
. (6.4)

The probability of transfer is then

Pe→k = |ae→k|2 =

(
|wk|
~

)2 2(1−Re(ei(E0/~−ωk)t))

(E0/~− ωk)2
=

(
|wk|t
~

)2

sinc2((E0/~− ωk)t/2), (6.5)

where we use the sinc function sincx = sinx
x . Further, the probability of remaining in the |e〉 state will be

P = 1−
∑
k

Pe→k = 1−
∑
k

(
|wk|t
~

)2

sinc2((E0/~− ωk)t/2) = 1−
(
t

~

)2 ∫ ∞
−∞

W (ω)sinc2 ωt

2
dω, (6.6)

where we have now made the very important de�nition

W (ω) =
∑
k

|wk|2δ(ω − ωk + E0/~), (6.7)
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which will be used at several di�erent occasions in this chapter. One should note that although this
function is de�ned as a sum of delta functions, one can take the continuum limit in this expression and
get a continuous and �nite W (ω). For instance if W (ω) = 1

N

∑∞
n=−∞ δ(ω −

n
N ), one can take the limit

N → ∞ to get W (ω) = 1 (obviously we have here used dimensionless units). If all environmental states
with the same energy ~ωk also have the same interaction strength wk = w(~ωk), then W (ω) can be
factorized as

W (ω) = ~|w(E0 + ~ω)|2D(E0 + ~ω), (6.8)

where D(E) is the state density function of the environment. Taking this expression in to account, an
appropriate name of the function W (ω) could perhaps be the 'interaction density'. I will however mostly
refer to it simply as the 'W function'.

Now back to the expression 6.6. This is a �rst order perturbation, and as such it applies only for
small times t. More precisely it applies when t � ~2/W (0). We will come back to the reason for this,
but let us �rst take a look at the expression when we also assume that t � 1/∆ω, where ∆ω is some
characteristic width of the function W (ω). More precisely ∆ω is the width of a region around 0 where
W (ω) is signi�cantly larger than outside, which means that the majority of the contribution to the integral
in 6.6 comes from ω satisfying |ω| < ∆ω. If t � 1/∆ω we then have ωt � 1 for all contributing ω, so
that we can expand the sinc function to get

P = 1− t2

~2

∫ ∞
−∞

W (ω)dω. (6.9)

For such typically very short times, the occupation probability of the excited state falls of quadratically
with time. This could also have been shown directly from the Schrodinger equation in the following way:
In the interaction picture the coe�cients ck at t = 0 satisfy ċk = 〈k|ψ̇〉 = −i/~ · 〈k|HSE |e〉 = −iwk/~.
For very short times then we have ck ≈ −iwkt/~ and |ck|2 ≈ |wk|2/~2 · t2. Due to conservation of the
norm of the state vector we must have P = |c|2 = 1 −

∑
k |ck|2, which through the application of 6.7

results in 6.9. This initially quadratic decay is connected to a phenomenon known as the Quantum Zeno
E�ect[2]. Finally I should also mention that in most applications, such as the theory of decay due to
electromagnetic interactions, the integral in 6.9 is actually in�nite, and so one must wonder whether there
actually is any real region of quadratic decay.

Let us now also look at the opposite limit, where t� q/∆ω. Since as mentioned 1. order perturbation
theory only applies when t� ~2/W (0), analyzing this limit would imply that we have a separation of time
scales where τ1 = 1/∆ω � τ2 = ~2/W (0). Here ∆ω should no longer be interpreted as a characteristic
width of W , but rather as the smallest scale over which W varies around 0. That is for all ω � ∆ω we
haveW (ω) ≈W (0). Note that for simpleW functions these two meanings of ∆ω should be approximately
equal.

An alternative way of formulating this time scale separation is to say that the interaction strength
must be weak compared to the energy scale in the environment. Or more speci�cally that W (0)/~ �
∆E = ~∆ω, where ∆E is the e�ective width of the environmental energy range that S interacts with. In
most physically realistic situations this will be the case. If it is, �rst order perturbation theory and thus
6.6 still holds in the range τ1 � t� τ2.

The sinc function in 6.6 has a characteristic width 2/t. When τ1 � t we clearly have 2/t � ∆ω, so
that the only signi�cant contributions to the integral comes from the range where W (ω) ≈ W (0). This
means that 6.6 to good accuracy simpli�es to

P = 1−
(
t

~

)2

W (0)

∫ ∞
−∞

sinc2 ωt

2
dω = 1− 2π

~2
W (0)t. (6.10)

We see that in this range, the probability falls of linearly with time and that the decay rate is 2π/~2 ·W (0).
Taking into account 6.8, those who are familiar with quantum mechanics should recognize this as the Fermi
golden rule[5]. 6.10 also tells us why �rst order perturbation theory only applies when t� ~2/W (0): This
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approximation scheme is best when the state of the system is close to the initial one. This means that
the probability of still being in the initial state must be close to 1. We see from 6.10 that this will be the
case only when t� ~2/W (0).

We now have three di�erent expressions for the behavior of P at short times. 6.6 which applies when
t� τ2 = ~2/W (0), 6.9 which applies when also t� τ1 = ~/∆E and �nally 6.10 which only applies when
the timescale separation criterion τ1 � τ2 is satis�ed, and then only in the range τ1 � t � τ2. These
expressions should be compared numerically, but in order to do this we need a concrete expression for
the function W (ω). We will operate in the continuum limit and de�ne W (ω) as the maximally simple
function

W (ω) =

{
W for −∆ω < ω < ∆ω
0 else

, (6.11)

with W here being a constant.
With this de�nition, both 6.9 and 6.10 becomes very simple to calculate explicitly: 6.9 now simply

becomes P = 1 − 2W∆ωt2/~2 while 6.10 becomes 1 − 2πWt/~2. In order to also give a more explicit
expression for 6.6 we �rst de�ne the function f(x) as

f(x) =

∫ x

−x
sinc t dt = 2

∫ x

0
sinc t dt. (6.12)

Note that f(x)→ π as x→∞. With this it is easily seen that in fact 6.6 becomes

P (t) = 1− 2t

~2
W · f

(
∆Et

2~

)
. (6.13)

One can easily see from the expression itself that it has the correct behavior in the limits t� ~/∆E and
t� ~/∆E, but I shall also illustrate this with some plots (�gure 6.1).

6.4 Red�eld/Lindblad treatment

The treatment of the last section gave a pretty good picture of the short time behavior of the probability
P for remaining in the excited state. At larger times however, �rst order perturbation theory fails and
an other method is needed. In this section we will apply the Red�eld equation 4.30, which we should
remember applies only in the limit of weak interactions. This condition of weak interactions is really the
same as the one which we in the last section called the time scale separation criterion: τ1 � τ2.

The �rst thing we should do when wishing to apply the Red�eld equation to this model, is obviously
to �nd the explicit form it takes in this case. However, due to similarity in form between the Hamiltonians
of this model and the next, the derivations of the Red�eld equations of these models will be completely
identical and really only needs to be done once. Since in the next model we will also include e�ects of
�nite temperature, the derivation there will actually need to be more general. We will therefore delay the
derivation to that chapter.

The �nal result when specializing to zero temperature can be found in 7.22, and is in Lindblad form.
All we need to do to get the corresponding equation for the two-level model is to exchange the a and a†

operators with σ− and σ+. We then get

ρ̇ = −(E0 + δ)i

~
[Pe, ρ] + Γ(σ−ρσ+ −

1

2
{Pe, ρ}), (6.14)

The expressions for Γ and δ may be found from the de�nitions below 7.18, and are found to be Γ =
2π/~2 ·W (0) and δ = −1

~
∫
dω
ω W (ω). The expression for Γ is identical to the Fermi golden rule expression,

which makes sense since this parameter will be found to be the decay rate. The parameter δ is commonly
denoted the 'Lamb shift', and it is something new relative to the previous treatment: Using perturbation
theory, we would have needed to go to the second order to �nd this parameter.
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(a) ∆E = 100~Γpt, short time behavior. (b) ∆E = 100~Γpt, long time behavior.

(c) ∆E = 10~Γpt, short time behavior. (d) ∆E = 10~Γpt, long time behavior.

Figure 6.1: Comparison between the expressions P = 1 − 2πWt/~ (blue), P = 1 −W∆Et2/~2 (green)
and 6.13 (red). The quadratic curve always �ts 6.13 at su�ciently short times. When ∆E = 100~Γpt
the linear curve lies quite close to 6.13 at all times, but for ∆E = 10~Γpt it never lies really close to
this, indicating that the timescale separation criterion fails for this small ∆E. Note also that all of the
expressions eventually crosses zero, which means that none of them can be correct at large times.
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Matrix expressions for Pe, σ− and σ+ can be found in section 2.3.1. Using these turns 6.14 into a four
component matrix equation. However, since state operators are Hermitian and have trace 1, there are
really only two independent equations:

Ṗ =ρ̇11 = −(E0 + δ)i

2~
(ρ11 − ρ11) + Γ(0− 1

2
(ρ11 + ρ11)) = −ΓP, (6.15)

ρ̇12 =− (E0 + δ)i

2~
(ρ12 + ρ12) + Γ(0− 1

2
(0 + ρ12)) = −

(
(E0 + δ)i

~
+

1

2
Γ

)
ρ12, (6.16)

These equations are easy to solve, and we get

P (t) =P (0)e−Γt, (6.17)

ρeg(t) =ρeg(0)e−i(E0+δ)t/~+ 1
2

Γt (6.18)

We see that we end up with an exponentially decaying excited state with decay rate Γ and energy shifted
by δ. Assuming that P (0) = 1, we can �nd the short time behavior of 6.17 by making the linear expansion
P = e−Γt ≈ 1 − Γt, which is in full agreement with 6.10. The expression is however linear also for very
short times, and in particular it does not share the initially quadratic form of 6.9 and 6.6. So even though
it may have the correct long time behavior, it does not behave correctly for very short times.

There is actually a very plausible explanation for this: The result is based on the Red�eld equation
4.30. Upon deriving this equation we started out with 4.29 and argued that since the memory kernel is in
any case very short, we might as well set the integration limit to in�nity. However, this argument is not
really valid when the time since initialization is shorter than the decay time of the memory kernel. To see
whether this is indeed the problem, we will �nd and solve also 4.29.

To �nd this equation, it is easiest to start out with equation 7.13. This equation is derived from 4.30,
so we must remember to replace the in�nity sign in the time integral with t, as in 4.29. In addition to this
we keep in mind that in the current case T = 0 so that also the number expectation n(β,Ω) = 0. Also
we once again replace a and a† with σ− and σ+. It will also be usefull to de�ne ω0 = E0/~. The result is

ρ̇ =(2σ−ρσ+ − {Pe, ρ})
1

~2

∫ t

0
dt′
∫
dωW (ω)cos (ω0 − ω)t′/~

− [Pe, ρ]
i

~2

∫ t

0
dt′
∫
dωW (ω)sin (ω0 − ω)t′, (6.19)

which is still on Lindblad form. In fact, the only di�erence from 6.14 is that the parameters δ and Γ are
now time dependent.

With this the equation for P (t) becomes Ṗ (t) = −Γ(t)P (t), where Γ(t) is given by

Γ(t) =
2

~2

∫ t

0
dt′
∫
dωW (ω)cos (ω0 − ω)t′

=
2

~2

∫
dωW (ω)

sin (ω0 − ω)t

ω0 − ω
. (6.20)

The solution to this equation (assuming P (0) = 1) is P (t) = e−
∫ t
0 Γ(t′)dt′ . We calculate the integral in the

exponent to be∫ t

0
Γ(t)dt =

2

~2

∫ t

0
dt′
∫
dωW (E)

sin (ω0 − ω)t′

ω0 − ω
=

2

~2

∫
dωW (ω)

1− cos (ω0 − ω)t

(ω0 − ω)2

=
4

~2

∫
dωW (ω)

sin2 (ω0 − ω)t/2

(ω0 − ω)2
=

(
t

~

)2 ∫
dωW (ω)sinc2 (ω0 − ω)t

2
, (6.21)
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and conclude that to the highest accuracy allowed by the Red�eld weak interaction formalism we have

P (t) = exp

(
−
(
t

~

)2 ∫
dωW (ω)sinc2 (ω0 − ω)t

2

)
, (6.22)

an expression that should be compared to 6.6, which is obviously the 1. order expansion of 6.22.

If we again assume the �at W function de�ned in 6.11, then clearly 6.22 becomes

P (t) = exp

(
−2t

~
W · f

(
∆Et

2~

))
, (6.23)

where f(x) is still de�ned through 6.12 and we still have ∆E = ~∆ω. In �gure 6.2 we compare 6.23
with 6.13, 6.10, as well as the simple formula P = e−Γt = exp(−2πWt/~). We see that 6.23 has both
the correct form at short times, ad the expected exponential form at large times. This could lead us to
suspect that this is an exact expression. This is however not the case. Exact solutions we will �rst begin
examining in the next section.

(a) ∆E = 100~Γpt, short time behavior. (b) ∆E = 100~Γpt, long time behavior.

(c) ∆E = 10~Γpt, short time behavior. (d) ∆E = 10~Γpt, long time behavior.

Figure 6.2: Comparison between the perturbation theory expressions P = 1− Γt (green) and 6.13 (red),
with the Red�eld solutions P = e−Γt (blue) and 6.23 (cyan). Note how at short times the exponential
curve lies close to the linear one, while 6.23 lies close to 6.13. Note also that in the case of weak interactions
(low Γpt compared to ∆E) 6.23 lies very close to the simple exponential curve.
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6.5 Exact diagonalization

As mentioned in the beginning of the chapter, I limit the dynamics of our study to the subspace where
states are on the form c |e〉+ cg |g〉+

∑
k ck |k〉. Actually, the state |g〉 which does not interact with other

states is only needed for expressing the results. For the purpose of solving the system this state can be
ignored, so that the dimension of the remaining space is one more than the number of oscillators in the
bath. If this number is not to large, the problem can be solved exactly using numerical diagonalization.
That is to say, we let the Hamiltonian be represented by a matrix and then diagonalize the matrix
numerically. We then express the state as a sum of eigenvectors, who's time development is simply
Ψk(t) = Ψk(0)e−iEt/~. I have written a Python script that does this. The script calculates the coe�cient
c(t) assuming that c(0) = 1. Let us call this quantity simply c. Knowing c makes it easy to �nd the
reduced state, since P (t) = P (0)|c|2 while ρ12(t) = ρ12(0)c.

As an example, according to the Lindblad type equation 6.14 we should have c = e−i(E0+∆E)t/~+ 1
2

Γt.
This however, is as we have seen only an approximation, and also it assumes a continuum of oscillators in
the bath. To use exact diagonalization we must have a discrete and �nite set of oscillators. But we can
still make a quite good approximation to a continuum, so that given the right parameters the behavior
should agree with 6.17 for some length of time.

In order to do a numerical calculation, we need a concrete form of the interaction parameters wk. We
�nd this by making a discrete approximation to the continuous W function de�ned in 6.11: We let the
bath consist of N oscillators with evenly spaced frequencies ω in the range from ω0−∆ω to ω0 +∆ω. The
oscillators all have the same interaction strength wk = w =

√
2W∆ω/N with the two-level system. The

W function of this model becomes a better approximation to the continuous �at W (ω) when N becomes
larger, or equivalently when the spacing δω = 2∆ω/(N − 1) between the oscillators becomes smaller.
We expect that for su�ciently small spacings the systems behavior will be like the continuous case for
t < T ∼ 1/δω. After this the phases of the oscillators will realign, creating interference e�ects.

To test this idea we will �rst compare the diagonalization results in the weak interaction limit (W �
∆E) with the simple Red�eld/Lindblad result 6.17. We see from �gure 6.3 that our expectations are
correct. The development agrees quite well with the exponential development of type 6.17 for times
smaller than some critical value T at which there is a cusp in the graph. After this cusp the development
changes its character completely. We also see from �gure 6.3(a) and 6.3(d) that the cusps seem to repeat
themselves periodically. The time T before the �rst cusp and the spacing between them seems to be the
same, and this value increases more or less proportionally with N as expected. It is 1.53/Γpt for N = 40,
3.10/Γpt for N = 80 and 4.68/Γpt for N = 120. Here Γpt is the perturbation value for the decay rate
(Fermi golden rule).

Assuming that T = k/δω with k a dimensionless constant, we can try to �nd the value of this k. In
the three cases above we �nd 6.28, 6.28 and 6.29 respectively. That is, all of them are approximately
2π ≈ 6.28, so it seems the formula tn = 2πn/δω will nicely describe the times tn at which there are cusps.
These are also precisely the times at which the oscillators, assuming that they start out with no phase
di�erence, again have a phase di�erence of zero. We will examine the nature of these cusps in more detail
in the next section.

6.3 thus indicates that solutions assuming a �nite number of oscillators forms good approximations to
the cases with continuousW functions in the range t < 2π/δω. We should now compare the diagonalization
results also to our other approximations for these continuous cases, that is 6.22 and 6.6. This should
illustrate how the exact development of the continuous case is when the time scale separation criterion is
not satis�ed. Actually, we already know how 6.22 and 6.6 relate to each other, and in particular we have
found that 6.22 agrees both with 6.6 and the simple exponential result when these are supposed to be
good.

We will therefore only compare the exact diagonalization result with 6.22, or more precisely with 6.23
which 6.22 reduces to in the case of a �at W function. This is done in �gure 6.4. The curves are in
good agreement at short times or weak interactions. When the interactions are strong they are however
not in agreement for large times. As mentioned we expect the diagonalization result to lie close to the
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(a) N = 40, δω = 4.103Γpt. Cusps at Γptt = 1.53, 3.05 and
4.59.

(b) N = 80, δω = 2.025Γpt. Cusp at Γptt = 3.11.

(c) N = 120, δω = 1.345Γpt. Cusp at Γptt = 4.68. (d) N = 80, δω = 2.025Γpt. Long time behavior. Cusps at
Γptt = 3.11, 6.21, 9.30 and 12.39

Figure 6.3: Time development of probability for excited state in two-level system compared with simple
exponential decay P = e−Γptt. It is assumed that P (0) = 1, so that P = |c|2. Horizontal axis shows
Γptt, where Γpt = 2π/~ ·W (0) is the decay rate according to the perturbation theory discussions. The
calculation is done using the discrete model above, with a �at W (ω) function and ∆ω = 80Γpt. N , the
number of oscillators is varied.
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development in the continuum limit. We thus interpret this as demonstrating that 6.22 is not an exact
solution.

(a) ∆E = 100~Γpt. (b) ∆E = 5~Γptr.

(c) ∆E = 3~Γpt. (d) ∆E = 2~Γpt.

Figure 6.4: Comparison between the Red�eld solution 6.23 (green) and the exact diagonalization result
(blue). Unsurprisingly, when the timescale separation criterion holds the curves are almost inseparable.
When the time scale separation is violated the curves agree at su�ciently short times, but disagree at
large ones. The disagreement increases with stronger interactions. In this model, the exact solution is
damped faster than the Red�eld approximation.

Up til now all our analysis has been of the probability P = |c|2. The last subject of this section will
therefore be the behavior of c it self. The development of c is shown in �gure 6.5. In 6.5(a) we can see
the cyclic behavior of c(t), which gives us information about the energy of the system. In 6.5(b) I have
plotted the quantity −ċ/c, which according to the simple Lindblad solution should be Γ/2 + i(E0 + δ)/~.
In 6.5(c) the deviations of the real part of this quantity from Γ/2 is shown. As all ready known, these
show us that the decay is not exactly exponential. Finally, in 6.5(d) I have plotted the deviations of the
imaginary part from E0/~. This should correspond to the Lamb shift δ. As we see, this is of the order
10−14 and so, within numerical error essentially 0.

We should compare this numerical result for the Lamb shift with the expression δ = −
∫
dω
ω W (ω)

found during the Red�eld analysis. With our �at W function this becomes δ = −W
∫ ∆ω
−∆ω

dω
ω . Since the

integrand is antisymmetric, the integral is 0 just like the numerical result. However, if we had a slightly
di�erent W function, we could get something di�erent from 0. The simplest choice is to keep W (ω) = 0
outside of the range [ω0−∆ω, ω0 +∆ω], but change it to the linear functionW (ω) = (1+p(ω−ω0)/∆ω)W
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(a) c (b) −ċ/c

(c) −Re ċ/c− Γpt/2 (d) −Im ċ/c+ E0/~

Figure 6.5: The behavior of c(t). Calculation is done with E = 5~Γpt, ∆ω = 80 and N = 160. The two
upper plots show the imaginary and real parts of c it self and of−ċ/c. The lower plots show−Re ċ/c−Γpt/2
and −Im ċ/c−E/~, which corresponds to the deviation from the perturbation decay rate and the Lamb
shift respectively.
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inside it. The integral then changes to

δ = −W
∫ ∆ω

−∆ω

1 + pω/∆ω

ω
dω = −2pW = −p~Γpt

π
. (6.24)

In �gure 6.6 −Im ċ/c−E/~ is shown again, but now with the linear W function with di�erent values
of p. In all cases we get a value that oscillates with a small amplitude around an average. For p = 0.1,
0.5 and 0.8 this average is -0.032~Γpt, -0.16~Γpt and -0.26~Γpt respectively. On the other hand, using the
formula 6.24 we get -0.032~Γpt, -0.16~Γpt and -0.25~Γpt. This is close enough to conclude that we again
have agreement between the perturbation expression and the numerical results.

Figure 6.6: −Im ċ/c−E/~ with W (E) = (1 + p(E −E0)/∆E)W in the range [E0−∆E,E0 + ∆E]. The
calculation is done with E = 5~Γpt, ∆ω = 80 and N = 160. The blue curve corresponds to p = 0.1,
the green one to p = 0.5 and the red to p = 0.8. These curves oscillate around the averages -0.032~Γpt,
-0.16~Γpt and -0.26~Γpt respectively.

6.6 Exact memory kernel

The exact diagonalization results obtained in the previous section are obviously only truly exact when we
are dealing with a discrete and �nite number of oscillators, and the W function accordingly is a �nite sum
of delta functions. When the W function is continuous, as it is in the cases treated in the perturbation
an Red�eld formalisms, these results are only approximations believed to increase in accuracy when δω
decreases. It would therefore be nice if we also had some other exact method that we could compare the
results to.

One of the reasons we look at precisely this model is that there actually exists such a method. It turns
out that the system can be described by a memory equation of type 5.16 where the memory kernel K(t, t′)
is exactly calculable. This will allow us to apply any method that can be used to solve such equations.
Due to the Nakajima Zwanzieg formalism these are in any case highly relevant to the treatment of open
systems, which is another reason to have a look at this particular description.

The existence of this scalar memory equation was something I originally discovered myself as I worked
with this model, and the entire analysis of this section is really my own invention. Later I have however
discovered (unsurprisingly I must admit) that this method has already been employed elsewhere: It is
derived also in [2], and according to them the method was originally employed By Wigner and Weisskopf
in [14].
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Unlike the Nakajima Zwanzieg equation the memory equation to be treated here is not expressed in
terms of the reduced state operator ρS , but instead in terms of the probability amplitude c(t) for S being
in its excited state |e〉. Because of the simplicity of the system, knowing this and the initial state is enough
to completely specify ρS(t) at any time by the simple formula

ρS(t) =

(
|c(t)|2P (0) c(t)ρ12(0)
c?(t)ρ21(0) 1− |c(t)|2P (0)

)
. (6.25)

The Nakajima Zwanzieg equation of this system will be treated in the next section.

6.6.1 Derivation

We begin by again making the expansion |ψ〉 = c(t) |e〉 +
∑

k ck(t) |k〉. In the interaction picture this

state will evolve according to the equation ~i ˙|ψ〉 = HSE(t) |ψ〉, where HSE(t) = eiH0t/~HSE(0)e−iH0t/~

and HSE(0) is the Schrodinger picture operator. Inserting the expansion of |ψ〉 in to this, as well as 6.2,
we get the following equations for c and the cks:

i~ċ =
∑
k

wke
−iωkt+iEt/~ck, (6.26)

i~ċk =w?ke
iωkt−iEt/~c. (6.27)

We then de�ne the function f(ω, t) as

f(ω, t) =
∑
k

wkck(t)δ(ω − ωk + E0/~), (6.28)

which makes us able to rewrite the equations 6.26 as

dc

dt
(t) =

1

~i

∫ ∞
−∞

f(ω, t)e−iωtdω, (6.29)

∂f

∂t
(ω, t) =

1

~i
W (ω)eiωtc, (6.30)

whereW (ω) is the function de�ned in 6.7. These equations show thatW (ω) is in fact the only information
we need of the environment in order to determine the exact development of c(t). Note that we could now
choose to take the continuum limit, which would make f(ω, t) and W (ω) continuous functions of ω.
Nothing in the following derivation will be di�erent whether this is done or not.

The next thing we do is to construct a new function g as the Fourier transform of f :

g(x, t) =

∫ ∞
−∞

f(ω, t)e−iωxdω. (6.31)

we can once again rewrite the equations describing the system in terms of this function. 6.29 now gives
us

dc

dt
(t) =

1

~i
g(t, t), (6.32)

dg

dt
(x, t) =

∫ ∞
−∞

df

dt
(ω, t)e−iωxdω =

1

~i

∫ ∞
−∞

W (ω)eiωt−iωxc(t) dω = ~iK(x− t)c(t), (6.33)

where we have also made the de�nition

K(t) = − 1

~2

∫ ∞
−∞

W (ω)e−iωtdω, (6.34)
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which is in fact the memory kernel. Or more precisely the memory kernel is K(t− t′). Starting out with
6.32 this is easily demonstrated: At t = 0 the environment is in the vacuum state, so the cks are all zero.
From the de�nitions we therefore also have f(ω, 0) = g(x, 0) = 0. We can then integrate 6.33 to get

g(x, t) =

∫ t

0

dg

dt
(x, t′)dt′ = ~i

∫ t

0
K(x− t′)c(t′)dt′, (6.35)

which can then be inserted into 6.32. This �nally gives

dc

dt
(t) =

∫ t

0
K(t− t′)c(t′)dt′ =

∫ t

0
K(t′)c(t− t′)dt′, (6.36)

which is an exact integro di�erential equation for the probability amplitude c(t), involving the memory
kernel K(t).

6.6.2 Markovian limit

The equation 6.36 has a memory kernel K(t) that can be calculated exactly. This can be used to see very
directly where the timescale separation criterion discussed earlier actually comes from. Let us assume that
K(t) is e�ectively damped out over some characteristic time scale τ , in the sense that most of the last
integral in 6.36 comes from the region 0 < t′ < τ . Let us further assume that τ is very small compared to
the timescale over which c(t) changes. It then becomes justi�ed to approximate the equation as

dc

dt
(t) ≈

∫ ∞
0

K(t′)c(t)dt′ = −γc(t), (6.37)

with γ = −
∫∞

0 K(t)dt. This could also be thought of as replacing the memory kernel with K(t) = −γδ(t).
Such a delta function memory could be said to be the de�ning property of Markovian development.

6.37 has the exponential solution c(t) = e−γt, which is identical to the result obtained through the
Red�eld formalism (Whether the quantity γ has the correct value will be discussed below). In fact the
Red�eld/Lindblad equation 6.14 can itself also be derived by combining 6.37 with 6.25.

I mentioned earlier that 6.14 applies in the cases where we have time scale separation. We are now
in a position to demonstrate this: As mentioned 6.37 applies when K(t) is short, in the sense that its
damping timescale τ is much smaller than the scale over which c changes, which is essentially |c/ċ|. Let
us construct some estimates for these time scales: ċ is given by 6.36, so as a quite reasonable estimate of
the quantity |ċ/c| we could take the integral

∫∞
0 K(t′)dt′, or alternatively 1

2

∫∞
−∞K(t′)dt′. We will use the

later, since by applying the inverse Fourier transform to 6.34 we see that this can be written simply as
−πW (0)/~. Thus we conclude that |c/ċ| ∼ ~/W (0), which we recognize as the de�nition of τ2.

In order to get an estimate of the quantity τ , we need a more precise de�nition of this: Since τ is the
length of the interval in whichK(t) is signi�cantly di�erent from 0, the integral

∫∞
−∞K(t)dt will be of order

2K(0)τ . So one possible de�nition is to simply let τ be given by the expression K(0)τ = 1
2

∫∞
−∞K(t)dt.

Again applying the Fourier Transform and its inverse together with 6.34 to this expression, we see that it
can be re-expressed as 2τ

∫∞
−∞W (ω)dω = 2πW (0). Now de�ning ∆ω in much the same way through the

relation W (0)∆ω = 1
2

∫∞
−∞W (ω)dω, we see that in fact τ = π/2∆ω ≈ ~/∆E. This we recognize as the

de�nition of τ1. Thus clearly the condition for Markovianness can be written simply as τ1 � τ2, which is
the aforementioned timescale separation criterion.

Let us now attempt to �nd the value of γ, in order to verify that the expression agrees with our earlier
results. Let u(t) be the unit step function. Then

γ =−
∫ ∞
−∞

K(t)u(t)dt =
1

~2

∫ ∞
−∞

u(t)

∫ ∞
−∞

W (ω)e−iωtdωdt =
1

~2

∫ ∞
−∞

W (ω)

∫ ∞
−∞

u(t)e−iωtdtdω

=
1

~2

∫ ∞
−∞

W (ω)

(
1

iω
+ πδ(ω)

)
dω =

π

~2
W (0)− i

~2

∫ ∞
−∞

W (ω)

ω
dω, (6.38)

in complete agreement with both the perturbation result and the Red�eld equation.
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6.6.3 Asymptotic exponential solutions

In many cases, the equation 6.36 admits an approximate exponential solution even when a Markovian
approximation like this is not defendable. As long as the memory kernel falls of over some time scale,
however large, then for su�ciently large t the equation can be approximated as

dc

dt
(t) =

∫ ∞
0

K(t′)c(t− t′)dt′, (6.39)

which under appropriate conditions has an exact exponential solution: Inserting the ansatz c(t) = e−γt

into it, we end up with the integral equation

−γ =

∫ ∞
0

K(t)eγtdt. (6.40)

If some γ is a solution to this equation, then c(t) = e−γt will be a solution of 6.39. Note that it is a
solution for all t, not only t > 0.

Now, 6.40 is expressed in terms of the memory kernel K(t). We can also get an equation for γ directly
in terms of the W function: We do this by going back to the equations 6.29 and 6.30, and again insert
the ansatz c(t) = e−γt. With this ansatz 6.30 becomes ḟ = −iW (~ω)eiωt−γt, which has the solution

f(ω, t) =
W (ω)eiωt−γt + h(ω)

~i(iω − γ)
, (6.41)

with h(ω) being some freely chosen function. We then insert this in 6.29 to get

γe−γt =
1

~2

∫ ∞
−∞

W (ω)e−γt + h(ω)e−iωt

iω − γ
dω. (6.42)

Since there are no functions that have Fourier transforms which are proportional to e−γt for all t, the only
way this equation can be satis�ed for all t is if h(ω) = 0. This turns 6.42 into

γ =
1

~2

∫ ∞
−∞

W (ω)

iω − γ
dω, (6.43)

the sought integral equation in terms of W .

Note that exponential solutions found using either 6.40 or 6.43 are nonphysical: They both assume
the solutions to have the same exponential form also for t < 0, which means that the probability P = |c|2
will be bigger than 1 for these times. However, since 6.39 as mentioned is the asymptotic limit of the
exact memory equation of the system, it is reasonable to assume that the solutions to this equation may
form the asymptotic evolution of c(t). This would then also lead us to expect that the γ that solves 6.40
will be a better value for this parameter than the one found using the simple Markovian limit.

But what about 6.43? Is this an equivalent condition? Well, 6.43 expresses all the possible exponential
solutions to 6.29 and 6.30, and the solutions to 6.40 must obviously be contained in this set. But in
principle it is possible that 6.43 has additional solutions. We will quickly see that examples of such
solutions are easy to �nd. These, not solving 6.39, will not form asymptotic solutions to 6.36. Unlike the
solutions to 6.40 we can therefore not expect these to be asymptotic evolutions of c(t).

In order for 6.40 to have a solution the involved integral must be de�ned, and so K(t) must fall o� at
least exponentially. The �at W de�ned by 6.11 gives an example of a system where this is not the case.
This is because this W function will give rise to a memory kernel proportional to sinc ∆ωt, which falls of
as 1/t and thus slower than exponentially. Even so we can still �nd solutions to 6.43, which then becomes

γ =
W

~2

∫ ∆ω

−∆ω

1

iω − γ
dω = −W

~2

∫ ∆ω

−∆ω

iω + γ

ω2 + γ2
dω =

2W

~2
arctan

∆ω

γ
, (6.44)
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and always have at least one solution. This simple �at W function is thus an example demonstrating that
6.40 and 6.43 are not equivalent.

I will give one more such example: W (ω) = We−|ω|/∆ω. This will cause K(t) to be a Lorenzian
function, falling of as 1/t2 for large t, and thus again slower than exponentially. Still, 6.43 ends up as

γ = −2W

~2

∫ ∞
0

γe−ω/∆ω

ω2 + γ2
dω. (6.45)

Just as in the case of any other W function, the expression to the right must start out at the perturba-
tion/Red�eld expression πW/~2 when γ → 0. A way to see this directly from the expression is to change
the variable of integration to x = ω/γ. Also, when γ → ∞ it goes to 0. It therefore clearly must cross
the line described by the left expression, and thus the equation must again have at least one solution.

Having now dealt with a case where 6.40 does not have a solution, we should turn to one where it
has. The simplest case, where we even have a purely algebraic solution, is to let W (ω) be a Lorenzian

function: W (ω) = W∆ω2

ω2+∆ω2 . This would give us the exponential memory kernel K(t) = −πW∆ω
~2 e−∆ωt for

t > 0. Inserting this into 6.40 we get the simple second order equation

γ =
πW∆ω

~2

1

∆ω − γ
, (6.46)

as long as γ < ∆ω. If this is not the case, the integral does not converge. The solutions are

γ =
∆ω

2

(
1±

√
1− 4πW

~2∆ω

)
, (6.47)

which both are smaller than ∆ω and thus valid. It is however only the one with the minus sign that is
close to the perturbation value for small W , so we expect this to give the correct asymptotic evolution.
For ∆ω > 2Γpt we now have

Γ = ∆ω

(
1−

√
1− 2Γpt

∆ω

)
, (6.48)

which is easily seen to have the limit Γ = Γpt when ∆ω →∞. Here Γ is the exact asymptotic decay rate of
P (t) given by Γ = 2Re γ, while Γpt is as before the perturbation/Red�eld expression for this parameter.

I also include another W function which causes K(t) to fall o� su�ciently fast, namely W (ω) =

We−
ω2

2∆ω2 . This makes K(t) ∼ e−
∆ω2

2
t2 . Here I omit the details, but in the end we end up with the

equation

Γ

Γpt
= e

Γ2

8∆ω2

(
1 + erf

(
Γ√
8∆ω

))
, (6.49)

where the erf function is erf(x) = 2√
π

∫ x
0 e
−t2dt. This equation can not be solved analytically, but numer-

ically it is no problem. Both this and 6.48 will later be compared with actual rates from simulations.

6.6.4 Discrete W-function

The memory equation 6.36 is not only a power full tool for analyzing exponential evolution, but also
departures from this. Remember for instance our discussion of �gure 6.3, where the development keeps
its exponential character for a characteristic time T = 2π/δω and then rapidly takes on a completely
di�erent behavior. By help from the exact memory kernel it becomes possible to see why making a
discrete approximation to the W function causes this type of behavior: Assume that we replace some
general W function with the discrete approximation

Wd(ω) = W (ω)δω

∞∑
n=−∞

δ(ω − nδω − fδω), (6.50)
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where the quantity f is some number 0 ≤ f < 1 that describes the translational shift of the sequence of
delta functions.

What is the relation ship between the memory kernel of this approximation and that of W (ω)? Let
Kd be the memory kernel corresponding to Wd. From 6.34 we see that

Kd(t) = −e−ifδωt 1

~2

∞∑
n=−∞

δωW (nδω)e−inδωt. (6.51)

The phase factor e−ifδωt complicates things, so let us �rst analyze the function Kd(t)e
ifδωt. We �rst note

that this is periodic with period 2π/δω. Secondly we note that it has the form of a Fourier series with
coe�cients Cn = −δωW (nδω)/~2. Now once more applying the inverse Fourier transform to 6.34 we see
that these coe�cients can be written

Cn = − 1

~2
δωW (nδω) =

δω

2π

∫ ∞
−∞

K(t)einδωtdt. (6.52)

Let us now assume that we have made the discrete approximation su�ciently dense (δω su�ciently
small) to assure that the damping time τ = τ1 of K(t) is considerably shorter than π/δω. We are then
free to approximate the integral above to get

Cn =
δω

2π

∫ ∞
−∞

K(t)einδωtdt ≈ δω

2π

∫ π/δω

−π/δω
K(t)einδωtdt, (6.53)

which should be recognized as precisely the Fourier coe�cients of the function K(t) when limited to the
range [−π/δω, π/δω]. From this we conclude that for su�ciently dense oscillator sets (δω � ∆ω), the
function eifδωtKd(t) = K(t) in the range [−π/δω, π/δω]. Since the function has period 2π/δω, the values
in this range is also repeated periodically outside it. That is, we essentially have

Kd(t) ≈ e−ifδωt
∞∑

n=−∞
K(t− 2πn/δω), (6.54)

where the fact that K(t) is practically 0 outside of the range [−π/δω, π/δω] has again been used.
If K also falls of su�ciently fast to satisfy the time scale separation criterion τ1 � τ2 as discussed

above, then Kd can be approximated further as a sum of delta functions. When doing this it is important
to keep in mind that the domain of integration in 6.36 extends only from 0 to t. This �rst of all means
that we do not need to include the the terms in 6.54 where n < 0. Secondly, and more importantly, it has
consequences for the coe�cients that should be put in front of the delta functions:

For terms with n > 0 the integral will extend over the entire region where the term is large, so that
the coe�cients should in these cases be Γ = −

∫∞
−∞K(t)dt = 2Reγ. For the n = 0 term however, the

integral only extends over half the term, so that the coe�cient should be γ = −
∫∞

0 K(t)dt. Because of
this we should take Kd to be

Kd(t) = −γδ(t)− e−ifδωtΓ
∞∑
n=1

δ(t− 2πn/δω)), (6.55)

which makes 6.36

ċ(t) = −γc(t)− Γ

m∑
n=1

e−i2πfnc(t− 2πn/δω)), (6.56)

with m being the largest integer such that t− 2πm/δω > 0. We can see directly from this equation that
the behavior of c(t) will change abruptly whenever t crosses an integer multiple of 2π/δω: This will make
m increase by 1, so that the equation gets an additional term and thus completely changes nature. This
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gives us an explanation of the periodic cusps that was seen for instance in �gure 6.3. In fact we will now
attempt to use 6.56 to provide a complete reconstruction of the development in �gure 6.3(d):

In the calculation which resulted in that �gure, the oscillators were distributed evenly in the range
[−∆ω,∆ω] and thereby symmetrically around 0. This means that the shift f must be either 0 or 1

2 . It
will be 0 when the number of oscillators is odd, and 1

2 when it is even. In 6.3(d) 80 oscillators was used, so
that f = 1

2 and in particular e−i2πfn = (−1)n. With this all parameters involved in 6.56 are well de�ned,
and we can proceed with the solution. For simplicity we will use units where Γ = Γpt = 1 and de�ne
T = 2π/δω. We also keep in mind that the W function is on the form 6.11, so that the Lamb shift δ = 0
and γ is just γ = Γ/2 = 1/2.

As mentioned the behavior of c(t) will depend on what range t is in. We therefore de�ne the functions
un(t) such that c(t) = un(t) in the range [nT, (n + 1)T ]. Imposing 6.56 and the de�nitions above, the
functions un(t) must then clearly satisfy

u̇n(t) = −1

2
un(t)−

n∑
k=1

(−1)kun−k(t− kT ). (6.57)

We then further de�ne un(t) = fn(t− nT )e−
1
2

(t−nT ), which makes the functions fn satisfy the equations

ḟn(t) = −
n−1∑
k=0

(−1)n−kfk(t). (6.58)

In addition, the continuity of c(t) means un(nT ) = un−1(nT ), and thus fn(0) = fn−1(T )e−
1
2
T . This

makes the solution to 6.58 simply

fn(t) = fn−1(T )e−
1
2
T −

n−1∑
k=0

(−1)n−k
∫ t

0
fk(t

′) dt′, (6.59)

for n > 0. We see immediately that f0(t) = 1. Now de�ning K = e−
1
2
T , we add together the above

equation with the corresponding for fn−1(t). Since (−1)(n−1)−k = −(−1)n−k, all terms in the sum except
for one will cancel, so that we end up with the relatively simple recursive formula

fn(t) = fn−1(0)− fn−1(t) + fn−1(T )K +

∫ t

0
fn−1(t′) dt′. (6.60)

From this we �nd

f1(t) =K + t, (6.61)

f2(t) =− t+ (K + T )K +Kt+
1

2
t2,

f3(t) =t−Kt− t2 −Kt+K3 + 2K2T +
1

2
KT 2 +

1

6
t3 +

1

2
t2K +K2t+KTt.

For the purpose of comparison with the numerics I have also found the expression for f4. It is however
somewhat long, ugly, and uninformative, so I do not include it in the text.

With the expressions for the fns now found, we can use c(t) = un(t) = fn(t − nT )e−
1
2

(t−nT ) for
t ∈ [nT, (n + 1)T ] to calculate the evolution of the probability P = |c|2 and compare this with the
numerical results of �gure 6.3(d). This is done in �gure 6.7 where the constituent functions un are shown
together with the result from diagonalization. The agreement is excellent. The very small di�erences that
remain are of course due to the fact that the delta function sum 6.55 is not the exact memory kernel.
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Figure 6.7: Development with an in�nite sum of delta functions as approximation to the memory kernel
is compared with exact numerical results. The constituent functions un of the approximate development
are shown as the red, cyan, purple, yellow and black curve in increasing order of n. The exact result is
the dashed blue curve. It is obtained with ∆ω = N = 80, and is identical to 6.3(d).

6.6.5 Numerical solution

We can also use the memory function approach to study the system when the timescale separation cri-
terion is violated, and unlike the exact diagonalization approach this can be done without doing discrete
approximations of the same dramatic nature. We do this by �nding the exact memory kernel given some
W , and then solving 6.36 exactly or numerically in some way. The way I have chosen to do this here is to
make a Laplace transform: Letting M(s) be the Laplace transform of the memory kernel and a(s) that
of c(t), we take the Laplace transform of equation 6.36 to get

sa(s)− c(0) = M(s)a(s), (6.62)

where we have used the rules for Laplace transforming derivatives and convolutions. Remembering that
in our calculations c(0) = 1 we then get

a(s) =
1

s−M(s)
. (6.63)

For a lot of di�erent models this function is easy to calculate. However, in order to �nd c(t) we
must take the inverse Laplace transform of this. This can be done using the Mellin formula: c(t) =

1
2πi

∫
l e
sta(s)ds, with l a line in the imaginary direction laying to the right of all singularities of a(s).

Letting λ be the real coordinate of the line l (so that s = λ + iω and ds = idω), the Mellin formula
can be written out in terms of the inverse Fourier transform as c(t) = eλtF−1(a(iω + λ)). This is easy
to implement numerically using an FFT algorithm. I have done this in Python, where this algorithm is
available in a standard library. The values of λ are found using trial and error. That is to say: λ is simply
increased until the solution stabilizes. As long as the memory function falls of su�ciently fast it can be
set to zero.

The �rst we should do, given this new method of numerical analysis, is to verify that it agrees with the
results of the diagonalization method. This is done in �gure 6.8. In �gure 6.8(a) and 6.8(b), the solution
of 6.36 assuming a continuous �at W function with radius ∆ω = 3Γpt is compared to 3 diagonalization
results of the same model. These three calculations approximate the environment using 20, 40 and 80
oscillators.
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In �gure 6.8(a) the cyan curve is the memory equation result while the others are obtained by diago-
nalization. The results obtained using 20, 40 and 80 oscillators are shown as blue, red and green curves. In
�gure 6.8(a) the di�erence PD − PM between the diagonalization and memory equation results is shown.
The colors are the same. It is clear that the diagonalization result approaches the memory function result
when the number of oscillators increases. This is what we would expect, since the continuous W function
is better approximated with higher density of discrete oscillators.

To get a more direct comparison, we could solve 6.36 with the exact W function given the �nite set of
oscillators used for the diagonalization. This is what we see in �gure 6.8(c) and 6.8(d). In 6.8(c) the two
curves are compared directly, while in 6.8(d) the di�erence is again shown. The agreement between the
curves is very good, but not perfect (The error is on the order of a few thousandths). This is because also
the memory equation is solved numerically, so that in general the quality of the solution will depend on
the resolution used in the FFT algorithm. In any case the �gures seem to indicate that it is the memory
equation approach that provides the most trustworthy results. This is also the one that can be applied
over the longest time scales, as will be utilized in the next subsection.

6.6.6 Long time behavior

Finally, we will turn to the study of the systems behavior at long timescales. For this discussion we
assume a continuous W function. This is something that is readily done by solving the memory equation
6.36, and also by diagonalization as long as a su�ciently high density of oscillators is used. A particularly
interesting question is whether the evolution is asymptotically exponential. This is a question that applies
both in the weakly and strongly interacting cases. In the weakly interacting cases we already know that
the evolution is exponential over timescales comparable to the lifetime. But it is still a question whether
it deviates from this at larger times. In the strongly interacting cases we see from for instance �gure 6.4
that the evolution is not exponential in the time interval where most of the decay occurs, but it may still
be so asymptotically.

One possible way of studying this question, is to look at the quantity −Ṗ /P . If the evolution is
asymptotically exponential, then this quantity should approach a constant value of Γ, the asymptotic
decay rate. We do this analysis in �gure 6.9 and 6.10, where the evolution given all four types of W
functions discussed in section 6.6.3 is illustrated. In �gure 6.9 the W function is assumed to be Gaussian
or Lorenzian. As already discussed, in both these cases 6.40 has a solution. In �gure 6.9 on the other
hand, the W function is assumed to be �at or exponential (∼ e−|ω|/∆ω), for which 6.40 does not have a
solution.

In both these �gures I have shown the development according to both the diagonalization and memory
equation methods, shown as blue and green curves respectively. In some of the plots the curves start
to deviate from each other after some characteristic time. This is because it becomes to numerically
demanding to include enough oscillators in the diagonalization to both include a su�cient width of the
W function and also give correct behavior over long time scales. In these cases it is the longtime behavior
of the memory equation result (green curve) that should be trusted.

The di�erence between the two �gures is striking. In �gure 6.9 all curves approach a constant value,
strongly suggesting that we have an asymptotically exponential evolution. This happens both in the
strongly interacting and weakly interacting cases. Indeed, the only di�erences seems to be that in the
weak case the asymptotic decay rate is reached more or less immediately while in the strong case it takes
some time, as well as the fact that the weak case value lies very close to 1 (in units of Γpt) while the strong
case one lies somewhat higher.

In �gure 6.9 however, the situation is completely di�erent. Here neither of the illustrated cases
approach a constant value, indicating that we do not have asymptotically exponential behavior. With the
�atW function the evolution of −Ṗ /P instead takes on a rapidly growing oscillatory behavior, while with
the exponential one it simply keeps on growing. In the weakly interacting cases the rate stays around
some intermediate approximately constant value for some amount of time, but then deviates from this
later. In the strongly interacting cases the deviation happens more or less immediately.
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(a) Direct comparison. Continuous W function. (b) Di�erence PD − PM . Continuous W function.

(c) Direct comparison. Discrete W function. (d) Di�erence PD − PM . Discrete W function.

Figure 6.8: Comparison between numerical diagonalization result and solution to the memory equation
6.36. The memory equation is solved by taking the Laplace transform and its inverse numerically, as
described in the text. In the upper �gures the diagonalization result for 20, 40 and 80 oscillators is
compared with the memory equation result with a �at continuous W function and ∆ω = 3Γpt. In the
lower ones a diagonalization curve calculated with 10 oscillators is compared with the memory equation
solution given the correct discrete W function resulting from that model. The �gures to the left show
direct comparisons of the obtained functions P (t), while the ones to the right show the di�erence PD−PM
between the diagonalization and memory equation results. In 6.8(b) the memory equation result is the
cyan curve, while in 6.8(d) it is the green, non-dashed one.
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(a) Gaussian W function, W = ~Γpt/80. (b) Gaussian W function, W = ~Γpt/5.

(c) Lorenzian W function, W = ~Γpt/80. (d) Lorenzian W function, W = ~Γpt/5.

Figure 6.9: Longtime behavior of the quantity −Ṗ /P assuming a Gaussian or LorenzianW function. The
evolution is shown both in the weakly and strongly interacting cases, and is calculated using both the
diagonalization (blue curve) and the memory equation method (green curve). As previously discussed,
the diagonalization can not be trusted after some characteristic time 2π/δω.
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(a) Flat W function, W = ~Γpt/80. (b) Flat W function, W = ~Γpt/5.

(c) Exponential W function, W = ~Γpt/100. (d) Exponential W function, W = ~Γpt/10.

Figure 6.10: Longtime behavior of the quantity −Ṗ /P assuming a �at or exponential W function. The
evolution is shown both in the weakly and strongly interacting cases, and is calculated using both the
diagonalization (blue curve) and the memory equation method (green curve). In the �at model, strong
oscillatory behavior is seen, so the average over periods of 2π/∆ω are shown as red dots. As previously
discussed, the diagonalization can not be trusted after some characteristic time 2π/δω.
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That only the models with Gaussian or Lorenzian W function converges to an asymptotic exponential
decay is in well agreement with our previous discussion, which stated that the asymptotic evolution
should be determined by equation 6.39. This equation does not have an exponential solution in the �at
and exponential cases, whereas it does in the Gaussian and Lorenzian cases. The actual asymptotic rates
in the numerical results can be found from simply reading of the value at which the plots stabilize. This
should be compared with expressions found from solving 6.40, that is 6.48 in the Lorenzian case and the
solution to 6.49 in the Gaussian case. This is done in �gure 6.11, where again the agreement is excellent.

(a) All points (b) Small values of Γpt/∆ω

Figure 6.11: Comparison of asymptotic decay rates from simulations with expression found from solving
6.40. The green curve is this expression assuming a Lorenzian W function, while the blue assumes a
Gaussian. The corresponding simulation results are shown as cyan and red marks respectively.

The results shown here strongly indicate that exponentially bounded memory kernels leads to expo-
nential decay in the asymptotic limit. Also, it seems that we can expect deviations from exponential
decay if the memory kernel is not exponentially bounded, just as was suggested by our earlier discussion.
It has been shown[13][6] that if the range where the W function is nonzero has a lower bound (as will be
the case in realistic physical systems since it is usually assumed that there are no negative energies), then
the decay must proceed with a power law for su�ciently large times. It becomes an interesting question
how this connects with our suspicion that the memory kernel must be exponentially bounded in order for
the decay to be exponential.

Well, the memory kernel is related to the W -function by a Fourier transform. In fact, The claim of
[13] is precisely that the Fourier transform of a function with limited support can not be asymptotically
exponential. In this they refer to an original argument provided by [6]. This of course demonstrates
that W functions of the mentioned type does not give rise to an exponential memory kernel. In [13] a
very similar argument is used to argue directly that these W functions can not give rise to exponential
decay: It is claimed that if the interactions does not have support over all frequencies, then neither can
the Fourier transform of c(t). Thus, c(t) can not be asymptotically exponential.

6.7 Nakajima Zwanzieg Kernel

6.7.1 Calculation

As we see the exact memory equation for the probability amplitude c(t) turns out to be very useful for the
analysis of the two-level model. More complicated systems however can not be expected to be described
by such a simple scalar equation with an exactly calculable Kernel. If we wish to analyze these with
the memory kernel approach we must turn to the Nakajima Zwanzieg equation, and most likely to the
perturbative expansion of its Kernel. Since this then is the method that best generalizes to other systems,
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we should apply it also to the two-level model, since this would be the simplest possible application of
that method.

Our �rst task is to calculate the �rst couple of orders in the memory kernel. In order to do this in an
as simple way as possible, we �rst rewrite the interaction part of the Hamiltonian HSE in the interaction
picture as

HSE(t) =
∑
i

(
wiσ+ ⊗ aie−i(ωi−ω)t + w?i σ− ⊗ a

†
ie
i(ωi−ω)t

)
= σ+ ⊗B(t) + σ− ⊗B(t)†, with (6.64)

B(t) =
∑
i

wiaie
−i(ωi−ω)t, (6.65)

with ω = E0/~. We note that we have

B(t) |0〉 =
∑
i

wiai(t) |0〉 = 0, whereas (6.66)

B(t)B†(t′) |0〉 =
∑
ij

wiw
?
j e
−i(ωi−ω)t+i(ωj−ω)t′aia

†
j |0〉 =

∑
i

|wi|2e−i(ωi−ω)(t−t′) |0〉 = −~2K(t− t′) |0〉 ,

(6.67)

where the last identity follows from noting that the function
∑

i |wi|2e−i(ωi−ω)t is the Fourier transform
of the W function 6.7, and then simply applying 6.34.

For the two-level model, the super operator L(t) de�ned in the section on the Nakajima Zwanzieg
formalism may now be expressed as

L(t)ρ = − i
~

[HSE , ρ] = − i
~

((σ+ ⊗B(t))ρ+ (σ− ⊗B(t)†)ρ− ρ(σ+ ⊗B(t))− ρ(σ− ⊗B†(t))), (6.68)

and with this we are ready to calculate the di�erent orders of the memory kernel.

We begin by noting that 6.66 implies that the condition TrEL(t)ρS ⊗ |0〉 〈0| = 0 is satis�ed. This was
a requirement for the version of the Nakajima Zwanzieg equation derived in section 5 to be valid (see
eq. 5.2). In fact it is easily seen that this result also generalizes to similar expressions involving any odd
power of the Liouville operators. This can be written as PL(t1) · · · L(t2n+1)P = 0, which further implies
that QL(t1) · · · L(t2n+1)P = L(t1) · · · L(t2n+1)P. This means all odd orders of 5.14 are 0. Also, any Q
operator in the expression that has an odd number of L operators between it self and the P operators will
disappear. This fact will be used in the following calculations. Even so, these calculations will be quite
involved. The reader is duly warned.

Using 6.68 and 6.66 as well as the fact that σ2
− = σ2

+ = 0 and σ+σ− = Pe we get

L(t)L(t′)ρS ⊗ |0〉 〈0| =L(t)(σ−ρS ⊗B†(t′) |0〉 〈0| − ρSσ+ ⊗ |0〉 〈0|B(t′))

=PeρS ⊗B(t)B†(t′) |0〉 〈0| − σ−ρSσ+ ⊗B†(t′) |0〉 〈0|B(t)

− σ−ρSσ+ ⊗B†(t) |0〉 〈0|B(t′) + ρSPe ⊗ |0〉 〈0|B(t′)B†(t)

=PeρS ⊗K(t− t′) |0〉 〈0| − σ−ρSσ+ ⊗B†(t′) |0〉 〈0|B(t)

− σ−ρSσ+ ⊗B†(t) |0〉 〈0|B(t′) + ρSPe ⊗ |0〉 〈0|K(t′ − t). (6.69)
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And applying the super operator P to this, we get the lowest order term in the memory kernel:

PL(t)L(t′)ρS ⊗ |0〉 〈0| =(PeρSK(t− t′)− σ−ρSσ+TrB†(t′) |0〉 〈0|B(t)

− σ−ρSσ+TrB†(t) |0〉 〈0|B(t′) + ρSPeK(t′ − t))⊗ |0〉 〈0|

=(PeρSK(t− t′)− σ−ρSσ+ 〈0|B(t)B†(t′) |0〉

− σ−ρSσ+ 〈0|B(t′)B†(t) |0〉+ ρSPeK(t′ − t))⊗ |0〉 〈0|

=(PeρSK(t− t′) + ρSPeK(t′ − t)− σ−ρSσ+(K(t− t′) +K(t′ − t)))⊗ |0〉 〈0|
(6.70)

Using this as well as the above mentioned expressions, it is also easy to calculate

QL(t)L(t′)ρS ⊗ |0〉 〈0| = L(t)L(t′)ρS ⊗ |0〉 〈0| − PL(t)L(t′)ρS ⊗ |0〉 〈0|

= σ−ρSσ+ ⊗ ((K(t− t′) +K(t′ − t)) |0〉 〈0| −B†(t′) |0〉 〈0|B(t)−B†(t) |0〉 〈0|B(t′))
(6.71)

and further

L(t)L(t1)QL(t2)L(t′)ρS ⊗ |0〉 〈0| =

L(t)L(t1)(σ−ρSσ+ ⊗ ((K(t2 − t′) +K(t′ − t2)) |0〉 〈0| −B†(t′) |0〉 〈0|B(t2)−B†(t2) |0〉 〈0|B(t′))) =

L(t)(−PeρSσ+K(t1 − t′)⊗ |0〉 〈0|B(t2) + σ−ρSPe ⊗B†(t′) |0〉 〈0|K(t2 − t1)

− PeρSσ+K(t1 − t2)⊗ |0〉 〈0|B(t′) + σ−ρSPe ⊗B†(t2) |0〉 〈0|K(t′ − t1)) =

− σ−ρSσ+K(t1 − t′)⊗B†(t′) |0〉 〈0|B(t2) + PeρSPeK(t1 − t′)K(t2 − t)⊗ |0〉 〈0|

+ PeρSPeK(t− t′)K(t2 − t1)⊗ |0〉 〈0| − σ−ρSσ+K(t2 − t1)⊗B†(t′) |0〉 〈0|B(t) + h.c., (6.72)

where h.c. signi�es the Hermitian conjugate, or adjoint operator of the entire preceding expression. For
the last step it is necessary to apply the fact that K(t) = K(−t)?, which follows from 6.34 together with
the reality of W .

The next, fourth order term in the memory kernel can be found from this by once again applying the
super operator P and then performing the appropriate integrals, as seen in 5.14. However, since we are
interested in a memory equation for ρS not ρS ⊗ |0〉 〈0| it is enough to apply TrE rather than P:

TrEL(t)L(t1)QL(t2)L(t′)ρS ⊗ |0〉 〈0| =

− σ−ρSσ+K(t1 − t′) 〈0|B(t2)B†(t′) |0〉+ PeρSPeK(t1 − t′)K(t2 − t)⊗ |0〉 〈0|

+ PeρSPeK(t− t′)K(t2 − t1)− σ−ρSσ+K(t2 − t1) 〈0|B(t)B†(t′) |0〉+ h.c., =

− σ−ρSσ+K(t1 − t′)K(t2 − t′) + PeρSPeK(t1 − t′)K(t2 − t)

+ PeρSPeK(t− t′)K(t2 − t1)− σ−ρSσ+K(t2 − t1)K(t− t′) + h.c. (6.73)

Utilizing this and 6.70 we see that the Nakajima Zwanzieg memory kernel of the two-level model is given
by

K(t, t′)ρS =PeρSK(t− t′)− σ−ρSσ+K(t− t′)+

(PeρSPe − σ−ρSσ+)

∫ t

t′

∫ t1

t′
(K(t− t′)K(t2 − t1) +K(t1 − t′)K(t2 − t))dt2dt1

+ h.c. + 6. and higher order terms. (6.74)
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The 5. order terms are zero like all other odd terms. We could easily have continued in the manner above
to �nd for instance the sixth and eight order contributions. However, due to issues of time and space this
will not be done. Instead we note a general trend, namely that all higher order contributions will consist
of terms proportional to the operators PeρSPe or σ−ρSσ+. This can bee seen by noting that the fourth
order terms in 6.72 are of this form, and that all higher order terms results from applying σ− or σ+ twice
to the right or left of a term of order two less. The only non zero operators that can result from doing this
to PeρSPe or σ−ρSσ+ are themselves proportional to these operators. It then follows through induction
that all higher order terms must have this form.

6.7.2 Discussion

We may use 6.74 to �nd equations for the individual components of ρS . We see however from 6.25 that ρS
actually only has two independent parameters, which could for instance be taken to be ρ12 and P = ρ11.
Note that this generalizes to any two state system. The equations for these two quantities are obviously
given by

ρ̇12 = 〈e| ρ̇S |g〉 =

∫ t

0
〈e| K(t, t′)ρS |g〉 dt′, (6.75)

Ṗ = 〈e| ρ̇S |e〉 =

∫ t

0
〈e| K(t, t′)ρS |e〉 dt′. (6.76)

That is, they satisfy two memory equations themselves. In general these equations may obviously be
coupled, but in this model we will see that they are not. In fact, from the expression for ρ12 in 6.25 we
see that this quantity will satisfy precisely the same memory equation as c(t), and so we would expect
the memory kernel of 6.75 to simply be K(t− t′). Let us check if this is the case by evaluating the matrix
element 〈e| K(t, t′)ρS |g〉.

We begin by noting that all terms in K(t, t′)ρS are proportional to either PeρS , ρSPe, PeρSPe or
σ−ρSσ+. By the argument above this also applies to terms of higher order than 4. It is easily seen that
〈e|PeρSPe |g〉 = 〈e|e〉 〈e| ρS |e〉 〈e|g〉 = 0 and 〈e|σ−ρSσ+ |g〉 = 〈e|g〉 〈e| ρS |e〉 〈g|g〉 = 0. Since these are the
only terms contained in the higher order contributions, the entire contribution to 〈e| K(t, t′)ρS |g〉 must
come from the second order terms proportional to PeρS and ρSPe. Now 〈e| ρSPe |g〉 = 〈e| ρS |e〉 〈e|g〉 = 0,
so this does not contribute either. The contribution from ρSPe on the other hand is 〈e|PeρS |g〉 =
〈e|e〉 〈e| ρS |g〉 = ρ12, the only non zero contribution. Thus we see that in fact 〈e| K(t, t′)ρS |g〉 = K(t −
t′)ρ12, and 6.75 becomes a memory equation in ρ12 alone, with K(t − t′) as its memory kernel precisely
as we expected.

Let us now turn to the equation for P , and calculate the expression 〈e| K(t, t′)ρS |e〉. We �rst note
that 〈e|σ−ρSσ+ |e〉 = 〈e|g〉 〈e| ρS |e〉 〈g|e〉 = 0, so that these terms again does not contribute. In much the
same way we calculate 〈e|PeρS |e〉 = 〈e| ρSPe |e〉 = 〈e|PeρSPe |e〉 = P , which means that

〈e| K(t, t′)ρS |e〉 =K(t− t′)P + P

∫ t

t′

∫ t1

t′
(K(t− t′)K(t2 − t1) +K(t1 − t′)K(t2 − t))dt2dt1

+ c.c. + 6. and higher order terms, (6.77)

where c.c. signi�es the complex conjugate of the entire preceding expression. Thus to the fourth order we
see from 6.75 that P (t) satis�es the uncoupled memory equation

Ṗ (t) =

∫ t

0
KP (t, t′)P (t′)dt′, with (6.78)

KP (t, t′) =K(t− t′) +

∫ t

t′

∫ t1

t′
(K(t− t′)K(t2 − t1) +K(t1 − t′)K(t2 − t))dt2dt1 + c.c. (6.79)
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We note that if we go only to the second order, the memory kernel KP (t, t′) for P (t) = |c(t)|2 is just twice
the real part of K(t− t′), which is the memory kernel for c(t).

Just to verify that the Nakajima Zwanzieg equation makes sense, we may also calculate the expression
for ρ̇22. This will be an expression of precisely the same form as 6.75, except involving the quantity
〈g| K(t, t′)ρS |g〉. In the same manner as above it is easily seen that operators of type PeρS , ρSPe and
PeρSPe all give contribution zero to this expression, whereas 〈g|σ−ρSσ+ |g〉 = 〈g|g〉 〈e| ρS |e〉 〈g|g〉 = P .
Thus, from 6.74 we see that 〈g| K(t, t′)ρS |g〉 = −〈e| K(t, t′)ρS |e〉 given by 6.77. Clearly then ρ̇22 = −ρ̇11,
which is in complete agreement with 6.25 and common sense in general.

We would now like to know whether 6.78 is in agreement with the memory equation for c(t). There is
one obvious way of doing this: We numerically solve the memory equation for c(t) just like in the previous
section, calculate P (t) = |c(t)|2, and compare this with the numerical solution of 6.78. In order to do this
however we must �nd a way to e�ciently calculate the memory kernel KP (t, t′), which involves a double
integral.

We do this by �rst re-expressing the integrals using the following de�nitions: given functions f(t) and
g(t) we de�ne new functions f1, f2 and f ? g as

f1(t) =

∫ t

0
f(t′)dt′, (6.80)

f2(t) =

∫ t

0
f1(t′)dt′, (6.81)

(f ? g)(t) =

∫ t

0
f(t′)g(t− t′)dt′ =

∫ t

0
f(t− t′)g(t′)dt′, (6.82)

which have the advantage of being de�ned through operations that can be e�ciently implemented in
Python. Given these de�nitions, we may re-express the double integral in 6.77 as∫ t

t′

∫ t1

t′
(K(t− t′)K(t2 − t1) +K(t1 − t′)K(t2 − t))dt2dt1 =

∫ t

t′

∫ t1

t′
(K(t− t′)K?(t1 − t2) +K(t1 − t′)K?(t− t2))dt2dt1 =

∫ t

t′
(K(t− t′)(K?

1 (t1 − t1)−K?
1 (t1 − t′)) +K(t1 − t′)(K?

1 (t− t1)−K?
1 (t− t′)))dt1 =

−K(t− t′)
∫ t

t′
K?

1 (t1 − t′)dt1 +

∫ t

t′
K(t1 − t′)K?

1 (t− t1)dt1 −K?
1 (t− t′)

∫ t′

t
K(t1 − t′)dt1 =

−K(t− t′)K?
2 (t− t′) +

∫ t−t′

0
K(u)K?

1 (t− t′ − u)du−K?
1 (t− t′)K1(t− t′) =

−K(t− t′)K?
2 (t− t′) + (K ?K?

1 )(t− t′)− |K1(t− t′)|2 =

(K ?K?
1 −K ·K?

2 − |K1|2)(t− t′). (6.83)

In addition to being e�ciently implementable, this expression also demonstrates that to the fourth order
KP (t, t′) is just like K a function only of the distance t − t′. This means that we can solve the memory
equation for P in precisely the same manor as we did the one for c, namely through a Laplace transform.
See the previous section for more details. In �gure 6.12 we see the function P (t) as calculated from the
exact formula P = |c|2 compared with the results of solving 6.78. Both the second and fourth order
approximation of KP is used.
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(a) ∆E = 40~Γ. (b) ∆E = 10~Γ.

(c) ∆E = 5~Γ. (d) ∆E = 3~Γ.

Figure 6.12: Comparison of P (t) as calculated by solving the exact memory equation for c(t) (blue curve)
with the same quantity calculated by solving the second (green curve) and fourth order (red curve)
approximations to the Nakajima Zwanzieg equation. Note how for decreasing value of ∆E/~Γ we �rst get
a notable deviation between the exact result and the second order approximation, while the fourth order
approximation only deviates notably at even smaller values of this parameter.
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6.8 Expansion of the Markovian generator

6.8.1 Calculation

In the section on general non-Markovian descriptions I mentioned that given some memory equation, then
provided the development is invertible one can �nd an exact Markovian generator that can be expanded
as 5.24. In that chapter we applied this to the general Nakajima Zwanzieg equation in order to �nd the
general expansion 5.25 of the Markovian generator of the state operator of open systems. This expansion
could have been applied to the two-level model if we wished an approximation to this generator that is
more accurate than the Lindblad/Red�eld approximation used earlier in the chapter. However, with this
particular model we can take a di�erent approach. Since the system is in this case completely described
by the simple scalar memory equation 6.36, and this equation even has an exactly calculable kernel, it is
much simpler to just apply 5.24 to this instead. To see 5.25 applied to this model, see [2].

With the speci�c scalar memory kernel K(t− t′), 5.24 becomes

m(t) =

∞∑
n=0

∫ t

0

∫ t′

t

∫ t1

0

∫ t′1

t
· · ·
∫ t′n−1

t

∫ tn

0
K(t− t′)K(t1 − t′1) · · ·K(tn − t′n)dt′ndtn · · · dt′1dt1dt′, (6.84)

where m(t) is the Markovian generator of c(t). We can write this more systematically by �rst de�ning
the quantities mn(t, t′) recursively as

m1(t, t′) =

∫ t

0
K(s)ds, and (6.85)

mn(t, t′) =

∫ t

0

∫ s

t′
K(t− s)mn−1(s′, t′)ds′ds

=

∫ t

0
K(s)

∫ t−s

t′
mn−1(s′, t′)ds′ds, for n > 1. (6.86)

I is not hard to convince one self that 6.84 can then be written simply as

m(t) =
∞∑
n=1

mn(t, t). (6.87)

This systematic rewriting of the expansion in principle enables us to recursively calculate the terms
of m(t). However, due to the two dimensional nature of the functions mn(t, t′) this is not numerically
very e�cient: We would be required to store a 2 dimensional array of function values, which would have
a great impact on the memory requirements and calculation time. This would probably have meant that
accuracy would have to sacri�ced in order to decrease these requirements. Thus, in order to end up with
the numerically most e�cient calculation, we continue our rewriting: First, we de�ne the quantities ln(t)
through formulas very similar to 6.85 and 6.86:

l1(t) =m1(t, t′) =

∫ t

0
K(s)ds, and (6.88)

ln(t) =

∫ t

0
K(s)

∫ t−s

0
ln−1(s′)ds′ds, for n > 1. (6.89)

It turns out that the fucnctions mn(t, t′) can be be de�ned through the functions ln(t) as

mn(t, t′) = ln(t)−
n−1∑
j=1

lj(t)

∫ t′

0
mn−j(s, t

′)ds. (6.90)
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To prove this we �rst note that this is obviously true in the n = 1 case, and then we prove that it is true
in any case n if it is true for n− 1. This can be done by the following calculation:

mn(t, t′) =

∫ t

0
K(s)

∫ t−s

t′
mn−1(s′, t′)ds′ds

=

∫ t

0
K(s)

∫ t−s

0
mn−1(s′, t′)ds′ds−

∫ t

0
K(s)

∫ t′

0
mn−1(s′, t′)ds′ds

=

∫ t

0
K(s)

∫ t−s

0

ln−1(s′)−
n−2∑
j=1

lj(s
′)

∫ t′

0
mn−1−j(u, t

′)du

 ds′ds− l1(t)

∫ t′

0
mn−1(s′, t′)ds′

=ln(t)−
n−2∑
j=1

∫ t

0
K(s)

∫ t−s

0
lj(s

′)ds′ds

∫ t′

0
mn−1−j(u, t

′)du− l1(t)

∫ t′

0
mn−1(s′, t′)ds′

=ln(t)−
n−2∑
j=1

lj+1(t)

∫ t′

0
mn−1−j(u, t

′)du− l1(t)

∫ t′

0
mn−1(s′, t′)ds′

=ln(t)−
n−1∑
j=1

lj(t)

∫ t′

0
mn−j(u, t

′)du. (6.91)

Having now proven 6.90, we now make the de�nitions

mn(t) =mn(t, t), (6.92)

m̄n(t) =

∫ t

0
mn(s, t)ds and (6.93)

l̄n(t) =

∫ t

0
ln(s)ds. (6.94)

This makes us able to sum up our results as

m(t) =

∞∑
n=1

mn(t), with (6.95)

mn(t) =ln(t)−
n−1∑
j=1

lj(t)m̄n−j(t), (6.96)

m̄n(t) =l̄n(t)−
n−1∑
j=1

l̄j(t)m̄n−j(t), (6.97)

ln(t) =

∫ t

0
K(s)

∫ t−s

0
ln−1(s′)ds′ds for n > 1, (6.98)

l̄n(t) =

∫ t

0
ln(s)ds and (6.99)

l1(t) =

∫ t

0
K(s)ds. (6.100)

Clearly this representation looks much more complicated and cumbersome than 6.85 to 6.87. The
equations 6.95 to 6.100 however have the advantage of only involving one dimensional functions, which
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dramatically reduces the memory requirements. Also, the only operation that scales more than linearly is
6.98, which can actually be written as ln = K? (ln−1)1 using the notation that was de�ned in the previous
section. As already mentioned these operations are e�ciently implemented in Python, and thus the entire
calculation can be done very fast and e�ciently.

6.8.2 Discussion

Since m(t) is its Markovian generator, c(t) obeys the equation ċ(t) = m(t)c(t). This equation has a very

simple solution, namely c(t) = c(0)e
∫ t
0 m(s)ds. Also, P (t) = |c(t)|2 obeys the equation Ṗ (t) = 2Rem(t)c(t),

with the equally simple solution P (t) = P (0)e2Re
∫ t
0 m(s)ds. This is actually an equation we have seen

before, in the chapter on Red�eld formalism. There however, m(t) was the Red�eld approximation, and
given by −Γ(t) from 6.20. If we take into account 6.34 we should recognize this expression as being the
�rst order term m1(t) of the expansion 6.95. We noted earlier that 6.22 is not an exact solution, and we
understand now that this is because it only includes the �rst order term in this expansion. By including
more terms we should be able to improve upon the results. This is examined in �gure 6.13.

We see that when ∆E = 3~Γ the second order curve is de�nitely a better approximation to the exact
result than the 1. order curve, which is the Red�eld solution. In fact, if we go to the 3. order, the curve
is nearly indistinguishable from the exact result. In the ∆E = 2~Γ and ∆E = ~Γ cases we must go to
even higher orders to get near perfect correspondence with the exact result. The results are only included
up to the 5. order due to numerical instabilities in the higher orders.

In any case the �gures seem to indicate that for the three �rst values of ∆E/~Γ we have convergence
towards the exact curve as n → ∞. For the last value however, that is ∆E = 1

2~Γ, this is clearly not
the case. In this �gure the exact result reaches 0 at Γt ≈ 4.1, and then rises again to make a small bulk.
None of the Markovian curves show this behavior, and it seems the Markovian expansion does not at all
converge to the correct value after this point.

This is not a mystery, but in fact has a very natural explanation and makes a good illustration of a
very important point: It was stated in chapter 5 that it is a prerequisite for the existence of an exact
Markovian generator that the time development of the system is invertible in the entire interval where it
is calculated. In this case the time development is represented by the simple scalar function c(t), which
is zero at t ≈ 4.1 and thus not invertible. The exact Markovian generator thus only exists in the interval
[0, 4.1], where indeed the expansion results still seem to converge nicely.

After t ≈ 4.1 there is not really any Markovian generator to expand, and thus we should not be
surprised when such an expansion does in fact not work! For times larger than 4.1 this is clearly an
example of a system that is truly non-Markovian, in that there exists no Markovian generator that is
capable of describing it. Such a system can only be described using a memory equation or some other
explicitly non-Markovian technique.

To examine the convergence of the Markovian generator in the clearest possible way, it is better to
compare 2Rem(t) directly with Ṗ /P . This allows us to see all the details in m(t) without the exponential
damping, and thus allows us to study for instance the asymptotic behavior. It also makes us able to
distinguish the characteristics of di�erent types of W functions. This is illustrated in �gure 6.14 and 6.15,
using W functions similar to those of �gure 6.9 and 6.10.

These �gures should demonstrate even clearer than �gure 6.13 how well the Markovian expansion
actually works. Let us �rst discuss �gure 6.14, where the exact result seems to approach an asymptotic
decay rate. First of all, all the expansion curves are in agreement with this, as they also approach some
asymptotic value. For modestly weak interactions (∆E = 10~Γ), the expansion result is nearly inseparable
from the exact result already at the second order. In the case of quite strong interactions (∆E = 2~Γ)
and a Gaussian W function one must go to the �fth order before this becomes true. However, in the same
strong interaction case but with a Lorenzian W function, the expansion curves have not converged to the
exact result even after 6 orders.

I have not included any more than 6 orders in that �gure, since from the 7.order and onwards they
showed signs of great numerical instability. The curves do however seem to be on their way to converging,
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(a) ∆E = 3~Γ. (b) ∆E = 2~Γ.

(c) ∆E = ~Γ. (d) ∆E = ~Γ, details.

(e) ∆E = 1
2
~Γ. (f) ∆E = 1

2
~Γ, details.

Figure 6.13: P (t) as calculated through the solution of the exact equation 6.36, compared with results
obtained using a Markovian generator calculated to various orders (using 6.95). The exact result is the
blue curve, while the 1., 2., 3., 4., and 5. order results are shown as green, red, cyan, purple and yellow
curves respectively.
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(a) Gaussian W , ∆E = 10~Γ. (b) Gaussian W , ∆E = 2~Γ.

(c) Lorenzian W , ∆E = 10~Γ. (d) Lorenzian W , ∆E = 2~Γ.

Figure 6.14: Instantaneous decay rate, comparison between exact result and Markovian approximations
to various orders. The blue curve is the exact result. How the order varies among the remaining curves
should be obvious. This �gure shows systems where the memory kernel is exponentially bounded.
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(a) Flat W , ∆E = 80~Γ. (b) Flat W , ∆E = 10~Γ.

(c) Exponential W , ∆E = 80~Γ. (d) Exponential W , ∆E = 10~Γ.

Figure 6.15: Instantaneous decay rate, comparison between exact result and Markovian approximations
to various orders. The blue curve is the exact result. How the order varies among the remaining curves
should be obvious. This �gure shows systems where the memory kernel is not exponentially bounded.



6.9. SUMMARY OF CONCLUSIONS 91

and there is no reason to believe this does not happen after a su�ciently high order. One might argue
that this slow convergence indicates that the Markovian expansion does not work to well in this case,
but one should keep in mind that ∆E = 2~Γ corresponds to very strong interactions for a method that
is designed to work best in the weak interaction limit. Also, the 6. order curve does in fact not visibly
separate from the exact one before well after two decay times.

In �gure 6.15, where there is no asymptotic decay rate, the expansion curves does not converge as
quickly as in 6.14. Here to however, they seem to approach the exact result and there is no reason to
assume they will not converge after a su�ciently high order. Note for instance �gure b, where each new
order results in more rapidly increasing oscillations, approaching the exponential increment in the exact
curve.

6.9 Summary of conclusions

6.9.1 Concerning the system

In the very simple model described in this chapter, the coupling to the environment really only causes
two phenomenons of any interest. One: it causes incoherent transitions from the excited state |e〉 to the
ground state |g〉, and two: it causes an alteration of the rate by which the phase di�erence between the
two states changes. In some models (as will be exempli�ed in the next chapter) we have an additional
phenomenon where the diagonal and non-diagonal elements of the state operator changes over di�erent
time scales. As can be seen from equation 6.25 this is not the case in this simple model. This is due to
the extremely simple form of the Hamiltonian 6.1.

In the limit of weak interactions, the development of the phase di�erence between the states can be
described simply by a shift in energy of the excited state: a Lamb shift. We see however from �gure
6.6 that in general the story is more complicated than this: The rate of the phase di�erence is really a
function of time that oscillates around some average. We can approximate this by letting the rate be
constant and equal to the average. This would then be the Lamb shift, and we expect the approximation
to get better as the interaction strength decreases.

Figure 6.6 is really the only place where the question concerning the development of phases is studied.
In the entire rest of the chapter we are concerned with the �rst phenomenon, and we study the development
of the probabilities for being in state |e〉 or |g〉. This is really a more interesting phenomenon, as it
is connected to the decay of an energetic state as explained in the introduction to the chapter. The
conventional assumption is that this decay is exponential, that is it is expected that the probability for
being in the |e〉 state has the simple form 6.17.

One of the conclusions of this chapter is that this is in fact only the case when we have separation
of the two time scales τ1 = ~/∆E and τ2 = 1/W (0): Exponential decay is an approximation that works
exceedingly well when τ1 � τ2, but when this is not the case the decay may take on a form that is anything
but exponential. This is exempli�ed for instance in �gure 6.13, where the blue curve shows the exact
development of Pe(t) in cases where the interaction strengthW (0) is comparable to the energy range ∆E.
Also, even in the cases where we do have time scale separation, there are deviations from the exponential
development at su�ciently short time scales: when t� τ1 the probability falls of quadratically.

We have however also found that it seems the decay may be asymptotically exponential without time
scale separation. More precisely this seems to be the case when the Fourier transform of theW function is
exponentially bounded. In fact the asymptotic form seems to be completely unconnected to the question
of time scale separation: When this Fourier transform is not exponentially bounded, the development
deviates from exponential decay also in the weakly interacting cases at su�ciently large times. See for
instance the �gures 6.9 and 6.10 and the discussion in section 6.6.3. This was found to be in agreement
with the references [13] and [6].

An entirely di�erent question than the one concerning exponential decay, is whether the decay is
Markovian. That is, whether it can be described by some Markovian generator. If this generator is time
independent, then the decay must indeed be exponential. In general however, the generator may depend
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on time and can result in completely di�erent behavior. In fact, the only case in the chapter where we
have demonstrated with certainty that the decay can not be described in a Markovian fashion, is in �gure
6.13(e). Here the development is Markovian in some short interval after initialization, and the suddenly
changes its behavior in a way that the Markovian expansions can not reproduce.

As long as we assume the environmental oscillators to form a continuum, it seems that all the other
cases in the chapter have Markovian descriptions in the ranges where they are studied. To the question of
whether this model have any non-Markovian characteristics we must therefore answer that this is highly
parameter sensitive: Behavior that is manifestly non-Markovian does not seem to appear unless we have
interactions that are very strong. In �gure 6.13(e) for instance we have ~Γ = 2πW (0) = 2∆E. And
even then it takes some time before the non-Markovian character appears. That behavior which is non-
Markovian in this strict meaning of the word is something that is di�cult to achieve is in well agreement
with the discussion in part 1 (See for instance section 4.2).

Finally, we also discussed the e�ects of having an environment of �nite size: When the environmental
bath contains only a �nite number of oscillators, we no longer have a decay in the same sense. That
is, the probability of remaining in the excited state does not go to 0 as t → ∞. Instead it decreases in
some initial time interval but then suddenly changes its character and starts growing again. These sudden
changes repeat themselves with a �xed period, so that the state does not have any meaningful limit (See
�gure 6.3). We saw that this behavior could be understood as a consequence of the fact that the memory
kernel of such �nite baths are periodic.

6.9.2 Concerning the methods

In this chapter we have used several methods to analyze the behavior of this very simple system: This
includes exact diagonalization, several di�erent perturbation expansions and an exact memory equation
for the probability amplitude c(t). I will now brie�y discuss the consistency of these methods among
each other, the parameter ranges in which they are useful and which of them are useful also for more
complicated models.

The standard perturbation theory expansion, which is here only taken to the �rst order is supposed to
work for short times t. And indeed, it is in well agreement with the other methods in this range while it
deviates strongly from anything sensible at larger times. This is not unexpected. The Red�eld equation,
which is similarly the �rst order expansion of the Markovian generator described in section 5.4 works well
for arbitrarily large times t, but also as expected only when the time scale separation criterion τ1 � τ2 is
satis�ed. See for instance �gure 6.4.

We would expect that the performance of the Red�eld equation can be improved upon by going to
higher order in the Markovian generator, and in section6.8 we saw this to indeed be the case: By going
to a su�ciently high order it seems we can make the solutions converge to the exact result even when the
interaction strength is comparable to the energy range ∆E. Or that is, when τ1 is comparable to τ2. In
fact, the only limitation of this Markovian expansion seems to be that we might be dealing with a system
that is truly non-Markovian, as in �gure 6.13(e). And even then the Markovian expansion works just �ne
in the interval between 0 and 1.4.

As long as we are not dealing with a manifestly non-Markovian system it seems that to expand the
Markovian generator like this is the best approach. As long as the timescale separation criterion is
satis�ed and enormous accuracy is not required, it is even quite safe to limit the expansion to the �rst
order corresponding to the Red�eld/Lindblad equation. If we are however dealing with a system that is
manifestly non-Markovian, and we in addition wish solutions that apply beyond the short time interval
where the development remains Markovian, then we must use other methods.

One possible such method is exact diagonalization. In the particular model studied in this chapter
exact diagonalization works very well. This is certainly the case for �nite environments, and even with
continuous ones the diagonalization results form good approximations in the interval [0, 2π/δω] (See
again �gure 6.3). The main reason diagonalization works so well here is however the extreme simplicity
of the model. In particular the numerical requirements are dramatically reduced by working in the closed
subspace described in the introduction to the chapter.
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If we are dealing with a system that is more complicated than a two-level system or wish to use
more realistic models of the environment and the interactions with this, then we must expect exact
diagonalization to be very numerically demanding if any meaningful accuracy is attempted. In addition
to this, in more general models it might be much more di�cult to extract the relevant information about
the reduced system S from the solution of the total system T . This will be exempli�ed in the next
chapter. The diagonalization method is therefore not a a method that generalizes in a good way to more
complicated models. All though, as will demonstrated in the next section, other related exact methods
can sometimes be applied.

The best method for treating non-Markovian systems seems in fact to be the use of a memory equation.
Particularly this is the case when we have access to an exact memory kernel. This turned out to be a very
powerful approach, as it provided a believable treatment of a lot of di�erent interesting questions: It gave
us both a way to study the asymptotic development of the system, and a quantitative understanding of
the consequences of a �nite size environment. As long as the kernel only depends on the di�erence t− t′
it is not even particularly demanding to solve the equation numerically.

The only problem with this method is that we in general do not have access to an exact kernel. In
generalizing the method to more complicated systems we must therefore make do with an expansion of
the Nakajima Zwanzieg kernel as described in section 5.2. The results in section 6.7 however seem to
indicate that the solution given such expansions converge nicely towards the exact results (See �gure
6.12). A problem with that expansion is however that the process of calculating the contributions of
di�erent orders is very laborious, even in the case of such a very simple model as this one. This problem
can be assumed to be even larger for the Markovian expansion of form 5.36 to 5.40, as these expressions
are clearly more complicated than 5.14. If we wish to take either of these expansions to a particularly
high order, some computer automation is clearly needed.
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Chapter 7

The Open Harmonic oscillator

7.1 Description of the model

The next model we shall consider will also be a simple one, although not as simple as the previous: It is
an open quantum harmonic oscillator. That is, it is a standard quantum harmonic oscillator of the type
described in section 2.3.2, coupled to an environment. This environment will again be modeled in an as
simple a way as possible: namely as a bath consisting of more oscillators. Also, the interaction between
the oscillators will be taken to be of a type that conserves the total excitation number of the system. That
is, we again make the rotating wave approximation. This approximation is common in quantum optics[2],
which is why I will sometimes refer to this model as the quantum optical harmonic oscillator.

The open harmonic oscillator provides a simpli�ed description of quite a lot of di�erent systems. It
could represent a mechanical oscillator, such as the vibrations of a macroscopic spring or a chemical bond,
t could represent an optical mode, such as for instance in a laser or some other application of optical
cavities and it could represent a mode in some other bosonic �eld, such as a �eld of pions or other nuclear
bosons, and it could provide a highly simpli�ed model of the energy levels of an atom or molecule.

In applying the model to one of these systems, one would however have to keep in mind that the
interactions between these and their environment are in reality not number conserving: the rotating wave
approximation is only a good approximation as long as the interaction strength is weak in comparison
to the energy scale of the system. In this case this scale would be ~ω, where ω is the frequency of the
oscillator. This would typically not be the case with a mechanical oscillator, but if we are dealing with a
bosonic mode or some atomic system there is usually several orders of magnitude between these quantities.

Let us go into some more detail in describing the model. We assume that our system S is a harmonic
oscillator of frequency ω, and that it is coupled to an environment E which also consists of harmonic
oscillators. The individual oscillators of the environment we shall index with i = 1 · · ·N , N being the
number of oscillators in E and possibly∞. The frequencies of the environmental oscillators we denote ωi,
and the number, annihilation and creation operators we denote ni, ai and a

†
i . The number, annihilation

and creation operators of S we denote simply n, a and a†.

With these de�nitions we are ready to write up the Hamiltonian of the total system T = S ∪E, which
is

HT = HS +HE +HSE = ~ωn+
∑
i

(~ωini + wia
†ai + w?i aa

†
i ), (7.1)

where we have introduced the parameters wi, controlling the interaction between S and oscillator i. The
Hamiltonian 7.1 can be written in a more compact form if we make a few de�nitions: We de�ne a vector
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a having a as its 0'th component, and ai as its i'th component. We also de�ne a matrix W as

W =


~ω w1 w2 · · · wN
w?1 ~ω1 0 · · · 0
w?2 0 ~ω2 · · · 0
...

...
...

. . .
...

w?N 0 0 · · · ~ωN

 . (7.2)

With these de�nitions 7.1 can be expressed simply as

HT = a†Wa. (7.3)

In this entire section we shall assume that we have factorizing initial conditions: ρT (0) = ρ(0)⊗ρE(0).
The initial state ρE(0) of the environment we will assume to be thermal. That is we assume ρE(0) =
1
Z e
−βHE =

∏
i(1 − e−βωi)e−β~ωini . On the other hand, we assume that the oscillator S in principle can

be in any state. Although, we will of course choose a few speci�c ones as examples. In particular these
will be simple superpositions of energy-eigenstates and coherent states.

7.2 Outline of the chapter

We will begin the analysis of this chapter by applying the Red�eld equation. This of course assumes as
before that we are in the limit of weak interactions. The Red�eld equation will be applied in section 7.3.
In section 7.3.1 we will �rst derive this equation for the model 7.1 by explicitly calculating the integral in
4.30. This will be done under the assumption that the environment is in a thermal state.

In sections 7.3.2 and 7.3.3 we then temporarily specialize to temperature 0, that is an environment in
the vacuum state, and we analyze the development of the system �rst in the coherent state representation
(in section 7.3.2), and then in the energy/number representation (in section 7.3.3). We will in both
sections �rst analyze what happens to a single state in the basis, and then try to say something about
what happens to superpositions of these states.

In section 7.3.4 we depart from the T = 0 specialization, and move back to general thermal environ-
ments. These will only be analyzed in the coherent state basis. This analysis will be performed by solving
the Red�eld equation for the 'matrix elements' ρ(u, v) = 〈u| ρ |v〉, where |u〉 and |v〉 are coherent states.
In analyzing the solution we will again �rst look at what happens to a single coherent state, and then try
to see what happens to superpositions.

After this we are done with the study of the weak interaction limit, and we will proceed with solving
the system exactly. This will be done in section 7.4. This solution will be found by decoupling the
oscillators through a simple diagonalization. If it is again assumed that the environment starts out in the
vacuum state, then this solution is easily reduced to a description of the system S alone. This is done in
section 7.4.1. We will see that the solutions take on the same form as in the weak interaction limit, but
that certain parameters behave di�erently.

If however the environment starts out in a general thermal state, then the reduced description of the
system S is found only through an extensive amount of work. In section 7.4.2 this is done by integrating
over all possible environmental con�gurations, expressed in the coherent state representation. Once again
we �nd that the solutions have the same form as in the weak interaction limit, but that again certain
parameters of the solution behave di�erently. In particular, the heating of the oscillator takes on a more
complicated form than in the Red�eld result.

I mentioned that one of the things we will study is the general consequences of having superpositions
of coherent or energy basis-states. The most important such consequence is that of decoherence. This
is a new phenomenon which was not encountered in the previous model. Roughly speaking decoherence
means that superpositions of states from certain special bases will quickly approach a classical mix of
these states. This has the consequence that over long time scales the system behaves to a large degree
classically. In the �nal section, section 7.4.3 we will observe what consequences an environment of �nite
size has on decoherence. In particular we will observe how these consequences depend on temperature.
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7.3 Red�eld/Lindblad equation

7.3.1 derivation

As mentioned we �rst analyze the model in the weak interaction limit. That is, in the limit that the
interaction coe�cients wi are small when compared with the relevant energy range of the environment.
This will allow us to apply the Red�eld equation 4.30, and thus perform a simple Markovian analysis. In
order to do this, we must obviously �rst explicitly express the Red�eld equation in terms of the parameters
of our model. In particular, this means we must calculate the operator TrE [HSE(t), [HSE(t− t′), ρS(t)⊗
ρE(0)]]. The operator HSE(t) is the interaction part of the Hamiltonian, expressed in the interaction
picture. In our case this is simply

HSE(t) =
∑
i

(wia
†(t)ai(t) + w?i a(t)a†i (t)), (7.4)

where a(t) = a · e−iωt, a†(t) = a† · eiωt and the environmental operators are given by completely analogous
expressions.

In the following calculation we will �nd it useful to know the expectation values 〈ai〉 and 〈Ni〉 in a
thermal state, so we will begin by calculating these. By employing 2.39 this is done as follows:

〈ai〉 = Trai(1− e−β~ωi)e−βωini = (1− e−β~ωi)
∑
n

e−β~ωin 〈n| ai |n〉 = 0, (7.5)

〈ni〉 = Trni(1− e−β~ωi)e−βωini = (1− e−β~ωi)
∑
n

e−β~ωin 〈n|Ni |n〉

= (1− e−β~ωi)
∑
n

ne−β~ωin =
(1− e−β~ωi)e−β~ωi

(1− e−β~ωi)2
=

1

eβ~ωi − 1
. (7.6)

By a completely similar calculation we �nd that 〈a†i 〉, 〈a2
i 〉 and 〈a

2†
i 〉 will be zero just like 〈ai〉. Also,

obviously 〈aia†i 〉 = 〈a†iai + 1〉 = 〈ni〉+ 1.

Knowing this, it is easy to �nd expressions for the more general expectation values 〈aiaj〉, 〈a†iaj〉,
〈aia†j〉 and 〈a

†
ia
†
j〉. First, if i and j are not equal the expectation values factorizes. For instance 〈aiaj〉 =

〈ai〉〈aj〉 = 0. It is easily seen that all of these expectation values will be zero like this. On the other hand,
if i and j are equal, then the expressions coincide with one of the expectation values calculated above.
We thus �nd that 〈aiaj〉 and 〈a†ia

†
j〉 are always zero, whereas 〈a

†
iaj〉 = 〈ni〉δij and 〈aia†j〉 = (〈ni〉+ 1)δij .

These �ndings will be used in the calculation of a set of partial traces, all of which will be in the form
TrE [A ⊗ B, [C ⊗ D, ρ ⊗ ρE ]]. To simplify the calculations, we �rst �nd a general expression for partial
traces in this form.

TrE [A⊗B, [C ⊗D, ρ⊗ ρE ]] =TrE(A⊗BC ⊗Dρ⊗ ρE −A⊗B ρ⊗ ρE C ⊗D

− C ⊗Dρ⊗ ρE A⊗B + ρ⊗ ρE C ⊗DA⊗B)

=ACρTrBDρE −AρC TrBρED − CρATrDρEB

+ ρCATr ρEDB

=ACρ 〈BD〉 −AρC〈DB〉 − CρA 〈BD〉+ ρCA 〈DB〉 (7.7)
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With this, it is now easy to calculate

TrE [a†(t1)ai(t1), [a†(t2)aj(t2), ρ⊗ ρE ]] =

eiω(t1+t2)−iωi(t1+t2)(a†a†ρ〈aiaj〉 − a†ρa†〈aiaj〉 − a†ρa†〈ajai〉+ ρa†a†〈ajai〉) = 0, (7.8)

TrE [a(t1)a†i (t1), [a†(t2)aj(t2), ρS ⊗ ρE ]] =

eiω(t2−t1)+iωi(t1−t2)(aa†ρ〈a†iaj〉 − a
†ρa〈a†iaj〉)− aρa

†〈aja†i 〉+ ρSa
†a〈aja†i 〉) =

(〈ni〉(aa†ρ− a†ρa) + (〈ni〉+ 1)(ρa†a− aρa†))eiω(t2−t1)+iωi(t1−t2)δij , (7.9)

and by simply taking the Hermitian conjugates of these formulas we also �nd

TrE [a(t1)a†i (t1),[a(t2)a†j(t2), ρ⊗ ρE ]] = 0, (7.10)

TrE [a†(t1)ai(t1),[a(t2)a†j(t2), ρS ⊗ ρE ]] =

(〈ni〉(ρaa† − a†ρa) + (〈ni〉+ 1)(a†aρ− aρa†))eiω(t1−t2)+iωi(t2−t1)δij . (7.11)

We are now ready to calculate the sought operator TrE [HSE(t), [HSE(t − t′), ρS(t) ⊗ ρE(0)]]. By
applying the formulas 7.8 to 7.11 we �nally �nd

TrE [HSE(t), [HSE(t− t′), ρ(t)⊗ ρE ]] =

TrE

[∑
i

(wia
†(t)ai(t) + w?i a(t)a†i (t)),

[∑
i

(wia
†(t− t′)ai(t− t′) + w?i a(t− t′)a†i (t− t

′)), ρ(t)⊗ ρE

]]
=

∑
ij

(
wiwj [a

†(t)ai(t), [a
†(t− t′)aj(t− t′), ρ(t)⊗ ρE ]] + w?iwj [a(t)a†i (t), [a

†(t− t′)aj(t− t′), ρ(t)⊗ ρE ]]+

wiw
?
j [a
†(t)ai(t), [a(t− t′)a†j(t− t

′), ρ(t)⊗ ρE ]] + w?iw
?
j [a
†(t)a†i (t), [a

†(t− t′)a†j(t− t
′), ρ(t)⊗ ρE ]]

)
=

∑
i

|wi|2
(
e−i(ω−ωi)t

′
(〈ni〉(aa†ρ− a†ρa) + (〈ni〉+ 1)(ρa†a− aρa†))+

ei(ω−ωi)t
′
(〈ni〉(ρaa† − a†ρa) + (〈ni〉+ 1)(a†aρ− aρa†))

)
=

∑
i

|wi|2
(

cos (ω − ωi)t′ · (〈ni〉({aa†, ρ} − 2a†ρa) + (〈ni〉+ 1)({a†a, ρ} − 2aρa†))

+ isin (ω − ωi)t′ · (〈ni〉[ρ, aa†] + (〈ni〉+ 1)[a†a, ρ])

)
=

∫
dΩW

(
(n({aa†, ρ} − 2a†ρa) + (n+ 1)({a†a, ρ} − 2aρa†))cos (ω − Ω)t′ + i[a†a, ρ]sin (ω − Ω)t′

)
,

(7.12)

where we in the last line have de�ned the functionsW (Ω) =
∑

i |wi|2δ(Ω−ωi) and n(β,Ω) = 1/(eβ~Ω−1).
In order for the Red�eld equation 4.30 to make sense, we must have a continuum of frequencies in the

environment. Otherwise the quantity calculated above would be periodic, and to integrate over the entire
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past would be meaningless. It is however easy to take the continuum limit of 7.12, since all that happens
is that the W function becomes continuous and �nite. When this is the case we may insert 7.12 in 4.30
to get

ρ̇ =− 1

~2

∫ ∞
0

TrE [HSE(t), [HSE(t− t′), ρ(t)⊗ ρE(0)]]dt′

=(2a†ρa− {aa†, ρ}) 1

~2

∫ ∞
0

dt

∫
dΩW (Ω)n(β,Ω)cos (ω − Ω)t

+ (2aρa† − {a†a, ρ}) 1

~2

∫ ∞
0

dt

∫
dΩW (Ω)(n(β,Ω) + 1)cos (ω − Ω)t

− [a†a, ρ]
i

~2

∫ ∞
0

dt

∫
dΩW (Ω)sin (ω − Ω)t. (7.13)

The integrals in this expression can be evaluated by recognizing that they are in fact nested Fourier
integrals: We de�ne the Fourier transform F and its inverse F−1 as

(Ff) (Ω) =

∫ ∞
−∞

f(t)e−iΩtdt, (7.14)

(
F−1g

)
(t) =

1

2π

∫ ∞
−∞

g(Ω)eiΩtdΩ. (7.15)

This allows us to write∫ ∞
0

dt

∫
dΩW (Ω)n(β,Ω)cos (ω − Ω)t =

1

2

∫ ∞
0

dt

∫
dΩW (Ω + ω)n(β,Ω + ω)(eiΩt + e−iΩt)

=
1

2

∫ ∞
−∞

dt

∫
dΩW (Ω + ω)n(β,Ω + ω)e−iΩt =

1

2

∫ ∞
−∞

dtF W (Ω + ω)n(β,Ω + ω)

=
1

2
2π
(
F−1F W (Ω + ω)n(β,Ω + ω)

)∣∣
Ω=0

= πW (ω)n(β, ω). (7.16)

Obviously, in precisely the same way we also �nd∫ ∞
0

dt

∫
dΩW (Ω)(n(β,Ω) + 1)cos (ω − Ω)t = πW (ω)(n(β, ω) + 1), (7.17)

while the last integral can be simpli�ed as∫ ∞
0

dt

∫
dΩW (Ω)sin (ω − Ω)t =

1

2i

∫ ∞
0

dt

∫
dΩW (Ω + ω)(eiΩt − e−iΩt)

= − 1

2i

∫ ∞
−∞

dt sgn(t)

∫
dΩW (Ω + ω)e−iΩt = − 1

2i

∫ ∞
−∞

dt sgn(t)F W (Ω + ω)

= − 1

2i
2π
(
F−1sgn(t)FW (Ω + ω)

)∣∣
Ω=0

= πi
(
F−1sgn(t) ∗W (Ω + ω)

)∣∣
Ω=0

= πi

∫ ∞
−∞

1

−iπΩ
W (Ω + ω)dΩ = −

∫
dΩ

Ω
W (Ω + ω). (7.18)

Here we have used the facts that the inverse Fourier transform of a product is the convolution of the indi-
vidual transforms, and that the inverse Fourier transform of the sign function sgn(t) = t/|t| is 1/(−iπΩ).

If we now make the de�nitions γ = 2π/~2 ·W (ω), n = n(β, ω) and δ = − 1
~2

∫
dΩ
Ω W (Ω + ω), then we

see that 7.13 can be expressed as

ρ̇ = −iδ[a†a, ρ] + γ(n+ 1)(aρSa
† − 1

2
{a†a, ρS}) + γn(a†ρSa−

1

2
{aa†, ρS}). (7.19)
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Equation 7.19 is the Red�eld equation of the quantum optical oscillator. Being a Red�eld equation,
it is expressed in the interaction picture. It is however easy to transform it to a corresponding equation
in the Schrödinger picture: If ρS signi�es the state operator in the Schrödinger picture, ρI signi�es the
same operator in the interaction picture and U0 = e−HSt/~ is the time development operator of the
noninteracting Hamiltonian HS , then generally we have

ρ̇S =
d

dt
U0ρIU

†
0 =

d

dt
U0ρ̇IU

†
0 −

i

~
[HS , ρS ]. (7.20)

In our case we thus simply get

ρ̇S = −iω′[a†a, ρS ] + γ1(aρSa
† − 1

2
{a†a, ρS}) + γ2(a†ρSa−

1

2
{aa†, ρS}), (7.21)

where we have made the further de�nitions ω′ = ω + δ, γ1 = γ(n + 1) and γ2 = γn. We see that this
equation is in Lindblad form.

7.3.2 Vacuum environment

The open harmonic oscillator will have the simplest behavior in the case where we in addition to making
a Markovian approximation also assume that the environment has temperature zero. That is, we assume
that it is in the vacuum state. In this case n = n(β, ω) = n(∞, ω) = 0, which means that 7.21 simpli�es
to

ρ̇ = −ω′[a†a, ρ] + γ(aρa† − 1

2
{a†a, ρ}), (7.22)

This equation has particularly simple solutions in terms of coherent states. In order to examine what
happens to superpositions of several coherent states, we will solve the equation for the operators Gt |z〉 〈w|,
with |z〉 and |w〉 being coherent states and Gt being the super operator de�ned by Gt ρ(0) = ρ(t). As long
as we know the values of these operators, it is easy to �nd the development of any superposition of coherent
states by the formula

Gt

(∑
i

ci |zi〉 ·
∑
i

c?i 〈zi|

)
=
∑
ij

cic
?
jGt(|zi〉 〈zj |). (7.23)

In order to calculate Gt |z〉 〈w|, we simply solve 7.22 with the initial value |z〉 〈w|. It turns out that
the development is expressable as |z(t)〉 〈w(t)| f(t), with z(t), w(t) and f(t) complex functions. To �nd
these functions we will simply insert this ansatz into 7.22. In order to do that however, we must �nd an
expression for d

dt |z(t)〉. By employing the de�nitions 2.43 and 2.42 we can do this in the following way:

d

dz
|z〉 =

d

dz
D(z) |0〉 =

d

dz
e−

1
2
|z|2eza

†
e−z

?a |0〉

= −1

2
z?e−

1
2
|z|2eza

†
e−z

†a |0〉+ e−
1
2
|z|2a†eza

†
e−z

†a |0〉 = (−1

2
z? + a†) |z〉 , (7.24)

d

dz?
|z〉 =

d

dz?
D(z) |0〉 =

d

dz?
e−

1
2
|z|2eza

†
e−z

?a |0〉

= −1

2
ze−

1
2
|z|2eza

†
e−z

?a |0〉 − e−
1
2
|z|2eza

†
e−z

?aa |0〉 = −1

2
z |z〉 , (7.25)

d

dt
|z〉 =

dz

dt

d

dz
|z〉+

dz?

dt

d

dz?
|z〉 = (−1

2
z?ż + ża† − 1

2
zż?) |z〉 = (−Rez?ż + ża†) |z〉 . (7.26)
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Note that we here regard z and z? as being independent variables. With this we see that with our ansatz,
7.22 becomes

−Re(z?ż + w?ẇ) |z〉 〈w| f + ża† |z〉 〈w| f + ẇ? |z〉 〈w| af + |z〉 〈w| ḟ

=− iω′a†a |z〉 〈w| f + iω′ |z〉 〈w| a†af +
γf

2
(2a |z〉 〈w| a† − a†a |z〉 〈w| − |z〉 〈w| a†a). (7.27)

By collecting coe�cients that stand in front of the three di�erent operators |z〉 〈w|, a† |z〉 〈w| and |z〉 〈w| a,
we see that this equation will be satis�ed as long as the following three equations are:

−Re(z?ż + w?ẇ)f + ḟ =γfzw?, (7.28)

żf = −iω′zf − γf

2
z, (7.29)

ẇ?f = iω′w?f − γf

2
w?. (7.30)

The two lower equations have the two obvious solutions z(t) = ze−iω
′t−γt/2 and w(t) = we−iω

′t−γt/2,
which turns the top one into

γ

2
(|z|2 + |w|2)e−γtf + ḟ = γfzw?e−γt, (7.31)

or alternatively ḟ = −γ1

2 (|z|2 − 2zw? + |w|2)e−γ1t · f . Since f(0) = 1, the solution of this equation can be
expressed as

f(t) = exp

(
−γ1

2

∫ t

0
(|z|2 − 2zw? + |w|2)e−γ1t

)
= exp

(
−1

2
(1− e−γ1t)d(w, z)

)
. (7.32)

Where we have now de�ned the function d(w, z) = |w|2 − 2w?z + |z|2, which will be extensively used in
this chapter. Note that the real value of this function is Re d(w, z) = |w|2 − 2Rew?z + |z|2 = |w − z|2.

In total then, our �ndings tells us that

Gt |z〉 〈w| = |zr(t)〉 〈wr(t)| exp

(
−1

2
(1− |r(t)|2)d(w, z)

)
, with (7.33)

r(t) = e−iω
′t− γ

2
t. (7.34)

In particular, if we put z = w we get the time development of ρ(t) assuming that it is initialized in
a coherent state. In this case f(t) = 1, and we see that the oscillator remains in a pure, coherent state
at all times. To be precise, at time t it is in the state |zr(t)〉 = |ze−iω′t−γt/2〉. Obviously, in this model
the development of a coherent state is very similar to the development we would have if the oscillator was
not coupled to the environment. In that case we would instead have just |ψ(t)〉 =

∣∣ze−iωt〉. We see then,
that the only di�erence between the two cases is the shape of the orbit that the coherent state index z
follows in the complex plane. The coupling to the the environment has two e�ects on this orbit: Firstly,
the frequency is shifted by an amount δ, and secondly, the oscillations are exponentially damped out over
a timescale τ = 1/γ, so that we now have a damped harmonic oscillator.

If we do not start out in a coherent state, there will be one additional e�ect: that of decoherence.
Decoherence simply means that as the the state develops it will not remain pure. Instead it will develop
into a mixed state. To investigate this phenomenon in the oscillator model, let us assume that we start out
in a pure state that is a superposition of two di�erent coherent states |z〉 and |w〉. For instance we could
take this to be |ψ〉 = (|z〉 + |w〉)/

√
2(1 +Re 〈z|w〉). Note that 〈z|w〉 is not 0, so that the normalization

factor is not simply 1/
√

2. Since this is in any case just a constant coe�cient we may ignore it for simplicity.
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If we do this, the state operator is just ρ(0) = (|z〉+ |w〉)(〈z|+ 〈w|) = |z〉 〈z|+ |w〉 〈z|+ |z〉 〈w|+ |w〉 〈w|.
According to the equations 7.23 and 7.33 this will develop into

ρ(t) = |zr(t)〉 〈zr(t)|+ |wr(t)〉 〈wr(t)|+ exp

(
−1

2
d(w, z)1− |r(t)|2)

)
(|zr(t)〉 〈wr(t)|+ |wr(t)〉 〈zr(t)|).

(7.35)

If the exponential factor f(t) = exp
(
−1

2(1− |r(t)|2)d(w, z)
)
is largely damped out, the state will essen-

tially be |zr(t)〉 〈zr(t)|+ |wr(t)〉 〈wr(t)|, which is a mixed state corresponding to an evenly weighted mix
of the two pure states |zr(t)〉 and |wr(t)〉. It therefore makes sense to take the absolute value |f(t)| of
this factor to represent the remaining degree of coherence in the state.

This absolute value is |f(t)| = e−
1
2

(1−|r(t)|2)|z−w|2 , and we see that it depends on the decay controlling
factor r(t) as well as the distance |z−w| between the coherent state indexes z and w in the complex plane.

It is easily seen that |f(t)| will be damped when t increases. It will limit towards the quantity e−
1
2
|z−w|2 ,

which becomes exponentially smaller when the distance between z and w is increased. We should note
that this limit is in fact the absolute value of the overlap between the states |z〉 and |w〉.

Another e�ect of increasing this distance is that the rate by which the damping occurs will grow. In
fact this rate will be given by γD = γ

2 |z − w|
2, which can be demonstrated by noting that for t � 1/γ

|f(t)| can be approximated as |f(t)| = e−
1
2

(1−e−γt)|z−w|2 ≈ e−
1
2

(1−(1−γt))|z−w|2 = e−
1
2
γ|z−w|2t. To illustrate

these e�ects, |c(t)| is shown for a few di�erent distances |z − w| in �gure 7.1.

Figure 7.1: Plot of the quantity |c(t)| against γ1t. |z − w| = 0.5, 1, 2, 3 and 5 are shown as the blue,
green red, cyan and purple curves respectively. Note that the function falls of faster and stabilizes at
lower values with increasing |z − w|.

7.3.3 Vacuum environment case expressed in energy basis

In the preceding we found an expression for the time development of the quantum optical harmonic
oscillator expressed using coherent states. Another common basis used in analyzing harmonic oscillators
is the energy, or n-basis. To analyze the development using this basis could be interesting also in this
case. In this subsection we will therefore attempt to convert the formulas in the preceding to expressions
in the n-basis. More precisely, we will calculate the operator Gt |n〉 〈m|, where |n〉 and |m〉 are energy
states.

This could also have been done by deriving a set of coupled di�erential equations for the matrix
elements ρnm from 7.22, and then solving these. This is done in [2] and strictly speaking this is much
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simpler than the method to be employed here. However, we shall �nd that the expression 7.33 actually
generalizes to the exact solution of this model (although r(t) no longer has the same simple form). Thus,
if we instead derive the expressions for Gt |n〉 〈m| from this equation, then this result will also generalize
to the exact solution. Therefore this is what I will do.

The �rst thing we should do then, is to express the initial value |n〉 〈m| in terms of coherent states.
This is easy.

|n〉 〈m| =
∫
d2z

π
|z〉 〈z| |n〉 〈m|

∫
d2w

π
|w〉 〈w| =

∫
d2zd2w

π2

z?nwm√
n!m!

e−
1
2

(|z|2+|w|2) |z〉 〈w| , (7.36)

where we have used the formula 2.46 for the overlap between a coherent state and an n-basis state.

Due to the linearity of the time development, the operator at time t can now be found easily from
7.35. This becomes

Gt |n〉 〈m| =
∫
d2zd2w

π2

z?nwm√
n!m!

e−
1
2

(|z|2+|w|2)− 1
2

(1−|r|2)d(w,z) |zr〉 〈wr| . (7.37)

We then proceed to calculate the quantity 〈k| (Gt |n〉 〈m|) |l〉, with |k〉 and |l〉 new energy states:

〈k| (Gt |n〉 〈m|) |l〉 =

∫
d2zd2w

π2

z?nwm√
n!m!

e−
1
2

(|z|2+|w|2)− 1
2

(1−|r|2)d(w,z)〈k|zr〉〈wr|l〉

=

∫
d2zd2w

π2

z?nwm(zr)k(wr)?l√
n!m!k!l!

exp
(
−|z|2 − |w|2 + w?z(1− |r|2)

)
=

rkr?l√
n!m!k!l!

∫
d2w

π
wmw?le−|w|

2

∫
d2z

π
z?nzke−|z|

2
e(1−|r|2)w?z

. (7.38)

The inner integral above may be re-expressed as a complex curve integral in the following way:∫
d2z

π
z?nzke−|z|

2
e(1−|r|2)w?z =

∫
dRRdθ

π
|z|2nzk−ne−|z|2e(1−|r|2)w?z =

∫
dR

π
R2n+1e−R

2

∫
dθzk−ne(1−|r|2)w?z =

∫
dR

π
R2n+1e−R

2

∮
dz

iz
zk−ne(1−|r|2)w?z, (7.39)

where the curve integral is over a circle of radius R centered in the origin, and dθ = dz/iz since dz =
d(Reiθ) = idθReiθ = idθz.

The curve integral may be calculated using the complex analysis formula

f (n)(w) =
1

2πi

∮
f(z)dz

(z − w)n+1
, (7.40)

which tells us that∮
dz

iz
zk−ne(1−|r|2)w?z = 2πi

dn−k

dzn−k
e(1−|r|2)w?z|z=0 = 2πi((1− |r|2)w?)n−k (7.41)

if n ≥ k, and otherwise zero. The R part of the integral is a simple Gaussian integral, and easy to
calculate. In total, we �nd that∫

d2z

π
z?nzke−|z|

2
e(1−|r|2)w?z =

n!

(n− k)!
((1− |r|2)w?)n−k. (7.42)
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With this, 7.38 becomes

〈k| (Gt |n〉 〈m|) |l〉 =
rkr?l√
n!m!k!l!

∫
d2w

π
wmw?le−|w|

2 n!

(n− k)!
((1− |r|2)w?)n−k

=
n!

(n− k)!

rkr?l(1− |r|2)n−k√
n!m!k!l!

(∫
d2w

π
|w|2me−|w|2wl+n−m−k

)?
. (7.43)

The integral in this expression may be calculated in precisely the same manner as above, and what we
end up with is that it is m! precisely when l + n−m− k = 0, and otherwise zero. Finally then, we get

〈k| (Gt |n〉 〈m|) |l〉 =

√
m!n!

k!l!

(1− |r|2)n−k

(n− k)!
rkr?lδn−k,m−l =

√(
n

k

)(
m

l

)
(1− |r|2)n−krkr?lδn−k,m−l,

(7.44)

which applies when n ≥ k (and m ≥ l). If this is not the case 〈k| (Gt |n〉 〈m|) |l〉 = 0.
Having now completed our calculations, we may turn to the analysis of our �ndings. The �rst thing

we will examine is the time development of the oscillator given that it starts out in the pure state |n〉 〈n|.
The matrix elements of the state operator may easily be found from 7.44. They are

〈k| ρ(t) |l〉 =

(
n

k

)
|r|2k(1− |r|2)n−kδkl, (7.45)

when n ≥ k, and otherwise zero.
The �rst thing we should note is that this ρ(t) is diagonal in the n-basis. This means that if the

oscillator starts out in an n-basis state, then it will remain a statistical mix of such states at all later
times. This doesn't quite generalize the result from the previous subsection, where it was found that
when starting out in a coherent state the oscillator remains a pure coherent state at all later times. It is
however somewhat similar: Common in both of these cases is that the development can be described in
purely classical terms.

In the case of coherent states we are dealing with a deterministic process, where at time t a particular
coherent state is chosen deterministically from a coherent state at time 0. Whereas in the case of n-basis
states we are obviously dealing with an indeterministic process, since we can not know with certainty
what n state we will have at later times. The point is however that it is a classical indeterministic process,
as all information is contained in the probabilities for being in di�erent n-states. Both cases may thus
be represented by a classical probability distribution, the only di�erence being that in the coherent state
case the distribution would be a delta function.

Knowing then that the diagonal of ρ(t) represents a simple classical probability distribution, we turn
to examining the form of this distribution. It is easily seen that this is in fact a binomial distribution:
P (k) =

(
n
k

)
pk(1 − p)n−k, with p = |r|2. This describes the probability of k positive results among n

independent tests, where the probability of a positive result in a single test is p = |r|2.
The interpretation of this result comes easiest if we assume that the oscillator describes a mode in a

bosonic �eld, and that the damping represents decay of the bosonic particles. The oscillator being in the
|n〉 state at time 0 then means that the mode initially contains n particles, and the P (k) distribution is
the probabilities of the mode containing k particles after time t. Let us assume that the probability of a
single particle decaying is 1 − |r|2. In the Markovian limit this would be 1 − e−γt, which would simply
mean that the decay rate of the particles is γ. If the mode contains k particles, then this means that
precisely k particles have not decayed. So let us then de�ne not decaying as the positive result. This
does indeed have probability |r|2, which means the probability of k particles not decaying is described by
precisely the binomial distribution above.

Having found an easily interpretable expression for the probability distribution, let us now turn to the
question of decoherence. To examine this, we assume that the oscillator starts out in a superposition of
several n-states, instead of just one as in the previous. The state operator will then have non-diagonal
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matrix elements, and these are the ones that are of relevance to decoherence. In speci�c, let us assume
the oscillator starts out in the state |n〉+|m〉√

2
. This makes the state operator ρ(0) = 1

2(|n〉 〈n| + |n〉 〈m| +
|m〉 〈n|+|m〉 〈m|), which means ρ(t) = 1

2(Gt(|n〉 〈n|)+Gt(|n〉 〈m|)+Gt(|m〉 〈n|)+Gt(|m〉 〈m|)). As discussed
the operators Gt(|n〉 〈n|) and Gt(|m〉 〈m|) will be purely diagonal. This means that the only non-diagonal
contributions will come from Gt(|n〉 〈m|) and its Hermitian conjugate Gt(|m〉 〈n|).

Let us assume that m > n. Then since in order for 7.44 to be non-zero we must have n = k and m = l,
clearly we must have l > k to get a non zero result in this expression. Thus it is clear that Gt(|n〉 〈m|)
contributes only to the elements above the diagonal (l > k), while Gt(|m〉 〈n|) contributes only to the ones
below it (l < k). This again means that in the case described, an element above the diagonal will be given
by 7.44, and can be rewritten

〈k| ρ(t) |l〉 =

√(
n

k

)(
m

l

)
|r|2k(1− |r|2)n−kr?l−kδn−k,m−l. (7.46)

We see that the only time dependent di�erence between these quantities and the binomial probability
distribution of 7.45 is the factor r?l−k. Since l > k above the diagonal this factor means that the non
diagonal elements are damped relative to the probability distribution. The strength of the damping
obviously grows with increasing |k − l| = |n −m|, and in the Red�eld solution in particular it is given
by e−|k−l|γt. This damping of non-diagonal matrix elements is illustrated in �gure 7.2, where the state
matrix is shown as a color plot at di�erent times given the initial pure state |ψ〉 = (|25〉+ |49〉)/

√
2.

As a last remark we note that this damping of non diagonal elements means that a superposition
of several n-states will approach a classical mix of such states as time progresses. This is a further
generalization of our �ndings in the previous section, concerning superpositions of coherent states. In
both cases we have found that not only will a classical mix of n-basis or coherent states remain a mix of
such states, but a state which is not a such a mix will rapidly limit towards something which is reasonably
close to one. This ads credibility to the idea that the oscillator may to good approximation be described
in classical terms when using these bases.

7.3.4 Thermal environment

When the environment is not in the vacuum state, we must solve the full equation 7.21. We will then not
be able to express the solution in such a simple form as 7.33, since no states will remain pure over the
time development. Instead we shall solve the equation for the 'matrix elements' 〈u| ρ |v〉, with |u〉 and |v〉
coherent states. Let us denote these quantities ρ(u, v). We would like to derive a di�erential equation for
ρ(u, v).

In order to do this we must �rst reexpress the action of a creation operator a† on a coherent state
in terms of derivatives. This can be done by comparison with 7.24. From that we see that in fact
a† |z〉 = (1

2z
? + ∂

∂z ) |z〉. In a very much similar calculation we would also �nd that 〈z| a = (1
2z + ∂

∂z? ) 〈z|.
This makes us able to now calculate

ρ̇(u, v) = 〈u| ρ̇ |v〉 = − iω
′

~
〈u| (a†aρS − ρSa†a) |v〉+ γ1 〈u| (aρSa† −

1

2
a†aρS −

1

2
ρSa

†a) |v〉

+ γ2 〈u| (a†ρSa−
1

2
aa†ρS −

1

2
ρSaa

†) |v〉

=− iω′

~
(u?(

1

2
u+

d

du?
) 〈u| ρS |v〉 − v 〈u| ρS(

1

2
v? +

d

dv
) |v〉)

+ γ1((
1

2
u+

d

du?
) 〈u| ρS(

1

2
v? +

d

dv
) |v〉 − 1

2
u?(

1

2
u+

d

du?
) 〈u| ρS |v〉 −

1

2
〈u| ρSv(

1

2
v? +

d

dv
) |v〉)

+ γ2(u?v 〈u| ρS |v〉 − 〈u| ρS |v〉 −
1

2
u?(

1

2
u+

d

du?
) 〈u| ρS |v〉 −

1

2
〈u| ρSv(

1

2
v? +

d

dv
) |v〉)
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(a) γt = 0 (b) γt = 0.05

(c) γt = 0.2 (d) γt = 0.4

(e) γt = 0.5 (f) γt = 1.0

Figure 7.2: Plot of n-basis state matrix for di�erent times t in a typical time development of a damped
harmonic oscillator. The colors represents the magnitude of the matrix elements. Note how the non
diagonal matrix elements are damped out with time relative to the diagonal ones, and how this happens
faster for elements that are farther from the diagonal. By γt = 0.5 non diagonal elements are no longer
visible. Note also the behavior of the diagonal elements, which represents the probability of �nding the
oscillator in a particular n-state.
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=− (
γ1 + γ2

2
+ iω)u?(

1

2
u+

∂

∂u?
)ρ− (

γ1 + γ2

2
− iω)v(

1

2
v? +

∂

∂v
)ρ

+ γ1(
1

2
u+

∂

∂u?
)(

1

2
v? +

∂

∂v
)ρ+ γ2(u?v − 1)ρ (7.47)

We are as before interested in the operators Gt |z〉 〈w|, which we will �nd by solving 7.21 with the
initial value |z〉 〈w|. The initial value of ρ(u, v) will then be ρ(u, v) = exp(−1

2(d(u, z) + d(w, v))). We will
make an ansatz to the solution which is somewhat similar to this:

ρ(t, u, v) = A(t)exp

(
−1

2
B(t)(d(u, z(t)) + d(w(t), v)) + C(t)d(u, v)

)
, (7.48)

where A(0) = B(0) = 1, C(0) = 0, z(0) = z and w(0) = w.
Inserting this ansatz into equation 7.47, then after an extensive amount of algebra we end up with the

following eight equations which must be satis�ed for the ansatz to be a solution.

Ȧ

A
+

1

2
Ḃ(|z|2 + |w|2)− 1

2
B(z?ż + w?ẇ + ż?z + ẇ?w) = −2γ1C + γ1B

2w?z − γ2 (7.49)

B −B2 + 2BC = 0 (7.50)

Ḃz +Bż = −(
γ1 + γ2

2
+ iω)Bz − 2γ1BCz (7.51)

Ḃw? +Bẇ? = −(
γ1 + γ2

2
− iω)Bw? − 2γ1BCw

? (7.52)

1− 2B + 4C +B2 − 4BC + 4C2 = 0 (7.53)

− 2Ċ = 2(γ1 + γ2)C + 4γ1C
2 + γ2 (7.54)

− 1

2
Ḃ + Ċ = −(

γ1 + γ2

2
− iω)(

1

2
− 1

2
B + C) + γ1(−C +BC − 2C2) (7.55)

− 1

2
Ḃ + Ċ = −(

γ1 + γ2

2
+ iω)(

1

2
− 1

2
B + C) + γ1(−C +BC − 2C2) (7.56)

We quickly see that the only interesting solution to 7.50 is B = 1+2C, which also makes the equations
7.53, 7.55 and 7.56 immediately satis�ed. Note that with this the number of remaining equations becomes
equal to the number of remaining unknowns, which is something that should increase our faith in the
ansatz.

Let us then turn to equation 7.54. This equation is expressed purely in terms of the unknown C, but
let us reexpress it in terms of B. This gives us

Ḃ = −2(γ1 + γ2)
B − 1

2
+ 4γ1

(B − 1)2

4
− γ2

= −(γ1 + γ2)B + γ1 + γ2 − γ1(B2 − 2B + 1)− γ2

= (γ1 − γ2)B − γ1B
2. (7.57)

Keeping in mind that γ1−γ2 = γ (see the de�nitions below 7.21)and that B(0) = 1 we solve this separable
equation as follows: ∫ t

0
dt = t =

∫ B

1

dB

(γ − γ1B)B
=

1

γ

∫ B

1

(
1

B
− γ1

γ1B − γ

)
dB

=
1

γ
(lnB − ln (γ1B − γ) + ln γ2) =

1

γ
ln

B
γ1

γ2
B − γ

γ2

. (7.58)
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From this it follows easily that eγt = B
γ1
γ2
B− γ

γ2

, and then �nally that

B =

γ
γ2
eγt

1 + γ1

γ2
eγt

=
γ

γ1 − γ2e−γt
=

1

1 + n(1− e−γt)
=

1

1 + χ
, (7.59)

where we have made the de�nition χ = n(1− e−γt). We can now also �nd an explicit expression for C:

C =
B − 1

2
=

1

2

(
1

1 + χ
− 1

)
= −1

2

(
χ

1 + χ

)
(7.60)

Next, we turn to equations 7.51 and 7.52. If we take the conjugate of 7.52, and then exchange w for z,
we get 7.51. This means we really only need to solve one of these equations, so let us pick 7.51. Inserting
C = B−1

2 as well as Ḃ = (γ1 − γ2)B − γ1B
2 from 7.57, and then solving for ż turns this equation into

ż = −1

2
(γ1 + γ2 + 2iω)z + γ1z + (γ2 − γ1)z = −1

2
(γ1 − γ2 + 2iω)z = −(

γ

2
+ iω)z. (7.61)

Given that z(0) = z, we �nd that the solution must be z(t) = ze−(γ/2+iω)t. From the argument above
concerning the similarity between 7.51 and 7.52, we conclude also that w(t) = we−(γ/2+iω)t. Note that
the behavior of z(t) and w(t) is completely identical to what we found from solving 7.29 and 7.30 in the
vacuum case.

Finally we turn to the �rst equation, 7.49. Inserting the obtained results 2C = B−1, ż = −(γ2 + iω)z,

ẇ = −(γ2 + iω)w as well as B2 = γB−Ḃ
γ1

from 7.57, we end up with the equation

Ȧ

A
=

1

2
Ḃ(|z|2 + |w|2)− 1

2
B(

γ

2
+ iω +

γ

2
− iω)(|z|2 + |w|2)− γ1(B − 1) + γ1w

?z
γB − Ḃ
γ1

− γ2

=
1

2
(Ḃ − γB)(|z|2 − 2w?z + |w|2)− γ1B + γ =

1

2
(Ḃ − γB)d(w, z) +

γB − γ1B
2

B

=
Ḃ

B
+

1

2
(Ḃ − γB)d(w, z). (7.62)

We then integrate this equation from t = 0 to t to get

lnA = lnB +
1

2

∫ t

0
(Ḃ − γB)d(w(t), z(t))dt = lnB +

1

2
d(w, z)

∫ t

0
(Ḃ − γB)e−γtdt

= lnB +
1

2
d(w, z)(Be−γt − 1), (7.63)

so that

A = Bexp

(
1

2
(Be−γt − 1)d(w, z)

)
=

1

1 + χ
exp

(
1

2
(
e−γt

1 + χ
− 1)d(w, z)

)
. (7.64)

Having now found expressions for all our ansatz parameters, we can �nally set up the full solution. It
is

ρ(t, u, v) =
1

1 + χ
exp

(
−1

2

1

1 + χ
(d(u, zr) + d(wr, v) + χd(u, v)) +

1

2
(
|r|2

1 + χ
− 1)d(w, z)

)
, (7.65)

with χ = n(1− e−γt), (7.66)

and r = e−( γ
2

+iω)t. (7.67)
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In our analysis of this solution, let us begin by setting w = z, so that it actually corresponds to a valid
state by it self. What we then get is

ρ(t, u, v) =
1

1 + χ
exp

(
−1

2

1

1 + χ
(d(u, zr) + d(zr, v) + χd(u, v))

)
. (7.68)

To interpret this expression it might help to calculate 〈u| ρ |v〉 for a thermal state ρ = (1−e−β~ω)e−β~ωa
†a.

Let us do this:

〈u| ρ |v〉 = (1− e−β~ω)
∑
n

e−β~ωn〈u|n〉〈n|v〉

= (1− e−β~ω)
∑
n

e−β~ωn
1

n!
(u?v)ne−

1
2

(|u|2+|v|2)

= (1− e−β~ω)e−
1
2

(|u|2+|v|2)exp(e−β~ωu?v)

= (1− e−β~ω)exp

(
−1

2
((1− e−β~ω)(|u|2 + |v|2) + e−β~ωd(u, v))

)

= (1− e−β~ω)exp

(
−1

2
((1− e−β~ω)(d(u, 0) + d(0, v) +

d(u, v)

eβ~ω − 1
))

)

=
1

1 + n
exp

(
−1

2

1

1 + n
(d(u, 0) + d(0, v) + nd(u, v))

)
, (7.69)

where as before n = 〈n〉 = 1/(eβ~ω − 1). As we see, this expression is very similar to 7.68. The only
di�ernece is that we must replace n with χ and shift the distribution by zr in complex plane. We conclude
from this that 7.68 in fact represents nothing but a thermal state with 〈n〉 = χ which is translated out
by a coherent state index zr, so as to be centered around this value instead of the energy minimum at
z = 0. Note also that χ approaches n, the number expectation value corresponding to the environmental
temperature, as t→∞. This means that in this limit S will be in a thermal state with temperature equal
to that of the environment, which is physically reasonable.

With this we can attempt to describe in words what happens to an oscillator in a coherent state when
coupled to a thermal heat bath: The state will spiral inwards toward the origin of the complex plane,
following precisely the same path as in the vacuum environment case. This damping of the oscillator will
also happen just as fast as in the vacuum case. The only new e�ect introduced by �nite temperature,
is that the oscillator will be gradually heated in parallel with the damping. Starting out at zero, the
temperature will grow to approach that of the environment.

It might be interesting to see precisely how this temperature changes with time. That is, to express
the e�ective temperature as a function of time. Since we already know the dependence of χ, which is a
sort of e�ective n, on time, this will not be di�cult. Setting 〈n〉 = χ = 1/(eβ~ω − 1), we solve for β to get

β~ω = ln

(
1 +

1

χ

)
= ln

(
1 +

1

n(1− e−γt)

)

= ln

(
1 +

eβE~ω − 1

1− e−γt

)
= ln

(
eβE~ω+γt − 1

eγt − 1

)
, (7.70)

T =
1

kBβ
=

~ω
kB

1

ln ((eβE~ω+γt − 1)/(eγt − 1))
, (7.71)

where 1/kBβE = TE now denotes the temperature of the environment. In ranges where ~ω
kBTE

� 1− e−γt

this result may be expanded as T = (1− e−γt)TE , which is the classical limit and follows newtons law of
heating. The behavior when this condition is not met is shown in �gure 7.3
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(a) Temperature growth, long time behavior. (b) Temperature growth, short time behavior.

Figure 7.3: Temperature as a function of time for harmonic oscillator coupled to heat bath at di�erent
environmental temperatures. These temperatures are kBT

~ω = 0.2, 1.0, 2.0 and 4.0. The oscillators tem-
perature approaches that of the environment for large times, and mostly it seems to follow the expected
classical curve T = (1 − e−γt)TE . For very small times however, it deviates from this by an almost in-
stantaneous rise in temperature. This is a non classical quantum result, which is due to the exponentially
small heat capacity of a quantum harmonic oscillator at low temperatures.

Next, we again turn to examining decoherence, so that we can see whether �nite temperature makes
any changes to this. Obviously, the fact that we always end up in a thermal state means that no state
remains pure, so in this sense we always have decoherence. This is of course something new relative to the
vacuum situation, where a coherent state would remain pure. There is however another side to decoherence
which we have looked at in particular in the previous subsections: The tendency of a superposition of
states from a particular basis to approach a classical mix of states from this basis. This is something
which would be interesting to look at also in the case of �nite temperature, and in particular we would
like to see if this happens in the coherent state basis. Obviously this will happen in the end, since all
states will limit towards the equilibrium state. So what we are actually interested in is whether it happens
considerably faster than the approach to equilibrium.

We found above that a coherent state after time t will be in a translated thermal state. Such a thermal
state can indeed be expressed as a classical mix of coherent states. The question is however whether a
pure state which is initially not a coherent state will limit towards such a mix (over fast timescales). Let
us therefore once again assume that the oscillator begins in a superposition proportional to |z〉+ |w〉. As
before the state operator will be proportional to |z〉 〈z|+ |w〉 〈z|+ |z〉 〈w|+ |w〉 〈w|, which with time will
develop into Gt(|z〉 〈z|) + Gt(|z〉 〈w|) + Gt(|w〉 〈z|) + Gt(|w〉 〈w|).

The di�erence between this state and and what we would get if we instead started out with a classical
mix of the two states |z〉 and |w〉 is in the term Gt(|z〉 〈w|) and its Hermitian conjugate. Since we know
that a classical mix of coherent states will remain a classical mix of coherent states, these terms are all that
separates ρ(t) from a such a classical mix. What we are essentially interested in then, is some quantity
which indicates the magnitude or 'strength' of the term Gt(|z〉 〈w|). One quantity which would do this
job, is the maximal value of the function f(u, v) = | 〈u| Gt(|z〉 〈w|) |v〉 |. This quantity, which we shall
denote c(t) is the one we will use. This is because it can be calculated easily from 7.65, and because it is
a direct generalization of the quantity |f(t)| used in the vacuum case analysis. To see this we calculate
〈u| Gt(|z〉 〈w|) |v〉 = f(t)〈u|z〉〈w|v〉, of which the maximal absolute value is indeed |f(t)|.

In the �nite temperature case we �nd from 7.65 the absolute value of 〈u| Gt(|z〉 〈w|) |v〉 to be

f(u, v) =
1

1 + χ
exp

(
−1

2

1

1 + χ
(|u− zr|2 + |wr − v|2 + χ|u− v|2) +

1

2
(
|r|2

1 + χ
− 1)|z − w|2

)
. (7.72)
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The maximal value is obviously determined by the terms containing u and v, that is |u − zr|2 + |wr −
v|2 + χ|u− v|2. The maximal value of this can be found from di�erentiating, and setting the derivatives
to zero. We should di�erentiate both with respect to u and v themselves and their conjugates, which
would result in four equations. However, these equation will be pairwise conjugate, so really we only need
di�erentiate with respect to for instance u? and v. This results in the two equations

(1 + χ)u− rz − χv = 0, (7.73)

(1 + χ)v − rw − χu = 0. (7.74)

Being simple linear equations, these are easy to solve and their solutions are

u =
wr + χ(z + w)r

1 + 2χ
, (7.75)

v =
zr + χ(z + w)r

1 + 2χ
. (7.76)

From this we calculate

u− zr =
wr + χ(z + w)r − zr − 2χzr

1 + 2χ
=
χr(z − w)

1 + 2χ
, (7.77)

v − wr =
zr + χ(z + w)r − zr − 2χwr

1 + 2χ
=
χr(w − z)

1 + 2χ
, (7.78)

u− v =
wr + χ(z + w)r − zr − χ(z + w)r

1 + 2χ
=
r(z − w)

1 + 2χ
, (7.79)

and inserting this in 7.72, we get

c(t) = exp

(
−1

2

|r|2

1 + χ

(
2 · χ2

(1 + 2χ)2
+ χ · 1

(1 + 2χ)2
− 1

)
|z − w|2 − 1

2
|z − w|2

)

= exp

(
−1

2

|r|2

1 + χ

(
χ

1 + 2χ
− 1

)
|z − w|2 − 1

2
|z − w|2

)

= exp

(
−1

2

(
1− |r|2

1 + 2χ

)
|z − w|2

)
(7.80)

where the factor 1/(1 +χ) has been excluded in order to make the expression equal to 1 when z = w. We

note that for T = χ = 0, the expression does indeed reduce to c(t) = e−
1
2

(1−|r|2)|z−w|2 , which was what
we found in the vacuum case.

In the limit of weak interactions in particular, we get from 7.66 and 7.67 that

c(t) = exp

(
−1

2

(
1− e−γt

1 + 2n(1− e−γt)

)
|z − w|2

)
. (7.81)

Examples of the development of c(t) can be seen in �gure 7.4. In addition to this, it is interesting to
analyze the behavior of the function in the limits where γt � 1 or γt � 1. It is easily seen that when
γt � 1 c(t) → e−

1
2
|z−w|2 , the overlap of the states |z〉 and |w〉. Seemingly, �nite temperature brings

nothing new here relative to the vacuum case. In the γt� 1 limit however, there is a di�erence. Or more
precisely, in the limit where both γt � 1 and nγt � 1. If this is the case, 7.82 may be expanded in the
following way:

c(t) ≈ exp

(
−1

2
(1− (1− γt)(1− 2nγt)) |z − w|2

)
≈ exp

(
−1

2
(1 + 2n)γt|z − w|2

)
. (7.82)

We note that for �nite temperature, the instantaneous decay rate of the coherence is −1
2(1+2n)γ|z−w|2,

which is larger by a factor 1 + 2n = eβ~ω+1
eβ~ω−1

than the vacuum result. In the high temperature limit this
factor is 2kBT/~ω.
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Figure 7.4: Plot of the c(t) against γ1t. All graphs have |z − w| = 2, but the temperature is varied.
The blue, green, red, cyan and purple curves are respectively calculated with kBT/~ω = 0, 0.5, 1.0, 2.0
and 5.0. Note that that all curves seem to limit towards the same value, but that the initial decay rate
increases with temperature.

7.4 Exact solution

Until now, all calculations of time development have been made using the Red�eld/Lindblad equation,
and so they are only valid in the weak interaction limit. In this subsection we will therefor solve the model
de�ned by Hamiltonian 7.1 exactly. This will allow us to generalize our results, as well as to analyze how
well the Red�eld approximation actually performs in the weak interaction limit. We will �nd that in fact
the formulas 7.33 and 7.65 generalize to the exact solution. The only thing new is that the parameters r
and χ are no longer given by the same simple exponential expressions.

Physically this generalization is not very interesting, as we have already assumed weak interactions
at the level of the Hamiltonian: There it was assumed that the interactions are weak compared to the
oscillators energy scale ~ω, which was what allowed us to employ the rotating wave approximation. The
Red�eld equation demands the interactions to be weak in comparison to the environmental energy range.
Clearly then, the particular generalization to be made here would only be interesting in cases where the
interactions are comparable to the environmental energy scale but not to that of the system S. Typically
the environmental energy range is much larger than that of S, so that this is impossible.

Generalizing the results of this model to strong interactions is thus not interesting due to a desire
to compare it with realistic physical systems, but rather because we can study the performance of the
Red�eld approximation and because we may get some hints of the general consequences of moving away
from the weak interaction limit. Also, this model has an advantage in that the exact solution follows from
a very simple diagonalization approach. In the literature one can �nd several treatments of more realistic
strongly interacting oscillators, such as for instance the famous Cadeira Legett model[2][3].

7.4.1 Coherent state environment

Let us begin by assuming that the total system T = S ⊗ E is initially in the state |z〉 = |z〉 ⊗
∏
i |zi〉,

where |z〉 is a coherent state of S, |zi〉 is a coherent state of the environmental oscillator i and z is a
vector with z as its zeroth component and zi as its i'th component. The time development will remain
in the same form |z(t)〉, as can be shown by inserting this ansatz in the Schrodinger equation. The time
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derivative is found from 7.26:

d

dt
|z〉 =

∑
i

∏
j 6=i
|zj〉

⊗ d

dt
|zi〉 =

∑
i

∏
j 6=i
|zj〉

⊗ (−Rez?i żi + żia
†
i ) |zi〉 = (−Rez†ż + a†ż) |z〉 .

(7.83)

Inserting this and the Hamiltonian 7.3 in the Schrodinger equation, we get

~i(−Rez†ż + a†ż) |z〉 = a†Wa |z〉 = a†Wz |z〉 , (7.84)

where the matrix W is de�ned in 7.2. This equation will be satis�ed if

Rez†ż = 0, and (7.85)

ż = − i
~
Wz. (7.86)

The lower of these equations actually implies that z†ż = −iz†Wz/~, which is purely imaginary when
W is a Hermitian matrix. Thus, the upper equation is in fact implied by the lower, and all we need to do
is to �nd a solution to this. This is simply

z(t) = e−iWt/~z = R(t)z, (7.87)

where we have de�ned R(t) = e−iWt/~. Note that the procedure to calculate R(t)z would typically be to
express z in terms of eigenvectors of W . Thus, what we are essentially doing in 7.87 is to decouple the
oscillators by diagonalization.

The time development of the total system T can now be expressed as

U(t) |z〉 = |z(t)〉 = |R(t)z〉 = |z(t)〉 ⊗ |zE(t)〉 , (7.88)

where |zE(t)〉 is a coherent state of the environment alone. Direct expressions for z(t) and zE(t) can be
found if we decompose the matrix R(t) in the following way:

R =

(
r r†0E

rE0 RE

)
, (7.89)

which makes (
z(t)
zE(t)

)
=

(
r r†0E

rE0 RE

)(
z
zE

)
=

(
rz + r†0EzE
zrE0 +REzE

)
. (7.90)

Knowing the development of T , we can now turn to the development of the reduced system S. Taking
Gt to be de�ned by 3.2 and applying 7.88 we �nd that in the case that E starts out in some coherent state
|zE〉 we will have

Gt |z〉 〈w| = TrEU(t) |z〉 〈w|U(t)† = TrE |z(t)〉 〈w(t)| ⊗ |zE(t)〉 〈wE(t)|

= |z(t)〉 〈w(t)| · 〈wE(t)|zE(t)〉. (7.91)

The inner product 〈wE(t)|zE(t)〉 may be calculated as follows

〈wE(t)|zE(t)〉 =
∏
i

〈wi(t)|z(t)〉 =
∏
i

exp

(
−1

2
(|wi(t)|2 − 2w?i (t)zi(t) + |zi(t)|2)

)

= exp

(
−1

2
(|wE(t)|2 − 2w†E(t)zE(t) + |wE(t)|2)

)
(7.92)
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This can be re-expressed by noting that R is a unitary matrix, so that

w?(t)z(t) + w†E(t)zE(t) = w†(t)z(t) = w†R†(t)R(t)z = w†z = w?z + |zE |2. (7.93)

This means that

w†E(t)zE(t) = |zE |2 + w?z − w?(t)z(t), (7.94)

so that in fact

〈wE(t)|zE(t)〉 = exp

(
−1

2
(|wE(t)|2 − 2w†E(t)zE(t) + |wE(t)|2)

)

= exp

(
−1

2
(|zE |2 + |w|2 − |w(t)|2 − 2|zE |2 − 2w?z + 2w?(t)z(t) + |zE |2 + |z|2 − |z(t)|2)

)

= exp

(
−1

2
(d(w, z)− d(w(t), z(t)) )

)
(7.95)

With this we can �nally write down

Gt |z〉 〈w| = |z(t)〉〈w(t)| · exp

(
−1

2
(d(w, z)− d(w(t), z(t)) )

)
. (7.96)

In particular, if the environment is initially in the vacuum state so that zE = 0, 7.90 tels us that

Gt |z〉 〈w| = |zr〉 〈wr| · e−
1
2

(1−|r|2)d(w,z). (7.97)

This expression is seen to be completely identical to 7.33. The only di�erence is that r(t) is no longer
given by the simple Markovian formula r = e−

γ
2
t−iωt.

So how will the quantity r(t) develop in the exact solution? Well, in this case r(t) is given as the
00 component of the matrix R(t) = e−iWt/~. By comparing the Hamiltonian of this model with the
two-level model of the previous section, one will �nd that the matrix W has precisely the same form as
the matrix representation of the Hamiltonian 6.1 of the previous chapter. If the corresponding parameters
are chosen to be equal, these two matrices will even be identical. This also means that the matrix R(t)
will be identical to the matrix representation of the time development operator U(t) of this model, and
in particular the 00 components of these matrices will be equal.

With other words r(t) will be identical to the quantity which in the previous section was denoted
c(t), and which there was the primary object of investigation. Because we have already devoted an entire
section to the analysis of this quantity, we will not say much about it here. The only thing we will note is
the important point that in the markovian limit we indeed found c(t) and thus also r(t) to have the simple
exponential form e−

γ
2
t−iωt. We also note that since 7.97 is identical to 7.33, all formulas and conclusions

derived from this continue to apply in the exact solution. Except of course for the ones which explicitly
depends on the exponential form of r(t).

7.4.2 Thermal environment

Seeing then that there is not much more to say about the vacuum environment case, we turn to the �nite
temperature situation. We assume then that the environment E is initially in the thermal state 1

Z e
−βHE ,

and once again we calculate Gt(|z〉 〈w|). The �rst step is to express the thermal state of the environment
in terms of coherent states. A thermal state of a single oscillator may be expressed as

ρ = (1− e−β~ω)e−β~ωN =
1

πn

∫
e−|z|

2/n |z〉 〈z| d2z, (7.98)
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where again n = 1/(eβ~ω−1). The �rst equality is taken from 2.39. By again employing the formula 2.46,
the second can be shown as follows:

〈m| 1

πn

∫
e−|z|

2/n |z〉 〈z| d2z |l〉 =
1

πn

∫
e−|z|

2/n〈m|z〉〈w|l〉d2z

=
1

πn
√
m!l!

∫
zmz?le−|z|

2/n−|z|2d2z =
1

πn
√
ml

∫
r2le−(n+1)r2/n

∫
zm−ldθrdr

=
1

πnm!
2π
m!

2

(
n

n+ 1

)m+1

δml =
1

n+ 1

(
n

n+ 1

)m
δml = (1− e−β~ω)e−β~ωmδml, (7.99)

just as it would be for (1− e−β~ω)e−β~ωN . Thus, it is clear that the initial state of E is

ρE(0) =
∏
i

1

πni

∫
e−|z|

2/ni |zi〉 〈zi| d2zi =
1

πmdet(N)

∫
e−z

†N−1z |z〉 〈z| d2mz, (7.100)

where m is now the number of oscillators in the environment, and we have de�ned a diagonal matrix N
having the expectation values ni of the environmental oscillators on the diagonal.

With this we may use our previous result 7.96 to calculate

Gt(|z〉 〈w|) =TrEU(t)

(
|z〉 〈w| ⊗ 1

πmdet(N)

∫
e−z

†N−1z |z〉 〈z| d2mz

)
U(t)†

=
1

πmdet(N)

∫
e−z

†N−1zTrEU(t) (|z〉 〈w| ⊗ |z〉 〈z|)U(t)†d2mz

=
1

πmdet(N)

∫
|z(t)〉〈w(t)| · exp

(
−z†N−1z − 1

2
(d(w, z)− d(w(t), z(t)) )

)
d2mz. (7.101)

In order to compare with the Markovian calculation, we will again calculate the complex numerical
quantity 〈u| Gt(|z〉 〈w|) |v〉. I must warn that this is a rather long calculation. By using the formula 2.47
together with 7.101 we get

〈u| Gt(|z〉 〈w|) |v〉 =
1

πmdet(N)

∫
〈u|z(t)〉〈w(t)|v〉 · exp

(
−z†N−1z − 1

2
(d(w, z)− d(w(t), z(t)) )

)
d2mz

=
1

πmdet(N)

∫
exp

(
−z†N−1z − 1

2
(d(u, z(t)) + d(w(t), v) + d(w, z)

− d(w(t), z(t)) )

)
d2mz

=
1

πmdet(N)

∫
exp

(
−z†N−1z − 1

2
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+ r?w?v + z†rv + w?z − w?z|r|2 − w?r?r†z − z†rrz − |z†r|2
)
d2mz

=
1

πmdet(N)
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(
−1

2
(|u|2 + |v|2 + |z|2 + |w|) + u?rz + r?w?v + w?z(1− |r|2)

)

·
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(
−z†(N−1 + rr†)z + (u? − w?r?)r†z + z†r(v − rz)

)
d2mz (7.102)

In order to explicitly compute this integral, we �rst note that the matrix M , which we de�ne as
M = N−1 + rr† is Hermitian and positively de�nite. This means we can construct a unitary matrix
S which diagonalizes this matrix as D = S†MS, and further that all Di are positive. We perform the
integral by doing the coordinate transformation z → Sz. Note that since S is a unitary matrix, this
transformation will not change the volume element d2mz.

1

πm

∫
exp

(
−z†(N−1 + rr†)z + (u? − w?r?)r†z + z†r(v − rz)

)
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∫
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∏
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1

π

∫
exp

(
−Di|z|2 + (u? − w?r?)(r†S)iz + z?(S†r)i(v − rz)

)
d2z (7.103)

The individual factors of this expression are all on the form 1
π

∫
e−a|z|

2+bz+cz?d2z. These may be calculated
using the same technique as 7.38:
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so that
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. (7.105)

Inserting this in 7.102, we now get

〈u| Gt(|z〉 〈w|) |v〉 =
1

det(N)det(M)
exp

(
−1

2
(|u|2 + |v|2 + |z|2 + |w|) + u?rz + r?w?v

+ w?z(1− |r|2) + (u− wr)?(v − rz)r†M−1r

)
. (7.106)
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With this, we are almost done. The only thing that remains is to explicitly calculate the quantities
det(N)det(M) and r†M−1r. Let us begin with the determinant. We can rewrite this

det(N)det(M) =det(N
1
2 )2det(M) = det(N

1
2MN

1
2 ) (7.107)

=det(N
1
2 (N−1 + rr†)N

1
2 ) = det(I +N

1
2rr†N

1
2 ). (7.108)

Next we note that the only non zero eigenvalue of the matrix N
1
2rr†N

1
2 is r†Nr, which belongs to the

eigenvector N
1
2r. Accordingly, I+N

1
2rr†N

1
2 has an eigenvalue 1+r†Nr of multiplicity 1, while all other

eigenvalues are 1. This means that det(N)det(M) = 1 + r†Nr.
Next, we shall want to calculate r†M−1r = r†(N−1 + rr†)−1r. This is easily done by noting that

(N−1 + rr†)Nr

1 + r†Nr
=

r + r†Nr · r
1 + r†Nr

= r, (7.109)

which means that in fact

r†(N−1 + rr†)−1r =
r†(N−1 + rr†)−1(N−1 + rr†)Nr

1 + r†Nr
=

r†Nr

1 + r†Nr
. (7.110)

If we now de�ne

χ = r†Nr =
∑
i

ni|ri|2, (7.111)

we can �nally rewrite 7.106 as
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(7.112)

Once again, we see that this expression is completely identical to our �ndings in the Markovian approx-
imation, that is 7.65. However, as before the involved parameters does not behave in the same simple
manor. That is, r and χ are no longer given by the simple exponential formulas of 7.67 and 7.66.
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r(t) is still the 00 component of the R matrix, and our conclusion that the z expectation value follows
the same path at �nite temperature as in the zero temperature case still applies in the exact solution. The
behavior of this parameter will therefore not be further discussed in this section either. The behavior of
the parameter χ however we have as of yet not studied in the exact case, where it is given by 7.111. This
parameter is still connected to the e�ective temperature of the oscillator by the formula χ = 1/(eβ~ω−1),
and its behavior thus tells us about the heat �ow between the oscillator and its environment. The behavior
of χ for a few illustrating environmental speci�cations are shown in �gure 7.5, where it is compared with
the Markovian formula χ = n(1− e−γt).

Even though χ will obviously not obey this formula, one could imagine it would follow a sort of minimal
generalization of this, namely χ = n(1− |r|2). If this was the case, the mechanical damping and heating
would not be independent. As long as one knows the temperature of the environment, one could easily
calculate one from the other. In order to see whether this is the case or not, the simple generalization
χ = n(1− |r|2) is also shown in the �gure.

The �rst thing we may note from the �gure, is that the Markovian formula does seem to �t very well
in the weak interaction limit. Secondly we note that the naive generalization in all of the cases lies much
closer to the Markovian formula itself, than to the actual development of χ. It is therefore completely
useless. In fact, it seems we must conclude from �gure 7.5 that the e�ects of stronger interactions are
much larger on the thermal development represented by χ than they are on the mechanical decay. While
the mechanical parameters does not signi�cantly depart from the Markovian formula before ω/γ is as low
as 5, χ has substantially departed from this already by ω/γ = 50, one order of magnitude larger.

Let us now discuss the speci�c di�erences between the development in the exact solution and the
Red�eld limit. In 7.5(b) to 7.5(d) we see that the exact solution caries a notable oscillatory behavior that
increases in strength when ω/γ decreases. This behavior is not shared by the Markovian approximation.
This oscillatory behavior is however due to the speci�c interaction pro�le (W function) used in these
plots, as is illustrated in 7.5(e) where a di�erent W function is used.

Another notable di�erence which applies in all cases, is that the limiting value of χ seems to increase
as one moves away from the weak interaction limit. This also means that the oscillator settles at a higher
temperature, which is weird since one would expect it to always settle at the initial temperature of the
environment when the environment is large. A possible explanation of this lies in our choice to have the
initial state of T bee on factorized form. When S and E are allowed to interact, they will depart from
this initial factorization and entangle. This will release an additional interaction energy, which could heat
up both the environment and the oscillator to a higher temperature. This e�ect would also increase with
increasing interaction strength, just like we see to be the case in �gure 7.5.

7.4.3 Decoherence in environments of �nite size

Finally, we will discuss the e�ects that moving away from the weak interaction limit has on decoherence,
or more precisely the e�ects of having a �nite environment. When one has a �nite environment, that is a
�nite number of oscillators, the parameters r and χ will oscillate in some way over a characteristic period,
as seen for instance in �gure 7.5(f). This means that the coherence in the system will also return after
some period. This is an e�ect which would be interesting to have a look at.

The remaining coherence between two coherent states |z〉 and |w〉 is still given by the formula 7.80. In
the zero temperature case this depends only on r, and so it is clear that the coherences return precisely
when the mechanical oscillations return to their initial amplitude. When the temperature is non zero
however, also the temperature must return to its original value. This will make it harder for the coherences
to return, as illustrated in �gure 7.6.

The �gure shows how recurrences of coherence that are very distinct in the zero temperature case are
damped out more and more at higher temperatures. It seems they can almost be completely removed,
although one would need very high temperatures in order to do this. The reason for this damping is
clearly the way that χ is present in expression 7.80. If χ is large, the e�ects of variations in r will be
damped by a correspondingly large amount. Also, the higher the temperature is in the environment, the
larger fraction of time will χ be large enough to make this damping substantial.
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(a) ω/γ = 500. (b) ω/γ = 50.

(c) ω/γ = 20. (d) ω/γ = 5.

(e) ω/γ = 30, linear W function. (f) ω/γ = 2, only three environmental oscillators.

Figure 7.5: Development of temperature describing parameter χ in the exact solution. The red curves
show the actual behavior of the parameter, while the blue and green show the Markovian formula and its
generalization respectively. In 7.5(a) the frequencies of the environmental oscillators are evenly distributed
between 0 and 1000γ, while the interaction strengths are all the same. That is, the W function is �at. In
7.5(b) to 7.5(d) the frequencies are distributed between 0 and 200γ, while the W function is still �at. In
7.5(e) a linear W function has been used, whereas in 7.5(f) it is shown how χ behaves when the size of
the environment gets extremely small.
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Figure 7.6: E�ects of �nite size on decoherence. Here the calculation is made with only three oscillators
in the environment. The blue, green, red and cyan curves assumes temperatures of kBT

~ωln2 = 0, 5, 100 and
2000 respectively. Note that the coherences that initially decay will return because of memory e�ects, but
that these recurrences are strongly damped at high temperatures.

7.5 Summary of Conclusions

7.5.1 Concerning the system

The �rst conclusion we made concerning the behavior of this very simple model of an open harmonic
oscillator is that the environmental coupling causes a damping of the oscillations. In the weakly interacting
case this was a simple exponential damping on the form 7.34. In the more general case however we may
have a more complicated damping. In fact we found that in general the complex parameter r(t), which
in a sense describes the orbit of the oscillator, is given by an expression that is completely analogous to
that of the quantity c(t) that was so extensively analyzed in the previous chapter.

In particular this means that the amplitude of the oscillations can have precisely the same evolution
as P (t) is shown to have in the �gures of that chapter. Thus, if we move away from the weak interaction
limit we may have a damping that looks like for instance the plots in �gure 6.4. In addition, if we have
an environment of �nite size the damping will be reversed after a characteristic time, and the amplitude
may take on an evolution of the type shown in for instance �gure 6.3.

In addition to this we found that if the environment is in a state of �nite temperature, then the
oscillator will be heated by this. In the weakly interacting limit the temperature growth of the oscillator
takes on the form shown in �gure 7.3. Apart from a nearly instantaneous rise in temperature at t = 0, the
curves are approximately described by Newtons law of heating and they approach the initial temperature
of the environment. In the strongly interacting cases however, the temperature growth behaves in a
much more complicated fashion, as seen in �gure 7.5. Strictly speaking this �gure shows the parameter
χ which is the expectation value of the number operator of the translated oscillator, and thus related to
the e�ective temperature.

A thing we noticed in particular was that these curves do not approach the initial temperature of the
environment. We explained this by the fact that the oscillator S is initially in a state that is uncorrelated
to the environment E, so that as correlations are formed there will be released an additional interaction
energy which may be signi�cant in the strongly interacting case. One may argue that this e�ect should
be ignorable if the environment is truly large, since the released interaction energy must be distributed
over all of this. One must however keep in mind that we by 'strongly interacting' here mean that we have
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strong interactions with each of the environmental oscillators, so that the interaction energy will in fact
scale with the size of the environment.

Another peculiar thing we notice about this model is that the mechanical damping and the heating of
the oscillator are completely uncoupled: The expectation value z(t) follows the same orbit in the complex
plane irrespective of the temperature, and the temperature changes in the same way irrespective of the
value of z. In particular, if the environment is initially in the vacuum state, then the temperature of the
oscillator remains 0 no matter what happens to the mechanical degrees of freedom. This applies both in
the weakly interacting limit and in the exact result.

This is a weird result since we would expect that in a realistic physical system friction would transfer
some of the mechanical energy to heat, so that the damping of the oscillations should always be accompa-
nied by an increase in temperature. It is however reasonable to expect that the lack o� this e�ect is due
to the simplicity of the model, and in particular the linearity of the interactions: If we had more general
non-linear interactions, the ergodic hypothesis would cause us to believe that the individual degrees of
freedom in the system should approach thermal states. This would e�ectively cause the environment to
be heated by the mechanical energy transferred from the oscillator S, and this would again heat S.

In addition to the mechanical motion and the heating of the oscillator, we also analyzed the phe-
nomenon known as decoherence. That is, the tendency of superpositions in certain bases to approach
classical mixes of states from that basis. We found that both the energy basis and the coherent state basis
to a degree can be said to have this character. That is, they are so called 'pointer bases', a nomenclature
introduced by Zurek in [15]. This is because both of these bases were found to have the property that
non-diagonal elements of the oscillator's density matrix were quickly damped when the indexes n and m
or z and w were su�ciently far apart. More precisely we found that in the coherent state basis the non-
diagonal elements fell o� with a rate proportional to |z − w|2. This rate was also found to be dependent
on the temperature of the environment, as can be seen for instance in �gure 7.4.

If the environment has a �nite size, then just like the diagonal elements the non-diagonal ones will
also return to their original value at su�ciently large times. In the zero temperature case this will happen
over the same time scale as the mechanical evolution returns to its initial amplitude. This means that the
original coherence returns to the system over this time scale, so that it can not be described classically
over long time scales. However, if the environment is su�ciently hot, these recurrences will be strongly
damped, as is seen in �gure 7.6. Thus, even with a very small environment (in �gure 7.6 for instance it
only consists of three oscillators) the behavior of the system can still be thought of in classical terms as
long as this environment has a su�ciently high temperature.

7.5.2 Concerning the methods

In this chapter I have only applied two di�erent methods: The Red�eld equation and an exact solution
of the total system T . Let us �rst examine the degree to which the Red�eld solutions are in agreement
with the exact result: Well, �rst of all we note that these solutions are described by expressions that have
the same form. That is, 7.97 has the same form as 7.33, while 7.112 has the same form as 7.65. The
di�erences between the two are just the expressions for the parameters r and χ. In the Red�eld result
both of these have a simple exponential development, while in the exact solution r(t) is the 00 component
of the matrix R = e−iWt/~ and χ is given by the equation 7.111.

As I have mentioned, there is a complete correspondence between the parameter r(t) from this chapter
and the parameter c(t) of the previous one. Since we concluded in the previous chapter that c(t) has the
form of a simple exponential decay in the limit of weak interactions and a continuous bath, we must
conclude that the same holds true for r(t). This parameter is thus in agreement with the Red�eld result
in this limit. That this is true also for the parameter χ can at least be seen to hold true in the example
shown in �gure 7.5. Our conclusion should thus be that the Red�eld/Lindblad description is very good
in the limit of weak interactions. This should really not be surprising, as this formalism was seen to be
well justi�ed in the �rst part of this thesis.

Let us �nally say some words about the �nal method to be applied, namely the exact solution of T .
Obviously this is the method that is the most believable (at least as long as one has su�cient faith in
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ones ability to manipulate algebraic expressions). Also, if enormous accuracy is required or one is in a
range of parameters where no approximation schemes works particularly well, this is of course the only
method that can be applied. However, this method was found to be incredibly cumbersome and involved
a great amount of work. In particular, a lot of this work came from the need to extract the relevant
information about the reduced system S. This is something that we can de�nitely expect to generalize to
more complicated models, if these can be solved exactly at all. We are thus forced to conclude that this
approach does not generalize well.



Chapter 8

Discussion and future work

8.1 Review of discussions and conclusions

The purpose of this thesis has been to study the temporal development of open quantum systems. This
involves both a question about what phenomenons will be encountered in such systems, a more general
question about the form in which the time development can be written, and a question of which methods
are useful when treating these systems. The most dramatic consequence of a system being open was
derived already in section 3.1, where we found that unlike closed systems open systems will in general not
develop unitarily: A pure state may develop into a mixed state. Thus, the time development postulate of
quantum mechanics does not hold for open systems, and in particular such systems can not be described
by a Schrödinger or Liouville equation. It thus becomes a central question whether there exists any general
formalism that can replace this very useful description of quantum mechanical systems.

It was argued that the formalism for describing an open quantum system that is de�nitively the most
general and believable, is to treat the system as being part of a larger composite quantum system T which
is treated as closed. T then has a standard unitary development, and the development of our system S of
interest can be found by taking the partial trace of the state of T . This approach has a clear advantage in
that it only involves concepts and methodology that is well known and tested in the standard theory of
closed systems. Also, in principle this approach allows models to be derived from �rst principles, which
are always formulated in unitary terms.

For these reasons this subsystem description is very important from a theoretical point of view, but
from a practical one the approach is not very useful: Even in such an extremely simple model as that of
chapter 7 the process of reducing the description of the total system T to an e�ective description of S was
found to be extremely cumbersome. It is thus desirable to have a formalism for time development which is
more elegant, and which can be formulated in terms of the system S alone. In particular it is desirable to
obtain a formalism which to a large degree is a generalization of the unitary time development postulate,
and preferably also some sort of generalization of the Schrödinger/Liouville equations.

Such generalizations do exist, and there is an extensive literature devoted to them. An introduction
is provided by my own main source, namely [2]. A major emphasis of this thesis has been that these
approaches can be classi�ed according to whether they are Markovian or non-Markovian. That is, whether
the future development of S is determined using only information about its present state, or whether
information about the past is also required. It is usually assumed that the development can be determined
from the initial state, although I argued in section 3.3 that in general even this is a dubious assumption.

It is not hard to construct a heuristic argument for why open systems should in general be described
in a non-Markovian fashion: Typically, information will leak from the system and into the environment.
This information may return to the system at a later time and a�ect its development. If this information
is only available in the environment, then the system can not be described in a Markovian manor. It is
also easy to construct explicit examples of composite systems T where it can be proved that the reduced
system S does not have a Markovian development. The only such explicit example to be included in this
thesis is the one illustrated in �gure 6.3, but one can construct examples that are much simpler than this.

123
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The reader may choose to take this as an exercise.
However, as was argued in the discussions of the sections 4.2, 5.3 and 6.8, this generally non-Markovian

character of open systems does not always show it self: Very often the system can be described using a
Markovian formalism which is completely equivalent to the more general non-Markovian ones, and even to
the subsystem description provided by 3.1. And even systems that can not be described in a Markovian
manor like this at all times will always have such a description when the development is limited to a
su�ciently short interval (at least when the system is �nite dimensional). In section 4.2 I concluded
that these exact Markovian descriptions are due to the invertibility of the time development operators
(propagators).

Due to the di�culty of treating non-Markovian dynamics relative to Markovian dynamics it is thus
reasonable to �rst attempt to use Markovian descriptions when dealing with some open quantum system.
This will often work, and even when it does not the extra work put into the Markovian treatment is
insigni�cant when compared to the work that will in any case have to be put into the non-Markovian one.
Also, I suspect that manifestly non-Markovian behavior will typically only show itself in cases where it in
any case is most interesting to include the part of the environment that causes this in the description of
the system S itself. Even so, I will begin the review of these formalisms by discussing the Non-Markovian
approaches.

8.1.1 Non-Markovian formalisms

The �rst reduced description of the time development of open systems that we encountered, was the Kraus
decomposition 3.9. This is clearly a non-Markovian description, as it expresses the time development of
the system in terms of the initial state. We thus have no guaranty that the later states can be found from
the present one, nor indeed any other state except the initial.

The Kraus decomposition is a direct generalization of the unitary time development of a closed system:
The di�erence is just that the time development operator U is replaced by a set of operators Vi. The
development equation ρ(t) = UρU † and the unitarity condition U †U = I are replaced by the summation
expressions 3.9 and 3.10. We found that a development on this form can be derived from a unitary model
for the total system T consisting of S in combination with its environment, provided the assumption that
the initial state factorizes. That is, the Kraus form 3.9 is implied by 3.2. We also found that the Kraus
form is equivalent to certain more or less natural assumptions about the development of ρ, as described
in theorem 1.

In section 3.3 I attempted to provide a discussion of whether these conditions are believable in general.
It was easily seen that the conditions of trace preservation and complete positivity must hold in any
meaningful development of a state operator. I thus concluded that it is really the condition of linearity,
together with the assumption that the states at time t can at all be determined from the initial state that
the Kraus condition hinges on. I remarked that these conditions are connected, as they are related to a
need of regarding the environmental information as �xed in some way.

The only other non-Markovian description to be discussed signi�cantly in this thesis, was the use of
integro-di�erential equations: so called memory equations, which in general are on the form 5.1. In our
discussions we however specialized this to linear memory equations, which are on the form 5.16. From a
modeling perspective this description is clearly more useful than the Kraus form. When we are dealing with
systems that have a truly non-Markovian character, such equations form the only possible generalizations
of the Liouville/Schrödigenger equations used to describe unitary development: Attempting to describe
the system using mere di�erential equations always results in Markovian behavior.

The memory equation approach was found to be particularly useful in our treatment of the model in
chapter 6, where we saw that this system can be described exactly by such an equation, and that this
is scalar and has an exactly calculable kernel. This was equation 6.36, with the kernel K(t − t′) given
by 6.34. This equation was found to be very powerful in the analysis of that model: We could use it
to show that we have exponential decay in the weak interaction or 'Markovian' limit, we could use it to
analyze under what conditions the decay will be exponential asymptotically, and we could also use it to
understand the strongly non-Markovian consequences of having an environment of �nite size.
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Although the use of memory equations thus seem to be a powerful approach, when dealing with more
general models we can neither expect them to be scalar nor to have an exactly calculable kernel: The
only memory equation I know to describe open systems in general is the Nakajima Zwanzieg equation 5.4,
where the kernel is a superoperator and must in general be expanded using 5.14. The Nakajima Zwanzieg
equation is equivalent to and can be derived from a unitary model of T = S ∪ E. The version of the
equation that was discussed in this thesis assumes that the initial state of T factorizes. The equation can
however be generalized to arbitrary initial conditions at the cost of loosing linearity[2]. Note that this
would imply that the development can not be written in Kraus form.

In this thesis the only direct application of the Nakajima Zwanzieg equation was in section 6.7. We
there remarked that the results shown in �gure 6.12 seem to indicate that the solutions of the Nakajima
Zwanzieg equation converges towards the solution of the scalar memory equation when the order of the
kernel expansion is increased. We however also saw that the calculation of these expansions can be
assumed to be an extraordinarily laborious task.

8.1.2 Markovian formalisms

Let us now turn to the Markovian formalisms for describing open systems: The most general Markovian
generalization of the unitary time development postulate for open systems is clearly 4.1. This is how-
ever to general, in that we have no way of guaranteeing that this describes a meaningful evolution of a
state operator. This is improved upon by assuming that the operators G(t, t′) are trace preserving and
completely positive, in which case the evolution can be written as 4.3 and is referred to as a quantum
dynamical semigroup.

This is in a way a more direct generalization of the unitary cases: it is simply a generalization of the
Kraus decomposition to an expression involving any earlier time instead of just the initial one. However,
unlike the unitary case where |ψ(t)〉 = U(t, t′) |ψ(t′)〉 is equivalent to |ψ(t)〉 = U(t) |ψ(0)〉, a description
in terms of quantum dynamical semigroups is not equivalent to Kraus decomposition. Also, assuming
that the operators G(t, t′) form a quantum dynamical semigroup will cause a lack of generality, since not
all meaningful Markovian developments of state operators are described by such groups: This is because
these operators need not necessarily be positive when t′ 6= 0.

The generalizations of the Liouville/Schrödinger equations will in the Markovian framework obviously
be much closer to these equations themselves, in that they will be di�erential equations rather than integro
di�erential equations. The most general such equation is clearly 4.6, but again this is really to general: here
too we can not guarantee a meaningful development of the state operators. This can however be solved
by taking the Markovian generator Mt to be the one de�ned in 5.17, which gives the exact Markovian
description of the system, provided of course that such a description exists. This generator is in general
not exactly calculable, and it must typically be expanded as 5.25. The contributions up to the sixth order
are found in the equations 5.36 to 5.40.

The lowest order of this expansion gives rise to the Red�eld equation, 4.29 or 4.30. Using 4.30 is
the simplest way to derive an approximate Markovian description of S from a unitary model of the total
system T = S ∪ E. This approximation is good when the interactions between S and E are weak, or
equivalently when there is time scale separation of the type described in section 5.2 and much of chapter
6. In both chapter 6 and 7 we compared the results of the Red�eld equation with exact solutions, and we
saw the correspondence to be excellent in this limit.

The strict condition for the Red�eld equation to apply is that the interaction strength must be weak
when compared to a energy scale in the environment. If we also assume that the interaction strength
is weak when compared to a scale in the system, then the Red�eld equation can be written in Lindblad
form[2]. The Lindblad equation 4.8 or 4.9 is the di�erential equation corresponding to the quantum
dynamical semigroup 4.3, from which it can also be derived. This was done in the main text. The
Lindblad equation also always describes meaningful developments of state operators. In addition it can
be seen to have the form of a very direct generalization of the Liouville equation, and it is expressed in
terms of objects that have simple physical interpretations. For these two reasons it is clearly very useful
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for modeling purposes. In fact, as long as the interactions are not to strong, the Lindblad equation seems
to always be a good alternative for a �rst attempt of modeling an open system.

A Markovian expansion of the form described above can in fact be derived from any memory equation
of the type 5.16. The general expansion is given by equation 5.24. In particular, in section 6.8 we used
this to derive an expansion of the Markovian generator corresponding to the scalar memory equation 6.36.
The solutions to the resulting di�erential equation was compared to the solutions of the memory equation
itself. Provided we went to a su�ciently high order in the expansion the agreement was in most cases
found to be excellent even for quite strong interactions.

8.1.3 Additional

Let us end the review of conclusions by making some simple remarks about what the two very simple
models studied in this thesis can tell us about the general behavior of open systems: In the �rst model, as
noted in that chapter, the only consequences that could be seen was that the coupling to the environment
caused an e�ective energy shift, and also incoherent transfers to a state of lower energy: That is, the system
looses energy to the environment. The shift of energy is something we can expect to always generalize to
other systems, while the loss of energy will obviously only occur if the environment has an e�ectively lower
concentration of energy than the system. This was for instance seen to be the case in the second model,
where the mechanical motion of the oscillator was always damped, whereas the temperature approached
that of the environment: Thus, if the oscillator was initially prepared in a state of lower temperature,
then the �ow energy would go from the environment to the oscillator.

Concerning the decay of the two level model, we found that in the limit of weak interactions the decay
will be exponential over the period where most of this decay occurs. For very short times we found that
in rigorous quantum mechanical models the decay must proceed quadratically. The time scale over which
this is the case is however inversely proportional to the energy range in the environment to which the
system interacts. For realistic physical decays this can typically be assumed to be an extremely short time
scale. Both the seemingly exponential form of decaying levels and the initially quadratic one is something
we can expect to generalize to other models.

We also found that the two level model deviates from exponential decay for very large times. Whether
this is something that generalizes to more realistic models is more questionable: In a more realistic model
we would expect decoherence to cause a transition to classical behavior over very long time scales. Classi-
cally the system is described by probabilities alone, and the development must thus proceed exponentially
as long as it is memoryless. On the other hand this is of course not necessarily the case, although it is
a natural assumption due to the extreme dilution of information that will eventually happen when the
system is coupled to the universe at large.

The mechanical damping of the oscillator is also something we would expect to generalize to other
systems: Although energy may as mentioned �ow from the environment and to the oscillator, this will
almost always be in the form of chaotic thermal energy, and not in the form of ordered mechanical motion.
Such ordered motion we can typically assume to be absorbed by the environment and converted to heat.
This does in fact not take placed in the simple model employed in this thesis: the damping of the oscillator
is not coupled to the temperature development at all. As mentioned in that chapter I expect that this is
due to the linearity of the interactions.

Finally, let us turn to the very interesting phenomenon of decoherence, which as mentioned is a
subject I have been able to devote far less space to than I would have wanted. Here decoherence should
be interpreted not merely as the transition from pure to mixed states, but as speci�cally the tendency
of non-diagonal elements of the state matrix to be quickly damped in some basis. We saw that in the
harmonic oscillator model the state matrix seemed to have this character both when expressed in the
number and coherent state bases. That is, these bases are so called pointer bases [15].

In the two level model we saw no signs of decoherence in this sense. This is de�nitely not something
that should be expected to be a realistic trait of that model, as indeed the fact that such decoherence
takes place over a time scale that is faster than the mere decay is well known both in the theory and
experiments of NMR[1]. In the oscillator model, the non-diagonal elements did fall of over a time scale
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that was faster than the 'physical' evolution in the mentioned bases, but only when these elements were
far from the diagonal. In addition the rate of decoherence was found to increase with temperature. Both
of these traits are something we expect to generalize to at least some more realistic models.

8.2 Future work

As often is the case when one suddenly has to put a great amount of work into a �eld one has never before
encountered, the work with this thesis has brought up more questions than it has answered. Indeed, most
of these questions are much more interesting than the conclusions that have actually come out of the
thesis. Many of them can probably be answered by diving deeper into the literature than I have been
able to do during my work, but some of them it could also be fun to attempt to answer by generalizing
the treatments I provide in the thesis. I would have liked to try to answer some of these questions, but as
a master thesis is something that must be �nished within a �xed amount of time, this is not something I
could include here. And to be honest I am glad for this, as I am at the present time looking forward to
having some spare time again. In any case I include in this section a list of some work that could have
been done in an extend version of this thesis.

8.2.1 Concerning the two level model

The most interesting question that remains unanswered in connection to the two level model, is connected
to the asymptotic behavior of the decay. In sections 6.6.3, 6.6.6 and 6.8 we obtained strong indications that
the decay is asymptotically exponential (that is, it has an asymptotic decay rate) as long as the memory
kernel is exponentially bounded (plus some additional integral conditions). Even so, I have provided no
proof of this. It would be interesting to see if some such proof can be constructed, and I strongly suspect
that this is possible by using the expansion of section 6.8:

It is in fact not very di�cult to show that under appropriate conditions the individual contributions
of this expansion has a well de�ned limit when t→∞. Thus all one needs to do is to show that the sum
of all these limits is well de�ned and �nite. Some additional conditions might be needed for this. Also,
one would obviously have to prove that the generator 6.84 indeed does describe the decay exactly. This
would among other things involve proving that the development operators Gt are invertible, as discussed
in section 4.2.

Another question that is connected to this is precisely what the exponential bounding of the memory
kernel means in terms of the W function. That is, can this condition be expressed in terms of some
condition involving W (ω) rather than its Fourier transform? [13][6] claims that if the W function is
non-zero only in a semi�nite interval, then the decay must asymptotically proceed as a power law instead
of exponentially. Another thing that would be interesting to examine is whether this asymptotic power
law behavior is something that can be understood using the memory equation approach.

An additional thing that could have been included in the two level chapter, is a Markovian treatment
using the expansion 5.25. Also, I could have attempted to computer automate the expansion of the
Nakajima Zwanzieg kernel, so that this could have been taken to a higher order than four. This would
not have given any additional physical insights, but it could have demonstrated whether these expansions
are in agreement with the other methods as they are supposed to.

8.2.2 Concerning the harmonic oscillator model

The major questions of interest concerning the harmonic oscillator model, are connected to the conse-
quences of incorporating more general interactions. This includes both the consequences of including more
general linear interactions, and also the consequences of having nonlinear interactions between the oscil-
lators. Let us �rst discuss the questions connected to generalizing the linear interactions: As mentioned
at the beginning of chapter 7 this is a question that is treated other places [2][3]. There is however one
question in connection to this that does not emerge in clarity from these sources.
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One of the most striking features of the model employed here is that as long the environment is in the
vacuum state, then pure coherent states of S remain such pure coherent states through their development.
Note that this was a feature not only of the weak interaction limit, but also of the exact solution. It would
be interesting to see whether this in some way is something that generalizes to more general interactions.
That is, we might wonder whether there also in these cases exists states that remain pure through their
development.

Actually it is not very hard to see that this can not be the case: with more general interactions even
the ground state would be correlated with the environment, and the reduced state would be mixed. As
it is reasonable to expect that any state will be damped so as to end up in this ground state, it can not
remain pure through its entire development. Even so it would be interesting to see how this conservation
of purity best generalizes to more general interactions. This is clearly connected to Zurek's pointer basis
concept.

In connection to including non linear interactions, I discussed one possible consequence of this already
in the main text: In our simple linear model the mechanical and thermal evolutions were completely
uncoupled. In particular the mechanical damping did not cause a heating of the system, as we would
expect in a physically realistic oscillator that is damped by friction. This is something I would expect to
generalize to other linear models, as linear interactions have no way of converting the ordered mechanical
motion in to chaotic heat. If we include non-linear interactions however, this motion might take on a
su�ciently chaotic character to be be simlar to heat. It thus becomes an interesting question whether
including such non-linear interactions in the model might reproduce the e�ects of heating by friction.

I also suspect that to include non-linear interactions might have some consequences for the decoherence:
Possibly this could lead to non-diagonal elements being quickly damped also when they are close to the
diagonal. After all, this is something that does happen in realistic physical systems, such as the NMR
case for instance. Also, I wonder whether non-linear interactions might cause the recurrences of coherence
shown in �gure 7.6 to occur after much longer time scales. This is because non-linear interactions would
allow the environment to make use of a much larger fraction of its phase space, thus decreasing the
probability of overlap between states (See equation 7.91).

In general decoherence and pointer basis states is something i �nd very interesting and would like to
study in more detail.

8.2.3 Concerning the general theory

In connection to the general theory of time development in open systems, there is particularly one question
that has not been answered in a completely satisfactory manor. This is in connection to the conditions for
Kraus decomposition, where the conditions of linearity and determination from the initial state could not
be defended in a completely general manor. We found however that these conditions follow if we assume
that the initial state of T is a function of the initial state of S. That is, if ρT = LρS . The map L must
be linear. In addition it must clearly be trace preserving, completely positive and have the property that
TrE LA = A.

The only example of such a function given in the main text was the trivial case of factorizing initial
conditions, where LA = A ⊗ ρE(0). A question that is very interesting is if one can �nd a function of
this type which describes a more realistic situation than factorizing initial conditions. I commented in
the main text that it is di�cult to �nd examples of such functions at all, but I will now in fact attempt
to construct one that I �nd physically meaningful:

Assume that the total system T starts out in a factorized state ρT (0) = ρS(0) ⊗ ρE(0), and that the
reduced system S has a time development which is invertible. That is, the time development operators
Gt have left inverses G−1

t . Then we may construct maps that we could denote Lt by the relations

LtA = U(t)
((
G−1
t A

)
⊗ ρE(0)

)
U(t)†. (8.1)

These maps take the state of S at time t to the state of T at time t. They are clearly linear, trace
preserving and have the property that TrE LtA = A.
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Whether they are completely positive is however more dubious. This is for the same reasons as was
explained in conection to general Markovian development in section 4.1: As Lt takes state operators of
S to state operators of T , any allowed state must go to a positive operator. However, we do not actually
have any guarantee that all states are allowed at time t, and thus all positive states need not go to positive
states. If however such an operator can be shown to be completely positive, then it gives us a way of
�xing the environmental information by demanding that ρT (0) = LtρS(0).

Also, this particular way would imply that the Kraus conditions are satis�ed. The operators Lt are
particularly interesting if they have a nontrivial limit when t → ∞. This could for instance be denoted
L∞. Choosing any particular value for t in this set of operators is in a way just as arbitrary as choosing
t = 0, which corresponds to factorizing initial conditions. L∞ however, would not be an arbitrary choice:
this would correspond to a system having formed precisely those correlations with its environment that
they in any case would form if left alone for a while. I would even say that in general these are in fact the
most believable initial conditions.

This is a subject I have devoted a small amount of thought to, and it would be interesting to examine
these questions in more detail. This will however not be done in this thesis, which the reader has now
�nished.
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Appendix A

Computer codes

In the models studied in this thesis, numerical calculations of various types have been employed. These
have been implemented as Python scripts, which I have run on my own computer. In case the reader
wishes to have a look at some of theese concrete implementations, I include all my scripts in this apendix.

A.1 Two level decay diagonalization code

The following is the Python script used to diagonalize the model of two level decay:

#Importing l i b r a r i e s that may be needed
import numpy as np
import numpy . l i n a l g as l a
import matp lo t l i b . pyplot as pp
import s c ipy . opt imize as op
import cmath as cm
import s c ipy . i n t e g r a t e as i g

#Parameters

T=14. #Time i n t e r v a l where c ( t ) i s c a l c u l a t ed
r e s=200 #Reso lut ion o f p l o t

E=5.0 #Energy o f ex i t ed s t a t e
deltaE=80 #c h a r a c t e r i s t i c energy range parameter
Erad=5∗deltaE #Radius o f energy range in the environment in which o s c i l l a t o r s are p laced

dec=1.0 #1. order pe r turbat i on theory decay ra t e

n_osc=500 #number o f o s c i l l a t o r s in environment

p=0.1 #Anti−symmetry parameter

#W−f unc t i on d e f i n i t i o n s

f 1=lambda x : (np . abs (x )<=deltaE ) ∗(1+p∗x ) #FLat/Linnear
f 2=lambda x : np . exp(−x∗x/(2∗ deltaE ∗deltaE ) ) #Gaussian
f3=lambda x : np . exp(−np . abs (x ) / deltaE ) #Exponent ia l
f 4=lambda x : 1 .0/(1 .0+x∗x/( deltaE ∗deltaE ) ) #Lorenzian

f=lambda x : ( 1 . 0 / 2 / np . p i ) ∗ f 2 ( x ) #W−f unc t i on type i s chosen here

#I n i t i a l i z a t i o n o f environmental in fo rmat ion

f rq_sta r t=E−Erad #Star t o f environmental f requency range
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f rq_stop=E+Erad #End o f environmental f requency range

f r q=np . l i n s p a c e ( f rq_start , frq_stop , n_osc ) #Al l f r e qu en c i e s
cp l=np . sq r t ( f ( f r q ) ) #Al l i n t e r a c t i o n parameters (w_i)

dim=1+n_osc #Dimension o f H i l b e r t space

#I n i t i a l i z a t i o n o f Hamiltonian

H=np . z e ro s ( [ dim , dim ] ) #Hamiltonian matrix
H[0 ,0 ]=E #Energy o f s t a t e | e )
f o r i in np . arange (0 , n_osc ) :

H[ i +1, i +1]= f r q [ i ] #Energy o f s t a t e | i )
H[ 0 , i +1]=H[ i +1 ,0]= cp l [ i ] #In t e r a c t i o n between | e ) and | i )

#Ca l cu l a t i on

w, v = la . e i g (H) #Diagona l i z e s H, w i s e i g enva lu e s and v i s
t rans fo rmat ion matrix

u0=np . z e ro s (dim) #Vec to r i a l r ep r e s en t a t i on o f i n i t i a l s t a t e
u0 [0 ]=1 #I n i t i a l s t a t e = | e )
vt=np . swapaxes (v , 0 , 1 ) #Adjoint o f t rans fo rmat ion matrix
v0=np . dot ( vt , u0 ) #I n i t i a l s t a t e in d i agona l i z ed ba s i s

de f u( t ) : #Returns s t a t e at time t
mv=v0∗np . exp(−1 j ∗ t ∗w) #State at time t in d i agona l i z ed ba s i s
r e turn np . dot (v ,mv) #State at time t in o r i g i n a l b a s i s

de f du ( t ) : #Returns d e r i v a t i v e o f u
mv=−1j ∗w∗v0∗np . exp(−1 j ∗ t ∗w) #Der iva t ive in d i agona l i z ed ba s i s
r e turn np . dot (v ,mv) #Der iva t ive in o r i g i n a l b a s i s

de f p1 ( t ) : #Returns c ( t ) = amplitude f o r being in s t a t e | e )
re turn (u( t ) ) [ 0 ]

de f dp1 ( t ) : #Returns d e r i v a t i v e o f c ( t )
re turn (du( t ) ) [ 0 ]

#Plo t t i ng

x=np . l i n s p a c e (0 ,T, r e s ) #Time i n t e r v a l to p l o t
y=1j ∗np . z e r o s ( x . s i z e ) #Values
f o r i in np . arange (0 , r e s ) :

y [ i ]=np . abs ( p1 (x [ i ] ) ) ∗∗2 #Probab i l i t y f o r being in s t a t e | e ) at time t

#pp . p l o t ( x [ 0 : r e s ] , y [ 0 : r e s ] . r e a l ) #Plot r e a l part o f c ( t )
#pp . p l o t ( x [ 0 : r e s ] ,−y [ 0 : r e s ] . imag+E) #Plot imaginary part o f c ( t )

pp . p l o t (x , y ) #Plot P( t )

pp . xlim (0 ,T) #Limits
pp . ylim (0 , 1 )
pp . show ( ) #Draw r e s u l t s

A.2 Assymptotic decay-rate plot-code

This is the code used to display the graphs and simmulation points in �gure 6.11:

#Importing l i b r a r i e s that may be needed
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import numpy as np
import s c ipy . opt imize as op
import s c ipy . s p e c i a l as spes
import matp lo t l i b . pyplot as pp

#Data ar rays conta in ing assymptot ic decay r a t e s from simmulat ions

#Resu l t s from gauss ian W−f unc t i on simmulation
RATE = np . array ( [ 1 . 0 0 5 , 1 . 0 0 6 , 1 . 0 0 7 , 1 . 0 1 0 , 1 . 0 2 1 , 1 . 0 4 3 , 1 . 0 9 3 , 1 . 1 7 4 , 1 . 3 2 8 , 1 . 4 0 2 ] )
DW=np . array ( [ 1 0 0 , 8 0 , 6 0 , 4 0 , 2 0 , 1 0 , 5 , 3 , 2 , 1 . 8 ] ) #Delta−E parameter

#Resu l t s from l o r en z i an W−f unc t i on simmulation
RATE2 = np . array ( [ 1 . 0 0 5 , 1 . 0 0 6 , 1 . 0 0 9 , 1 . 0 1 3 , 1 . 0 2 6 , 1 . 0 5 6 , 1 . 1 3 , 1 . 2 6 7 , 1 . 5 8 1 ] )
DW2=np . array ( [ 1 00 , 8 0 , 6 0 , 4 0 , 2 0 , 1 0 , 5 , 3 , 2 . 1 5 ] ) #Delta−E parameter

#Equation s o l v e r to f i nd Gaussian r e s u l t

#Equation to be so lved i s
#Gamma/Gamma_pt = exp ( Gamma^2/8 Deltaomega^2 ) ∗ ( 1 + e r f ( Gamma/ sq r t 8 Deltaomega ) )

#Def in ing x = Gamma/Gamma_pt,
# w(x ) = x/( sq r t 8 Deltaomega/Gamma_pt) and
# f (x ) = x − exp ( w^2 ) ∗ ( 1 + e r f ( w ) )

#This can be wr i t t en simply as f ( x )=0

de f f (x ,w) : #De f i n i t i o n o f f
r e turn x−np . exp (w∗w) ∗(1+ spes . e r f (w) ) #As above

de f f i nd (x , k ) : #Finds s o l u t i o n to f ( x )=0 f o r vec to r o f x
n=len (x ) #Length o f vec to r
prev=k #I n i t i a l guess
y=np . z e ro s (n) #Vector o f s o l u t i o n s
f o r i in np . arange (0 , n) :

prev=y [ i ]=op . newton ( lambda z : f ( z , z∗x [ i ] / np . s q r t ( 8 . 0 ) ) , prev , t o l=1e−10)
re turn y #So lu t i on i s found through Newtons method

#Analyt ic r e s u l t s

x=np . l i n s p a c e ( 0 . 0 , 0 . 6 , 2 0 0 ) #Range o f Gamma_pt / Delta omega
y=f i nd (x , 1 ) #Gaussian Result
y2=(1−np . sq r t (1−2∗x ) ) /x #Lorenzian r e s u l t
y2 [ 0 ]=1 . #Limit

#Plot ing

pp . p l o t (x , y ) #Plot Gaussian ana l y t i c r e s u l t
pp . p l o t (x , y2 ) #Plot Lorenzian ana l y t i c r e s u l t
pp . xlim ( 0 , 0 . 6 ) #X−l im i t s smal l v e r s i on
pp . ylim ( 1 , 1 . 8 ) #Y−l im i t s b ig ve r s i on
pp . x l ab e l (" $\Gamma_{pt }/\Delta \omega$ " , f o n t s i z e =18) #X−ax i s l a b e l
pp . y l ab e l (" $\Gamma/\Gamma_{pt}$ " , f o n t s i z e =18) #Y−ax i s l a b e l
pp . p l o t ( 1 . 0/DW,RATE, marker='o ' , l i n e s t y l e = ' ') #Plot Gaussian simmulation r e s u l t
pp . p l o t ( 1 . 0/DW2,RATE2, marker= '∗ ' , l i n e s t y l e = ' ') #Plot Lorenzian simmulation r e s u l t
#pp . xlim (0 , 0 . 0 6 ) #X−l im i t s smal l v e r s i on
#pp . ylim ( 1 . , 1 . 0 3 ) #Y−l im i t s smal l v e r s i on

pp . show ( ) #Draw r e s u l t s
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A.3 Long range Decay-rate code

The following code �nds the long range behaviour of the decay rate by solving the memory equation for
c(t), and di�erentiating this numerically:

#Importing l i b r a r i e s that may be needed
import matp lo t l i b . pyplot as pp
import memeq
import numpy as np
import numpy . l i n a l g as l a

#Parameters

Wrad=80 #Cha r a c t e r i s t i c energy range parameter

nder=20 #Number o f d i sp lacement s t ep s used in numerica l d i f f e r e n t i a t i o n

Erad=1000∗Wrad #Total range o f f r e qu en c i e s
npo ints =10000000 #Number o f f requency samples

r e s =5000 #Plot r e s o l u t i o n
T=14 #Time i n t e r v a l to be p l o t t ed

#W−f unc t i on d e f i n i t i o n s

f 1=lambda x : np . abs (x )<=Wrad #FLat
f2=lambda x : np . exp(−x∗x/(2∗Wrad∗Wrad) ) #Gaussian
f3=lambda x : np . exp(−np . abs (x ) /Wrad) #Exponent ia l
f 4=lambda x : 1 .0/(1 .0+x∗x/(Wrad∗Wrad) ) #Lorenzian

f=lambda x : ( 1 . 0 / 2 / np . p i ) ∗ f 2 ( x ) #W−f unc t i on type i s chosen here

#I n i t i a l i z a t i o n

Pp=in t (2∗Erad/Wrad) #Length o f p e r i o d i c averages
npp=npoints /Pp #Number o f p e r i o d i c averages

E_spacing=2∗Erad/ npo ints #Distance between frequency samples

Tmax=np . p i ∗ npo ints /Erad #Total time i n t e r v a l

E=np . l i n s p a c e (−Erad , Erad−E_spacing , npo ints ) #Frequency samples
W=f (E) #W−f unc t i on samples

#c a l c u l a t i o n

K, y=memeq . decay (W,2∗Erad ,2∗E_spacing ) #Gets c ( t )
y=np . abs (y ) ∗∗2 # P( t )

yd=(y [ nder : npo ints ] / y [ 0 : npoints−nder ]−1)∗Erad/np . p i /nder #Numerical l o g a r i tm i c
d e r i v a t i v e

myd=np . ones (npp ) #pe r i o d i c averages
f o r i in np . arange (0 , npp) :

myd [ i ]=np .mean(yd [Pp∗ i : Pp∗( i +1) ] ) #i ' th average

xpp=np . arange (0 , npp ) ∗2∗np . p i /Wrad+np . p i /Wrad #Medium po s i t i o n s o f average
ranges

#Plo t t i ng

#Plot s l o g a r i tm i c d e r i v a t i v e
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pp . p l o t (np . l i n s p a c e (0 ,Tmax−(1+2∗nder ) ∗Tmax/npoints , npoints−nder ) ,−yd [ 0 : npoints−nder ] )
#pp . p l o t (xpp,−myd, l i n e s t y l e ="",marker = ' . ' ) #p l o t s p e r i o d i c averages

pp . y l ab e l ("$−\dot P/P$" , f o n t s i z e =18) #Y−ax i s l a b e l
pp . x l ab e l (" $\Gamma_{pt} t$ " , f o n t s i z e =18) #X−ax i s l a b e l
pp . ylim ( 0 . 4 , 1 . 4 ) #Limits
pp . xlim (0 ,T)
pp . show ( ) #Draw r e s u l t s

A.4 Library for solving memory equations

The following code is a library used to solve memory equations numerically. This is done by �rst calculating
the Laplace transform of the Kernel, and then the Laplace transform of the solution c(t) throught the
formula 6.63. The solution it self is the found by taking the inverse Laplace transform of this result. This
is done by use of the Mellin formula, which can be written as eλtF−1(a(iω + λ)). F−1 is the inverse
Fourier transform.

#Importing l i b r a r i e s that may be needed
import numpy as np
import s c ipy . f f t p a ck as f tp
import matp lo t l i b . pyplot as pp

#Function decay f i n d s p r obab i l i t y amplitude c ( t ) f o r a decaying two l e v e l system given
the

#W−f unc t i on . The f requency range D and a Lambda parameter used in the me l l i n formula
#must be s p e c i f i e d .
de f decay (W,D, Lambda) :

n=len (W) #Vector l ength
K=−f t p . f f t (W) ∗D/n #Memory kerne l , g iven by the f o u r i e r trans form

o f W
y=1−2∗(np . arange (n)%2) #Rapid o s c i l l a t i o n s
K=K∗y #must be d iv ided out o f K to compensate f o r the

f a c t
#that the FFT algor i thm assumes that negat ive
#f r e qu en c i e s are in the l a s t part o f the input

K[ n /2 : n]=np . z e r o s (n/2) #Negative f r e qu en c i e s are e l im inated
T=2∗np . p i ∗n/D #Total time i n t e r v a l
re turn K, solMemeq (K,T, Lambda) #Returns memory ke rne l and s o l u t i o n c ( t )

#Function solMemeq s o l v e s a memory equat ion given a memory ke rne l x . The time i n t e r v a l T
and a

#Lambda parameter used in the me l l i n formula must be s p e c i f i e d . I t i s assumed that c (0 )=1
de f solMemeq (x ,T, Lambda) :

n=len (x ) #Vector l ength
S=2∗np . p i ∗n/T #Laplace transformed i n t e r v a l
s=1j ∗np . l i n s p a c e (0 , S−S/n , n) #Laplace transformed va r i ab l e
s [ n /2 : n]= s [ n /2 : n]−1 j ∗S #negat ive va lue s
s=s+Lambda #Sh i f t by lambda s p e c i f i e d by me l l i n formula
y=f l t (x ,T, Lambda) #Laplace trans form o f ke rne l
y=1/(s−y ) #Laplace trans form o f s o l u t i o n
return i l t (y ,T, Lambda) #re tu rn s so lu t i on , found by i nv e r s e l a p l a c e

trans form

#Function f l t c a l c u l a t e s the l a p l a c e trans form o f x along a l i n e in the imaginary
d i r e c t i o n .

#The time i n t e r v a l T and the Real coord ina te Lambda o f the l i n e must be s p e c i f i e d .
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de f f l t (x ,T, Lambda) :
n=len (x ) #Vector l ength
t=np . l i n s p a c e (0 ,T−T/n , n) #samples o f t
t [ n /2 : n]= t [ n /2 : n]−T #negat ive va lue s
y=np . exp(−Lambda∗ t ) ∗x #Exponent ia l o f the r e a l part o f s
re turn f tp . f f t ( y ) ∗T/n #Laplace trans form ca l cu l a t ed through FFT

algort ihm

#Function i l t c a l c u l a t e s the i nv e r s e l a p l a c e trans form o f x . The time i n t e r v a l T and a
Lambda

#parameter used in the me l l i n formula must be s p e c i f i e d .
de f i l t (x ,T, Lambda) :

n=len (x ) #Vector l ength
y=f tp . i f f t ( x ) ∗n/T #Inve r s e f o u r i e r trans form ca l cu l a t ed through

IFFT
t=np . l i n s p a c e (0 ,T−T/n , n) #samples o f t
t [ n /2 : n]= t [ n /2 : n]−T #negat ive va lue s
re turn np . exp (Lambda∗ t ) ∗y #Inve r s e Laplace g iven by Mel l in formula

A.5 Memory equation solver of Nakajima Zwanzieg kernel

This code is used comparing the functions P (t) found from solving 2. and 4. order approximations to
the Nakajima Zwanzieg equation, to those found from solving the exaxact memory equation described in
section 6.6.

#Importing l i b r a r i e s that may be needed
import matp lo t l i b . pyplot as pp
import memeq
import numpy as np
import numpy . l i n a l g as l a
import s c ipy . f f t p a ck as f tp
import s c ipy . s i g n a l as s i g

#Parameters

Wrad=2 #Cha r a c t e r i s t i c energy range parameter

Erad=1000∗Wrad #Total range o f f r e qu en c i e s
npo ints =1000000 #Number o f f requency samples

r e s =5000 #Plot r e s o l u t i o n
T=3. #Time i n t e r v a l to be p l o t t ed
samp=1 #Fract ion o f samples to be p l o t t ed

#W−f unc t i on d e f i n i t i o n s

f 1=lambda x : np . abs ( x )<=Wrad #FLat
f2=lambda x : np . exp(−x∗x/(2∗Wrad∗Wrad) ) #Gaussian
f3=lambda x : np . exp(−np . abs (x ) /Wrad) #Exponent ia l
f 4=lambda x : 1 .0/(1 .0+x∗x/(Wrad∗Wrad) ) #Lorenzian

f=lambda x : ( 1 . 0 / 2 / np . p i ) ∗ f 1 ( x ) #W−f unc t i on type i s chosen here

#I n i t i a l i z a t i o n

E_spacing=2∗Erad/ npo ints #Distance between frequency samples

E=np . l i n s p a c e (−Erad , Erad−E_spacing , npo ints ) #Frequency samples
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W=f (E) #W−f unc t i on samples
Tmax=np . p i ∗ npo ints /Erad #Total time i n t e r v a l

#c a l c u l a t i o n

K, y=memeq . decay (W,2∗Erad ,2∗E_spacing ) #Gets memory ke rne l K and c ( t )

nshow=in t ( npo ints ∗T/Tmax) #Number o f samples shown in p l o t
t=np . l i n s p a c e ( 0 , ( nshow−1)∗Tmax/( npoints −1) , nshow ) #Time samples

K1=np . cumsum(K) ∗Tmax/( npoints −1) #Cumulative i n t e g r a l o f K
K2=np . cumsum(K1) ∗Tmax/( npoints −1) #Cumulative second i n t e g r a l o f K

#Convolution o f K∗K1 o f K and K1 . Calcu lated in Four i e r domain f o r e f f i c i e n c y
KC1=s i g . f f t c o nvo l v e (K,K1) [ 0 : npo ints ]∗Tmax/( npoints −1)

KO4=K∗(1+K2)−KC1+abs (K1) ∗∗2 #4. order aproximation to memory ke rne l

#P( t ) found by s o l v i n g 2 . order memory equat ion
y2=memeq . solMemeq (2∗K. rea l ,Tmax,2∗E_spacing )

#P( t ) found by s o l v i n g 4 . order memory equat ion
y4=memeq . solMemeq (2∗KO4. r ea l ,Tmax,2∗E_spacing )

#Plo t t i ng

pp . p l o t ( t [ : : samp ] , abs ( y [ 0 : nshow : samp ] ) ∗∗2) #Plot exact P( t )
pp . p l o t ( t [ : : samp ] , y2 [ 0 : nshow : samp ] ) #Plot 2 . order approximation
pp . p l o t ( t [ : : samp ] , y4 [ 0 : nshow : samp ] ) #Plot 4 . order approximation

pp . xlim (0 ,T) #Limits
pp . ylim ( 0 . , 1 . )
pp . x l ab e l (" $\Gamma_{pt} t$ " , f o n t s i z e =18) #Labels
pp . y l ab e l ("$P$" , f o n t s i z e =18)
pp . show ( ) #Draw r e s u l t s

A.6 Code for calculating n'th order scalar Markovian generator

This code calculates and plots the Markovian generators of di�erent orders that aproximate the scalar
memory equation described in section 6.6. This is done following the procedure described in section 6.8.

#Importing l i b r a r i e s that may be needed
import matp lo t l i b . pyplot as pp
import memeq
import numpy as np
import numpy . l i n a l g as l a
import s c ipy . f f t p a ck as f tp
import s c ipy . s i g n a l as s i g

#Parameters

Wrad=10. #Cha r a c t e r i s t i c energy range parameter

order=9 #Number o f o rde r s to be inc luded

Erad=1000∗Wrad #Total range o f f r e qu en c i e s
npo ints =1000000 #Number o f f requency samples

r e s =5000 #Plot r e s o l u t i o n
T=10 #Time i n t e r v a l to be p l o t t ed
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samp=1 #Fract ion o f samples to be p l o t t ed
nder=10 #Number o f d i sp lacement s t ep s used in numerica l d i f f e r e n t i a t i o n

#W−f unc t i on d e f i n i t i o n s

f 1=lambda x : np . abs (x )<=Wrad #FLat
f2=lambda x : np . exp(−x∗x/(2∗Wrad∗Wrad) ) #Gaussian
f3=lambda x : np . exp(−np . abs (x ) /Wrad) #Exponent ia l
f 4=lambda x : 1 .0/(1 .0+x∗x/(Wrad∗Wrad) ) #Lorenzian

f=lambda x : ( 1 . 0 / 2 / np . p i ) ∗ f 1 ( x ) #W−f unc t i on type i s chosen here

#I n i t i a l i z a t o i o n

E_spacing=2∗Erad/ npo ints #Distance between frequency samples

E=np . l i n s p a c e (−Erad , Erad−E_spacing , npo ints ) #Frequency samples

W=f (E) #W−f unc t i on samples
Tmax=np . p i ∗ npo ints /Erad #Total time i n t e r v a l

#Ca l cu l a t i on

K, y=memeq . decay (W,2∗Erad ,2∗E_spacing ) #Gets memory ke rne l K and c ( t )

nshow=in t ( npo ints ∗T/Tmax) #Number o f samples shown in p l o t
t=np . l i n s p a c e ( 0 , ( nshow−1)∗Tmax/( npoints −1) , nshow ) #Time samples

y=np . abs (y ) ∗∗2 #Exact p r obab i l i t y P( t )
yd=(y [ nder : npo ints ] / y [ 0 : npoints−nder ]−1)∗Erad/np . p i /nder #Numerical l o g a r i tm i c

d e r i v a t i v e o f P( t )
#pp . p l o t ( t [ : : samp ] , d [ 0 : nshow : samp ] ) #Plot P( t )
pp . p l o t ( t [ : : samp] ,−yd [ 0 : nshow : samp ] ) #Plot exact in s tantaneous

decay ra t e

K1=np . cumsum(K) ∗Tmax/( npoints −1) #Cumulative i n t e g r a l o f K
K2=np . cumsum(K1) ∗Tmax/( npoints −1) #Cumulative second i n t e g r a l o f K
msub=[K1 ] #De f i n i t i o n o f m_0
mupp=[K1 ] #De f i n i t i o n o f l_0
mbar=[K2 ] #De f i n i t i o n o f _l_0

#Contr ibut ions o f order n to the markovian generato r are c a l c u l a t ed f o l l ow i ng the
r e c c u r s i v e procedure de s c r ibed in the text .

f o r n in np . arange ( order −1) :
q=np . cumsum(mupp [ n ] ) ∗Tmax/( npoints −1)
q=s i g . f f t c o nvo l v e (K, q ) [ 0 : npo ints ]∗Tmax/( npoints −1)
mupp . append (q . copy ( ) )
q2=np . cumsum(q ) ∗Tmax/( npoints −1)
f o r j in np . arange (n+1) :

q−=mupp [ n−j ]∗mbar [ j ]
q2−=np . cumsum(mupp [ n−j ] ) ∗Tmax/( npoints −1)∗mbar [ j ]

mbar . append ( q2 . copy ( ) )
msub . append (q . copy ( ) )

#Plo t t i ng

mtot=0 #Total markovian generato r
f o r n in np . arange ( order ) :

mtot+=msub [ n ] #n ' th order con t r i bu t i on
q=np . cumsum(mtot ) ∗Tmax/( npoints −1) #In t e g r a l o f genera to r
q=np . exp (2∗q . r e a l ) #P = | c |^2 = | exp q |^2
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pp . p l o t ( t [ : : samp] ,−2∗(mtot [ 0 : nshow : samp ] ) . r e a l ) #Plot n ' th order genera to r
#pp . p l o t ( t [ : : samp ] , q [ 0 : nshow : samp ] ) #Plot P( t )

pp . xlim (0 ,T) #Limits
pp . ylim ( 0 . , 2 . 0 )
pp . x l ab e l (" $\Gamma_{pt} t$ " , f o n t s i z e =18) #Labels
pp . y l ab e l ("$−\dot P/P$" , f o n t s i z e =18)
pp . show ( ) #Draw r e s u l t s

A.7 Code for plotting n-basis density matrix

This code calculates and plots the density matrix of the Harmonic oscillator. This is used to produce the
color plots in �gure 7.2.

#Importing l i b r a r i e s that may be needed
import numpy as np
import matp lo t l i b . pyplot as pp
import matp lo t l i b . animation as anim
from pylab import ∗

#I n i t i a l i z a t i o n

mx=50 #Matrix e lements to be inc luded

wf=np . z e ro s ( [mx] ) #I n i t i a l s t a t e vec to r

wf [25]=1 #26. element nonzero

wf [49]=1 #50. element nonzero

t=1. #time

#De f i n i t i o n s

de f R( t ) : #Def ine r ( t ) func t i on
return np . exp(−t )

de f lbn (n ,m) : #Logarithm of binomial c o e f i c i e n t n over m
return np . sum(np . l og (np . arange (n−m+1,n+1) )−np . l og (np . arange (1 ,m+1) ) )

de f G(n ,m, k , l , r ) : #De f i n i t i o n o f probagator : ( k | (G_t | n) (m| ) | l )
i f k<=n and m−l==n−k :

P=np . abs ( r ) ∗∗2
return np . exp ( ( lbn (m, l )+lbn (n , k ) ) /2) ∗(P∗∗ l ) ∗((1−P) ∗∗(m−l ) ) ∗( r ∗∗(k−l ) )

e l s e :
r e turn 0

#Ca l cu l a t i on

rho=np . z e ro s ( [mx,mx] ) #Density matrix

f o r n in np . arange (0 ,mx) :
i f ( wf [ n ] !=0) : #loops through a l l non−zero n

f o r m in np . arange (0 ,mx) :
i f ( wf [m] !=0) : #and a l l non−zero m

f o r k in np . arange (0 ,mx) :
f o r l in np . arange (0 ,mx) : #add probagat ion to a l l

e l l ement s
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rho [ k , l ]+=wf [ n ]∗wf [m] . conjugate ( ) ∗G(n ,m, k
, l ,R( t ) )

#Plo t t i ng

pcolormesh ( rho , cmap='PuBu ' ) #Make c o l o r p l o t o f dens i ty matrix
ax=gca ( )
ax . set_ylim ( ax . get_ylim ( ) [ : : − 1 ] ) #Inve r t y−ax i s
show ( ) #Draw r e s u l t s

A.8 Code for calculating χ(t) and r(t) in the exact solution of the oscil-
lator model

This code calculates χ(t) and r(t) in the exact solution of the harmonic oscillator model. This is done
by diagoanlizing the W matrix as described in section 7.4, and then using the fact that r(t) is the 00
component of the exponentiated matrix, whereas χ(t) is given by the formula 7.111.

#import l i b r a r i e s that may be needed
from pylab import ∗

#parameters
omega0=2. #o s c i l l a t o r f requency
omegamax=3. #maximal environmental f requency
s t r ength =1/(2.∗ pi ) #st r ength o f i n t e r a t i o n s
T=omega0/ log (2 ) #temperature
N=3 #Number o f o s c i l l a t o r s in environment

t_max=20 #time i n t e r v a l
r e s=300 #Plot r e s o l u t i o n

#I n i t i a l i z a t i o n

omega=l i n s p a c e (omegamax/N, omegamax ,N) #a l l environmental f r e qu en c i e s
w=sq r t ( s t r ength ∗omegamax/N) ∗ ones (N) #a l l i n t e r a c t i o n parameters

i f T==0:
b=0
n=0

e l s e :
beta=1/T
b=1/(exp ( beta ∗omega )−1) #Environmental number expec ta t i on
n=1/(exp ( beta ∗omega0 )−1) #Supposed asymptotic number expec ta t i on o f S

H=ze ro s ( [N+1,N+1]) #Matrix W
H[0 ,0 ]= omega0 #Os c i l l a t o r f requency
f o r i in arange (0 ,N) :

H[ i +1, i +1]=omega [ i ] #Frequency i
H[ i +1 ,0]=H[ 0 , i +1]=w[ i ] #In t e r a c t i o n i

#Ca l cu l a t i on

Omega , v = l i n a l g . e i g (H) #Diagona l i z e s W
def R( t ) : #re tu rn s vec to r r at time t

vt= v [ 0 , 0 :N+1]∗ exp(−1 j ∗ t ∗Omega) #in eigen−ba s i s
re turn dot (v , vt ) #in old ba s i s

de f x i ( r ) : #Returns x i parameter from vector r
i f T==0:

re turn 0
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e l s e :
r e turn dot ( r [ 1 :N+1] ,b∗ conjugate ( r [ 1 :N+1]) )

t=l i n s p a c e (0 , t_max , r e s ) #Time i n t e r v a l
r=ze ro s ( r e s ) ∗1 j #r parameter
k j i=ze ro s ( r e s ) #k j i parameter

f o r i in arange (0 , r e s ) :
vec=R( t [ i ] ) #r vec to r
r [ i ]=vec [ 0 ] #r parameter
k j i [ i ]= x i ( vec ) #k j i parameter
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