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Introduction

Since the 1 of July 2004 the energy market in Europe is officially liberalized. In the European
Union the liberalization of power markets has been driven by the directive 96/92/EC of the Euro-
pean Parliament and Council. The directive is aimed at opening up the member states’ electricity
markets, in order to increase the number of producers and consumers which can negotiate the
purchase and sale of electricity. Since then, a large number of electricity exchanges have opened
in Europe. England and wales were the first to open an electricity exchange in 1990. After that
Norway followed in 1993 with Statnett Marked (Nasdaq OMX commodities) [23]. The English
and the Norwegian markets were already rather reasonably liberalized. The gas and electricity
markets are owned by the private sector now in England and Norway. The markets in other
countries like France, Italy, Netherlands, Finland and Sweden were owned by companies who
had a government monopoly [17]. However, at the end of the 90-ties the Netherlands as well as
Finland and Sweden got a liberalized market. The southern European countries took a bit more
time before being liberalized.

The liberalization of energy markets gave rise to many regulation issues. Still regulations are
changed in order to get a better functioning market. How to regulate the market is a separate field
of studies, which will not be considered in this thesis. More interesting for a mathematician is that
the energy exchanges give new financial data where lot of things are still unclear and interesting
studies can be done. In order to model the energy market new theories can be developed. We
will focus on the stochastic modeling of the electricity market.

1.1 Spot market

In this section we will give a short overview of common stochastic models used in order to model
the electricity spot market. This will be used to put the papers of which this Ph.d. thesis consists
in a context. For a more complete overview on energy modeling the author would like to refer to
[3], [11], [12], [18] and [24].

The energy market distinguishes itself from other commodity markets by the non-storability
of the products electricity and gas. This affects how the market is regulated and what kind of
products are sold.

By the energy spot market actually the one-day ahead market is meant. Contracts are sold for
delivering 1 Mega Watt electricity during one hour (1 MWh) for the different hours of the next
day, as well as for MWh electricity for blocks of hours during the next day. In a sense these con-
tracts are forward contracts, since the spot contracts are about electricity which will be delivered
in the future (one-day head). The price of these one-day ahead contracts is determined by supply
and demand during an auction at noon. Here the difference is with an ordinary forward contract,
since that can be traded till delivery starts. The contracts that are sold on the one day-ahead mar-
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Chapter 1. Introduction

ket can be traded till delivery starts on the real-time market. Different real-time markets exists
throughout Europe (for instance Elbas (Nordic countries), EEX intraday (Germany)).

What normally is denoted by the base spot price of an electricity market is an index, which
is given by the average of all the hourly prices. Or in the case of the peak spot price the average
of the hourly prices in the peak hours (between 8 a.m. and 8 p.m). The peak hours are the hours
when there is naturally more demand for energy.

Remarkably is that the spot itself is not traded (it is an average of products which are traded).
This leads to the possibility of structure in the spot price data. In a way the energy market is
comparable to the interest rate market. Also the short-rate is not traded in itself. Moreover
the economical relationship between the short rate and the bond-market is comparable to the
relationship between the energy spot and the forward contracts. This is why many bond market
models are used in the modeling of the energy market. However some adjustments have to be
made. Typical features of the energy market are extreme spikes, seasonal behavior and stochastic
volatility. These have to be accounted for in the models.

The spikes occur when there are misbalances between supply and demand of energy. Since
energy can only be stored to a limited extend, the demand and supply have to match approxi-
mately. Both the demand and the supply sides are inelastic. On the supply side it is impossible
to turn on a power plant on short notice. Depending on the kind of power plant this can take
days (nuclear) or hours (gas, petrol). On the demand side the customer is not aware of the mar-
ket structure. Most customers have a contract with an energy company and pay one pre-defined
price for electricity. They are not aware that the price can change from hour to hour. More-
over electricity is often needed to keep a business running and it can be more expensive to slow
down an industry then to pay more for electricity. This in-elasticity on both sides has lead to the
possibility of enormous price spikes.

A second feature of the energy market is its seasonal behavior. In many countries there is
naturally more demand for energy during the winter than during the summer, because of heating.
Therefore the price of energy is often higher during winter than during summer. In some states
with a warmer climate, like in California, it is the other way around. Here the demand for energy
in order to heat during the winter is not so high. However during the summer air-conditioning
demand, lots of energy. To capture this seasonality a seasonal function is introduced in energy
models.

A last feature we will focus on in this thesis is stochastic volatility. Empirical studies by
Trolle and Schwartz [20] confirmed stochastic volatility in energy markets. This means that the
volatility is changing stochastically over time. Moreover there is evidence of a so-called inverse
leverage effect. The volatility tends to increase with the level of power prices, because there is a
negative relationship between inventory and prices (see for instance Deaton and Leroque [13]). In
order to model stochastic volatility we have chosen to follow the approach of Barndorff-Nielsen
and Shephard [1]. The stochastic volatility (SV) model of Barndorff-Nielsen and Shephard is
statistically tractable and fits well on the existing literature of energy modeling. In Chapter 2
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Figure 1.1: A typical electricity spot prices series. Depicted is Nordpool spot price data.

in this thesis the effect of stochastic volatility in pricing path dependent options is investigated.
This is done using the Barndorff-Nielsen and Shephards stochastic volatility model (BNS SV
model). Here ordinary stock data is used to estimate the parameters. However similar results
are expected when energy data would have been used to estimate the parameters and instead of
Asian options the valuation of an electricity line or gas pipe would have been considered.

One of the most common models is to model the spot as a combination of an Ornstein-
Uhlenbeck processes and a seasonal function. This can either be done arithmetically or geomet-
rically ([3]). A common geometric model is given by

S(t) = Λ(t) · exp(X(t) +
∑

i

Yi(t)) (1.1.1)

here Λ is a seasonality function. The normal variation is given by X , an Ornstein-Uhlenbeck
(OU) process with the following stochastic differential equation (SDE)

dX(t) = aX(t) dt + σ dW (t)

here a < 0 and σ > 0 are constants and W is a Brownian motion. The Yi’s are spike processes
modeling the extreme spikes in the electricity market. The Yi’s are Ornstein-Uhlenbeck processes
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with the following SDE’s.

dYi(t) = biYi(t) dt + ηi dLi(t)

here bi < 0 and ηi > 0 are constants. The Li’s are Lévy processes possibly from different
distributions.

Or similarly one can put the same variables in an arithmetic model

S(t) = Λ(t) + X(t) +
∑

i

Yi(t) (1.1.2)

There is a discussion going on whether energy spot prices should be modeled geometrically
or arithmetically. In financal modeling often geometric models are chosen (as this would be a
natural choice). However, working with arithmetic models is computationally easier. Moreover
in the energy market also negative prices are observed. For instance, the German power exchange
EEX permitted negative price outcomes for the spot auction from autumn 2008. Since then
negative prices have occurred. Sometimes it is more expensive to shut down a power plant then
to pay somebody to use the electricity. These are of course rare situations. Negative prices can
not be modeled by a geometric model. Therefor some argue that an arithmetic model should be
preferred. Moreover Lucia and Schwartz [19] have found statistical evidence in the Nordpool
market that arithmetic models do a better job in explaining prices then geometric models.

In chapter 3 and 5 in this thesis variations on this model are treated. In chapter 3 a multi-
dimensional version of the geometric model (1.1.2) is introduced. Here, instead of static volatil-
ity, a stochastic volatility process is chosen. In order to model the normal variation X a multi-
dimensional version of the BNS-SV model (Barndorff-Nielsen and Stelzer [2]) was taken. When
no spike processes are added this model is a multivariate extension of the one-factor Schwartz
model with stochastic volatility.

In chapter 5 the arithmetic model (1.1.1) is chosen with the possibility of a higher auto-
regressive order. Instead of an OU-process a continuous auto-regressive moving average (CARMA)
process (Brockwell [10]) is chosen. This is a continuous version of a auto-regressive moving av-
erage (ARMA) process. The OU-process is a special case of a CARMA process. Weron [24] and
Pilopovic [18] have given a more extended overview of time-serie modeling in energy markets.
As a driver of the CARMA process a stable process (Samorodnitsky and Taqqu [22]) is chosen.
The Brownian motion is a special case of a stable process. Stable processes are known for their
heavy tails and are therefore suitable to model extreme events like price spikes. When working
with stable processes it is unnecessary to add several spike processes since one stable process
can capture everything.
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1.2 Forward market

Unlike more classical commodity markets like agriculture and metals, energy-related futures
contracts deliver the underlying spot over a contracted period. There are for example contracts
sold which deliver 1 MWh during every hour of the month in the future. Also year contracts and
quarter of a year contracts are sold. In some markets also week contracts and 3 year contracts are
sold. Contracts can be settled either physically or financially. Forwards are traded continuously
till settlement starts.

Different to other commodity markets delivery is done over a period instead of at one point
in time. This is due to the difficulties of energy storage. Mathematically this lead to some
differences. From the theory of mathematical finance (Duffie [14]), we know that the value of
any derivative is given as the present expected value of its payoff, where the expectation is taken
with respect to a risk-neutral probability Q. It holds that

F (t, T1, T2) = EQ

[∫ T2

T1

w(u, T1, T2)S(u)du
∣∣∣Ft

]
(1.2.1)

here Q is a risk neutral measure, t is the time, T1 is the beginning of the delivering period and
T2 is the end of the delivering period. w is a weight function, which should be chosen according
to the market structure. In electricity markets the swap price F is normally denoted by price per
MWh. Therefore w(u, T1, T2) is taken 1

T2−T1
. However when settlement is done continuously

over the delivering period

w(u, T1, T2) =
e−ru∫ T2

T1
e−rv dv

(1.2.2)

here r is the interest rate. This to adjust for the advantage of having money at the bank.

In geometric models it is often not possible to calculate the swap F explicitly using equation
(1.2.1). However it is possible to given an expression in the form of an integral which can be
approximated nummerically. From no arbitrage theory we know that if the forward would have
been delivered at one point in time τ the forward price f would have been given by

f(t, τ) = EQ[S(τ)|Ft] (1.2.3)

meaning that the forward price is the best risk-neutral prediction at time t of the spot price S(τ)

at delivery. The swap F may be viewed as a continuous flow of forwards f (see Prop. 4.1 in
Benth, Saltyte Benth and Koekebakker [3]).

F (t, T1, T2) =

∫ T2

T1

w(τ, T1, T2)f(t, τ) dτ (1.2.4)

7



Chapter 1. Introduction

In chapter 4 the derivation (1.2.3) is done for the multivariate volatility model introduced
in Benth and Vos [7]. Moreover some properties of the derived forward curves are analyzed.
Examples of possible shapes of the forward curve using this model are given and transform based
methods to price options on the forward curves are given. In chapter 5 the derivation (1.2.1) is
done for the CARMA model introduced in García, Klüppelberg and Müller [15]. Furthermore
using parameters estimated on the spot price the risk premium is empirically analyzed.

The risk premium is defined as the difference between the futures price and the predicted
spot, that is, in terms of electricity futures contracts,

Rpr(t, T1, T2) = F (t, T1, T2) − E

[∫ T2

T1

w(τ, T1, T2) S(τ) dτ | Ft

]
. (1.2.5)

The risk premium can be used to identify the risk-measure Q. In chapter 5 is found that the risk
premium is negative in the long end of the market and positive in the short end of the market.
The positive risk premium for contracts close to delivery tells us that the demand side (retailers
and consumers) of the market is willing to pay a premium for locking in electricity prices as a
hedge against spike risk (see Geman and Vasicek [16]). In the long end of the market the risk
premium is negative meaning that on the supply side the energy companies want to hedge their
risk and willing to accept a lower price. The energy companies hedge the risk of an uncertain
spot price. These empirical findings are in line with results of empirical studies done by Benth,
Cartea and Kiesel [4].
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Abstract

Spot prices in energy markets exhibit special features like price spikes, mean-reversion,
stochastic volatility, inverse leverage effect and dependencies between the commodities. In this
paper a multivariate stochastic volatility model is introduced which captures these features. The
second order structure and stationarity of the model are analysed in detail. A simulation method
for Monte Carlo generation of price paths is introduced and a numerical example is presented.

1 Introduction

Energy markets world-wide have been liberalized over the last decades to create liquid trad-
ing arenas for power commodities like electricity, gas, and coal. The markets are continuously
developing, and in recent years gradually becoming more and more connected. For instance,
interconnectors between UK, Scandinavia and continental Europe integrate the power markets.
Also, different electricity markets on the continental Europe exchange to a large extent energy
across borders. As a reflection of this market integration is the growing need for multivariate
price models for power. This includes cross-commodity models for gas and electricity, say, but
also models for electricity traded in different but integrated markets. In this paper we propose
and analyse a multivariate spot price model for power.

Power market spot prices have several distinct characteristics. Typically, spot prices spike
occationally when there is an imbalance in supply and demand, since the supply curve is inelastic.
Further, the market prices are moving with the season, with high prices in winter due to heating,
or in summer due to air-conditioning cooling. Prices also naturally mean revert due to demand
and supply forces. Partly because of the spikes, the prices observed in gas and electricity markets
are to a large extent leptokurtic. In fact, volatility may easily reach above 100%. A discussion of
the features of power spot prices can be found in Eydeland and Wolyniec [16] and Geman [17].
There exists many models for spot price dynamics in power markets, and we refer to Benth et
al. [9] for an overview and analysis.

In energy markets there is evidence of a so-called inverse leverage effect. The volatility
tends to increase with the level of power prices, since there is a negative relationship between
inventory and prices (see for instance Deaton and Leroque [15]). Little available inventory means
higher and more volatile prices. This is reflected in gas markets where storage facilities play an
important role in price determination. There is also evidence for dependence between different
commodities. For instance, it is unlikely that the price of gas and electricity in the UK market,
say, will drive too far apart, since gas is the dominating fuel for power production. Likewise,
since gas can be transported as liquid natural gas (LNG), different gas markets can not have
prices which become increasingly different.

In recent years there has been an interest in stochastic volalility models for commodities,
and in particular energy. In Hikspoors and Jaimungal [18] we find an analysis of forward pric-
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energy markets

ing in commodity markets in the presence of stochastic volatility. Several popular models are
treated. More recently, Trolle and Schwartz [30] introduced the notion of unspanned volatility,
and analysed this in power markets. Their statistical analysis confirms the presence of stochastic
volatility in commodity markets. Benth [7] applied the Barndorff-Nielsen and Shepard stochastic
volatility model in commodity markets, and derived forward prices based on this. An empirical
study on UK gas prices was performed.

In this paper we propose a stochastic dynamic for cross-commodity spot price modelling
generalizing the univariate dynamics studied in Benth [7]. The model is flexible enough to
capture spikes, mean-reversion and stochastic volatility. Moreover, it includes the possibility to
model inverse leverage. Our proposed dynamics can model co- and independent jump behaviour
(spikes) in cross-commodity markets. Also, the model allows for analytical forward prices. This
issue, along with pricing of derivatives on spots and forwards, are left to the follow-up paper by
Benth and Vos [12].

The spot price dynamics we propose are based on Ornstein-Uhlenbeck processes driven by
multivariate subordinators. The logarithmic price dynamics are defined by multi-factor processes
and seasonal functions to account for deterministic variability over a year. The stochastic volatil-
ity processes are multi-variate as well, so that we can incorporate second-order dependencies
between commodities. The volaltity model is adopted from the so-called Barndorff-Nielsen and
Shephard model (BNS for short), extended to a multivariate setting (see Barndorff-Nielsen and
Shephard [4] and Barndorff-Nielsen and Stelzer [6]). As for the multi-dimensional extension, the
volatility is modeled with a matrix-valued Ornstein-Uhlenbeck process driven by a positive defi-
nite matrix-valued subordinator (see Barndorff-Nielsen and Pérez-Abreu [3]). We prove that the
spot prices are stationary, and compute the characteristic function of the stationary distribution.
Several other probabilistic features of the model are presented and discussed, demonstrating its
flexibility in modelling prices and its analytical tractability. From a more practical point of view,
a method for simulating the prices is presented. We provide an empirical example where the
algorithm is applied. Our approach is influenced by the work of Stelzer [29].

The paper is organized as follows. Section 2 introduces the spot model, thereafter the station-
ary distribution and the probabilistic properties of the various factors of the model are deduced in
Section 3. The following section deals with the same properties of the spot price model. Section
5 gives an empirical example and a method to perform Monte-Carlo simulation of the model.
Finally, in Section 6 we conclude.

Notation

For the convenience of the reader, we have collected some frequently used notations. We adopt
the notation used by Pirgorsch and Stelzer [22]. Throughout this paper we write R+ for the
positive real numbers and we denote the set of real n × n matrices by Mn(R). We denote the
group of invertible matrices by GLn(R), the linear subspace of symmetric matrices by Sn, the
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positive definite cone of symmetric matrices by S+
n . In stands for the n × n identity matrix,

Jn(v) is an operator Rn → Mn(R) which creates a diagonal matrix with the vector v ∈ Rn on
the diagonal, diag(A) is a vector in Rn consisting of the diagonal of the matrix A ∈ Mn(R), σ(A)

denotes the spectrum (the set of all eigenvalues) of a matrix A ∈ Mn(R). The tensor (Kronecker)
product of two matrices A, B is written as A ⊗ B. vec denotes the well-known vectorization
operator that maps the n× n matrices to Rn2 by stacking the columns of the matrices below one
another. Furthermore, we denote tr(A) for the trace of the matrix A ∈ Mn(R), which is the sum
of the elements on the diagonal. The transpose of the matrix A ∈ Mn(R) is denoted AT while
Aij is the element of A in the i-th row and j-th column. The unit vector with on the i-th place a
one is denoted ei. For A ∈ Mn(R), we denote the operator A associated with the matrix A as
A : X 	→ AX + XAT . This operator can be represented as vec−1 ◦ ((A⊗ In) + (In ⊗A)) ◦ vec.
Its inverse is denoted by A−1, which exists whenever I ⊗ A + A ⊗ I is invertible. In this case,
we can represent A−1 by vec−1 ◦ ((A ⊗ In) + (In ⊗ A))−1 ◦ vec. Remark that A ⊗ In + In ⊗ A

is equal to the Kronecker sum of the matrix A with itself.

2 The cross-commodity spot price model

Suppose we are given a complete filtered probability space (Ω,F , P ) equipped with the filtration
{Ft}t≥0 satisfying the usual conditions (see e.g. Protter [24]). Assume m, n ∈ N with 0 ≤
m < n. Let {L̃j(t)}t∈R+ ∈ S+

d , j = 1, . . . , n be n independent matrix-valued subordinators
as introduced in Barndorff-Nielsen and Pérez-Abreu [3]. Furthermore, let Li, i = 1, . . . , m be
Rd-valued subordinators1. For i = 1, . . . , m the vector-valued subordinators Li are formed by
taking the diagonal of the matrix-valued subordinators L̃i(t). This implies that Li will jump
whenever L̃i does. If one of the off-diagonal elements jumps, also the diagonal element has to
jump in order to keep the volatility process L̃i in the positive definite cone S+

d . The subordinators
are assumed to be driftless, and we choose to work with the versions which are right-continuous
with left limits (RCLL, for short). Moreover, let W be a standard Rd-valued Brownian motion
independent of the subordinators.

We define the spot price dynamics of d commodities as follows: let

S(t) = Λ(t) · exp

(
X(t) +

m∑
i=1

Yi(t)

)
, (2.1)

where Λ : [0, T ] 	→ Rd
+ is a vector of bounded measurable seasonality functions, ’·’ denotes

coordinate-wise multiplication, and

dX(t) = AX(t) dt + Σ(t)1/2 dW (t) , (2.2)

1A multivariate subordinator is a Lévy process which is increasing in each of its coordinates (see Sato [1]).
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dYi(t) = (μi + BiYi(t)) dt + ηi dLi(t) , (2.3)

for i = 1, . . . , m. A, Bi’s and ηi are in GLd(R) and μi is a vector in Rd. To ensure the existence
of stationary solutions we assume that the eigenvalues of the matrices A, Bi have negative real-
parts. In order to have the Itô integral in (2.2) well-defined, we suppose that

P

(∫ T

0

tr(Σ(t)) dt < ∞
)

= 1 . (2.4)

Here, T < ∞ is some terminal time for our energy markets. The entries of ηi can be negative. So
although Li is a Rd-valued subordinator, there can be negative jumps in the spot-price process.

The stochastic volatility process Σ(t) is a superposition of positive-definite matrix valued
Ornstein-Uhlenbeck processes as introduced in Barndorff-Nielsen and Stelzer [6],

Σ(t) =
n∑

j=1

ωjZj(t) , (2.5)

with
dZj(t) = (CjZj(t) + Zj(t)C

T
j )dt + dL̃j(t) , (2.6)

and the ωj’s are weights summing up to 1. Moreover, {Cj}1≤j≤n ∈ GLd(R). To ensure a
stationary solution we will assume that the eigenvalues of Cj have negative real-parts. This
stochastic volatility model is a multivariate extension of the so called BNS SV model introduced
by Barndorff-Nielsen and Shephard [4] for general asset price processes. The commodity spot
price dynamics with the BNS SV model as stochastic volatility structure is a generalization of
the univariate spot model analysed in Benth [7].

Note that Yi and Σi for i = 1, . . . , m have related subordinators L and L̃ driving the noise.
Thus, when the volatility component Σ jumps, we observe simultaneously a change in the spot
price. Hence, we can have an inverse leverage effect since increasing prices follow from increas-
ing volatility, and vice versa (see Eydeland and Wolyniec [16] and Geman [17] for a discussion
on inverse leverage in power markets). We also have n − m independent stochastic volatility
components Zj , j = m + 1, . . . , n that do not directly influence the price process paths but have
a second order effect. The processes Yi can be interpreted as modeling the spikes, whereas X is
the normal variation in the market. The latter is also sometimes referred to as the base component
of the price variations.

By turning off the processes Yi (choose μi = ηi = 0 and Bi = 0 for all i), we obtain a
multivariate extension of the Schwartz model with stochastic volatility and stock-price dynamics:

S(t) = Λ(t) · exp(X(t)) (2.7)

where X(t) is defined in (2.2). The Schwartz model with constant volatility is a mean-reversion
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process proposed by Schwartz [28] for spot price dynamics in commodity markets like oil. In
order to have spikes being independent of the volatility process Σ(t), we can switch off some of
the ωj’s in (2.5), that is choose some ωj = 0. Then the Li’s from the corresponding L̃j’s will
give rise to independent spike components.

In electricity markets one observes spikes in the spot price dynamics (see e.g. Benth et. al.
[9]). These spikes often occur seasonally. In the Nordic electricity market Nord-Pool, price
spikes occur in the winter time when demand is high. We therefore may wish the jump fre-
quency of the subordinators Li, i = 1, . . . , m to be time-dependent. This is not possible when
working with Lévy processes, but we can generalize to independent increment processes in-
stead (see Jacod and Shiryaev [20]). Independent increment processes can be thought of as
time-inhomogeneous Lévy processes. Our modeling and analysis to come are easily modified
to include such processes. To keep matters slightly more simplified, we stick to the time-
homogeneous case here. The interested reader is referred to Benth et al [9] for applications
of independent increment processes in energy markets.

We assume the following integrability conditions for the subordinators.

E

[
log+ ‖L̃j(1)‖

]
< ∞ , (2.8)

where log+(x) is defined as max(log(x), 0) and j = 1, . . . , n and ‖A‖2 = tr(AT A) is the
Frobenius norm of the matrix A ∈ Md(R). Note that this condition implies

E
[
log+ |Li(1)|] < ∞ , (2.9)

for i = 1, . . . , m and | · | is the Euclidean 2-norm on Rd.

In the next Section we study the probabilistic properties of the factor processes X and Yi. As
we shall see, the analysis of the spot price model will depend crucially on the properties of certain
operators, which will reflect back to restrictions on the matrices A, Bi and Cj , for i = 1, . . . , m

and j = 1, . . . , n. Throughout the rest of the paper, we suppose that A, Bi and Cj are invertible
for i = 1, . . . , m and j = 1, . . . , n. Furthermore, the matrices A and Cj are commuting, for each
j = 1, . . . , n. Finally, the operators A − Cj are invertible for j = 1, . . . , n.

3 Stationarity and probabilistic properties of the factor pro-
cesses

The processes X, Yi are Ornstein-Uhlenbeck processes. Applying the multi-dimensional Itô for-
mula (see Ikeda and Watanabe [19]) to the stochastic differential equations yields the following
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solutions: for 0 ≤ s ≤ t,

X(t) = eA(t−s)X(s) +

∫ t

s

eA(t−u)Σ(u)1/2 dW (u) , (3.1)

Yi(t) = eBi(t−s)Yi(s) + B−1
i (I − eBi(t−s))μi +

∫ t

s

eBi(t−u)ηi dLi(u) , (3.2)

for i = 1, . . . , m. The matrix exponentials are defined as usual as eA := I +
∑∞

i=1
An

n!
.

According to Barndorff-Nielsen and Stelzer [6], Sect. 4, the solution of Zj(t), j = 1, . . . , n,
is given by

Zj(t) = eCj(t−s)Zj(s)eCT
j (t−s) +

∫ t

s

eCj(t−u) dL̃j(u)eCT
j (t−u) . (3.3)

The matrix-valued stochastic integral in the second term of Zj(t) is understood as follows. For
two Md(R)-valued bounded and measurable functions E(u) and F (u) on [t, s], the notation∫ t

s
E(u) dL̃(u)F (u) means the matrix G(s, t) ∈ Md(R) with coordinates defined by

Gij(s, t) =
d∑

k=1

d∑
l=1

∫ t

s

Eik(u)Flj(u) dL̃kl(u) .

Here, L̃ is the generic notation for some L̃j . We remark that since L̃j are supposed to be RCLL,
the processes Zj also are RCLL.

Let us first look at the expected values of X and Yi. For this, the following Lemma, which is
interesting in its own right, is useful:

Lemma 3.1. Let L be an integrable Lévy process in Rdand f a bounded measurable function
from [s, t] into Md(R) being of bounded variation. Then it holds that

E

[∫ t

s

f(u)dL(u)

]
=

∫ t

s

f(u)du E[L(1)] . (3.4)

Proof. Define the Lévy process L̂(u) := L(u) − E[L(1)]u, which has expectation zero. From
integration by parts (use the multi-dimensional Itô Formula for jump processes in Ikeda and
Watanabe [19]), it holds∫ t

s

f(u) dL̂(u) = f(t)L̂(t) − f(s)L̂(s) −
∫ t

s

L̂(u) df(u) .

Now, choosing the right-continuous with left limits version of L (as we always can do for Lévy
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processes), we can apply the Fubini-Tonelli Theorem to conclude that

E

[∫ t

s

f(u) dL̂(u)

]
= 0 ,

and hence the Lemma follows. �

We find the following conditional expectations for the factor processes:

Lemma 3.2. Suppose that Li(1) are integrable for i = 1, . . . , m. Then it holds

E[X(t)|Fs] = eA(t−s)X(s) ,

E[Yi(t)|Fs] = eBi(t−s)Yi(s) + B−1
i (I − eBi(t−s))μi + B−1

i

(
ηi − eBi(t−s)ηi

)
E [Li(1)] ,

for i = 1, . . . , m

Proof. The conditional expectation of X(t) is given by

E[X(t)|Fs] = eA(t−s)X(s) + E

[∫ t

s

eA(t−u)Σ(u)1/2 dW (u)

]
,

= eA(t−s)X(s) + E

[
E

[∫ t

s

eA(s−u)Σ(u)1/2 dW (u)|Σ(u)s≤u≤t

]]
,

= eA(t−s)X(s) .

In the third equality we use that the paths of Σ(u) are right-continuous with left limits, and
therefore bounded on [s, t], and hence u 	→ exp(A(s − u))Σ1/2(s − u) is Itô integrable on [t, s]

in a strong sense. We can thus conclude that the expectation is zero of this Itô integral.
For Yi, i = 1, . . . , m, we get

E[Yi(t)|Fs] = eBi(t−s)Yi(s) + B−1
i (I − eBi(t−s))μi + E

[∫ t

s

eBi(t−u)ηi dLi(u)|Fs

]
,

= eBi(t−s)Yi(s) + B−1
i (I − eBi(t−s))μi +

∫ t

s

eBi(t−u)ηi du · E [Li(1)] ,

= eBi(t−s)Yi(s) + B−1
i (I − eBi(t−s))μi + B−1

i

(
ηi − eBi(t−s)ηi

)
E [Li(1)] .

where we used Lemma 3.1 to obtain the last equality. �

Since A and Bi have eigenvalues with a negative real part, letting t tend to infinity yields

lim
t→∞

E[X(t) | Fs] = 0 ,
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lim
t→∞

E[Yi(t) | Fs] = B−1
i (μi + ηiE[Li(1)]) ,

for i = 1, . . . , m. Hence, in stationarity, the "base-term" X(t) will contribute zero in expecta-
tion, whereas the "leverage-terms" Yi will give a drift imposed from the subordinators and the
coefficients μi.

Let us analyse the second-order properties of the factor processes. We have the following
result for the variance of the "base component" X(t):

Lemma 3.3. Assume that L̃j(1) is integrable for j = 1, . . . , n. Then it holds

Var[X(t)|Fs] =
n∑

j=1

ωj(A − Cj)−1
{

eA(t−s)Zj(s)eAT (t−s) − eCj(t−s)Zj(s)eCj(t−s)
}

+
n∑

j=1

ωjC−1
j

{
(A − Cj)−1

{
eA(t−s)E[L̃j(1)]eAT (t−s) − eCj(t−s)E[L̃j(1)]eCT

j (t−s)
}}

−
n∑

j=1

ωjA−1
{
C−1

j

{
eA(t−s)E[L̃j(1)]eAT (t−s) − E[L̃j(1)]

}}
,

for 0 ≤ s ≤ t.

Proof. We compute the conditional variance for the process X by appealing to the tower property
of conditional expectations and the independent increment property of Brownian motion. Letting
Gs,t be the σ-algebra generated by Fs and the paths Σ(u), s ≤ u ≤ t, we find,

Var[X(t)|Fs] = E

[(
eA(t−s)X(s) +

∫ t

s

eA(s−u)Σ(u)1/2 dW (u)

)2

|Fs

]
− E[X(t)|Fs]

2 ,

= E

[
E

[(∫ t

s

eA(s−u)Σ(u)1/2 dW (u)

)2

|Gs,t

]
|Fs

]
,

= E

[∫ t

s

eA(t−u)Σ(u)eAT (t−u)du|Fs

]
=

n∑
j=1

ωj

∫ t

s

eA(t−u)E [Zj(u)|Fs] eAT (t−u) du ,

after appealing to Fubini’s Theorem. From the explicit representation of Zj(t) in (3.3), we find

E[Zj(u)|Fs] = eCj(u−s)Zj(s)eCT
j (u−s) +

∫ u

s

eCj(u−v)E[L̃j(1)]eCT
j (u−v) dv

= eCj(u−s)Zj(s)eCT
j (u−s) +

∫ u−s

0

eCjzE[L̃j(1)]eCT
j z dz

= eCj(u−s)Zj(s)eCT
j (u−s) + C−1

j

{
eCj(t−s)E[L̃j(1)]eCT

j (t−s) − E[L̃j(1)]
}

,

42



Fred Espen Benth and Linda Vos

after appealing to Lemma 3.1. Hence, using that A and Cj are commuting for each j = 1, . . . , n,
we find

Var[X(t)|Fs] =
n∑

j=1

ωj

∫ t

s
eA(t−u)eCj(u−s)Zj(s)eCT

j (u−s)eAT (t−u) du

+
n∑

j=1

ωjCj

{∫ t

s
eA(t−u)eCj(u−s)E[L̃j(1)]eCT

j (u−s)eAT (t−u) du

}

−
∑
j=1

ωjC−1
j

∫ t

s
eA(t−u)E[L̃j(1)]eAT (t−u) du

=
n∑

j=1

ωj(A − Cj)−1
{

eA(t−s)Zj(s)eAT (t−s) − eCj(t−s)Zj(s)eCj(t−s)
}

+
n∑

j=1

ωjC−1
j

{
(A − Cj)−1

{
eA(t−s)E[L̃j(1)]eAT (t−s) − eCj(t−s)E[L̃j(1)]eCT

j (t−s)
}}

−
n∑

j=1

ωjA−1
{
C−1

j

{
eA(t−s)E[L̃j(1)]eAT (t−s) − E[L̃j(1)]

}}
.

The Lemma follows. �

Note that the explicit expression for the variance of the base component is computed under
the condition of the matrices A and Cj being commutable. Moreover, we observe that for the
Lemma to hold, we must have the imposed conditions of invertibility of the operators A,Cj and
A − Cj . Recalling that the matrices A and Cj have eigenvalues with negative real part, we pass
to the limit t → ∞ to find

lim
t→∞

Var[X(t)] =
n∑

j=1

ωjA
−1Cj

−1E[L̃j(1)] .

Observe that the stationary limit of the variance depends explicitly on the mean-reversion co-
efficient matrices A and Cj . In fact, from Barndorff-Nielsen and Stelzer [6] we know that the
stationary expected value of Zj(s) is Cj

−1E[L̃j(1)], so we can write

lim
t→∞

Var[X(t)|Fs] = A−1 lim
t→∞

E[Σ(t)] . (3.5)

for the stationary variance of the base component.
We move on and find the variance of Yi(t):

Lemma 3.4. Suppose that Li(1) are square integrable for i = 1, . . . , m. Then it holds,

Var[Yi(t)|Fs] = Bi
−1

(
ηiE[Li(1)LT

i (1)]ηT
i − eBi(t−s)ηiE[Li(1)LT

i (1)]ηT
i eBT

i (t−s)
)
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− B−1
i (I − eBi(t−s))ηiE[Li(1)]E[LT

i (1)]ηT
i (I − eBT

i (t−s))B−T
i ,

for i = 1, . . . , m and 0 ≤ s ≤ t.

Proof. Fix a i = 1, . . . , n. By (3.2), we find that the conditional variance of Yi(t) given Fs is

Var[Yi(t)|Fs] = Var[

∫ t

s

eBi(t−u)ηi dLi(u)|Fs] .

Moreover, by the independent increment property of Lévy processes it holds

Var[Yi(t)|Fs] = Var[

∫ t

s

eBi(t−u)ηi dLi(u)] .

But, by Itô isometry for Lévy process integrals

E

[∫ t

s

eBi(t−u)ηi dLi(u)

∫ t

s

eBi(t−u)ηi dLi(u)T

]
=

∫ t

s

eBi(t−u)ηiE[Li(1)LT
i (1)]ηT

i eBT
i (t−u) du

= B−1
(
ηiE[Li1(1)LT

i (1)]ηT
i − eBi(t−s)ηiE[Li(1)LT

i (1)]ηT
i eBT

i (t−s)
)

On the other hand, following from Lemma 3.1

E

[∫ t

s

eBi(t−u)ηi dLi(u)

]
=

∫ t

s

eBi(t−u) duηiE[Li(1)]

= B−1
i (I − eBi(t−s))ηiE[Li(1)] .

Hence, the Lemma follows. �

Note that we have used the standing condition of invertibility of the operators Bi in this
Lemma. We can also for Yi(t) compute an explicit stationary limit for the variance using that the
eigenvalues of Bi have negative real parts:

lim
t→∞

Var[Yi(t)|Fs] = Bi
−1ηiE[Li(1)LT

i (1)]ηT
i − B−1

i ηiE[Li(1)]E[LT
i (1)]ηT

i B−T
i . (3.6)

This holds for every i = 1, . . . , m.
From an empirical point of view, the covariance structures between factors in the temporal

direction are useful. We compute this in the next Lemma:

44



Fred Espen Benth and Linda Vos

Lemma 3.5. Suppose that Li(1) is square integrable for i = 1, . . . , m. Then, for 0 ≤ s ≤ t,

Cov[X(t), Yi(t)|Fs] = 0 = Cov[Yi(t), Yj(t)|Fs] ,

for i �= j and i, j = 1, . . . , m. Furthermore, if L̃j(1) are integrable for j = 1, . . . , n, then the
conditional auto-covariance functions of X and Yi are given by,

acovX(s, t, h) := Cov[X(t + h), X(t)|Fs] = eAhVar[X(t)|Fs]

acovYi
(s, t, h) := Cov[Yi(t + h), Yi(t)|Fs] = eBihVar[Yi(t)|Fs] ,

for i = 1, . . . , m, 0 ≤ s ≤ t and h ≥ 0 a constant (the lag of the auto-covariance).

Proof. First, from (3.2) we find,

Cov[Yi(t), Yj(t)|Fs] = Cov

[∫ t

s

eBi(t−u)ηidLi(u),

∫ t

s

eBj(t−u)ηjdLj(u)

]
= 0 ,

for i �= j, since in that case Li and Lj are independent.

Next, from (3.1) and (3.2) we find for given i = 1, . . . , m,

Cov[X(t), Yi(t)|Fs] = Cov

[∫ t

s

eA(t−u)Σ(u)1/2dW (u),

∫ t

s

eBi(t−u)ηidLi(u)|Fs

]
.

We recall that Σ(t) and W (t) are independent. Using the tower property of conditional expec-
tation, where we condition of the σ-algebra Gt,s generated by all paths of L̃j(u); 0 ≤ u ≤ t and
Fs, for j = 1, . . . , n, we find,

E

[(∫ t

s

eA(t−u)Σ(u)1/2dW (u)

)(∫ t

s

eBi(t−u)ηidLi(u)

)T

|Fs

]

= E

[
E

[(∫ t

s

eA(t−u)Σ(u)1/2dW (u)

)(∫ t

s

eBi(t−u)ηidLi(u)

)T

|Gt,s

]
|Fs

]
,

= E

[
E

[(∫ t

s

eA(t−u)Σ(u)1/2dW (u)

)
|Gt,s

](∫ t

s

eBi(t−u)ηidLi(u)

)T

|Fs

]
,

= 0 .

In the second equality we have used that Li(u) for i = 1, . . . , m are the diagonals of L̃i(u), and
thus measurable with respect to Gt,s, while the last equality follows since the expectation of an
Itô integral is zero.
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Next, let us derive the auto-covariance function for X . From (3.1), we find for h ≥ 0

X(t + h) = eAhX(t) +

∫ t+h

t

eA(t+h−u)Σ(u)1/2 dW (u) .

Hence,

acovX(s, t, h) = eAhVar[X(t)|Fs] + Cov[

∫ t+h

t

eA(t+h−u)Σ(u)1/2 dW (u), X(t)|Fs] .

By using the same double conditioning argument as above, we see that the seocnd term is equal
to zero since Brownian motion has indendependent increments. This proves the auto-covariance
function of X . For the case Yi, we use exactly the same argument. Use (3.2) and the independent
increment property of Lévy processes to reach the result. The Lemma follows. �

From an empirical point of view, the stationary auto-covariance functions are particularly
interesting. From (3.5) and (3.6) it follows

lim
t→

acovX(s, t, h) = eAh

n∑
j=1

ωjA
−1C−1

j E[L̃j(1)] ,

lim
t→

acovY (s, t, h) = eBih
{
B−1

i ηiE[Li(1)LT
i (1)]ηT

i − B−1
i ηiE[Li(1)]E[LT

i (1)]ηT
i

}
.

As A and Bi have eigenvalues with negative real parts, we see that the de-seasonalized log-spot
prices ln Sk(t)− ln Λk(t) of commodity k = 1, . . . , d will in stationarity have an auto-correlation
function being a sum of exponential functions, with decay rates given by the real parts of the
eigenvalues of A and Bi, i = 1, . . . , m. This is an empirical feature we often see with energy
prices (see for example Benth, Kiesel and Nazarova [10]).

3.1 Cumulants and stationary distributions

Under the log integrability conditions (2.8), the processes Yi and Zj are stationary (see Sato [27],
Thm. 5.2). In the next Proposition the characteristic function of the stationary distributions of X ,
Yi and Zj for i = 1, . . . , m and j = 1, . . . , n are calculated in terms of the characteristic function
of the matrix-valued processes L̃j .

Let us first investigate the cumulant and the stationary distribution of Zj and Yi, i = 1, . . . , m,
j = 1, . . . , n.

Proposition 3.6. For t ≥ s, the conditional cumulant functions of Yi and Zj are, resp.,

φ
(s,t)
Yi

(z) = i
(
eBi(t−s)Yi(s) + iB−1

i (I − eBi(t−s))μi

)T
z +

∫ t−s

0

φeLi
(Jd(η

T
i eBT

i uz))du , (3.7)
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φ
(s,t)
Zj

(V ) = iV eCj(t−s)Zj(s)eCT
j (t−s) +

∫ t−s

0

φeLj
(eCj(t−s)V eCT

j (t−s)) du , (3.8)

for i = 1, . . . , m and j = 1, . . . , n.

Proof. For the cumulants of Yi, i = 1, . . . , m using (3.2) it holds

Yi(t) = eBi(t−s)Y i(s) + B−1
i (I − eBi(t−s))μi +

∫ t

s

eBi(t−u)ηidLi(u) ,

for t ≥ s. Hence, by the key formula (see Sato [27]), the conditional cumulant function of Yi(t)

given Fs is

φ
(s,t)
Yi

(z) = i
(
eBi(t−s)Y i(s) + iB−1

i (I − eBi(t−s))μi
)T

z +

∫ t

s

φLi
(ηT

i eBT
i (t−u)z)du ,

= i
(
eBi(t−s)Yi(s) + iB−1

i (I − eBi(t−s))μi

)T
z +

∫ t−s

0

φeLi
(Jd(η

T
i eBT

i uz))du .

The cumulant functions of the Zj’s are computed in Pigorsch and Stelzer [23]. We include
the derivation here for the convenience of the reader. By (3.3) and the independent increment
property of Lévy processes,

ln E
[
eiV Zj(t)|Fs

]
= iV eCj(t−s)Zj(s)eCT

j (t−s) + ln E

[
eiV

R t
s eCj(t−u) deLj(u)eCT

j (t−u) |Fs

]
= iV eCj(t−s)Zj(s)eCT

j (t−s) + ln E

[
eiV

R t
s eCj(t−u) deLj(u)eCT

j (t−u)
]

= iV eCj(t−s)Zj(s)eCT
j (t−s) +

∫ t

s

φeLj

(
eCj(t−u)V eCT

j (t−u)
)

du .

Hence, the Lemma follows. �

Since L(t) has finite log moments and σ(Bi) ⊆ (−∞, 0)+ iR+, the limit of φ
(s,t)
Yi

for t → ∞
is well-defined (see Sato [27]) and given by

lim
t→∞

φ(s,t)φYi
(z) := φYi

(z) = iμT
i (BT

i )−1z +

∫ ∞

0

φeLi
(Jd(η

T
i eBT

i uz))du, z ∈ Rd ,

for i = 1, . . . , m. This is the cumulant function of the stationary distribution of Yi. Similarily,
we find the cumulant function of the stationary distribution of the Zj’s to be

lim
t→∞

φ
(s,t)
Zj

(z) := φZj
(V ) =

∫ ∞

0

φeLj

(
eCT

j sV eCjs
)

ds, V ∈ Sd ,
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for j = 1, . . . , n.
Let us continue our analysis with deriving the cumulant function and characterize the station-

ary distribution of the base component X . To this end, we define the family of linear operators
Cj(t),

Cj(t) : X 	→ ωj

[
(Cj − A)−1

(
eCjtXeCT

j t − eAtXeAT t
)]

. (3.9)

We remark that a similar operator is defined in Pigorsch and Stelzer [23]. The following auxiliary
result is useful:

Lemma 3.7. Define f(s, t) :=
∫ t

s
eA(t−u)Σ(u)eAT (t−u)du. Then it holds

f(s, t) =
n∑

j=1

Cj(t − s)Zj(s) +

∫ t

s

Cj(t − v)dL̃j(v) ,

for 0 ≤ s ≤ t.

Proof. Using (3.3) and the assumption that A and Cj commute for j = 1, . . . , n it holds

f(s, t) =

∫ t

s

eA(t−u)

n∑
j=1

ωj

(
eCj(u−s)Zj(s)eCT

j (u−s) +

∫ u

s

eCj(u−v)dL̃j(v)eCT
j (u−v)

)
eAT (t−u)du

=
n∑

j=1

ωj

∫ t

s

e(Cj−A)ueAt−Cjs

(
Zj(s) +

∫ u

s

e−CjvdL̃j(v)e−CT
j v

)
eAT t−CT

j se(Cj−A)T udu

=
n∑

j=1

ωj(Cj − A)−1
(

eCj(t−s)Zj(s)e
CT

j (t−s) − eA(t−s)Zj(s)eAT (t−s)
)

+

∫ t

s

∫ u

s

{
e(Cj−A)ueAte−CjvdL̃j(v)e−CT

j veAT te(Cj−A)T u
}

du .

The last integral is intepreted as first integrating with respect to dL̃j(v), and next integrating
the obtained expression with respect to du. But, by spelling out the integrals in terms of sums,
using the definition of the dL̃j(v) integrals, and invoking the stochastic Fubini theorem (see
Protter [24]), we get∫ t

s

∫ u

s

{
e(Cj−A)ueAte−CjvdL̃j(v)e−CT

j veAT te(Cj−A)T u
}

du

=

∫ t

s

∫ t

v

{
e(Cj−A)ueAte−CjvdL̃j(v)e−CT

j veAT te(Cj−A)T u
}

du .

Here, the right hand side is intepreted as first integrating with respect to du, treating dL̃j(v) as a
matrix and not a differential, and next integrating with respect to dL̃j(v) the obtained expression.
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Hence, we find

f(s, t) =
n∑

j=1

Cj(t − s)Zj(s)

+ (Cj − A)−1

(∫ t

s

eCj(t−v)dL̃j(v)eCT
j (t−v) −

∫ t

s

eA(t−v)dL̃j(v)eAT (t−v)

)
.

The Lemma follows. �

With this result at hand, we can derive the conditional cumulant function of X(t). This is
done in the next Proposition.

Proposition 3.8. The conditional cumulant function of the process X(t) given Fs is

φs,t
X (z) = iXT (s)eAT (t−s)z − 1

2

n∑
j=1

zTCj(t − s)Zj(s)z +
n∑

j=1

∫ t−s

0

φeLj

(
1

2
iC∗

j (u)zzT

)
du ,

(3.10)
for every 0 ≤ s ≤ t, and z ∈ Rd, where C∗

j is the adjoint operator of Cj defined in (3.9).

Proof. Let Gt,s denote the filtration generated by Fs and the paths Σ(u), 0 ≤ u ≤ t. By the
independence of W and L̃j for j = 1 . . . n, and the tower property of conditional expectations,
we have that

φs,t
X (z) = ln E

[
E

[
ei〈z,X(t)〉|Gt,s

] |Fs

]
= iXT (s)eAT (t−s)z + ln E

[
E

[
exp

(
i

(∫ t

s

Σ(u)1/2eA(t−u)dW (u)

)T

z

)
|Gt,s

]
|Fs

]

= iXT (s)eAT (t−s)z + ln E

[
exp

(
−1

2
zT

∫ t

s

eA(t−u)Σ(u)eAT (t−u)du z

)
|Fs

]

In the second equality, we used (3.1) and in the third equality we used the Gaussianity of a Wiener
integral (note that the integrand is a deterministic function after conditioning on Gt,s). Appealing
to Lemma 3.7, we find

φs,t
X (z) = iXT (s)eAT (t−s)z − 1

2

n∑
j=1

zTCj(t − s)Zj(s)z

+
n∑

j=1

ln E

[
exp

(
−1

2
zT

∫ t

s

Cj(t − u)dL̃j(u)z

)
|Fs

]
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= iXT (s)eAT (t−s)z − 1

2

n∑
j=1

zTCj(t − s)Zj(s)z

+
n∑

j=1

ln E

[
exp

(
itr

(
1

2
izzT

∫ t

s

Cj(t − u)dL̃j(u)

))]
.

In the last step, we used the fundamental relation zT Uz = tr(zzT U) for a quadratic matrix
U together with the independent increment property of Lévy processes. Now, observe that the
stochastic integral can be expressed as∫ t

s

Cj(t − u)dL̃j(u) = lim
|Δi|→0

n−1∑
i=0

Cj(t − ui)ΔL̃j(ui) ,

for partitions s = u0 < · · · < un = t with Δi := L̃j(ui+1) − L̃j(ui) and Δi := ui+1 − ui.
By independence of increments of a Lévy process, and continuity of the exponential function
together with Fubini-Tonelli’s Theorem, we get

E

[
exp

(
itr

(
1

2
izzT

∫ t

s

Cj(t − u)dL̃j(u)

))]
= lim

|Δi|→0

n−1∏
i=1

E

[
exp

(
itr

(
1

2
izzTCj(t − ui)ΔL̃j(ui)

))]
.

Now, the linear operators Cj(t− ui) can be represented as vec−1 ◦K ◦ vec for a matrix K ∈ Rd2 .
Hence, since for quadratic matrices tr(V X) = vec(V )T vec(X), we find

tr
(
V Cj(t − ui)ΔL̃j(ui)

)
= vec(V )T vec

(
Cj(t − ui)ΔL̃j(ui)

)
= vec(V )T vec

(
vec−1 ◦ K ◦ vec(ΔL̃j(ui))

)
= vec(V )TKvec(ΔL̃j(ui))

=
(KT vec(V )

)T
vec(ΔL̃j(ui)) .

Thus,

ln E

[
exp

(
itr(V Cj(t − ui)ΔL̃j(ui))

)]
= ln E

[
exp

(
i
(KT vec(V )

)T
vec(ΔL̃j(ui))

)]
= ln E

[
exp

(
itr

(
vec−1(KT vec(V ))ΔL̃j(ui)

))]
= φeLj

(
vec−1 ◦ KT ◦ vec(V )

)
Δi

= φeLj

(C∗
j (t − ui)V

)
Δi .
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Letting V = 1
2
izzT , we conclude that

ln E

[
exp

(
itr

(
1

2
izzTCj(t − ui)ΔL̃j(ui)

))]
=

∫ t

s

φeLj

(
1

2
iC∗

j (t − u)zzT

)
du

=

∫ t−s

0

φeLj

(
1

2
iC∗

j (u)zzT

)
du .

This proves the Proposition. �

We can prove the stationarity of X(t) and derive the cumulant function for the limiting dis-
tribution.

Proposition 3.9. The process X(t) is stationary and the cumulant function of the limiting distri-
bution is given by

lim
t→∞

φ
(s,t)
X (z) := φX(z) =

n∑
j=1

∫ ∞

0

φeLj

(
1

2
iC∗

j (s)zzT

)
ds ,

where z ∈ Rd and the linear operator Cj(t) is defined in (3.9).

Proof. By the definition of Cj(t) and the fact that A and Cj , j = 1, . . . , n have eigenvalues with
negative real parts, it is straightforward to see that

lim
t→∞

iXT (s)eAT (t−s)z − 1

2

n∑
j=1

zTCj(t − s)Zj(s)z = 0 .

Hence, we must prove that the integral∫ t

0

φeLj

(
1

2
iC∗

j (s)zzT

)
ds

converges when t → ∞, for every j = 1, . . . , n. To prove this it is sufficient to show that∫ t

s

Cj(t − u)dL̃j(u)

has a stationary solution for each j = 1, . . . , n. Let us fix j = 1, . . . , n, and observe that by
definition of Cj(t) and linearity of the Cj − A-operator, we have∫ t

s
Cj(t − u)dL̃j(u) = ωj(Cj − A)−1

{∫ t

s
eCj(t−u) dL̃j(u)eCj(t−u) −

∫ t

s
eA(t−u) dL̃j(u)eA(t−u)

}
.
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But the two stochastic integrals are stationary by Sato [27] Theorem 5.2 since A and Cj have
eigenvalues with negative real parts. Hence, the result follows since any linear combination of
stationary processes will in itself be stationary. �

We observe that the limiting distribution of X must be centered and symmetric since its
cumulant function satisfies φX(z) = φX(−z). We discuss the stationary distribution of X in
more detail.

As we now argue, the stationary distribution of X can be viewed as the convolution of a
centered normal and a leptokurtic distribution whenever L̃j(1) are integrable for j = 1, . . . , n.
To show this we introduce the zero-mean matrix valued Lévy process L̂j(t) � L̃k(t)−E[L̃j(1)]t,
and denote by φbLj

(V ) its cumulant defined by

φbLj
(V ) = φeLj

(V ) − itr(V E[L̃j(1)]) .

The cumulant function of the stationary distribution of X(t) can henceforth be expressed as

φX(z) =
n∑

j=1

{∫ ∞

0

φbLj

(
1

2
iC∗

j (s)zzT

)
ds + i

∫ ∞

0

tr

(
1

2
iC∗

j (s)zz
T E[L̃j(1)]

)
ds

}

=
n∑

j=1

{∫ ∞

0

φbLj

(
1

2
iC∗

j (s)zzT

)
ds − 1

2

∫ ∞

0

tr
(
C∗

j (s)zz
T E[L̃j(1)]

)
ds

}
.

Using properties of the trace-operator we have

tr
(
(C∗

j (s)zzT )E[L̃j(1)]
)

= vec(C∗
j (s)zzT )T vec(E[L̃j(1)])

= vec
(
vec−1(KT vec(zzT ))

)T
vec(E[L̃j(1)])

=
(KT vec(zzT )

)T
vec(E[L̃j(1)])

= vec(zzT )Kvec(E[L̃j(1)])

= tr
(
zzT vec−1(Kvec(E[L̃j(1)]))

)
= tr(zzTCj(s)E[L̃j(1)])

= zTCj(s)E[L̃j(1)]z .

Here, we have used that the operator Cj(s) can be represented by the Rd2×d2-matrix K as Cj(s) =

vec−1 ◦ K ◦ vec. Using Lemma 3.3, we conclude

φX(z) =
n∑

j=1

∫ ∞

0

φbLj

(
1

2
iC∗

j (s)zzT

)
ds − 1

2
zT

(
lim
t→∞

Var[X(t)]
)

z .
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The last term is the characteristic function of a centered multivariate normal distribution with
variance equal to limt→∞ Var[X(t)]. We remark that this coincides with the stationary distribu-
tion obtained from the multivariate Schwartz model having constant volatility Σ ∈ Md(R) given
by

Σ � lim
t→∞

Var[X(t)] .

The first term in φX(z) will be the characteristic function of a non-Gaussian distribution.

4 Analysis of the spot dynamics

Let us look at the dynamics of S̃(t) � S(t)/Λ(t), the deseasonalized spot price, where the
division is done elementwise.

Proposition 4.1. It holds that

d ln S̃(t) =
(
M(t) + A ln S̃(t)

)
dt + Σ(t)1/2 dW (t) +

m∑
i=1

ηi dLi(t) ,

where

M(t) =
m∑

i=1

μi + (−A + Bj)Yj(t) .

Proof. This follows from rewriting the equations in (2.2) and (2.3). �

We see from this result that the dynamics can be interpreted as a mean-reverting process to-
wards a stochastic mean. The mean will be described by the multivariate process M(t), which
will consist of linear combinations of the different "spike" components Yj . The matrix A de-
scribes the "speed" of mean-reversion, as well as how the different commodities are functionally
dependent on each other. Moreover, the stochastic volatility term and the spike contributions are
clearly dependent.

We move on analysing the stationary distribution of ln S̃(t). From Lemma 3.2, we find in
stationarity that

lim
t→∞

E[ln S̃(t)] = lim
t→∞

E[X(t)] +
m∑

i=1

E[Yi(t)] =
m∑

i=1

B−1
i (μi + ηiE[Li(1)]) .

Furthermore, from Lemma 3.5 we know that in stationarity, the auto-covariance function of
ln S̃(t) is

acovln eS(h) = acovX(h) + acovP
Yi

(h) (4.1)
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= eA|h|
n∑

j=1

ωjA
−1Cj

−1E[L̃j(1)]

+
m∑

i=1

eBi|h| (Bi
−1ηiE[Li(1)LT

i (1)](ηi)
T − (B−1

i ηiE[Li(1)]E[LT
i (1)]ηT

i

)
.

Hence, in stationarity, the auto-covariance function of ln S̃(t) will be a linear combination of
exponentially decaying functions due to eigenvalues with a negative real part. This is in line
with empirical observations of power prices, as we have earlier noted (see e.g. Benth, Kiesel and
Nazarova [10]).

By combining the results of the cumulant functions for the different factors in the dynamics
of ln S̃(t) derived in the previous section, we can compute the cumulant of the deseasonalized
log-spot prices. This is presented in the next Proposition.

Proposition 4.2. The characteristic function of the stationary distribution of ln S̃(t) is given by

φln eS(z) =
m∑

i=1

iμT
i (BT

i )−1z +
n∑

j=1

∫ ∞

0

φeLj

(
1

2
iC∗

j (u)zzT

)
du

+
m∑

i=1

∫ ∞

0

φeLi

(
1

2
iC∗

i (u)zzT + Jd(η
T
i eBT

i uz)

)
− φeLi

(
1

2
iC∗

i (u)zzT

)
du ,

for z ∈ Rd.

Proof. By combining Proposition 3.8 and equation (3.7) in Proposition 3.6 the conditional cu-
mulant function of ln S̃ given Fs is

φs,t

ln eS(z) = iXT (s)eAT (t−s)z − 1

2

n∑
j=1

zTCj(t − s)Zj(s)z

+
m∑

i=1

iY T (s)eBT
i (t−s)z + i(B−1

i (I − eBi(t−s))μi)
T z

+
m∑

i=1

∫ t−s

0

φeLi

(
1

2
iC∗

i (u)zzT + Jd(η
T
i eBT

i uz)

)
du

+
n∑

j=m+1

∫ t−s

0

φeLj

(
1

2
iC∗

j (u)zzT

)
.

Since a stationary solution exists for X and all Yi’s, there also exists a stationary solution for ln S̃.
The Proposition follows by taking limits for t → ∞ using that the real parts of the eigenvalues
of the involved matrices are negative. �
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Note that the sum over j in the expression for φln eS is stemming from the stationary cumulant
of X , and therefore is from a symmetric centered random variable. Stationarity is a desirable
feature in commodity markets being a reflection of supply and demand-driven prices. However,
many studies argue for non-stationary effects (like for example Burger et al. [13] studying Ger-
man electricity spot prices). We can easily extend our model to include non-stationary factors,
like for instance choosing one or more of the Y ’s to be drifted Brownian motions rather than
Ornstein-Uhlenbeck processes. We shall not discuss these modelling issues further here, but
leave the analysis of this to the interested reader.

In the special case of a multivariate stochastic volatility Schwartz model (i.e. m = 0) the
“reversion-adjusted” logreturns are approximately distributed according to a multivariate mean-
variance mixture model. Considering the “reversion-adjusted” logreturns over the time interval
[t, t + τ ], we find

ln S̃(t + τ) − eAτ ln S̃(t) = X(t + τ) − eAτX(t)

=

∫ t+τ

t

eA(t+τ−s)Σ1/2(s) dW (s)

≈ eAτΣ1/2(t)ΔτW (t) .

Here, ΔτW (t) � W (t + τ) − W (t) and τ is supposed to be sufficiently small in order to make
the approximation above reasonable. Hence, we have that “reversion-adjusted” logreturns are
approximately distributed according to the multivariate mean-variance mixture model

eAτΣ1/2(t)ΔτW (t)
∣∣∣|Σ(t) ∼ N (0, eAτΣ(t)eAT τ ) .

In Benth [7], this was discussed in the univariate case, showing that we can choose stochastic
volatility models yielding for instance normal inverse Gaussian distributed “reversion-adjusted”
returns. We refer to Benth and Saltyte-Benth [8] for a study of gas and oil prices where the
normal inverse Gaussian distribution has been applied to model “reversion-adjusted” returns.
We further note that the conditional Gaussian structure of the “reversion-adjusted” returns im-
plies that the covariance is determining the cross-commoditity dependency. In this case it is
given explicitly by the stochastic volatility model Σ(t), introducing a time-dependency in the
covariance between commodities. In addition, the common factors Yi(t), i = 1, . . . , m will give
co-dependent paths determined by common jump paths. Hence, we can mix rather complex de-
pendency into the modelling. The auto-covariance function of the de-seasonalized logarithmic
spot (4.1) gives explicit formulation to this dependence in terms of second order structure. For
h = 0 the auto-covariance of de-seasonalized logarithmic spots gives the covariance matrix of
the de-seasonalized logarithmic spots.

Let us discuss possible specifications of our spot price model satisfying the fundamental
conditions on the operators and matrices in question. First of all, it is easily seen that if either one
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or both of the matrices A and Cj are diagonal, then they will commute. In fact, supposing that A

is a diagonal matrix could be natural in view of interpreting the speed of mean reversion of each
commodity modelled separately (as the corresponding entry on the diagonal), and not imposing
any functional cross dependencies between the commodities. In such a model, dependencies will
enter via the spike terms and in the stochastic volatility. If A is diagonal, then all the diagonal
elements must be negative in order to have negative eigenvalues (eigenvalues are equal to the
diagonal elements, of course). It is simple to see that the determinant of A⊗ I + I ⊗A becomes

det(A ⊗ I + I ⊗ A) = 2d

d∏
i=1

ai

d∏
i�=j

(ai + aj)
2 ,

which is unequal to zero since all the diagonal elements are strictly less than zero. This means
that A is invertible. In fact, if we suppose that Cj also is diagonal, one finds that A − Cj is
invertible if and only if ai + aj �= ci + cj for i, j = 1, . . . , d. Note also that stationarity of the
volatility holds only if all the diagonals of Cj are strictly negative. But this also implies that Cj

is invertible.

5 Simulation of matrix-valued subordinators

In this section we discuss simulation of our spot price dynamics, which essentially means to
discuss simulation of matrix-valued subordinators.

Limited literature is available on the simulation of matrix-valued subordinators. One possible
approach could be to apply existing methods to sample multivariate Lévy processes based on
their Lévy measures by iterative sampling from the conditional marginals (see e.g. Cont and
Tankov [14]). However, the marginal distribution functions are required, which are not always
available in a simple form. Moreover, in case of matrix-valued subordinators, the restriction
of the domain to the positive definite cone makes it even more complicated. We introduce a
simple approximative algorithm2 to simulate from matrix-valued compound Poisson, stable, and
tempered stable processes with stable or constant jump-size distribution.

For any U ∈ S+
d one can make a polar decomposition in a ray r = ||U || = tr(UT U)1/2

and angle Θ = U/r, so that U = rΘ. Moreover, Θ is situated on the unit sphere S of Rd×d

intersected with the positive definite cone, i.e. Θ ∈ SS+
d � vec−1S ∩ S+

d .
Suppose that ν is a Lévy measure on S+

d of the subordinator L, such that it can be decomposed
into

ν(dU) = Γ(dΘ)ν̃(Θ, dr) , U ∈ S+
d ,

where ν̃(Θ, dr) is a Lévy measure on R+ and Γ is a spectral measure on SS+
d concentrated on a

finite number of points {Θi}1≤i≤p. Note in passing that any measure can be approximated by a

2The idea of the algorithm was kindly proposed to us by Robert Stelzer.
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measure concentrated on finitely many points. Since L is a pure-jump subordinator, its cumulant
function is given by

φL(1)(V ) =

∫
S
+
d \{0}

(
ei tr(V U) − 1

)
ν(dU)

=

∫
SS

+
d

∫ ∞

0

(
eirtr(V Θ) − 1

)
ν̃(Θ, dr) Γ(dΘ)

=

p∑
i=1

Γ(Θi)

∫ ∞

0

(
eirtr(V Θi) − 1

)
ν̃(Θi, dr) .

One recognizes this as the cumulant of a weighted sum of p independent real-valued subordinator
processes. This leads to the following simple algorithm to sample L according to its cumulant
function:

• Find the finite set of points {Θ}1≤i≤n where Γ is concentrated.

• Simulate p independent subordinators Ri(t) with cumulant function

φRi(1)(tr(V Θi)) =

∫ ∞

0

(
eirtr(V Θi) − 1

)
ν̃(Θi, dr) .

• Set L(t) =
∑p

i=1 Ri(t)Θi.

To make this algorithm operationable, we must be able to sample the Ri’s, which we now discuss
in particular cases which are of interest in energy markets.

First, let us consider a matrix-valued compound process (mCP ) with only positive jumps
L. This becomes a multivariate compound Poisson process restricted to values in the symmetric
positive definite cone. Its cumulant function is

φL(1)(V ) = λ

∫
S
+
d

(
eitr(V U) − 1

)
ν(dU) ,

where ν is the jump size distribution and λ the intensity. Supposing that ν(dU) = ν̃(Θ, dr)Γ(Θ)

with ν̃(Θ, dr) being a probability distribution on R+ and Γ(dΘ) for a spectral measure Γ on SS+
d ,

concentrated on finitely many points, it holds

φL(1)(V )t = λ

p∑
i=1

Γ(Θi)

∫ ∞

0

(
eirtr(V Θi) − 1

)
ν̃(Θi, dr) .

Hence, Ri for i = 1, . . . , p will follow a one-dimensional compound Poisson process with jump
intensity λΓ(Θi) and jump-size distribution ν̃(Θi, dr). The mCP (λ) process L is represented
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as a linear combination of angles Θi and radius processes being one-dimensional compound
Poisson processes Ri, i.e. L(t) =

∑p
i=1 Ri(t)Θi.

By exponential tilting of matrix-valued α-stable laws a multivariate extension of tempered
stable laws can be made. The inverse Gaussian distribution is a special case of this class of
functions. The polar decomposition of the Lévy measure ν of a matrix-valued tempered α/2-
stable law is given by (Barndorff-Nielsen and Pérez-Abreu [2])

ν(dU) =
e−rtr(ΔΘ)

r1+α/2
dr Γ(dΘ) .

In case α = 1 then ν is a Lévy measure of a matrix extension of the inverse Gaussian distribution
(mIG), where Δ ∈ S+

d and Γ, a finite measure on SS+
d , are parameters. As in the univariate case

the inverse Gaussian process is a pure jump process, hence the cumulant function is given by

φL(1)(V ) =

∫
SS

+
d

∫ ∞

0

(
eir tr(V Θ) − 1

)
e−rtr(ΔΘ) dr

r3/2
Γ(dΘ) + itr(V μ0) ,

for L(1) ∼ mIG(Δ, Γ, μ0), where μ0 ∈ S+
d is a parameter. Choosing Γ such that it is concen-

trated on finitely many point and decomposing μ0 in an angle Θ0 ∈ SS+
d and a radius r0 ∈ R

leads to

φL(1)(V ) =

p∑
i=1

Γ(Θi)

∫ ∞

0

(
eirtr(V Θi) − 1

)
e−rtr(ΔΘi)

dr

r3/2
+ ir0tr(ΦΘ0) .

One can compare this with the characteristic function of an one-dimensional inverse Gaussian
random variable G, for which the cumulant function is given by

φG(ζ) = i
δ

γ
(2N (γ) − 1)ζ +

δ√
2π

∫ ∞

0

(eiζx − 1)e−1/2γ2x dx

x3/2
ζ ∈ R .

where N denotes the cumulative normal distribution. We recognize L as a matrix of linear
combinations of a finite number of angles Θi, i = 1, . . . , p with coefficients given by one-
dimensional inverse Gaussian subordinator processes Ri(t), where Ri(1) is distributed according
to the inverse Gaussian distribution IG(δi, γi), where δi =

√
2π Γ(Θi) and γi = 2

√
tr(ΔΘi).

Moreover the drift parameter μ0 of the multivariate inverse Gaussian distribution is by default
chosen such that the drift term of the mIG distribution equals the drift term of

∑p
i=1 Ri(t)Θi.

As an example, consider the case of two spot prices S1(t) and S2(t) modelled by our dynam-
ics. For example, we could think of the spot price of electricity in two interconnected markets, or
the spot price of gas and electricity. We suppose that the prices are driven by two M2(R)-valued
subordinator processes L̃1(t), L̃2(t). The first process defines the spike component, while the
second part is determining the stochastic volatility. We assume that there is one spike compo-
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nent Y (t) ∈ R2, while the stochastic volatility process Σ(t) is the equally weighted sum of two
processes Z1(t) and Z2(t), where the dynamics is driven by L̃1 and L̃2, resp. The dynamics of
the spike process Y (t) is driven by the diagonal of L̃1(t). In order to make simulations from
the model, we use specifications of the parameters in the model inspired by Vos [31], where the
BNS stochastic volatility model was estimated to stock price data observed on the Dutch stock
exchange. For simplification, we set the seasonality function equal to one, that is, Λi(t) = 1 for
i = 1, 2. Moreover, we choose

A =

( −1.4 −0.3

−0.3 −1.4

)
B =

( −2 1

1 −2

)
η =

(
1 0.5

0.5 1

)
C1 =

( −0.4 0.3

0.3 −0.4

)
C2 =

( −0.045 0.03

0.03 −0.045

)
We let the levels of the spike component Y (t) be zero, μ1 = μ2 = 0.

Next, let us define the two subordinator processes L̃1(t) and L̃2(t). To mimic spikes in the
market, we consider a simple Poisson process for L̃1(t). To have a stochastic volatility process
which can generate adjusted returns being close to NIG distributed, we suppose that L̃2(t) is
mIG. In order to be able to simulate these two processes, we apply the idea above, and define a
simple discrete spectral measure on SS+

2 . It is simple to see that

Θ =

(
θ ±√

θ(1 − θ)

±√
θ(1 − θ) 1 − θ

)
or

(
θ 0

0
√

1 − θ2

)
,

for θ ∈ (0, 1). There are three valid choices of Θ ∈ SS+
2 . To this end, we discretize the unit

interval with step size 0.1, and choose θj = j × 0.1 for j = 1, . . . , 9. We choose either one
of the three possible matrix structures for Θ with given θi, making up a total of 27 matrices Θi.
For the Poisson process, we choose the intensity such that λΓ(Θi) = 3/100 and the jump size
distribution set fixed to be 1.7, that is, if Ri(t) is jumping at time t, then ΔRi(t) = 1.7. This will
correspond to a change in spot price of a factor exp(1.7) = 5.47, which is a rather dramatic price
change. As a measure for the mIG part, we set Γ(Θi) = 1/324

√
2π uniformly for all 1 ≤ i ≤ 27.

Finally, we suppose that the parameter Δ of the mIG part is

Δ =

(
50 45

45 50

)
.

In Figure 1 the spot price series resulting from our 2-dimensional example is shown, where we
have used an Euler scheme to discretize the dynamics in time and standard schemes for the sam-
pling of inverse Gaussian distributions (see Rydberg [25]). One clearly can see the dependency
between the two spot prices, in particular, how the spikes follow each other in the two series.
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Figure 3.1: Simulated spot prices of the two commodities

6 Conclusions

We have proposed a model to describe the spot price dynamics for cross-commodity markets in a
multivariate setting. The model captures features like mean-reversion, spikes, stochastic volatil-
ity, and inverse leverage effect. The dynamic is a multi-dimensional extension of the Barndorff-
Nielsen and Shephard stochastic volatility model embedded into mean-reversion dynamics. This
is relevant for commodity price series. The choice of the multi-dimensional extension is in-
fluenced by the work of Stelzer [29]. The multivariate spot model is analytically tractable and
probabilistic properties can to a large extent be explicitly computed. We have derived various
characteristics like stationary distributions and covariance functions. The model is a multivariate
extension of the one-dimensional spot price dynamics analysed in Benth [7].

A simple algorithm to simulate from matrix-valued subordinators is introduced. The method
is demonstrated on an emprical example. However, further research has to be done to generate
matrix-valued Lévy processes in a more general setting, a study we leave for the future.

No methods exists to estimate the model based on spot price data. It is obviously of crucial
interest for the applicability of the model to understand how to fit the parameters to data. Methods
are available to estimate the model in the diffusion case on the quadratic covariation [5]. However
these methods require high frequency data, which does not exist in the energy market. Another
alternative is to adopt the methods already available for filtering spike data from price series into
a multidimensional setting. If this is possible then the estimation of the spike process can be
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treated seperately from the diffusion part, and the diffusion part can be estimated conditionally
on the spike parameters. Before this can be implemented further research has to be done on the
validity of these methods. Another possibility is to estimate the parameters directly using the
characteristic function in the frequency domain.
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Abstract

In Benth and Vos [7] we introduced a multivariate spot price model with stochastic volatil-
ity for energy markets which captures characteristic features like price spikes, mean-reversion,
stochastic volatility and inverse leverage effect as well as dependencies between commodities.
In this paper we derive the forward price dynamics based on our multivariate spot price model,
providing a very flexible structure for the forward curves, including contango, backwardation
and hump shape. Moreover, a Fourier transform-based method to price options on the forward is
described.

1 Introduction

The last decades the energy markets have been liberalized world-wide, resulting in market-places
for commodities such as electricity, gas and coal. There are several markets for each of these
commodities, geographically spread over the continents. For example in Europe we have markets
for power in the UK, Germany, France, and the Nordic countries, to mention a few. There are
transmission lines which interconnect these markets for electricity. Furthermore, since coal and
gas are used to a large extent as fuels for power production, the prices for these commodities
naturally affect the power prices. These markets become more and more integrated, both within
one commodity, but also across the commodities. For this reason there is an increasing interest
in studying multivariate models for energy markets, including cross-commodity models (like for
example for gas, coal and electricity-markets) or multivariate models for the same commodity
traded in different, but integrated markets (like for example the power markets in the Nordic
countries and Germany).

In Benth and Vos [7] we propose stochastic dynamics for cross-commodity spot price mod-
elling generalizing the univariate dynamics studied in Benth [5]. The model is flexible enough
to capture spikes and mean-reversion. Moreover, it includes the possibility to model inverse
leverage and stochastic volatility. The proposed dynamics can model co- and independent jump
behaviour (spikes) in cross-commodity markets, and is analytically tractable. We apply the mul-
tivariate extension of the stochastic volatility model of Barndorff-Nielsen and Shephard [3], anal-
ysed in detail by Pigorsch and Stelzer [21]. The mean-reverting features of our spot model require
a significant extension of their analysis.

In this paper we derive the forward dynamics using a no-arbitrage pricing. Despite the rather
general nature of our spot model, the dynamics of the forward prices is analytically computable.
It turns out that the implied forward curves can be in contango and backwardation, as well as
having humps. As has been pointed out by Geman [12], hump-shaped forward curves have been
observed in for instance the oil market. Due to the flexibility of the multivariate model, even
an oscillation of the forward price curve can be achieved. As an implication of the stationary
properties of the spot model, the forward prices in the long-end of the forward curve (far until
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maturity) will move deterministically. The Samuelson effect can be identified in the forward
dynamics as well.

By using Fourier methods, options on spreads between different forward contracts can be
represented as integrals which can be computed efficiently. Spread options are traded in various
energy markets, mostly over-the-counter. However, such options are also used in valuation of
new power plant projects and the construction of interconnecting pipelines between different
markets. In fact, the construction of a new pipeline connecting two markets can be viewed
as a long term spread option. On the other hand, the value of a gas-fired power plant can be
represented as a spread between electricity and gas (so-called spark spread).

The paper is organized as follows. Section 2 recalls the spot model proposed in Benth and
Vos [7]. Next, in Section 3, the implied multivariate forward dynamics are derived and properties
of the forward curve are analysed. Methods based on the Fourier transform are applied to cross-
commodity option pricing in Section 4, including special attention to spread options. Finally, in
Section 5, we conclude.

2 A cross-commodity energy spot price model with stochastic
volatility

In this section we recall briefly the main aspects of the spot model with stochastic volatility for
cross-commodity energy markets introduced in Benth and Vos [7]. We suppose that we are given
a complete filtered probability space (Ω,F , P ) equipped with the filtration {Ft}t≥0 satisfying
the usual conditions (see e.g. Protter [22]).

Assume that m ≤ n ∈ N, and for d ∈ N, consider the d-dimensional spot price dynamics
as a combination of a seasonality function Λ, stochastic processes {Yi}m

i=1 modeling spikes and
a stochastic process X modeling the "normal" variations of the price evolution. Here, the sea-
sonality and the stochastic processes X and {Yi}m

i=1 are all d-dimensional. More precisely, we
define the spot price dynamics of d energy commodities as follows:

S(t) = Λ(t) · exp

(
X(t) +

m∑
i=1

Yi(t)

)
. (2.1)

Here, ’·’ denotes pointwise multiplication, and the seasonality Λ is supposed to be a deterministic
bounded measurable function. The stochastic processes {Yi}m

i=1 are d-dimensional Ornstein-
Uhlenbeck processes driven by vector valued subordinators {Li}m

i=1, that is, Lévy processeses
which are increasing in each of its coordinates (see Barndorff-Nielsen et al. [2]).

dYi(t) = (μi + BiYi(t)) dt + ηi dLi(t) , (2.2)
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where {μi}m
i=1 are vectors in Rd. Furthermore, {Bi}m

i=1 and {ηi}m
i=1 are elements of GLd(R),

the group of d × d matrices which are invertible. The entries of ηi do not necessarily have to
be positive, so although Li are subordinators the process Yi may exhibit negative jumps. In
electricity markets, say, negative spikes are observed.

The "normal variations" process X is an extension of the Barndorff-Nielsen and Shephard
[3] stochastic volatility (BNS SV) model into the multidimensional Ornstein-Uhlenbeck setting.
The stochastic process X is defined by the following SDE

dX(t) = AX(t) dt + Σ(t)1/2 dW (t) , (2.3)

where A is a matrix in GLd(R) and W is a standard d-dimensional Brownian motion in Rd.
The square of the volatility Σ(t) is chosen to be a matrix valued stochastic process. More pre-
cisely, the stochastic volatility Σ(t) is a superposition of positive definite matrix valued Ornstein-
Uhlenbeck processes as introduced in Barndorff-Nielsen and Stelzer [4],

Σ(t) =
n∑

j=1

ωjZj(t) , (2.4)

with
dZj(t) = (CjZj(t) + Zj(t)C

T
j )dt + dL̃j(t) , (2.5)

and the ωj’s are positive weights summing up to 1. Moreover, for j = 1, . . . , n, Cj ∈ GLd(R)

and L̃j are independent matrix valued subordinators, that is, independent increment processes
with values in S+

d , the positive definite cone of symmetric d × d matrices. Naturally, L̃j are
independent of W for j = 1, . . . , n, and we suppose for convenience that the subordinators are
driftless. In order to have the Itô integrals in (2.3) well-defined, we suppose that

P

(∫ eT
0

tr(Σ(t)) dt < ∞
)

= 1 . (2.6)

Here, T̃ < ∞ is some finite horizon time for our energy markets, and tr is the trace operator on
matrices. We assume that the eigenvalues of Cj have negative real parts, a necessary condition
for ensuring stationarity of the Zj’s. We denote by νeLj

the Lévy measure of L̃j , j = 1, . . . , n.

The processes X, Yi are Ornstein-Uhlenbeck processes. Applying the multi-dimensional Itô
Formula (see Ikeda and Watanabe [16]) yields the following explicit dynamics: for 0 ≤ s ≤ t,

X(t) = eA(t−s)X(s) +

∫ t

s

eA(t−u)Σ(u)1/2 dW (u) , (2.7)

Yi(t) = eBi(t−s)Yi(s) + B−1
i (I − eBi(t−s))μi +

∫ t

s

eBi(t−u)ηi dLi(u) , (2.8)
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for i = 1, . . . , m. The matrix exponentials are defined as usual as eA := I +
∑∞

i=1
An

n!
.

According to Barndorff-Nielsen and Stelzer [4], Sect. 4, the solution of Zj(t), j = 1, . . . , n,
is given by

Zj(t) = eCj(t−s)Zj(s)eCT
j (t−s) +

∫ t

s

eCj(t−u) dL̃j(u)eCT
j (t−u) . (2.9)

The matrix-valued stochastic integral in the second term of Zj(t) is understood as follows: let
Md(R) be the space of real d × d matrices. For two Md(R)-valued bounded and measurable
functions E(u) and F (u) on [t, s], the notation

∫ t

s
E(u) dL̃(u)F (u) means the matrix G(s, t) ∈

Md(R) with coordinates defined by

Gij(s, t) =
d∑

k=1

d∑
l=1

∫ t

s

Eik(u)Flj(u) dL̃kl(u) .

Here, L̃ is the generic notation for some L̃j . We remark that since L̃j are supposed to be RCLL,
the processes Zj also are RCLL.

In energy markets like gas and electricity it is often observed that a spike and an increase in
volatility occur at the same time. This is known as the inverse leverage effect. To model this
phenomen we take the vector valued subordinators Li driving the processes Yi, i = 1, . . . , m,
as the diagonal entries of the m first matrix valued subordinators L̃j , j = 1, . . . , m. If one of
the off-diagonal elements jumps, also the diagonal element has to jump in order to keep the
volatility process Σ(t) in the positive definite cone S+

d . Such a modelling choice ensures that the
volatility jumps simultaneously with a spike in the spot price process. Since n ≥ m ∈ N, and
the volatility process is a weighted sum of n different volatility processes, there are still n − m

volatility processes Zj , j = m + 1, . . . , n which can be freely chosen.
By turning off the processes Yi (choose μi = ηi = 0 and Bi = 0 for all i), we obtain a

multivariate extension of the Schwartz model with stochastic volatility and stock-price dynamics:

S(t) = Λ(t) · exp(X(t)) (2.10)

where X(t) is defined in (2.3). The Schwartz model with constant volatility is a mean reversion
process proposed by Schwartz [24] for spot price dynamics in commodity markets like oil.

To ensure solutions to the SDE’s (2.2) and (2.3) we impose the following log integrability
conditions on the subordinators: for j = 1, . . . , n, it holds that

E

[
log+ ||L̃j(1)||

]
< ∞ , (2.11)

where log+(x) is defined as max(log(x), 0). We use the Frobenius norm for matrices, ‖A‖ =

tr(AT A)1/2, A ∈ Md(R).
For a detailed analysis of this spot price model for cross-commodity energy markets, we refer
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to Benth and Vos [7].

3 Forward pricing

In commodity markets, forward contracts are commonly traded on exchanges, including power,
gas, oil, coal, etc. In this Section we derive the forward price dynamics based on the multivariate
spot price model (2.1).

Appealing to general arbitrage theory, we define the forward price F (t, τ) at time t for con-
tracts delivering the energy commodity at time τ by (see e.g. Duffie [9])

F (t, τ) = EQ [S(τ) | Ft] , (3.1)

where Q is a risk-neutral probability measure. This definition is valid as long as S(τ) ∈ L1(Q).
Below we give sufficient conditions ensuring integrability of the spot price with respect to a
parametric class of pricing meausres Q. Since the spot price is an adapted process, we obtain the
well-known convergence of spot and forward prices at maturity, i.e.,

F (τ, τ) = S(τ) .

It is worth noticing that in some energy markets the forward contracts deliver the underlying
commodity over a period rather than at a fixed maturity time τ . This includes gas and electricity,
but also more exotic markets like temperature. In these markets, the forward prices can be
represented as some functional of F (t, τ), usually the average of F (t, τ) over τ , taken over the
delivery period of the forward contract. We will not consider this situation here, however the
calculations can be easily adjusted to take this into account (see for example Benth et al. [6] for
a discussion).

The stochastic volatility model we are discussing gives rise to an incomplete market, and
hence there exists a continuum of equivalent martingale measures Q that can be used for pricing.
Moreover, in energy markets, the underlying spot is in general not tradeable, due to for example
high storage costs, illiquidity and other frictions like transportation for delivery. In the extreme
case of electricity, it is impossible to trade the underlying spot by the very nature of the commod-
ity. Hence, the classical buy-and-hold hedging argument to pin down a forward price fails. As a
result, all equivalent measures Q ∼ P may be chosen as pricing measures since the underlying
spot is not directly tradeable. In our considerations., we do not require the martingale property
under Q for discounted spot prices. We refer to Benth et al. [6] for more on this.
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3.1 A class of equivalent probabilities

A convenient way to define a parametric class of risk-neutral probabilities for Lévy-based models
is the Esscher transform (see Benth et al. [6] for applications of the Esscher transform in energy
markets). Before introducing the measure transform, we need to introduce some notation and
state some conditions: for V ∈ S+

d we let φeLj
(V ) be the cumulant function of L̃j(1), that is,

φeLj
(V ) = ln E

[
exp

(
itr(V L̃j(1))

)]
. (3.2)

The Esscher transform is defined via the logarithmic moment generating functions of L̃j , and for
this purpose we need to have certain exponential moments exisiting for L̃j . Let Θj ∈ S+

d , and
suppose that φeLj

(−iΘj) is well-defined. We have that

φeLj
(−iΘj) =

∫
S
+
d

{
etr(ΘjU) − 1

}
νeLj

(dU) ,

and therefore, φeLj
(−iΘj) is well-defined as long as∫

S
+
d

{
etr(ΘjU) − 1

}
νeLj

(dU) < ∞ . (3.3)

Note that for U, V ∈ S+
d , tr(UV ) = 〈U, V 〉, the inner product associated with the Frobenius

matrix norm ‖A‖ := tr(AT A)1/2. Hence, we have the inequality |tr(UV )| ≤ ‖U‖‖V ‖. Thus, a
sufficient condition for (3.3) to hold is that∫

S
+
d

e|tr(ΘjU)| νeLj
(dU) ≤

∫
S
+
d

e‖Θj‖‖U‖ νeLj
(dU) < ∞ .

Throughout this paper we suppose that there exists a constant cj > 0 such that the following
exponential integrability condition holds for νeLj

:∫
S
+
d

ecj‖U‖ νeLj
(dU) < ∞ , (3.4)

for j = 1, . . . , n. This condition implies that φeLj
(−iΘj) is well-defined for all Θj ∈ S+

d such
that ‖Θj‖ ≤ cj .

We move on to define the equivalent probability measure Q. For Θj ∈ S+
d , such that ‖Θj‖ ≤

cj , define the processes

Vj(t) = exp
(
tr(ΘjL̃j(t)) − φjeL(−iΘj)t

)
, (3.5)

74



Fred Espen Benth and Linda Vos

for j = 1, . . . , n and t ≤ T̃ . Here we recall T̃ to be a finite time horizon of the market for which
all delivery times τ of interest are included. Note that Vj(t) are martingales for j = 1, . . . , m: in
fact, by the exponential moment condition in (3.4) we find that

E[Vj(t)] = 1 ,

for every j = 1, . . . , n. For a vector θ0 ∈ Rd, introduce the process

V0(t) = exp

(
−

∫ t

0

θT
0 Σ−1/2(s) dW (s) − 1

2
θT
0

∫ t

0

Σ−1(s)θ0 ds

)
. (3.6)

We have the following Lemma:

Lemma 3.1. For all θ0 ∈ Rd, the process V0(t) for t ≤ T̃ is a martingale.

Proof. We show that the Novikov condition holds. From (2.9) we have for every j = 1, . . . , n

and any x ∈ Rd

xT Zj(t)x = xT eCjtZj(0)eCT
j tx + xT

∫ t

0

eCj(t−u) dL̃j(u)eCT
j (t−u)x

≥ xT eCj(t−s)Zj(s)eCT
j (t−s)x

by positive definiteness of the stochastic integral term. Hence,

Σ(t) =
n∑

j=1

ωjZj(t) ≥
n∑

j=1

ωjeCj(t−s)Zj(s)eCT
j (t−s) > 0 .

But then, from linear algrebra on positive definite matrices,

Σ−1(t) ≤
(

n∑
j=1

ωje−CjtZ−1
j (0)e−CT

j t

)−1

,

which means in particular

θT
0 Σ−1(t)θ0 ≤ θT

0

(
n∑

j=1

ωje−CjtZ−1
j (0)e−CT

j t

)−1

θ0 .

As the right-hand side is a continuous function in t on [0, T̃ ], it follows that

E

[
exp

(
1

2

∫ eT
0

θT
0 Σ−1(t)θ0 dt

)]
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≤ E

⎡⎣exp

⎛⎝1

2

∫ eT
0

θT
0

(
n∑

j=1

ωje−CjtZ−1
j (0)e−CT

j t

)−1

θ0 dt

⎞⎠⎤⎦ < ∞ .

Hence, by Novikov’s condition, it follows from the Girsanov Theorem that V0(t) is a martin-
gale. �

Thus, the process
V(t) = V0(t) × V1(t) × · · · × Vn(t) , (3.7)

becomes a martingale for t ≤ T̃ and is the density process of a probability measure Q equivalent
with P , that is,

dQ

dP

∣∣∣
Ft

= V(t) . (3.8)

From Girsanov’s Theorem we find that

dŴ (t) = dW (t) − Σ−1/2(t)θ0 dt , (3.9)

is an Rd-valued Brownian motion with respect to Q on t ∈ [0, T̃ ]. Furthermore, L̃j(t) is a matrix-
valued subordinator with respect to Q, with characteristics stated in the following Lemma:

Lemma 3.2. Assume Θj ∈ S+
d such that ‖Θj‖ ≤ cj for j = 1, . . . , n. Then L̃j(t) are subordina-

tors under Q defined in (3.8) having Lévy measure with respect to Q given by

νQeLj
(dU) = exp(tr(ΘjU))νeLj

(dU) ,

for j = 1, . . . , n.

Proof. First we prove that L̃j(t) is a matrix-valued subordinator under Q. Consider its condi-
tional cumulant function with respect to Q, φ̃

(s,t)eLj
(V ): for 0 ≤ s ≤ t and using Bayes’ Formula

for conditional expectations (see Karatzas and Shreve [18])

φ̃
(s,t)eLj

(V ) = ln EQ

[
exp

(
itr(V (L̃j(t) − L̃j(s)))

)
| Fs

]
= ln E

[
exp

(
itr(V (L̃j(t) − L̃j(s)))

) V(t)

V(s)
| Fs

]
= ln E

[
exp

(
itr((V − iΘj)L̃j(1))

)
| Fs

]
− φeLj

(−iΘj)(t − s)

= ln E

[
exp

(
itr((V − iΘj)L̃j(1))

)]
− φeLj

(−iΘj)(t − s)

= φeLj
(V − iΘj)(t − s) − φeLj

(−iΘj)(t − s) .
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In the second to the last equality we used the independent increment property of L̃j(t). This
proves that the increment L̃j(t) − L̃j(s) is stationary and independent of Fs, hence a Lévy
process with respect to the probability Q. Moreover, L̃j(t) has values in S+

d , and therefore it
is a subordinator under Q. From the above calculation we find its cumulant under Q to be

φ̃eLj
: = ln EQ

[
exp

(
itr(V L̃j(1))

)]
= φeLj

(V − iΘj) − φeLj
(−iΘj)

=

∫
S
+
d

{
eitr((V −iΘj)U) − 1

}
νeLj

(dU) −
∫

S
+
d

{
eitr((−iΘj)U) − 1

}
νeLj

(dU)

=

∫
S
+
d

{
eitr(V U) − 1

}
etr(ΘjU) νeLj

(dU) .

Hence, the Lemma follows. �

Since a subordinator is a pure-jump process, we must have that L̃j for j = 1, . . . , m are
independent of Ŵ with respect to Q, since a Brownian motion has continuous paths.

The parameters θ0 and Θj , j = 1, . . . , n may be referred to as the market prices of risk,
extending the similar notion in the univariate case (see Benth et al. [6]). Note that the Esscher
transform gives an exponential tilting of the Lévy measure of the matrix-valued subordinators
L̃j . One effect of this is that the probabilities for large jumps are re-scaled, and we may get more
or less pronounced large jumps under Q.

The dynamics of X(t) under Q is given by

dX(t) = AX(t) + Σ1/2(t)
(
dŴ (t) + Σ−1/2(t)θ0 dt

)
= (θ0 + AX(t)) dt + Σ1/2(t) dŴ (t) . (3.10)

Thus, under Q, the mean-reversion level is shifted from 0 to θ0. If eT
k θ0 > 0 for a k = 1, . . . , d

and ek being the kth canonical unit vector of Rd, then the base component of the kth commodity
mean-reverts towards a higher level under Q than under P , implying that the market assesses the
base component as being more risky under the pricing measure Q. A negative market price of
risk eT

k θ0 will imply less risk loading on the kth base component. The dynamics of Yi and Zj are
changed in a similar fashion. We have for i = 1, . . . , m

dYi(t) = (μi + BiYi(t)) dt + ηi dLi(t)

= (μi + ηiEQ[L(1)] + BiYi(t)) dt + ηi dLQ
i (t) , (3.11)

where dLQ
i (t) � dLi(t) − EQ[Li(1)] dt is a Q-martingale. Hence, the process Yi varies around

the level μi + ηiEQ[Li(1)] under Q, whereas the level is μi + ηiE[Li(1)] under P . Thus, by
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appropriately choosing Θi we can obtain a higher or lower mean-reversion level, implying a
higher or lower risk loading on the spike processes Yi under Q. Similar considerations hold for
the volatility processes Zj . We remark in passing that the market prices of risk θ0, Θ1, . . . , Θn

will implicitly model the risk premium in the market, being the difference between the forward
price and the prediced spot at delivery.

3.2 Analysis of forward prices

Before we derive the forward price, we need to introduce some notation and prove an auxiliary
result. To this end, let Jd be the linear operator that maps a vector v ∈ Rd to a symmetric d × d-
matrix Jd(v), consisting of zeros except on the diagonal, which is equal to v. On the other hand,
diag is a linear operator mapping a matrix into a vector, where the vector is the diagonal of the
matrix. The family of linear operators Cj(t) for t ∈ [0, T̃ ] are defined as

Cj(t) : X 	→ ωj

[
(Cj − A)−1

(
eCjtXeCT

j t − eAtXeAT t
)]

, (3.12)

for j = 1, . . . , n. For A being an n × n-matrix, we denote the operator A associated with the
matrix A as A : X 	→ AX +XAT . This operator can be represented as vec−1◦((A⊗In)+(In⊗
A)) ◦ vec, with In being the n × n identity matrix and vec meaning the operator which stacks
the coloumns of a matrix into a vector. Its inverse is denoted by A−1, which exists whenever
In ⊗ A + A ⊗ In is invertible. In this case, we can represent A−1 by vec−1 ◦ ((A ⊗ In) + (In ⊗
A))−1 ◦ vec. Remark that A ⊗ In + In ⊗ A is equal to the Kronecker sum of the matrix A with
itself.

The following auxiliary result is useful in deriving the forward prices, and is proven in Benth
and Vos [7].

Lemma 3.3. Define f(s, t) :=
∫ t

s
eA(t−u)Σ(u)eAT (t−u)du. Assume for j = 1, . . . , n that A and

Cj commute and A − Cj are invertible. Then it holds

f(s, t) =
n∑

j=1

Cj(t − s)Zj(s) +

∫ t

s

Cj(t − v)dL̃j(v) ,

for 0 ≤ s ≤ t.

Proof. The proof of this result is found in Benth and Vos [7]. We include it here for the conve-
nience of the reader. Using (2.9) and the assumption that A and Cj commute for j = 1, . . . , n it
holds

f(s, t) =

∫ t

s

eA(t−u)

n∑
j=1

ωj

(
eCj(u−s)Zj(s)eCT

j (u−s) +

∫ u

s

eCj(u−v)dL̃j(v)eCT
j (u−v)

)
eAT (t−u)du
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=
n∑

j=1

ωj

∫ t

s

e(Cj−A)ueAt−Cjs

(
Zj(s) +

∫ u

s

e−CjvdL̃j(v)e−CT
j v

)
eAT t−CT

j se(Cj−A)T udu

=
n∑

j=1

ωj(Cj − A)−1
(

eCj(t−s)Zj(s)e
CT

j (t−s) − eA(t−s)Zj(s)eAT (t−s)
)

+

∫ t

s

∫ u

s

{
e(Cj−A)ueAte−CjvdL̃j(v)e−CT

j veAT te(Cj−A)T u
}

du .

The last integral is intepreted as first integrating with respect to dL̃j(v), and next integrating
the obtained expression with respect to du. But, by spelling out the integrals in terms of sums,
using the definition of the dL̃j(v) integrals, and invoking the stochastic Fubini theorem (see
Protter [22]), we get∫ t

s

∫ u

s

{
e(Cj−A)ueAte−CjvdL̃j(v)e−CT

j veAT te(Cj−A)T u
}

du

=

∫ t

s

∫ t

v

{
e(Cj−A)ueAte−CjvdL̃j(v)e−CT

j veAT te(Cj−A)T u
}

du .

Here, the right hand side is intepreted as first integrating with respect to du, treating dL̃j(v) as a
matrix and not a differential, and next integrating with respect to dL̃j(v) the obtained expression.
Hence, we find

f(s, t) =
n∑

j=1

Cj(t − s)Zj(s)

+ (Cj − A)−1

(∫ t

s

eCj(t−v)dL̃j(v)eCT
j (t−v) −

∫ t

s

eA(t−v)dL̃j(v)eAT (t−v)

)
.

The Lemma follows. �

By C∗
j (u) we mean the adjoint operator of Cj(u). Since Cj(u) is a linear operator on d × d-

matrices, one can represent it via a d2×d2-matrix Kj(u) by Cj(u) = vec−1 ◦Kj(u)◦vec. Hence,
the adjoint C∗

j (u) has the representation C∗
j (u) = vec−1 ◦ KT

j (u) ◦ vec.

We are now in the position to state the forward price.

Proposition 3.4. For k = 1, . . . , d, suppose Θj are such that

sup
u∈[0, eT ]

‖1

2
C∗

j (u)(eke
T
k )‖ + ‖Θj‖ ≤ cj
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for j = 1, . . . , n, and

sup
u∈[0, eT ]

‖1

2
C∗

i (u)(eke
T
k ) + Jd(e

T
k eBiuηi)‖ + ‖Θi‖ ≤ ci

for i = 1, . . . , m. Assume for j = 1, . . . , n that A and Cj commute and A − Cj are invertible.
Then the forward price at time t ≥ 0 of a contract delivering the d spots S(τ) at time τ ≥ t is

F (t, τ) = Λ(τ) · exp

(
eA(τ−t)X(t) +

m∑
i=1

eBi(τ−t)Yi(t) + A−1(I − eA(τ−t))θ0

+
m∑

i=1

B−1
i (I − eBi(τ−t))μi +

1

2
diag{

n∑
j=1

Cj(τ − t)Zj(t)}
)

· Ψ(τ − t) , (3.13)

where the kth coordinate of Ψ(s) ∈ Rd for 0 ≤ s ≤ T̃ is

ln Ψk(s) =
n∑

j=1

∫ s

0

{
φeLj

(
−1

2
iC∗

j (u)(eke
T
k ) − iΘj

)
− φeLj

(−iΘj)

}
du

+
m∑

i=1

∫ s

0

{
φeLi

(
−1

2
iC∗

i (u)(eke
T
k ) − iJd(e

T
k eBiuηi) − iΘi

)
−φeLi

(−1

2
iC∗

i (u)(eke
T
k ) − iΘi)

}
du ,

for k = 1, . . . , d.

Proof. For simplicity, we let m = n = 1 and defer the subscripts with respect to i and j. From
(2.7) and (2.8) along with the definition of the measure Q, we have

X(τ) = eA(τ−t)X(t) +

∫ τ

t

eA(τ−u)Σ1/2(u) dW (u)

= eA(τ−t)X(t) +

∫ τ

t

eA(τ−u)θ0 du +

∫ τ

t

eA(τ−u)Σ1/2(u) dŴ (u)

= eA(τ−t)X(t) + A−1(I − eA(τ−t))θ0 +

∫ τ

t

eA(τ−u)Σ1/2(u) dŴ (u) ,

and

Y (τ) = eB(τ−t)Y (t) + B−1(I − eB(τ−t)μ +

∫ τ

t

eB(τ−u)η dL(u) .
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Hence, using the Ft-adaptedness of X(t) and Y (t), we find

F (t, τ) = Λ(τ) · EQ [exp(X(τ) + Y (τ)) | Ft]

= Λ(τ) · exp
(
eA(τ−t)X(t) + eB(τ−t)Y (t) + A−1(I − eA(τ−t))θ0 + B−1(I − eB(τ−t))μ

)
· EQ

[
exp

(∫ τ

t

eA(τ−u)Σ1/2(u) dŴ (u) +

∫ τ

t

eB(τ−u)η dL(u)

)
| Ft

]
We consider the expectation in the last equality, which we denote by F̂ (t, τ). Let Gt,τ be the
σ-algebra generated by Ft and L̃(u) for t ≤ u ≤ τ . Recalling that under Q, Ŵ and L̃ are
independent, we find from the tower property of the conditional expectation operator

F̂ (t, τ) = EQ

[
EQ

[
exp

(∫ τ

t

eA(τ−s)Σ1/2(s) dŴ (s) +

∫ τ

t

eB(τ−s)η dL(s)

)
| Gt,τ

]
| Ft

]
= EQ

[
exp

(∫ τ

t

eB(τ−s)η dL(s)

)
· EQ

[
exp

(∫ τ

t

eA(τ−s)Σ1/2(s) dŴ (s)

)
| Gt,τ

]
| Ft

]
= EQ

[
exp

(
1

2
diag

[∫ τ

t

eA(τ−s)Σ(s)eAT (τ−s) ds

]
+

∫ τ

t

eB(τ−s)η dL(s)

)
| Ft

]
.

In the second equality we used that L is measurable with respect to Gt,τ , while in the last equality
we applied the facts that the Wiener integral of a deterministic function is independent of Ft and
a Gaussian random variable.

From Lemma 3.3, we find after appealing to the Ft-measurability of Z(t) and the independent
increment property of Lévy processes,

F̂ (t, τ) = EQ

[
exp

(
1
2
diag(C(τ − t)Z(t)) +

1
2
diag(

∫ τ

t
C(τ − u) dL̃(u)) +

∫ τ

t
eB(τ−u)η dL(u)

)
| Ft

]
= exp

(
1
2
diag(C(τ − t)Z(t))

)
· EQ

[
exp

(
1
2
diag(

∫ τ

t
C(τ − u) dL̃(u)) +

∫ τ

t
eB(τ−u)η dL(u)

)]
.

Let us focus on the expectation above, and denote it by Ψ(t, τ). It is a vector in Rd, and we look
at it componentwise. Note that the kth coordinate of diag(

∫ τ

t
C(τ−u) dL̃(u)) can be expressed as

eT
k

∫ τ

t
C(τ − u) dL̃(u)ek, while the kth coordinate of

∫ τ

t
eB(τ−u)η dL(u) is eT

k

∫ τ

t
eB(τ−u)η dL(u).

Hence, from the fundamental relation wkUw = tr(wwkA) for a vector w and a matrix U ,

Ψk(t, τ) = EQ

[
exp

(
1

2
eT

k

∫ τ

t

C(τ − u) dL̃(u)ek + eT
k

∫ τ

t

eB(τ−u)η dL(u)

)]
= EQ

[
exp

(
itr(−1

2
ieke

T
k

∫ τ

t

C(τ − u) dL̃(u)) +

∫ τ

t

ekeB(τ−u)η dL(u)

)]
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Note that eT
k eB(τ−u)η is a d-dimensional vector. It is simple to see that∫ τ

t

eT
k eB(τ−u)η dL(u) = tr(

∫ τ

t

Jd(e
T
k eB(τ−u)η) dL̃(u) .

Hence,

Ψk(t, τ) = EQ

[
exp

(
itr(−1

2
i

∫ τ

t

eke
T
k C(τ − u) dL̃(u)) + itr(−i

∫ τ

t

Jd(e
T
k eB(τ−u)η) dL̃(u))

)]
= E

[
exp

(
itr

(∫ τ

t

{
−1

2
ieke

T
k C(τ − u) − iJd(e

T
k eB(τ−u)η)

}
dL̃(u)

))]
× exp

(−φeL(−iΘ)
)

Next, observe that the stochastic integral can be expressed as∫ τ

t

{
1

2
eke

T
k C(τ − u) + Jd(e

T
k eB(τ−u)η)

}
dL̃(u)

= lim
|Δi|→0

n−1∑
i=0

{
1

2
eke

T
k C(τ − ui) + Jd(e

T
k eB(τ−u)η

}
ΔL̃(ui) ,

for partitions t = u0 < · · · < un = τ with Δi := L̃(ui+1) − L̃(ui) and Δi := ui+1 − ui.
By independence of increments of a Lévy process, and continuity of the exponential function
together with Fubini-Tonelli’s Theorem, we get

E

[
exp

(
itr

(∫ τ

t

{
−1

2
ieke

T
k C(τ − u) − iJd(e

T
k eB(τ−u)η)

}
dL̃(u)

))]
= lim

|Δi|→0

n−1∏
i=1

E

[
exp

(
itr

({
−1

2
ieke

T
k Cj(τ − ui) − iJd(e

T
k eB(τ−ui)η)

}
ΔL̃(ui)

))]
.

Now, the linear operators C(τ − ui) can be represented as vec−1 ◦ K(τ − ui) ◦ vec for a matrix
K ∈ Rd2×d2 . Hence, since for quadratic matrices tr(V X) = vec(V )T vec(X), we find

tr
(
(eke

T
k )C(τ − ui)ΔL̃(ui)

)
= vec(eke

T
k )T vec

(
C(τ − ui)ΔL̃(ui)

)
= vec(eke

T
k )T vec

(
vec−1K(τ − ui)vec(ΔL̃(ui))

)
= vec(eke

T
k )TK(τ − ui)vec(ΔL̃(ui))

=
(KT (τ − ui)vec(eke

T
k )

)T
vec(ΔL̃(ui))

= tr
(

vec−1(KT (τ − ui)vec(eke
T
k ))ΔL̃(ui)

)
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= tr
(
C∗(τ − ui)(eke

T
k )ΔL̃(ui)

)
.

Thus,

E

[
exp

(
itr

({
−1

2
ieke

T
k Cj(τ − ui) − iJd(e

T
k eB(τ−ui)η)

}
ΔL̃(ui)

))]
= exp

(
φeL

(
−1

2
iC∗(τ − ui)(eke

T
k ) − iJd(ekeB(τ−ui)η)

)
Δui

)
.

Gathering information, we find that

ln Ψk(t, τ) =

∫ τ

t

{
φeL(−1

2
iC∗(τ − u)(eke

T
k ) − iJd(e

T
k eB(τ−u)η) − iΘ) − φeL(−iΘ)

}
du

By changing variables we see that Ψk depends on τ − t. This completes the proof. �

The forward price F (t, τ) gives us the joint dynamics of forward prices on each of the spot
commodities. Hence, it is a d-variate process, giving the cross-commodity forward price dynam-
ics. Recall that · denotes the pointwise product, and that we use the notation for the exponential
function interchangeably, in the sense that exp(x) means elementwise exponentiation as long as
x is a vector, and the matrix exponential when x is a matrix.

Note that since Cj(0) = 0 and Ψk(0) = 1 for k = 1, . . . , d, it is easily seen that the expression
for F (t, τ) is equal to S(t) when τ = t. This shows that the forward price converges to the spot
at maturity, which it should by definition of the forward price as the conditional expectation of
the spot at maturity. More interestingly is that the forward price dynamics is explicitly dependent
on the stochastic volatility factors Zj(t). This has the interesting effect that even in the case of
no spike components in the spot dynamics (i.e., when m = 0), the forward price dynamics will
have jumps. That is, continuous spot price dynamics with stochastic volatility will imply forward
price dynamics which jumps according to the jumps in the stochastic volatility.

We state the dynamics of the forward price.

Proposition 3.5. Suppose the conditions in Prop. 3.4 holds. Then the dynamics of Fk(t, τ) of
commodity k with respect to Q is

dFk(t, τ)
Fk(t−, τ)

= eT
k eA(τ−t)Σ1/2(t) dŴ (t)

+
m∑

i=1

∫
S
+
d \{0}

{
exp

(
1
2
eT
k diag(Ci(τ − t)V ) + eT

k eBi(τ−t)ηidiag(V )
)
− 1

}
ÑQ

i (dt, dV )

+
n∑

j=m+1

∫
S
+
d \{0}

{
exp

(
1
2
eT
k diag(Cj(τ − t)V )

)
− 1

}
ÑQ

j (dt, dV ) .
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Here, ÑQ
j (dt, dV ) = Nj(dt, dV ) − exp(tr(V Θj))νeLj

(dV ) dt and Nj is the Poisson random

measure of L̃j , for j = 1, . . . , n.

Proof. First, let us notice that by definition, the process t 	→ Fk(t, τ) is a martingale for t ≤ τ .
From Prop. 3.4, we have in a compact form

Fk(t, τ) = Λk(τ) exp

(
eT

k eA(τ−t)X(t) + eT
k eB(τ−t)Y (t) +

1

2
diag(C(τ − t)Z(t))

)
Gk(τ − t) ,

where we have collected all non-random terms into G, being a vector in Rd. Since Fk(t, τ)

depends on X(t), Y (t) and Z(t), the dynamics of Fk will necessarily be expressible in terms of
the Q-Wiener process Ŵ and the compensated Possion random measures of L̃j under Q. Hence,
when using Itô’s Formula for jump processes (see e.g. Shiryaev [26]), we only need to focus
on terms involving dŴ and ÑQ

j (dt, dV ). To do this, we note that the dynamics of Y (t) can be
written as

dY (t) = (μ + BY (t)) dt + η d(diag(L̃(u))) .

Moreover, since C(τ − t) and diag are linear operators on matrices, we have that Fk is a function
of linear combinations of Zu,v(t) and Yu(t), for u, v = 1, . . . , d. Hence, the dynamics will consist
of linear combinations of the elements of the L̃(t)-matrix. Applying Itô’s Formula taking into
account all these considerations yields the result. �

We see that there is a Samuelson effect in the forward price dynamics. The volatility appear-
ing in the dŴ -term of the dynamics takes the form eT

k exp(A(τ − t))Σ1/2(t). The contribution
from eT

k exp(A(τ − t)) is an "exponential scaling" of the stochastic spot volatility Σ1/2(t). More-
over, as time to maturity goes to zero, we obtain a convergence of the forward volatility to the
spot volatility,

lim
τ↓t

eT
k eA(τ−t)Σ1/2(t) = Σ1/2(t) .

This yields a generalization of the Samuelson effect known in the one-dimensional case to cross-
commodity forward prices. We remark that the one-dimensional Samuelson effect gives a for-
ward volatility which is exponential dampening (in ’time-to-maturity’) of the spot volatility.
However, in the multi-dimensional case, the shape of eT

k exp(A(τ − t))Σ1/2 will be much richer
than simply exponential decay in time to maturity towards spot volatility. In fact, one may get
situations where the forward volatility is increasing rather than decreasing with time to maturity.
For example, choosing A to be a matrix of CARMA-type (see Benth et al. [6]), we may get this
situation, which is in contrast to the classical Samuelson effect. Observe that also the jump-terms
in the dynamics of the forward price contributes with a Samuleson effect, however, this is much
more complex to analyse.

In the next Proposition we show that the forward price will behave like the seasonal function
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in the long end of the market. To prove this result, we dispense with the restriction that the
forward price is only defined up to maturities T̃ < ∞, but do an asymptotic consideration of F

only focusing on the expression in Prop. 3.4.

Proposition 3.6. Let F (t, τ) be given as in Prop. 3.4 and suppose limt→∞ ln Ψ(t) exists. Then,

lim
τ→∞

(ln F (t, τ) − ln Λ(τ)) = A−1θ0 +
m∑

i=1

B−1
i μi + lim

τ→∞
ln Ψ(τ) .

Here we understand the operations of the function ln coordinate-wise.

Proof. This result follows immediately from the assumption that the real parts of the eigenvalues
of the matrices A, Bi and Cj are all negative, i = 1, . . . , m and j = 1, . . . , n. �

Note that the condition that Ψ(τ) has a limit is equivalent to the existence of a stationary
dynamics of

∫ t

0
Cj(t − s)dL̃j(s) and

∫ t

0
eBi(t−s)ηidLi(u) under Q. If this is the case, then we can

interpret limτ→∞ ln Ψ(τ) as the long-term mean value of the market price of risk.
From Prop. 3.6 above, contracts with maturities in the long end of the market will have

forward prices which are basically equal to the seasonality function, adjusted by the stationary
mean values of Yi and Zj and the market prices of risk, that is

F (t, τ) ∼ const. · Λ(τ) .

As a result of mean reversion of the spot prices, the forward prices are not reacting to changes in
the spot in the long end but only following the seasonal mean adjusted by the market prices of
risk.

3.3 Shapes of the forward curve

Note that we can view the forward price dynamics as a regression on the spot price, leverage
terms and the volatility processes. Introducing the shorthand notation Θ(t, τ) ∈ Rd given by

ln Θ(t, τ) � ln Ψ(τ − t) + ln Λ(τ) + A−1(I − eA(τ−t))θ0 +
m∑

i=1

B−1
i (I − eBi(τ−t))μi . (3.14)

Then, from Prop. 3.4,

ln F (t, τ) = ln Θ(t, τ) + eA(τ−t) ln S(t) +
m∑

i=1

(
eBi(τ−t) − eA(τ−t)

)
Yi(t)

+
1

2
diag{

n∑
j=1

Cj(τ − t)Zj(t))} . (3.15)
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Here, Θ is a level adjustment function. The impact of the various factors on the forward price
F (t, τ) goes through the matrix exponentials. In fact, the forward price of one commodity de-
pends on the normal variation processes X , spike processes Yi and volatility processes Zj of all
the commodities modelled. Hence, for example, if one of the commodities has a spike, then the
forward prices of all the other commodities will be influenced. There is also a direct influence
from the volaltility processes between the forwards both directly, and indirectly via the stochastic
volatility Σ(t) in the dynamics of X .

As noted in Andresen et al. [1], the mean-reverting structure represented by a matrix ex-
ponential has a richer structure than in the one-dimensional case, and we may include hump
structures in the forward curve. We discuss the potential shapes of τ 	→ F (t, τ) in more de-
tail. Since A ∈ GLd(R), it is diagonalizable. So it holds that eA(τ−t) = UeΛ(τ−t)U−1, where
U is a basis of eigenvectors and Λ is matrix with the eigenvalues of A on the diagonal and zero
elsewhere (see e.g. Horn and Johnson [14]). Hence, an entry of the vector eA(τ−t)X(t) can be
represented as

d∑
i=1

a1ieλi(τ−t)X1(t) +
d∑

i=1

a2ieλi(τ−t)X2(t) + . . . +
d∑

i=1

adieλi(τ−t)Xd(t) ,

for some constants aij ∈ R and eigenvalues λi, i, j = 1, . . . , d. Consider first the Schwartz model
with constant volatility, i.e. no contribution of the processes Yi and Zj in the forward price. If X

is positive in all its components, λi is real and aij ∈ R+ for all i, j = 1, . . . , d, then the forward
is in backwardation since the eigenvalues have negative real-parts. The opposite conclusion (i.e.
forward prices in contango) can be taken when X is negative in all its components. A more
realistic situation with this model is the case where there are humps in the forward curve and
where the forward is changing between backwardation and contango over time. This behavior
has been observed for real market prices. For example, on page 216 in Geman [12] the forward
curve of WTI oil is plotted together with the spot price. The shape of the curve varies over time
from contango to backwardation, including positive humps in the short end. When the constants
aji for fixed j are not all of the same sign and the entries of X have all a positive sign, then an
entry of eA(τ−t)X(t) is given by a linear combination of increasing and decreasing exponentials
which rise and decay at different speeds. Due to this the forward may alternate between back-
wardation and contango and humps may appear (see figure 3.3 (b)). Another possibility is the
case of complex eigenvalues. This leads to an oscillating structures in the forward curve. So a
change upward in the i-th component of X may cause a rise or fall of the forward depending on
the time to maturity (see figure 3.3 (a)).

A similar analysis can be made for the spike processes Yi. However, since Yi is a pure jump
process it will contribute to sudden changes in the forward curve. These humps may be upward
or downward pointing depending on the time to maturity. The jumps caused by the spike process
Yi may be averaged out by jumps in the volatility process Zi. The processes Yi and Zi are driven
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(a) (b)

Figure 4.1: Paths of eA(τ−t)X for (a) complex eigenvalues, (b) real eigenvalues of A, moreover
X = (1, 2)T is taken constant.

by related subordinators Li and L̃i. Hence Yi and Zi may have simultaneous jumps, however
depending on the value of the matrices A, Bi and Cj an upward jump caused by the volatility
process Zi may simultaneously have a downward jump caused by the spike process Yi. Hence
the jumps may average out. Conversely, depending on the parameters A, Bi and Cj , the jumps
in Yi and Zi may enlarge each other and lead to a big jump in the forward curve. This is a result
of the inverse leverage effect in the spot model, which has a "double" impact on forward prices.

4 Transform-based pricing of options

Spread options are popular derivatives in the energy market to hedge price differences. For
instance, spread options are traded on the difference in electricity forward prices in neighboring
markets, or on the difference between electricity and one of its fuels including spark (electricity
and gas) and dark (electricity and coal) spreads. On New York Mercantile Exchange (NYMEX)
options on spreads between forwards on different refined oils are traded.

In this section we will consider pricing of options on a combination of forwards, with the
spread as a special case. The dynamics of the forward is given by our multivariate model, which
allows for the application of the Fourier method to pricing.

Consider an option written on a combination of the forwards expressed via the payoff func-
tion p : Rd 	→ R. At exercise time T ≤ τ , the option pays out p(F (T, τ)), with the forwards
maturing at time τ ≥ T . Supposing that p(F (T, τ)) is integrable with respect to the pricing
measure Q defined in the previous section, we have that the option price at time t ≤ T becomes

C(t) = e−r(T−t)EQ [p(F (T, τ)) | Ft] , (4.1)

where the constant r > 0 is the risk-free interest rate. As it turns out, the forward price, or
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rather its logarithm, has a semi-analytic cumulant function, which opens for applying the Fourier
method to option pricing (see Carr and Madan [8] for a general treatment of Fourier methods in
pricing of options). We now discuss this in more detail.

First, define the function
g(x) � p(ex) , (4.2)

and observe that
g(ln x) = p(x) ,

where we used pointwise exponentials and logarithms. Suppose g ∈ L1(Rd), the space of inte-
grable functions on Rd, and recall the d-dimensional Fourier transform as

ĝ(y) =

∫
Rd

g(x)e−i〈x,y〉 dx . (4.3)

If ĝ ∈ L1(Rd), then the inverse Fourier transform becomes

g(x) =
1

2π

∫
Rd

ĝ(y)ei〈y,x〉 dy . (4.4)

See Folland [11] for these definitions. To price options, let us introduce the conditional cumulant
function of the log-forward prices under Q: for s ≤ t ≤ τ and x ∈ Rd, define

φ̃
(s,t,τ)
ln F (x) � ln EQ

[
ei〈x,ln F (t,τ)〉| Ft

]
(4.5)

The following pricing relation holds:

Proposition 4.1. Suppose that g, ĝ ∈ L1(Rd), where g is defined in (4.2). Then

C(t) = e−r(T−t) 1

2π

∫
Rd

ĝ(y) exp
(
φ̃

(t,T,τ)
ln F (y)

)
dy ,

where φ̃
(t,T,τ)
ln F (y), t ≤ T ≤ τ is the conditional characteristic function of ln F (T, τ) defined in

(4.5).

Proof. Since g ∈ L1(Rd), using dominated convergence to commute integration and expectation
(see Folland [11]), we conclude

C(t) = e−r(T−t)EQ[p(F (T, τ))|Ft]

= e−r(T−t)EQ[g(ln F (T, τ))|Ft]

= e−r(T−t)EQ

[
1

2π

∫
Rd

ĝ(y)ei〈y,ln F (T,τ)〉 dy |Ft

]
= e−r(T−t) 1

2π

∫
Rd

ĝ(y)EQ

[
ei〈y,ln F (T,τ)〉|Ft

]
dy
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= e−r(T−t) 1

2π

∫
Rd

ĝ(y) exp
(
φ̃

(t,T,τ)
ln F (y)

)
dy .

This proves the result. �

The two main ingredients in the pricing using Fourier methods are the transform of the payoff
function, ĝ and the cumulant of the forward price under the pricing measure Q. We state a semi-
analytical expression for the latter.

Proposition 4.2. Assume the conditions of Prop. 3.4 hold. Then the conditional cumulant func-
tion of ln F (t, τ) for s ≤ t ≤ τ defined in (4.5) is

φ̃
(s,t,τ)
ln F (x) = ixT H(s, t, τ) + ixT eA(τ−s)X(s) +

m∑
i=1

ixT eBi(τ−s)Yi(s)

+
1
2

n∑
j=1

ixT diag (Dj(t − s, τ − t)Zj(s)) − 1
2

n∑
j=1

xTCj(τ − s)Zj(s)x + Ξ(s, t, τ, x) ,

for x ∈ Rd, where

H(s, t, τ) = ln Λ(τ) + ln Ψ(τ − t) + A−1
(
I − eA(τ−t)

)
θ0 +

m∑
i=1

B−1
i

(
I − eBi(τ−t)

)
μi

+ A−1
(

eA(τ−t) − eA(τ−s)
)

θ0 +
m∑

i=1

B−1
i

(
eBi(τ−t) − eBi(τ−s)

)
μi

and

Ξ(s, t, τ, x)

=
m∑

j=1

∫ t−s

0

{
φeLj

(
1
2
iC∗

j (τ − t + v)(xxT ) +
1
2
D∗

j (v, τ − t)(Jd(x)) + Jd(xT eBj(τ−t+v)ηj) − iΘj

)
−φeLj

(−iΘj)
}

dv

+
n∑

j=m+1

∫ t−s

0

{
φeLj

(
1
2
iC∗

j (τ − t + v)(xxT ) +
1
2
D∗

j (v, τ − t)(Jd(x)) − iΘj

)
− φeLj

(−iΘj)
}

dv .

The family of linear operators Dj(u, v), (u, v) ∈ R2
+, are defined as

Dj(u, v)X = Cj(v)eCjuXeCT
j u ,

for j = 1, . . . , n and a matrix X ∈ Md(R).
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Proof. From Prop. 3.4, it holds

ln F (t, τ) = ln Θ(t, τ) + eA(τ)X(t) +
m∑

i=1

eBi(τ−t)Yi(t) +
1

2
diag{

n∑
j=1

Cj(τ − t)Zj(t)} ,

where we recall the short-hand notation for Θ(t, τ) defined in (3.14). Now, from the explicit so-
lutions of the factors in (2.7), (2.8) and (2.9), together with the Girsanov change of the Brownian
motion W , we find by adaptedness that

φ̃
(s,t,τ)
ln F (x) = ixT H(s, t, τ) + ixT eA(τ−s)X(s) + ixT

m∑
i=1

eBi(τ−s)Yi(s)

+
1

2
ixT diag{

n∑
j=1

Dj(t − s, τ − t)Zj(s)}

+ ln EQ

[
exp

(
ixT

∫ t

s

eA(τ−u)Σ1/2(u) dŴ (u) + ixT

m∑
i=1

∫ t

s

eBi(τ−u)ηi dLi(u)

+
1

2
ixT diag{

n∑
j=1

Cj(τ − t)

∫ t

s

eCj(t−u) dL̃j(u)eCT
j (t−u)}

)
| Fs

]

Define ψ(s, t, τ) as the logarithm of the conditional expectation in the expression above. Letting
Gs,t be the σ-algebra generated by Fs and the paths of L̃j(u), s ≤ u ≤ t, we find after using
the tower property of the conditional expectation operator and the Gaussianity of Itô integrals of
deterministic functions

ψ(s, t, τ) = ln EQ

[
EQ

[
exp

(
ixT

∫ t

s

eA(τ−u)Σ1/2(u) dŴ (u)

)
| G eL

s,t

]
· exp

(
ixT

m∑
i=1

∫ t

s

eBi(τ−u)ηi dLi(u)

)

· exp

(
1

2
ixT diag{

n∑
j=1

Cj(τ − t)

∫ t

s

eCj(t−u) dL̃j(u)eCT
j (t−u)}

)
| Ft

]

= ln EQ

[
exp

(
−1

2
xT ixT

∫ t

s

eA(τ−u)Σ(u)eAT (τ−u)x

)
· exp

(
ixT

m∑
i=1

∫ t

s

eBi(τ−u)ηi dLi(u)

)

· exp

(
1

2
ixT diag{

n∑
j=1

Cj(τ − t)

∫ t

s

eCj(t−u) dL̃j(u)eCT
j (t−u)}

)
| Ft

]
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Inspecting the proof of Lemma 3.3, we find∫ t

s

eA(τ−u)Σ(u)eAT (τ−u) du =
n∑

j=1

Cj(τ − s)Zj(s) +

∫ t

s

Cj(τ − u) dL̃j(u) .

By Fs-adaptedness and independent increment property of Lévy processes, it holds

ψ(s, t, τ) = −1

2

n∑
j=1

xTCj(τ − s)Zj(s)x

+ ln EQ

[
exp

(
−1

2

n∑
j=1

xT

∫ t

s

Cj(τ − u) dL̃j(u)x

+
1

2
ixT diag{

n∑
j=1

Cj(τ − t)

∫ t

s

eCj(t−u) dL̃j(u)eCT
j (t−u)}

+
m∑

i=1

ixT

∫ t

s

eBi(τ−u)ηi dLi(u)

)]

We focus next on the last term, the logarithm of the expectation, which we denote by ψ̃(s, t, τ).
Observe first that

Cj(τ − t)

∫ t

s

eCj(t−u) dL̃j(u)eCT
j (t−u) =

∫ t

s

Dj(t − u, τ − t) dL̃j(u) .

But since for a matrix A ∈ Md(R), xT diag(A) = tr{Jd(x)A},

1

2
xT diag{

n∑
j=1

∫ t

s

Dj(t − u, τ − t) dL̃j(u)} =
n∑

j=1

tr{1

2
Jd(x)

∫ t

s

Dj(t − u, τ − t) dL̃j(u)} .

Furthermore, it holds that

xT

∫ t

s

eBi(τ−u)ηi dLi(u) =

∫ t

s

xT eBi(τ−u)ηi dLi(u) = tr{
∫ t

s

Jd(x
T eBi(τ−u) dL̃i(u)} ,

and

−1

2
xT

∫ t

s

Cj(τ − u) dL̃j(u)x = itr{1

2
ixxT

∫ t

s

Cj(τ − u) dL̃j(u)} .

Hence, collecting terms and using that L̃j are independent for j = 1, . . . , n, we find

ψ̃(s, t, τ) =
m∑

j=1

ln EQ

[
exp

(
itr

{
1
2
ixxT

∫ t

s
Cj(τ − u) dL̃j(u)
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+
1
2
Jd(x)

∫ t

s
Dj(t − u, τ − t) dL̃j(u) +

∫ t

s
Jd(xT eBj(τ−u)ηj) dL̃j(u)

})]
+

n∑
j=m+1

ln EQ

[
exp

(
itr

{
1
2
ixxT

∫ t

s
Cj(τ − u) dL̃j(u)

+
1
2
Jd(x)

∫ t

s
Dj(t − u, τ − t) dL̃j(u)

})]
=

m∑
j=1

∫ t

s
φeLj

(
1
2
iC∗

j (τ − u)(xxT ) +
1
2
D∗

j (t − u, τ − t)(Jd(x)) + Jd(xT eBj(τ−u)ηj) − iΘj

)
− φeLj

(−iΘj) du

+
n∑

j=m+1

∫ t

s
φeLj

(
1
2
iC∗

j (τ − u)(xxT ) +
1
2
D∗

j (t − u, τ − t)(Jd(x)) − iΘj

)
− φeLj

(−iΘj) du

In the last equality, we used the same argumentation as is found in the proof of Prop. 3.4. After
collecting terms, the proposition is proved. �

The fast Fourier transform (FFT) algorithm may be used to compute the option price effi-
ciently, as long as we know the Fourier transform of the payoff function g. Note that implement-
ing the FFT algorithm requires some numerical integration routines to evaluate the characteristic
function of ln F .

We consider the specific case of a call option on the spread between two forwards. The payoff
function of such a contract is p(x) = max(x1 − x2 −K, 0), where K is the strike price. Without
loss of generality, we can suppose that K = 1. The function g becomes

g(x) = max(ex1 − ex2 − 1, 0) .

We observe that this function is not integrable on R2. However, following the idea in Carr and
Madan [8], we can damp g by an exponential function. To this end, define for ξ = (ξ1,−ξ2) with
ξ1, ξ2 > 0 ,

gξ(x) = e−〈ξ,x〉 max(ex1 − ex2 − 1, 0) . (4.6)

We show that this becomes an integrable function under natural conditions on the damping fac-
tors ξ1, ξ2.

Lemma 4.3. If ξ1 − ξ2 > 1, then gξ ∈ L1(R2) where gξ is defined in (4.6).

Proof. Note that the function gξ is non-zero whenever x1 > ln(ex2 + 1). Thus, since ξ1 > 1,∫
R2

gξ(x) dx =

∫ ∞

−∞
eξ2x2

∫ ∞

ln(ex2+1)

e−ξ1x1(ex1 − (ex2 + 1)) dx1 dx2

92



Fred Espen Benth and Linda Vos

=
1

ξ1(ξ1 − 1)

∫ ∞

−∞
eξ2x2(ex2 + 1)−(ξ1−1) dx2 .

If x2 > 0, we find that

eξ2x2(ex2 + 1)−(ξ1−1) = eξ2x2e−(ξ1−1)x2(1 + e−x2)−(ξ1−1) ≤ e(ξ2−ξ1+1)x2 .

By assumption ξ1 − ξ2 > 1, so ξ2 − ξ1 + 1 < 0. If x2 < 0, then

eξ2x2(ex2 + 1)−(ξ1−1) ≤ eξ2x2 .

The Lemma follows. �

In the next Lemma we state the Fourier transform of gξ.

Lemma 4.4. Suppose ξ2 > 0 and ξ1 − ξ2 > 1. Then the Fourier transform of gξ(x) defined in
(4.6) is

ĝξ(y) =
Γ(i(y1 + y2) − (1 + ξ1 + ξ2))Γ(−iy2 + ξ2 + 2)

Γ(iy1 + 1 − ξ1)
, (4.7)

where Γ denotes the gamma function.

Proof. For the proof we follow the approach of Hurd and Zhou [15] (Theorem 1). When one
takes into account the exponential damping of the pay-off function g by e〈ξ,x〉 then the above
result follows. �

We have that
g(x) =

1

2π

∫
R2

ĝξ(y)ei〈(y−iξ),x〉 dy .

Thus, the price of a spread option entails in substituting y with y − iξ in the formula for C(t) in
Prop. 4.1, and use ĝξ instead of ĝ. In addition comes an exponential integrability condition on
ln F (T, τ) in order to take into account the additional contribution from exp(〈ξ, x〉).

An alternative approach to the Fourier method is to apply Monte Carlo simulation of the
forward price dynamics F (T, τ) in the pricing of options. In practice, this means simulating
matrix valued subordinators L̃j and a multi-dimensional Wiener processes Ŵ under Q. The
latter can be simulated using classical sampling techniques. Efficient simulation methods for
matrix-valued subordinators is in general an open question, however, for a specific class of such
processes a method is proposed in Benth and Vos [7].
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5 Conclusions

Based on the multivariate spot price model with Barndorff-Nielsen and Shephard stochastic
volatility introduced in Benth and Vos [7], we derive the multivariate forward price dynamics.
These analytical forward prices are calculated based on a combined Esscher-Girsanov change of
measure where the risk premium is parametrized into a spike and volatility premium. Although
the spot price has continuous sample paths in absence of a spike process, the implied forward
curve will still exhibit jumps inherited from the stochastic volatility process. In the long end
of the market the forward prices are basically equal to the seasonality function adjusted by the
long-term means of the spike processes and volatility process and the market prices of risk. Since
the mean-reverting structure of the involved matrix exponentials has a richer structure than in the
one-dimensional case, the implied forward curve can alternate between backwardation and con-
tango and humps may appear. Depending on the time to maturity a change in the spot can lead
to various changes in the forward curve. We also discuss how a transform-based method can be
used to price cross-commodity options on forwards. The particular case of spread options were
analysed in more detail.
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