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Abstract: Two independent sets of analytical solutions, one based on matrix inversion and 

one based on iteration, are derived for the displacement field and corresponding stress state in 

multi-layer cylinders subjected to pressure and thermal loading. Solutions are developed for 

cylinders that are axially free with no friction between layers (plane stress), for cylinders that 

are fully restrained axially (plane strain) and for axially loaded and spring-mounted cylinders, 

assuming that the combined two-layer cross-section remains plane after deformation 

(generalized plane strain). The analytical solutions are verified by means of detailed three-

dimensional finite element analyses and comparisons between the two independent analytical 

solutions, which are easily implemented in, and suitable for, engineering applications. 
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NOMENCLATURE 

ai Recurrence relation, defined by 

Eq. (70) [-] 

Ai   irii CvE ,121ˆ   [N] 

As,i Steel cross-sectional area for layer 

i [m
2
] 

bi Recurrence relation, defined by 

Eqs. (70) (plane stress / plane 

strain) and (82) (generalized plane 

strain) [-] 

C General constant (used for strain 

under generalized plane strain) [-] 

C[a , b] Space of continuous functions on 

the interval [a , b] 
ci Recurrence relation, defined by 

Eq. (87) [-] 

Ci = ir
i

i C
v

E
,2

1

 

(plane stress);

iriCE ,2
ˆ  (plane strain / 

generalized plane strain) [Pa] 

Cr1 Displacement coefficient in radial 

direction [m
2
] 

Cr1,i Displacement coefficient in radial 

direction for layer i [m
2
] 

Cr2 Displacement coefficient in radial 

direction [-] 
Cr2,i Displacement coefficient in radial 

direction for layer i [-] 
Cz  Displacement coefficient in axial 

direction [m] 
Cz,i  Displacement coefficient in axial 

direction for layer i [m] 
D  Displacement coefficient vector 

di Recurrence relation, defined by 

Eq. (87) [-] 

E Young’s modulus [Pa] 

Ei  Generalized Young’s modulus in 

  layer i [Pa] 
Ei Young’s modulus for layer i [Pa] 

Ê   = E / ((1 + v)(1 – 2v)) [Pa] 

iÊ   = Ei / ((1 + vi)(1 – 2vi)) [Pa] 

i  Layer index [-] 

k  Axial spring stiffness [N/m] 

K  = k / 2 [N/m] 

K Stiffness matrix 
k0 Block matrix component of K, 

defined by Eqs. (38) and (44). 
ki

1
 Block matrix component of K, 

defined by Eqs. (38) and (44). 
ki

2
 Block matrix component of K, 

defined by Eqs. (38) and (44). 

ki
3
 Block matrix component of K, 

defined by Eq. (53). 
ki

4
 Block matrix component of K, 

defined by Eq. (53). 
kn Block matrix component of K, 

defined by Eqs. (38) and (44). 
Kz Component of K defined by Eq. 

(51) [N/m] 

L  Length of cylinder 

n  Total number of layers [-] 

N  Applied axial load [N] 

P  Axial section force [N] 

pext  External pressure [Pa] 

pint  Internal pressure [Pa] 

q0  intp  [Pa] 

qi  Contact pressure between layer i 

and (i+1) [Pa] 
q

0
i  Contact pressure between layer i 

and (i+1) for plane strain [Pa] 

qn  extp  [Pa] 

r  Radial coordinate variable [m] 

R  Load vector 
Rz Component of R defined by Eq. 

(51) [N] 

r0  Inner radius of combined cross-

section [m] 

ri  Outer radius of cylinder layer i 

[m] 
rn  Outer radius of combined cross-

section [m] 

Si      iiiiiii    111  

[Pa
-1

] 
ti Thickness of layer i [m] 

Ti    111   iiiii    

[Pa
-1

] 
ur  Displacement field component in 

radial direction [m] 
ur,i  Displacement field component in 

radial direction for layer i [m] 

uz  Displacement field component in 

axial direction [m] 
uz,b  Displacement field component in 

axial direction for layer i [m] 
uθ  Displacement field component in 

circumferential direction [m] 
uθ,b  Displacement field component in 

circumferential direction for layer 

i [m] 

x  Cartesian coordinate [m] 

y  Cartesian coordinate [m] 
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z Cartesian/cylindrical coordinate 

[m] 
ze Axial coordinate of cylinder end 

[m] 
α  Temperature expansion 

coefficient for inner layer [°C
-1

] 
αi  Temperature expansion 

coefficient for layer i [°C
-1

] 

βi   ii E/1   (plane stress); 

iÊ/1  (plane strain / generalized 

plane strain) [Pa
-1

]  

γi+1  
2

1
2 /  ii rr [-] 

γij,i  Shear strains in layer i [-] 

ΔT  Change in temperature [°C] 

ΔTi Change in temperature in layer i 

[°C] 
ε

0
ij,i , ε0,i  Tensor of initial strains for layer i 

[-] 
εij , ε Strain tensor [-] 

εij,i , εi Strain tensor for layer i [-] 

εzz  LCz /  (axial strain) [-] 

ζi  0qa
a

d
d i

n

n
i 













  [Pa] 

θ Circumferential coordinate [-] 

λi  
 ii vE 21ˆ

1


 [Pa

-1
] 

μi  zziii vE  ˆ  [Pa] 

v  Poisson’s ratio [-] 

vi  Poisson’s ratio for layer i [-] 

σ
0

ij,i , σ0,i Tensor of initial stresses for layer 

i [Pa] 
σij , σ Stress tensor [Pa] 

σij,i , σi Stress tensor for layer i [Pa] 

τij  Shear stresses [Pa] 

φi   iiii vTE  1ˆ  [Pa] 

ψi 0  (plane stress); 

iiiCv  2  (plane strain / 

generalized plane strain) [Pa]  

  



3 

 

1 INTRODUCTION 

Cylinders subjected to pressure and temperature have been widely studied, and an 

analytical solution for the displacement field of a linearly elastic, isotropic hollow cylinder 

exposed to uniform internal and external pressure was derived by the French mathematician 

Gabriel Lamé already in 1831 [Lamé and Clapeyron, 1831]. The solution suggested by Lamé 

is readily adapted for application to shrink-fit problems [Timoshenko, 1958]. Since Lamé’s 

solution gives the full three-dimensional stress state of a pressurized cylinder, the solution is 

highly useful for design of pressurized thick-walled cylindrical members or disks. However, 

conventional single-layer pressure vessels are often not suited for operation in extreme 

environments, with conditions characterized by high pressure and high temperature, and 

potentially a strongly corrosive fluid content [Zhang et al., 2012]. By increasing the number 

of cylindrical layers, a larger number of design variables become available to the designer. 

Naturally, this flexibility facilitates more optimal design for each specific application. Two-

layer and multi-layer cylinder designs are therefore often utilized for e.g., pressure vessels 

[Jahed et al., 2006; Wilson and Skelton, 1968], pipelines [Smith, 2012; Vedeld et al., 2012], 

piping systems [Marie, 2004; Olsson and Grützner, 1989] and risers [Kloewer et al., 2002]. 

Another way to overcome the challenges related to extreme operating conditions is to 

apply advanced materials with tailor-made material properties, such as composites and 

functionally graded materials (FGMs). FGMs are microscopically inhomogenous materials 

with mechanical properties that vary smoothly and continuously in one or more spatial 

directions. The special properties of FGMs are achieved by gradually varying the volume 

fraction of the constituent materials, typically a mixture of a ceramic and one or more metals 

[Peng and Li, 2010; Reddy and Chin, 1998]. The FGMs were initially developed to withstand 

the extreme thermal loading associated with aerospace applications, such as propulsion 

systems in future space planes, and have commonly been used as thermal barrier materials 

[Koizumi, 1993; Noda, 1999; Yamanouchi et al., 1990]. Hollow cylindrical vessels and pipes 

are common structural components for high-temperature or high-pressure applications in 

nuclear reactors, chemical plants and oil and gas transportation. Therefore, the properties of 

FGM cylinders have been extensively studied in recent years, focusing on both elastic and 

elasto-plastic response to pressure loading [Eraslan and Akis, 2006; Shi et al., 2007; Tutuncu 

and Ozturk, 2001; Xiang et al., 2006], as well as on thermoelastic response [Jabbari et al., 

2002; Liew et al., 2002; Ootao and Tanigawa, 2006; Peng and Li, 2010; Reddy and Chin, 

1998]. 
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The governing equation for hollow cylinders under axisymmetric loading is an 

ordinary differential equation with variable coefficients. Such differential equations are 

possible to solve analytically in certain cases, depending on the functional representation of 

the material properties [Peng and Li, 2010]. It is common to express the FGM properties of a 

cylinder as either power functions or exponential functions of the radial coordinate r, but 

other functional relationships have also been studied [Horgan and Chan, 1999; Jabbari et al., 

2003; Tutuncu, 2007; Xiang et al., 2006]. The radial displacement field in pressurized FGM 

cylinders was derived by Xiang et al. [2006], assuming either a linearly graded material, in 

which the elastic modulus varied linearly in the radial direction while Poisson’s ratio was a 

constant, or an exponentially graded material, in which the elastic stiffness coefficients were 

assumed to be exponential functions of r. In a recent study by Peng and Li [2010], the 

thermoelastic problem of an FGM hollow cylinder with arbitrary non-homogenous material 

properties was converted to a Fredholm integral equation, which was solved numerically. 

Xiang et al. [2006] did not include thermal stresses in their analysis, but 

complemented their analytical solution for FGM cylinders by the introduction of a recursive 

algorithm for the exact elastic analysis of a pressurized multi-layer cylinder with arbitrary 

number of layers and uniform material properties in each layer. Moreover, it was shown by 

Xiang et al. [2006] that the multi-layer solutions converged towards the analytical solutions 

for FGM cylinders as the number of layers was increased. Thus, if the recursive algorithm 

introduced by Xiang et al. [2006], and later presented also in a paper by Shi et al. [2007], 

could be extended to include thermal stresses, it would be an attractive method for 

thermoelastic analysis of FGM cylinders. Based on a similar idea, Liew et al. [2003] 

developed an analytical model for FGM hollow cylinders subjected to an arbitrary 

temperature field by dividing the cylinder into a number of homogenous sub-cylinders. 

However, the hollow cylinder was assumed to be free from pressure loading and only the case 

of plane strain was considered in the study by Liew et al. [2003]. 

In the present study, the elastic response of multi-layer hollow cylinders subjected to 

pressure and temperature will be investigated using two different solution strategies, both of 

which are based on Lamé’s solution for single-layer cylinders. First, the displacement field 

and stress state of the multi-layer cylinder will be determined from simple and physically 

transparent equilibrium and kinematic compatibility requirements. This leads to a system of 

equations, which may be solved by matrix inversion. Thereafter, the recursive algorithms for 

exact elastic analysis of multi-layer cylinders previously presented by Xiang et al. [2006] and 

Shi et al. [2007] will be significantly extended to include thermal stresses. The recursive 
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algorithms of Xiang et al. [2006] and Shi et al. [2007] represent solutions to a non-linear 

difference equation. Shi et al. [2007] and Xiang et al. [2006] indicate the accuracy of their 

solutions by comparing results to specific examples. In the present study, the general solutions 

to the difference equations derived by Shi et al. [2007] and Xiang et al. [2006] are proven 

formally by means of induction. Furthermore, the new solutions presented herein, which 

include thermal stresses and additional considerations for boundary conditions, are also 

proven formally by induction. The results of the novel recursive algorithm will be compared 

to results from the matrix-based analytical solution, as well as to results from finite element 

analyses (FEA). Furthermore, both of the solution methods will be applied to three different 

axial boundary conditions. These include cylinders that are fully restrained axially, 

corresponding to a plane strain condition, and two types of conditions for axially free 

cylinders. Axially unrestrained cylinders are analyzed both for the case of individual layers 

that are free to slide relative to each other, corresponding to a plane stress condition, and for 

the case of tightly bonded cylinder layers, corresponding to a generalized plane strain 

condition. The latter condition is particularly relevant for pipelines and piping systems 

[Vedeld and Sollund, 2013]. In the previous work by Xiang et al. [2006] and Shi et al. [2007], 

only plane stress and plane strain conditions were considered. 

With regard to pipeline and piping applications, multi-layered cylinder cross-sections 

are highly common. For instance, due to transportation of highly corrosive fluids, for example 

well fluids with CO2 or H2S content, some offshore pipelines have a liner or clad layer made 

from a corrosion-resistant alloy. In addition, the pipeline cross-section will consist of the main 

pipe (commonly termed the linepipe) which is typically made of carbon-manganese (CMn) 

steel, and various coating layers, such as external corrosion coating, insulation coating, and in 

some cases weight coating of reinforced concrete [Braestrup et al., 2005; Palmer and King, 

2004; Vedeld et al., 2012]. Despite the fact that pipeline cross-sections tend to be multi-

layered, the leading design codes such as DNV-OS-F101 [2012] and ASME B31.8 [2003], 

give detailed capacity criteria only for monolithic pipe cross-sections, while additional layers 

such as liner, cladding or concrete coating are conservatively disregarded in terms of their 

contribution to structural strength. Furthermore, the potential effects that coating layers may 

have on important design parameters such as the effective axial force [Sparks, 1984; Fyrileiv 

and Collberg, 2005] are not considered. The exact three-dimensional analytical solutions that 

will be presented and thoroughly validated in the present study are, as well as being of 

theoretical interest in a classical discipline of solid mechanics, easily implemented in e.g., 

spreadsheet-based engineering tools and thus suitable for practical design contexts. 
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2 PROBLEM DEFINITION 

2.1 A Priori Assumptions 

 

(i) The materials in the cylinder layers are assumed to be linearly elastic, 

homogenous and isotropic. 

(ii) Initial stresses and strains are disregarded. 

(iii) Bending effects are not considered. The cylinders are assumed to be perfectly 

straight, and the influence of curvature on the calculation of stresses due to 

heat and pressure is not considered. 

(iv) Small displacements are assumed. Thus, the load is applied on the initial 

geometry, and changes in internal or external diameter and changes in layer 

wall thickness due to the application of loading are not accounted for. 

(v) The applied internal and external pressures are radial and uniformly distributed 

along the inner and outer surfaces of the cylinder, i.e., the pressures are treated 

as hydrostatic. 

(vi) Heat is assumed to result in a uniform temperature distribution within each 

cylinder layer.  

(vii) Different cylinder layers may have different material properties, including 

elastic moduli, Poisson’s ratios and temperature expansion coefficients. 

(viii) For plane stress conditions, it is assumed that the cylinder layers are free to 

slide relative to each other (without friction) in the axial direction. End effects 

are disregarded. 

(ix) Sections that are plane and perpendicular to the cylinder axis prior to 

deformation are assumed to remain plane and perpendicular to the cylinder 

axis after deformation for plane strain and generalized plane strain conditions. 

 

2.2 Coordinate system 

The standard cylindrical coordinate system defined in Figure 1 is adopted in the 

present study.  
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Figure 1 – Cylindrical coordinate system and stress nomenclature. 

 

In the figure, x, y and z are the standard Cartesian coordinates, r is the radial 

coordinate, θ is the angle between the position vector and the x-axis, σrr is the radial stress, σzz 

is the axial stress and σθθ is the hoop stress. 

 

2.3 Boundary conditions 

In the present study, multi-layer cylinders subjected to heat and internal and external 

pressure will be investigated. An illustration of the problem is shown in Figure 2. 

In Figure 2, pext is the external pressure, pint is the internal pressure, r0 is the internal 

radius of the multi-layer cylinder, and ri is the outer radius of the i-th cylinder layer. Ei is the 

Young’s modulus, νi the Poisson’s ratio and αi the coefficient of thermal expansion in layer i. 

The temperature change (relative to a common reference temperature T0 for all the layers) in 

the i-th layer is ΔTi, and qi (not shown in the figure) is the contact pressure between layer i 

and layer (i+1). At the inner surface the contact pressure q0 is equal to the internal pressure 

pint and at the outer surface the contact pressure qn is equal to the external pressure pext. All 

cylinder layers have the same initial length L. 
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Figure 2 – Multi-layer cylinder with varying material properties Ei, νi and αi in each layer. Temperature 

changes ΔTi and radii ri are also indicated. 

 

On the inner surface, the radial stress must be compressive and equal to the internal 

pressure, resulting in a static radial boundary condition given by 

  intrr pr 01, , (1) 

where σrr,1 is the radial stress in the innermost layer. Similarly, the static radial boundary 

condition on the outer surface is given by 

  ,, extnnrr pr   (2) 

where σrr,n is the radial stress in the outermost layer. 
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All the cylinders that will be considered have length L and are assumed free to expand 

or contract radially. With regard to the axial stress and strain state of the multi-layer cylinders, 

three types of conditions will be presented and studied in the following: 

1) Plane stress. 

2) Plane strain. 

3) Generalized plane strain (with axial loading and spring support). 

According to assumption  (viii), the cylinder layers are axially free, as well as free to 

slide relative to each other, under the plane stress condition. The condition may be 

mathematically represented by 

,allfor 0, iizz   (3) 

where σzz,i is the stress in axial direction in layer i. 

Kinematic boundary conditions and static axial boundary conditions (axial loading) for 

the two remaining conditions are displayed in Figure 3. In the figure, arrow heads indicate 

translational constraints and double arrow heads indicate rotational constraints. Each of the 

cylinders a) and b) may be regarded as representing a segment, or cut-out, of a long pipeline 

or piping system, which implies that end effects are ignored and that there are no end-caps. 

The cross-section consists of layers that are axially fixed to each other, either continuously or 

at regular intervals (assumption  (ix) applies). 

Cylinder a) in Figure 3 is fully restrained axially. The boundary condition is thus 

characterized by plane strain, with a mathematical representation defined by 

,allfor 0, iizz   (4) 

where εzz,i is the strain in axial direction in layer i. Hence, the axial strain is known, while the 

axial reaction load is unknown. 

For the second boundary condition, illustrated by cylinder b) in the figure, the cylinder 

is fully restrained at only one end (z = 0). At the opposite end (z = L), the cylinder may 

expand axially, but the cross-section must remain plane in accordance with assumption  (ix) in 

Section 2.1. This is visualized in Figure 3 b) by a kinematic coupling, indicated by dashed 

lines, between a reference point (RP) and the cylinder end surface. Thus, the cylinder is in a 

state of generalized plane strain, defined by 

,allfor , iCizz   (5) 

where C is a non-zero constant. The constant C will have the same value in all layers. 
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An axial load N and an axial spring with stiffness K are applied at the reference point 

(RP). It should be noted that N is an applied load, and integration of all the axial stresses σzz,i 

over the cross-section would generally give a result that is different from N. A static 

equilibrium equation in z-direction may be formulated at z = L for the cylinder in Figure 3 b). 

The equilibrium equation is given by 

 

 

Figure 3 – Boundary conditions for: a) the axially fixed condition and b) the axially free condition with 

axial load N and axial spring K. Arrow heads indicate translational and double arrow heads rotational 

constraints. 

 

    ,
1

,, NLuKA z

n

i

isizz 


   (6) 

where As,i = πti(2ri – ti) is the cross-sectional area of the i-th layer, ti is the thickness of the i-th 

layer and uz(L) is the axial displacement at z = L. 

 

2.4 Boundary Conditions for Piping and Pipelines 

In order to identify relevant boundary conditions for pipes and piping, it is useful to 

consider a typical piping or pipeline scenario, as illustrated by Figure 4. In Figure 4 c), a 

segment, or cut-out, of a piping system (Figure 4 a) or pipeline (Figure 4 b) is shown. 

Regardless of whether the cut-out is taken from a pipeline or a piping system, some axial 

stiffness is provided by axial interaction with the rest of the system. In addition, for subsea 

pipelines that are resting on the seabed, the axial friction is often modeled by springs with 

axial stiffness dependent on the soil type. Hence, spring stiffness is introduced in axial 

direction. However, in many cases the action on a pipe segment by its surroundings is 

represented by an applied load N rather than by axial springs. For example, at lay-down (i.e., 
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just after installation) a subsea pipeline will have a residual lay tension and some non-zero 

axial strain, which implies that the pipe segment should be modeled with an external load N 

and no spring stiffness. When operational loads subsequently are applied, the degree of axial 

restraint may vary from zero (close to a spool or other flexible structure) to fully fixed (when 

the accumulated soil friction is large enough to fully restrain the pipe). For axial restraints in-

between zero and full fixation, the pipe segment may be modeled with axial springs. The 

spring stiffness will depend on e.g., the stiffness properties of the soil and the length L of the 

considered pipe segment. Thus, in order to facilitate the different manners of modeling the 

pipe segment’s interaction with its surroundings, the problem has been idealized as shown in 

Figure 4 c). In the figure, an axial section force P acts on both ends of the pipe segment and 

includes potential contributions from both a spring force and an applied axial load. The 

section force may be expressed by 

  ,NzukP ez    (7) 

where uz(ze) denotes the axial displacement of either cylinder end. 

 

 

Figure 4 –a) Typical part of a two layer piping system configuration. b) Typical scenario for a two layer 

submarine pipeline resting on the seabed. c) Model of a pipe segment applicable to both scenario a) and 

scenario b). 

 

From Eq. (7), one may observe that there is a spring with stiffness k mounted to each 

end of the pipe segment in Figure 4 c). It should be noted that the system in Figure 4 c) 

corresponds to the system in Figure 3 a) when k → ∞. Moreover, the system in Figure 4 c) 

may be retrieved from the system in Figure 3 b) by setting K = k/2, or by setting K = k while 

adjusting the length of the cylinder from L to L/2. The latter is evident from symmetry. Thus, 
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the boundary conditions for the pipe segment in Figure 4 c) are equivalent to the boundary 

conditions illustrated previously by Figure 3. 
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3 DISPLACEMENT ASSUMPTIONS 

We aim to determine the exact three-dimensional stress state described in cylindrical 

coordinates as defined in Figure 1, for multi-layer cylinders subjected to pressure, thermal 

loading and axial loading, with boundary conditions as presented in the preceding section. In 

order to achieve this, the form of the displacement field must be known. For a cylinder 

exposed to internal and external pressure, an equilibrium equation in radial direction may be 

derived based on Figure 5, which displays the radial and hoop stresses acting on an 

infinitesimal element in a plane perpendicular to the cylinder axis (z-axis). 

 

 

Figure 5 - A thick-walled ring subjected to internal and external pressure. 

 

Since the internal and external pressures are uniformly distributed along the 

circumference, the resulting deformation will be symmetric about the axis of the cylinder, i.e., 

,0u  (8) 

and the shear stresses τrθ will be zero. Moreover, the shear stresses τrz will be zero since the 

thermal loading and pressures are uniform in axial direction and the axial displacements 

according to assumption  (viii) and  (ix) (Section  2.1) are constant, either in each individual 

layer (plane stress) or over the entire cross-section (plane strain and generalized plane strain). 

Noting that sin(dθ) ≈ dθ the following equilibrium equation can then be formulated in 

the radial direction for the element displayed in Figure 5: 
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  0







 


  ddrrdr

dr

d
drdrd rr

rrrr  (9) 

By ignoring higher-order quantities one obtains 

0
dr

d
r rr

rr


  (10) 

The equilibrium equation in radial direction, Eq. (10), may subsequently be applied to derive 

the differential equation for the radial displacement ur for plane stress (i) and plane strain (ii) 

conditions. The case of plane stress will be examined first. Hooke’s material law for plane 

stress is given by 





























 









 rrrr E

1

1

1 2
 (11) 

where E is the Young’s modulus and ν the Poisson’s ratio for the cylinder wall material. 

The radial strain εrr and hoop strain εθθ in cylindrical coordinates are given by 

r

u
u

r

u

r

dr

du

r
r

r
rr








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where the simplified expression for the εθθ hoop strain follows from Eq. (8). By inserting the 

stress expressions from Eq. (11) into Eq. (10), the following differential equation for the 

radial displacement ur is obtained: 
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The general solution of the differential equation is 

rC
r

C
u r

r
r 2

1   (14) 

which may be verified by substitution. 

In the case of plane strain, the material law becomes 
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The strains may be expressed in terms of the radial displacement by using Eq. (12), and 

inserted into the material law given by Eq. (15). By inserting the resulting stresses into the 

equilibrium equation, Eq. (10), the same differential equation, Eq. (13), as was found for 

plane stress is retrieved for the plane strain condition. Hence, the general solution given in Eq. 

(14) applies for both plane stress and plane strain. The two displacement field coefficients Cr1 
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and Cr2 may now be obtained by inserting the expression for ur in Eq. (14) into Eqs. (11) and 

(15), and applying the boundary conditions at the inner and outer cylinder surfaces, i.e., Eqs. 

(1) and (2). 

From Eqs. (11), (14) and (15) it is also easily demonstrated that the sum of radial 

stress σrr and hoop stress σθθ is constant, i.e., independent of r. Since the Poisson expansion in 

the axial direction thus will be uniform over the cylinder cross-section, a two-dimensional 

treatment of the problem is justified. The displacement field given by Eq. (14) is commonly 

termed the Lamé displacement field, since the solution outlined above for radial and hoop 

stresses in a pressurized cylinder was first derived by Lamé and Clapeyron [1831]. 

In a multi-layer cylinder, each layer may have different material properties (e.g., 

Young’s modulus E, Poisson’s ratio ν and coefficient of thermal expansion α). Consequently, 

the response to thermal loading and pressure loading will be different in each layer, and 

contact pressures qi will therefore be created between the layers (in the case that an inner 

cylinder expands less than the adjacent outer cylinder, qi will be a tensile contact stress rather 

than a contact pressure, assuming that the layers are tightly bonded in the radial direction). 

For plane stress and plane strain conditions, each single layer may be modeled as a cylinder 

subjected to internal pressure qi-1 and external pressure qi. This is just the same situation as 

described for the pressurized cylinder shown in Figure 5, and although the pressures qi are 

undetermined at this stage, it is evident that the displacement field in each layer must have the 

same form as given by Eqs. (8) and (14), i.e., 
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The final axial boundary condition that needs to be examined is the case of a spring-

mounted cylinder subjected to an axial load. It was described in the preceding section that the 

cylinder layers are assumed tightly fitted in the axial direction, i.e., no sliding occurs (which is 

opposite to the plane stress case, where the layers are assumed to slide freely relative to each 

other). Hence, the axial strain will be uniform over the entire multi-layer cross-section: 

C
z

u iz

izz 





,

,  (17) 

where C is constant for all layers and thus independent of i. It should be noted that plane 

strain, which was discussed above, is the special case in which C = 0. Solving the differential 

equation above, Eq. (17), with respect to the spring-mounted boundary condition yields the 

displacement field of a bar: 
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L

z
Cuu zzjz ,  (18) 

In Eq. (18), uz is the displacement field in z-direction, L is the length of the cylinder segment 

and Cz is an undetermined coefficient. 

Either plane stress or plane strain was assumed when deriving the Lamé displacement 

field, Eq. (14), for the radial displacement. In the case of generalized plane strain, each layer 

may be modeled as a cylinder that is subjected to internal pressure qi-1, external pressure qi 

and an axial load. The axial loading is uniform over each individual layer since heat and direct 

axial loading are applied uniformly. However, it has been shown by Vedeld and Sollund 

[2013] that the Lamé displacement field is still an exact representation of the radial 

displacement for a cylinder subjected to axisymmetric pressure loading and a uniform axial 

load, even when a fully three-dimensional material law applies. Consequently, the full 

displacement field for the i-th layer in the generalized plane strain case is given by Eqs. (16) 

and (18). 
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4 STRESS AND STRAIN RELATIONS 

The displacement fields for relevant axial boundary conditions were determined in the 

previous section. The full displacement field applicable for all the boundary conditions may 

be written as 
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where Cz,i = 0 for plane strain and Cz,i = Cz is the same for all layers for the spring-mounted 

cylinder. For the plane stress case Cz,i will generally not be solved for, since the axial stress 

state (σzz,i = 0) is already known in each layer. 

The strain field in cylindrical coordinates is given by [Cook et al., 2002] 
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In Eq. (20), εij,i are normal strains and γij,i are shear strains in the i-th layer of the multi-layer 

cylinder. It is noted from Eq. (20) that all the shear strain terms vanish. Consequently, the 

strain tensor may be represented by 
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The temperature-induced stresses can either be accounted for as initial stresses or 

indirectly as initial strains. In the present study, it is chosen to apply the thermal loadings as 

initial strains. Consequently, the associated stresses become: 
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  iiiii ,0,0 σεεEσ    (22) 

where σ0,i = 0. The initial strains in the i-th cylinder layer are found by simple temperature 

expansion: 

iiizziirr T  
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In Eq. (23), αi is the temperature expansion coefficient and ΔTi the temperature change of the 

i-th layer, and the superscripts “0” are included in order to indicate that they are initial strains. 

The generalized Young’s modulus in Eq. (22) is given by 
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In the absence of shear strains, the full three-dimensional stress state in the i-th layer of the 

multi-layer cylinder is thus given by 
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where σrr,i is the radial stress, σθθ,i is the hoop stress, and σzz,i is the axial stress of the i-th layer 

in the cylinder. After inserting for the displacement field, Eq. (19), into Eq. (25) the stress 

field becomes 
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As noted in conjunction with Eq. (19), this formulation covers all the relevant boundary 

conditions, with only the coefficient Cz,i treated differently in each case. 

Interestingly, one may observe from Eq. (26) that 
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In other words, the sum of the radial and hoop stresses is generally independent of the radial 

coordinate r, as was noted previously for a single thick-walled cylinder, subjected only to 
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internal and external pressure. Similarly, it is observed that the sum of the radial and hoop 

strains is constant: 
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It is also easily shown from Eq. (25), by setting σzz,i = 0, solving for (∂uz,i/∂z – αiΔTi) in 

terms of the two remaining strain components and inserting the solution into the equations for 

radial stress σrr,i and hoop stress σθθ,i, that the reduced stress state formula 
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applies for the plane stress case. Eq. (29) may be recognized as identical to Eq. (15). After 

inserting for the radial displacement field, one obtains 
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From Eq. (30) it is clear that the stress state in the i-th layer of the cylinder, as expected, is 

independent of the axial displacement coefficient Cz,i. 
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5 ANALYTICAL SOLUTIONS BASED ON MATRIX INVERSION 

5.1 Plane Stress 

Analytical solutions for n-layer cylinders under pressure, temperature and axial 

loading are derived in the following. The solutions are not closed analytical solutions, but 

instead require matrix inversion. The plane stress condition is investigated first. Plane stress is 

relevant when the layers are axially free and there is negligible friction between the layers. 

Since each layer in this case is free to expand axially, the displacement field for each cylinder 

layer has three undetermined coefficients, as shown in Eq. (19). However, the axial 

coefficients Cz,j are not required for a complete description of the stress state, as noted in the 

preceding section. In order to determine the radial and hoop stresses, we must therefore 

establish 2n equations. 

The radial stresses at the innermost and outermost surfaces must be equal, with 

opposite sign, to the applied internal and external pressures, respectively: 
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In Eq. (31), r0 is the innermost radius of the multi-layer cross-section and rn is the outer radius 

of the multi-layer cross-section, as shown in Figure 2. Similarly, q0 is the known internal 

pressure (the pressure acting on the surface with radius r0) and qn the known external pressure 

(the pressure acting on the surface with radius rn). From Eq. (30), the two relations in Eq. (31) 

may be expressed as displacement field coefficient equations by 
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The displacement field in radial direction must be continuous over the contact surfaces 

between two adjacent layers. This gives rise to n-1 equations: 
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By inserting for Eq. (19) into Eq. (33), the general field coefficient equation can be 

formulated as 
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The radial stresses must equal the contact pressures at the layer interfaces, which in 

turn results in a continuous radial stress field across inter-layer boundaries. This gives rise to 

another n - 1 equations: 

     1,...,2,1,1,,   nirr iirriirr    (35) 

From Eq. (30) it follows that Eq. (35) may be rewritten as the following field coefficient 

equation: 
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Eqs. (32), (34) and (36) form a system of 2n equations, which are sufficient to solve 

for the 2n displacement field coefficients. The system of equations may be written on matrix 

form as 

,RKD    (37) 

where a stiffness matrix K has been defined by 
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(38) 

while the displacement coefficient D is given by 

  ,,2,13,12,22,11,21,1 nrnrrrrrr

T CCCCCCC D   (39) 

and the load vector R is given by 
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Generally, the matrix equation, Eq. (37), is a pentadiagonal system and for k = 2i, the 

k-th row in the matrix is given by Eq. (34). Similarly, for k = 2i+1, the k-th row in the matrix 

is given by Eq. (36). 

 

5.2 Plane Strain 

A multi-layer cylinder that is fully restrained axially will be in a condition of plane 

strain. As in the case of plane stress, all the unknown displacement field coefficients may be 

determined by solving Eqs. (31), (33) and (35), which together comprise a system of 2n 

equations. However, since the plane stress material law, Eq. (30), is no longer applicable, the 

system of equations will be different. The stress state in layer i is now given by Eq. (26), with 

Cz,i = 0. 

The boundary conditions on the inner and outer cylinder surfaces, Eq. (31), give the 

following relations: 
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Since the form of the radial displacement field ur is the same as in the case of plane 

stress, the equation for continuous radial displacement across the layer boundaries, Eq. (34), is 

unchanged. The equation for continuous radial stresses across layer boundaries, Eq. (36), does 

change, and may now be written as 
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As mentioned above, a system of 2n equations can be established from Eqs. (34), (41) and 

(42). The system of equations is written on matrix form below: 

,RKD    (43) 

where a stiffness matrix K has been defined by 
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(44) 

while the displacement coefficient D is given by 

  ,,2,13,12,22,11,21,1 nrnrrrrrr

T CCCCCCC D   (45) 

and the load vector R is given by 
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As in the plane stress case, the matrix equation, Eq. (43), is a pentadiagonal system 

and for k = 2i, the k-th row in the matrix is given by Eq. (34). Similarly, for k = 2i+1, the k-th 

row in the matrix is given by Eq. (42). 

 

5.3 Generalized Plane Strain with Axial Loading and Axial Spring 

The case of generalized plane strain, where the multi-layer cylinder is spring-mounted 

and subjected to axial loading, is examined last. The layers are assumed tightly bonded (i.e., 

no relative sliding), and Cz,i = Cz is therefore constant for all the layers. Since Cz in this case 

must be solved for, the number of required equations will be 2n + 1. Eqs. (31), (33) and (35) 

still apply, and the material law in Eq. (26) should be used for the i-th layer. Eq. (31) may 

then be written as 
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Eq. (34) is again valid for ensuring a continuous displacement function in radial 

direction. Continuous radial stresses across layer boundaries may be ensured by requiring that 
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Eqs. (34), (47) and (48) together give a system of 2n equations. Thus, one more 

equation is needed, which may be obtained from equilibrium in axial direction at the spring-

mounted end: 
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   (49) 

In Eq. (49), As,i is the cross-sectional area of a single layer defined by As,i = πti(2ri+1 – ti), 

where ti = ri+1 – ri. The resulting field coefficient equation is 
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(51) 

The total system of (2n + 1) equations may be written on matrix form as 

,RKD    (52) 

where a stiffness matrix K in this case has been defined by 
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 and where k0, kn, ki
1
 and ki

2
 are taken from Eq. (44). The following expression for the 

displacement coefficient D applies: 

  ,,1,13,12,22,11,21,1 znrnrrrrrr

T CCCCCCCC D   (54) 

while the load vector R may be expressed by 
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6 ANALYTICAL SOLUTION BASED ON ITERATION 

6.1 Plane Stress and Plane Strain 

In order to derive an efficient iterative solution for the displacement field coefficients 

of a multi-layer cylinder, it is convenient to introduce some new notation. Thus, we start by 

defining the stresses, which in the new notation will be given by 
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where for plane stress 
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and for plane strain 
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The expressions for Ai and φi are the same for the two conditions, while Ci and ψi are 

different. It is easily demonstrated that Eqs. (56) and (57) are equivalent to the plane stress 

material law given previously by Eq. (30). Similarly, it is straight-forward to check that Eqs. 

(56) and (58) correspond to Eq. (26) with Cz,i = 0. 

We know from Section 3 that the radial displacement field in case of plane stress and 

plane strain will be given by the Lamé displacement field, which may be rewritten as 
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By inserting the expressions for Ai, Ci, λi and βi into Eq. (59), it is observed that Eq. (59) is 

equivalent to the expression for radial displacement given in Eq. (19). Moreover, it is 
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observed that the only unknowns in Eqs. (56) - (60) above are Cr1,i and Cr2,i, which are 

required for calculation of the newly introduced coefficients Ai and Ci. Hence, if we can 

calculate Ai and Ci, the stress state and displacement field in the multi-layer cylinder will be 

completely determined. 

Like in Section 5, we require that the radial stresses and radial displacements must be 

continuous through the layer boundaries, in other words that 
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By inserting the expressions for radial stresses and radial displacements given above into Eq. 

(61), the equation may be written as 
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Solving the set of two equations for Ai+1 and Ci+1 gives 
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  (63) 

Since the contact pressure must be balanced by the radial stresses in each layer at the 

layer interfaces, the following two relations may be deduced for the contact pressure qi: 
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As described in Section  2.3, qi is defined as the contact pressure between layers i and i + 1, 

and the internal pressure pint and external pressure pext are defined as q0 and qn, respectively. 

The expressions for Ai+1 and Ci+1 from Eq. (63) may subsequently be inserted into Eq. 

(64), which gives two equations in the variables Ai and Ci. Solving the system of two 

equations results in the following expressions for Ai and Ci: 
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where we have introduced 
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(66) 

Again, it is convenient to utilize that the compressive radial stress on the interface 

between layers must equal the contact pressure. One may observe that 
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which is equivalent to the second relation in Eq. (64), but restated for index i. By inserting the 

expressions for Ai and Ci from Eq. (65) into Eq. (67), we obtain the following expression for 

qi+1: 
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The expressions for Ai and Ci may be greatly simplified by inserting the above 

expression for qi+1 into Eq. (65), which gives 
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Eq. (68) is a second-order recurrence relation in qi with boundary conditions at the 

start and end of the sequence, where we know the internal and external pressures q0 and qn on 

the free surfaces. The recurrence relation is non-linear since the coefficients are dependent on 

i. Since the boundary conditions are found at the start and end of the recurrence relation, it is 

not at the moment formulated as an initial value problem. The solution strategy, which is 

based on the solution proposed by Xiang et al. [2006], is, however, to express qi in terms of 

the initial values q0 and q1. In order to obtain this, we define the recurrence relations ai and bi 

by 
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with initial values given by 

0,1,1,0 1010  bbaa . (71) 
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The contact pressure qi may now be expressed as 

01 qbqaq iii  . (72) 

The validity of Eq. (72) will in the following be proven by induction. Note, however, that by 

setting φi to zero for all i, the solution is equal to the solution of Xiang et al. [2006], where 

thermal stresses were not included. Note also that the solution presented by Xiang et al. 

[2006] was not proven in their publication, so the proof presented in this study serves as a 

proof for both the solution presented herein, and the solution of Xiang et al. [2006]. 

Since the recurrence relation in Eq. (68) is second order, the expression must first be 

shown to be correct for the two initial values. However, it follows directly from the initial 

values of ai and bi, Eq. (71), that 
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Hence, Eq. (72) is valid for i = 0 and i = 1. If we now assume that Eq. (72) is true for terms (i 

– 1) and i, it is sufficient to demonstrate that this leads to the validity of term (i + 1). By 

inserting Eq. (70) into Eq. (72) one obtains 
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Sorting the terms gives 
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Since we have assumed that Eq. (72) is true for term (i − 1) and i, Eq. (75) can be rewritten as 
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However, the above expression for qi+1 is obviously true, since it is identical to Eq. (68). 

Consequently, the proposed solution in Eq. (72) is proven by induction. 

Since qn is equal to the known external pressure pe, Eq. (72) can be solved for qn. 

.01 qbqaq nnn   (77) 
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By solving Eq. (77) for q1, the final unknown in Eq. (72) can be eliminated. After inserting 

the resulting expression for q1 into Eq. (72), the following expression for the contact pressure 

qi is obtained: 
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To compute the sequence of individual contact pressures {qi}, it is now sufficient to 

first determine {ai} and {bi} recursively from Eq. (70) and insert the relevant values into Eq. 

(78). When the contact pressures are known, the coefficients Ai and Ci can be determined 

from Eq. (69). As noted above, the complete stress state and displacement field of the multi-

layer cylinder can then be calculated using Eqs. (56) and (59). 

 

6.2 Generalized Plane Strain with Axial Loading and Axial Spring 

For the spring-mounted (generalized plane strain) boundary condition, the stresses in 

the i-th cylinder layer are given in new notation by 
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where Ai, Ci and φi are the same as defined by Eq. (58), while 
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It is straight-forward to show that Eq. (79) is equivalent to Eq. (26) with Cz,i = Cz. The radial 

displacements ur are given by Eqs. (59) and (60), where the value of βi given for plane strain 

applies also for the present case. As seen from Eq. (19), the longitudinal displacement may be 

expressed as 

.z
L

z
Cu zzzz   (81) 

With regard to a full description of the stress state and displacement field of the multi-layer 

cylinder, it is sufficient to determine Ai, Ci and εzz since all other quantities are known. 

The only difference in the expressions for radial stresses and displacements of the 

spring-mounted cylinder relative to the plane strain case described in Section  6.1 is that the 

term φi in the expression for radial stress in Eq. (56) has been replaced by a term μi, as seen 
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from Eq. (79). From the similarity of the formulae, combined with the general validity of the 

assumptions that radial stresses and radial displacements must be continuous across layer 

boundaries, it is obvious that Eqs. (61) - (69) still hold as long as every occurrence of the 

quantity φi is replaced by μi. The same is true for the expressions for the two sequences {ai} 

and {bi}, given by Eqs. (70) and (71). However, these latter relations, which were introduced 

to express qi in terms of the initial values q0 and q1, will be discussed in the following and 

therefore included below for ease-of-reference. The recurrence relations are given by 

   
  

   
  

   
  

,
1

11

1

,
1

11

111

11

1
1

11

1
1






























iiii

iiiiii

iii

iiiiiii
i

iii

iiiiiii
i

p

bTSbTS
b

aTSaTS
a













  (82) 

with initial values 

0,1,1,0 1010  bbaa . (83) 

The contact pressure qi is then expressed as 
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The validity of the recurrence relations for {ai} and {bi} in case of plane strain, Eq. (72), was 

proven by induction in Section 7.1. The proof obviously holds also for Eq. (84) above, since 

all the relevant expressions become identical by substituting μi with φi. However, calculation 

of {ai} and {bi} for plane stress and plain strain conditions was straight-forward, since all the 

relevant quantities were known. This is not the case for the spring-mounted cylinder, since 

each individual term bi depends on the unknown variable εzz, as seen from the definition of μi, 

Eq. (80). In order to solve for εzz, {bi} is separated into two sub-sequences by 

.zziii dcb   (85) 

Recurrence relations for the sequences {ci} and {di} can easily be established by inspection of 

Eqs. (80) and (82). By first noting that 
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the recurrence relations are found to be 
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with initial values 
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.0,0,1 1010  ddcc  (88) 

It is observed that {ci} is exactly equal to the sequence {bi} from Eq. (70). 

By inserting Eq. (85) into Eq. (84) we obtain 
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Since the quantities λi, βi, φi and γi are defined equivalently for the spring-mounted cylinder 

and for the cylinder with plane strain, the derived quantities Si and Ti will also be the same in 

the two cases. Consequently, the sequences {ai} and {ci} defined by Eqs. (82) and (87) are 

identical to the sequences {ai} and {bi} defined by Eq. (70) for the case of plane strain. 

Moreover, this implies that the first two terms in Eq. (89) are equal to the expression for the 

contact pressure in the case of plane strain, given by Eq. (78). The plane strain contact 

pressure at interface i, termed qi in Eq. (78), will in the following be termed qi
0
 and the 

contact pressure at interface i for the spring-mounted cylinder may then be expressed as 
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Now that the contact pressure qi is expressed in terms of εzz, we may express also Ai 

and Ci in terms of εzz by using Eq. (69) with φi replaced by μi. Hence, the only unknown in the 

expressions for the stress state of the cylinder is εzz, and εzz may be determined from an 

equilibrium equation. We have not yet considered equilibrium in the axial direction. The 

applied axial force must be in equilibrium at the spring-supported end, which implies that 
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From Eq. (79) the axial stresses are given by 
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The resulting expression in Eq. (93) above may subsequently be inserted into the equilibrium 

equation, Eq. (92), to obtain 
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From Eq. (94) we may solve for εzz, which gives 

     

    
















n

i

iiiiiii

n

i

iiiiiiii

zz

vErKL

qqvvrN

1

1

2

1

00

1

2

21

2121





   (95) 

When the expression for εzz is determined, the contact pressures can be found from Eq. 

(90), after which the remaining unknown coefficients Ai and Ci may be determined from Eq. 

(69), but keeping in mind that φi must be replaced by μi. Finally, the radial displacement field 

can be obtained from Eq. (59) and the stresses from Eq. (79). 
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7 VALIDATION OF THE MULTI-LAYER FORMULAE 

7.1 Verification Case 

One verification case based on a typical 6-layer offshore pipeline, including a layer of 

corrosion resistant alloy (CRA) and a thick thermal insulation coating, will be presented. 

Material characteristics and layer thicknesses have been taken according to an example 

published by Bouchonneau et al. [2010]. The geometry and material characteristics are 

presented below in Table 1 along with the applied temperature in each individual layer. The 

applied internal pressure pint is 220 bar and the external pressure pext is 15 bar. 

 

Table 1 – Geometry, material characteristics and applied temperatures for the verification case. 

Description 
Layer number 

i 

ri-1 

[mm] 

ri 

[mm] 

Ei 

[GPa] 

vi 

[-] 

αi 

[°C
-1

] 

ΔTi 

[°C] 

CRA liner 1 172.1 175.1 191 0.29 1.7∙10
-5

 131.23 

CMn steel 2 175.1 194.2 207 0.30 1.17∙10
-5

 129.02 

Epoxy 3 194.2 194.5 3.0 0.40 5.4∙10
-5

 127.08 

Adhesive PP 4 194.5 197.5 1.3 0.40 1.6∙10
-4

 126.75 

Syntactic PP 5 197.5 252.5 1.1 0.32 5.0∙10
-5

 120.95 

Adhesive PP 6 252.5 255.5 1.3 0.40 1.6∙10
-4

 29.84 

 

7.2 Finite Element Analyses 

7.2.1 Element type and Boundary conditions 

Finite element analyses (FEA) have been conducted using the commercially available 

software program Abaqus [2012]. The 8-node brick element C3D8R was used. This is a bi-

linear solid element with reduced integration and hourglass control. 

The verification case will be analyzed for three separate boundary conditions. With 

reference to Figure 3 (Section 2.3), the following cases will be studied: 

1) Axially fixed (Figure 3 a). 

2) Axially free with K = 0 and N = 0 (Figure 3 b). 

3) Spring-mounted with K = 10
12

 N/m and N = -1.0 MN (Figure 3 b). 

The plane stress condition, where the layers are assumed to slide with no friction, is 

assumed implicitly verified by the calculations for the plane strain (axially fixed) condition 
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since the same equations are solved as for plane strain, only introducing a small variation in 

the stress calculations according to Eqs. (56)-(58). 

The Abaqus models were established with kinematic restraints as illustrated on the two 

cylinder segments in Figure 3 a) and Figure 3 b). In Figure 3 b), the dashed lines indicate a 

kinematic coupling between a reference point (RP) and the cylinder end surface. In the FE 

model, the reference point was taken as a master node, and the cylinder end surface was taken 

as a slave surface. For the case of non-zero axial spring stiffness K and applied axial force N, 

both the spring force and the axial force were applied at the reference point (RP), as indicated 

in Figure 3 b). 

It was found necessary to model a full cylinder (i.e., the axisymmetry could not be 

utilized by modeling only a small slice of the cylinder) due to local problems surrounding 

boundary conditions where multiple master-slave relations, which Abaqus is unable to handle 

properly, have to be declared. A detailed discussion of why it is reasonable and accurate to 

model the full cylinder is made by Vedeld and Sollund [2013]. Furthermore, in order to model 

contact between two adjacent cylinder layers, one of the surfaces would have to be a slave and 

the other a master surface at the interface between the layers. Thus, at the end cross-section (z 

= L) the interface between the layers would contain two sets of master-slave relations, which 

is not possible to solve for in Abaqus. Contact modeling is therefore avoided by modeling the 

six-layer cylinder as a single cylinder with varying material properties and temperatures 

through the thickness. In other words, the contact surfaces were modeled to be completely 

coupled, which is reasonable since no axial sliding between the layers occurs in accordance 

with assumption  (viii) (Section 2.1). 

 

7.2.2 Mesh Refinement and Convergence 

A convergence study was performed of the finite element solution for increasing mesh 

refinement. Convergence to 5 significant digits was assumed complete. Full convergence was 

achieved globally, but the local radial stresses at the interface between cylinder layers did not 

converge. Only 1 element in the axial direction is necessary for convergence of axial stresses, 

but 6 elements were chosen in the axial direction to ensure a good aspect ratio. In the hoop 

direction, convergence was achieved with 180 elements. In the radial direction, overall 

convergence was achieved with approximately 50 elements over the thickness for both 

configurations 1 and 2. However, at the interface between layers and at ri and ro,b, , full 

convergence was not achieved even with 210 elements over the thickness. A small 
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discontinuity of the radial stresses occurs at the interfaces between layers, and a slight 

difference between applied pressure and radial stress at the inner radius ri and outer radius ro,b 

was observed for all cases considered, similar to the behavior documented by Vedeld and 

Sollund [2013] for two-layer cylinders. An example of such a discontinuity is illustrated in 

Figure 7 (Section  7.3). 

The full-cylinder analyses included a total of 226800 solid elements, corresponding to 

approximately 850000 degrees of freedom. The discontinuity at the interface between layers 

declines with increasing number of elements, but further refinement was considered 

unnecessary since the discontinuity is obviously unphysical (the contact pressure cannot be 

different on the two surfaces). Consequently, 226800 elements were used for all boundary 

conditions, and (minor) discontinuities in radial stresses between layers were disregarded as 

unphysical. Since the radial stresses at the interface between layers are discontinuous in the 

finite element solutions, almost regardless of element mesh refinement, it is inefficient to 

apply FEA for calculation of contact pressures. 

 

7.3 Comparison between FE Results and Results of the Iterative Analytical Method 

As described in Section  7.2, three sets of axial boundary conditions were considered 

for the verification case. The results for the axially free cylinder (with K = 0 and N = 0) are 

presented here. The remaining results, obtained for the axially fixed and the spring-mounted 

boundary conditions, are shown in Appendix A. 

Radial stresses calculated by means of FEA and analytically with the iterative method, 

are compared in Figure 6. As observed from the figure, the analytically derived and FE-

derived radial stresses match perfectly. 

The discontinuities in radial stresses predicted by FE analyses, as discussed in the 

preceding section, are illustrated in Figure 7, where a close-up of the radial stress curve at the 

precise intersection between the CRA liner and the CMn steel (layer 1 and 2 in Table 1) is 

presented. The relative error in the FE solution at the interface (r = 0.1751 m) is 2.1 %. 
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Figure 6 – Radial stresses as a function of r for the iterative analytical solution (“Analytic”) and the finite 

element solution (“FE”). 

 

 

Figure 7 – Close-up view of discontinuity in radial stresses at the interface (r = 0.1751 m) between the 

CRA liner and CMn backing steel. 
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Hoop stresses are compared in Figure 8. Again it is observed that the iterative 

analytical solution and the finite element solution match very closely. The solutions are seen 

to be indistinguishable. No unexpected discontinuities or problems at the interfaces between 

layers were experienced in the solutions for the hoop stresses. 

 

 

Figure 8 – Hoop stresses as a function of r for the iterative analytical solution (“Analytical”) and the finite 

element solution (“FE”). 

 

The axial stresses have also been compared. According to the generalized plane strain 

condition, the axial strains in all layers are constant over the length of the cylinder and as a 

function of the radial coordinate. Also, the thermal loading is uniform in each individual 

layer, and the sum of radial and hoop strains is constant (Section  4). Thus, the axial stresses 

are expected to be constant in each individual layer, but different between layers. The axial 

stresses in the cylinder, calculated for the verification case as a function of the radial 

coordinate r, are presented in Figure 9. As for the radial and hoop stresses, it is observed that 

the iterative analytical solution and the finite element solution are indistinguishable. 
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Figure 9 – Axial stresses as a function of r for the iterative analytical solution (“Analytical”) and the finite 

element solution (“FE”). 

 

The results presented in Figure 6, Figure 8 and Figure 9 show that the iterative 

analytical solution gives the same results as highly refined and detailed finite element 

analyses for the axially free boundary condition. The results for the axially fixed and spring-

mounted boundary conditions show the same behavior, and the corresponding curves may be 

found in Appendix A. Based on the comparisons to the finite element analyses, the exact 

iterative analytical solution presented herein is considered verified. 
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resulting stress distributions may be calculated according to Lamé’s solutions, i.e., according 

to Eq. (26). Thus, in order to assess whether the two analytical solutions are equivalent, it is 
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sufficient to compare the contact pressures and axial stresses. The verification case described 

in Table 1 was used for the comparison, and all three boundary conditions (Section  7.2) were 

examined. The resulting contact pressures and axial forces are shown below in Table 2. For 

the iterative analytical method, contact pressures at the inner radius of each layer are indicated 

by the symbol pc
IM

 and the axial stresses are indicated by the symbol σzz
IM

. For the matrix-

based analytical solution, described in Section 5, the corresponding contact pressures and 

axial stresses are denoted pc
MS

 and σzz
MS

. 

 

Table 2 – Contact pressures and axial stresses for the two analytical solutions. 

Layer number 

i 

IM

cp  

[MPa] 

MS

cp  

[MPa] 

IM

zz  

[MPa] 

MS

zz  

[MPa] 

Axially free boundary 

1 22.0000 22.0000 -146.3826 -146.3826 

2 21.6266 21.6266 54.5872 54.5872 

3 -0.182677 -0.182677 -25.4869 -25.4869 

4 -0.145918 -0.145918 -40.0604 -40.0604 

5 0.448047 0.448047 -6.97980 -6.97980 

6 1.472283 1.472283 -6.38640 -6.38640 

Axially fixed boundary 

1 22.0000 22.0000 -431.6485 -431.6485 

2 21.5777 21.5777 -255.5618 -255.5618 

3 -0.197042 -0.197042 -30.18683 -30.18683 

4 -0.159445 -0.159445 -42.09194 -42.09194 

5 0.438104 0.438164 -8.63341 -8.63341 

6 1.46978 1.46978 -8.41738 -8.41738 

Spring-mounted boundary 

1 22.0000 22.0000 -366.4441 -366.4441 

2 21.5889 21.5889 -184.6698 -184.6698 

3 -0.193759 -0.193759 -29.1125 -29.1125 

4 -0.156353 -0.156353 -41.6276 -41.6276 

5 0.440377 0.440377 -8.25544 -8.25544 

6 1.47035 1.47035 -7.95315 -7.95315 

 

From Table 2 it is observed that the correspondence between the two sets of analytical 

results is perfect. In fact, the solutions were equal with far more digits. However, six 

significant digits were conveniently considered sufficient to demonstrate the agreement 

between the results. 
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8 SUMMARY AND CONCLUSIONS 

 The solution presented by Xiang et al. [2006] for a pressurized layered cylinder in 

plane stress or plane strain has been formally proven by induction. 

 The solution presented by Xiang et al. [2006] has been expanded to include 

temperature expansion in the layers, and new sets of boundary conditions 

corresponding to generalized plane strain conditions have been included in the 

solution. 

  The new iterative solutions, including new boundary conditions and temperature 

expansion, have been proven mathematically. 

 A physically transparent analytical solution based on matrix inversion has also 

been developed. 

 The iterative methodology has been verified based on both detailed FE analyses 

and the matrix-based analytical approach. 

 The iterative method is computationally efficient and easily implemented. It does 

not involve matrix inversion or other numerically demanding solution techniques. 

 The matrix-based analytical solution is more physically transparent, but also more 

demanding in terms of computational efficiency. 
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APPENDIX A – Comparison between FE Results and Results of the Iterative Analytical 

Method for the Axially Fixed and the Spring-Mounted Boundary Conditions 

The iterative analytical formulae for stress distributions in multi-layer cylinders 

derived in the present study were verified by comparison to results of detailed FE analyses, as 

described in Sections  7.2 and  7.3. The multi-layer cylinder configuration described by Table 1 

(Section  7.1) was applied for the validation study. The following three boundary conditions 

were studied: 

1. Axially fixed. 

2. Axially free with K = 0 and N = 0. 

3. Spring-mounted with K = 10
12

 N/m and N = -1.0 MN. 

Only results for the axially free boundary condition were shown in Section  7.3. For 

completeness, all the remaining radial, hoop and axial stress comparisons are displayed in this 

appendix for the axially restrained and spring mounted boundary conditions. 

 

A.1 Axially Fixed Boundary Condition 

 

 

Figure A. 1 - Radial stresses as a function of r for the iterative analytical solution (“Analytical”) and the 

finite element solution (“FE”) with the axially fixed boundary condition. 
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Figure A. 2 - Hoop stresses as a function of r for the iterative analytical solution (“Analytical”) and the 

finite element solution (“FE”) with the axially fixed boundary condition. 

 

 

Figure A. 3 - Axial stresses as a function of r for the iterative analytical solution (“Analytical”) and the 

finite element solution (“FE”) with the axially fixed boundary condition. 
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A.2 Spring-Mounted Boundary Conditon 

 

 
Figure A. 4 - Radial stresses as a function of r for the iterative analytical solution (“Analytical”) and the 

finite element solution (“FE”) with the spring-mounted boundary condition (K = 10
12

 N/m, N = -1.0 MN). 

 

 
Figure A. 5 - Hoop stresses as a function of r for the iterative analytical solution (“Analytical”) and the 

finite element solution (“FE”) with the spring-mounted boundary condition (K = 10
12

 N/m, N = -1.0 MN). 
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Figure A. 6 - Axial stresses as a function of r for the iterative analytical solution (“Analytical”) and the 

finite element solution (“FE”) with the spring-mounted boundary condition (K = 10
12

 N/m, N = -1.0 MN). 
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