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Abstract 
 

Intense salmon farming regimes in Norway have resulted in hundreds of thousands of 

salmon escaping each year. These domesticated salmon have been selectively bred for 

generations and therefore have the potential to genetically infiltrate wild population’s 

causing gene flow, out breeding depression and ultimately a decline in stocks. Triploidization 

has become a popular method for inducing sterility into large batches of salmon. This study 

investigated the effects of triploidization on Atlantic salmon and Atlantic salmon x Arctic 

char hybrid. Part one of the experiment investigated the effect of incubation temperature on 

triploid salmon with regards to vertebra number and deformity prevalence, while part two 

investigated the effect of triploidization on Atlantic salmon x Arctic char hybrid with regards 

to meristic characteristics. The goal of the study is to help identify rearing conditions for 

triploid Atlantic salmon that would reduce the presence of deformities and determine the 

effect of triploidization on salmonid hybrid morphology. The results of this study suggest 

that incubating triploid embryos at lower temperatures will reduce the prevalence of 

vertebrae deformities. I also found that hybrid morphology of triploid fish is expressed in a 

non-linear fashion with regards to genetic contribution. This study assists in the 

understanding of triploidization in hopes that one day the procedure will be a standard in 

European salmon farming regimes.  
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Introduction 
 

The salmon aquaculture industry in Norway is one of the largest producers of Atlantic 

salmon (Salmo salar) in the world. It is the 5th largest export for Norway behind oil and heavy 

metals and accumulates to nearly 15.3 billion Norwegian kroner each year (FAO, 2010). In 

2006, nearly 450 million Atlantic salmon were produced and of that 700,000 escaped into 

the wild (FAO, 2010). Not only are these escapees a massive loss in production but poses a 

serious threat to wild populations of fish.  

The threat of escaping farmed salmon is one of the largest environmental challenges for the 

salmon aquaculture industry.  Growing concern for environmental welfare and reduced wild 

salmon populations has put pressure on the aquaculture industry to eradicate this problem. 

Domesticated fish have been selectively bred for generations which have caused them to 

acquire traits that are advantageous to the industry but not suited for natural environments 

(McGinnity et al., 1997). Genetically similar populations of animals are advantageous when 

creating a product for a consumer but from a biological viewpoint renders the population 

susceptible to disease, pathogens or environmental change (McGinnity et al., 2003). Thus, it 

is important for wild populations of fish to maintain a level of genetic variability in order to 

have the ability to respond to changing environmental conditions (Jacq et al., 2011).  

When domesticated fish escape and breed with wild populations, genetic dilution occurs 

which puts wild populations at risk of gene flow. Gene flow is the micro evolution of a 

population due to the transfer of alleles or genes between populations (Bohonak 1999). 

Domesticated strains of salmon used in Norway originated from wild stocks and therefore 

contain the same gene pool as wild populations (Jacq et al., 2011). However, over 

generations of selective breeding the allele frequency of desired traits has increased and 

therefore when escapees breed they have the potential to change the genetic structure of 

wild populations. This may cause wild populations to experience outbreeding depression or 

reduced fitness due to the loss of adaptation (McGinnity et al., 2003).  Attempts at solving 

this problem via closed net systems or onshore farming have either failed or been too 

expensive for feasible use. Therefore major funding has been directed towards research 

involving triploid fish in hopes of implementation into European farming regimes.  
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At the moment, there are only two acceptable ways of sterilizing fish, triploidization and 

hybridization (Tiwary et al., 2005; Bartley et al., 2001). There are other methods that involve 

chemicals or gene manipulation but the outcome of these would render the fish 

unacceptable for a consumer market. The method of triploidization has become a refined 

and reliable tool to ensure sterility in large batches of fish. The method was pioneered by 

Benfey et al. (1984) and involves the manipulation of the cell shortly after fertilization to 

retain the second polar body, a procedure which renders the embryo triploid (Benfey 1984). 

The original method involved heat shocks but over time the procedure has evolved and 

today’s method relies on hydrostatic pressure to be applied at specific time intervals 

following fertilization (Maxime 2008; Fjelldal and Hansen 2010). The hydrostatic pressure 

interferes with the spindle fibers, which allow for the egg to retain the second polar body 

during meiotic division (Tiwary et al., 2004) the result is an egg containing two sets of 

maternal chromosomes and one paternal.  

Once development begins each cell in the triploid fish will have a third set of chromosomes. 

The acquisition of a third set of chromosomes causes the nucleus of each cell to be larger in 

triploids than that of diploids. Interestingly, the overall size of the fish is unaffected and 

triploid fish are remarkably similar in size to that of their diploid conspecifics (Maxime 2008; 

Benfey 1999). This is due to the fact that triploid fish have an overall lower cell count when 

compared to diploids (Tiwary et al., 2005; Benfey 1999). Larger cell sizes can be seen visually 

when looking at the erythrocytes of triploid fish and is consequently used as a ploidy 

recognition tool (Benfey et al., 1984).  

Morphological features of diploids and triploids appear to be remarkably similar (Maxime 

2008; Tiwary et al., 2005; Benfey 1999). In regards to Atlantic salmon the major 

morphological difference reported between diploids and triploids is the frequent occurrence 

of skeletal deformities (Sutterlin et al., 1987; McGeachy et al., 1996; Wargelius et al., 2005; 

Witten et al., 2009; Fjelldal and Hansen., 2010).  The most common of these deformities are 

malformations in the vertebral column including elongation, compression and fusion (Fjelldal 

and Hansen 2010; Witten et al., 2009). Due to production loss and consumer acceptance 

these skeletal deformities have proven to be a major bottleneck in the implementation of 

triploid fish into the aquaculture industry. Therefore it is important to elucidate the 
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conditions in which deformities manifest in order for triploidization to become a formidable 

procedure for fish domestication.    

Temperature is considered the most influencing abiotic factor with regards to growth and 

development in ectotherms (Pepin 1991). When it comes to Atlantic salmon, thermal 

conditions experienced by embryos during incubation have a large effect on the natural 

growth variation (Elliot & Hurley 2003). Embryogenesis is an important time in development 

where organs and external features begin to take form (Fowler 1970) and different 

incubation temperatures have shown to affect the vertebral column of salmon species 

(McDowall 2008; Ando et al., 2011). The sensitivity of vertebrae development to varying 

incubation temperature and the genetic nature of triploids may indicate different responses 

to varying incubation temperatures in triploid salmon than in diploid salmon.  

Thermal reaction norms are defined as the profile of phenotypes produced by a given 

genotype across an environmental gradient (Griffiths et al., 2000). They are commonly 

studied to understand the way species react to changing abiotic factors. In Atlantic salmon a 

negative reaction norm is commonly observed with regards to vertebra number across a 

temperature gradient. These reaction norms include progressively decreasing vertebra 

number with increasing incubation temperature (Ando et al., 2011). It has been suggested 

that studying these reaction norms would give insight to optimal conditions for proper 

development (Ando et al., 2011). Therefore it would be advantageous to investigate the 

effect of varying incubation temperature  on triploid salmon and the possible effect it has on 

deformity prevalence. Doing so may indicate rearing conditions that would be better suited 

for triploid Atlantic salmon.   

The second method of producing sterile fish is by hybridization with closely related species. 

Hybridization within salmonids, in many cases, yields viable organisms that are unable to 

reproduce due to problems with gonad development and chromosome paring (Bartley et al., 

2001). In addition, intraspecific hybrids have the potential of combining desirable 

characteristics of two species (Bartley et al., 2001). Many fish species are farmed for specific 

advantages ranging from disease resistances to flesh color or taste. The combination of 

desirable characteristics could open the door for new possibilities of fish for domestication 

which could prove beneficial for both the producer and consumer. There are many examples 
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used throughout the industry which have taken advantage of the compatibility of species. A 

cross between white bass (Morone chrysops) and the striped bass (M. saxatili) produced 

offspring which under commercially cultured conditions grow faster and react better to 

tanks and cages than the parental species (Hallerman 1994). Increased disease resistance 

has been shown with crosses between rainbow trout (Oncorhynchus mykiss) and char 

(Salvelinus sp.) (Dorson et al., 1991). Hybrids offer an interesting potential within 

aquaculture industry and becomes even more attractive when the method of triploidization 

is applied.  

As previously mentioned, a triploid organism will have two sets of maternal chromosomes 

and one set of paternal chromosomes. Therefore, due to genetic contribution, it would be 

assumed that the morphological expression of a triploid hybrid will lean more towards that 

of the maternal species. This idea of morphological expression due to the genomic 

contribution is known at the Genetic dosage effect (GDE)(Kierzkowski et al., 2011). The GDE 

has been studied thoroughly in hybrid plants, which tend to show a linear relationship 

between morphological expression and genomic contribution (Chen and Ni 2006). However, 

when studying organisms such as hybrid frogs a mosaic pattern of expression is observed, in 

that morphology of the hybrid varies in similarity between the parental species (Kierzkowski 

et al., 2011). GDE has not been studied in hybrids between salmon and other salmonids but 

an understanding of the effect could prove advantageous to the aquaculture industry. 

Acquiring traits via hybridization and amplifying desired ones via triploidization, as well as 

securing sterility, could prove a unique way of discovering new sterile candidates for fish 

domestication.   

The following study was a two part experiment. In part one, three different temperatures 

were used to incubate triploid and diploid Atlantic salmon eggs. The projects objective was 

to investigate what effect of different incubation temperatures had on diploid and triploid 

salmon and concurrently determine the potential effects it has on vertebra number and 

deformity prevalence. Thermal growth reaction norms were investigated for both vertebra 

number and vertebra size. The overall goal of this experiment was to better understand 

triploid Atlantic salmon and the rearing conditions they may require for optimal 

development.  
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In part two, I investigated a cross between Atlantic salmon and Arctic char (Salvelinus 

alpinus). The char-salmon hybrid was examined for meristic characteristics in order to 

observe the effect of both hybridization and triploidization. Vertebrae numbers, scale counts 

and dorsal fin rays were counted to observe the GDE on the char-salmon hybrid in relation 

to the parental species. The outcome of this study will help to determine the effect of 

triploidization and hybridization on morphological expression of meristic characteristics in 

cross of Atlantic salmon and Arctic char.  
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Materials and methods 
All experiments were carried out at the Institute of Marine Research Matre Research Station 

in Matre, Norway.  

Atlantic salmon incubation temperature experiment 
 

Atlantic salmon ova and milt were acquired from Aquagen (Trondheim, Norway). The eggs 

from five females were fertilized by a mixture of milt from four males on December 16, 

2010. Thirty-seven minutes and 30 seconds after fertilization at 8°C, half of the eggs were 

subjected to hydrostatic pressure of 655 bar for 6 min and 15 seconds using a TRC-APV Aqua 

Pressure Vessel (TRC Hydraulics inc., Dieppe, Canada). This produces triploid eggs. Each 

group of triploid and diploid eggs where then split into 9 replicates. Eggs were then placed 

into 18 incubation trays in three isolated (UV treatment) flow-through raceways under 

darkness. The water was buffered with seawater to 0.7 ppt salinity, oxygen saturation of 

95% and a pH of 6.9. Each of the raceways contained six incubation trays (3 replicates per 

ploidy level). Each of the raceways received water with one of three target temperatures of 

6°, 8° or 10°C. The actual temperatures varied somewhat during the experiment, but mean 

temperatures were very close to target temperatures (5.99 ± 0.30°C, 8.00 ± 0.24°C, 9.94 ± 

0.22°C; Figure 1). The eggs were mechanically agitated to allow dead eggs to be sorted from 

live eggs at the eyed-egg stage. 

Hatching took place on February 3, 2011 for the salmon incubated at 10°C, February 21 for 

the 8°C and March 14 for the 6°C (Figure 1). At first feeding (March 7 for 10°C, March 29 for 

8°C and May 2 for 6°C) the yolk sack larvae of each incubation tray were then put into single, 

square grey covered fiberglass tanks (dimensions 1 x 1 m; water depths 30cm). The fish were 

under continuous light until experiment termination (2 x 18W fluorescent daylight tubes, 

OSRAM L 18W/840 LUMILUX OSRAM GmbH, Ausburg, Germany). Feeding was continuous 

using automated disc feeders which started with a commercial start feed (NURTRA ST 0.5, 

Skretting AS, Fontaine-les-Vervins, France) and increased in pellet size up to 1.5mm 

(Skretting AS, Norway).  During the spring, the water in the tanks where heated up to 13°C 

until summer solstice (June 21) in which the tanks switched to ambient temperatures (Figure 

1).  
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When the fish reached a body mass of 0.6g (April 7, 2011 for 10°C, April 27 for 8°C and May 

31 for 6°C) the number of fish in the diploid tanks were made equal to that of the triploid 

tanks (~200 fish per tank). This was done to ensure equal rearing conditions between diploid 

and triploid fish.  

The experiment was terminated when fish reached approximately 100g. This target weight 

was reached at different dates for each incubation temperature (September 19, 2011 for 

10°C, October 24, 2011 for 8°C, and January 1, 2012 for 6°C). The fish were euthanized 

using Finquel® and X-rayed. A total of 90 fish were sampled for each ploidy and incubation 

temperature for a total of 540 fish.  

 

 

Figure 1: Observed incubation temperatures for each treatment for duration of the Atlantic salmon 
incubation study. The arrows represent the hatching date for each treatment. Stars represent 
termination date for each treatment. 
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Atlantic salmon – Arctic char Hybrid Experiment 

 
On January 1, 2012, eggs and sperm from three male and female Arctic char and Atlantic 

salmon were used to produce groups of pure Atlantic salmon, pure Arctic char, Atlantic 

salmon (♀) x Arctic char (♂) hybrids, and Arctic char (♀) x Atlantic salmon (♂) hybrids. The 

char used were wild caught fish from the lake Skogseidsvatnet in western Norway, and the 

salmon was of the Aquagen strain. Thirty-seven minutes and 30 seconds after fertilization at 

8 °C, half of each group of eggs was subjected to a hydrostatic pressure of 655 bar for 6 min 

and 15 s (TRC-APV, Aqua Pressure Vessel, TRC Hydraulics inc., Dieppe, Canada), giving eight 

groups (diploids and triploids of each of the fertilized groups). Each group of eggs was 

incubated in single incubation trays in a flow-through system at 4.4-8.1 °C under darkness 

(Figure 2). The eggs were mechanically agitated to allow dead eggs to be sorted from live 

eggs at the eye-egg stage on February 15, 2012. Hatching took place on March 13, 2012 for 

both pure Arctic char and char-salmon hybrid and on March 23, 2012 for Atlantic salmon. 

 

On May 2 2012, the fry of each incubation treatment was randomly distributed between 

three covered fiberglass tanks (1×1×0.35 m) and placed under continuous light and at 12.4 

°C. There were no surviving larvae from the diploid and triploid Arctic char (♀) x Atlantic 

salmon (♂) hybrid groups at first feeding. The photoperiod in the tank period was 24 h 

continuous light, and the temperature ranged between 11.2 and 13.5oC up until 28 August 

2012 and then decreased gradually with ambient temperatures until October 3, 2012 (Figure 

2). Feeding was continuous using automated feeders and fish were fed in access. Fish started 

feeding with a commercial start feed (NURTR XP 0.3mm, Skretting AS, Norway) and 

increased in pellet size according to fish size.  

 

On October 3, 2012 the experiment was terminated. Fish were euthanized using an overdose 

of Finquel®, photographed and X-rayed for analysis. Only 8 triploid Arctic char and 19 triploid 

char-salmon hybrids survived to experiment termination. Therefore, 19 fish were sampled 

for each group (8 for the pure Arctic char) making a total of 309 fish sampled.  
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Figure 2: Observed water temperatures for Atlantic salmon Arctic char hybrid experiment. Incubation 
temperatures varied 4.4°C-8.1°C. After transfer to tanks at 13°C water temperature decreased with 
ambient temperatures. Arrows indicate hatching (blue: Arctic char & char-salmon hybrid; green: 
Atlantic salmon). Star indicates termination of experiment.  

 

Ploidy verification 
 

For both experiments, during sampling, blood was drawn using a syringe which was inserted 

vertically into the dorsal end of the fish between the anal fin and tail fin. Small samples were 

taken (~1mL) and blood smears were made. Measurements of erythrocyte diameter were 

used to verify ploidy status. 80 fish from each ploidy was sampled for the Atlantic salmon 

incubation study and 10 fish from each group (8 from char group) was measured for the 

hybrid experiment. 10 erythrocytes per fish was measure (Image-Pro Plus, version 4.0, 

Media Cybernetics Silver Spring). There was no overlap in mean erythrocyte diameter 

between diploid and triploid individuals (Table 1), suggesting 100% efficiency of the triploidy 

induction (Figure 3). 
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Figure 3: Blood smears of diploid and triploid erythrocytes. Larger erythrocytes indicate triploid 
(Photo: Migaud H) 

 

Table 1: Erythrocyte diameter use for ploidy confirmation.  a.) Mean diameter (± sd) of diploid and 
triploid Atlantic salmon. b.) Mean diameters (± sd) of diploid and triploid pure Arctic char, Char-
salmon hybrid and pure Atlantic salmon erythrocytes. 

a). 

Specie  Erythrocyte diameter (µm) 

N Diploid Triploid 
Atlantic salmon 80 16.9 ± 1.8 21.4 ± 1.1 

 
 
 
b.) 
 
 
 
 
 
 
 
 
 

Sampling protocol 

 
All fish in both experiments were killed by an overdose of anesthetic (Finquel®) and X-rayed 

(Porta 100 HF; Eickemeyer Medizintechnik für Tierärzte KG, Tuttlingen, Germany). The 

settings of the X-ray machine were set to 40kV and 10 mAs and X-rays were taken from a 

distance of 70cm. The image plate used was 35x43cm (Dürr Medical, Bietigheim-Bissingen, 

Germany) and was scanned using the CR 35 VET scanner (Dürr Medical Bietigheim-Bissingen, 

Specie  Erythrocyte diameter (µm) 

N Diploid Triploid 
Arctic char 8 18.6 ± 1.7 22.4 ± 2.2 
Char-salmon hybrid 10 18.8 ± 1.7 22.1 ± 1.2 
Atlantic salmon 10 17.1 ± 0.8 20.9 ± 1.1 

10µm 10µm 

Diploid Triploid 
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Germany). All vertebrae were counted using Image J (Rasband 2012) counting the most 

dorsal vertebra as vertebra 1. 

 

Vertebra deformities were determined using a deformity key for salmonids developed by 

Witten et al (2009). The main deformities that were identified were types 5-9 (Appendix 1). 

If complete fusion occurred, the number of vertebra was counted via the number of neural 

spines (Figure 4). Due to fusion events being too severe to determine number of neural 

spines a total of 20 fish were removed from the sample pool (Table 2). Vertebra size 

estimated as vertebrae area from the X-ray pictures was determined using Image J polygon 

tool marking each corner of the vertebra and measuring the area inside.  

 

 

Table 2: Number of fish sampled of each ploidy for vertebrae number and deformity prevalence at 
each temperature treatment for the Atlantic salmon incubation temperature experiment.   

Incubation 
temperature 

Vertebra count 
Diploid 

 
Triploid 

Deformity prevelence 
Diploid 

 
Triploid 

6°C 90 89 30 30 
8°C 90 87 30 30 
10°C 83 81 30 30 
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Figure 3: Examples of most common deformities observed in Atlantic salmon incubation study 

 

 

 

 

 
Figure 4: Diagram representing a complete fusion deformity in Atlantic salmon. If this deformity was 
present (a.) the number of vertebra fused would be determined by counting the number of neural 
spines (b.) 

 

For the salmon char hybrid experiment the number of scales and dorsal fin rays were 

counted using high resolution photos (Sony Nex5) which were imported into Image J (Table 

3). The numbers of scales were counted along the lateral line of each fish. Vertebra numbers 

were counted using X-rays and if severe deformities were present fish were removed from 

Complete fusion 

of vertebrae 

Fusion centre 

One-sided 

compression 
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the sample pool. Due to low survival of triploid char only 8 were available for sampling. 19 

fish were sampled for each of the other groups. Scaled counts had lower sampling numbers 

due to quality of photos not allowing for accurate counts.  

 

 

Table 3: Number of fish sampled for each of the various meristic characteristics analyzed in the char 
salmon hybrid experiment 

Parameter Artic char 
Diploid 

 
Triploid 

Char-salmon 
Diploid 

 
Triploid 

Atlantic salmon 
Diploid 

 
Triploid 

Vertebra count 19 8 14 18 19 19 
Scale count 12 5 10 10 10 10 
Dorsal fin rays 19 8 19 19 19 19 

 

 
 

Statistical analysis 
 

All statistical analysis was done using Statistica 10 (Stats soft inc, OK USA). To test the effect 

of ploidy and incubation temperature on vertebral numbers I used ordinal logistic 

regression. This model was used because vertebra number is non-continuous and not 

normally distributed. The model was structured with vertebral counts as the dependent 

variable with temperature and ploidy as categorical independent variables. 

 For the salmon incubation study the mean area for each vertebra was graphed versus 

vertebra number (position along the vertebrae) for each ploidy and incubation temperature. 

The difference in area size between ploidy groups was standardized equation 1. A t-test was 

then implemented to determine area difference between incubation temperatures. Each 

incubation temperature was treated as an independent variable and tested against each 

other.  

  [
( ̅   ̅ )

(  ̅̅ ̅)
]                                                                
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For the salmon char hybrid experiment Mann-Whitney U tests were used to test for 

differences in the meristic characteristics between ploidy. Mann-Whitney U test were used 

because of the greater detail it provides when data is not normally distributed.  

 

Ethical considerations 
 

These experiments followed general regulations for animal experimentation. Precautions 

were taken to provide the fish with comfortable environments which provided all necessary 

needs. Fish were inspected each day but making sure to keep disturbances to a minimum.  
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Results 

Atlantic salmon incubation temperature treatment experiment 
 

The observed mean values for weight of each fish group varied slightly from the target 

weight of 100g (Table 4). The mean values of weight ranged from 83.4g in diploid 8°C to 

106g in triploid 10°C (Table 4). There was large range of weights and lengths observed in all 

treatments of the experiment. The smallest fish measured was 12g at 9.5cm long and the 

largest fish was 161g at 22.5cm long, both these fish were triploid and incubated at 8°C. In 

general triploid fish were larger and heavier than diploids (Table 4).  

 The mean number of vertebrae in Atlantic salmon varied between 57.6 for triploid fish at 

10°C and 58.6 for diploid fish at 6°C (Table 4). The maximum number of vertebra observed 

was 60 and the minimum was 56. In general, vertebral counts were lower in triploid than in 

diploid salmon at all three incubation temperatures (Table 4, 5). However, the overall effect 

size was small, with a reduction in mean vertebra count of from 0.4 to 0.8 vertebrae. 

Further, there was a general trend that vertebrae counts decreased with increasing 

incubation temperature (Table 4, 5).  Ordinal logistic regression displayed a statistically 

strong difference between the reaction norms of diploid and triploid salmon; in that 

increasing incubation temperatures induced a more severe decline in vertebra number in 

triploids than diploids (P<0.05, Table 5). 

The total number of deformities in each fish were counted and analyzed for deformity 

prevalence with relation to incubation temperature and ploidy. The most common type of 

deformity seen in this study was one-sided compression, compression and fusion, complete 

fusion, fusion centre and elongation (Types 5-9 according to key by Witten et al., 2009; 

Appendix 1). The highest number of deformities in a single fish was 15 and was present in a 

10°C triploid fish. In general, the fish incubated at 6°C had low numbers of deformities with a 

large proportion of sampled fish having no deformities at all (Table 6). The number of 

deformed vertebrae as well as the prevalence of deformities increased with increasing 

temperature. In addition, more deformities were seen in triploid fish at all three incubation 

temperatures (Table 6). 
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The size (area) of each vertebra was measure to determine if there is an effect of ploidy 

and/or incubation temperature. The area of each vertebra differed according to the position 

along the body. The vertebra close to the head and tail were the smallest, reaching largest 

area around vertebra no. 38-42 (Figure 4). This pattern was a general trend seen at all 

incubation temperatures and for both diploid and triploid fish (Figure 4). The area of each 

vertebra was larger in triploids than diploids for the 6° and 8°C treatments (Figure 4). This 

observation reversed for the 10°C treatment with the vertebra size in diploids being larger 

than triploids (Figure 4).  The fish incubated at 6°C had the largest difference in vertebra size 

(Figure 4). 

To show statistical evidence of this size difference equation 1 was used to standardize the 

difference in observed areas of each vertebra. A standardized value of 0 represents no 

difference in vertebra areas between diploid and triploid salmon. The mean values of 

equation 1 decreased from 0.154 for 6°C to -0.015 for 10°C. In all cases the standardized 

values were significantly different than zero confirming vertebra size (area) difference 

between diploids and triploids (Table 7).  

 

Table 4: Mean (±sd) length, weight and vertebra numbers for diploid and triploid Atlantic salmon 
incubated at various incubation temperatures. 

Incubation  
temperature 

Parameter 
 

Diploid     Triploid 

6°C Length (cm) 
Weight (g) 
Vertebra number 

18.5±1.2 
89.1±17.6 
58.6±0.1 

20.5±1.8 
103.7±23.3 
58.2±0.1 

8°C Length (cm) 
Weight (g) 
Vertebra number 

18.3±1.8 
83.4±21.7 
58.5±0.1 

19.2±2.0 
98.0±26.4 
58.1±0.1 

10°C Length (cm) 
Weight (g) 
Vertebra number 

19.2±1.7 
95.0±15.2 
58.4±0.1 

19.7±1.6 
106.1±20.1 
57.6±0.1 
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Table 5: The difference vertebra number according to temperature and ploidy. Difference in thermal 
growth reaction norms between diploids and triploids are represented by Ploidy*Temerature. Test 
was done using an Ordinal logistic regression model. 

Effect Degree of 
Freedom 

Wald Stat. P value 

Intercept 4 426.21 0.000 
Temperature 2 36.34 0.000 
Ploidy 1 95.60 0.000 
Ploidy*Temperature 2 7.67 0.026 

 

 

Table 6: The percent of sampled fish who had 1 or more deformed vertebra (N=30) and observed 
range of deformed vertebra for diploid and triploid salmon at each incubation temperature.   

Incubation  
Temperature 

Parameter 
 

Diploid Triploid 

6°C % Deformed 
Range  

13 
1-2 

30 
1-5 

8°C % Deformed 
Range 

33 
1-5 

50 
1-6 

10°C % Deformed 
Range 

57 
1-8 

93 
1-15 
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Figure 3: The average number of deformed vertebra (mean ± 95%) observed in diploid and triploid 
Atlantic salmon incubated at different incubation temperatures (6°C, 8°C and 10°C). Trend lines 
represent best fit lines for each polidy.  
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Figure 4: Graphs showing mean value (± 95%) of each vertebra along the vertebra column of 

diploids and triploids for each temperature treatment (6°C, 8°C, and 10°C) for the Atlantic 

salmon incubation study.  

 Diploid 

 Triploid 

 

6°C 

8°C 

10°C 
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Table 7: t-test testing single samples (incubation temperatures) to a reference constant (0.00) 

Incubation 
temperature 

Mean Std.Err. t-value df P value 

10°C -0.015 0.004 -3.72 56 <0.001 
8°C 0.120 0.007 17.28 56 <0.001 
6°C 0.154 0.003 44.44 56 <0.001 

 

 

Atlantic salmon – Arctic char Hybrid Experiment  
 

There was a large range in size for most groups but in particular the diploid Char-salmon 

hybrids. The smallest diploid hybrid measured as 8.8 cm weighing 7g and the largest was 

19.1cm weighing 92g. The smallest fish in general were the triploid char with a mean size 

was 8.2 cm weighing in at just under 9g; only 8 triploid pure Arctic char survived till sampling 

(Table 8). The largest fish were the Atlantic salmon with a mean value of 68.9g and 17.1cm 

long for diploids and 65.4g and 17.1 cm long.  

The vertebrae numbers for the pure Atlantic salmon, pure Arctic char and Char-salmon 

hybrid were counted (Table 9). The mean number of vertebra for the hybrid experiment 

varied from 58.3 in the triploid Atlantic salmon to 59.9 in the triploid Arctic char. The 

vertebra numbers of diploid and triploid Arctic char did not differ (Table 9). The diploid Char-

salmon hybrid had a vertebra count of 59.0 which was intermediate to the parental species 

however the triploid hybrid had vertebra numbers similar to the triploid Arctic char (Table 

9). Both the triploid Arctic char and triploid Char-salmon hybrid had higher vertebra counts 

than the diploids, different to that of the triploid Atlantic salmon whom had lower vertebra 

numbers. 

The number of scales each fish had was determined by counting scale rows along the lateral 

line. Scale numbers varied from 195 in the diploid Arctic char to 135 in the triploid Atlantic 

salmon (Table 10). The char-salmon species had intermediate counts to the parental species 

of 153 and 145 for diploid and triploid respectively. There was a general trend of lower scale 

counts in triploids than in diploids for all three groups.  
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The numbers of dorsal fin rays were lower in triploids than diploids in both the pure Arctic 

char and the char-salmon hybrid (Table 11). The diploid Atlantic salmon had higher dorsal fin 

rays than the triploids. Dorsal fin ray counts varied from 11.3 in the triploid Arctic char to 

14.1 in the Diploid Atlantic salmon. No significance in dorsal fin ray count was observed 

between ploidy of the Atlantic salmon, both having roughly 14 fin rays.  The char-salmon 

hybrid, in general, had intermediate numbers of fin rays in relation to the parental species 

(Table 11). 

  

Table 8: Mean (±sd) lengths and weights for each group of the Atlantic salmon Arctic char 
experiment. 

Parameter Arctic Char 
Diploid 

 
Triploid 

Char-Salmon 
Diploid 

 
Triploid 

Atlantic Salmon 
Diploid 

 
Triploid 

Length (cm) 13.2 ± 1.3 8.2 ± 0,6 12.6 ± 2.8 54.6 ± 16.9 17.1 ± 0.9 17.2 ± 0.6 
Weight (g) 27.7 ± 9.1 8.8 ± 2.0 27.6 ± 21 16.4 ± 1.7 68.9 ± 10.0 65.4 ± 7.3 

 

 

Table 9: Mean (±sd) vertebra numbers of diploid and triploid Arctic char, char-salmon hybrid and 
Atlantic salmon. Mann-Whitney nonparametric test used to observe difference of vertebra number 
between ploidys. 

Specie Vertebra number 
Diploid 

 
Triploid 

Rank Sum 
Diploid 

 
Triploid 

P value 

Arctic char 59.7 ± 0.2 59.9 ± 0.2 61.0 75.0 >0.05 
Char-salmon 59.0 ± 0.2 59.9 ± 0.2 161.5 366.5 0.006 
Atlantic salmon 58.6 ± 0.2 58.3 ± 0.1 410.5 330.5 >0.05 

 

 

Table 10:  Mean (±sd) number of scales in diploid and triploid Arctic char, char-salmon hybrid and 
Atlantic salmon. Mann-Whitney nonparametric test used to observe difference of scale counts 
between ploidys. 

Specie Scale count 
Diploid 

 
Triploid 

Rank sum 
Diploid 

 
Triploid 

P value 

Arctic char 195 ± 2 191 ± 2 117.0 36.0 >0.05 
Char-salmon 153 ± 2 145 ± 1 139.5 70.5 0.010 
Atlantic salmon 141 ± 1 135 ± 1 145.5 9.5 0.002 
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Table 11: Mean (±sd) dorsal fin ray count in diploid and triploid Arctic char, char-salmon hybrid and 
Atlantic salmon. Mann-Whitney nonparametric tests used to observe difference of dorsal fin rays 
between ploidys.  

Specie Dorsal fin ray count 
Diploid 

 
Triploid 

Rank sum 
Diploid 

 
Triploid 

P value 

Arctic char 12.0 ± 0.1 11.3 ± 0.3 303.0 75.0 >0.05 
Char-salmon 13.5 ± 0.2 12.7 ± 0.1 468.0 273.0 0.002 
Atlantic salmon 14.1 ± 0.1 14.0 ± 0.1 396.0 345.0 >0.05 
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Discussion 
 

The results of this experiment displayed a strong effect of triploidization on Atlantic salmon 

and Atlantic salmon hybrids. Triploidization along with increasing incubation temperatures 

caused decreased vertebra number in triploid Atlantic salmon. In addition, the number of 

deformities and deformity prevalence were higher in triploid salmon and were strongly 

influenced by increasing incubation temperature. With regards to the meristic characteristics 

of the char-salmon hybrid, expression was mosaic; meaning that each feature investigated 

has different levels of resemblance to either parental species. Certain characteristics of the 

hybrids such as length, weight and vertebra number were more similar to the pure Arctic 

char whereas scale counts were more similar to the pure Atlantic salmon. 

 

Atlantic salmon Incubation temperature experiment 
 

This study observed decreased vertebra number and increased deformity prevalence in 

Atlantic salmon as a result of triploidization and increased incubation temperature. An 

inverse relationship between incubation temperature and vertebra number was seen in both 

diploid and triploid fish. Vertebra size (area) analysis revealed that at low incubation 

temperatures vertebra were smaller in triploids than in diploids. This trend switched at 10°C 

where the vertebra of diploids alternated to being larger than triploids. When investigating 

the response of vertebra number to different incubation temperatures it was found that 

diploid and triploid salmon have different reaction norms. This indicates that triploid salmon 

may require different farming regimes than diploids in order to keep vertebra number at 

appropriate levels and keep deformity prevalence low.  

High incubation temperatures have been known to reduce incubation period in teleost fish 

(Pepin et al., 1997; Crisp 1981). Incubation period is related to life history traits such that it is 

synchronized with suitable environmental factors to increase things such as food availability 

and survival (Huey and Kingsolver 1989). However, with regards to the farming industry 

reduced incubation period means earlier exogenous feeding which allows for quicker 

transfer to seawater where growth is highly accelerated (Usher et al., 1991; Fjelldal and 

Hansen 2006). Therefore increased incubation temperatures are used within farming 
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regimes in order to speed up incubation period, yet the results of this study show it may 

have counterproductive results by decreasing vertebra numbers and increased deformities. 

With regards to both diploids and triploids, a significant decrease in vertebra number with 

increasing incubation temperature was observed. In addition, triploid salmon had lower 

vertebra numbers than diploids at all incubation temperatures. Low vertebra numbers at 

high incubation temperatures has been shown in many studies (Fowler 1970; Ando et al., 

2011; Finstad and Jonsson 2012) yet my study is the first which shows this trend being 

amplified by inducing triploidy. Triploidization results in the acquisition of a third set of 

chromosomes and therefore a significant increase of genetic material. Therefore it could be 

that by increasing the quantity of genetic material you also increase the sensitivity to abiotic 

factors.  

The effect of water temperature during embryonic development has been suggested to be 

the most crucial factor with regards to development timing and accuracy (Tåning 1950; 

Fowler 1970; Jonsson & Jonsson 2012). Meristic characteristics vary slightly within 

populations of teleost fish and this natural variation has a tight correlation to abiotic 

temperatures (Barlow 1961; Wilkens et al., 2010). Things such as fin rays, scale number and 

skull morphology will be decided after hatching but the final number of vertebra a fish will 

have is determined early in embryonic development by somite formation (Fowler 1970). 

Tåning (1950) termed this period of embryonic development a “super sensitive period” 

where slight variations in temperature can have a dramatic effect on the final number of 

vertebra. Fowler (1970) discussed the possible evolutionary aspects behind such variation 

seen in populations. He mentions that if such slight variation in vertebra number has no 

selective advantage then this variation will continue. This is true, as variations in vertebra 

number has been mentioned within population of fish with no real relationship to fitness 

(Ando et al., 2011). This, however, is in natural populations and the results of this study 

show that even slight variation in vertebra number is tightly correlated to deformity 

prevalence in fish reared in farming conditions, this topic will be discussed later on.  

There was an observed difference in the thermal reaction norms between diploid and 

triploid fish. Both ploidys displayed a negative reaction norm with vertebra number 

progressively decreasing with increasing water temperature; however, the reduction in 
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vertebra number was more severe for triploids than diploids. Reaction norms are largely 

influenced by genetics and are the phenotypic response to abiotic factors. Different 

populations display different reaction norms and thus suggest that there are different 

optimal growth patterns for different abiotic conditions. An example of this is in Pacific 

salmon (Oncorhynchus spp.) in which display both V-shaped and negative reaction norms 

depending on where they are from (Ando et al., 2011). A less severe example relates slight 

genetic changes to changes in reaction norms which has the potential to have a direct effect 

on the fitness of Atlantic salmon (Darwish & Hutchings 2009). The different reaction norms 

observed in this experiment suggests different optimal growth conditions for triploid salmon 

in farm reared conditions. Thus, in agreement with Benfey (1999), triploid salmon should be 

treated different than diploid salmon when considering rearing conditions for aquaculture 

use.  

When discussing possible mechanisms behind the decreased vertebra number with 

increasing incubation temperature, and the difference in vertebra number between ploidys, 

it is important to remember that the effect size was small. The overall difference averaged to 

less than 1 vertebra however this suggests that a single vertebra may be the difference 

between a deformed or non-deformed fish. Thus, although a small difference in vertebra 

number between diploid and triploid salmon it may be important to find optimal 

temperatures for triploid fish to develop in a way that maintains vertebra number at 

appropriate levels and keep deformity prevalence low.   

The main types of deformities observed in this experiment were one-sided compression, 

compression and fusion, complete fusion, fusion centre and elongation (types 5-9 Appendix 

1; Witten et al., 2009). At all incubation temperatures there was a higher occurrence of 

deformities in triploid than in diploid salmon and effected by far were the triploid fish 

incubated at 10°C (the highest temperature used). The relationship between incubation 

temperature and vertebrae deformities have been mentioned before in studies done on 

Atlantic salmon (Witten et al., 2005; Fraser et al., 2013) yet this relationship in triploids has 

yet to be elucidated. Mechanical load on the vertebral column, gene expression and nutrient 

transport to and from the notochord during development have been suggests as possible 

pathways of deformity development.  
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As mentioned earlier, domesticated salmon have been selectively bred for generations to 

acquire traits that would be advantageous to farming. One of these traits is increased muscle 

growth which in turn provides more meat and higher production value for the industry. 

However, increased muscle growth can cause increased mechanical load on notochord cells 

during early vertebra development (Lotz et al., 2003). Pressure via mechanical stress on the 

notochord cells initiate the conversion of the notochord and the notochord sheath into 

cartilage which eventually mineralizes into bone during vertebral column development 

(Witten et al., 2005; Nordvik et al., 2005). The mechanical stress of the increased muscle 

mass can cause altered growth which in turn may lead to altered vertebra shape (Witten et 

al., 2005; Yttebor et al., 2010b). If pressure is caused from increased muscles mass then 

larger cells sizes due to the acquisition of a third set of chromosomes may cause increased 

pressure on notochord cells thus increasing the severity of altered vertebra development.   

Atlantic salmon eggs incubated at high and low temperatures were investigated for gene 

expression levels by Ytteborg et al (2010). In doing so, at high incubation temperatures, 

Ytteborg observed high expression levels of transcription factors which disrupt the accuracy 

of notochord segmentation (Yttebor et al, 2010a, b).  The notochord segmentation is the 

precursor to vertebrae formation (Grotmol et al., 2005; Nordvik et al., 2005) and thus 

disrupting this process may lead to increased deformities. In addition, if increased genetic 

material (by triploidization) results in increased genetic expression it may be that triploid fish 

have increased inhibitory gene expression levels. In a similar fashion, it has been shown that 

haploid eukaryotes display decreased levels of regulator genes when compared to diploids 

(Birchler et al., 2005). Therefore it may be that triploidization causes higher vertebral 

deformities by increased expression of inhibitory genes yet a detailed analysis of expression 

levels would be needed in triploids in order to make concluding remarks.  

The higher prevalence of fusion events seen in triploids may be due to reduced effectiveness 

of the notochord sheath functionality. Ytteborg et al. (2010c) suggested that the notochord 

sheath assists in nutrient and waist transport to and from the notochord during early 

embryonic stages. In addition, Parsons et al. (2002) suggested that in teleost fish the 

notochord sheath helps maintain hydrostatic pressure within the notochord. Both of these 

functions play and important role in proper notochord development and if disrupted could 

lead to a higher occurrence of fusion events (Ytteborg et al., 2010c). As mentioned earlier, a 
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repercussion of triploidization is larger cells and thus a reduced surface area to volume ratio. 

This physiological effect is suggested to reduce overall nutrient transport in triploid fish 

(Maxime 2008; Tiwary et al., 2004). Therefore, the physiological side effects of triploidization 

may further reduce the functionality of the notochord sheath; in turn disrupting proper 

notochord development leading to higher fusion prevalence.  

These explanations offer possible areas of development that may be affected by 

triploidization. However, it is safe to assume that the higher occurrence of vertebra 

deformities observed in this study is not simply due to one mechanism but rather a 

combination of many. Therefore it is mostly likely a combination of these mechanisms, and 

possible many more that contribute to the higher occurrence of deformities seen in triploid 

salmon.  

Observed in this study was a difference in vertebra size (individual vertebra along the 

vertebra column) between ploidys at both 6° and 8°C with triploids being smaller than 

diploids. At 10°C however, the difference in size between ploids was relatively small with 

diploids being slightly larger than triploids. The trend of varying vertebra size along the 

vertebral column has been acknowledged before in Atlantic salmon (Fjelldal et al., 2005) yet 

this is the first time a difference in size between ploidys has been mentioned. The 

explanation for this observation is hard to determine due to lack of supporting evidence; yet 

considering there was an observed difference in thermal reaction norms for vertebra 

number, it may be hypothesized that there is a difference in thermal reaction norms for 

vertebra size between diploid and triploid Atlantic salmon.  

This study displays a significant effect of ploidy and incubation temperature on vertebra 

number, size and deformity prevalence in Atlantic salmon. Vertebra numbers are 

determined during a “super sensitive” period of development and small fluctuations in 

temperature can affect the final number (Tåning 1946). High incubation temperatures may 

have an indirect connection to vertebra number via gene expression and nutrient transport 

affecting notochord development. In addition, deformities may be more prevalent in 

triploids due to increased genetic material causing both increased gene expression and 

decreased nutrient transport. The results of my study suggest different thermal reaction 

norms for both vertebra number and vertebra size for diploid and triploid fish, yet 
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experiments testing a wider range of incubation temperatures would give a deeper incite to 

triploid reaction norms. The combined results suggest that new farming regimes should be 

used when farming triploid Atlantic salmon in order to maintain appropriate vertebra 

number and low deformity prevalence.  

 

Atlantic salmon-Arctic char hybrid experiment 
 

In this study I investigated the morphological expression of vertebra number, scale count 

and dorsal fin rays from a cross between Atlantic salmon and Arctic char. The effort was to 

understand how triploidization affects phenotypic expression since triploidization effects the 

genetic contribution from the parental species. Interspecific hybridization has been studied 

in salmonids for many years (Bartley et al, 2001; Gray et al., 1993; Scheerer and Thorgaard 

1983; Refstie and Gjedrem 1975). Interspecific hybridization is the breeding of closely 

related species in hopes of creating a viable cross that out perform their parental species in 

certain aspect.  

Arctic char and Atlantic salmon crosses have shown to produce viable offspring with good 

hatching and growth rate (Refstie and Gjedrem 1975). However, in the present experiment 

there were no viable offspring from the cross between male Arctic char and female Atlantic 

salmon. Gray et al (1993) found that the viability of hybrids is related to the hatching time of 

the female species. In that, more viable progeny are produced when crossing a female 

species with a faster developmental rate than the male species. In this experiment the 

Atlantic salmon were of the Aquagen strain in which generations of breeding have most 

likely selected for fast development. Therefore, it may be that no viable offspring were 

created when crossing the fast growing male salmon with the wild caught and probably 

slow-growing female char. 

An effect of ploidy and hybridization was observed in all three meristic characteristics I 

investigated in this study. With regards to ploidy, scale counts and dorsal fin ray counts were 

lower in the triploid fish than in diploids as well as the vertebra numbers for Atlantic salmon. 

However, the triploid char and char-salmon hybrid had higher vertebra numbers than 

diploids. Similarly, both diploid and triploid char-salmon hybrid had mean vertebra numbers 
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similar to that of the Arctic char. On the contrary, the number of scales and dorsal fin rays 

were intermediate to that of the parental species. This difference in expression between 

meristic characteristics was unexpected if phenotypic expression is linked to genomic 

contribution. 

The Atlantic salmon genome consists of 58 Arctic whereas the char’s has 80 chromosomes 

(Hartley 1987). The char-salmon hybrid in this experiment was created using a female 

Atlantic salmon and male Arctic char thus consisting of 29 salmon and 40 char 

chromosomes. When triploidy is induced the maternal contribution is doubled. Therefore 

the triploid Char-salmon hybrid investigated in this experiment consisted of 58 (2 x 29) 

chromosomes from the Atlantic salmon and 40 from the Arctic char making a total of 98 

chromosomes. In plants, there is a linear relationship between genomic contribution and 

phenotypic expression thus meristic characteristics of hybrids are more similar to that of the 

higher genomic contributing parental species (Riddle et al., 2010; Chen & Ni, 2006). 

However, the results of my experiment display a mosaic pattern of phenotypic expression 

with different meristic characteristics leaning towards different parental species.  This 

mosaic style patterning has been observed before in other hybrids including grass carp 

(Ctenopharyngodon idella), water frogs (Pelophylax shqipericus) and fire-bellied toads 

(Bombina bombina )(Cassani & Caton 1984, Vörös et a., 2007; Keirzkowski et al., 2011).  

Predicting traits of hybrid fish could be a huge advantage towards discovering new species of 

fish for domestication. That being said this study shows the difficulty in doing so. Varying 

degrees of expression with regards to the parental species suggests a nonlinear relationship 

between phenotypic expression and genetic contribution. However, this experiment did 

show that certain traits of a hybrid species may resemble one parental species far more than 

the other. Vertebra numbers of the Char-salmon hybrid were nearly identical to that of the 

Arcitc char. This suggests that it may be possible to select for desired traits, yet a better 

understanding of the mechanisms that control this is needed.  
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Improvements 
 

They X-ray machine used in this experiment was great for sampling large number of fish and 

X-raying them with high enough resolution for vertebra counts and deformity recognition. It 

did however lack the resolution to do a detailed analysis of vertebra deformities (to include 

minor deformities such as misalignment) and the ability to determine how many vertebras 

were lost when severe fusion events occurred. Therefore, if a more detailed analysis of 

vertebra deformities were to be done a higher resolution X-ray machine would be needed.   
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Conclusion 
 

The results of my study suggest an answer for the first goal of this study in determining 

better rearing conditions for triploid Atlantic salmon. At all incubation temperatures tested 

in this experiment triploid salmon had less vertebra numbers than diploids. The trend of 

decreasing vertebra numbers with increasing incubation temperature was present in both 

diploid and triploid salmon but the decrease in vertebra numbers was more severe for 

triploids. In addition, the number of deformed vertebra dramatically increased with 

increasing incubation temperature. Therefore lowering the incubation temperature for 

triploid fish should be taken into consideration when rearing conditions are determined for 

triploid fish in order to reduce the presence of deformities and keep vertebra numbers at 

appropriate levels.  

Part two of my study raised awareness to the complexity of hybrid morphology. The goal 

was to determine if morphological features of triploid hybrids could be predicted due to 

genetic contribution from parental species. I investigated vertebra number, scale counts and 

dorsal fin rays and found no general linear relationship between genetic contribution and 

phenotypic expression, at least for Atlantic salmon x Arctic char hybrid.  Therefore this study 

reveals that predicting morphological traits of triploid hybrids via genetic dosage may be 

impossible or at least until a better understanding of the genetic dosage effect is understood 

in salmonids.  

Investigating more features of triploid hybrids may allow for a better understanding of how 

meristic characteristics are expressed. Having a library of features and how they relate to 

parental species may reveal a general pattern which is not visible from few features I 

investigated in my study.  
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