
 

The role of sex-ratio on male reproductive 

investment of Calanoid copepod  

Temora longicornis  

  

Marius Nordbotten 

 

 

 

Master thesis in Marine Biology 

Department of Bioscience 

University of Oslo 

3.6.2013 

 

 



II 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Marius Nordbotten 

2013 

The role of sex-ratio on male reproductive investment of the calanoid copepod Temora 

longicornis 

Marius Nordbotten 

http://www.duo.uio.no/ 

Trykk: Reprosentralen, Universitetet i Oslo 

http://www.duo.uio.no/


III 

 

Table of content 

1 Introduction          1 

1.1 Sex-ratio and reproductive investment       1 

1.2 The biology of Temora longicornis      4 

2 Method and material         6 

 2.1 Experiments and general procedure       6 

  2.1.1 Sampling and study site      6 

  2.1.2 Sorting and culture       7 

  2.1.3 Incubation        8 

  2.1.4 Counting and preserving       9 

  2.1.5 Pictures and length measurements     9 

 2.2 Statistical analysis        10 

  2.2.1 Spermatophore and egg production     10 

  2.2.2 Spermatophore size vs. production rate    11 

3 Results           12 

 3.1 Effect of skewed sex-ratio        12 

  3.1.1 Spermatophore production      13 

  3.1.2 Effect of prosome length on production rate    15 

  3.1.3 Egg production        16 

 3.2 Analysis of spermatophore size vs. production rate    17 

 

 



IV 

 

4 Discussion           20 

 4.1 Male reproductive investment with regards to skewed sex-ratio   20 

 4.2 Egg production in a gender-skewed environment    24 

 4.3 Spermatophore size and production rate      25 

5 Concluding remarks         26 

6 Reference list          27 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



V 

 

Illustrations and tables 

Figures 

Figure 1. Female Temora longicornis with spermatophore attached to genital segment 

(photo). 

Figure 2: Life cycle of Calanoid copepod (Nybakken 1982). 

Figure 2: Study site. 

Figure 4a and b: Temora longicornis (photo), Spermatophores (photo). 

Figure 5: Boxplot showing production of spermatophores per male per four days. 

Figure 6: Scatter plot of spermatophore production after four days versus prosome length. 

Figure 7: Boxplot showing production of egg per female per four days. 

Figure 8: Scatter plot of spermatophore production rate versus spermatophore length. 

Figure 9 a. and b: a) Photo of spermatophore in a cluster. b) Photo of spermatophore attached 

to a male Temora longicornis. 

Tables 

Table 1: The three different treatments. 

Table 2: Descriptive statistics. 

Table 3: Statistical values of spermatophore production. 

Table 4: Statistical values of egg production. 

Table 5: Statistical values of spermatophore size with production rate. 

Table 6: Male to female encounter rate. 

 

  



VI 

 

  



VII 

 

Acknowledgement 

Denne oppgaven ble gjennomført ved Marinbiologisk avdeling, Universitetet i Oslo i 

perioden 2011 til 2013.  

  Jeg vil først og fremst takke mine veiledere, Oda Bjærke, Tom Andersen, Karl Inne 

Ugland og Josefin Titelman. Tusen takk for støtte og veiledning over de siste to årene. Videre 

vil jeg rette en stor takk til Kjersti Bækkedal, Mitchell S. Fleming og Erlend Kaarstad for 

utrolig hyggelig studietid.  

  Takk til Peter Tiselius for lån av laboratorie, takk Bengt Lundve for en strålende 

oppfølging under oppholdet på Kristineberg, og takk Berne Petersson og Ursula Schwartz for 

hjelpen med innhenting an hoppekrepsene.  

 Sist må jeg takk min største inspirasjon, min familie. Takk til Kona mi, gutten min, 

mammaen min og pappaen min, broren og søstera mi, og alle dere andre som har hjulpet meg 

de siste fem årene. 

 

Blindern, Oslo. Juni 2013 

Marius Nordbotten 

 

  



VIII 

 

  



IX 

 

Abstract 

Copepods are said to be the key link between the primary producers and higher trophic levels. 

They inhabit all oceans and are found in almost all marine communities. In the ocean, it is 

common to observe skewed sex-ratios of copepods which fluctuates throughout the year. Still, 

how or if the sex-ratio is influencing male reproductive investment has yet to be investigated. 

The main objective of this study was to determine the influence of sex-ratio on the 

reproductive investment of the male copepod Temora longicornis. The study was conducted 

in May 2012 at Gulmarfjorden in west Sweden. T. longicornis was incubated for four days on 

a rotating wheel in three different treatments: male-skewed, female-skewed and gender 

balanced. The results indicated no adjustment of spermatophore production in any of the three 

treatments. However, a relationship between male body size and spermatophore production 

rates was observed. Spermatophore size and production rate were negatively correlated in the 

male-skewed treatment and positively correlated in female-skewed and gender balanced 

treatment. The conclusion is that sex-ratio has no influence on the spermatophore production. 

However, adjustments in reproductive investment cannot be excluded on the basis of the 

spermatophore production only. 
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1 Introduction 

 

1.1 Sex-ratio and reproductive investment  

Copepoda is one of the most abundant organism groups in the world, they are found in almost 

all marine environments (Riisgard and Larsen 2010). These crustaceans play a key role in 

marine ecosystems transferring energy from the primary producers to higher trophic levels 

such as fish, marine mammals and seabirds (Verity and Smetacek 1996, Hickman et al. 2008). 

In some systems, like the Baltic Sea, small herring and sprat are strictly zooplanktivorous in 

the autumn, feeding on just two species of copepods: Temora longicornis and Bosmina 

maritima (Casini et al. 2004).        

 

In contrast to the land masses, the ocean have a three dimensional space. Therefore male 

copepods use most of their time searching for signals left by the female. These signals may be 

either chemical, e.g. pheromones produced by females, or hydro mechanical, e.g. 

synchronized hops in the water column (Bagøien and Kiørboe 2005a, b, Kiørboe et al. 2005, 

Kiørboe 2011b). Each species have their own specific mate-recognition system (SMRS) 

(Lonsdale et al. 1998). These 

systems involve several elements, 

such as biological and 

environmental cues, timing, 

signal-receptor mechanisms and 

genital morphology. Temora 

longicornis are so called “trail 

followers”, females leave a 

discrete trail of pheromones with 

a distinct shape and dimensions 

dependent on swimming behavior 

(Doall et al. 1998, Goetze and 

Kiørboe 2008). The male use this 

Photo: Marius Nordbotten 

Figure 1. Female Temora longicornis with a spermatophore 

attached to her genital segment. 
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chemical trail to detect and locate the female. This indicates that mating is not necessarily a 

chance event. After reaching a female copepod, the male attaches a spermatophore containing 

spermatozoa on her genital segment (figure 1). Male fitness can therefore be set as a function 

of the efficiency to locate, recognition and capturing females. After successfully attaching the 

spermatophore, the spermatozoa empties into the genital antrum (Mauchline 1998). Some 

female copepods can store sperm in a storage organ called spermathecae, this makes them 

able to continuously fertilize eggs without the refill of new sperm from males (Mauchline 

1998). 

  Kiørboe (2006) found that the sex-ratio of copepods communities was affected by 

their reproduction systems. Copepods lacking sperm storage organs, such as T. longicornis, 

tend to be closer to an equal gender based ratio. Sex-ratio in T. longicornis, although 

fluctuating, has been observed from previously experiments to be close to 1:1 (Harris and 

Paffenhofer 1976).  

 

It is generally believed that males perform a trade-off between energy devoted to reproduction 

and growth (Stearns 1992), or predator avoidance (Kiørboe 2008). However, there are 

indications that the competition for females and the energetic cost of producing 

spermatophores have larger energetic requirements then commonly believed (Dewsbury 

1982). He argues that even if the cost of spermatozoa production is low, it is the ejaculate or 

spermatophore that is the appropriate unit of consideration. The cost of a spermatophore is 

much greater than the individual spermatozoa. With an expensive spermatophore, it may be 

wise to time the production to the best suitable period. The sex-ratio may therefore change the 

reproductive behavior in different ways depending on the gender distortion. If so, it would be 

advantageous for males to either be selective in mate choice or differentiate its investment 

effort. In her review, Titelman et al. (2007) suggested that sexual selection may play a role in 

copepod mating behavior, and that sexual selection is density dependent with a higher mate 

choice under higher mate encounter rates.  

 

Sex-ratio is said to be one of the key components in the evolution of life-histories (Milchtaich 

1992). The ratio of sexually active males and females, at a given time, is known as the 

operational sex ratio (OSR). In a male based OSR, females can become more selective, and 

males tend to be more competitive. In a female based ORS the male have less competition 
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and can mate with more females, the females also tend to be less discriminative (Dur et al. 

2012).   

 

Adaptations to male competition do not only occur on the pre-copulatory stage, but is also 

seen in the post-copulatory stage when males attach themselves to the female. This is known 

as mate guarding, and will reduce the risk of both spermatophore displacement and make the 

female inaccessible for competing males (Jersabek et al. 2007). Burton (1985) also showed in 

a study on Tigriopus californicus, that males can have pre-copulatory mate guarding. The 

males clasped to females in younger developmental stages when faced with lower potential 

mates. In a high male-skewed environment, this is a strategy that can determine if one will 

have the opportunity to mate or not.    

 

In the ocean, it is common to observe a skewed sex-ratio of copepods (Hirche 1991), and the 

sex-ratio will also fluctuate throughout the year (Dutz et al. 2012). How, or if the sex-ratio 

influencing the male investment in production is still unknown.  

  In my study, I investigated whether sex-ratio had any influence on the spermatophore 

production and if there are differences in the investment in female-skewed and male-skewed 

communities. The study setup was to incubating bottles containing six copepods in three 

different sex-ratios (male-skewed, female-skewed and gender balanced), with gender 

balanced treatments functions as the control.  

  I also tested spermatophore size compared to the production rate with regards to 

different sex-ratios treatments. This was to determine if there are different strategies between 

the treatments. I will also test if spermatophore production rate are affected by the size of the 

spermatophore. 

These questions was the basis for my hypothesizes:   

 

H1. Males in female-skewed treatments (2 males and 4 females) experience less 

intraspecific competition and have a higher chance of finding an unfertilized females, will 

invest more in the production of spermatophores. 

H2. Males in male-skewed treatments (4 males and 2 females) have lower chance of 

finding unfertilized females and will invest less in the spermatophore production.  
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1.2 Biology of Temora longicornis 

T. longicornis is a coastal species living in 

the North Atlantic Sea and the Polar Sea, 

where they inhabit the top layer  

of the water column (www.iobis.org).  

T. longicornis are suspension-feeders, 

however feeding strategies differ between 

sexes. Female tends to move slower and 

using nearly all their time on feeding, 

whereas males alternate between feeding 

and swimming at high speeds (Kiørboe 

2008). Suspension-feeders make a feeding 

current and filter small particles like algae. 

This is why copepods are said to be the 

link between suspended phytoplankton 

and higher trophic levels.  

Usually the copepod life-cycle is divided into three developmental stages: The nauplii stage, 

the copepodid stage and the adult stage. The nauplii and the copepodid stages are further 

divided into six and five stages (N1- N6 and C1 – C5), when including the adult stage (C6), it 

gives a total of 12 stages (figure 2). As male T. longicornis reach their adult stage, they 

develop into mature males and will be fertile for just a short amount of time. The males have 

around eight days to search and mate as many times as possible (Sichlau and Kiørboe 2011). 

When autumn arrive the female copepods will lay high densities of benthic resting egg (Naess 

1996). The eggs will hatch in the spring.  

 

Temora longicornis tracks and follows females by searching for pheromone trails that can last 

up to 21.4 seconds and be 61.6 mm long (Goetze and Kiørboe 2008). When the males are  

close, 0.3 to 2.4 mm from the female, he lunges to capture her. The sexual dimorphism of T. 

longicornis involves several characteristics, all which are adapted for transfer and placement 

of the spermatophore on the captured female (Mauchline 1998). In a study done on the close 

cousin of T.longicornis, Temora stylifera, Corni et al. (2001) found that male differs from the 

Figure 2: Generalized drawing of Calanoid copepoda 

life-cycle showing stages from egg to fully developed 

copepodid stage C6 (Nybakken 1982). 

 

http://www.iobis.org/
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female by having a hinge on the right antennules, copulatory appendages evolved from 

thoracic legs and five distinct somites on the urosome.  

Since the T. longicornis lacks a storage organ for storing spermatozoa and fertilize the eggs 

(Mauchline 1998), it must mate several times (Sichlau and Kiørboe 2011). This makes T. 

longicornis ideal for mating experiments. Unlike some copepod species that carry the 

fertilized eggs attached to the genital somite until hatching into nauplii, T. longicornis are 

broadcast spawners and releases the fertilized egg freely in sea (Drif et al. 2010). Broadcast 

spawners have little investment after releasing the eggs, and it is believed that broadcast 

spawning have evolved in Calanoid copepods as an adaption to having a pelagic existence in 

contrary to Harpacticoid and Cyclopoid copepods who carry their egg in egg sacks throughout 

their development (Webb and Weaver 1988). 
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2 Material and Methods 

 

2.1 Experiment and general procedure  

 

This thesis is part of a collaboration study investigating the male reproductive investment of 

Temora longicornis. The experiment consists of three different aspects effecting investment, 

the effect of risk (Bjærke, unpublished), food accessibility (Bækkedal, unpublished) and sex-

ratio (this study). The collaboration ended after the experiment was finished.      

 

2.1.1 Sampling and study site  

Both the sampling and the experimental studies were executed at the University of 

Gothenburg field station, Sven Lovén Center for Marine Sciences Kristineberg in 

Fiskebäckskil. Kristineberg field station is located in the east parts of Gullmarsfjord (the 

largest and only true fjord in Sweden) on the western coast of Sweden (figure 3). Sampling 

was continuously done every day from 04/05 to 26/05 2012. The two sampling locations 

(figure 3) are both coastal water but differ in depth (sampling location 1 = 50 meters and 

sampling location 2 = 20 meters). Not only is the location ideal for zooplankton studies, the 

field station was also equipped with a wet-laboratory and climate control room for executing 

experiments. The experiments were carried out with water pumped up from 32 meter depth 

just outsider the field station. In the period when the experiments were carried out, the 

temperature and salinity on 32 meters depth was 8.4 ± 1 °C and 32.3 ± 0.9 PSU, and surface 

water was 14.5 ± 4.5 °C and 19.6 ± 2.1 PSU (http://www.weather.loven.gu.se/en/ date 

between 2012-05-01 and 2012-05-31). The chryptophyte Rhodomonas salina was used as 

food in both culture and experiments. It was grown in aerated batch cultures at the facility. 

Every day some of the R. salina cultures were replaced with a B1 medium and vitamins 

solution. All animals in both cultures and experiment setups were provided food in excess.  

http://www.weather.loven.gu.se/en/
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The amount of excess food was 15000 cells per mL. To calculate this, a sample was taken 

from the R. salina culture and counted using the particle counter Elzone 180 XY. The number 

of cells mL
-1

 was then extrapolated using the formula    C2 * V2 = C1 * V1, where C is the 

concentration and V is the volume. 

 

Figure 3: Study area and sampling stations. Kristineberg = University of Gothenburg, Sven Lovén Center for 

Marine Sciences, Kristineberg, N 58° 15.132‘, E 11° 27.096‘. 1 = Sampling done by RV Oscar von Sydow, 2 = 

sampling done by row boat (Map made from Google Maps). 

 

All animals were obtained using WP2 plankton net (200µm) (figure 3). The RV Oscar von 

Sydow, a 12 meter long research vessel was used every third or fourth day. On a daily basis 

samples were collected using a small rowing boat. Animals were collected every day in 

between 09:00 and 12:00. All animals were sampled in the top 20 – 30 meters of the water 

column. The animals were placed in thermo containers on the boats for safe transport to the 

laboratory.        

 

2.1.2  Sorting and culture 

Samples were placed in an aerated 50 L container to give the animals more space.  

T. longicornis were sorted and verified under a light microscope. The males in the copepodid 

stage C4 and C5 was individually placed in wells on a 6-microwell plate and left to molt into 
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the adult C6 stage. This was also done to insure that only virgin males were used in the 

experiment. The sorting was done using a Leica light microscope. Since younger stages of 

copepods are harder to gender-determine, they were kept in a beaker until their gender could 

be determined. The culture was kept in an aerated 50 L container and was used as an 

additional supply of animals if needed.  

 

2.1.3 Incubation 

After molting into C6 virgins, the animals were collected and placed in 250 mL turn-cap-

bottles free of bubbles on a rotating wheel for four days, the total volume of the bottles when 

filled to the top is 320 mL. Three different treatments were chosen to test for sex-ratio effect 

(table 1). Male-skewed having a male to female ratio of 2:1, female-skewed having a male to 

female ratio of 1:2 and a gender balanced treatment that also functioned as a control. The 

three different treatments were randomly spread out over the whole experimenting period. 

The total number of individuals was 270 (134 males and 137 females), this was divided in 45 

bottles (gender balanced (n = 14), female-skewed (n = 16) and male-skewed (n = 15)).  

 

Table 1: Table showing the three different treatments and the numbers of males and females in each treatment. 

Sex\Treatment Control Male-skewed Female-skewed 

Males 3 4 2 

Females 3 2 4 

 

 

In the incubation period T. longicornis was kept in a climate control room at a temperature of 

15 degrees Celsius, this have earlier been shown to be the optimal temperature (Maps et al. 

2005, Record et al. 2012). The incubation had a light-dark cycle of 12 hour light and 12 hour 

dark. Replicates were randomly placed on a rotating wheel which rotated at 1/7 rotation per 

minute (0.15 rpm). This is to prevent the algae from falling to the bottom and simulate the 

sea. The water was changed after two days on all treatments to prevent anoxia, monitor the 

condition of the animals and to keep the concentration of food stable at 15000 cells per mL. If 

necessary, weak or dead females were replaced with new ones. The water from two days of 
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incubation was thoroughly inspected by emptying the content through a 30 µm sieve and 

examined under a light microscope.  All spermatophores, eggs and nauplii were counted. 

Copepods produce ~1 spermatophore per day (Acartia tonsa ~1 per day (Ceballos and 

Kiørboe 2010), Centropages typicus <1 per day (Miralto et al. 1995) and Temora stylifera 0.7 

per day (Ianora and Poulet 1993)). To insure the incubated animals experienced the effect of 

the treatment, the incubation was set to a period of four days.       

 

2.1.4 Counting and preserving   

All spermatophores, eggs and nauplii were counted, and as many spermatophores as possible 

were placed on cryo tubes and shock-frozen in nitrogen gas containers (Dewar container). The 

containers were later transported back to the University in Oslo. Counting was done by 

emptying bottle through a 30 µm sieve. Each bottle was rinsed two times to insure that 

everything was accounted for. The substance was then released from the sieve into a 

checkered petri dish and counted under a light microscope. A sharpened glass pipette was 

used to collect the counted spermatophores. Both males and females used in the experiments 

were placed in eppendorf tubes and preserved with Lugol. Shrinking of prosome length by 

preserving on Lugol is not accounted for in the measurements (Jaspers and Carstensen 2009).  

Preserved animals were brought back to the University in Oslo where they were photographed 

and measured.   

 

2.1.5 Pictures and length measurements 

All measurements were done in the laboratory in the University in Oslo. Measurements were 

conducted by photographing the T. longicornis while lying in an angle that shows the full 

length of the prosome (figure 4a). The picture was taken using a Canon EOS 7D camera with 

a MP-E 65mm 1:2.8 Canon macro photo lens. The camera was mounted on a camera stand 

before the pictures was taken. The photographed animals were then measured in the free 

multi-platform image-analysis software Image J (Schneider et al. 2012). It uses the pixel in 

the image and a known distance provided by measuring a picture of a calibration slide to 

calculate the length of the animal. The frozen cryo tubes containing spermatophores was 
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defrosted and the cryo tubes was rinsed several times. This was done by carefully spraying 

water into the cryo tubes using a micropipette containing 200 µL of water. The length of the 

spermatophores (figure 4b) was measured with a Leica DMLS microscope.  

   

Figure 3a, b: a) Picture of adult male Temora longicornis prepared on Lugol. PL = prosome length.  

b) Spermatophores.  

 

2.2 Statistical analysis 

Statistical analyses were performed with the R language and statistical programming 

environment version 2.11.1 (www.R-project.org). A generalized linear model (GLM) with a 

quasipoisson distribution to predict the results in the data set. Poisson regression is common 

to use when dealing with counted numbers. Poisson models can underestimate the variance, 

when using quasipoisson instead of poisson it allows for overdispersion in the data set and 

gives prediction from the model. 

 

2.2.1 Spermatophore and egg production 

To test the sex-ratio on spermatophore and egg production in the GLM models, the males or 

females are set as an offset. The offset adjusts for the different number of males or females 

producing the observed spermatophore or egg count in the different treatments such that the 

model prediction will be log (spermatophores / male or egg / female).  

PL 

a) b) 

Photo: Marius Nordbotten Photo: Marius Nordbotten 

http://www.r-project.org/
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To test the effect of male size on the production rate a scatter plot showing production rates 

and the prosome length was made. The prediction line used to estimate production per size is 

taken from the GLM model.  

 

2.2.2 Spermatophore size vs. production rate 

To test for difference in the spermatophore size with the production rate regarding the sex-

ratio, males are divided in to treatments, male-skewed treatment and a treatment combining 

gender balanced and female-skewed. A scatter plot displays the 26 individuals and their 

number of produced spermatophore and its size. A linear model predicts the regression slopes 

of the two treatments.  
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3 Results 

 

3.1 Effect of skewed sex-ratio 

The three different gender-skewed treatments showed no clear difference in production rate 

(tables 3 and 4). Male prosome length (PL) had a high influence on the spermatophore 

production rate (table 3). The same was seen in the egg production, where larger females 

produced significantly more than the small ones (table 4). Treatments showed a high 

variation, however both spermatophore and egg production had a higher, but non-significant 

mean production in the gender-skewed treatments than the gander balanced treatment (table 

2). Spermatophore size from male-skewed treatments was positively correlated with 

production rate, while males form the combined gender balanced and female-skewed 

treatment showed a negative correlation between spermatophore size and production rate 

(figure 8).  

 

Table 2: Table of descriptive statistics. Number of replicates, sex-ratio, spermatophore production and egg 

production per four days (mean   SD). Each replicate is one 320 mL bottle containing six copepods, making a 

total of 270 individuals. The gender balanced treatment (1:1) functioned as control.  

Replicates Sex-ratio 

 (Male : Female) 

Spermatophore male
-1 

mean ± SD 

Egg female
-1 

mean ± SD 

14 1:1 3.19 2.0 19.71 12.9 

16 1:2 3.94 2.9 26.56 16.7 

15 2:1 3.72 1.6 30.43 19.1 
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3.1.1 Spermatophore production 

The results after four days incubation showed that sex-ratio has no significant influence on the 

production (table 3). The highest observed mean spermatophore production was in the 

female-skewed treatment, while the lowest was in the gender balanced treatment. Males in the 

gender balanced treatment had a 19 % lower production the female-skewed treatment and 

14% less the male-skewed treatment (table 2). The largest variance in production was in the 

female-skewed treatment, which varied from 0 - 10 spermatophores per male per four days 

(figure 5). The results of spermatophore production predicted from the generalized linear 

model (GLM) showed that the effect of sex-ratio was not significant (t45 = 0.106, DF = 43, p = 

0.92 [GLM, quasipoisson distribution]). Size of the male, represented by its prosome length 

(PL) had a clear effect on production rate (t45 = 2.727, DF = 43, p = 0.01 [GLM, quasipoisson 

distribution]).      

 

Table 3: Estimates, standard error and the significant value from the generalized linear model. Log (females) is 

the influence of sex-ratio on the spermatophore production rate and log (PL males) is the influence of the male 

prosome length (PL) on production rate.  

  Estimate Std. Error value Pr 

(>|t|) 

log (females)    0.03 0.29 0.92 

log(PL males)    3.96 1.45 0.01 
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Figure 5: Boxplot showing production of spermatophores after four days. Spermatophore production per male 

per four days in individual replicates (y-axis), and the treatments (x-axis): Control is gender balanced, female-

skewed has a male to female ratio of 1:2 and male-skewed has a male to female ratio of 2:1.  
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3.1.2 Effect of prosome length on production rate 

 

Figure 6: Scatter plot showing spermatophore production after four days versus prosome length in µm (n = 45). 

Points representing individual production and the best fit predicted production rate (red line) calculated from the 

GLM model (table 3).  

 

The spermatophore production was strongly influenced by the size of the male Temora 

longicornis (t45 = 2.727, DF = 43, p = 0.01 [GLM, quasipoisson distribution]).      

Figure 6 shows the prediction line estimated from the GLM model (table 3). It predicts 

production rate increases as the prosome length increases. By using the formula (Log 

(spermatophore) = 

-25.54 + 3.96 Log (PL) (table 3, GLM model)), the calculated increase is: 10% increase in 

prosome length gives a 46% increase in spermatophore production (1.1
3.96 

= 1.46). 
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3.1.3 Egg production  

 

The highest egg production was seen in the male-skewed treatment, and the lowest in gender 

balanced treatment (table 2), the gender balanced treatment produced 35.2% less than the 

male-skewed and 25.8% less than female-skewed. The GLM modeling showed that sex-ratio 

had no significant effect on egg production (t45 = -0.070, DF = 42, p = 0.94 [GLM, 

quasipoisson distribution]). The prosome length (PL) of the females had a significant 

influence on egg production (t45 = 3.97, DF = 42, p = 0.00 [GLM, quasipoisson distribution]), 

such that a 10% increase in prosome length gives a 60% increase in egg production (1.1
4.93 

= 

1.60). 

 

Table 4: Estimates, standard error and the significant value of the generalized linear model. Log (females) is the 

influence by sex-ratio on the production rate and log (PL females) is the influence of the female size on 

production rate.  

 Estimate Std. Error value Pr (>|t|) 

log(males)    -0.02 0.29 0.94 

log(PL females)    4.93 1.24 0.00 
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Figure 7: Boxplot of egg production rates after four days. Eggs production per female per four days incubation 

(y-axis) and the treatments (x-axis): Control is gender balanced, female-skewed has a male to female ratio of 1:2 

and male-skewed has a male to female ratio of 2:1. 

 

 

3.2 Analysis of spermatophore size with production rate 

The qualitative production analysis, showed that spermatophore size and spermatophore 

production is negatively correlated with males from male-skewed treatments (figure 8, red 

line), and positively correlated with males form either gender balanced or female-skewed 

treatment (figure 8, black line). Males from the male-skewed treatment produced smaller 

spermatophores as the production increased. While the opposite was shown in males from 

gender balanced or female-skewed treatments, here males produce larger spermatophores as 

the production increases. The different correlation cannot be explained by the production of 

spermatophore per male (t26 = 0.799, DF = 22, p = 0.43 [LM]). The male-skewed treatment 

and the combined female-skewed and gender balanced treatments were significantly different 
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in terms of spermatophore size and production rate (t26 = 2.157, DF = 22, p = 0.04 [LM]). The 

different correlation was not explained by combining production per male per four days whit 

the treatment interaction (t26 = -0.939, DF = 22, p = 0.08 [LM]), therefore the model can be 

simplified by removing the interaction section.  

 

Table 5: Table showing estimates, standard error and the significance value from the linear model explaining 

correlation between spermatophore size and production rate. Spermatophore production per male per four days 

(n = 26). Different treatments being if males are in: Male-skewed treatment(n = 15) or males from the combined 

female-skewed and gender balanced treatment (n = 11). Spermatophore production per male per four days with 

the different treatment interaction.  

 Estimate Std. Error Pr(>|t|) 

Spermatophore production male
-1 

four days
-1

 

0.25 0.32 0.43 

The different treatments  5.31 2.46 0.04 

 

Spermatophore production male
-1

 

four days
-1

 with the treatment 

interaction 

-0.94 0.51 0.08 
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Figure 8: Scatter plot of spermatophore production rate as a function of spermatophore length (µm). Red dots 

and line reprisenting spermatophore production in male-skewed treatment (n = 15), black dots and line repriset 

the spermatophore production of the combined two other treatments: gender balanced and female-skewed (n = 

11). 
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4 Discussion 

The natural fluctuations in sex-ratio of the calanoid copepod Temora longicornis throughout 

the year have earlier been documented (Dutz et al. 2012). Which implications this can have 

with regards to the reproduction investment is still unknown. The goal for this thesis was to 

investigate how the sex-ratio influenced reproduction investment in male T. longicornis. My 

results are in consensus with Ceballos et al. (2013). Stating that sex-ratio have no influence on 

spermatophore production. 

 

Studies on copepod reproduction have traditionally focused on the female production of eggs 

(Halsband and Hirche 2001, Jonasdottir et al. 2009, Drif et al. 2010, Dutz et al. 2012). It is 

just recently that researcher have started focusing on the production made by male copepods 

(Dur et al. 2012, Ceballos et al. 2013). Even though there is no clear indication that 

spermatophore production differ with the sex-ratio (tables 3, 4), both gender-skewed 

treatments exhibited higher mean production rate than the gender balanced treatment (table 2).  

 In the male-skewed treatment, spermatophore size is negative correlated with the 

production rate and shows a decrease in size as the production rate increased (figure 8, red 

line). The opposite was seen for males in female-skewed and gender balanced treatment 

where spermatophore size and production rate were positively correlated (figure 8, black 

line). 

 

4.1 Male reproductive investment with regards to skewed 

sex-ratio 

In the light of the results of this study, where males have no difference in their investment of 

reproduction, I have rejected my first two hypotheses H1 and H2. The first hypotheses (H1) 

was how male investment when incubated in a female-skewed environment. Here I predicted 

an increase in spermatophore production as a result of the high chance finding unfertilized 

females. Hypotheses 2 (H2) predicted that male incubated in a male-skewed treatment have 
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lower chance of meeting an unfertilized female and will therefore invest less in production of 

spermatophores. None of the predictions were not observed. 

 

Sperm limitation, in terms of energy requirements, is for most animal groups not a problem. 

This is because of their small size and apparent low cost of production (Charnov et al. 1981, 

Dewsbury 1982), but this is an assumption which lack overall consideration. Male copepods 

must invest time and energy on mate searching, risk of predation and time spent on eating 

(vanDuren and Videler 1996, Kiørboe 2011a). Therefore, the energy put into reproduction has 

to be timed carefully.   

  In my hypotheses I assume that there is a cost to producing spermatophores, therefore 

there is a paradox why males do not adjust their production according to when it is beneficial 

to reproduce. With the chance of finding an unfertilized female being affected by the sex-

ratio, there should be observed a difference of number of produced spermatophore in the three 

treatments. With the lack such observation, the invested energy can be allocated to other areas 

such as an adjustment of the search behavior.  

 In a study done on Oithona davisae, Heuschele and Kiørboe (2012) observed changes 

in search behavior from males incubated with virgin females. These males swam significantly 

faster, which can benefit both males and females by lowering search time and thereby the risk 

of predation. As there was no observed adjustment in spermatophore production in any of the 

treatments, the same search behavior may also have been observed in this study. Changes in 

behavior like this is more important for species such as Oithona davisae as they can store 

sperm and females only have to mate once (Ceballos and Kiørboe 2011). Temora longicornis 

lack this ability and must therefore mate multiple times (Barthelemy et al. 1998). Males in 

female-skewed treatments with a high chance of finding unfertilized females should therefore 

invest more on search time and mate whenever possible.  

  If the change in investment in terms of skewed sex-ratio were to be explained by an 

adjustment in search behavior, one of the limiting factors in the study could be the encounter 

rate. If sex-ratio is based on how many times males meet females, males need to have enough 

encounters in order to make investment productive. By using the model for encounter rates 

for Temora longicornis (Doall et al. 1998, Kiørboe and Bagøien 2005), and transferring it to 

each treatment, it predicts an estimate of how many times each males encountered females. 
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Encounter rate (E) is estimated from search volume rate ( ) and the concentration of males 

(    and females (   .   are dependent on the species method of tracking females. 

 

In the case of T. longicornis, females release a pheromone trail which males follow (Doall et 

al. 1998).   are explained by being an estimate of male search volume rate per liter (L) per 

day (Kiørboe and Bagøien 2005). The estimated search volume rate for T. longicornis is 117 

L per day (Doall et al. 1998), and the volume used in the experiments is 320 mL.      

 

 

 

Table 6: Table showing male to female encounters per male per day. 

 Encounters 

Gender balanced (Control) 112.32 

Female-skewed 149.76 

Male-skewed 74.88 

 

 

In table 6 the encounter rate is estimated to be the encounter rate for each individual male per 

day. It shows that males have more than enough encounters with females in all treatments, 

thus encounter rate is probably not an inhibiting factor for spermatophore production.  

 

The concept of males competing for females is well established (Begon et al. 2006). But how 

male copepods experience the operational sex ratio (OSR) and the presence of other males are 

uncertain. If males have the ability to determine sex ratio, it would be reasonable to assume 

that their behavior would adapt to fit the best strategy. Studies on skewed sex-ratio behaviour 

done on insects using spermatophore as a reproduction instrument showed that males under 

the in male-skewed environments undergo changes in reproductive investment (Gao and 

Kang 2006). They found that in Chinese bushchricket, males in a male-skewed environment 

invest in fresh ampulla weight and sperm number, which in a high competing circumstance 

will increase fertilization potential and ejaculate.   
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In the study, there were observed a high variance of produced spermatophores per male in all 

treatments, especially in the female-skewed treatment (figure 5). One possible reason for the 

observed high variance could be the low number of males (two males and four females). High 

individual variation in spermatophore production has been seen in precious studies on Acartia 

tonsa (Ceballos and Kiørboe 2010) and Temora stylifera (Ianora and Poulet 1993). The 

average production for A. tonsa and T. stylifera was one and 0.7 spermatophore per male per 

day, but the individual variation ranged between 0 - 4 for A. tonsa and 0 - 2.3 T. stylifera. 

  The results from this study showed similar variation, the production rate of males in 

female-skewed treatments varied from 0 – 2.5 spermatophore per male per day (figure 5).  

High individual variance can indicate that there are some males that function as the dominant 

donors to the gene pool and many others that contribute very little.    

 

One explanation for the lack of observed adjustment in spermatophors production according 

to sex-ratio is that producing spermatophore is low in cost. Or that excess food has dilutes the 

effect of adjusting production. If there is no cost in producing a spermatophore, but rather a 

production limitation in terms of the time it takes to produce one. One might think that they 

would produce a spermatophore just in case they find a female. This might explain the 

observed production of ~1 each day conclusive in several studies (Ianora and Poulet 1993, 

Miralto et al. 1995, Ceballos and Kiørboe 2010), including this.  

In a study on pacific white shrimp (Litopenaeus vannamei), sperm quality was higher 

in regenerated spermatophores (Ceballos-Vazquez et al. 2004),  Alfaro and Lozano (1993) 

also concluded when studying L. vannamei, that spermatophores which are not transferred to 

a female or manually ejaculated will eventually degenerates of natural processes. This can 

indicate that males produce a new spermatophore instead of saving the already produced 

spermatophore if food is unlimited, as it was in this study. This would explain the low number 

of observed females with attached spermatophores (females found carrying spermatophores 

had a high number of attached spermatophores, figure 9a) and the high number of 

spermatophores found lying on the bottom of the bottle (own observations). However females 

are known to remove discharged spermatophores (Ohtsuka and Huys 2001). There were also 

found males carrying spermatophore (figure 9b).  There is no profit in placing a 

spermatophore on a male, except the disability it would be for the competing male they have.  
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Figure 9a. and b: a) Photo of spermatophore in a cluster. b) Spermatophore attached to a male Temora 

longicornis.  

 

The prosome length of males is known to affect the spermatophore size in copepods (Ceballos 

and Kiørboe 2010, Sichlau and Kiørboe 2011). In this study I observed that males not only 

produce larger spermatophores but also have a higher production rate. With larger males both 

producing larger spermatophores and also have a higher production rate, one could expect that 

the selection would drive copepods to becoming larger. However, larger copepods are more 

likely to be eaten by visual predators (Fortier et al. 2001).  

 

 

4.2 Egg production in a gender-skewed environment  

Female production rate has earlier been proven to be linked with the size of females (Sichlau 

and Kiørboe 2011), the same was seen in this study. The production rate with regards to the 

different treatments was not significant, showing investment is unaffected by sex-ratio. 

Spermatophores contains sperm cells and seminal liquid, and the sperm cell lack flagellum 

(Bozzo et al. 1998). The number of sperm cells in a spermatophore is more or less constant 

and independent of the size of the spermatophore (Sichlau and Kiørboe 2011). It is still 

uncertain what the seminal liquid consist of. It has been speculated that it can be a nuptial gift 

for the female. In a study on spermatophores size in bushcrickets, Wedell (1993) found that 

males invest in mating effort, this being the nuptial gift, rather than parental effort.  

Photo: Marius Nordbotten Photo: Marius Nordbotten 

b) a) 
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4.3 Spermatophore size and production rate 

In the study I also tested the spermatophore size as a function of production (figure 8). The 

results showed that males in a male-skewed treatment have a negative correlation between 

size and production, and males in a female-skewed or a gender equal treatment showed a 

positive correlation.  

 

The number of sperm cell in a spermatophore from Temora longicornis is on average 1000 – 

1300 sperm cells per spermatophore (Sichlau and Kiørboe 2011). This is five times more than 

the average egg production in one single mating event. Males that produce many small 

spermatophores have the opportunity to fertilize more females in a short amount of time. This 

may be an adaption to a high male-skewed environment. Sexual selection has been pointed 

out as an influencing factor to the reproductive behavior (Titelman et al. 2007, Ceballos and 

Kiørboe 2010, Ceballos and Kiørboe 2011). In a male-skewed environment, females have the 

opportunity to choose from multiple mating partners. Sichlau and Kiørboe (2011) saw that 

females, if given the opportunity, prefer larger males (large males produce large 

spermatophores). Selective females may benefit from the males that investing in larger 

spermatophores. However, results showed a negative correlation between spermatophore size 

and production rate. This could be interpreted as some male trying their luck with several 

females by making many small spermatophores, or investing in a few larger spermatophores. 
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5 Concluding remarks 

The results from this study show that sex-ratio is no influence on the spermatophore 

production from males. As a result, both hypothesis (H1 and H2) was rejected. If sex-ratio has 

any influence on reproduction investment, this investment is allocated elsewhere then 

spermatophore production. Spermatophores size are known to be positively correlated with 

prosome length, in this study I observed that larger males also have a higher spermatophore 

production rate then smaller males. The high variance in production rate shown in the study 

was explained as being a result of high individual differences. This can indicate that some 

alpha males dominating the fertilization of females.      

 In conclusion, spermatophore production seems not to be effected be the sex-ratio in 

Temora longicornis. However, sex-ratio is not ruled out as to influence the reproduction 

investment. Further studies on male reproductive investment are needed to fully understand 

these remarkable animals     
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