SIRI JUVIK
MASTEROPPGAVE
MAI 2013

FARMASØYTISK FORMULERING AV DEN FOTOSENSIBILISERENDE FORBINDELSEN TPCS$_{2a}$ TIL ANVENDELSE INNEN TEKNOLOGIEN FOTOKJEMISK INTERNALISERING (PCI)

AVDELING FOR FARMASI
FARMASØYTISK INSTITUTT
DET MATEMATISK-
NATURVITENSKAPELIGE FAKULTET
UNIVERSITETET I OSLO

INSTITUTT FOR KREFTFORSKNING
AVDELING FOR STRÅLINGSBIOLOGI
OSLO UNIVERSITETSSYKEHUS
RADIUMHOSPITALET

Veileder:
Postdoktor Marianne Lilletvedt Tovsen
Professor Solveig Kristensen

Veileder:
Professor Kristian Berg
© Siri Juvik

2013

Farmasøytisk formulering av den fotosensibiliserende forbindelsen TPCS$_{2a}$ til anvendelse innen teknologien fotokjemisk internalisering (PCI)

http://www.duo.uio.no/

Trykk: Reprosentralen, Universitetet i Oslo
FORORD

Jeg vil gjerne få starte med å takke PharmaLuxLab ved Avdeling for galenisk farmasi på Universitetet i Oslo og PCI Group ved Avdeling for Strålingsbiologi på Oslo Universitetssykehus for at jeg fikk mulighet til å utføre denne spennende oppgaven. Jeg ble tatt veldig godt imot begge steder, har blitt kjent med to inspirerende forskningsmiljøer og møtt mange koselige mennesker.

Deretter vil jeg takke mine hovedveiledere professor Solveig Kristensen ved Farmasøytisk Institut og professor Kristian Berg ved Radiumhospitalet, for god og oversiktlig veiledning. En spesiell takk til postdoktor Marianne Lilletvedt Tovsen som har gitt meg den beste oppfølgingen jeg kunne ønske meg, ved å alltid være tilstede for meg og gi meg all den hjelp jeg måtte trenge.

Jeg vil også takke de andre på avdeling for galenisk farmasi og avdeling for strålingsbiologi, for opplæring, støtte og nyttige innspill på laboratoriet.

Jeg er til slutt takknemlig for å ha de beste rundt meg på fritiden min. Både familie og venner er utrolig viktige for meg, og har gitt meg god støtte og avkobling når jeg måtte trenge det under hele studiet.

Oslo, mai 2013

Siri Juvik
INNHOLD

FORORD... 3
INNHOLD.. 4
FORKORTELSESR... 7
SAMMENDRAG.. 8
HENSIKT... 9
1 INTRODUKSJON.. 10
 1.1 Fotosensibiliserende forbindelser 10
 1.2 Fotodynamisk terapi (PDT) 13
 1.3 Fotokjemisk internalisering (PCI) 15
 1.4 TPCS$_{2a}$.. 18
 1.5 Farmasøytisk formulering ... 21
 1.5.1 Miceller og micelledannende stoffer 21
2 MATERIALER.. 28
 2.1 Råvarer .. 28
 2.2 Cellelinje ... 28
 2.3 Utstyr .. 28
 2.4 Instrumenter .. 29
3 METODER.. 31
 3.1 Prøveopparbeidelse .. 31
 3.1.1 Stamløsninger .. 31
 3.1.2 Prøver til spektroskopiske målinger 35
 3.1.3 Prøver til viskositets- og osmolaritetsmåling 42
 3.1.4 Prøver til celleforsøk ... 47
 3.2 Spektroskopi studier .. 48
 3.3 Viskositet ... 49
 3.4 Osmolaritet ... 51
 3.5 Cellelinje og kultivering ... 53
 3.6 Fotodynamisk terapi av TPCS$_{2a}$ in vitro 53
 3.7 Celleoverlevelse .. 54
 3.8 Intracellulær lokalisering av TPCS$_{2a}$ 54
 3.9 Flowcytometri ... 55
4 RESULTATER OG DISKUSJON................................. 57
 4.1 Bestemmelse av CMC-verdier 57
 4.1.1 CMC-bestemmelse av miceller av Pluronic F127 59
4.1.2 CMC-bestemmelser av mixede miceller av Pluronic F127 og Tween 80 i ulike molare forhold ... 60
4.1.3 Oppsummering ... 67

4.2 Viskositetsmålinger ... 69
4.2.1 Viskositetsmålinger av formuleringer av 10 mg/ml TPCS$_{2a}$ etter solubilisering med Pluronic F127 ... 69
4.2.2 Viskositetsmålinger av formuleringer av 10 mg/ml TPCS$_{2a}$ etter solubilisering med Tween 80 ... 71
4.2.3 Viskositetsmålinger av formuleringer av 10 mg/ml TPCS$_{2a}$ etter solubilisering med Pluronic F127 og Tween 80 i molare forhold 1:1 73
4.2.4 Viskositetsmålinger av formuleringer av 10 mg/ml TPCS$_{2a}$ etter solubilisering med Pluronic F127 og Tween 80 i isotone medier 74
4.2.5 Sammenligning av viskositet når TPCS$_{2a}$ er tilsatt ulike medier 77

4.2.6 Sammenligning av viskositet når TPCS$_{2a}$ er tilsatt ulike medier 77

4.3 Osmolaritetsmålinger ... 79
4.3.1 Nedre deteksjonsgrense og referansegraf ... 80
4.3.2 Beregninger .. 82
4.3.3 Frysepunktdepresjon av vandige formuleringer av TPCS$_{2a}$ 83
4.3.4 Osmolaritetsmåling av formuleringer med 10 mg/ml TPCS$_{2a}$ i Pluronic F127 .. 83
4.3.5 Osmolaritetsmåling av vandige formuleringer av TPCS$_{2a}$ og Tween 80 87

4.3.6 Osmolaritetsmålinger av formuleringer med 10 mg/ml TPCS$_{2a}$ med mixede miceller av Pluronic F127 og Tween 80 i molare forhold 1:1 90
4.3.7 Sammenligning av osmolaritet i de ulike formuleringene 93
4.3.8 Frysepunktdepresjon av isotone prøver av TPCS$_{2a}$ med Pluronic F127 og Tween 80 .. 94

4.4 In vitro celleforsøk .. 96
4.4.1 Vekstkurve av WiDr celler .. 96
4.4.2 PDT respons med TPCS$_{2a}$ i Tween 20 .. 97
4.4.3 PDT respons i WiDr celler med TPCS$_{2a}$ i ulike formuleringer 98
4.4.4 Celletoksisitet av de ulike formuleringene ... 99

4.5 Intracellulær lokalisering av TPCS$_{2a}$ - effekt av formulering 101
4.5.1 Mikroskopering av celler før chase ... 101
4.5.2 Mikroskopering av celler etter chase .. 104
4.5.3 Oppsummering ... 106

4.6 Flowcytometri .. 107
4.6.1 Ubehandlede celler ... 107
4.6.2 Celler behandlet med 0,4 μM TPCS$_{2a}$ i 96 % etanol (v/v) 107
4.6.3 Celler behandlet med 0,4 μM TPCS$_{2a}$ i 3 % Tween 20 108
4.6.4 Celler behandlet med 0,4 μM TPCS₂₃ i 1 μM Pluronic F127108
4.6.5 Celler behandlet med 0,4 μM TPCS₂₃ i 1μM Tween 80108
4.6.6 Celler behandlet med 0,4 μM TPCS₂₃ i totalt 1 μM Pluronic F127 og Tween 80 i molart forhold 1:1 ...108
4.6.7 Celler behandlet med 0,4 μM TPCS₂₃ i totalt 1 μM Pluronic F127 og Tween 80 i molart forhold 1:10 ...109
4.6.8 Celler behandlet med 0,4 μM TPCS₂₃ i totalt 1 μM Pluronic F127 og Tween 80 i molart forhold 10:1 ...109
4.6.9 Oppsummering ..110

5 KONKLUSJON ..113
 5.1 CMC ..113
 5.2 Viskositet ..113
 5.3 Osmolaritet ..114
 5.4 Celleoverlevelse ..114
 5.5 Cellelokasjon ..115
 5.6 Flowcytometri ...115
 5.7 Mixede miceller ...115

6 VIDERE ARBEID ...118
 6.1 Formulering ..118
 6.2 Celleforsøk ...118

7 REFERANSER ..119
<table>
<thead>
<tr>
<th>Abbr.</th>
<th>Begrephavn</th>
<th>Engelsk forklaring</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCI</td>
<td>Fotokjemisk internalisering (photochemical internalisation)</td>
<td></td>
</tr>
<tr>
<td>PDT</td>
<td>Fotodynamisk terapi</td>
<td></td>
</tr>
<tr>
<td>TPCS$_{2a}$</td>
<td>Meso-tetrafenyl klorin disulfonat</td>
<td></td>
</tr>
<tr>
<td>PS</td>
<td>Fotosensibiliserende stoff (photosensitizer)</td>
<td></td>
</tr>
<tr>
<td>CMC</td>
<td>Kritisk micellekonsentrasjon (critical micelle concentration)</td>
<td></td>
</tr>
<tr>
<td>CMT</td>
<td>Kritisk micelletemperatur (critical micelle temperature)</td>
<td></td>
</tr>
<tr>
<td>ISC</td>
<td>Inter System Crossing</td>
<td></td>
</tr>
<tr>
<td>F127</td>
<td>Pluronic F127</td>
<td></td>
</tr>
<tr>
<td>T20</td>
<td>Tween 20</td>
<td></td>
</tr>
<tr>
<td>T80</td>
<td>Tween 80</td>
<td></td>
</tr>
<tr>
<td>P123</td>
<td>Pluronic P123</td>
<td></td>
</tr>
<tr>
<td>PBS</td>
<td>Fosfatbufret saltvann (phosphat-buffered saline)</td>
<td></td>
</tr>
<tr>
<td>MTT</td>
<td>3-[4,5-dimetyltiazol-2-yl]-2,5-difenyltetrazoliumbromid</td>
<td></td>
</tr>
<tr>
<td>SSC</td>
<td>Side scatter</td>
<td></td>
</tr>
<tr>
<td>FSC</td>
<td>Forward scatter</td>
<td></td>
</tr>
</tbody>
</table>
SAMMENDRAG

Innen farmasøytisk formulering benyttes solubilisatorer som for eksempel micelledannende stoffer, for å kunne løse tungtløselige forbindelser og derved øke biotilgjengelighet, biologisk aktivitet og ofte forbedre kjemisk stabilitet av inkorporerte stoffer.

I dette arbeidet blir den fotosensibiliserende forbindelsen (PS) TPCS$_{2a}$, som studeres for bruk i fotokjemisk internalisering (PCI), studert sammen med ulike micelledannende stoffer, for å se på effekten av de micelledannende stoffene på nettverksdannelse av TPCS$_{2a}$ i formuleringen. Tidligere formuleringstudier av TPCS$_{2a}$ har vist at solubilisering i polymere miceller av surfaktanten Pluronic F127 (F127) ikke er tilstrekkelig, da viskositeten er for høy i isoton NaCl- løsning. Det er derimot vist at surfaktanten Tween 80 (T80) kan hindre viskositetsøkning. Hensikten med denne studien ble derfor å undersøke om mixede miceller av F127 og T80 kunne være et alternativ.

For å studere effekten av de micelledannende stoffene, er det målt absorpsjonsspektere, viskositet og osmolaritet av formuleringer med ulike konsentrasjoner og sammensetninger av surfaktantene og TPCS$_{2a}$, og disse blir sammenlignet i vandige og isotone medier. Formuleringene ble også undersøkt på celler in vitro, der effekt av fotodynamisk terapi (PDT), celletoksisitet, cellelokasjon og celleopptak av PS som funksjon av formuleringens sammensetning ble vurdert.

Formuleringer av TPCS$_{2a}$ solubilisert i mixede miceller viste forbedringer på mange måter, men det løste ikke problemet med høy viskositet i isoton NaCl- løsning. Viskositeten var lav med formuleringene i isoton glukose, men da det er fare for økt viskositet og geldannelse når disse kommer i kontakt med salter i blodbanen, vil disse formuleringene av TPCS$_{2a}$ solubilisert i mixede miceller ikke kunne injiseres intravenøst.
HENSIKT

Den overordnede hensikten med arbeidet var å se nærmere på formuleringsprosessen av meso-tetrafenyklorindisulfonat (TPCS$_{2a}$), en fotosensibiliserende forbindelse som kan brukes i kreftbehandling i en metode som kalles fotokjemisk internalisering (PCI), hvor både forbindelsen og metoden er utviklet og patentert av PCI Biotech. Arbeidet er basert på at Marianne Lilletvedt Tovsen tidligere har vist at TPCS$_{2a}$ i formuleringer med Pluronic F127 aggregerte, noe det ikke gjorde med Tween 80 (Lilletvedt et al. 2011). I disse studiene er det derfor valgt å fokusere på formuleringer av TPCS$_{2a}$ og solubilisatorene Pluronic F127 og Tween 80 for å danne mixede miceller, for å se om dette kunne være mer aktuelt. Absorbans, viskositet og osmolaritet av ulike formuleringer av de nevnte stoffene ble studert på Farmasøytisk Institutt i Oslo. Studien skulle deretter fortsette på Radiumhospitalet, hvor jeg skulle ta med resultatene jeg hadde fått på Farmasøytisk Institutt, og se på effekten av utvalgte formuleringer på celler in vitro. Her ønsket jeg å se på effekt av fotodynamisk terapi (PDT), celleopptak og cellelokalisering på en utvalgt kreftcellelinje.
1 INTRODUKSJON

1.1 Fotosensibiliserende forbindelser

En fotosensibiliserende forbindelse (PS) er et kjemisk stoff som kan absorbere lys og deretter induisere en kjemisk eller fysisk reaksjon av et annet kjemisk stoff. En god PS bør ha en høy absorpsjonseffektivitet, høyt kvanteutbytte av triplettdannelse, og tripletten bør ha lang levetid for å kunne reagere med nærliggende stoffer. Kjemiske karakteristika på gode PS er molekyler med trisykliske, heterosykliske eller porfyrin-liknende ringstrukturer med konjugerte dobbeltbindinger og fri flyt av elektroner (Berg *et al.* 2005).

Når en PS absorberer energi i form av fotoner, vil den absorberede energien føre til at molekylet kan eksiteres til andre tilstander, tilsvarende den energien som
absorberes (Tønnesen 2004). Jablonski diagram i Figur 1 viser prosessene av fotoaktivering og fotofysisk deaktivering.

Figur 1 Jablonski diagram (Smith 2011): Figuren illustrerer fotoaktivering og fotofysisk deaktivering av en fotosensibiliserende forbindelse som kan oppstå når den utsettes for stråling (Tønnesen 2004).

S₀ er forbindelsens grunnstadium, og ved absorpsjon av energi, vil forbindelsen kunne eksiteres til første eller høyere eksiterede stadier, som S₁ og S₂, avhengig av hvor mye energi som blir absorbert. I de høyere tilstandene vil molekylet kun være i pikosekunder, \((10^{-12} \text{ s})\) men det vil raskt gå tilbake til første eksiterete tilstand, ved å gi fra seg energi i form av vibrasjoner og varme (se vibrational relaxation i Figur 1). S står for singlett, og i alle disse tilstandene har elektronene motsatt spinn, vist i boksene på venstre side i Figur 1, som illustrerer de molekulære orbitalene. Molekylet vil være i den første eksiterete tilstanden i nanosekunder \((10^{-9} \text{ s})\). Fra S₁ kan energi frigjøres i form av vibrasjoner (se internal conversion i Figur 1), eller som fluorescens, som fører forbindelsen tilbake til grunnstadiet. Alternativt, kan forbindelsen gjennomgå ”intersystem crossing” (ISC), noe som fører til at molekylet vil kunne gå fra å være i singlett første eksiterete tilstand til tripllett første eksiterete tilstand \((T₁)\), hvor det er parallell elektronspinn (vist i boksene til høyre i Figur 1). ISC kan skje molekyler som har konjugerte dobbeltbindinger i systemet (Berg et al. 2005). Tripllett tilstand kan også frigjøre energi i form av vibrasjoner, eller i form av fosforescens, å få forbindelsen tilbake til grunnstadiet (Tønnesen 2004). Da det
er deaktiveringsprosessen av T₁ til S₀ som varer lengst, 10⁻⁴ - 10⁻² s, er det denne som kan forårsake mest skade (Tønnesen 2004).

Med energien som frigjøres ved deaktivering av T₁, vil den fotosensibiliserende forbindelsen kunne reagere på to måter, via type 1 reaksjon og type 2 reaksjon (Berg et al. 2005). Type I reaksjonen involverer overføring av et elektron eller hydrogenatom fra ett molekyl til et annet, og fører til dannelsen av et reaktivt fritt radikal, ofte oksygenradikalet. Type II reaksjon involverer overføring av energi til et oksygenmolekyl, slik at reaktivt singlett oksygen dannes, og det er hovedsaklig denne mekanismen som utnyttes medisinsk (Berg et al. 2005, Tønnesen 2004). Se prinsipp for medisinsk bruk av type II reaksjon illustrert i Figur 2.

Avhengig av PS og dens fysikalsk-kjemiske egenskaper, vil PS kunne bli tatt opp av cellen både ved endocytose og ved aktiv eller passiv transport over plasmamembranen. En PS vil også dermed kunne lokaliseres forskjellig i cellen. De som tas opp ved endocytose vil gjerne lokalisere seg i membranen av de endocytiske vesiklene, med sin hydrofobe del inkorporert i membranen (Høgset et al. 2004).

\[\text{LIGHT} \quad S \rightarrow S^* \quad \text{SINGLET OXYGEN} \rightarrow \text{OXIDATIVE REACTIONS} \rightarrow \text{DRUG DELIVERY} \]
1.2 Fotodynamisk terapi (PDT)

Prinsippet for PDT er illustrert i Figur 3 under, der PS først injiseres inn i kroppen og akkumuleres i tumorvevet. Deretter bestråles tumoren, slik at tumoren selektivt ødelegges ved dannelse av ROS, hovedsaklig ${}^{1}{O}_{2}$ (Agostinis et al. 2011, Taft og Yuan 2008).

Valg av lyskilde er essensielt i PDT, og har mye å si for effekten av behandlingen. Blått lys penetrerer vev dårlig og kan benyttes ved overflatebehandling, mens rødt lys penetrerer dypere og er den lyskilden som bruokes terapeutisk til dypereliggende tumorer (Agostinis et al. 2011). Figur 4 illustrerer penetrasjon og type stråling.

![Penetrasjon i vev av ulike strålingskilder. Bildet viser at rødt lys går dypere ned i huden (Agostinis et al. 2011).](image)

PDT er godkjent i bruk innen cancerterapi, og er ideell for behandling av overfladiske og tidlig kreftsvulster med ingen eller lite metastasering. Det kommer blant annet av at den fotosensibiliserende forbindelsen kan akkumulere i cancervev i større grad enn normalt vev. I tillegg vil lyset rettes mot kreftcellene, slik at effekten målstyres og påvirkningen på omliggende vev minimaliseres (Berg et al. 2005).

1.3 Fotokjemisk internalisering (PCI)
PCI er basert på de samme prinsippene som PDT, men den fotosensibiliserende forbindelsen må lokalisere i de endocytiske vesiklene i målcellene (bilde 2 i Figur 5). I tillegg må et terapeutisk molekyl administreres. Ved lysaktivering (bilde 3 i Figur 5) vil den fotosensibiliserende forbindelsen indusere fotokjemisk ødeleggelse av endosomene og lysosomene, og sørge for frissetting av de terapeutiske molekylene som ble innkapslet i cellen ved endocytose, slik at disse

Figur 5 Fotokjemisk internalisering. 1: Bildet viser et legemiddelmolekyl (D) og fotosensibiliserende forbindelse (S) lokalisert utenfor og i yttermembranen av cellen, samt målet for legemiddelet (T) inne i cellen. 2: Bildet viser at legemiddelmolekylet og fotosensibiliserende forbindelse er tatt opp i cellen via endocytose, og at fotosensibiliserende forbindelse er lokaliserd i membranen på den endocytiske vesikkelen. 3: Bildet viser at når cellen bestråles, vil de fotosensibiliserende forbindelsene reagere og danne ROS. 4: Bildet viser at den endocytiske vesiklen er ødelagt av ROS, og at legemiddelmolekylet har sluppet ut i cytoplasma og reagert med målstedet (PCI Biotech 2013c).
Fordelene med PCI er mange (Berg et al. 1999, Selbo et al. 2002).
- ubegrenset størrelse på det farmasøytisk aktive makromolekylet
- høy spesifisitet, da de biologiske effektene er begrenset til de belyste områdene
- få bivirkninger grunnet høy spesifisitet
- effektiv behandling
- administrert dose minimaliseres
- både delende og ikke-delende celler kan angripes grunnet immunologisk respons
- lokal inflammasjonsrespons med ekspresjon og sekresjon av cytokiner i tumor
- synergistisk effekt mellom fotosensibiliserende forbindelse, makromolekyl og lys
- kan behandle tykkere lesjoner enn PDT
- kan kombineres med andre målstyringsstrategier
- behandlingen kan repeteres flere ganger

Fotosensibiliserende forbindelser som brukes i PCI bør være amfifile og lokaliseres i membranen av endocytiske vesikler for å forhindre fotokjemisk inaktivering av legemiddelet som er inne i vesiklene. De bør ha lav aggregering da aggregering reduserer evnen til å overføre energi fra eksitert tilstand til fritt oksygen, og dermed reduserer effektiviteten av behandlingen. Den fotosensibiliserende forbindelsen må ha en ønsket farmakokinetikk, som å akkumulere raskt og selektivt i tumorvev, ikke være toksisk ved anvendte doser og ha rask utskillelse for å unngå langvarig lyssensitivitet. Den bør ha maksimal absorbens ved rødt lys, da rødt lys anvendes klinisk fordi det penetrerer dypest i vev. I tillegg er det en fordel om den fotosensibiliserende forbindelsen er billig og

1.4 TPCS$_{2a}$

Meso-tetrafenyl klorin disulfonat (TPCS$_{2a}$) er et sulfonert klorin som har vist å være en god fotosensibiliserende forbindelse (Berg et al. 2011, Wang et al. 2013). Strukturen av TPCS$_{2a}$ kan ses i Figur 6.

![Strukturen til TPCS$_{2a}$ (Lilletvedt 2011).](image)

Som vist i Figur 6, har TPCS$_{2a}$ en hydrofob tetrapyrrol-aromatisk kjerne med konjugerte dobbeltbindinger. Den reduserte dobbeltbindingen i den ene pyrroldringen er karakteristisk for kloriner, og gir et fordelaktig absorpsjonsspekter med høy absorpsjon av rødt lys. To hydrofile sulfonatgrupper er koblet til, og gjør molekylet amfifilt, med en hydrofob del og en hydrofil del. Tabell 1 lister opp noen av egenskapene til TPCS$_{2a}$.
Tabell 1 Fysikalsk-kjemiske egenskaper til TPCS$_{2a}$ (Lilletvedt 2011, Berg et al. 2011, Lilletvedt et al. 2011).

<table>
<thead>
<tr>
<th>TPCS$_{2a}$</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Molekylnavn</td>
<td>Meso-tetrafenyl klorin disulfonat</td>
</tr>
<tr>
<td>Molekylformel</td>
<td>$\text{C}{44}\text{H}{32}\text{N}{4}\text{O}{6}\text{S}_{2}$</td>
</tr>
<tr>
<td>Molekylvekt</td>
<td>899,05 g/mol</td>
</tr>
<tr>
<td>Karakterisering</td>
<td>Anionisk fri base ved fysiologisk pH med høy amfifilisitet</td>
</tr>
<tr>
<td>Farge</td>
<td>Mørk brun</td>
</tr>
<tr>
<td>Løselighet</td>
<td>Godt løselig i etanol, danner dimere i vann ved $c < 10^{-6}$ M, og aggregater ved $c < 10^{-4}$ M</td>
</tr>
<tr>
<td>pKa</td>
<td>3,8 (gjelder for de to iminonitrogenene (=N-) i kjernen av molekylet)</td>
</tr>
<tr>
<td>Antall isomere</td>
<td>3 isomere</td>
</tr>
<tr>
<td>Absorpsjonsspekter</td>
<td>Sentrale absorpsjonstopper ved ca 420 nm (Soret bånd) og ca 650 nm (Q-bånd) i organiske løsemidler</td>
</tr>
<tr>
<td>Oppbevaring</td>
<td>Oppbevares i lufttett beholder i kjøleskap, beskyttet mot lys.</td>
</tr>
<tr>
<td>CAS-nummer</td>
<td>501083-97-2</td>
</tr>
<tr>
<td>log D</td>
<td>0,4 (1-oktanol/vann)</td>
</tr>
</tbody>
</table>

Figur 7 Absorpsjonspekter av TPCS$_{2a}$ (Berg et al. 2011). Bildet viser absorpsjonsspekteret til TPCS$_{2a}$ her løst i 10% Cremophor ELP, med et absorpsjonsmaksimum ved 420 nm som kalles Soret-båndet, og fire små toppen fra 500-680 nm som kalles Q-båndet, som vises forstørret i ruten øverst til høyre. Det siste Q båndet ved 650 nm er det som anvendes medisinsk.

Det er PCI Biotech som har patent på både TPCS$_{2a}$ og PCI-teknologien. PCI med TPCS$_{2a}$ studeres i kombinasjon med bleomycin, og er nå i klinisk fase II for behandling av hode- og nakkekreft. Studiene viser at kombinasjonen er vel tolerert og at det er en sterk tumorrespons. Resultater fra de prekliniske studiene viser at TPCS$_{2a}$ kan øke effekten av flere viktige kreftlegemidler på markedet, og det er planlagt en ny studie med PCI med TPCS$_{2a}$ i kombinasjon med gemcitabine mot gallegangskreft (Wang 2010, PCI Biotech 2013a).

PCI med TPCS$_{2a}$ har også blitt studert i kombinasjon med saporin i A431 human epidermoid carcinoma cells, og in vitro resultatene indikerer at PCI kan indusere relokalisering av saporin i cellen, og dermed indusere celledød, mens in vivo resultatene indikerer økt vevsskade i normalt vev og tumorvev. TPCS$_{2a}$ viser gode resultater, og vil studeres videre for bruk i PCI (Wang 2010).
1.5 Farmasøytisk formulering

For å kunne administrere TPCS$_{2a}$ som en PS i PDT og PCI må man ha en formulering som kan solubilisere og stabilisere TPCS$_{2a}$ (Boyle og Dolphin 1996), da det i vandig løsning danner aggregater som kan gi bieffekter in vivo, som embolier (Singh et al. 2012, Torchilin 2007), samt redusert effekt av PDT og PCI (Lee et al. 2007, Konan et al. 2002). Under formuleringen studeres sammensetningen av virkestoff (som i dette tilfellet er TPCS$_{2a}$) og hjelpstoff (som i dette tilfellet er Pluronic F127 og Tween 80) for å oppnå best effekt av virkestoffet (Gibson 2004, Steele 2004).

1.5.1 Miceller og micelledannende stoffer

Miceller

Polymere miceller

Størrelsen på micellene er viktig (Kabanov og Alakhov 2002). Miceller under 5-10 nm vil raskt bli fjernet fra det systemiske kretsløpet ved ekstravasjon og renal clearance. Miceller fra 10-70 nm er små nok til å penetre de minste kapillærene i kroppensvev, som kan være gunstig for distribusjon til visse vev (Kabanov og Alakhov 2002). Micellene som er mellom 70-200 nm har lengst sirkulasjonstid, som vil kunne føre til maksimal akkumulering ved målstedet. De micellene som er større enn 200 nm vil ende opp i leveren etter mekanisk filtrering, og blir til slutt fjernet fra kroppen av fagocytter og makrofager, og vil derfor ha begrenset sirkulasjonstid. I tillegg er det kjent at miceller under 200 nm vil kunne målstyres passivt til tumorvev ved EPR (enhanced permeability and retention)-effekten, da tumorvev har lekk vaskulatur som fremmer permeabilitet og retensjon i tumor (Hillery et al. 2001). Dette er vist i Figur 8 under. Dette vil også føre til redusert distribusjon til friskt vev (Jones og Leroux 1999). For at micellene skal kunne bli tatt opp i de endocytiske vesiklene ved endocytose, må de være under 100 nm. Dette vil si at en micellestørrelse på 10-100 nm er optimal for levering av legemidler til tumor (Kabanov og Alakhov 2002, Lee et al. 2007). Da polymere miceller har en diameter på 20-80 nm, er de godt egnet for målstyring (Kabanov og Alakhov 2002).
Figur 8: Tumoropptak av miceller (Attia et al. 2011). En polymer micelle (a) med lang sirkulasjonstid har funnet veien frem til tumor. På grunn av lekk vaskulatur (b) og svekket lymfedrenasje (c) akkumuleres de polymere micellene i tumor (d), der de videre kan internaliseres uspesifikt (e) eller via spesifike reseptorer (f).

Mixede miceller

Figur 9: Assosiering av micelledannere til mixede miceller (Attia et al. 2011). Figuren viser de dannelsen av mixede miceller som resultat av ulike kjerneinteraksjoner; hydrogenbinding, stereokompleksering eller ioneinteraksjon (a), hydrofobe interaksjoner (b) og kjemisk kryssbinding som for eksempel disulfidbindinger (c).
Micelledannende stoffer

I denne studien ble det valgt ut to ikke-ioniske surfaktanter som skulle fungere som micelledannere og danne mixede miceller: en polysorbat (Tween 80) og en pluronic (Pluronic F127). Egenskapene deres er listet opp i Tabell 2 under.

<table>
<thead>
<tr>
<th>Egenskaper</th>
<th>Tween 80</th>
<th>Pluronic F127</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molekylnavn</td>
<td>Polyoxypehtylenesorbitan monooleate</td>
<td>Poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol)</td>
</tr>
<tr>
<td>Molekylvekt (g/mol)</td>
<td>1310</td>
<td>12600</td>
</tr>
<tr>
<td>CMC i nærvær av TPCS<sub>2a</sub></td>
<td>11,5 µM (25 °C)</td>
<td>0,8 µM (25 °C)</td>
</tr>
<tr>
<td>Oppbevaring</td>
<td>Kjølig (2-8 °C), Lufttett, Tørt</td>
<td>Kjølig (2-8 °C), Lufttett, Tørt</td>
</tr>
<tr>
<td>CAS-nr</td>
<td>9005-65-6</td>
<td>9003-11-6</td>
</tr>
<tr>
<td>Ladning</td>
<td>Ikke-ionisk</td>
<td>Ikke-ionisk</td>
</tr>
<tr>
<td>Utseende</td>
<td>Flytende, gul væske</td>
<td>Klart, fargeløst tørrstoff</td>
</tr>
<tr>
<td>HLB</td>
<td>15</td>
<td>22</td>
</tr>
<tr>
<td>Løselighet</td>
<td>Blandbar med vann</td>
<td>Vannløselig</td>
</tr>
</tbody>
</table>

Begge er godt kjente, biokompatible og vannløselige forbindelser, og blir blant annet brukt som hjelpemidler til å løse opp, målstyre, kontrollere frissetting og stabilisere legemidler. De ble valgt ut i denne studien basert på tidligere formuleringsstudier av TPCS_{2a} som viste at at solubilisering i polymere miceller av surfaktanten Pluronic F127 (F127) ikke er tilstrekkelig, på grunn av for høy viskositet i isoton NaCl-løsning. Det er derimot vist at surfaktanten Tween 80 (T80) kan hindre viskositetsøkning. Det ble derfor valgt å undersøke om mixede miceller av F127 og T80 kunne være et alternativ. (Lilletvedt et al. 2011).

Tween 80

Tween 80 er en hydrofil ikke-ionisk polyetylenesorbitolester. Med 20 etylenoksidenheter, 1 sorbitol- og 1 oleinsyreenhet, er den beregnet å veie 1310 g/mol (Sigma Aldrich 2013b). Molekylet er illustrert i Figur 10.
Figur 10: Molekylstruktur av Tween 80 (Sigma Aldrich 2013).

Tween 80 er en god solubilisator av dårlig løselige stoffer i farmasøytiske formuleringer. På grunn av en høyere CMC, vil Tween 80 ikke kunne fungere som en legemiddelbærer, da micellene vil dissosiere ved fortyning etter injeksjon.

Pluronic F127

Pluronics er amfifile blokk-copolymere som har vist gode solubiliserende og målstyrende egenskaper til bruk i farmasøytiske formuleringer, beskrevet nærmere under (Attwood et al. 2007).

De består av hydrofil polyetylenoksid (a) og hydrofob polypropylenoksid (b) blokker i a-b-a struktur vist i Figur 11 (Kabanov og Alakhov 2002).
I Pluronic F127 står for "fast stoff". De to første sifrene (12) gir en røff beregning av molekylvekten av polyetylenblokken (12 x 300 = 3600 Da), og 7 står for en tidal av vektprosenten (70 %) av hva etylenoksidblokken utgjør i forhold til hele molekylet. Den har en molekylvekt på 12600 g/mol, med sine 200 etylenoksid- og 65 propylenoksid enheter, som vist på Figur 12. (Kabanov og Alakhov 2002)

Etglenoksidenheterne danner skallet og propylenoksid danner kjernen av de polymere micellen (Kabanov og Alakhov 2002). Kjernen vil inkorporere det hydrofobe farmasøytisk aktive stoffet. Skallet vil sterisk stabilisere micellen slik at de unngår å bli ødelagt av makrofager i blodbanen, og vil dermed forlenge sirkulasjonstiden (Attwood et al. 2007).

I tillegg har Pluronic F127 lav CMC-verdi (Attwood et al. 2007). Dette er en fordel da surfaktanter med høy CMC-verdi danner miceller som er ustabile i vandig miljø og lett dissosierer når de blir fortynnet, som ved intravenøs injeksjon (Jones og Leroux 1999). Dette vil føre til utilstrekkelig akkumulering ved målstedet. Miceller som dannes fra Pluronic F127 er derfor mer stabile, har lenger sirkulasjonstid og økt akkumulering ved målstedet (Lee et al. 2007).

Micellene har en størrelse på omtrent 18 nm, og er derfor innenfor det foretrukkede området i forhold til solubilisering og levering som beskrevet
tidligere (Kabanov og Alakhov 2002). En illustrasjon av de polymere micellene som dannes av Pluronic F127 er vist i Figur 13 under.

Figur 13 Miceller av Pluronic F127 (Rill et al. 1998): Skjematisk bilde av miceller dannet av Pluronic F127 i flytende krystallinsk fase (20% løsning). Den svarte regionen i midten representerer den indre delen som dannes fra polypropylenoxid, og som er hydrofob. Den grå delen representerer den delen av micellen som dannes av polyetylenoksid, som er hydrofil. Den hvite delen av micellen representerer den hydrerte delen av polyetylenoksid. Størrelsen er antatt å totalt ligge på 18 nm, dersom man baserer seg på aggregerings nummer n = 54 og en tetthet på 1.0 g/cm³.

Pluronics brukes som emulgator for intravenøse fettemulsjoner, som solubilisator for å sørge for klare eliksirer og siruper, og som fuktemiddel for antibakterielle midler. I tillegg kan de bli brukt i salve- eller suppositoriebaser, og som coating eller bindemiddel i tabletter (Florence og Attwood 2006). Pluronic F127 som er brukt i denne oppgaven er godkjent av FDA for flere administrasjonsveier, deriblant til øre, oralt, periodontalt og topikalt, men ikke for parenteral administrasjon (FDA 2013b). Den er heller ikke inkludert i mer enn to produkter med norsk markedstillatelse; én periodontalgel og én krem (Felleskatalogen 2013).
2 MATERIALER

2.1 Råvarer

TPCS$_{2a}$: Synthetica (renhet 98,7%), Norge og Sochinas SA (renhet 94,9 %), Sveits
TPCS$_{2a}$-løsning: 0,35 mg/ml i 50 mM Trisbuffer (pH 8,5), 3 % Tween 20 og 2,8 % Mannitol (standard TPCS$_{2a}$ -løsning på Radiumhospitalet) PCI Biotech, Norge
Pluronic F127: Sigma Aldrich, USA
Pluronic P123: Sigma Aldrich, USA
Tween 80 (Ph.Eur kvalitet): Merck, Tyskland
Vann: HPLC-vann "Milli-Q" og Destillert vann, Farmasøytisk Institutt, Norge
Etanol 96% (v/v): Arcus, Oslo, Norge og Kemetyl Norge AS, Norge
Glukose uten vann: Apotekproduksjon AS, Norge
NaCl: NMD, Norge
Medium: RPMI 1640 med NaHCO$_3$ og L-glutamine, tilsatt 10% føtalt kalveserum (FCS) (Life technologies, Paisley,UK) og 100 units/ml penicillin og 100 μg/ml streptomycin: Sigma-Aldrich, St. Louis, MO, USA
Trypsin: Sigma-Aldrich, St. Louis, MO, USA
Fosfatbuffersaltvann (PBS): Sigma-Aldrich, St. Louis, MO, USA
Dimetylsulfoksid (DMSO): Riedel-da Haëen, Tyskland
3-[4,5-dimetyltiazol-2-yl]-2,5-difenyltetrazoliumbromid (MTT) løst i PBS til 5mg/ml: Sigma-Aldrich, St. Louis, MO, USA

2.2 Cellelinje

WiDr: Human kolorektal adenokarsinom, ATCC, Rockville, MD, USA

2.3 Utstyr

Pipetter: Thermo electron corporation Finnpipette + Finntips, 1-5 ml, 0,5-5 ml, 200-1000 μl, 100-1000 μl, 20-200 μl, 2-20 μl, 0,2-2 μl
Plastpipetter: VWR pasteur pipet 5 ml, non steril
Automatpipette: Eppendorf Multipipette plus med Eppendorf 5 ml, 1= 100 μl, Germany
Vekter: Sartorius analysevekt, nedre veiegrense: 1mg, usikkerhet: 0,02 mg
Sprøyter: BD Plastipak 5 ml sterile
Kanyler: BD Microlance 3, 0,8 mm x 40 mm, sterile
Filtre: Spartan 13/0,45 RC, 0,45 μM, sterile, Whatman
Aluminiumsfolie: Caterwrap aluminium catering foil, 450 mm x 150 m
Celleflasker: 75cm², Nunc, Roskilde, Danmark
Tellekammer: Glasstic®slide 10 with grids, Hycor Biomedical Inc, CA, USA.
Brønner: 96 og 4 brønners brett, Nunc, Roskilde, Danmark
Objektglass: Thermo Scientific Menzel-Gläser 76x26 mm, Gerhard Menzel GmbH, Brannschweig
Dekkglass: Microscop Cover Glasses, 10 mm, VWR, Germany
Prøveglass: 50 og 15 ml, Sarstedt

2.4 Instrumenter
Destilleringsmaskin: Bibby Aquatron
Ristebrett med inkubator: Edmund Büchler, 25 °C, 150 rpm,
Vannbad med UV-stråler: Branson Ultrasonic Cleaner B-220, 50/60Hz, 125 Watt, 220 Volt.
Spektrofotometer: Shimadzu UV-Spectrophotometer UV-2401PC og Shimadzu UV-Spectrophotometer UV-1800, 250-700 nm, nøyaktighet ± 1 nm.
Dataprogram: UV Probe
Kryometer: Knauer Cryoscopic Unit, Berlin, Tyskland.
Lys: LumiSource UV-lys (blått), PCI Biotech, Norge
Inkubator: Thermo Electron corporation, Steri-Cycle CO₂ Incubator, HEPA Class 100 (til utette brønner) og Nuaire Air-Jacked DHD Autoflow Automatic CO₂ Incubator NU-5510/E/G, HEPA Class 5 (til tette flasker)
LAF-benk: LabcultureESCO Class II Biological Safety Cabinet
Vannbad: Julabo TW20, 37°C
Mikroskop: Nikon Diaphot, Interfoto Instrument (til generell overvåking av cellelinjen, telling osv) og Zeiss AxioImager Z1 mikroskop koblet til et Zeiss AxioCam MRm monochrome cooled-CCD kamera Obercochen, Tyskland (til studering av PS i cellene)

Sentrifuge: Hettich zentrifuge, Rotina 380R

Flowcytometer: LSR II Special Order System, FACStar plus flow cytometer, og Dataprogram: PC Lysys II software program, begge fra Becton Dickinson, CA, USA

Måleinstrument ved MTT: BioTek Powerwave XS2, USA

Ristebrett til 96-brønners brett: Heidolp Instrument Titramax 101, Tyskland

Rister til formuleringer til celledstudier: IKA MS3 digital, Tyskland
3 METODER

3.1 Prøveopparbeidelse

To ulike kvaliteter av TPCS$_{2a}$-tørrstoff ble brukt i oppgaven, der den høyeste kvaliteten på 98,7% fra Synthetica ble brukt i formuleringene til absorpsjonspektere og cellestudier, mens den laveste kvaliteten på 94,9% fra Sochinas SA ble brukt formuleringene til viskositet- og osmolaritetsmålingene. I cellestudiene ble det også inkludert en standardløsning av TPCS$_{2a}$ i konsentrasjon 0,35 mg/ml løst i 50 mM Trisbuffer (pH 8,5), 3 % Tween 20 (T20) og 2,8 % Mannitol, fra PCI Biotech. Alle formuleringer med PS ble beskyttet mot lys med aluminiumsfolie. Av micelledannere ble det brukt Pluronic F127 (F127) og Pluronic P123 (P123) fra Sigma-Aldrich, USA, og Tween 80 (T80) fra Merck. Etanol 96 % (v/v) fra Arcus, Oslo, Norge og Kemetyl Norge AS ble brukt til å løse opp TPCS$_{2a}$. Videre ble det brukt Milli-Q vann, RPMI, PBS, MTT, DMSO.

3.1.1 Stamløsninger

Det ble laget stamløsninger av TPCS$_{2a}$ (0,1 mM) og Pluronic F127, Tween 80 og Pluronic P123 (2 mM og 2 µM), som ble ristet over natt ved 150 rotasjoner per minutt (RPM) før bruk. Temperaturen når miceller dannes blir definert som critical micelle temperature (CMT), og er holdt konstant ved 25 °C. CMT er en viktig parameter i bestemmelse av CMC, da det er rapportert at CMC er temperaturavhengig, ved at en økt temperatur kan gi lavere CMC-verdier (Kabanov og Alakhov 2002). Stamløsningene ble oppbevart i kjøleskap dersom de skulle lagres over helg. Tabell 3-14 beskriver hvordan stamløsningene ble laget.

TPCS$_{2a}$ stamløsning

Tabell 3 Stamløsning TPCS2a i etanol

<table>
<thead>
<tr>
<th>Innholdsstoff</th>
<th>Mengde til 0,1 mM</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPCS$_{2a}$</td>
<td>0,0045 g</td>
</tr>
<tr>
<td>Etanol 96 %</td>
<td>ad 50 ml</td>
</tr>
</tbody>
</table>
NaCl stamløsning

Tabell 4 NaCl stamløsning

<table>
<thead>
<tr>
<th>Innholdsstoff</th>
<th>Mengde til 2 %</th>
<th>Mengde til 0,9 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
<td>2 g</td>
<td>22,5 ml 2 % NaCl</td>
</tr>
<tr>
<td>Milli-Q vann</td>
<td>ad 100 ml</td>
<td>ad 50 ml</td>
</tr>
</tbody>
</table>

Glukose stamløsning

Tabell 5 Glukose stamløsning

<table>
<thead>
<tr>
<th>Innholdsstoff</th>
<th>Mengde til 5,05 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glukose anhydrat</td>
<td>2,525 g</td>
</tr>
<tr>
<td>Milli-Q vann</td>
<td>ad 50 ml</td>
</tr>
</tbody>
</table>

Pluronic F127 stamløsning

Tabell 6 Pluronic F127 stamløsning i vann

<table>
<thead>
<tr>
<th>Innholdsstoff</th>
<th>Mengde til 6 mM</th>
<th>Mengde til 2 mM</th>
<th>Mengde til 2 µM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pluronic F127</td>
<td>7,56 g</td>
<td>0,63 g</td>
<td>0,00252 g</td>
</tr>
<tr>
<td>Milli-Q vann</td>
<td>ad 100 ml</td>
<td>ad 25 ml</td>
<td>ad 100 ml</td>
</tr>
</tbody>
</table>

Pluronic F127 stamløsning i isoton NaCl

Tabell 7 Pluronic F127 stamløsning i isoton NaCl

<table>
<thead>
<tr>
<th>Innholdsstoff</th>
<th>Mengde til 2 mM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pluronic F127</td>
<td>0,63 g</td>
</tr>
<tr>
<td>0,9 % NaCl</td>
<td>ad 25 ml</td>
</tr>
</tbody>
</table>

Pluronic F127 stamløsning i isoton glukose

Tabell 8 Pluronic F127 stamløsning i isoton glukose

<table>
<thead>
<tr>
<th>Innholdsstoff</th>
<th>Mengde til 2 mM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pluronic F127</td>
<td>0,63 g</td>
</tr>
<tr>
<td>5,05 % glukose</td>
<td>ad 25 ml</td>
</tr>
</tbody>
</table>
Pluronic F127 stamløsning i RPMI

Tabell 9 Pluronic F127 stamløsning i RPMI

<table>
<thead>
<tr>
<th>Innholdsstoff</th>
<th>Mengde til 2 mM</th>
<th>Mengde til 2 µM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pluronic F127</td>
<td>0,63 g</td>
<td>10 µM 2 mM</td>
</tr>
<tr>
<td>RPMI</td>
<td>ad 25 ml</td>
<td>10 ml</td>
</tr>
</tbody>
</table>

Tween 80 stamløsning i vann

Tabell 10 Tween 80 stamløsning i vann

<table>
<thead>
<tr>
<th>Innholdsstoff</th>
<th>Mengde til 6 mM</th>
<th>Mengde til 2 mM</th>
<th>Mengde til 2 µM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tween 80</td>
<td>0,786 g</td>
<td>0,0655 g</td>
<td>0,1 ml 2mM</td>
</tr>
<tr>
<td>Milli-Q vann</td>
<td>ad 100 ml</td>
<td>ad 25 ml</td>
<td>ad 100 ml</td>
</tr>
</tbody>
</table>

Tween 80 stamløsning i isoton NaCl

Tabell 11 Tween 80 stamløsning i isoton NaCl

<table>
<thead>
<tr>
<th>Innholdsstoff</th>
<th>Mengde til 2 mM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tween 80</td>
<td>0,0655 g</td>
</tr>
<tr>
<td>0,9 % NaCl</td>
<td>ad 25 ml</td>
</tr>
</tbody>
</table>

Tween 80 stamløsning i isoton glukose

Tabell 12 Tween 80 stamløsning i isoton glukose

<table>
<thead>
<tr>
<th>Innholdsstoff</th>
<th>Mengde til 2 mM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tween 80</td>
<td>0,0655 g</td>
</tr>
<tr>
<td>5,05 % glukose</td>
<td>ad 25 ml</td>
</tr>
</tbody>
</table>

Tween 80 stamløsning i RPMI

Tabell 13 Tween 80 stamløsning i RPMI

<table>
<thead>
<tr>
<th>Innholdsstoff</th>
<th>Mengde til 2 mM</th>
<th>Mengde til 2 µM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tween 80</td>
<td>0,0655 g</td>
<td>10 µl 2 mM</td>
</tr>
<tr>
<td>RPMI</td>
<td>ad 25 ml</td>
<td>ad 10 ml</td>
</tr>
</tbody>
</table>
Pluronic P123 stamløsning i vann

Tabell 14 Pluronic P123 stamløsning i vann

<table>
<thead>
<tr>
<th>Innholdsstoff</th>
<th>Mengde til 2 mM</th>
<th>Mengde til 2 µM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pluronic P123</td>
<td>0,2875 g</td>
<td>0,1 ml 2 mM</td>
</tr>
<tr>
<td>Milli-Q vann</td>
<td>ad 25 ml</td>
<td>ad 100 ml</td>
</tr>
</tbody>
</table>
3.1.2 Formuleringer til spektroskopiske målinger

For å lage formuleringene til spektroskopiske undersøkelser, ble det brukt TPCS$_{2a}$ av høyeste kvalitet (98,7 %). Det ble laget 3 paralleller av hver prøve, samt blindprøver uten TPCS$_{2a}$. Stam løsninger ble blandet sammen i reagensrør og ristet over natt ved 150 RPM og 25 °C, før prøvene ble overført til kvartskuvetter og målt i spektrofotometeret. Formuleringene er beskrevet i Tabell 15-21.

Prøver av 1 µM TPCS$_{2a}$ med ulike surfaktanter

Tabell 15 Prøver av 1 µM TPCS2a med ulike surfaktanter

<table>
<thead>
<tr>
<th>Surfaktant</th>
<th>Blindprøve (n=1)</th>
<th>Prøve (n=3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingen</td>
<td>0,1 ml etanol</td>
<td>0,1 ml TPCS$_{2a}$ 0,1 mM</td>
</tr>
<tr>
<td></td>
<td>9,9 ml Milli-Q vann</td>
<td>9,9 ml Milli-Q vann</td>
</tr>
<tr>
<td>1 mM F127</td>
<td>0,1 ml etanol</td>
<td>0,1 ml TPCS$_{2a}$ 0,1 mM</td>
</tr>
<tr>
<td></td>
<td>4,9 ml Milli-Q vann</td>
<td>4,9 ml Milli-Q vann</td>
</tr>
<tr>
<td></td>
<td>5 ml F127 2mM</td>
<td>5 ml F127 2mM</td>
</tr>
<tr>
<td>1 mM T80</td>
<td>0,1 ml etanol</td>
<td>0,1 ml TPCS$_{2a}$ 0,1 mM</td>
</tr>
<tr>
<td></td>
<td>4,9 ml Milli-Q vann</td>
<td>4,9 ml Milli-Q vann</td>
</tr>
<tr>
<td></td>
<td>5 ml T80 2mM</td>
<td>5 ml T80 2mM</td>
</tr>
<tr>
<td>1 mM P123</td>
<td>0,1 ml etanol</td>
<td>0,1 ml TPCS$_{2a}$ 0,1 mM</td>
</tr>
<tr>
<td></td>
<td>4,9 ml Milli-Q vann</td>
<td>4,9 ml Milli-Q vann</td>
</tr>
<tr>
<td></td>
<td>5 ml P123 2mM</td>
<td>5 ml P123 2mM</td>
</tr>
</tbody>
</table>
Prøver av 1 µM TPCS₂ₐ med ulike konsentrasjoner av Pluronic F127

<table>
<thead>
<tr>
<th>Konsentrasjon av F127 (µM)</th>
<th>Blindprøve (n=1)</th>
<th>Prøve (n=3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,05</td>
<td>100 µl ren etanol</td>
<td>100 µl TPCS₂ₐ 0,1 mM</td>
</tr>
<tr>
<td></td>
<td>0,25 ml F127 2 µM</td>
<td>0,25 ml F127 2 µM</td>
</tr>
<tr>
<td></td>
<td>9,65 ml Milli-Q vann</td>
<td>9,65 ml Milli-Q vann</td>
</tr>
<tr>
<td>0,1</td>
<td>100 µl ren etanol</td>
<td>100 µl TPCS₂ₐ 0,1 mM</td>
</tr>
<tr>
<td></td>
<td>0,50 ml F127 2 µM</td>
<td>0,50 ml F127 2 µM</td>
</tr>
<tr>
<td></td>
<td>9,15 ml Milli-Q vann</td>
<td>9,4 ml Milli-Q vann</td>
</tr>
<tr>
<td>0,15</td>
<td>100 µl ren etanol</td>
<td>100 µl TPCS₂ₐ 0,1 mM</td>
</tr>
<tr>
<td></td>
<td>0,75 ml F127 2 µM</td>
<td>0,75 ml F127 2 µM</td>
</tr>
<tr>
<td></td>
<td>9,15 ml Milli-Q vann</td>
<td>9,4 ml Milli-Q vann</td>
</tr>
<tr>
<td>0,2</td>
<td>100 µl ren etanol</td>
<td>100 µl TPCS₂ₐ 0,1 mM</td>
</tr>
<tr>
<td></td>
<td>1,0 ml F127 2 µM</td>
<td>1,0 ml F127 2 µM</td>
</tr>
<tr>
<td></td>
<td>8,9 ml Milli-Q vann</td>
<td>8,9 ml Milli-Q vann</td>
</tr>
<tr>
<td>0,25</td>
<td>100 µl ren etanol</td>
<td>100 µl TPCS₂ₐ 0,1 mM</td>
</tr>
<tr>
<td></td>
<td>1,25 ml F127 2 µM</td>
<td>1,25 ml F127 2 µM</td>
</tr>
<tr>
<td></td>
<td>8,65 ml Milli-Q vann</td>
<td>8,65 ml Milli-Q vann</td>
</tr>
<tr>
<td>0,5</td>
<td>100 µl ren etanol</td>
<td>100 µl TPCS₂ₐ 0,1 mM</td>
</tr>
<tr>
<td></td>
<td>2,5 ml F127 2 µM</td>
<td>2,5 ml F127 2 µM</td>
</tr>
<tr>
<td></td>
<td>7,4 ml Milli-Q vann</td>
<td>7,4 ml Milli-Q vann</td>
</tr>
<tr>
<td>0,79</td>
<td>100 µl ren etanol</td>
<td>100 µl TPCS₂ₐ 0,1 mM</td>
</tr>
<tr>
<td></td>
<td>3,95 ml F127 2 µM</td>
<td>3,95 ml F127 2 µM</td>
</tr>
<tr>
<td></td>
<td>5,95 ml Milli-Q vann</td>
<td>5,95 ml Milli-Q vann</td>
</tr>
<tr>
<td>1</td>
<td>100 µl ren etanol</td>
<td>100 µl TPCS₂ₐ 0,1 mM</td>
</tr>
<tr>
<td></td>
<td>5,0 ml F127 2 µM</td>
<td>5,0 ml F127 2 µM</td>
</tr>
<tr>
<td></td>
<td>4,9 ml Milli-Q vann</td>
<td>4,9 ml Milli-Q vann</td>
</tr>
<tr>
<td>1,5</td>
<td>100 µl ren etanol</td>
<td>100 µl TPCS₂ₐ 0,1 mM</td>
</tr>
<tr>
<td></td>
<td>7,5 ml F127 2 µM</td>
<td>7,5 ml F127 2 µM</td>
</tr>
<tr>
<td></td>
<td>2,4 ml Milli-Q vann</td>
<td>2,4 ml Milli-Q vann</td>
</tr>
</tbody>
</table>

Prøver av 1 µM TPCS₂ₐ med ulike totale konsentrasjoner av Pluronic F127 og Tween 80 i molare forhold 1:1

<table>
<thead>
<tr>
<th>Total konsentrasjon av F127 + T80 (µM)</th>
<th>Blindprøve (n=1)</th>
<th>Prøve (n=3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,1</td>
<td>100 µl ren etanol</td>
<td>100 µl TPCS₂ₐ 0,1 mM</td>
</tr>
<tr>
<td></td>
<td>0,25 ml F127 2 µM</td>
<td>0,25 ml F127 2 µM</td>
</tr>
<tr>
<td></td>
<td>0,25 ml T80 2 µM</td>
<td>0,25 ml T80 2 µM</td>
</tr>
<tr>
<td></td>
<td>9,4 ml Milli-Q vann</td>
<td>9,4 ml Milli-Q vann</td>
</tr>
<tr>
<td>0,2</td>
<td>100 µl ren etanol</td>
<td>100 µl TPCS₂ₐ 0,1 mM</td>
</tr>
<tr>
<td></td>
<td>0,50 ml F127 2 µM</td>
<td>0,50 ml F127 2 µM</td>
</tr>
<tr>
<td></td>
<td>0,50 ml T80 2 µM</td>
<td>0,50 ml T80 2 µM</td>
</tr>
<tr>
<td></td>
<td>8,9 ml Milli-Q vann</td>
<td>8,9 ml Milli-Q vann</td>
</tr>
<tr>
<td>Volume</td>
<td>Ren ethanol</td>
<td>F127 2 µM</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>-----------</td>
</tr>
<tr>
<td>0.25</td>
<td>100 µl</td>
<td>0.625 ml</td>
</tr>
<tr>
<td></td>
<td>ren etanol</td>
<td>F127 2 µM</td>
</tr>
<tr>
<td>0.3</td>
<td>100 µl</td>
<td>0.75 ml</td>
</tr>
<tr>
<td></td>
<td>ren etanol</td>
<td>F127 2 µM</td>
</tr>
<tr>
<td>0.35</td>
<td>100 µl</td>
<td>0.875 ml</td>
</tr>
<tr>
<td></td>
<td>ren etanol</td>
<td>F127 2 µM</td>
</tr>
<tr>
<td>0.4</td>
<td>100 µl</td>
<td>1 ml</td>
</tr>
<tr>
<td></td>
<td>ren etanol</td>
<td>F127 2 µM</td>
</tr>
<tr>
<td>0.5</td>
<td>100 µl</td>
<td>1.25 ml</td>
</tr>
<tr>
<td></td>
<td>ren etanol</td>
<td>F127 2 µM</td>
</tr>
<tr>
<td>0.6</td>
<td>100 µl</td>
<td>1.5 ml</td>
</tr>
<tr>
<td></td>
<td>ren etanol</td>
<td>F127 2 µM</td>
</tr>
<tr>
<td>0.8</td>
<td>100 µl</td>
<td>2 ml</td>
</tr>
<tr>
<td></td>
<td>ren etanol</td>
<td>F127 2 µM</td>
</tr>
<tr>
<td>1</td>
<td>100 µl</td>
<td>2.5 ml</td>
</tr>
<tr>
<td></td>
<td>ren etanol</td>
<td>F127 2 µM</td>
</tr>
<tr>
<td>10</td>
<td>100 µl</td>
<td>25 µl</td>
</tr>
<tr>
<td></td>
<td>ren etanol</td>
<td>F127 2 µM</td>
</tr>
<tr>
<td>100</td>
<td>100 µl</td>
<td>250 µl</td>
</tr>
<tr>
<td></td>
<td>ren etanol</td>
<td>F127 2 µM</td>
</tr>
<tr>
<td>1000</td>
<td>100 µl</td>
<td>2,5 ml</td>
</tr>
<tr>
<td></td>
<td>ren etanol</td>
<td>F127 2 µM</td>
</tr>
</tbody>
</table>
Prøver av 1 µM TPCS_{2a} med ulike totale konsentrasjoner av Pluronic F127 og Tween 80 i molare forhold 5:1

Tabell 18 Prøver av 1 µM TPCS_{2a} med ulike totale konsentrasjoner av Pluronic F127 og Tween 80 i molare forhold 5:1

<table>
<thead>
<tr>
<th>Total konsentrasjon av F127 + T80 (µM)</th>
<th>Blindprøve (n=1)</th>
<th>Prøve (n=3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,1</td>
<td>100 µl ren etanol</td>
<td>100 µl TPCS<sub>2a</sub> 0,1 mM</td>
</tr>
<tr>
<td></td>
<td>415 µl F127 2 µM</td>
<td>415 µl F127 2 µM</td>
</tr>
<tr>
<td></td>
<td>85 µl T80 2 µM</td>
<td>85 µl T80 2 µM</td>
</tr>
<tr>
<td></td>
<td>9,4 ml Milli-Q vann</td>
<td>9,4 ml Milli-Q vann</td>
</tr>
<tr>
<td>0,2</td>
<td>100 µl ren etanol</td>
<td>100 µl TPCS<sub>2a</sub> 0,1 mM</td>
</tr>
<tr>
<td></td>
<td>830 µl F127 2 µM</td>
<td>830 µl F127 2 µM</td>
</tr>
<tr>
<td></td>
<td>170 µl T80 2 µM</td>
<td>170 µl T80 2 µM</td>
</tr>
<tr>
<td></td>
<td>8,9 ml Milli-Q vann</td>
<td>8,9 ml Milli-Q vann</td>
</tr>
<tr>
<td>0,25</td>
<td>100 µl ren etanol</td>
<td>100 µl TPCS<sub>2a</sub> 0,1 mM</td>
</tr>
<tr>
<td></td>
<td>1040 µl F127 2 µM</td>
<td>1040 µl F127 2 µM</td>
</tr>
<tr>
<td></td>
<td>210 µl T80 2 µM</td>
<td>210 µl T80 2 µM</td>
</tr>
<tr>
<td></td>
<td>8,65 ml Milli-Q vann</td>
<td>8,65 ml Milli-Q vann</td>
</tr>
<tr>
<td>0,3</td>
<td>100 µl ren etanol</td>
<td>100 µl TPCS<sub>2a</sub> 0,1 mM</td>
</tr>
<tr>
<td></td>
<td>1250 µl F127 2 µM</td>
<td>1250 µl F127 2 µM</td>
</tr>
<tr>
<td></td>
<td>250 µl T80 2 µM</td>
<td>250 µl T80 2 µM</td>
</tr>
<tr>
<td></td>
<td>8,4 ml Milli-Q vann</td>
<td>8,4 ml Milli-Q vann</td>
</tr>
<tr>
<td>0,35</td>
<td>100 µl ren etanol</td>
<td>100 µl TPCS<sub>2a</sub> 0,1 mM</td>
</tr>
<tr>
<td></td>
<td>1460 µl F127 2 µM</td>
<td>1460 µl F127 2 µM</td>
</tr>
<tr>
<td></td>
<td>290 µl T80 2 µM</td>
<td>290 µl T80 2 µM</td>
</tr>
<tr>
<td></td>
<td>8,15 ml Milli-Q vann</td>
<td>8,15 ml Milli-Q vann</td>
</tr>
<tr>
<td>0,4</td>
<td>100 µl ren etanol</td>
<td>100 µl TPCS<sub>2a</sub> 0,1 mM</td>
</tr>
<tr>
<td></td>
<td>330 µl F127 2 µM</td>
<td>330 µl F127 2 µM</td>
</tr>
<tr>
<td></td>
<td>1670 µl T80 2 µM</td>
<td>1670 µl T80 2 µM</td>
</tr>
<tr>
<td></td>
<td>7,9 ml Milli-Q vann</td>
<td>7,9 ml Milli-Q vann</td>
</tr>
<tr>
<td>0,6</td>
<td>100 µl ren etanol</td>
<td>100 µl TPCS<sub>2a</sub> 0,1 mM</td>
</tr>
<tr>
<td></td>
<td>2500 µl F127 2 µM</td>
<td>2500 µl F127 2 µM</td>
</tr>
<tr>
<td></td>
<td>500 µl T80 2 µM</td>
<td>500 µl T80 2 µM</td>
</tr>
<tr>
<td></td>
<td>6,9 ml Milli-Q vann</td>
<td>6,9 ml Milli-Q vann</td>
</tr>
<tr>
<td>0,8</td>
<td>100 µl ren etanol</td>
<td>100 µl TPCS<sub>2a</sub> 0,1 mM</td>
</tr>
<tr>
<td></td>
<td>3330 µl F127 2 µM</td>
<td>3330 µl F127 2 µM</td>
</tr>
<tr>
<td></td>
<td>670 µl T80 2 µM</td>
<td>670 µl T80 2 µM</td>
</tr>
<tr>
<td></td>
<td>5,9 ml Milli-Q vann</td>
<td>5,9 ml Milli-Q vann</td>
</tr>
<tr>
<td>1</td>
<td>100 µl ren etanol</td>
<td>100 µl TPCS<sub>2a</sub> 0,1 mM</td>
</tr>
<tr>
<td></td>
<td>4170 µl F127 2 µM</td>
<td>4170 µl F127 2 µM</td>
</tr>
<tr>
<td></td>
<td>830 µl T80 2 µM</td>
<td>830 µl T80 2 µM</td>
</tr>
<tr>
<td></td>
<td>4,9 ml Milli-Q vann</td>
<td>4,9 ml Milli-Q vann</td>
</tr>
</tbody>
</table>
Prøver av 1 µM TPCS_{2a} med ulike totale konsentrasjoner av Pluronic F127 og Tween 80 i molare forhold 10:1

Tabell 19 Prøver av 1 µM TPCS_{2a} med ulik total konsentrasjon av Pluronic F127 og Tween 80 i molare forhold 10:1

<table>
<thead>
<tr>
<th>Total konsentrasjon av F127 + T80 (µM)</th>
<th>Blindprøve (n=1)</th>
<th>Prøve (n=3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,1</td>
<td>100 µl ren etanol</td>
<td>100 µl TPCS<sub>2a</sub> 0,1 mM</td>
</tr>
<tr>
<td></td>
<td>45 µl T80 2 µM</td>
<td>455 µl F127 2 µM</td>
</tr>
<tr>
<td></td>
<td>45 µl T80 2 µM</td>
<td>45 µl T80 2 µM</td>
</tr>
<tr>
<td></td>
<td>9,4 ml Milli-Q vann</td>
<td>9,4 ml Milli-Q vann</td>
</tr>
<tr>
<td>0,2</td>
<td>100 µl ren etanol</td>
<td>100 µl TPCS<sub>2a</sub> 0,1 mM</td>
</tr>
<tr>
<td></td>
<td>910 µl F127 2 µM</td>
<td>910 µl F127 2 µM</td>
</tr>
<tr>
<td></td>
<td>90 µl T80 2 µM</td>
<td>90 µl T80 2 µM</td>
</tr>
<tr>
<td></td>
<td>8,9 ml Milli-Q vann</td>
<td>8,9 ml Milli-Q vann</td>
</tr>
<tr>
<td>0,3</td>
<td>100 µl ren etanol</td>
<td>100 µl TPCS<sub>2a</sub> 0,1 mM</td>
</tr>
<tr>
<td></td>
<td>1365 µl F127 2 µM</td>
<td>1365 µl F127 2 µM</td>
</tr>
<tr>
<td></td>
<td>135 µl T80 2 µM</td>
<td>135 µl T80 2 µM</td>
</tr>
<tr>
<td></td>
<td>8,4 ml Milli-Q vann</td>
<td>8,4 ml Milli-Q vann</td>
</tr>
<tr>
<td>0,4</td>
<td>100 µl ren etanol</td>
<td>100 µl TPCS<sub>2a</sub> 0,1 mM</td>
</tr>
<tr>
<td></td>
<td>1820 µl F127 2 µM</td>
<td>1820 µl F127 2 µM</td>
</tr>
<tr>
<td></td>
<td>180 µl T80 2 µM</td>
<td>180 µl T80 2 µM</td>
</tr>
<tr>
<td></td>
<td>7,9 ml Milli-Q vann</td>
<td>7,9 ml Milli-Q vann</td>
</tr>
<tr>
<td>0,5</td>
<td>100 µl ren etanol</td>
<td>100 µl TPCS<sub>2a</sub> 0,1 mM</td>
</tr>
<tr>
<td></td>
<td>2270 µl F127 2 µM</td>
<td>2270 µl F127 2 µM</td>
</tr>
<tr>
<td></td>
<td>230 µl T80 2 µM</td>
<td>230 µl T80 2 µM</td>
</tr>
<tr>
<td></td>
<td>7,4 ml Milli-Q vann</td>
<td>7,4 ml Milli-Q vann</td>
</tr>
</tbody>
</table>
Prøver av 1 µM TPCS_{2a} med ulike totale konsentrasjoner av Pluronic F127 og Tween 80 i molare forhold 1:5

Tabell 20 Prøver av 1 µM TPCS_{2a} med ulike totale konsentrasjoner av Pluronic F127 og Tween 80 i molare forhold 1:5

<table>
<thead>
<tr>
<th>Total konsentrasjon av F127 + T80 (µM)</th>
<th>Blindprøve (n=1)</th>
<th>Prøve (n=3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,1</td>
<td>100 µl ren etanol 85 µl F127 2 µM 415 µl T80 2 µM 9,4 ml Milli-Q vann</td>
<td>100 µl TPCS<sub>2a</sub> 0,1 mM 85 µl F127 2 µM 415 µl T80 2 µM 9,4 ml Milli-Q vann</td>
</tr>
<tr>
<td>0,2</td>
<td>100 µl ren etanol 170 µl F127 2 µM 830 µl T80 2 µM 8,9 ml Milli-Q vann</td>
<td>100 µl TPCS<sub>2a</sub> 0,1 mM 170 µl F127 2 µM 830 µl T80 2 µM 8,9 ml Milli-Q vann</td>
</tr>
<tr>
<td>0,3</td>
<td>100 µl ren etanol 250 µl F127 2 µM 1250 µl T80 2 µM 8,4 ml Milli-Q vann</td>
<td>100 µl TPCS<sub>2a</sub> 0,1 mM 250 µl F127 2 µM 1250 µl T80 2 µM 8,4 ml Milli-Q vann</td>
</tr>
<tr>
<td>0,4</td>
<td>100 µl ren etanol 330 µl F127 2 µM 1670 µl T80 2 µM 7,9 ml Milli-Q vann</td>
<td>100 µl TPCS<sub>2a</sub> 0,1 mM 330 µl F127 2 µM 1670 µl T80 2 µM 7,9 ml Milli-Q vann</td>
</tr>
<tr>
<td>0,5</td>
<td>100 µl ren etanol 415 µl F127 2 µM 2085 µl T80 2 µM 7,4 ml Milli-Q vann</td>
<td>100 µl TPCS<sub>2a</sub> 0,1 mM 415 µl F127 2 µM 2085 µl T80 2 µM 7,4 ml Milli-Q vann</td>
</tr>
</tbody>
</table>
Prøver av 1 µM TPCS$_{2a}$ med ulike totale konsentrasjoner av Pluronic F127 og Tween 80 i molare forhold 1:10

Tabell 21 Prøver av 1 µM TPCS$_{2a}$ med ulike totale konsentrasjoner av Pluronic F127 og Tween 80 i molare forhold 1:10

<table>
<thead>
<tr>
<th>Total konsentrasjon av F127 + T80 (µM)</th>
<th>Blindprøve (n=1)</th>
<th>Prøve (n=3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,1</td>
<td>100 µl ren etanol</td>
<td>100 µl TPCS$_{2a}$ 0,1 mM</td>
</tr>
<tr>
<td></td>
<td>45 µl F127 2 µM</td>
<td>45 µl F127 2 µM</td>
</tr>
<tr>
<td></td>
<td>455 µl T80 2 µM</td>
<td>455 µl T80 2 µM</td>
</tr>
<tr>
<td></td>
<td>9,4 ml Milli-Q vann</td>
<td>9,4 ml Milli-Q vann</td>
</tr>
<tr>
<td>0,2</td>
<td>100 µl ren etanol</td>
<td>100 µl TPCS$_{2a}$ 0,1 mM</td>
</tr>
<tr>
<td></td>
<td>90 µl F127 2 µM</td>
<td>90 µl F127 2 µM</td>
</tr>
<tr>
<td></td>
<td>910 µl T80 2 µM</td>
<td>910 µl T80 2 µM</td>
</tr>
<tr>
<td></td>
<td>8,9 ml Milli-Q vann</td>
<td>8,9 ml Milli-Q vann</td>
</tr>
<tr>
<td>0,3</td>
<td>100 µl ren etanol</td>
<td>100 µl TPCS$_{2a}$ 0,1 mM</td>
</tr>
<tr>
<td></td>
<td>135 µl F127 2 µM</td>
<td>135 µl F127 2 µM</td>
</tr>
<tr>
<td></td>
<td>1365 µl T80 2 µM</td>
<td>1365 µl T80 2 µM</td>
</tr>
<tr>
<td></td>
<td>8,4 ml Milli-Q vann</td>
<td>8,4 ml Milli-Q vann</td>
</tr>
<tr>
<td>0,4</td>
<td>100 µl ren etanol</td>
<td>100 µl TPCS$_{2a}$ 0,1 mM</td>
</tr>
<tr>
<td></td>
<td>180 µl F127 2 µM</td>
<td>180 µl F127 2 µM</td>
</tr>
<tr>
<td></td>
<td>1820 µl T80 2 µM</td>
<td>1820 µl T80 2 µM</td>
</tr>
<tr>
<td></td>
<td>7,9 ml Milli-Q vann</td>
<td>7,9 ml Milli-Q vann</td>
</tr>
<tr>
<td>0,5</td>
<td>100 µl ren etanol</td>
<td>100 µl TPCS$_{2a}$ 0,1 mM</td>
</tr>
<tr>
<td></td>
<td>230 µl F127 2 µM</td>
<td>230 µl F127 2 µM</td>
</tr>
<tr>
<td></td>
<td>2270 µl T80 2 µM</td>
<td>2270 µl T80 2 µM</td>
</tr>
<tr>
<td></td>
<td>7,4 ml Milli-Q vann</td>
<td>7,4 ml Milli-Q vann</td>
</tr>
</tbody>
</table>
3.1.3 Formuleringer til viskositets- og osmolaritetsmåling

Løsninger av NaCl i ulike konsentrasjoner til standardkurve

Før det ble gjort frysepunktstdepresjonsmålinger av formuleringene med TPCS$_{2a}$, ble det laget løsninger av natriumklorid (NaCl) i ulik osmolaritet, som kunne brukes som en standardkurve som formuleringene senere kunne sammenlignes med. I tillegg var det ønskelig å finne nedre deteksjonsgrense, så løsninger ble laget ned til 5 mosmol/l (0,015 %). Det ble tatt utgangspunkt i at 0,9% NaCl er isoton, og tilsvarende 301 mosmol/l. Det ble laget én parallel av hver konsentrasjon i området 0 - 400 mosmol/l som tilsvarende 0 - 1,2 % NaCl (n= 14 konsentrasjoner). For å sjekke reproducerebarhet ble det laget 3 paralleller av den med 300 mosmol/l (den isotone). Prøveopparbeidelsen av disse er beskrevet i Tabell 22.

Tabell 22 Løsninger av NaCl i ulike konsentrasjoner til standardkurve ved osmolaritetsmålinger

<table>
<thead>
<tr>
<th>NaCl (mosmol/l)</th>
<th>NaCl (%)</th>
<th>Mengde NaCl 2 mM (ml)</th>
<th>Mengde Milli-Q vann (ml)</th>
<th>Isotoni</th>
<th>Antall prøver (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5,000</td>
<td>Hypoton</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0,015</td>
<td>0,038</td>
<td>4,925</td>
<td>Hypoton</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>0,030</td>
<td>0,075</td>
<td>4,850</td>
<td>Hypoton</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>0,060</td>
<td>0,150</td>
<td>4,775</td>
<td>Hypoton</td>
<td>1</td>
</tr>
<tr>
<td>30</td>
<td>0,090</td>
<td>0,225</td>
<td>4,700</td>
<td>Hypoton</td>
<td>1</td>
</tr>
<tr>
<td>40</td>
<td>0,120</td>
<td>0,300</td>
<td>4,625</td>
<td>Hypoton</td>
<td>1</td>
</tr>
<tr>
<td>50</td>
<td>0,150</td>
<td>0,375</td>
<td>4,630</td>
<td>Hypoton</td>
<td>1</td>
</tr>
<tr>
<td>100</td>
<td>0,300</td>
<td>0,750</td>
<td>4,250</td>
<td>Hypoton</td>
<td>1</td>
</tr>
<tr>
<td>150</td>
<td>0,450</td>
<td>1,100</td>
<td>3,900</td>
<td>Hypoton</td>
<td>1</td>
</tr>
<tr>
<td>200</td>
<td>0,600</td>
<td>1,500</td>
<td>3,500</td>
<td>Hypoton</td>
<td>1</td>
</tr>
<tr>
<td>250</td>
<td>0,750</td>
<td>1,880</td>
<td>3,120</td>
<td>Hypoton</td>
<td>1</td>
</tr>
<tr>
<td>300</td>
<td>0,900</td>
<td>2,250</td>
<td>2,750</td>
<td>Isoton</td>
<td>3</td>
</tr>
<tr>
<td>350</td>
<td>1,050</td>
<td>2,630</td>
<td>2,370</td>
<td>Hyperton</td>
<td>1</td>
</tr>
<tr>
<td>400</td>
<td>1,200</td>
<td>3,000</td>
<td>2,000</td>
<td>Hyperton</td>
<td>1</td>
</tr>
</tbody>
</table>

Direkte opplosningsmetode (Kabanov og Alakhov 2002) ble brukt for å lage formuleringene til viskositets- og osmolaritetsmålingene, ved at TPCS$_{2a}$ i lavere renhet (94,9%) fra Sochinaz AS løses direkte i Milli-Q vann og surfaktant-stamløsning. TPCS$_{2a}$ ble inkorporert i micellene ved 150 rpm og 25 °C over natt i Biosan Environmental Shaker-Incubator ES-20. Alle formuleringer ble sugd opp med BD Plastipak Syringe 5ml sprøyter og BD Microlance 3, 0,8 mm x 40 mm
kanyle og filtrert med Spartan 13/0,45 RC Filter Unit 0,45 μm fra Whatman, GmbH, for å forhindre at partikler skulle sette seg fast i viskositetskapillærene og forstyrre resultatet. Alle formuleringer med TPCS_{2a} ble beskyttet mot lys ved bruk av aluminiumsfolie, og sammenlignet med formuleringer uten TPCS_{2a} (blindprøver). Prøveopparbeidelsene er beskrevet i Tabell 23-27.

Prøver av 10 mg/ml TPCS_{2a} med ulike konsentrasjoner av Pluronic F127

Tabell 23 Prøver av 10 mg/ml TPCS2a med ulike konsentrasjoner av Pluronic F127

<table>
<thead>
<tr>
<th>Konsentrasjon av F127 (mM)</th>
<th>Blindprøve (n=1)</th>
<th>Prøve (n=3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,05</td>
<td>63 μl F127 2 mM</td>
<td>25 mg TPCS<sub>2a</sub></td>
</tr>
<tr>
<td></td>
<td>2437 μl Milli-Q vann</td>
<td>63 μl F127 2 mM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2437 μl Milli-Q vann</td>
</tr>
<tr>
<td>0,125</td>
<td>156 μl F127 2 mM</td>
<td>25 mg TPCS<sub>2a</sub></td>
</tr>
<tr>
<td></td>
<td>2344 μl Milli-Q vann</td>
<td>156 μl F127 2 mM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2344 μl Milli-Q vann</td>
</tr>
<tr>
<td>0,25</td>
<td>313 μl F127 2 mM</td>
<td>25 mg TPCS<sub>2a</sub></td>
</tr>
<tr>
<td></td>
<td>2187 μl Milli-Q vann</td>
<td>313 μl F127 2 mM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2187 μl Milli-Q vann</td>
</tr>
<tr>
<td>0,5</td>
<td>625 μl F127 2 mM</td>
<td>25 mg TPCS<sub>2a</sub></td>
</tr>
<tr>
<td></td>
<td>1875 μl Milli-Q vann</td>
<td>625 μl F127 2 mM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1875 μl Milli-Q vann</td>
</tr>
<tr>
<td>1</td>
<td>1250 μl F127 2 mM</td>
<td>25 mg TPCS<sub>2a</sub></td>
</tr>
<tr>
<td></td>
<td>1250 μl Milli-Q vann</td>
<td>1250 μl F127 2 mM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1250 μl Milli-Q vann</td>
</tr>
<tr>
<td>2</td>
<td>2500 μl F127 2 mM</td>
<td>25 mg TPCS<sub>2a</sub></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2500 μl F127 2 mM</td>
</tr>
</tbody>
</table>
Prøver av 10 mg/ml TPCS$_{2a}$ med ulike konsentrasjoner av Tween 80

Tabell 24 Prøver av 10 mg/ml TPCS$_{2a}$ med ulike konsentrasjoner av Tween 80

<table>
<thead>
<tr>
<th>Konsentrasjon av Tween 80 (mM)</th>
<th>Blindprøve (n=1)</th>
<th>Prøve (n=3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,125</td>
<td>156 µl T80 2 mM</td>
<td>25 mg TPCS$_{2a}$</td>
</tr>
<tr>
<td></td>
<td>2344 µl Milli-Q vann</td>
<td>156 µl T80 2 mM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2344 µl Milli-Q vann</td>
</tr>
<tr>
<td>0,25</td>
<td>313 µl T80 2 mM</td>
<td>25 mg TPCS$_{2a}$</td>
</tr>
<tr>
<td></td>
<td>2187 µl Milli-Q vann</td>
<td>313 µl T80 2 mM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2187 µl Milli-Q vann</td>
</tr>
<tr>
<td>0,5</td>
<td>625 µl T80 2 mM</td>
<td>25 mg TPCS$_{2a}$</td>
</tr>
<tr>
<td></td>
<td>1875 µl Milli-Q vann</td>
<td>625 µl T80 2 mM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1875 µl Milli-Q vann</td>
</tr>
<tr>
<td>1</td>
<td>1250 µl T80 2 mM</td>
<td>25 mg TPCS$_{2a}$</td>
</tr>
<tr>
<td></td>
<td>1250 µl Milli-Q vann</td>
<td>1250 µl T80 2 mM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1250 µl Milli-Q vann</td>
</tr>
<tr>
<td>2</td>
<td>2500 µl T80 2 mM</td>
<td>25 mg TPCS$_{2a}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2500 µl T80 2 mM</td>
</tr>
<tr>
<td>4</td>
<td>1667 µl T80 6 mM</td>
<td>25 mg TPCS$_{2a}$</td>
</tr>
<tr>
<td></td>
<td>833 µl Milli-Q vann</td>
<td>1667 µl T80 6 mM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>833 µl Milli-Q vann</td>
</tr>
<tr>
<td>6</td>
<td>2500 µl T80 6 mM</td>
<td>25 mg TPCS$_{2a}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2500 µl T80 6 mM</td>
</tr>
</tbody>
</table>
Prøver av 10 mg/ml TPCS_{2a} med ulike totale konsentrasjoner av Pluronic F127 og Tween 80 i molart forhold 1:1

Tabell 25 Konsentrerte prøver av 10 mg/ml TPCS_{2a} med ulike konsentrasjoner av Pluronic F127 og Tween 80 i molart forhold 1:1

<table>
<thead>
<tr>
<th>Total konsentrasjon av Pluronic F127 + Tween 80 (mM)</th>
<th>Blindprøve (n=1)</th>
<th>Prøve (n=3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,25</td>
<td>52 µl F127 6 mM</td>
<td>25 mg TPCS<sub>2a</sub></td>
</tr>
<tr>
<td></td>
<td>52 µl T80 6 mM</td>
<td>52 µl F127 6 mM</td>
</tr>
<tr>
<td></td>
<td>2396 µl Milli-Q vann</td>
<td>52 µl T80 6 mM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2396 µl Milli-Q vann</td>
</tr>
<tr>
<td>0,5</td>
<td>104 µl F127 6 mM</td>
<td>25 mg TPCS<sub>2a</sub></td>
</tr>
<tr>
<td></td>
<td>104 µl T80 6 mM</td>
<td>104 µl F127 6 mM</td>
</tr>
<tr>
<td></td>
<td>2292 µl Milli-Q vann</td>
<td>104 µl T80 6 mM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2292 µl Milli-Q vann</td>
</tr>
<tr>
<td>1</td>
<td>208 µl F127 6 mM</td>
<td>25 mg TPCS<sub>2a</sub></td>
</tr>
<tr>
<td></td>
<td>208 µl T80 6 mM</td>
<td>208 µl F127 6 mM</td>
</tr>
<tr>
<td></td>
<td>2084 µl Milli-Q vann</td>
<td>208 µl T80 6 mM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2084 µl Milli-Q vann</td>
</tr>
<tr>
<td>2</td>
<td>417 µl F127 6 mM</td>
<td>25 mg TPCS<sub>2a</sub></td>
</tr>
<tr>
<td></td>
<td>417 µl T80 6 mM</td>
<td>417 µl F127 6 mM</td>
</tr>
<tr>
<td></td>
<td>1666 µl Milli-Q vann</td>
<td>417 µl T80 6 mM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1666 µl Milli-Q vann</td>
</tr>
<tr>
<td>4</td>
<td>833 µl F127 6 mM</td>
<td>25 mg TPCS<sub>2a</sub></td>
</tr>
<tr>
<td></td>
<td>833 µl T80 6 mM</td>
<td>833 µl F127 6 mM</td>
</tr>
<tr>
<td></td>
<td>834 µl Milli-Q vann</td>
<td>833 µl T80 6 mM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>834 µl Milli-Q vann</td>
</tr>
</tbody>
</table>

Prøver av 10 mg/ml TPCS_{2a} med ulike totale konsentrasjoner av Pluronic F127 og Tween 80 i isoton NaCl-løsning

Tabell 26 Prøver av 10 mg/ml TPCS_{2a} med ulike totale konsentrasjoner av Pluronic F127 og Tween 80 i isoton NaCl-løsning

<table>
<thead>
<tr>
<th>Total konsentrasjon av Pluronic F127 + Tween 80 (mM), molart forhold i parantes</th>
<th>Blindprøve (n=1)</th>
<th>Prøve (n=1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 (1:1)</td>
<td>1,25 ml 2 mM F127 i NaCl</td>
<td>25 mg TPCS<sub>2a</sub></td>
</tr>
<tr>
<td></td>
<td>1,25 ml 2 mM T80 i NaCl</td>
<td>1,25 ml 2 mM F127 i NaCl</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,25 ml 2 mM T80 i NaCl</td>
</tr>
<tr>
<td>4 (1:10)</td>
<td>0,23 ml 2 mM F127 i NaCl</td>
<td>25 mg TPCS<sub>2a</sub></td>
</tr>
<tr>
<td></td>
<td>2,27 ml 2 mM T80 i NaCl</td>
<td>0,23 ml 2 mM F127 i NaCl</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,27 ml 2 mM T80 i NaCl</td>
</tr>
</tbody>
</table>
Prøver av 10 mg/ml TPCS₂₉ med ulike totale konsentrasjoner av Pluronic F127 og Tween 80 i isoton glukose-løsning

Tabell 27 Prøver av 10 mg/ml TPCS₂₉ med ulike totale konsentrasjoner av Pluronic F127 og Tween 80 i isoton glukose-løsning

<table>
<thead>
<tr>
<th>Total konsentrasjon av Pluronic F127 og Tween 80 (mM), molart forhold i parantes</th>
<th>Blindprøve (n=1)</th>
<th>Prøve (n=1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 (1:1)</td>
<td>1,25 ml 2 mM F₁₂₇ i glukose
1,25 ml 2 mM T₈₀ i glukose</td>
<td>25 mg TPCS₂₉
1,25 ml 2 mM F₁₂₇ i glukose
1,25 ml 2 mM T₈₀ i glukose</td>
</tr>
<tr>
<td>4 (1:10)</td>
<td>0,23 ml 2 mM F₁₂₇ i glukose
2,27 ml 2 mM T₈₀ i glukose</td>
<td>25 mg TPCS₂₉
0,23 ml 2 mM F₁₂₇ i glukose
2,27 ml 2 mM T₈₀ i glukose</td>
</tr>
</tbody>
</table>
3.1.4 Formuleringer til celleforsøk

Formuleringer til celleforsøk *in vitro* ble laget på samme måte som formuleringene til de spektroskopiske målingene. Rotasjon per minutt var ikke kontrollert, men det ble gjort visuell kontroll av at formuleringene var homogene. Temperaturen ble holdt konstant på 25 °C. Sammensetningene av formuleringene er vist i Tabell 28.

Formuleringer av TPCS$_{2a}$ med surfaktanter

Tabell 28 Formuleringer av TPCS$_{2a}$ med surfaktanter

<table>
<thead>
<tr>
<th></th>
<th>Surfaktant, molart forhold i parantes</th>
<th>A Sammensetning til 0,4 µg/ml (0,44 µM) TPCS$_{2a}$ med 1 µM micelledannere</th>
<th>Sammensetning til 0,2 µg/ml (0,22 µM) TPCS$_{2a}$ med 0,5 µM micelledannere</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Etanol</td>
<td>22 µl 0,1 mM TPCS$_{2a}$ i etanol 5 ml RPMI</td>
<td>1,5 ml 1A 1,5 ml RPMI</td>
</tr>
<tr>
<td>2</td>
<td>Tween 20</td>
<td>5,7 µl 0,35mg/ml TPCS$_{2a}$ i T20 5 ml RPMI</td>
<td>1,5 ml 2A 1,5 ml RPMI</td>
</tr>
<tr>
<td>3</td>
<td>Pluronic F127</td>
<td>22 µl 0,1 mM TPCS$_{2a}$ i etanol 2,5 ml 2 µM F127 2,48 ml RPMI</td>
<td>1,5 ml 3A 1,5 ml RPMI</td>
</tr>
<tr>
<td>4</td>
<td>Tween 80</td>
<td>22 µl 0,1 mM TPCS$_{2a}$ i etanol 2,5 ml 2 µM T80 2,48 ml RPMI</td>
<td>1,5 ml 4A 1,5 ml RPMI</td>
</tr>
<tr>
<td>5</td>
<td>Pluronic F127 og Tween 80 (1:1)</td>
<td>22 µl 0,1 mM TPCS$_{2a}$ i etanol 1,25 ml 2 µM F127 1,25 ml 2 µM T80 2,48 ml RPMI</td>
<td>1,5 ml 5A 1,5 ml RPMI</td>
</tr>
<tr>
<td>6</td>
<td>Pluronic F127 og Tween 80 (1:10)</td>
<td>22 µl 0,1 mM TPCS$_{2a}$ i etanol 0,25 ml 2 µM F127 2,25 ml 2 µM T80 2,48 ml RPMI</td>
<td>1,5 ml 6A 1,5 ml RPMI</td>
</tr>
<tr>
<td>7</td>
<td>Pluronic F127 og Tween 80 (10:1)</td>
<td>22 µl 0,1 mM TPCS$_{2a}$ i etanol 2,25 ml 2 µM F127 0,25 ml 2 µM T80 2,48 ml RPMI</td>
<td>1,5 ml 7A 1,5 ml RPMI</td>
</tr>
</tbody>
</table>
3.2 Spektroskopi studier

Soret-bånd og Q-bånd ble studert, sistnevnte spesielt ved høyeste bølgelengde. Områdene det ble fokuset mest på er vist med blå pil i Figur 14.

Absorpsjonsspektere ble tatt av TPCS\textsubscript{2a} (1 µM), i ulike formuleringer, inkludert Milli-Q vann, Pluronic F127 (0,05, 0,1, 0,15, 0,2, 0,25, 0,5, 0,79, 1 og 1,5 mM), Tween 80 (1 mM) og Pluronic P123 (1 mM). Det ble også tatt absorpsjonsspektere av formuleringer med TPCS\textsubscript{2a} (1 µM) i mixede miceller av Pluronic F127 og Tween 80 i ulike totale molare konsentrasjoner (0,1, 1, 10, 100, 1000 µM) og molare forhold (1:1, 1:5, 5:1, 1:10, 10:1). Blindprøver uten TPCS\textsubscript{2a} ble inkludert for å korrigerer for forstyrrelser fra hjelpestoffene.

Målingene ble gjort med et Shimadzu UV-Spectrophotometer UV-1800, med Scan Speed innstilt på medium, sampling intervall 0,5, og wavelenght window 250-700 nm (med nøyaktighet ± 1 nm), i kvarts kuvetter. Spektrene ble studert i et dataprogrammet UV-Probe. Prossessen er illustrert på Figur 15.
3.3 Viskositet

Da formuleringene med TPCS$_{2a}$ var mørke brune og utransparente, var det vanskelig å vurdere om det var aggregering tilstede visuelt. Det ble derfor valgt å inkludere viskositetsmåling for å se på formuleringenes flytegenskaper, som en av metodene for å avdekke aggregering.

Viskositet er definert som en væskes evne til å motstå å renne og er en egenskap flytende formuleringer har (Teegarden 2004). Kinematisk viskositet angir forholdet mellom en væskes dynamiske viskositet og dens tetthet, altså hvor fort væsken sprer seg i forhold til dens masse når væsken helles utover en flate (Schott Geräte 2013).

Et kapillærviskosimeter kan brukes for å finne viskositeten av formuleringer med Newtonsk flyt (Ph. Eur. 2005). Den kinematiske viskositeten v oppgitt i mm2/s defineres etter Hagen-Poiseuille's lov om at kinematisk viskositet v (cSt) er proporsjonell med en "flow-trough" tid,

$$ v = kt,$$

der k er kapillærrets konstant oppgitt i mm2/s2 og t er flow-trough tiden som analyseres av viskosimeteret, oppgitt i sekunder (Ph. Eur. 2005). Som referanse har vann en viskositet på 1 cSt ved 20,2 °C. 1cSt = 1 mm2/s (Schott Geräte 2013).

Bilde 1 Schott Geräte Viscosity Measuring Unit AVS 310 (Laboratoria de Investigacion de Procesos 2013). Bildet viser hvordan viskosimeteret så ut, med kontroll av instillinger og skjerm for resultat i boksen til høyre, og vannbad som kapillærene med formuleringene ble ført ned i og analysert.
3.4 Osmolaritet

I tillegg til å studere viskositet og flytegenskaper for å se på aggregering, ble det valgt å se på osmolariteten av formuleringene, som er spesielt viktig for intravenøs formulering og karakterisering av strukturene som dannes (Lilletvedt 2011).

Osmolaritet er definert som den massen av en substans løst i 1 liter prøve, som vil føre til et osmotisk trykk som er lik det trykket gitt av 1 mol ideell uionisert substans oppløst i 1 liter prøve (Florence og Attwood 2006).

Formuleringenes osmolaritet ble målt i et osmometer tilsvarende det på Bilde 2 under.

Bilde 2 Osmometer (Labexchange 2013)

Analyseprinsippet er basert på nedsetting av frysepunkt i vandige lønsinger, frysepunktsdepresjon. Frysepunktet til en formulering er den temperaturen der formuleringen er i likevekt med det faste stoffet.

I osmometeret blir prøven nedkjølt med en konstant nedkjøling, ned til under frysepunktet. Deretter utsettes prøven for en intens nedkjøling ved en enkel vibrerering på ca 1 sekund for å indusere perfekt krystallisering. De fine
iskrystallene vil dannes og vise temperaturlikevektspunktet (DB Lab 2013). En temperatur-tid kurve kan se ut som på Figur 16 under.

![Temperaturrespons av vann og en annen prøve fra et kryoskopisk osmometer (Herbert Knauer GmbH 1979). Responsen starter med initiell supercooling, ned til initiering av krystallisering ved det laveste punktet, etterfulgt av krystallisering/frysing, og over til platået ved frysepunktstiden. Til slutt ser vi sakte temperatursenkning.](image)

Osmolaritetsmålinger ble gjort med Knauer Cryoscopic Unit no. 24 fra Dr. Herbert Knauer GmbH, Berlin, Tyskland, med samme formuleringer som ble brukt til viskositetsmålingene, med prøvevolum på 150 µl. Det ble laget en standardkurve med NaCl-løsninger 0-1,2 %, og utslagene i mV fra kryoskopet ble satt inn i likningen fra standardkurven for å finne osmolaritet.
Teoretisk beregnet osmolaritet for fullstendig løst og fordelt TPCS$_{2a}$, med to motioner fra monoetanolammonium, i en konsentrasjon på 10mg/ml, er 33,4 mosmol/l. Tilsvarende teoretisk beregnet osmolaritet av 1 mmol/l Pluronic F127 er 1 mosmol/l, og tilsvarende for Tween 80. Derfor bør tilsetning av Pluronic F127 og Tween 80 ha minimal påvirkning på osmolariteten ved disse konsentrasjonene (Lilletvedt et al. 2011, Viegas og Henry 1998).

3.5 Cellelinje og kultivering

Humane colorektale adenokarsinomceller (WiDr) fra ATCC, Rockville, MD, USA, ble brukt i denne studien. De ble subkultivert to ganger i uken i RPMI 1604 medium med L-glutamin og NaHCO$_3$ fra Sigma Aldrich, St. Louis, MO, USA, tilsatt 10% FCS fra Life Technologies, Paisley, UK, og 100 enheter ml$^{-1}$ penicillin og 100µg ml$^{-1}$ streptomycin fra Sigma-Aldrich, St. Louis, MO, USA. Cellene ble dyrket og inkubert i 75 cm2 flasker fra Nunc, Roskilde Danmark, ved 37 ºC i humidifisert atmosfære med 5% CO$_2$ i Thermo electron corporation Steri-Cyclo CO$_2$ Incubator, Hepa class 100. Ved splitting ble mediet sugd av, og forfatbufret saltvann (PBS) ble tilsatt for å vaske bort mediet. Deretter ble flasken trypsinert og inkubert 1-6 min, for at cellene skulle løsne fra bunnen. Nytt medium ble tilsatt, og ønsket mengde cellesupensjon ble tilsatt ny 75 cm2 flaske. Alle tilsetningsstoffer ble oppbevart i kjøleskap, men varmet opp i vannbad ved 37 ºC før tilsetning til cellene.

3.6 Fotodynamisk terapi av TPCS$_{2a}$ in vitro

For å finne optimal konsentrasjon av celler til forsøkene, ble det sådd ut 2000, 4000, 6000, 8000 og 10000 WiDr-celler per brønn med 3 paralleller i et 96 brønners brett (Nunclon Delta Surface sterile brett, Nunc, Roskilde Danmark). Ca 24 timer senere ble cellene vasket og inkubert i 72 timer som tilsvarer den tiden cellene inkuberes etter behandling før MTT-analyse for celleoverlevelse, nærmere beskrevet i avsnitt 3.7. Optimal cellekonsentrasjon finnes der det er størst eksponentiell vekst.
WiDr-celler ble sådd ut med 5000 celler/brønn i 96-brønners brett over natt, da de bruker litt tid på å feste seg til brønnen. Cellene ble deretter inkubert med 0,4 µg/ml TPCS2a (0,44 µM) i ulike formuleringer i 18 timer før det ble vasket bort 3 ganger med medium for å minimalisere lokalisering av TPCS2a i plasmamembranen, slik at PDT effekten ble maksimert i den intracellulære organellemembranen. Brettene ble deretter inkubert ytterligere 4 timer i nytt medium for å chase cellene, før de ble belyst med en Lumisource® lampe med blått lys fra PCI Biotech AS, Oslo, Norge, med maksimal emisjon ved 435 nm (Berg et al. 2011), i 0, 15, 30, 45 og 60 sekunder. Blått lys brukes av praktiske grunner, da TPCS2a har sitt absorbjonsmaksimum i det blå området, og mindre lysdoser skal derfor til for å induserer cytotoksisk effekt. Klinisk vil rødt lys benyttes, men dette har ingen betydning for effekt, annet enn at lysdosen må justeres. Brettene ble inkubert i to dager før måling av celleoverlevelse.

3.7 Celleoverlevelse

For å måle celleoverlevelse ble MTT-metoden brukt. MTT-metoden er basert på reduksjon av et vannløselig tetrazoliumsalt (MTT) til et lilla, uløselig formazanprodukt, induert av mitokondrielle dehydrogenaser som er tilstede hos levende, metabolsk aktive celler (Berg et al. 2011). Cellene i 96-brønners brett ble tilsatt 100 µl 0,25 mg/ml MTT (3-[4,5-dimetyltiazol-2-yl]-2,5-difenyltetrazoliumbromid) og inkubert i 2-4 timer ved 37 °C i en 5 % CO2 humidifisert inkubator. Deretter ble cellene vurdert visuelt med mikroskop, for å sikre at målbare mengder formazan-krysslater har blitt dannet. Mediet ble sugd av og DMSO tilsatt, før brettene ble satt til risting i 5 minutter før å løse opp krysslatene. Forandring i absorbans kunne måles ved 570 nm i BioTek PowerWave XS2, BioTek Instruments, USA. Celleoverlevelse ble målt som prosent av kontrollprøver, som ikke ble utsatt for lys.

3.8 Intracellulær lokalisering av TPCS2a

Intracellulær lokasjon av TPCS2a ble undersøkt med fluorescensmikroskopi. WiDr cellene ble sådd ut på 10 x 10 mm dekkglass i 4 brønners brett fra Nunc,
Roskilde, Danmark, til 30 000 celler per brønn og inkubert over natt. Nytt medium med 0,4 µg/ml TPCS₂a, uten og med forskjellige løsninger av Pluronic F127 og Tween 80 (total konsentrasjon 1 µM, molart forhold 1:0, 0:1, 1:1, 1:10 og 10:1) ble tilsatt og inkubert over natt (ca 18 timer). Dekkglassene ble deretter vippet opp fra brønnene, vasket tre ganger i PBS, og lagt på objektglass med cellene ned. Mikroskoperingen ble gjort med en Zeiss AxioImager Z1 mikroskop koblet til et Zeiss AxioCam MRm monochrome cooled-CCD kamera med 65 x oljeimmersjonsobjektiv og analysert med AxioVision program fra Zeiss, Obercochen, Tyskland, og fluorescens og differensiell interferens kontrast (DIC) mikroskopi. Eksponeringstiden ble satt til 100 ms for å unngå påvirkning fra auto-fluorescens fra cellene. Det ble også gjort mikroskopering med celler som ble chaset. Chaset vil si at mediet med TPCS₂a ble fjernet etter 18 timer, og cellene ble vasket 3 ganger med nytt medium og inkubert med nytt medium i 4 timer, for å få TPCS₂a vekk fra plasmamembranen (Berg et al. 2011).

3.9 Flowcytometri

Flowcytometri er en metode som kan brukes til å telle og se nærmere på celler i væskefase. Figur 17 viser en skjematisk oversikt over metoden.

Figur 17 Skjematisk oversikt over flowcytometri. Hydrodynamisk fokusering gjør at cellene fortsetter gjennom flowcytomeret én og én. Laserlys sendes mot hver enkelt celle, og ulike detektorer registrerer cellens lyshytende egenskaper og eventuelt lys emittert fra PS som er tatt opp i cellen.
Figur 17 viser at en celleluksning tilsettes et separat kammer i flowcytometeret. I kammeret rundt er det en cellefri væske med høyere hastighet, som drar celleluksningen gjennom, slik at én og én celle fortsetter gjennom flowcytometeret. Cellene blir belyst med en laser med en forhåndsbestemt bølgelengde. Detektorer brukes for å undersøke i hvor stor grad cellen bøyer (forward scatter (FSC)) og sprer (side scatter (SSC) lyset. FSC sier noe om cellens størrelse, og SSC sier noe om cellens kompleksitet eller granulært (Fenstad og Rø 2012).

I tillegg til å undersøke de lysbrytende egenskapene, kan flowcytometri vurdere kvantitativt opptak av PS. Når PS blir bestrålt med laseren, eksiteres den og emitterer fluorescens i bestemte bølgelengder. Fluorescensen omdannes til elektroniske spenningspulser, og størrelsen på pulsen er proporsjonal med mengde PS i cellen (Fenstad og Rø 2012, Landsverk 2006).

Det ble sådd ut 8 brønner med ca 400 000 celler/brønn i 6 brønners brett, som ble inkubert ca 24 timer i inkubator. 7 brønner med WiDr-celler ble deretter inkubert med 0,4 µM TPCS$_{2a}$ i 7 ulike formuleringer, beskrevet i avsnitt 3.1.4. 1 brønn ble brukt til kontroll uten TPCS$_{2a}$. Etter 24 timer i inkubatoren, ble cellene vasket 3 ganger med RPMI, og inkubert i ytterligere 4 timer med medium uten PS. Mediet ble deretter sugd av, og 1 ml PBS ble tilsatt. PBS ble fjernet, og cellene ble inkubert med 1 ml trypsin i 5 minutter i inkubator. Cellene ble vurdert i mikroskop for å kontrollere at de hadde løsnet fra brønnene. 500 µl RPMI ble tilsatt, og cellesuspensjonen ble sugd opp med pasteurpipetter og overført til plastrør. Cellene ble deretter spunnet ned slik at mediet kunne suges av. Cellene ble tilsatt 400 µl PBS, og løsningene ble overført til flowrør via filterkorker.

Målingene ble gjort i et FACStar plus flow cytometer, og resultatene ble analysert med PC Lysys II software program, begge fra Becton Dickinson, CA, USA.
4 RESULTATER OG DISKUSJON

TPCS$_{2a}$ aggererer ved lave konsentrasjoner ($\geq 10^{-7}$ M), og dette problemet må løses med en passende formulering før det kan anvendes klinisk (Lilletvedt et al. 2011). Tween 80 er en mye brukt surfaktant med gode solubiliserende egenskaper (Florence og Attwood 2006, Lilletvedt et al. 2011). Pluronic F127 er en surfaktant med lav CMC-verdi, som er gunstig for stabilisering og lang sirkulasjonstid in vivo (Kabanov og Alakhov 2002). Basert på tidligere utførte studier med TPCS$_{2a}$ som viste at Pluronics alene ikke var en god nok solubilisator for å hindre aggregering av TPCS$_{2a}$ (Lilletvedt et al. 2011), ble det bestemt å inkludere Tween 80 i tillegg til Pluronic F127 i formuleringene, for å undersøke potensialet for solubilisering og målstyring av TPCS$_{2a}$ ved hjelp av mixede miceller.

4.1 Bestemmelse av CMC-verdier

Det ble gjort bestemmelse av CMC-verdier av de ulike micellene for å kunne sikre tilstedeværelse av miceller i formuleringene for å oppnå solubilisering. Interaksjonene mellom TPCS$_{2a}$ og surfaktantene ble evaluert på grunnlag av endringer i absorpsjonsspekteret av vandig TPCS$_{2a}$ ved 25 °C, beskrevet i avsnitt 3.2. Alle absorpsjonsspektrene viser medianen av 3 paralleller.

Det ble gjort et innledende forsøk med 1 µM TPCS$_{2a}$ og 1 mM av de micelledannende stoffene Pluronic F127, P123 og Tween 80 (n=3). Dette er langt over CMC-verdi (se Tabell 29), for å forsecre at TPCS$_{2a}$ er inkorporert i micellene. Resultatet kan ses i Figur 18.

Tabell 29 Oversikt over CMC-verdier til utvalgte surfaktanter (Lilletvedt et al. 2011).

<table>
<thead>
<tr>
<th>Surfaktant</th>
<th>CMC-verdi (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tween 80</td>
<td>11,5</td>
</tr>
<tr>
<td>Pluronic F127</td>
<td>0,8</td>
</tr>
<tr>
<td>Pluronic P123</td>
<td>0,9</td>
</tr>
</tbody>
</table>

57
Figur 18 Innledende forsøk som viser endringer i absorpsjonsspekteret av TPCS2a ved solubilisering i ulike surfaktaner (n=3).

I Figur 18 kan man se Soret-båndet ved 420 nm, og de fire Q-båndene ved høyere bølgelengder. Man kan se en senkning av absorbans i Soret-båndet, og en økning av absorbans i det siste Q-båndet ved tilsetning av miceller. Man ser også at toppene forflyttes mot høyere bølgelengder. En oversikt over absorbans og bølgelengder fra forsøket er i Tabell 30.

Tabell 30 Absorpsjonsegenskapene til TPCS2a ved tilsetning av F127, T80 og P123

<table>
<thead>
<tr>
<th>Surfaktant</th>
<th>TPCS2a (µM)</th>
<th>Micelletaller (mM)</th>
<th>Soret-bånd absorbans</th>
<th>Soret-bånd bølgelengde (nm)</th>
<th>Q-bånd absorbans</th>
<th>Q-bånd bølgelengde (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingen</td>
<td>1</td>
<td>0</td>
<td>0,198</td>
<td>415,5</td>
<td>0,019</td>
<td>645,0</td>
</tr>
<tr>
<td>Pluronic F127</td>
<td>1</td>
<td>1</td>
<td>0,172</td>
<td>420,0</td>
<td>0,039</td>
<td>652,0</td>
</tr>
<tr>
<td>Tween 80</td>
<td>1</td>
<td>1</td>
<td>0,160</td>
<td>420,5</td>
<td>0,035</td>
<td>652,5</td>
</tr>
<tr>
<td>Pluronic P123</td>
<td>1</td>
<td>1</td>
<td>0,125</td>
<td>420,0</td>
<td>0,028</td>
<td>652,0</td>
</tr>
</tbody>
</table>

I Tabell 30 vises de mest sentrale endringene som skjer i spekteret når vandig TPCS2a solubiliseres. Når surfaktanter tilsettes formuleringen flyttes toppen i Soret-båndet fra ca 415 nm til ca 420 nm, samtidig som at toppen har lavere absorbans og får en splitt. Samtidig som at Soret-båndet endres, vil også Q-båndet endres ved at toppen flyttes fra 645 nm til ca 652 nm og øker absorbans. Det er Q-båndet som studeres nærmest når CMC-verdier ble bestemt under, og er derfor forstørret i figurene så det skal være lettere å se.
4.1.1 CMC-bestemmelse av miceller av Pluronic F127

Det ble tatt absorpsjonsspekter av formuleringer med 1 µM TPCS$_{2a}$ solubilisert i Pluronic F127 (0- 0,25 µM, 6 konsentrasjonsnivåer, n=3). Absorpsjonsspekteret er vist i Figur 19 under.

![Absorpsjonsspekter av TPCS$_{2a}$ som funksjon av Pluronic F127-konsentrasjon (0- 0,25 µM, n=3).](image)

I Figur 19 vises endringene i absorpsjonsspekteret som oppstår når TPCS$_{2a}$ solubiliseres i Pluronic F127. Med økende konsentrasjon av F127 synker absorbansen av Soret-bånd, samtidig som det kommer en ekstra topp til syne. Toppen i Q-båndet flytter seg mot høyere bølgelengder, før det til slutt stabiliseres ved 651,5 nm. Etter dette øker absorbansen med økende konsentrasjon F127. I bestemmelsen av CMC-verdi, er det valgt å fokusere på den første konsentrasjonen som stabiliserer Q-båndet ved 651,5 nm. I denne formuleringen blir CMC-verdien av Pluronic F127 bestemt til å være 0,15 µM. I Tabell 31 vises de mest sentrale endringene som skjer i spekteret når vandig TPCS$_{2a}$ solubiliseres i F127.
Tabell 31 Endringer i absorpsjonsegenskapene til TPCS₂a ved tilsetning av økte konsentrasjoner

<table>
<thead>
<tr>
<th>TPCS₂ₐ (µM)</th>
<th>Pluronic F127 (µM)</th>
<th>Tween 80 (µM)</th>
<th>Micelledannere (µM)</th>
<th>Soret-bånd absorbans</th>
<th>Soret-bånd bølgelengde (nm)</th>
<th>Q-bånd absorbans</th>
<th>Q-bånd bølgelengde (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,158</td>
<td>416,5</td>
<td>0,010</td>
<td>645,0</td>
</tr>
<tr>
<td>1</td>
<td>0,05</td>
<td>0</td>
<td>0,05</td>
<td>0,166</td>
<td>416,0</td>
<td>0,018</td>
<td>649,5</td>
</tr>
<tr>
<td>1</td>
<td>0,10</td>
<td>0</td>
<td>0,1</td>
<td>0,151</td>
<td>416,5</td>
<td>0,020</td>
<td>650,5</td>
</tr>
<tr>
<td>1</td>
<td>0,15</td>
<td>0</td>
<td>0,15</td>
<td>0,143</td>
<td>418,5</td>
<td>0,023</td>
<td>651,5</td>
</tr>
<tr>
<td>1</td>
<td>0,2</td>
<td>0</td>
<td>0,2</td>
<td>0,139</td>
<td>420,0</td>
<td>0,025</td>
<td>651,5</td>
</tr>
<tr>
<td>1</td>
<td>0,25</td>
<td>0</td>
<td>0,25</td>
<td>0,141</td>
<td>420,5</td>
<td>0,028</td>
<td>652,0</td>
</tr>
</tbody>
</table>

4.1.2 CMC-bestemmelser av mixede miceller av Pluronic F127 og Tween 80 i ulike molare forhold

Det ble tatt absorpsjonsspekter av formuleringer med 1 µM TPCS₂ₐ solubilisert i Pluronic F127 og Tween 80 (total konsentrasjon micelledannere: 0-0,25 µM, molare forhold: 1:10, 1:5, 1:1, 5:1, 10:1, n=3).

Absorpsjonsspekteret av formuleringen med TPCS₂ₐ og surfaktanter i det molare forholdet 1:10 er vist i Figur 20.

I Figur 20 vises endringene i absorpsjonsspekteret som oppstår når TPCS₂ₐ solubiliseres i mixede miceller av Pluronic F127 og Tween 80 i det molare forholdet 1:10. I motsetning til formuleringen av TPCS₂ₐ i kun F127, vil en økende total konsentrasjon av surfaktant i dette tilfellet i noe grad øke absorbansen av Soret-båndet. Det skjer heller ikke en splitting av Soret-båndet.
Toppen i Q-båndet flytter seg mot høyere bølgelengder, før det stabiliseres ved 649,5-650,0 nm. Etter dette øker absorbansen med økende konsentrasjon av micelledannere. I bestemmelsen av CMC-verdi, er det valgt å fokusere på den første konsentrasjonen som stabiliserer Q-båndet ved 649,5 nm. I denne formuleringen blir CMC-verdien til de mixede micellene av Pluronic F127 og Tween 80 bestemt til å være 0,3 µM. I Tabell 32 vises de mest sentrale endringene som skjer i spekteret når vandig TPCS$_{2a}$ solubiliseres i mixede miceller av F127 og T80 i molart forhold 1:10.

<table>
<thead>
<tr>
<th>TPCS$_{2a}$ (µM)</th>
<th>Pluronic F127 (µM)</th>
<th>Tween 80 (µM)</th>
<th>Micelledannere (µM)</th>
<th>Soret-bånd absorbans</th>
<th>Q-bånd absorbans</th>
<th>Q-bånd bølgelengde (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,158</td>
<td>0,010</td>
<td>645,0</td>
</tr>
<tr>
<td>1</td>
<td>0,009</td>
<td>0,091</td>
<td>0,1</td>
<td>0,168</td>
<td>0,017</td>
<td>646,5</td>
</tr>
<tr>
<td>1</td>
<td>0,018</td>
<td>0,182</td>
<td>0,2</td>
<td>0,166</td>
<td>0,019</td>
<td>648,0</td>
</tr>
<tr>
<td>1</td>
<td>0,027</td>
<td>0,273</td>
<td>0,3</td>
<td>0,166</td>
<td>0,020</td>
<td>649,5</td>
</tr>
<tr>
<td>1</td>
<td>0,036</td>
<td>0,364</td>
<td>0,4</td>
<td>0,167</td>
<td>0,021</td>
<td>650,0</td>
</tr>
<tr>
<td>1</td>
<td>0,046</td>
<td>0,454</td>
<td>0,5</td>
<td>0,163</td>
<td>0,022</td>
<td>650,0</td>
</tr>
</tbody>
</table>

Tabell 32: Endringer i absorbpsjonsegenskapene til TPCS$_{2a}$ ved tilsetning av økte konsentrasjoner F127 og T80 i molart forhold 1:10

Absorpsjonsspekteret av formuleringen med TPCS$_{2a}$ og surfaktanter i det molare forholdet 1:5 er vist i Figur 21.
I Figur 21 vises endringene i absorpsjonsspekteret som oppstår når TPCS$_{2a}$ solubiliseres i mixede miceller av Pluronic F127 og Tween 80 i det molare forholdet 1:5. En økende total konsentrasjon av surfaktant i dette tilfellet vil senke absorbansen av Soret-båndet, men toppen holder seg ved en konstant bølgelengde. Toppen i Q-båndet flytter seg mot høyere bølgelengder, før det stabiliseres ved 650,5 nm, og absorbansen øker med økende konsentrasjon av micelledannere. I bestemmelsen av CMC-verdi, er det valgt å fokusere på den første konsentrasjonen som stabiliserer Q-båndet ved 650,5 nm. I denne formuleringen blir CMC-verdien til de mixede micellene av Pluronic F127 og Tween 80 bestemt til å være 0,3 µM. I Tabell 34 vises de mest sentrale endringene som skjer i spekteret når vandig TPCS$_{2a}$ solubiliseres i mixede miceller av F127 og T80 i molart forhold 1:5.

Tabell 34 Endringer i absorpsjonsegenskapene til TPCS$_{2a}$ ved tilsetning av økte konsentrasjoner F127 og T80 i molart forhold 1:5

<table>
<thead>
<tr>
<th>TPCS$_{2a}$ (µM)</th>
<th>Pluronic F127 (µM)</th>
<th>Tween 80 (µM)</th>
<th>Micelledannere (µM)</th>
<th>Soret-bånd absorbans</th>
<th>Soret-bånd bølgelengde (nm)</th>
<th>Q-bånd absorbans</th>
<th>Q-bånd bølgelengde (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,017</td>
<td>0,083</td>
<td>0,1</td>
<td>0,158</td>
<td>416,0</td>
<td>0,016</td>
<td>645,0</td>
</tr>
<tr>
<td>1</td>
<td>0,034</td>
<td>0,166</td>
<td>0,2</td>
<td>0,161</td>
<td>416,0</td>
<td>0,017</td>
<td>648,0</td>
</tr>
<tr>
<td>1</td>
<td>0,050</td>
<td>0,250</td>
<td>0,3</td>
<td>0,150</td>
<td>416,0</td>
<td>0,021</td>
<td>650,5</td>
</tr>
<tr>
<td>1</td>
<td>0,066</td>
<td>0,334</td>
<td>0,4</td>
<td>0,153</td>
<td>416,0</td>
<td>0,025</td>
<td>650,5</td>
</tr>
<tr>
<td>1</td>
<td>0,083</td>
<td>0,417</td>
<td>0,5</td>
<td>0,137</td>
<td>416,5</td>
<td>0,025</td>
<td>651,5</td>
</tr>
</tbody>
</table>

Absorpsjonsspekteret av formuleringen med TPCS$_{2a}$ og surfaktanter i det molare forholdet 1:1 er vist i Figur 22 under.
I Figur 22 vises endringene i absorpsjonsspekteret som oppstår når TPCS$_{2a}$ solubiliseres i mixede miceller av Pluronic F127 og Tween 80 i det molare forholdet 1:1. Resultatene fra absorpsjon av TPCS$_{2a}$ i denne formuleringen var vanskelige å tolke, da endringene i de ulike delene av spekteret var motstridende. Ved 0,20 µM total konsentrasjon av micelledannere sank absorbansen i Soret-bånd, men toppen holdt seg ved 416,5 nm. Ved videre økt konsentrasjon til 0,25 µM økte absorbansen ved Soret-bånd igjen, men forflyttet toppen mot litt høyere bølgelengder. Ved 0,35 µM ble toppen bredere. Av toppen i Q-båndet ble det observert et shift i bølgelengde allerede ved 0,2 µM, som først stabiliserte seg ved 651 nm, for så å øke videre ved 0,35 µM igjen. Ved 0,35 µM ble det også observert en lavere absorbband på halen etter Soret-båndet. Det ble til slutt bestemt en CMC-verdi på 0,3 µM, som en mellomting av de diskuterte konsentrasjonene, men dette resultatet er noe usikkert. I Tabell 33 vises de mest sentrale endringene som skjer i spekteret når vandig TPCS$_{2a}$ solubiliseres i mixede miceller av F127 og T80 i molart forhold 1:1.
Absorpsjonsspekteret av formuleringen med TPCS$_{2a}$ og surfaktanter i det molare forholdet 5:1 er vist i Figur 23.

I Figur 23 vises endringene i absorpsjonsspekteret som oppstår når TPCS$_{2a}$ solubiliseres i mixede miceller av Pluronic F127 og Tween 80 i det molare forholdet 5:1. Endringene i dette absorpsjonsspekteret var også litt vanskelige å tolke. Q-båndet stabiliseres ved 651,5 nm fra 0,2 µM, men splittingen av Soret-båndet kommer først ved 0,3 µM. Halen etter Soret-båndet stabiliseres på den laveste absorbansen ved 0,3 µM. I denne formuleringen blir CMC-verdien til de mixede micellen av Pluronic F127 og Tween 80 derfor bestemt til å være 0,3 µM, men også med en viss usikkerhet. I Tabell 34 vises de mest sentrale endringene som skjer i spekteret når vandig TPCS$_{2a}$ solubiliseres i mixede miceller av F127 og T80 i molart forhold 5:1.
Tabell 34 Endringer i absorpsjonsegenskapene til TPCS2a ved tilsetning av økte konsentrasjoner F127 og T80 i molart forhold 5:1

<table>
<thead>
<tr>
<th>TPCS2a (µM)</th>
<th>Pluronic F127 (µM)</th>
<th>Tween 80 (µM)</th>
<th>Micelledannere (µM)</th>
<th>Soret-bånd absorbans</th>
<th>Soret-bånd bølgelengde (nm)</th>
<th>Q-bånd absorbans</th>
<th>Q-bånd bølgelengde (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,158</td>
<td>416,5</td>
<td>0,010</td>
<td>645,0</td>
</tr>
<tr>
<td>1</td>
<td>0,083</td>
<td>0,017</td>
<td>0,10</td>
<td>0,159</td>
<td>417,5</td>
<td>0,019</td>
<td>650,0</td>
</tr>
<tr>
<td>1</td>
<td>0,166</td>
<td>0,034</td>
<td>0,20</td>
<td>0,148</td>
<td>419,5</td>
<td>0,024</td>
<td>651,5</td>
</tr>
<tr>
<td>1</td>
<td>0,208</td>
<td>0,042</td>
<td>0,25</td>
<td>0,142</td>
<td>420,5</td>
<td>0,026</td>
<td>651,5</td>
</tr>
<tr>
<td>1</td>
<td>0,250</td>
<td>0,050</td>
<td>0,30</td>
<td>0,137</td>
<td>420,5</td>
<td>0,027</td>
<td>651,5</td>
</tr>
<tr>
<td>1</td>
<td>0,292</td>
<td>0,058</td>
<td>0,35</td>
<td>0,137</td>
<td>421,0</td>
<td>0,028</td>
<td>652,0</td>
</tr>
<tr>
<td>1</td>
<td>0,334</td>
<td>0,066</td>
<td>0,40</td>
<td>0,140</td>
<td>421,5</td>
<td>0,029</td>
<td>652,0</td>
</tr>
</tbody>
</table>

Absorpsjonsspekteret av formuleringen med TPCS2a og surfaktanter i det molare forholdet 10:1 er vist i Figur 24.

I Figur 24 over vises endringene i absorpsjonsspekteret som oppstår når TPCS2a solubiliseres i mixede miceller av Pluronic F127 og Tween 80 i det molare forholdet 10:1. Endringene i dette absorpsjonsspekteret skjedde ved 0,3 µM ved alle fokusområden. Ved denne konsentrasjonen stabiliserte Q-båndet seg ved 652 nm, Soret-båndet viste tegn til splitting, og halen etter Soret-båndet stabiliserte seg med lavere absorbans. I denne formuleringen blir CMC-verdien til de mixede micellene av Pluronic F127 og Tween 80 derfor bestemt til å være 0,3 µM. I Tabell 35 vises de mest sentrale endringene som skjer i spekteret når vandig TPCS2a solubiliseres i mixede miceller av F127 og T80 i molart forhold 10:1.
Tabell 35 Endringer i absorpsjonsegenskapene til TPCS$_{2a}$ ved tilsetning av økte konsentrasjoner F127 og T80 i molart forhold 10:1

<table>
<thead>
<tr>
<th>TPCS$_{2a}$ (µM)</th>
<th>Pluronic F127 (µM)</th>
<th>Tween 80 (µM)</th>
<th>Micelledannere (µM)</th>
<th>Soret-bånd absorbans</th>
<th>Soret-bånd bølgelengde (nm)</th>
<th>Q-bånd absorbans</th>
<th>Q-bånd bølgelengde (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.158</td>
<td>416.5</td>
<td>0.010</td>
<td>645.0</td>
</tr>
<tr>
<td>1</td>
<td>0.091</td>
<td>0.009</td>
<td>0.1</td>
<td>0.149</td>
<td>418.0</td>
<td>0.018</td>
<td>650.0</td>
</tr>
<tr>
<td>1</td>
<td>0.182</td>
<td>0.018</td>
<td>0.2</td>
<td>0.145</td>
<td>420.0</td>
<td>0.023</td>
<td>651.5</td>
</tr>
<tr>
<td>1</td>
<td>0.273</td>
<td>0.027</td>
<td>0.3</td>
<td>0.132</td>
<td>421.0</td>
<td>0.025</td>
<td>652.0</td>
</tr>
<tr>
<td>1</td>
<td>0.364</td>
<td>0.036</td>
<td>0.4</td>
<td>0.143</td>
<td>421.5</td>
<td>0.030</td>
<td>652.0</td>
</tr>
<tr>
<td>1</td>
<td>0.454</td>
<td>0.046</td>
<td>0.5</td>
<td>0.139</td>
<td>421.5</td>
<td>0.030</td>
<td>652.0</td>
</tr>
</tbody>
</table>
4.1.3 Oppsummering

I tidligere formuleringsstudier av TPCS$_{2a}$ er det funnet at Pluronic F127 har en CMC-verdi på 0,8 µM og Tween 80 har en CMC-verdi på 11,5 µM (Lilletvedt et al. 2011). I dette arbeidet ble det funnet en CMC-verdi av Pluronic F127 på 0,15 µM, som avviker fra Lilletvedts resultat på 0,8 µM. Det ble gått nærmere inn på konsentrasjonene mellom 0 og 0,8 µM enn det ble gjort i Lilletvedts arbeid, og en eventuelt lavere CMC-verdi av Pluronic F127 kunne derfor observeres her.

Det man ser i formuleringene med de mixede micellene er at jo høyere konsentrasjon av Pluronic F127 tilstede, jo mer tydelig splitting av Soret-bånd. Høyere konsentrasjon av Pluronic F127 gir også større absorbans ved Q-båndet, og et litt større rødt shift enn da Tween 80 er dominerende i formuleringen (se Figur 19-24).

Det viser seg at beregnet CMC-verdi er ca 0,3 µM av mixede miceller av Pluronic F127 og Tween 80 i nærvær av TPCS$_{2a}$ uansett hvordan det molare forholdet mellom surfaktantene er. En viss usikkerhet i vurderingene må inkluderes da det til tider var vanskelig å tolke endringene. Tabell 36 viser CMC-verdiene funnet i denne studien.
De beregnede CMC-verdiene til de mixede micellene i formuleringene i dette arbeidet ble alle 0,3 µM. Da denne CMC-verdien ligger så nær CMC-verdien til F127 enn til T80, ser det ikke ut til at Tween 80 påvirker CMC-verdien av de mixede micellene i betydelig grad. Dette vil si at selv i formuleringer med lavere konsentrasjoner av Pluronic F127 enn Tween 80, vil de mixede micellene få beholde den lave CMC-verdien som er observert med Pluronic F127 alene.

<table>
<thead>
<tr>
<th>Konsentrasjon TPCS(_{2a}) (µM)</th>
<th>Molare forhold (F127:T80)</th>
<th>CMC (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10:1</td>
<td>0,3</td>
</tr>
<tr>
<td>1</td>
<td>5:1</td>
<td>0,3</td>
</tr>
<tr>
<td>1</td>
<td>1:1</td>
<td>0,3</td>
</tr>
<tr>
<td>1</td>
<td>1:5</td>
<td>0,3</td>
</tr>
<tr>
<td>1</td>
<td>1:10</td>
<td>0,3</td>
</tr>
</tbody>
</table>
4.2 Viskositetsmålinger

Viskositetsmålingene ble utført for å karakterisere nettverket og solubiliseringen av TPCS$_{2a}$ i formuleringene. Aggregater av TPCS$_{2a}$ vil gi en høyere viskositet av formuleringen, og vil derfor kunne avsløres av metoden. Formuleringene til viskositetsmålinger er med klinisk brukbare konsentrasjoner av TPCS$_{2a}$, Pluronic F127 og Tween 80. Konsentrasjon av surfaktant (0,125-10 mM) er godt over CMC-verdien (0,8 µM og 11,5 µM) beskrevet i 1.5.1 innledningsvis. Ved konsentrasjoner over 0,24 mM er det rapportert at effekten av F127 begynner å avta, ved at nedsetting av viskositet flater ut (Lilletvedt et al. 2011). Ved konsentrasjon av T80 på 4,6 mM, er det i litteraturen beskrevet en fullstendig solubilisering av TPCS$_{2a}$ (Lilletvedt et al. 2011). Konsentrasjonsområdet av surfaktanter i viskositetsmålingene dekker konsentrasjoner som i litteraturen er rapportert å ha god effekt (Lilletvedt et al. 2011).

Det ble gjort målinger av 3 paralleller av hver formulering med TPCS$_{2a}$, og hver parallelle ble målt 5 ganger i viskosimeteret. Resultatene av disse formuleringene er dermed basert på n=15 målinger. Av blindprøvene ble det kun laget én parallel, altså er n=5.

4.2.1 Viskositetsmålinger av formuleringer av 10 mg/ml TPCS$_{2a}$ etter solubilisering med Pluronic F127

Tabell 37 og Figur 26 under gir en oversikt over resultatene fra viskositetsmålingene av formuleringer av 10 mg/ml TPCS$_{2a}$ etter solubilisering med F127.
Tabell 37 Viskositetsmålinger av formuleringer av 10 mg/ml TPCS$_{2a}$ etter solubilisering med F127

<table>
<thead>
<tr>
<th>Konsentrasjon av TPCS$_{2a}$ (mg/ml)</th>
<th>Konsentrasjon av F127 (mM)</th>
<th>Antall målinger (n)</th>
<th>Viskositet (cSt)</th>
<th>Standardavvik (cSt)</th>
<th>Relativt standardavvik (RSD) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>0,125</td>
<td>15</td>
<td>2,077</td>
<td>0,004</td>
<td>0,2</td>
</tr>
<tr>
<td>10</td>
<td>0,250</td>
<td>15</td>
<td>2,832</td>
<td>0,008</td>
<td>0,3</td>
</tr>
<tr>
<td>10</td>
<td>0,500</td>
<td>15</td>
<td>1,913</td>
<td>0,006</td>
<td>0,3</td>
</tr>
<tr>
<td>10</td>
<td>1,000</td>
<td>15</td>
<td>1,497</td>
<td>0,003</td>
<td>0,2</td>
</tr>
<tr>
<td>10</td>
<td>2,000</td>
<td>15</td>
<td>1,630</td>
<td>0,001</td>
<td>0,1</td>
</tr>
</tbody>
</table>

Figur 26 Viskositetsmålinger av formuleringer av 10 mg/ml TPCS$_{2a}$ etter solubilisering med F127. Figuren viser gjennomsnittlig kinematisk viskositet (cSt) av 15 målinger; 3 paralleller, 5 repetisjoner av hver (RSD < 0,4 %)

Figur 26 viser at formuleringen uten tilsatt F127 ikke kunne måles med metoden da den var for viskøs. Formuleringene har en høy viskositet ved lave konsentrasjoner av F127. Det er først ved 2 mM F127 at viskositeten er på linje med blindprøven uten TPCS$_{2a}$, ved 1,5 cSt. Dette tyder på at TPCS$_{2a}$ er solubilisert i formuleringen med 2 mM Pluronic F127 tilstede, og TPCS$_{2a}$ vil herfra ha minimal påvirkning på viskositeten. Ved 0,24 mM F127, som er oppgitt som
4.2.2 Viskositetsmålinger av formuleringer av 10 mg/ml TPCS\textsubscript{2a} etter solubilisering med Tween 80

Tabell 38 og Figur 27 under gir en oversikt over resultatene fra viskositetsmålingene av formuleringer av 10 mg/ml TPCS\textsubscript{2a} etter solubilisering med T80.

Tabell 38 Viskositetsmålinger av formuleringer av 10 mg/ml TPCS\textsubscript{2a} etter solubilisering med T80

<table>
<thead>
<tr>
<th>Konsentrasjon av TPCS\textsubscript{2a} (mg/ml)</th>
<th>Konsentrasjon av T80 (mM)</th>
<th>Antall målinger (n)</th>
<th>Viskositet (cSt)</th>
<th>Standardavvik (cSt)</th>
<th>Relativt standardavvik (RSD) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0</td>
<td>15</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>15</td>
<td>4,365</td>
<td>0,087</td>
<td>2,0</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>15</td>
<td>0,992</td>
<td>0,000</td>
<td>0,0</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>15</td>
<td>1,051</td>
<td>0,000</td>
<td>0,0</td>
</tr>
</tbody>
</table>
Figur 27 Viskositetsmålinger av formuleringer av 10 mg/ml TPCS\(_{2a}\) etter solubilisering med T80. Figuren viser gjennomsnittlig kinematisk viskositet (cSt) av 15 målinger; 3 paralleller, 5 repetisjoner av hver (RSD < 2,1 %)

I formuleringene med TPCS\(_{2a}\) i Tween 80, var viscositeten for høy til å kunne måles med metoden frem til 2 mM T80. Også her var formuleringen veldig viskøs, og et stort standardavvik i målingene av denne ble observert. De tilsvarende formuleringene med F127 viste solubilisering ved lavere konsentrasjoner enn T80. Dette kan ha sammenheng med den lavere CMC-verdier av de polymere micellene som dannes av F127, og at det raskere dannes miceller som bryter ned nettverket til TPCS\(_{2a}\) med F127. Figur 27 viser at i formuleringen med 4 mM T80 tilstede er viskositeten på linje med blindprøven uten TPCS\(_{2a}\), ved 1,0 cSt. Dette tyder på at ved 4 mM T80 er TPCS\(_{2a}\) godt solubilisert i formuleringen, og har minimal påvirkning på viskositeten. Formuleringene med TPCS\(_{2a}\) solubilisert i T80 har en lavere viskositet enn formuleringene solubilisert i F127, og ser derfor ut til å være bedre egnet som solubilisator i intravenøse formuleringer av TPCS\(_{2a}\). Dette stemmer overens med tidligere viskositetsstudier av formuleringer av TPCS\(_{2a}\) (Lilletvedt et al. 2011).
4.2.3 Viskositetsmålinger av formuleringer av 10 mg/ml TPCS$_{2a}$ etter solubilisering med Pluronic F127 og Tween 80 i molare forhold 1:1

Tabell 39 og Figur 28 under gir en oversikt over resultatene fra viskositetsmålingene av formuleringer av 10 mg/ml TPCS$_{2a}$ etter solubilisering med F127 og T80 i molare forhold 1:1.

Tabell 39 Viskositetsmålinger av formuleringer av 10 mg/ml TPCS$_{2a}$ etter solubilisering med F127 og T80 i molare forhold 1:1

<table>
<thead>
<tr>
<th>Konsentrasjon av TPCS$_{2a}$ (mg/ml)</th>
<th>Total konsentrasjon av micelledannere (mM) i molare forhold 1:1</th>
<th>Antall målinger (n)</th>
<th>Viskositet (cSt)</th>
<th>Standardavvik (cSt)</th>
<th>Relativt standardavvik (RSD) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0</td>
<td>15</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>0,25</td>
<td>15</td>
<td>2,473</td>
<td>0,005</td>
<td>0,2</td>
</tr>
<tr>
<td>10</td>
<td>0,5</td>
<td>15</td>
<td>2,117</td>
<td>0,015</td>
<td>0,7</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>15</td>
<td>1,321</td>
<td>0,001</td>
<td>0,0</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>15</td>
<td>1,347</td>
<td>0,001</td>
<td>0,0</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>15</td>
<td>1,738</td>
<td>0,000</td>
<td>0,0</td>
</tr>
</tbody>
</table>
Viskositetsmålinger av formuleringer av 10 mg/ml TPCS$_{2a}$ etter solubilisering med F127 og T80 i molart forhold 1:1

Figur 28 Viskositetsmålinger av formuleringer av 10 mg/ml TPCS$_{2a}$ etter solubilisering med F127 og T80 i molart forhold 1:1. Figurken viser gjennomsnittlig kinematisk viskositet (cSt) av 15 målinger; 3 paralleller, 5 repetisjoner av hver (RSD < 0,8 %)

I formuleringene med TPCS$_{2a}$ i mixede miceller av Pluronic F127 og Tween 80 i molart forhold 1:1, ser vi i Figur 28 at det ved en total konsentrasjon av micelledannere på 2 mM er så solubilisert som det kan bli i denne formuleringen. Ved ytterligere økt total konsentrasjon av micelledannere vil viskositeten øke. Ved 2 mM er formuleringens viskositet på nivå med blindprøven, et sted mellom 1,0 og 1,5 cSt. Ved samme konsentrasjon av micelledanner i formuleringen med kun F127 var viskositeten over 1,5 cSt, og i formuleringen med kun T80 var den opp mot 4,5 cSt. Dette tyder på at en formulering med mixede micellene gir gunstigere viskositet enn med enkle miceller.

4.2.4 Viskositetsmålinger av formuleringer av 10 mg/ml TPCS$_{2a}$ etter solubilisering med Pluronic F127 og Tween 80 i isotone medier

Det er viktig at intraveneøse injeksjoner er isotone med blod, for å unngå innskrumping eller svelling av de røde blodcellene (Florence og Attwood 2006). Det ble derfor inkludert viskositetsmålinger på formuleringer i isotone medier, for å kontrollere solubilisering i formuleringer egnet for intravenøs injeksjon.
Tabell 40 og Figur 29 under gir en oversikt over resultatene fra viskositetsmålingene av isotone formuleringer av 10 mg/ml TPCS_{2a} etter solubilisering med F127 og T80 i ulike molare forhold.

Tabell 40 Viskositetsmålinger av formuleringer av 10 mg/ml TPCS_{2a} etter solubilisering med Pluronic F127 og Tween 80 i isotone medier

<table>
<thead>
<tr>
<th>Konsentrasjon av TPCS<sub>2a</sub> (mg/ml)</th>
<th>Total konsentrasjon av micelle-dannere (mM)</th>
<th>Konsentrasjon F127 (mM)</th>
<th>Konsentrasjon T80 (mM)</th>
<th>Molart forhold micelle-dannere</th>
<th>Antall målinger (n)</th>
<th>Lønningsmiddel</th>
<th>Viskositet (cSt)</th>
<th>Standard avvik (cSt)</th>
<th>Relativt standard avvik (RSD) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>4</td>
<td>2,0</td>
<td>2,0</td>
<td>1:1</td>
<td>5</td>
<td>0,9% NaCl</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>0,4</td>
<td>3,6</td>
<td>1:10</td>
<td>5</td>
<td>0,9% NaCl</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>2,0</td>
<td>2,0</td>
<td>1:1</td>
<td>5</td>
<td>5,0% Glukose</td>
<td>1,671</td>
<td>0,009</td>
<td>0,5</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>0,4</td>
<td>3,6</td>
<td>1:10</td>
<td>5</td>
<td>5,0% Glukose</td>
<td>1,865</td>
<td>0,003</td>
<td>0,2</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>5,0</td>
<td>5,0</td>
<td>1:1</td>
<td>5</td>
<td>0,9% NaCl</td>
<td>4,823</td>
<td>0,071</td>
<td>1,5</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>1,0</td>
<td>9,0</td>
<td>1:10</td>
<td>5</td>
<td>0,9% NaCl</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>9,0</td>
<td>1,0</td>
<td>10:1</td>
<td>5</td>
<td>0,9% NaCl</td>
<td>3,505</td>
<td>0,003</td>
<td>0,0</td>
</tr>
</tbody>
</table>

Figur 29 Viskositetsmåling av isolerte formuleringer med 10 mg/ml TPCS_{2a} i Pluronic F127 + Tween 80

Det ble kun laget én parallel av hver formulering i isotone medier for å få en raskere oversikt over viskositeten til de ulike formuleringene. I fremtidige
studier bør det lages flere paralleller for å sjekke reproduserbarhet og sikkerhet av resultatene. Det ble gjort 5 repetisjoner av hver formulering i viskosimeteret (n=5). Noen av formuleringene var for viskøse for å kunne måles med metoden, og vises kun med tallet 0 over i Figur 29. Dette gjaldt formuleringene med TPCS$_{2a}$ i 0,9 % NaCl og 4 mM F127 + T80 (1:1), TPCS$_{2a}$ i 0,9 % NaCl og 4 mM F127 + T80 (1:10) og TPCS$_{2a}$ i 0,9 % NaCl og 10 mM F127 + T80 (1:10), og er ikke aktuelle for intraveneøs injeksjon, da de ville kunne gi embolier og redusert effekt av TPCS$_{2a}$ in vivo (Torchilin 2007, Lee et al. 2007, Konan et al. 2002). Det samme gjelder formuleringene med 10 mg/ml TPCS$_{2a}$ i 10 mM total konsentrasjon av Pluronic F127 og Tween 80 (1:1 og 10:1), i 0,9% NaCl som ga en viskositet som var for høy. Formuleringene med 10 mg/ml TPCS$_{2a}$ og 4 mM total konsentrasjon av F127 og T80 i glukoseløsning viste lav viskositet, og det ble derfor ikke gjort videre forsøk med 10 mM. Formuleringene uten TPCS$_{2a}$ ga generelt lav viskositeter (0,999-1,740), og viser at surfaktantene ikke har stor påvirkning på viskositeten når ikke TPCS$_{2a}$ er tilstede (Figur 29).

I tidligere studier er det rapportert at tilsetning av glukose til formuleringer med 10 mg/ml TPCS$_{2a}$ og T80 har minimal effekt på viskositeten i forhold til formuleringer med F127, og at tilsvarende formuleringer med tilsatt NaCl blir for viskøse til å kunne måles (Lilletvedt et al. 2011). Formuleringene med 10 mg/ml TPCS$_{2a}$ solubilisert i F127 og T80 i glukoseløsning viste også lav viskositet i dette arbeidet (Figur 29). Med totalt 4 mM micelledannere, og molart forhold 1:1 mellom F127 og T80, hadde formuleringen en viskositet på 1,670 cSt da 10 mg/ml TPCS$_{2a}$ var tilstede i isoton glukose. Dette er en lavere viskositet enn den tilsvarende formuleringen uten glukose som var 1,738 cSt. Formuleringen med 10 mg/ml TPCS$_{2a}$ og 4 mM micelledannere, molart forhold 1:10 mellom F127 og T80, viste også lav viskositet på 1,863 cSt, men resultatene tyder på at T80 i overskudd i mixede miceller i isoton løsning ikke er mer gunstig. På tross av lavere viskositet i blindprøvene (Figur 29) og av formuleringene med T80 i de ikke-isotone formuleringene (Figur 27), vises ikke dette når 10 mg/ml TPCS$_{2a}$ er tilstede.
Resultatene viser at ved tilsetning av salter (Na+ og Cl-) til isotont medium er viskositeten for høy for både 1:1 forhold og 1:10 forhold av Pluronic F127 og Tween 80 når samlet konsentrasjon av micelledannende stoffer er 4mM i nærvar av 10 mg/ml TPCS2a. Når konsentrasjonen er 10mM av micelledannere er viskositeten også for høy til å måles i 1:10 forhold. Ved 1:1 forhold kan viskositeten måles, men viskositeten er nesten 5 cSt, noe som vil være ugunstig ved intravenøs injeksjon. Høy viskositet ved tilsetning av salter kan komme av dehydrering eller elektrostatiske effekter i formuleringen (Desai et al. 2001, Patel et al. 2010). Høy viskositet er observert i tidligere studier når de isotoniregulerende stoffene NaCl og glukose er tilsatt formuleringer med TPCS2a solubilisert i polymere miceller av F127, men ikke i formuleringer med TPCS2a solubilisert i miceller av T80 (Lilletvedt et al. 2011). Viskositeten holder seg lav i formuleringer med TPCS2a solubilisert i mixede miceller av F127 og T80 når det er isoton glukoseløsning som er brukt (Figur 29), noe som tyder på at mixede miceller av F127 og T80 klarer å bryte opp TPCS2a-nettverket og hindre aggregatdannelse i isoton glukoseløsning.

4.2.5 Sammenligning av viskositet når TPCS2a er tilsatt ulike medier

I Figur 30 under gis en oversikt over resultatene fra viskositetsmålingene av formuleringer av 10 mg/ml TPCS2a etter solubilisering med F127 og T80 i molart forhold 1:1 i ulike medier.
Figur 30 viser at formuleringen med 10 mg/ml TPCS$_{2a}$ i 4 mM total konsentrasjon av Pluronic F127 og Tween 80 i molart forhold 1:1, har minst like gunstig viskositet i isoton glukoseløsning som uten glukose. Den samme formuleringen i isoton NaCl-løsning viser ikke samme gunstige viskositet, og var for viskøs for å kunne måles. Resultatene tyder på at formuleringen med 10 mg/ml TPCS$_{2a}$ i 4 mM total konsentrasjon av Pluronic F127 og Tween 80 molart forhold 1:1 er gunstig for intravenøs injeksjon, men man kan risikere at også denne formuleringen blir viskøs når den møter salter in vivo.
4.3 Osmolaritetsmålinger

Hensikten med å måle osmolariteten av formuleringene er å karakterisere strukturene som dannes. Man kan beregne teoretisk osmolaritet av formuleringene, beskrevet i avsnitt 4.3.2 under. Disse kan sammenlignes med de observerte osmolaritetsverdiene, og man kan få et bilde av hvordan strukturen i formuleringene er. Er den observerte osmolariteten lavere enn teoretisk beregnet kan dette tyde på aggregatdannelse ved at TPCS$_{2a}$ klumper seg sammen til større enheter, eller solubilisering ved at TPCS$_{2a}$ solubiliseres i miceller (Figur 31).

Figur 31 Karakterisering av struktur i formuleringer. Figuren viser at en observert osmolaritet som er lavere enn teoretisk beregnet kan komme av: A) aggregering av TPCS$_{2a}$, B) solubilisering av TPCS$_{2a}$ i miceller.
Osmolaritet er spesielt viktig for intravenøse formuleringer, da de må være isotone med blod (ca 300 mosmol/l) for å ikke skade blodcellene (Lillevedt 2011, Florence og Attwood 2006).

4.3.1 Nedre deteksjonsgrense og referansegraf

For å finne frem til osmolaritetene var det nødvendig med en referansegraf til og sammenligne utslagene i mV fra formuleringene med. Det ble laget NaCl-løsninger i ulike kjente konsentrasjoner (0-400 mosmol/l), som ble målt i osmometeret. Utslagene er vist i Tabell 41 under.

Tabell 41 Utslag av NaCl-løsninger fra osmometeret oppgitt i mV

<table>
<thead>
<tr>
<th>NaCl kons. (mosmol/l)</th>
<th>Utslag (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3,35</td>
</tr>
<tr>
<td>5</td>
<td>4,5</td>
</tr>
<tr>
<td>10</td>
<td>5,8</td>
</tr>
<tr>
<td>20</td>
<td>8,4</td>
</tr>
<tr>
<td>30</td>
<td>10,8</td>
</tr>
<tr>
<td>40</td>
<td>13,4</td>
</tr>
<tr>
<td>50</td>
<td>15,75</td>
</tr>
<tr>
<td>100</td>
<td>27,6</td>
</tr>
<tr>
<td>150</td>
<td>38,7</td>
</tr>
<tr>
<td>200</td>
<td>50,2</td>
</tr>
<tr>
<td>250</td>
<td>62,6</td>
</tr>
<tr>
<td>300</td>
<td>74,5</td>
</tr>
<tr>
<td>350</td>
<td>84,8</td>
</tr>
<tr>
<td>400</td>
<td>98,3</td>
</tr>
</tbody>
</table>

Det ble inkludert lavkonsentrerte NaCl-løsninger (0-50 mosmol/l) for å bekrefte en nedre deteksjonsgrense, og lineæritet ($R^2=0,99981$) ble observert helt ned til 0 mosmol/l, vist i Figur 32 under.
Figur 32 viser at man kan bruke metoden for formuleringer med osmolaritet ned til 0 mosmol/l.

Alle utslagene fra Tabell 41 er plottet inn i Figur 33 under, med uendret $R^2 (0,99981)$.

I Figur 34 ble utslag i mV fra Figur 33 satt langs x-aksen, og utslag ble omregnet til osmolaritet i mosmol/l som ble satt langs y-aksen. Dette ga en linær graf ($R^2 = 0,99981$) med tilhørende likning

$$y = 4,2547x - 15,487$$

Dersom man antar full dissosiasjon av NaCl i hele måleområdet kan likningen brukes for å finne osmolariteten til formuleringene.
med ukjent osmolaritet, ved å sette inn utslagene fra kryometeret inn for x.

Referansegraf til osmolaritetsmålinger

![Referansegraf til osmolaritetsmålinger](image)

Figur 34 Referansegraf av NaCl som brukes for å finne osmolariteten av de ulike formuleringene av TPCS$_{2a}$.

4.3.2 Beregninger

Teoretisk osmolaritet av de ulike formuleringene kan regnes ut som vist under.

Osmolaritet av TPCS$_{2a}$, ved full dissosiasjon av saltet:
10mg/ml = 25mg/2,5ml

\[n = \frac{0,025g}{899,05g/mol} = 0,0278 \text{ mmol} \]

\[C = \frac{0,0278 \text{ mmol}}{2,5 \text{ ml}} = 0,01112 \text{ mmol/ml} = 11,12 \text{ mmol/l} \]

Osmolaritet = 11,12 mmol/l x 3 specier (TPCS$_{2a}$ + 2 motioner) =
33,4 mosmol/l

Osmolaritet av Pluronic F127, basert på konsentrasjon av unimere:

0,125 - 2 mmol/l -> 0,125 - 2 mosmol/l (da kun 1 specie)

Forventet osmolaritet av Tween 80, basert på konsentrasjon av unimere:

0,125 - 6 mmol/l -> 0,125 - 6 mosmol/l (da kun 1 specie)
4.3.3 Frysepunktdepresjon av vandige formuleringer av TPCS$_{2a}$

Det ble målt osmolaritet av 10 mg/ml TPCS$_{2a}$ i vann, vist i Tabell 42 under.

Tabell 42 Osmolaritet av vandig TPCS$_{2a}$.

<table>
<thead>
<tr>
<th>Konsentrasjon TPCS$_{2a}$ (mg/ml)</th>
<th>Utslag fra osmometeret (mV)</th>
<th>Observert osmolaritet (mosmol/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>5,3</td>
<td>7,0</td>
</tr>
</tbody>
</table>

Vandig TPCS$_{2a}$ 10mg/ml ga utslag på 5,3 mV som gir osmolariteten, i følge likningen fra Figur 34, en verdi på 7,0 mosmol/l. Dette er 21,0 % av teoretisk osmolaritet, og tyder på aggregering.

4.3.4 Osmolaritetsmåling av formuleringer med 10 mg/ml TPCS$_{2a}$ i Pluronic F127

Osmolariteten til formuleringer med 10 mg/ml TPCS$_{2a}$ i F127 (0-2 mM, n=3). Utslagene fra osmometeret er vist i Tabell 43 under.

Tabell 43 Utslag (mV) av vandige formuleringer av TPCS$_{2a}$ og Pluronic F127

<table>
<thead>
<tr>
<th>Konsentrasjon TPCS$_{2a}$ (mg/ml)</th>
<th>Konsentrasjon F127 (mM)</th>
<th>Utslag fra osmometeret (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0</td>
<td>5,3</td>
</tr>
<tr>
<td>10</td>
<td>0,125</td>
<td>6,7</td>
</tr>
<tr>
<td>10</td>
<td>0,125</td>
<td>6,1</td>
</tr>
<tr>
<td>10</td>
<td>0,125</td>
<td>5,5</td>
</tr>
<tr>
<td>10</td>
<td>0,25</td>
<td>8,4</td>
</tr>
<tr>
<td>10</td>
<td>0,25</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>0,25</td>
<td>5,5</td>
</tr>
<tr>
<td>10</td>
<td>0,5</td>
<td>6,4</td>
</tr>
<tr>
<td>10</td>
<td>0,5</td>
<td>6,5</td>
</tr>
<tr>
<td>10</td>
<td>0,5</td>
<td>6,1</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>7,3</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>7,3</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>7,3</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>8,7</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>8,7</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>9,8</td>
</tr>
</tbody>
</table>
Utslagene ble samlet i Tabell 44 under, som også viser standardavvik.

Tabell 44 Osmolaritetsmåling av 10 mg/ml TPCS$_{2a}$ solubilisert i F127

<table>
<thead>
<tr>
<th>Konsentrasjon TPCS$_{2a}$ (mg/ml)</th>
<th>F127 (mM)</th>
<th>Antall målinger (n)</th>
<th>Utslag osmometeret (mV)</th>
<th>Standardavvik (mV)</th>
<th>Relativt standardavvik (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0,000</td>
<td>3</td>
<td>5,3</td>
<td>0,000</td>
<td>0,0</td>
</tr>
<tr>
<td>10</td>
<td>0,125</td>
<td>3</td>
<td>6,1</td>
<td>0,600</td>
<td>9,8</td>
</tr>
<tr>
<td>10</td>
<td>0,250</td>
<td>3</td>
<td>6,6</td>
<td>1,550</td>
<td>23,5</td>
</tr>
<tr>
<td>10</td>
<td>0,500</td>
<td>3</td>
<td>6,3</td>
<td>0,208</td>
<td>3,3</td>
</tr>
<tr>
<td>10</td>
<td>1,000</td>
<td>3</td>
<td>7,3</td>
<td>0,000</td>
<td>0,0</td>
</tr>
<tr>
<td>10</td>
<td>2,000</td>
<td>3</td>
<td>9,1</td>
<td>0,635</td>
<td>7,0</td>
</tr>
</tbody>
</table>

Det ble også gjort målinger av blindprøver uten TPCS$_{2a}$ for å se hva surfaktanten bidrar til osmolariteten, og utslagene fra osmometeret er vist i Tabell 45 under.

Tabell 45 Osmolaritetsmåling av blindprøver uten TPCS$_{2a}$

<table>
<thead>
<tr>
<th>TPCS$_{2a}$ (mg/ml)</th>
<th>F127 (mM)</th>
<th>Antall målinger (n)</th>
<th>Utslag fra osmometeret (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0,125</td>
<td>1</td>
<td>3,7</td>
</tr>
<tr>
<td>0</td>
<td>0,250</td>
<td>1</td>
<td>3,7</td>
</tr>
<tr>
<td>0</td>
<td>0,500</td>
<td>1</td>
<td>3,8</td>
</tr>
<tr>
<td>0</td>
<td>1,000</td>
<td>1</td>
<td>4,2</td>
</tr>
<tr>
<td>0</td>
<td>2,000</td>
<td>1</td>
<td>5,4</td>
</tr>
</tbody>
</table>

Utslagene fra Tabell 44 og 45 oppgitt i mV ble regnet om til mosmol/l ved bruk av likningen i Figur 34, og plottet inn i Figur 35.
Figur 35 viser en kurve der osmolariteten stiger brått i formuleringene med 0 - 0,25 mM F127, for så å synke ned i 0,5 mM F127. Ved 0,25 mM ble det observert et stort standardavvik blant de 3 parallellene, trolig på grunn av høy aggregering av TPCS$_{2a}$. I viskositetsmålingen av samme formulering ble det observert en høy viskositet, som tyder på aggregering av TPCS$_{2a}$. I aggregerte løsninger vil ikke TPCS$_{2a}$ være jevnt fordelt, noe som fører til at uttak fra disse blir forskjellige, og standardavviket blir stort som observert i Figur 35. Toppen ved 0,25 mM kan derfor være en falsk topp.

Formuleringen med 10 mg/ml TPCS$_{2a}$ i 1 mM Pluronic F127 ga et utslag på 7,3 mV, som gir en osmolaritet på 15,5 mosmol/l. Teoretisk osmolaritet av denne formuleringen er $33,4 + 1 = 34,4$ mosmol/l. Observert osmolaritet utgjør 45,1 % av teoretisk osmolaritet. Da osmolariteten av denne formuleringen er høyere
enn TPCS$_{2a}$ løst i vann uten surfaktanter tilstede, kan man anta at 1 mM Pluronic F127 har ført til mindre aggregering. Da osmolariteten øker videre frem til formuleringen med 2 mM F127 tilstede, kan det være fordi flere aggregatheter solubiliseres, slik at flere unimere er tilstede i formuleringen.

Figur 26 viste at 10 mg/ml TPCS$_{2a}$ var tilnærmet helt solubilisert ved tilsetning av 2 mM F127, ved at viskositeten var ca lik viskositeten på blindprøven. I osmolaritetsmålingen av samme formulering ble det observert en osmolaritet på 21,5 mosmol/l, som er 60,7 % av den teoretiske osmolariteten til denne formuleringen (35,4 mosmol/l). En lavere osmolaritet på den observerte vil i dette tilfellet heller tolkes som at flere TPCS$_{2a}$- molekyler bindes til micellene slik at antall enheter blir færre, enn at det er aggregater tilstede, og at TPCS$_{2a}$ er godt solubilisert i formuleringen.

Det ble observert en økning i osmolaritet på 8 mosmol/l når konsentrasjon av F127 økte fra 0,05 - 1 mM. I tidligere studier er det observert samme trend, med kun en svak økt osmolaritet (<9 mosmol/l) ved økt konsentrasjon av F127 fra 0,05 - 0,8 mM (Lilletvedt et al. 2011).
4.3.5 Osmolaritetsmåling av vandige formuleringer av TPCS$_{2a}$ og Tween 80

Osmolariteten til formuleringer med 10 mg/ml TPCS$_{2a}$ i T80 (0-6 mM, n=3). Utslagene fra osmometeret er vist i Tabell 46 under.

Tabell 46 Utslag fra osmometeret av vandige formuleringer av 10 mg/ml TPCS$_{2a}$ solubilisert i T80

<table>
<thead>
<tr>
<th>Konsentrasjon TPCS$_{2a}$ (mg/ml)</th>
<th>Konsentrasjon T80 (mM)</th>
<th>Utslag fra osmometeret (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0</td>
<td>5,3</td>
</tr>
<tr>
<td>10</td>
<td>0,125</td>
<td>5,1</td>
</tr>
<tr>
<td>10</td>
<td>0,125</td>
<td>5,1</td>
</tr>
<tr>
<td>10</td>
<td>0,125</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>0,25</td>
<td>5,1</td>
</tr>
<tr>
<td>10</td>
<td>0,25</td>
<td>5,1</td>
</tr>
<tr>
<td>10</td>
<td>0,25</td>
<td>5,1</td>
</tr>
<tr>
<td>10</td>
<td>0,5</td>
<td>5,1</td>
</tr>
<tr>
<td>10</td>
<td>0,5</td>
<td>5,1</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>5,2</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>5,2</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>5,7</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>5,7</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>6,3</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>6,2</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>6,6</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>6,5</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>6,6</td>
</tr>
</tbody>
</table>

Utslagene ble samlet i Tabell 47 under, som også viser standardavvik.
Tabell 47 Osmolaritetsmåling av 10 mg/ml TPCS$_{2a}$ solubilisert i T80

<table>
<thead>
<tr>
<th>Konsentrasjon TPCS$_{2a}$ (mg/ml)</th>
<th>Konsentrasjon T80 (mM)</th>
<th>Antall målinger (n)</th>
<th>Utslag fra osmometeret (mV)</th>
<th>Standardavvik (mV)</th>
<th>Relativt standardavvik (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0,000</td>
<td>3</td>
<td>5,3</td>
<td>0,000</td>
<td>0,0</td>
</tr>
<tr>
<td>10</td>
<td>0,125</td>
<td>3</td>
<td>5,1</td>
<td>0,058</td>
<td>1,1</td>
</tr>
<tr>
<td>10</td>
<td>0,250</td>
<td>3</td>
<td>5,1</td>
<td>0,000</td>
<td>0,0</td>
</tr>
<tr>
<td>10</td>
<td>0,500</td>
<td>3</td>
<td>5,1</td>
<td>0,000</td>
<td>0,0</td>
</tr>
<tr>
<td>10</td>
<td>1,000</td>
<td>3</td>
<td>5,2</td>
<td>0,000</td>
<td>0,0</td>
</tr>
<tr>
<td>10</td>
<td>2,000</td>
<td>3</td>
<td>5,7</td>
<td>0,000</td>
<td>0,0</td>
</tr>
<tr>
<td>10</td>
<td>4,000</td>
<td>3</td>
<td>6,2</td>
<td>0,058</td>
<td>0,9</td>
</tr>
<tr>
<td>10</td>
<td>6,000</td>
<td>3</td>
<td>6,6</td>
<td>0,058</td>
<td>0,9</td>
</tr>
</tbody>
</table>

Det ble også gjort målinger av blindprøver uten TPCS$_{2a}$ for å se hva disse bidrar til osmolariteten, og utslagene fra osmometeret er vist i Tabell 48.

Tabell 48 Osmolaritetsmåling av blindprøver uten 10 mg/ml TPCS$_{2a}$ solubilisert i T80

<table>
<thead>
<tr>
<th>Konsentrasjon TPCS$_{2a}$ (mg/ml)</th>
<th>Konsentrasjon T80 (mM)</th>
<th>Utslag fra osmometeret (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0,125</td>
<td>3,5</td>
</tr>
<tr>
<td>0</td>
<td>0,250</td>
<td>3,6</td>
</tr>
<tr>
<td>0</td>
<td>0,500</td>
<td>3,7</td>
</tr>
<tr>
<td>0</td>
<td>1,000</td>
<td>3,6</td>
</tr>
<tr>
<td>0</td>
<td>2,000</td>
<td>3,6</td>
</tr>
<tr>
<td>0</td>
<td>4,000</td>
<td>3,9</td>
</tr>
<tr>
<td>0</td>
<td>6,000</td>
<td>3,9</td>
</tr>
</tbody>
</table>

Utslagene fra Tabell 47 og 48 oppgitt i mV ble regnet om til mosmol/l ved bruk av likningen i Figur 35, og plottet inn i Figur 36 under.
I viskositetsmålingene av 10 mg/ml TPCS$_{2a}$ måtte det 4 mM T80 til for å få TPCS$_{2a}$ solubilisert i miceller. I samme formulering er det målt 11,3 mosmol/l. Teoretisk osmolaritet er 37,4 mosmol/l i denne formuleringen, så observert osmolaritet utgjør 30,2 % av teoretisk osmolaritet. Ved ytterligere økt konsentrasjon av T80, stiger osmolariteten svakt, som tyder på at TPCS$_{2a}$ enten er aggregert eller kompleksert i miceller. I formuleringen med 2 mM F127 tilstede, var osmolariteten 60,7 % av teoretisk osmolaritet (se avsnitt 4.3.4). Med lik konsentrasjon T80 var osmolariteten 8,7 mosmol/l, som utgjør kun 24,6 % av den teoretiske osmolariteten. Dette tyder på at det må høyere konsentrasjoner til av T80 i formuleringen for å gi samme effekt som F127 gir, og dette stemmer overens med resulatatene i viskositetsmålingene. Dette kan komme av F127 sin lave CMC-verdi, eller forskjellig struktur på micellene av F127 og micellene av T80.
4.3.6 Osmolaritetsmålinger av formuleringer med 10 mg/ml TPCS$_{2a}$ med mixede miceller av Pluronic F127 og Tween 80 i molart forhold 1:1

Osmolaritet ble målt av formuleringer med 10 mg/ml TPCS$_{2a}$ i mixede miceller av F127 og T80 (total konsentrasjon 0-4 mM, n=3) i molart forhold 1:1. Utslagene fra osmometeret er vist i Tabell 49 under.

Tabell 49 Utslag fra osmometeret av vandige formuleringer av 10 mg/ml TPCS$_{2a}$ solubilisert i T80

<table>
<thead>
<tr>
<th>Konsentrasjon TPCS$_{2a}$ (mg/ml)</th>
<th>Total konsentrasjon surfaktant (mM)</th>
<th>Molart forhold surfaktanter (F127:T80)</th>
<th>Konsentrasjon F127 (mM)</th>
<th>Konsentrasjon T80 (mM)</th>
<th>Utslag fra osmometeret (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0</td>
<td>1:1</td>
<td>0</td>
<td>0</td>
<td>5,3</td>
</tr>
<tr>
<td>10</td>
<td>0,250</td>
<td>1:1</td>
<td>0,125</td>
<td>0,125</td>
<td>5,3</td>
</tr>
<tr>
<td>10</td>
<td>0,250</td>
<td>1:1</td>
<td>0,125</td>
<td>0,125</td>
<td>5,4</td>
</tr>
<tr>
<td>10</td>
<td>0,500</td>
<td>1:1</td>
<td>0,250</td>
<td>0,250</td>
<td>5,5</td>
</tr>
<tr>
<td>10</td>
<td>0,500</td>
<td>1:1</td>
<td>0,250</td>
<td>0,250</td>
<td>5,8</td>
</tr>
<tr>
<td>10</td>
<td>1,000</td>
<td>1:1</td>
<td>0,500</td>
<td>0,500</td>
<td>6,3</td>
</tr>
<tr>
<td>10</td>
<td>1,000</td>
<td>1:1</td>
<td>0,500</td>
<td>0,500</td>
<td>6,4</td>
</tr>
<tr>
<td>10</td>
<td>1,000</td>
<td>1:1</td>
<td>0,500</td>
<td>0,500</td>
<td>6,7</td>
</tr>
<tr>
<td>10</td>
<td>2,000</td>
<td>1:1</td>
<td>1,000</td>
<td>1,000</td>
<td>7,5</td>
</tr>
<tr>
<td>10</td>
<td>2,000</td>
<td>1:1</td>
<td>1,000</td>
<td>1,000</td>
<td>7,4</td>
</tr>
<tr>
<td>10</td>
<td>2,000</td>
<td>1:1</td>
<td>1,000</td>
<td>1,000</td>
<td>7,7</td>
</tr>
<tr>
<td>10</td>
<td>4,000</td>
<td>1:1</td>
<td>2,000</td>
<td>2,000</td>
<td>9,3</td>
</tr>
<tr>
<td>10</td>
<td>4,000</td>
<td>1:1</td>
<td>2,000</td>
<td>2,000</td>
<td>9,2</td>
</tr>
</tbody>
</table>

Utslagene ble samlet i Tabell 50 under, som også viser standardavvik.
Tabell 50 Osmolaritetsmåling av 10 mg/ml TPCS$_{2a}$ solubilisert i mixede miceller av F127 og T80

<table>
<thead>
<tr>
<th>Konsentrasjon TPCS$_{2a}$ (mg/ml)</th>
<th>Total konsentrasjon surfaktant (mM)</th>
<th>Konsentrasjon F127 (mM)</th>
<th>Konsentrasjon T80 (mM)</th>
<th>Antall målinger (n)</th>
<th>Utslag fra osmometeret (mV)</th>
<th>Standardavvik (mV)</th>
<th>Relativt standardavvik (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>3</td>
<td>5,3</td>
<td>0,000</td>
<td>0,0</td>
</tr>
<tr>
<td>10</td>
<td>0,250</td>
<td>0,125</td>
<td>0,125</td>
<td>3</td>
<td>5,4</td>
<td>0,100</td>
<td>1,9</td>
</tr>
<tr>
<td>10</td>
<td>0,500</td>
<td>0,250</td>
<td>0,250</td>
<td>3</td>
<td>5,9</td>
<td>0,058</td>
<td>1,0</td>
</tr>
<tr>
<td>10</td>
<td>1,000</td>
<td>0,500</td>
<td>0,500</td>
<td>3</td>
<td>6,5</td>
<td>0,208</td>
<td>3,2</td>
</tr>
<tr>
<td>10</td>
<td>2,000</td>
<td>1,000</td>
<td>1,000</td>
<td>3</td>
<td>7,5</td>
<td>0,153</td>
<td>2,0</td>
</tr>
<tr>
<td>10</td>
<td>4,000</td>
<td>2,000</td>
<td>2,000</td>
<td>3</td>
<td>9,3</td>
<td>0,058</td>
<td>0,6</td>
</tr>
</tbody>
</table>

Det ble også gjort målinger av blindprøver uten TPCS$_{2a}$ for å se hva surfaktantene bidrar til osmolariteten, og utslagene fra osmometeret er vist i Tabell 51.

Tabell 51 Osmolaritetsmåling av blindprøver uten 10 mg/ml TPCS$_{2a}$ solubilisert i F127 og T80

<table>
<thead>
<tr>
<th>Konsentrasjon TPCS$_{2a}$ (mg/ml)</th>
<th>Total konsentrasjon surfaktant (mM)</th>
<th>Molart forhold surfaktant (F127:T80)</th>
<th>Konsentrasjon F127 (mM)</th>
<th>Konsentrasjon T80 (mM)</th>
<th>Utslag fra osmometeret (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0,250</td>
<td>1:1</td>
<td>0,125</td>
<td>0,125</td>
<td>3,8</td>
</tr>
<tr>
<td>0</td>
<td>0,500</td>
<td>1:1</td>
<td>0,250</td>
<td>0,250</td>
<td>3,9</td>
</tr>
<tr>
<td>0</td>
<td>1,000</td>
<td>1:1</td>
<td>0,500</td>
<td>0,500</td>
<td>4,1</td>
</tr>
<tr>
<td>0</td>
<td>2,000</td>
<td>1:1</td>
<td>1,000</td>
<td>1,000</td>
<td>4,6</td>
</tr>
<tr>
<td>0</td>
<td>4,000</td>
<td>1:1</td>
<td>2,000</td>
<td>2,000</td>
<td>6,2</td>
</tr>
</tbody>
</table>

Utslagene fra Tabell 50 og 51 oppgitt i mV ble regnet om til mosmol/l ved bruk av likningen i Figur 34, og plottet inn i Figur 37.
Osmolaritetsmåling av TPCS$_{2a}$ i Pluronic F127 + Tween 80 i molart forhold 1:1

![Graph showing osmolarity against total concentration of Pluronic F127 and Tween 80 in a 1:1 molar ratio (mM)].

Figur 37 Osmolaritetsmåling av formuleringer med 10 mg/ml TPCS$_{2a}$ i økende total konsentrasjon F127 + T80 i molart forhold 1:1 (n=3). Blindprøver uten TPCS$_{2a}$ (n=1) er markert med mørk grå kurve (RSD < 3,3%)

10 mg/ml TPCS$_{2a}$ i 2 mM samlet konsentrasjon av Pluronic F127 og Tween 80 i molart forhold 1:1, ga en lav viskositet, som tyder på at nettverket av TPCS$_{2a}$ var brutt og TPCS$_{2a}$ var solubilisert i mixede miceller (Figur 29). Samme formulering ga en osmolaritet på 16,5 mosmol/l. Teoretisk osmolaritet er 35,4 mosmol/l i denne formuleringen. Observert osmolaritet er 46,6 % av teoretisk osmolaritet og tyder på mindre fri TPCS$_{2a}$ i formuleringen, enten fra aggregering eller fra solubilisering i mixede miceller, trolig solubilisering grunnet den lave viskositeten i formuleringen.
4.3.7 Sammenligning av osmolaritet i de ulike formuleringene

Sammenlinjinger ble gjort av ulike formuleringer, med konstant konsentrasjon av TPCS$_{2a}$ (10 mg/ml) og micelledannere (1 mM tilsammen, > CMC) i vann.

I Tabell 52 er det laget en oversikt som viser teoretisk osmolaritet opp mot observert osmolaritet.

<table>
<thead>
<tr>
<th>Innhold</th>
<th>Teoretisk osmolaritet (mosmol/l)</th>
<th>Observert osmolaritet (mosmol/l)</th>
<th>Prosent av teoretisk osmolaritet (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPCS$_{2a}$ (10 mg/ml) i Pluronic F127 (1 mM)</td>
<td>34,4</td>
<td>15,5</td>
<td>45,1</td>
</tr>
<tr>
<td>Vandig TPCS$_{2a}$ (10 mg/ml) + Tween 80 (1 mM)</td>
<td>34,4</td>
<td>6,6</td>
<td>19,2</td>
</tr>
<tr>
<td>Vandig TPCS$_{2a}$ (10 mg/ml) i Pluronic F127 + Tween 80 (1 mM, 1:1)</td>
<td>34,4</td>
<td>12,0</td>
<td>34,9</td>
</tr>
</tbody>
</table>

Tabell 52 viser at 10mg/ml TPCS$_{2a}$ solubilisert i mixede miceller av totalt 1 mM F127 og T80 i molart forhold 1:1 gir en osmolaritet på 12,0 mosmol/l, som ligger mellom osmolaritetene av formuleringen med 10mg/ml TPCS$_{2a}$ i 1 mM F127 (15,5 mosmol/l) og formuleringen med 10mg/ml TPCS$_{2a}$ i 1 mM T80 (6,6 mosmol/l). Det er vanskelig å avgjøre hvilke av formuleringene som er best, da det ved høyere osmolaritet tyder på separering av TPCS$_{2a}$ partiklene, men lavere osmolaritet kan tyde på maskering av TPCS$_{2a}$ inne i miceller. Da osmolariteten av formuleringen med mixede miceller ligger nærmere osmolariteten av formuleringen med 10mg/ml TPCS$_{2a}$ i F127, kan dette tyde på at F127 har mer og
si for strukturene i formuleringen enn hva T80 har. Dette ble også observert i viskositetsmålingene (avsnitt 4.2.1-4.2.3)

4.3.8 Frysepunktdepresjon av isotone prøver av TPCS$_{2a}$ med Pluronic F127 og Tween 80

Det ble gjort forsøk av isotone formuleringer med 10 mg/ml TPCS$_{2a}$ i mixede miceller av F127 og T80 som er aktuelt for intravenøse injeksjoner. Resultatet er vist i figur 38 under.

![Osmolaritetsmålinger av formuleringer med og uten TPCS$_{2a}$ i isotone medier](image)

Figur 38 Osmolaritetsmålinger (n=1) av formuleringer med 10 mg/ml TPCS$_{2a}$ solubilisert i F127 og T80 i isotone medier.

Figur 38 viser at i alle formuleringene er osmolariteten av prøvene høyere enn blindprøvene. Dette er som forventet, da ikke alle TPCS$_{2a}$ partiklene vil være inkorporert i miceller hele tiden. TPCS$_{2a}$ i fri tilstand vil bidre til høyere osmolaritet.

Figuren viser at alle formuleringene er hyperton, og dette tyder på at TPCS$_{2a}$ er i komplekser med de mixede micellene også i de isotone mediene. Dette har også blitt observert i tidligere studier (Lilletvedt et al. 2011).
Formuleringen med 10 mM micelledannere i molart forhold 10:1 av Pluronic F127 og Tween 80 har høyest osmolaritet (109,0 % av teoretisk). Dette tyder på at det er flere partikler i denne formuleringen. Det kan ikke være på grunn av mindre aggregering av TPCS$_{2a}$, da blindprøven også er høyere enn i de andre. Det kan derimot tyde på at micellene som dannes i denne løsningen er mindre, slik at det er flere av de, og at det på den måten observeres en høyere osmolaritet.

Det er observert lavest osmolaritet i formuleringen med 10 mM av surfaktantene i 1:10 molart forhold (92,4 % av teoretisk osmolaritet), som derfor vil kunne tyde på større miceller av disse. Da tilsvarende formulering med totalt 4 mM av surfaktantene tilstede, ble det observert en osmolaritet som på 100,1 %. Dette tyder på at det ikke er nødvendig å øke total konsentrasjon av surfaktanter til 10 mM, og ble også sett i viskositetsmålingene (Figur 29). Av formuleringene med 4 mM total konsentrasjon av surfaktanter var det minimale forskjeller mellom de ulike.

Osmolaritet sier noe om hvor mange oppløste partikler/specier som er i prøvene og kan dermed en indikasjon på om vi har aggregater tilstede. En lavere osmolaritet enn teoretisk kan enten tyde på aggregering eller at partikler maskeres av tilsatte surfaktanter som danner miceller. Det er vist at surfaktantene F127 og T80 virker solubiliserende, da osmolariten til formuleringene med surfaktant tilstede er lavere enn teoretisk.
4.4 In vitro celleforsøk

4.4.1 Vekstkurve av WiDr celler
Det ble først gjort forsøk med WiDr celler for å etablere en vekstkurve for cellelinjen. Det er viktig at man velger et antall celler som skal sås ut per brønn som er innenfor et område hvor cellene har eksponentiell vekst. Resultatene er vist i Figur 39.

![Vekstkurve WiDr celler](image)

Figur 39 Vekstkurve av WiDr-celler. Vekstkurven viser sammenhengen mellom antall utsådde WiDr-celler og absorbans (standardavvik markert med error bars).

Vekstkurven i Figur 39 viser at det er en lineær sammenheng mellom antall utsådde celler og antall celler målt med celleoverlevelse-metoden (beskrevet i avsnitt 3.7) opp til ca 6000 utsådde celler per brønn. Dette indikerer at når det såes ut mer enn 6000 celler/brønn blir brønnen tilnærmert konfluent i løpet av inkubasjonsstiden. Det ble derfor valgt å så ut 5000 celler/brønn i det videre arbeidet.
4.4.2 PDT respons med TPCS$_{2a}$ i Tween 20

Det første PDT-forsøket som ble gjort på WiDr celler var med TPCS$_{2a}$ i en formulering fått av PCI Biotech, som brukes i de kliniske studiene og for tiden i alle prekliniske studier. Det ble målt 3 paralleller ved hver lysdose, i tillegg til ubehandlede celler (NT). Resultatet fra forsøket er vist i Figur 40.

Figur 40 PDT-respons og celleoverlevelse (%) av WiDr-celler etter behandling med 0,4 μM TPCS$_{2a}$ i 50 mM Trisbuffer, 3 % Tween 20 og 2,8 % Mannitol, som funksjon av ulike lysdoser (standardavvik markert med error bars).

Resultatene som vist i Figur 40 er i overensstemmelse med tidligere resultater (Berg et al. 2011), men da kun den høyeste lysdosen viste en klar cytotoksisk effekt ble det bestemt å bruke lysdoser på 30, 60 og 90 sekunder i videre forsøk.
4.4.3 PDT respons i WiDr celler med TPCS2a i ulike formuleringer

I de videre forsøkene ble alle formuleringene beskrevet i avsnitt 3.1.4 inkludert. Det ble målt 3 paralleller av hver formulering, i tillegg til 3 paralleller av blindprøver uten TPCS2a-formuleringene (NT). Resultatene fra disse forsøkene er vist i Figur 41.

Figur 41 PDT-respons og celleoverlevelse (celleviabilitet) i WiDr celler målt ca 48 timer etter lys, og 72 timer etter behandling med 0,4 μM TPCS2a i ulike formuleringer, som indikert i figuren og beskrevet i avsnitt 3.1.4. Blindprøve med ubehandlede celler ble inkludert (NT). (standardavvik markert med error bars)

Figur 41 viser at alle formuleringene med 0,4 μM TPCS2a gir en viss cytotoksisk effekt etter lyseksponering. Formuleringen som skiller seg mest ut er den med TPCS2a i nærvær av Tween 20. Denne formuleringen har drept ca 50 % celler ved 90 sekunders lyseksponering, da de andre formuleringene har drept nærmere 100 %. Dersom man sammenligner de formuleringene som har drept nærmere 100 % av cellene, synes formuleringene med
de mixede micellene av Pluronic F127 og Tween 80 gi raskest og mest celledrap, men forskjellene er minimale.

Med unntak av behandling i nærvær av Tween 20, synes alle viabilitetskurvene å flat ut ved de høyeste lysdosene. Erfaringsmessig synes dette å skyldes døende, trolig apoptotiske celler som fortsatt opprettholder mitokondriell aktivitet som detekteres med MTT-metoden.

4.4.4 Celletoksisitet av de ulike formuleringene

Ser man på verdiene ved 0 sekunders eksponering av lys i Figur 41, ser man at det er en viss toksisitet ved alle formuleringene. Dette kan være et falskt resultat, da det er en viss fare for lysspredning i brettet. Det ble gjort et isolert forsøk for å finne ut av dette, med kun NT-brønnene og 0 sekunders lyseksponering. Resultatet fra forsøket er vist i Figur 42 under. Dersom formuleringene fortsatt viser toksisitet, vil det være aktuelt i videre arbeid å finne de formuleringene som i seg selv ikke er toksisk, og så gjøre tilsvarende forsøk med disse. Det er ønskelig at formuleringene ikke er toksiske i seg selv, da dette vil kunne hindre målrettet drap av cancerceller, og føre til mer bivirkninger.
Resultatene viser at alle formuleringene har en viss toksisitet. Både formuleringen med 0,4 μM TPCS\textsubscript{2a} i etanol, og solubilisert i T20 eller F127 viser høy toksisitet, med celledrap >60 %, og mer enn hva man kunne se i Figur 41. Årsaken til denne økte toksisiteten er ukjent. Det er i tidligere studier bekreftet at konsentrationsnene av F127 som er inkludert i denne studien ikke viser toksisk effekt på WiDr-celler (Singh et al. 2012). At formuleringen med 0,4 μM TPCS\textsubscript{2a} løst i etanol og tilsatt medium uten surfaktanter tilstede viser celletoksisitet, tyder på at det er TPCS\textsubscript{2a} selv i denne konsentrasjonen som er celletoksisk, og at verken 3 % T20 eller 1 μM F127 er tilstrekkelig for å hindre dette. Formuleringen med 0,4 μM TPCS\textsubscript{2a} solubilisert i T80 viser lavere toksisk effekt, med ca 30 % celledrap. Denne formuleringen viste ingen toksisitet ved 0 sekunders lyseksponering i Figur 41, men viste i motsetning at antall celler økte i brønnen. Formuleringene med de mixede micellene viser toksisk effekter avhengig av sammensetning, der et overskudd av F127 gir høyere toksisitet, og omvendt.
4.5 Intracellulær lokalisering av TPCS$_{2a}$ - effekt av formulering

Ved å se på cellenes fluorescens i mikroskop, ble intracellulær lokalisering av TPCS$_{2a}$ undersøkt. Denne metoden kan gi et bilde av om TPCS$_{2a}$ er tatt opp av cellene, og hvor i cellen TPCS$_{2a}$ befinner seg.

4.5.1 Mikroskopering av celler før chase

Cellene ble studert både før og etter chase, for å kunne se endring av TPCS$_{2a}$ sin lokasjon i cellen. Bildene som ble tatt av cellene før chase er vist i Tabell 53.

Tabell 53 Mikroskop-bilder av ubehandlede celler og celler behandlet med ulike formuleringer av 0,4 μM TPCS$_{2a}$ før chase. Det ble tatt omlag 3 bilder av forskjellige celler fra de ulike behandlingene, og bildene som er plukket ut er representativt for alle cellene. Bildene er organisert etter hvordan formulering cellene har blitt behandlet med, og hvordan type bilde som er tatt. Under DIC vises fasekontrast-bilder som viser cellenes struktur. Under TPCS$_{2a}$ vises bilder av fluorescens til TPCS$_{2a}$ i cellen. Under DIC + TPCS$_{2a}$ vises en overlapping bildene under DIC og TPCS$_{2a}$ for å få frem lokasjon av fluorescens fra TPCS$_{2a}$ i cellen merket med rødt. Alle bilder ble tatt etter 100 ms eksponeringstid, og ble deretter autojustert for å få et best mulig bilde.

<table>
<thead>
<tr>
<th>Formulering</th>
<th>DIC</th>
<th>TPCS$_{2a}$</th>
<th>DIC + TPCS$_{2a}$</th>
<th>Kommentar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ubehandlede celler (NT)</td>
<td>![DIC Image]</td>
<td>![TPCS$_{2a}$ Image]</td>
<td>![DIC + TPCS$_{2a}$ Image]</td>
<td>Ingen fluorescens.</td>
</tr>
<tr>
<td>0,4 μM TPCS$_{2a}$ i <1% EtOH</td>
<td>![DIC Image]</td>
<td>![TPCS$_{2a}$ Image]</td>
<td>![DIC + TPCS$_{2a}$ Image]</td>
<td>En stor grad grunulær fluorescens, som indikerer opptak i endocytiske vesikler, samt noe diffus fluorescens.</td>
</tr>
<tr>
<td>Koncentration</td>
<td>Bild</td>
<td>Beskrivelse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>------</td>
<td>------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,4 μM TPCS$_{2a}$ i 3 % T20</td>
<td></td>
<td>Granulær og til en viss grad diffus fluorescens.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,4 μM TPCS$_{2a}$ i 1 μM F127</td>
<td></td>
<td>Diffus fluorescens, som kan tyde på at det ligger en del PS på celle-membranen, som ikke er tatt opp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,4 μM TPCS$_{2a}$ i 1 μM T80</td>
<td></td>
<td>Mer granulær fluorescens, men enda antydning til litt diffus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,4 μM TPCS$_{2a}$ i 1 μM F127+T80 i molart forhold 1:1</td>
<td></td>
<td>I stor grad granulær fluorescens.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,4 μM TPCS$_{2a}$ i 1 μM F127+T80 i molart forhold 1:10</td>
<td></td>
<td>I stor grad granulær fluorescens.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabell 53 viser at formuleringene med 1μM TPCS$_{2a}$ solubilisert i mixede miceller av 1 μM total konsentrasjon av F127 og T80 gir størst grad av granulær fluorescens av TPCS$_{2a}$ i cellen. Granulær fluorescens tyder på at TPCS$_{2a}$ er tatt opp i cellen via endocytose og lokalisert i membranen av de endocytiske vesiklene. Da det er PS i membranen av den endocytiske vesiklen som gir effekt av PCI-behandling, vil formuleringene med mixede miceller av F127 og T80 være best egnet til bruk i PCI.
4.5.2 Mikroskopering av celler etter chase

Etter chase er det forventet at det er mindre TPCS$_{2a}$ i cellemembranen, som vil gi mindre diffus fluorescens på mikroskop-bildene, og mer granulær fluorescens av TPCS$_{2a}$. Bildene som ble tatt av cellene etter chase er vist i Tabell 54.

Tabell 54 Mikroskop-bilder av ubehandlede celler og celler behandlet med ulike formuleringer av 0,4 μM TPCS$_{2a}$ etter chase. Det ble tatt omlag 3 bilder av forskjellige celler fra de ulike behandlingene, og bildene som er plukket ut er representativt for alle cellene. Bildene er organisert etter hvordan formuleringen av cellene har blitt behandlet med, og hvordan type bilde som er tatt. Under DIC vises fasekontrast-bilder som viser cellenes struktur. Under TPCS$_{2a}$ vises bilder av fluorescensen til TPCS$_{2a}$ i cellen. Under DIC + TPCS$_{2a}$ vises en overlapping bildene under DIC og TPCS$_{2a}$ for å få frem lokasjon av fluorescens fra TPCS$_{2a}$ i cellen merket med rødt. Alle bilder ble tatt etter 100 ms eksponeringstid, og ble deretter autojustert for å få et best mulig bilde.

<table>
<thead>
<tr>
<th>Formulering</th>
<th>DIC</th>
<th>TPCS$_{2a}$</th>
<th>DIC + TPCS$_{2a}$</th>
<th>Kommentar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ubehandlede celler (NT)</td>
<td>![Bildet til Ubehandlede celler (NT)]</td>
<td>![Bildet til TPCS$_{2a}$ i ubehandlede celler (NT)]</td>
<td>![Bildet til DIC + TPCS$_{2a}$ i ubehandlede celler (NT)]</td>
<td>Ingen fluorescens.</td>
</tr>
<tr>
<td>0,4 μM TPCS$_{2a}$ i <1% EtOH</td>
<td>![Bildet til 0,4 μM TPCS$_{2a}$ i <1% EtOH]</td>
<td>![Bildet til TPCS${2a}$ i 0,4 μM TPCS${2a}$ i <1% EtOH]</td>
<td>![Bildet til DIC + TPCS${2a}$ i 0,4 μM TPCS${2a}$ i <1% EtOH]</td>
<td>Klar granulær fluorescens fra endosomene.</td>
</tr>
<tr>
<td>0,4 μM TPCS$_{2a}$ i 3% T20</td>
<td>![Bildet til 0,4 μM TPCS$_{2a}$ i 3% T20]</td>
<td>![Bildet til TPCS${2a}$ i 0,4 μM TPCS${2a}$ i 3% T20]</td>
<td>![Bildet til DIC + TPCS${2a}$ i 0,4 μM TPCS${2a}$ i 3% T20]</td>
<td>Klar granulær fluorescens.</td>
</tr>
<tr>
<td>0,4 μM TPCS$_{2a}$ i 1 μM F127</td>
<td>Klar granulær fluorescens.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>----------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,4 μM TPCS$_{2a}$ i 1 μM T80</td>
<td>Graulær fluorescens samt litt diffus fluorescens fra cellemembranen.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,4 μM TPCS$_{2a}$ i 1 μM F127+T80 i molart forhold 1:1</td>
<td>Graulær fluorescens samt litt diffus fluorescens fra cellemembranen.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,4 μM TPCS$_{2a}$ i 1 μM F127+T80 i molart forhold 1:10</td>
<td>Graulær fluorescens samt litt diffus fluorescens fra cellemembranen.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,4 μM TPCS$_{2a}$ i 1 μM F127+T80 i molart forhold 10:1</td>
<td>Graulær fluorescens samt litt diffus fluorescens fra cellemembranen.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabell 54 viser fluorescens av TPCS$_{2a}$ etter at cellene er vasket og inkubert med rent medium i 2-4 timer (chaset), for at TPCS$_{2a}$ skulle trekkes bort fra cellemembranen via endocytose og i større grad lokalisere seg i membranen av de endocytiske vesiklene. Formuleringene med 0,4 μM TPCS$_{2a}$ solubilisert i 1 μM
F127 synes å gi klarere granulær fluorescens etter chase, som også viser seg i formuleringen med 0,4 μM TPCS$_{2a}$ solilibisert i 1 μM F127 + T80 i molart forhold 10:1, som før chase viste litt diffus fluorescens. Generelt sett viser alle formuleringene i stor grad granulær fluorescens av TPCS$_{2a}$, som tyder på at alle formuleringene kan gi god effekt i PCI-behandling.

4.5.3 Oppsummering

Hensikten med fluorescensmikroskopistudiene var å undersøke betydningen av TPCS$_{2a}$-formuleringene på intracellulær lokaliserings av TPCS$_{2a}$. Undersøkelsene viser at TPCS$_{2a}$ i alle formuleringene akkumulerte i stor grad i granula som tidligere er vist å være endocytiske vesikler som endosomer og lysosomer (Berg et al. 2011). TPCS$_{2a}$ tas opp i celler via adsorptiv endocytose som vises ved at TPCS$_{2a}$ initielt binder seg til plasmamembranen og følger passivt med alle endocytiske prosesser. Etter 18 timers inkubering har TPCS$_{2a}$ i stor grad akkumulert i endocytiske vesikler, men man finner fortsatt TPCS$_{2a}$ på plasmamembranen.

Det ser ut til å være mer PS på cellemembranen når Tween 80 er tilstede/dominerer, ved at man ser en diffus fluorescens, trolig fra TPCS$_{2a}$ lokalisert i cellemembranen. Dette gjør at en formulering med overskudd av Pluronic F127 er mer gunstig, da det er PS i endosomene som er avgjørende for effekt av PCI. Formuleringer med mixede miceller av F127 og T80 synes og har sterkere granulær fluorescens enn med enkle miceller, og disse formuleringene kan derfor være et bra alternativ til formulering av TPCS$_{2a}$. Det er vanskelig å trekke konklusjoner ut fra fluorescensmikroskopistudiet, da det kun gjøres en visuell vurdering.
4.6 Flowcytometri

Flow kan brukes til å kvantifisere hvor mye fluorescerende PS som tas opp i cellene. Konsentrasjon av fluorescerende PS er ikke nødvendigvis det samme som totalopptaket, da aggregert PS ikke fluorescerer. Flowcytometri er imidlertid en god kontroll mellom fluorescens og fotodynamisk aktivitet.

Studier av formuleringenes effekt på opptak i flowcytometri ble gjort på celler behandlet med TPCS$_{2a}$ i ulike formuleringer (avsnitt 3.1.4) etter vask og chase i 4 timer. Metoden er beskrevet i detalj i avsnitt 3.9. Da studien bare ble gjort én gang med én parallel, vil dette ikke gi sikre resultater. Resultatene vil derfor kun gi oss en indikasjon på effekten av de ulike formuleringene. Figurer av resultatene fra flowcytometristudiet er vist i avsnitt 4.6.1-4.6.8 under.

4.6.1 Ubehandlede celler

Figur 43 Resultat fra flowcytometri av ubehandlede celler.

4.6.2 Celler behandlet med 0,4 μM TPCS$_{2a}$ i <1% etanol (v/v)

Figur 44 Resultat av flowcytometri av celler behandlet med 0,4 μM TPCS$_{2a}$ og <1% etanol (v/v).
4.6.3 Celler behandlet med 0,4 μM \(\text{TPCS}_{2a}\) i 3 % Tween 20

![Flowcytometri resultat](image1)

Figur 45 Resultat fra flowcytometri av celler behandlet med 0,4 μM \(\text{TPCS}_{2a}\) solubilisert i miceller av 3 % Tween 20.

4.6.4 Celler behandlet med 0,4 μM \(\text{TPCS}_{2a}\) i 1 μM Pluronic F127

![Flowcytometri resultat](image2)

Figur 46 Resultat fra flowcytometri av celler behandlet med 0,4 μM \(\text{TPCS}_{2a}\) solubilisert i miceller av 1 μM Tween 80.

4.6.5 Celler behandlet med 0,4 μM \(\text{TPCS}_{2a}\) i 1 μM Tween 80

![Flowcytometri resultat](image3)

Figur 47 Resultat fra flowcytometri av celler behandlet med 0,4 μM \(\text{TPCS}_{2a}\) solubilisert i miceller av 1 μM Pluronic F127.

4.6.6 Celler behandlet med 0,4 μM \(\text{TPCS}_{2a}\) i totalt 1 μM Pluronic F127 og Tween 80 i molart forhold 1:1

![Flowcytometri resultat](image4)

Figur 48 Resultat fra flowcytometri av celler behandlet med 0,4 μM \(\text{TPCS}_{2a}\) solubilisert i mixede miceller av 1 μM Pluronic F127 og Tween 80 i molart forhold 1:1.
4.6.7 Celler behandlet med 0,4 μM TPCS$_{2a}$ i totalt 1 μM Pluronic F127 og Tween 80 i molart forhold 1:10

Figur 49 Resultat fra flowcytometri av celler behandlet med 0,4 μM TPCS$_{2a}$ solubilisert i mixede miceller av Pluronic F127 og Tween 80 i molart forhold 1:10.

4.6.8 Celler behandlet med 0,4 μM TPCS$_{2a}$ i totalt 1 μM Pluronic F127 og Tween 80 i molart forhold 10:1

Figur 50 Resultat fra flowcytometri av celler behandlet med 0,4 μM TPCS$_{2a}$ solubilisert i mixede miceller av Pluronic F127 og Tween 80 i molart forhold 10:1.
4.6.9 Oppsummering

Flow kan brukes for å kvantifisere fluorescerende TPCS$_{2a}$ i cellene. Målinger blir gjort på alle enkeltstående levende celler tilstede. Flow registrerer spenningspuls proporsjonal med konsentrasjon av fluorescerende PS i cellene, og medianen av spenningspulsen oppgis. En høy spenningspuls tyder på høy konsentrasjon av fluorescerende TPCS$_{2a}$, det vil si fri TPCS$_{2a}$ i cellene. Resultatene fra flowcytometristudiet er vist i Tabell 55 under.

Tabell 55 Resultat fra flowcytometri av WiDr-celler behandlet med 0,4 μM TPCS$_{2a}$ solubilisert i ulike formuleringer.

<table>
<thead>
<tr>
<th>Formulering</th>
<th>Antall enkeltstående, levende celler/10000 celler (Events)</th>
<th>Spenningspuls (Median)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ubehandlede celler (NT)</td>
<td>6528</td>
<td>105</td>
</tr>
<tr>
<td>0,4 μM TPCS$_{2a}$ i <1% EtOH</td>
<td>5686</td>
<td>126459</td>
</tr>
<tr>
<td>0,4 μM TPCS$_{2a}$ i 3 % T20</td>
<td>6312</td>
<td>54302</td>
</tr>
<tr>
<td>0,4 μM TPCS$_{2a}$ i 1 μM F127</td>
<td>6207</td>
<td>82613</td>
</tr>
<tr>
<td>0,4 μM TPCS$_{2a}$ i 1 μM T80</td>
<td>6150</td>
<td>110322</td>
</tr>
<tr>
<td>0,4 μM TPCS$_{2a}$ i 1 μM F127+T80 i molart forhold 1:1</td>
<td>6217</td>
<td>95698</td>
</tr>
<tr>
<td>0,4 μM TPCS$_{2a}$ i 1 μM F127+T80 i molart forhold 1:10</td>
<td>6452</td>
<td>139175</td>
</tr>
<tr>
<td>0,4 μM TPCS$_{2a}$ i 1 μM F127+T80 i molart forhold 10:1</td>
<td>6490</td>
<td>88349</td>
</tr>
</tbody>
</table>

Et søylediagram viser resultatene fra flowcytometristudiet i Figur 51.
Figur 51 Søylediagram av resultatene fra flowcytometristudiet av WiDr-celler behandlet med 0,4 μM TPCS$_{2a}$ solubilisert i ulike formuleringer. Studiet inkluderer ubehandlede celler (NT), og celler behandlet med 0,4 μM TPCS$_{2a}$ i henholdsvis <1% etanol (EtOH), 3 % T2O (Tween 20), 1 μM F127 (Pluronic F127), 1 μM T80 (Tween 80), samt formuleringer med mixede miceller av F127 og T80 i ulike molare forhold (1:1, 1:10, 10:1, (F127:T80)).

Figur 51 viser at autofluorescens fra cellene var svært lav under de betingelsene som benyttes for å analysere TPCS$_{2a}$ (NT). Alle formuleringene med 0,4 μM TPCS$_{2a}$ viser opptak av fluorescerende TPCS$_{2a}$, som også ble bekreftet i fluorescensmikroskopering (Tabell 53 og 54), men i varierende grad. Formuleringen med miceller av F127 viste dårligere opptak av TPCS$_{2a}$ enn formuleringen med miceller av T80. Formuleringen som viser best opptak er med 0,4 μM TPCS$_{2a}$ solubilisert i 1 μM samlet konsentrasjon av F127 og T80 i molart forhold 1:10. Det synes å være en synergistisk effekt når man blander disse F127 og T80 med et overskudd av T80, og at dette vil være en ønsket formulering ut ifra disse resultatene. Dette stemmer godt overens med resultatet fra PDT respons, som viste at samme formulering ga raskest cytotoksisk effekt (Figur 41). De andre formuleringene med mixede miceller av F127 og T80 har et opptak som ligger mellom F127 og T80 hver for seg.

Formuleringen med 0,4 μM TPCS$_{2a}$ og <1 % etanol viste også et bra opptak av fri TPCS$_{2a}$, men da TPCS$_{2a}$ i denne formuleringen ikke er solubilisert i miceller, vil TPCS$_{2a}$ ikke komme seg til målstedet in vivo. Denne formuleringen er derfor ikke klinisk brukbar.
Figur 42 viste at formuleringen med 0,4 μM TPCS$_{2a}$ solubilisert i 3 % Tween 20 induserte lavest cytotoksisk effekt etter PDT, som stemmer overens med det lave opptaket av fri TPCS$_{2a}$ av denne formuleringen vist med flowcytometri i Figur 51.
5 **KONKLUSJON**

Vandig TPCS$_{2a}$ i konsentrasjoner over 1 µM aggergerer og farmasøytiske hjelpstoffe behøves for å unngå dette. I dette arbeidet har det blitt gjort mange forsøk for å kartlegge hvordan ulike formuleringer opptrer. Resultatene er oppsummert og konkludert i avsnitt 5.1-5.5 under.

5.1 **CMC**

Absorpsjonsspekter av TPCS$_{2a}$ ble studert for å finne CMC-verdi av de mixede micellene av Pluronic F127 og Tween 80 i ulike molare forhold (1:10, 1:5, 1:1, 5:1, 10:1) i nærvegr av 1 µM TPCS$_{2a}$. Resultatet ble en total molar konsentrasjon av surfaktantene på 0,3 µM ved 25 °C i alle formuleringene. Dette er en ganske lav CMC-verdi, noe som er en fordel da dette tilsier økt solubiliseringsevne samt bedre stabilitet av formuleringen *in vivo*.

5.2 **Viskositet**

Viskositet ble målt i et viskosimeter for å få et bilde av formuleringenes struktur. En formulering der TPCS$_{2a}$ er aggregert vil gi en høy viskositet, og når TPCS$_{2a}$ solubiliseres i miceller vil viskositeten synke. Det antas at TPCS$_{2a}$ er fullstendig solubilisert når viskositeten av formuleringer med TPCS$_{2a}$ er på nívå med tilsvarende formulering uten TPCS$_{2a}$. 10 mg/ml TPCS$_{2a}$ i vann er for viskøs til å kunne måles med metoden som ble brukt (cSt > 5). Pluronic F127 senker viskositeten til ca 1,5 cSt i formuleringer med 10 mg/ml TPCS$_{2a}$ ved ca 2 mM, og det antas at TPCS$_{2a}$ er fullstendig solubilisert i denne formuleringen. Tween 80 senker viskositeten til ca 1,0 cSt i formuleringer med 10 mg/ml TPCS$_{2a}$ ved ca 4 mM, hvor det antas at TPCS$_{2a}$ er fullstendig solubilisert. I formuleringen med 10 mg/ml TPCS$_{2a}$ solubilisert i 4 mM T80 er viskositeten lavere enn formuleringen med 10 mg/ml TPCS$_{2a}$ solubilisert i 2 mM F127, og dette kommer av at F127 i seg selv bidrar til høyere viskositet enn T80. I formuleringene med 10 mg/ml TPCS$_{2a}$ solubilisert i mixede miceller av F127 og T80 i molart forhold 1:1, vil en total molar konsentrasjon surfaktant på 2 mM senke viskositeten til ca 1,7 cSt.
evd fullstendig solubilisering av TPCS$_{2a}$. Viskositen endres minimalt av tilsvarende formulering i isoton glukoseløsning, men øker til ca 4,8 cSt i isoton NaCl-løsning. En formulering med 10 mg/ml TPCS$_{2a}$ solubilisert i 2 mM total konsentrasjon av F127 og T80 i molart forhold 1:1 i isoton saltløsning vil ikke kunne injiseres intravenøst, da dette kan føre til bieffekter som embolier. Det kan heller ikke utelukkes at en formulering med 10 mg/ml TPCS$_{2a}$ solubilisert i F127 og T80 i isoton glukoseløsning ikke geler når den møter salter i blodbanen. Annen administrasjon som for eksempel lokal injeksjon kan vurderes som alternativ.

5.3 Osmolaritet
Osmolaritetsmålinger ble også gjort for å karakterisere strukturene i formuleringer med 10 mg/ml TPCS$_{2a}$. TPCS$_{2a}$ aggererer i vann, og dette fører til en lavere osmolaritet enn det som kan regnes ut teoretisk. Pluronic F127 og Tween 80 solubiliserer TPCS$_{2a}$ i miceller og hindrer aggerering, slik at osmolariteten øker. Både F127 og T80 hver for seg, og sammen i mixede miceller øker osmolariteten av formuleringer med 10 mg/ml TPCS$_{2a}$. F127 øker osmolariteten mer enn T80, og de mixede micellene øker osmolariteten et sted midt mellom de to hver for seg. At F127 øker osmolariteten mer, kan komme av dens lavere CMC-verdi ved at det dannes miceller ved lavere konsentrasjoner, eller at F127 danner miceller som er mindre. Når formuleringene med mixede miceller lages i isotone medier av glukose eller NaCl blir alle hypertone (317,3-374,3 mosmol/l) som tyder på at TPCS$_{2a}$ er solubilisert i mixede miceller også i isotone medier.

5.4 Celleoverlevelse
Celleoverlevelse ble studert for å undersøke den cytotoksiske effekten av TPCS$_{2a}$ i de ulike formuleringene i kombinasjon med lys (PDT). Cytotoksisk effekt ble observert i alle formuleringene, med en litt bedre effekt av formuleringene med mixede miceller.
I forbindelse med celleoverlevelse-studiet, ble det også sett på celletoksisitet av de ulike formuleringene. Alle formuleringene i studien viste en toksisk effekt på WiDr-celler. Det tyder på at 0,4 µM TPCS\textsubscript{2a} trolig har en toksisk effekt på WiDr-celler, og at formuleringene ikke løste dette problemet. Formuleringen som viste minst celletoksisitet var den med 1 µM total konsentrasjon av F127 og T80 i molart forhold 1:10.

5.5 Cellelokasjon
Hensikten med å se på lokasjon av TPCS\textsubscript{2a} i celler i mikroskop var å undersøke om TPCS\textsubscript{2a} blir tatt opp i cellen ved endocytose ved alle formuleringer. Opptak ble bekreftet for alle formuleringene av 0,4 µM TPCS\textsubscript{2a} som ble inkludert i studien. Videre ble det stilt spørsmål til om formuleringene som inneholdt Tween 80 hadde en tendens til å feste seg til cellemembranen i større grad enn de andre, da det ble observert en viss diffus fluorescens av TPCS\textsubscript{2a} på bildene av formuleringene med miceller av T80 alene og med mixede miceller med T80 i høyere konsentrasjon enn F127. Det ble kun gjort en visuell vurdering da det er ikke mulig å måle noen forskjell på bildene. Og vurdere mer utfra bildene som ble tatt blir kun spekulasjon.

5.6 Flowcytometri
Hensikten med flowcytometri forsøkene var å kvantitativt analysere om formuleringene påvirker akkumulering av fluoriserende TPCS\textsubscript{2a} i cellene. Det ble observert opptak av alle formuleringene, men formuleringen med 0,4 µM TPCS\textsubscript{2a} solubilisert i 1 µM total konsentrasjon Pluronic F127 og Tween 80 i molart forhold 1:10 ble tatt opp best.

5.7 Mixede miceller
Både Pluronic F127 og Tween 80 viser generelt gode solubiliserende egenskaper, F127 til en viss grad bedre. Mixede miceller av disse viser også god effekt, som legger seg midt mellom effekten av F127 og T80.

Pluronic F127 har en lavere CMC verdi enn Tween 80, som er ønskelig for injiserbare formuleringer. Alle formuleringene med mixede miceller ga samme
CMC-verdi, så denne studien ga ingen indikasjon på hvilken formulering som var best.

Viskositetsstudiene viste at Pluronic F127 solubiliserer TPCS₂ₐ i lavere koncentrasjoner (2 mM) enn Tween 80 (4 mM), men når TPCS₂ₐ er fullstendig solubilisert gir formuleringen med Tween 80 som gir lavere viskositet (ca 1 cSt) enn formuleringen med F127 (ca 1,6 cSt). Mixede miceller solubiliserte TPCS₂ₐ fullstendig ved 2 mM total konsentrasjon av F127 og T80, med en viskositet rundt 1,3 cSt. Det vil si at formuleringen med TPCS₂ₐ solubilisert i mixede miceller er gunstig, ved at konsentrasjon av T80 minimaliseres, samtidig som at viskositeten blir lavere.

Formuleringene med Pluronic F127 gir en høyere osmolaritet enn formuleringene med Tween 80, som kan tyde på bedre solubilisering og ødeleggelse av nettverket til TPCS₂ₐ. Sammen i mixede miceller vil osmolariteten øke et sted i mellom F127 og T80 hver for seg.

I forhold til effekt av PDT, viste formuleringene med mixede miceller av Pluronic F127 og Tween 80 raskere celledrap enn de med miceller av F127 og T80 hver for seg. Av formuleringene med de mixede micellene var det den med mest Tween 80 som var mest effektiv. Det var også formuleringen med F127 og T80 i molart forhold 1:10 som var minst toksisk uten lys.

I studiene der celleopptak og celledokasjon ble vurdert med fluorescensmikroskopi, viste Tween 80 en tendens til å feste seg mer på membranen enn inne i de endocytiske vesiklene. I formuleringene med Pluronic F127 var i overskudd var dette ikke et problem.

I studiet der celleopptak av TPCS₂ₐ ble studert ved flowcytometri var det formuleringen med mixede miceller av Pluronic F127 og Tween 80 i forhold 1:10 som viste best opptak.
Det viser seg at formuleringer av TPCS$_{2a}$ solubilisert i mixede miceller av F127 og T80 generelt gir bedre resultater i formuleringsstudiene og cellestudiene enn med formuleringer i miceller av surfaktantene hver for seg. Formuleringene kan likevel ikke brukes i intravenøs injeksjon, da det er stor risiko for geldannelse når de møter salter in vivo. Det er helt grunnleggende med en stabil og god formulering av et preparat dersom det skulle kunne bli praktisk mulig å bruke, og resultatene i dette arbeidet kan brukes for å vurdere sammensetning av senere formuleringer, men flere studier må gjøres.
6 VIDERE ARBEID

De pågående kliniske studiene av TPCS$_{2a}$ i PCI-teknologi viser lovende resultater for behandling av ulike krefttyper. Utvikling av gode formuleringer av TPCS$_{2a}$ er derfor av stor interesse. Det ble ikke funnet en passende formulering av TPCS$_{2a}$ i dette arbeidet for intravenøs injeksjon, men alternativer som lokal injeksjon og forsinket frisettingsmetoder kan vurderes.

6.1 Formulering

I studier relatert til formulering, som CMC, viskositet og osmolaritet, bør det gjøres tilsvarende studier av formuleringene i medier som RPMI, som ble brukt i cellestudiene. I forhold til viskositet- og osmolaritetsstudier, kan det testes ut flere konsentrasjoner av TPCS$_{2a}$. Det kan gjøres flere forsøk for å finne frem til en formulering av TPCS$_{2a}$ som ikke geler i nærver av salter. Zetapotensial og bestemmelse av micelleladning kan inkluderes. Det bør også tas bilde av prøvene med atomkraftmikroskopi (AFM), for å visualisere strukturene i formuleringene. For å kunne bestemme partikkelstørrelser kan fotonkorrelasjonspektroskop benyttes.

6.2 Celleforsøk

Det bør jobbes videre med å finne formuleringer av TPCS$_{2a}$ som ikke er celletoksiske. Det kan forsøkes å senke konsentrasjonen fra 0,4 µM TPCS$_{2a}$, eller å øke konsentrasjonen av surfaktanter. Etter en passende formulering er funnet, bør alle cellestudiene repeteres for å undersøke opptak, celledelokalisering og PDT-effekt av TPCS$_{2a}$. I tillegg må formuleringen undersøkes i kombinasjon med et cytostatika, for å vurdere effekt av PCI i kreftbehandling. Det bør også inkluderes flere kreftcelletyper, da effekt kan variere stort fra celletype til celletype. Forsøkene må i tillegg repeteres flere ganger for å kontrollere reproducibilitet og få sikre resultater. Når en formulering av TPCS$_{2a}$ viser lovende resultater i in vitro cellestudier, bør in vivo cellestudier inkluderes.
7 REFERANSER

