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Abstract

 Radio frequency (RF) micro-electromechanical system (MEMS) capacitive switches are 

expected to be a very promising technology for many microwave and wireless applications 

since they can provide low loss, low-power consumption, high linearity and quality factor. 

However, the reliability problem is still one of the important limitation factors which present 

a research challenge for the commercialization. The lifetime of these switches is believed to 

be strongly influenced by dielectric charging. In spite of huge effort has been made from 

many research groups worldwide for more than a decade to develop robust RF MEMS 

switches, little information is available in the literature providing a fundamental solution to 

this problem. The key challenge is to understand the principle of charge injection when the 

field across the dielectric layers. 

In this thesis, we employed a metal-insulator-semiconductor (MIS) capacitor structure to 

investigate the dielectric charging and discharging for high reliable capacitive RF MEMS 

switches. The dielectric charging and discharging kinetics were qualitatively and 

quantitatively characterized by comparing the measured capacitance-voltage (C-V) curves on 

MIS structure before and after charge injection.  

We firstly investigated the charging and discharging properties in Si3N4 and SiO2 single 

dielectric layers, respectively, e.g., the dependence of charge injection and relaxation on the 

stress time, magnitude, polarity of applied voltage. To explain the observed experimental 

results, we have proposed a generalized charge injection model and a relaxation model by 

taking into account the roles of holes and electrons. From the investigation of charging and 
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discharging properties in Si3N4 and SiO2, we concluded that there are two basic approaches 

for mitigating charge accumulation: (1) reducing charge injection level when high stess 

voltage is applied and (2) accelerating charge relaxation process after the high voltage is 

removed. Based on the first approach, we have investigated how charge accumulates in 

multi-layer dielectric stacks, e.g., double- and triple-layer dielectrics. The experimental 

results suggest that it is possible to balance the number of charges injected from the top and 

bottom electrodes by optimizing the thickness ratio of Si3N4 to SiO2 in Si3N4/SiO2 double 

dielectric layers. Based on the second approach, we have investigated the charge 

accumulation in doping dielectrics, e.g., doping phosphorus or boron ions into SiNx dielectric 

films and doping silicon nanocrystals into silicon oxide, the experimental results indicate that 

it is possible to create ‘combination center’ in the dielectric for short relaxation mechanisms 

by doping technology. 

Keywords: RF MEMS switch, Dielectric charging, discharging, MIS capacitor
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1.1 Why RF MEMS switch? 

Micro-Electro-Mechanical Systems (MEMS) technology plays an important role in today's 

society. The integration of MEMS into traditional Radio Frequency (RF) circuits, which will 

result in great progress with miniaturization, superior performance and lower manufacturing 

costs. These superior performance enable them to be used in a wide array of commercial, 

aerospace, and defense application areas, including satellite communications systems, wireless 

communications systems, instrumentation, and radar systems [1]. As an example of RF 

MEMS technology, RF MEMS Switch has the potential of replacing many of the mechanical 

and semiconductor switches used in mobile and satellite communication systems [2]. Fig 1.1 

shows an example of RF MEMS capacitive switch [3]. 

 

Figure1.1An example of RF MEMS capacitive switch. 

In many cases, such switches would not only reduce substantially the size and power 

consumption, but also promise superior performance. In comparison to semiconductor 

switches (FET-Field Effect Transistor and PIN-diodes), RF capacitive MEMS switches have 

displayed excellent RF characteristics, including lower insertion loss, higher isolation, zero 

power consumption, small size and weight and very low intermodulation distortion, and long 

battery life. Table 1.1 provides a general overview of the performance comparison related to 

RF MEMS, PIN diode, and FET switches [4].  
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Table 1.1Performance comparison of FET, PIN diode and RF MEMS switches.

PARAMETER RF MEMS PIN-
DIODE 

FET

Voltage(V) 20 – 80 � 3 – 5 3 – 5 
Current (mA) 0 0 – 20 0 

Power Consumption  
(mW)

0.5 – 1 5 – 100 -.5 – 0.1 

Switching 1 – 300 �s 1 – 100 ns 1 – 100 ns 
Cup (series) (fF) 1 – 6 40 – 80 70 – 140 
Rs (series) (�) 0.5 – 2 2 – 4 4 – 6 

Capacitance Ratio 40 – 500 10 n/a 
Cutoff Freq. (THz) 20 – 80 1 – 4 0.5 – 2 

Isolation (1–10 GHz) Very high High Medium 
Isolation (10–40 GHz) Very high Medium Low 
Isolation (60–10 GHz) High Medium None 
Loss (1–100 GHz) (dB) 0.05 – 0.2 0.3 – 1.2 0.4 – 2.5 
Power Handling (W) <1 <10 <10 
3rd order Int. (dBm) +66 – 80 +27 – 45 +27 - 45 

1.2 RF MEMS Switches Classification and Application 

As already mentioned, RF MEMS switches are used in a wide array of commercial, 

aerospace, and defense application areas, including satellite communications systems, 

wireless communications systems, instrumentation, and radar systems. There are many 

kinds of RF MEMS switches, which can be classified in terms of actuation method 

(electrostatic, electrothermal, magnetic, piezoelectric), axis of deflection (laterally, 

vertically), circuit configuration (series, shunt), clamp configuration (cantilever, fixed-fixed 

beam) and contact interface (capacitive, ohmic). As for the electrical part, a MEMS switch 

can be placed in either series or shunt configurations and can be a metal-to-metal contact or 

a capacitive contact switch [4]. In order to choose an appropriate RF MEMS switch, one 

must first consider the required performance specifications, such as frequency bandwidth, 

linearity, power handling, power consumption, switching speed, signal level, and allowable 

losses.  
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Figure 1.2 Examples of RF MEMS applications areas 

Capacitive RF MEMS switches are usually designed for frequencies above 1GHz and 

small bandwidths. Especially when targeting wireless equipment, low power consumption 

and small size are required. As shown in Fig1.2, specific application of these switches can 

be found in phase shifters, tunable band filters/matching networks and reconfigurable 

phased arrays antennas [5].  

1.3 RF MEMS Capacitive Switches Reliability 

1.3.1 Common reliability issues in MEMS 

An important challenge in achieving successful commercial MEMS products is associated 

with MEMS reliability. Many of the MEMS failure mechanisms are not well understood. 

MEMS reliability requires a broad understanding of physics and mechanics in order to handle 

the challenges during research, development, and productization. Since in general MEMS 

behavior is governed by multiple physical domains, MEMS reliability is also governed by 

many different degradation mechanisms. An overview of reliability issues in MEMS devices 

can be found in a publication of NASA and JPL [6]. In table 1.2 the most common reliability 

issues in MEMS structures are shown.  
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Table 1.2Reliability issues in MEMS structures [6]. 

Failure mode  Underlying causes/ Examples 

Mechanical fracture and creep

Mechanical stress above Yield strength 

Fatigue (prolonged cycling) 

Intrinsic mechanical stress  

Thermal fatigue 

Degradation of dielectrics 

Dielectric charging  

Break down    

Leakage    

Stiction Capillary forces 

Wear  

Adhesion   

Abrasion    

Corrosion 

Delamination  Loss of adhesion between material interfaces 

Environmentally induced 

Vibration  

Shock   

Humidity effects   

Radiation  

Temperature changes  

Electrostatic discharge  

    The reliability of MEMS switches is of major concern for long-term applications and is 

currently an important subject of an intense research effort, as shown in Table 1.2, many 

physical mechanisms can alter the lifetime of MEMS devices: mechanical creep effect, 

electro migration due to high current density, stiction through capillarity forces. For ohmic 

contact MEMS switches, the main reliability issues, such as failure due to sticition, contact 

welding and contact resistance degradation, have been observed to be the key failure modes. 

Stiction is the unintentional adhesion of the movable and fixed parts in MEMS devices 

caused by surface adhesion forces [7].  

   Failure due to stiction is frequently encountered in electrostatically actuated type MEMS 

relays for the case when the beam is in contact with the dielectric that coats the bottom 

electrode. Typically, stiction of the metal bridge to the dielectric layer is a major failure mode 
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in capacitive MEMS switches. Mechanical degradation of MEMS capacitive switches is 

generally seen as less of an issue than dielectric charging [4]. This is due to fact that a 

carefully designedswitch operated under the right circumstances can operate for billions of 

cycles [8, 9]. 

1.3.2 RF MEMS capacitive switch operation and failure mode 

A typical example of a capacitive RF MEMS switch is shown in Figure 1.3, it consists of 

a freestanding plate suspended by beams above a coplanar waveguide (CPW). Under this 

‘bridge’, a high-�r dielectric is present. When a dc voltage is applied between the CPW 

central conductorand the surrounding ground plane, the bridge is attracted electrostatically, 

and when the dc actuation voltage is high enough, it collapses and lands on top of the 

dielectric. 

 

Figure 1.3.(a) Schematic structure of rf MEMS capacitive switch. (b). Downstate of rf MEMS capacitive switch. 

   When the dielectric film contact the metal bridge, a high electrical field will be produced 

across the layer so that it is possible for charges to be injected and further to be trapped in the 

dielectric film. The screening voltage resulted from accumulated charge in the dielectric layer 

detracts the actuation voltage until there is no more enough electrostatic force pulling on the 

membrane to cause it to actuate, or when the actuation voltage is removed, the accumulated 

charges provide enough electrostatic force to keep the membrane down. That is the main 

failure mechanism for the stiction of the RF MEMS switches. 

1.4 Literature review for the solution of dielectric charging 

To improve reliability of these switches, charge accumulation in the dielectric must be 

reduced. On the way to mitigating charge accumulation in the switch dielectric, significant 



Chpater 1  Introduction 
 

7 
 

attempts have been made from many research groups worldwide for more than a decade. 

Designing switches with lower actuation and hold-down voltages was firstly taken into 

consideration [10–13]. Innovative dielectric materials [14–15], no dielectric layer structures 

[13], doping the dielectric materials[14] and multi-waveform actuation voltages [16–18] were 

also attempted to increase switch reliability. Other efforts, in terms of reducing the amount of 

dielectric material present in capacitive switches, at the expense of capacitance ratio have 

been proposed [19]. Alternatively, making the switches smaller, using patterned dielectric 

posts, or no dielectric whatsoever has resulted in improved lifetimes [19-21]. Application of a 

leaky dielectric material with non-zero DC conductivity is also an approach for decreasing 

the recombination time of these trapped charges [22, 23]. Recently, a smart discharging 

mechanism employed to the dielectric was proposed by Pillans et.al., where they designed 

and processed a Schottky barrier contact-based RF MEMS switch [10]. One of the more 

recent efforts has been made in terms of optimizing the stoichiometry (N/Si) of silicon nitride 

to reduce charge accumulation [11].  

In spite of the huge efforts, as mentioned above, have been made, the charge injection and 

relaxation process in the dielectric is not thoroughly understood yet. Therefore, current 

approaches of controlling charge accumulation still cannot solve the problem. The key 

challenge is to understand the principle of charge injection when the field across the dielectric 

layers.  

1.5 Research objective  

   To solve the switch reliability issue caused by dielectric charging, a large amount of work 

is still ahead of us. A major goal of this thesis was to increase the understanding                        

of charge accumulation in the dielectric layer and to learn how to design innovative and 

robust RF MEMS switches that are fabricated by using silicon surface and bulk 

micromachining and with a capacitive structure. Charge accumulation in dielectric will be 

thoroughly investigated in order to understanding mechanisms of ionization, charge injection, 

positive and negative charges formation, and charge trapping and recombination solution to 

eliminate or reduce charge accumulation for high reliable capacitive RF MEMS switches. 
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The control of the charging/discharging processes is a key factor to allow a fast recovering of 

the dielectric after charging. The main works are detailed as the following: 

1) How to characterize charge injection and relaxation behaviors in the dielectric. 

2) Investigation of charge injection behaviors in the dielectric under high bias voltage. 

3) Investigation of Charge relaxation behaviors in the dielectric after high bias voltage. 

4) Comparison of charge accumulation behaviors between different dielectric materials, e.g., 

Si3N4 and SiO2. 

5) Charge injection and relaxation process in multi-layer dielectric, e.g., double- and triple- 

layer dielectric. 

6) Effects of SiO2 thickness on charge accumulation in Si3N4/ SiO2 dielectric stacks. 

7) Charge injection and relaxation investigation in ion implanted dielectrics, e.g., P and B 

ions implanted dielectrics. 

8) Charge injection and relaxation in SiO2 films containing silicon nanocrystals. 

1.6 Outline of the thesis 

    The thesis is organized based on the published and submitted journal and conference 

articles. The first chapter gives an overview about state of the art technologies, the motivation 

and the scope of the research. In Chapter 2, the novel characterization methodology has been 

proposed after discussing the traditional characterization methodology. In Chapter 3, charge 

injection and relaxation behaviors have been clearly presented by collecting two journal 

papers and one conference paper. In chapter 4, the investigation of charge accumulation in 

multi-layer dielectrics has been presented by combining one submitted journal paper and one 

book chapter.  In chapter 5, the investigation of charge accumulation in doing dielectrics have 

been presented based on one journal paper and one conference paper. In Chapter 6, the 

investigations are summarized and the contribution of this work to science is concluded. The 

last chapter gives some comments for the further investigation.  
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2.1 Traditional Characterization Methodology 

The stiction failure mode for capacitive MEMS switches is due to dielectric charging, 

keeping the switch in a permanently closed state. In order to understand the dielectric 

charging and discharging in RF MEMS switches, one must be able to measure and quantify 

the trapped charge in the dielectric. Considerable effort has been devoted to both the 

experimental characterization of dielectric charging and the developmentof models that can 

be used to predict the impact ofdielectric charging on electro-mechanical behavior of a 

capacitive switch. So far, several attempts have been made to model the effect of stiction and 

screening caused by charge accumulation; however there still remains a lot of work to fully 

characterize, understand and solve this challenge.  

2.1.1Lifetime Characterization  

The first experimental characterization of dielectric charging in capacitive RF MEMS 

switch, implemented by Goldsmith et al., is to characterize switch lifetime [1]. In this method 

switch lifetime depends exponentially on the applied voltage (as shown in Figure 2.1), it was 

argued that charge accumulation was attributed to Frenkel–Poole conduction [2], which 

depends exponentially on voltage. As shown in Fig 2.1, it can be seen that the switch lifetime 

shortens as the drive signal amplitude increases. But switch lifetime only gives a qualitative 

measure of dielectric charging. 

 

Figure 2.1. MEMS lifetime characterization [1]. 
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2.1.2Capacitance - Voltage (C-V) shift Characterization 

The most popular method to measure charge build-up in the dielectric involves analyzing 

a capacitance voltage (CV) curve. A capacitance meter is used to obtain the capacitance 

values atvarious voltages [3, 4, 5]. From the CV curve, one can observe how the capacitance 

of the shunt switch changes with applied voltage. First, an initial CV measurement between 

the silicon substrate and the capacitive bridge was performed with no DC offset, as the 

magnitude of the applied DC offset voltage increases, the CV measurements are taken 

periodically until the bridge is pulled-in. The difference between the final and initial CV 

values is proportional to the sheet charge trapped in the dielectric layer. Figure 2.2 shows the 

C-V curve before and after a switch has been stressed. 

 

Figure 2.2. C-V curve before (black) and after (grey) a switch has been stressed at 65 volts for 727 seconds [6]. 

2.1.3Charging and discharging current Characterization  

Recently, it was reported that because dielectric charging caused by charge injection, 

another approach [7] through the experimental investigation of charging and discharging 

current transients a charging model was developed and used in for the quantitative 

description of dielectric charging. Charging and discharging currents of traps were measured 

on permanently down RF MEMS capacitive switches [8] or a MIM capacitor [9]. In this 

method, as shown in Figure 2.3(a), they found that charging and discharging time constants 

are relatively independent of control voltage, and as shown in Figure 2.3(b), steady-state 

charge densities increase exponentially with control voltage. 
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Fig 2.3. (a) Trap 1 ( � ) charging and ( + ) discharging and trap 2 ( � ) charging and ( � ) discharging time 
constants and (b) (symbols) extracted and (lines) fitted steady-state charge density for ( � ) trap 1and ( � ) trap 2 
under -40, -30, -20, 20, 30 and 40 V. 

2.2 Characterization Methodology in this thesis 

These characterization methods as mentioned above, which have been used to investigate 

the dielectric charging, arecomplicated and time consuming for evaluating the switch 

dielectrics because fabrication of actual RF MEMS switches is required, or the quantification 

of the trapped charges and their relaxation process cannot be easily performed by using both 

MIM structure and MEMS switches. 

According to the schematic structure of the switch shown in Fig. 2.4, a model was 

established for stiction modeling. When the suspended metal bridge of the capacitive RF 
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MEMS switch is electrostatically actuated to contact the surface of dielectric [Fig. 2.4(a)], the 

switch can be modeled as a metal-insulator-metal (MIM) structure [Fig. 2.4(b)]. In Fig. 2.4(b), 

the simple, parallel plate model is used, which consists of a metal plate with anarea of A 

suspended by a linear spring with stiffness of k and a dielectric layer with thickness of t 

above the central conductor of the coplanar waveguide (CPW). When the bridge contacts 

with the dielectric layer, the bridge deflection is indicated with the displacement d. The 

charges in the dielectric layer include the top surface parasitic charges Qsurface, bulk charges 

Qbulk, and bottom interface charges Qinterface. It is also important to note that the bottom 

interface charges donot have any influence on the metal bridge because the image charges 

generated in the CPW conductor cancel the bottom interface charges exactly. When the 

stiction happens, the electrostatic force F can be expressed as 

21 1 1
2 2 2

indu indu
indu indu

o r o r

AQ AQF Q E Q kd
� � � �

� � � � � � � (2.1) 

where Qindu is the induced charges at the metal bridge, E theelectric field, �0 the permittivity 

of free space, and �r the relative dielectric permittivity. Therefore, the critical charges that 

result in stiction can be expressed as [10] 

0

2( )
t

o r
critical surf

critical

A kdQ Q x x dx
t A

� �	
 �� � � � �
 �� �� (2.2)

Where �(x) is the sheet charge density at position x that relatives to the coordinate in 

which origin of coordinate is set at the interface between the CPW metal layer and the 

dielectric layer. 
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Figure 2.4. (Color online) Analytical model of RF MEMS capacitive switch. (a) Schematic structure of RF 
MEMS capacitive switch, (b) MIM model, and (c) MIS model. 

Since high frequency C-V measurements on MIS devicesare generally used to study 

trapped charges in dielectric, we propose a method to study dielectrics charging in RF MEMS 

switches by measuring the C-V characteristics of MIS structures. It can be found by 

comparing Fig. 2.4(b) with Fig. 2.4(c) that Qinterface and Qbulk in the MIS structure are 

equivalent to Qsurface and Qbulk in the MIM structure. The trapped charges in the MIS structure 

will shift the C-V curve from an ideal (no trapped charges) site, while the bottom interface 

charges have much less influence on the flatband voltage. The flatband voltage Vfb of the 

MIS structure can be expressed as[11] 

� �
0

1 t

fb ms int
o

AV Q x x dx
C t

�
 �� �� � �
 �� ��
                                                   

(2.3) 

where C0 is the capacitance of the MIS structure, �ms is the work function difference between 

the metal and semiconductor,and the sheet charge density at position x is expressed as�(x). 

Therefore, the flatband trapped charges can be given by 
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� � � �
0

t

fb int o fb ms
AQ Q x x dx C V
t

�
 �� � � � ��
 �� ��
                                 

(2.4) 

   To compare Eq. (2.2) with Eq. (2.4), it can be found that the effective trapped charges in 

the two models have same expression form. Therefore, the charging behavior in the RF 

MEMS switch can be analyzed by using the MIS structure. However, the metal-dielectric 

contact surface in the switch is different from the dielectric-semiconductor interface in the 

MIS structure. Therefore, it is difficult to establish a quantitative relation between Eqs. (2.2) 

and (2.4). However, the change of the trapped charges in the dielectric can be observed by the 

flatland offset of the MIS devices. 

   According to above modeling, the effects of different levels of the electrical stresses on C-

V characteristics of the MIS devices were investigated for simulating the chargingbehavior of 

an actual switch under actuation voltage. In our experiments, the electrical stress was 

performed by applying dc voltage to the gate electrode of the MIS (Al/Insulator/Si) device. 

2.3C-V measurements and tool setup 

2.3.1C-V measurements and dc stress 

The charge accumulation in the silicon nitride films can be evaluated by C-V measurement, 

which is the most widely used method for characterizing charge within dielectric layer of 

MIS, MOS and MOS-like structures. It has been reported that the amount of charge 

accumulated in a certain dielectric layer depends on the magnitude and time of applied 

electric field [12]. The DC pulse, simulating the actuation voltage, is used to electrically 

stress the MIS structure in this work. After the DC pulse stress, C-V measurements are 

carried out by applying a DC gate voltage with a superimposed small AC signal of varying 

frequency. The DC gate voltage changes slowly to obtain a continuous curve showing regions 

of accumulation, depletion, and inversion for the conduction layer in the substrate 

semiconductor (as shown in Fig.2.5). 
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Figure 2.5An example of CV curve measured at high frequency 

Cmax can be obtained from the C-V curve in Figure 2.5, or it can be calculated by 

max
�dieC
t

�
                                                        (2.5) 

Where Cmax = Cdie is the dielectric capacitance (F/cm2), �die is the permittivity of the 

dielectric, and t is the thickness of the dielectric. If there is more than one dielectric film, Cmax 

is a series combination of capacitances made of individual dielectric layers, as following: 

1 2
max

1 2

c cC
c c

�
�

(2.6) 

Where C1 and C2, respectively, represent the two different dielectric capacitances. However, 

Cmin is the series combination of Cmax and Cdep capacitances 

max
min

max

dep

dep

C C
C

C C
�

�
(2.7) 

where Cdep is the depletion capacitance in the semiconductor, which in turn is defined as: 

�s
dep

dep

C
W

� (2.8)
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where �s is the permittivity of the substrate, while Wdep is the substrate depletion width,which 

can be calculated using Eq. 2.9. Eq. 2.9 represents the maximum depletion width for any 

given doping concentration Nx. 

� �s f
dep

x

W
qN

� (2.9) 

In the above equation �f  is the Fermi potential of the substrate. 

The charge variation due to the AC signal gives rise to a measurablecapacitance which can 

be given by: 

dQC
dV

� � (2.10)

Where Q represents the total charge in the conduction layer of the substrate semiconductor, V 

represents the gate voltage, and C represents the capacitance. 

Flat band voltage (VFB) which is a negative voltage applied between the metal and 

semiconductor to achieve the flat band, as a function of the time of the DC stress or the total 

amount of the injected charges, provides information on how many charges are trapped in the 

insulator in the MIS structure, so the amount of charges accumulated in the dielectric layer 

can be obtained by measuring the VFB shift in the C-V curves. The shifts of C-V curves 

towards the left or right indicate that the net positive or negative charges injected intothe 

dielectric.In the experiments, the samples were first biased with DC stress, so that charges 

can be injected into the dielectric films.The dynamic process of charging and discharging can 

be analyzed by comparing the C-V curves measured before and after charge injection.  

In order to determine the flat band voltage, we must calculate the flat band capacitance 

(CFB), the voltage corresponding to which is VFB, the CFBis given by [13] 

1
ro 2

2
0 0

1/[1 ( ) ]rs o oFB

rs A

k TC
C q N d

� � �
�

� � (2.11) 

where C0 is the capacitance which is corresponding to the biggest capacitance shown in the 

C-V curve, �0 the permittivity of free space, �ro the relative permittivity of the dielectric, �rs 

the relative permittivity of the semiconductor, ko the Boltzman constant, T the temperature, 
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the measurement was performed at room temperature, q the elementary charge, NA the dopant 

concentration, and d0 the thickness of the insulator.  

VFB can be extracted from the C-V data according to CFB. In order to simplify the process 

of calculation, we can assume that all the trapped charges are located at the silicon-insulator 

interface although the trapped charges can be generated not only at the silicon-insulator 

interface, but also in the bulk. The trapped charge, �Nt, can be calculated by: 

0
t FB

C
N V

q
� � � �

                                                                  
(2.12) 

Where �VFB caused by the trapped charge is the magnitude of measured VFB shift. 

Trapped charge calculated from the change in flat band voltage is an approximation of the 

charge located in the insulator structure. By measuring the C-V curve shift along the voltage 

axis as a function of DC stress to determine the charge accumulation; this measurement 

technique has the advantage of being simple and direct. 

2.3.2 Tool setup for CV measurement 

   Fig. 2.6 shows the schematic diagram of our measurement setup for C-V measurement, this 

system consists of 590 CV Analyzer, which is a sophisticated instrument designed as a 

complete solution for individuals requiring capacitance and conductance versus voltage 

measurements in semiconductor testing. The 590/100k/1M can test devices at either 100 kHz or 

1 MHz, depending on installed modules. Test voltage for both frequencies is 15 mV RMS; 

4200-SCSSemiconductorCharacterization System, which allow users to conduct simultaneous 

high frequency (HF) and quasistatic (QS) C-V (Capacitance-Voltage) measurements on wafer 

devices with a single voltage sweep and improves C-V measurement accuracy by reducing the 

voltage stress on the devices under test and eliminating the need for the use of theoretical 

curves and doping, in electronics: see semiconductor; Prober station which is used to connect 

the device-under-test (DUT) to testing instrument, the prober station should be placed inside of 

a shielded boxin order to avoid the effect of electromagnetic field and illumination on 

measurement. Agilent 33250A Function/Arbitrary Waveform Generator and Power Amplifier-
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TREK model 630, in order to avoid the effect of the illumination and electrical noise from 

environment on the measurement results, the prober station was placed inside of a shielded box. 

The voltage stress was conducted by biasing the MIS capacitor with a high voltage which 

was generated by Agilent 33250A Function /Arbitrary Waveform Generator and amplified by 

TREK Model 630 Voltage Amplifier. The bias is applied to the metal gate. The bottom of 

silicon substrate is held at the prober station chuck. All measurements were made at room 

temperature in air ambient.  

 

Figure 2.6. Schematicstructureof our C-V measurement systems 
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In this work, metal-insulator-semiconductor �MIS� capacitor structure was used to investigate the
dielectric charging and discharging in the capacitive radio frequency microelectromechanical
switches. The insulator in MIS structure is silicon nitride films �SiN�, which were deposited by
either low pressure chemical vapor deposition �LPCVD� or plasma enhanced chemical vapor
deposition �PECVD� processes. Phosphorus or boron ions were implanted into dielectric layer in
order to introduce impurity energy levels into the band gap of SiN. The relaxation processes of the
injected charges in SiN were changed due to the ion implantation, which led to the change in
relaxation time of the trapped charges. In our experiments, the space charges were introduced by
stressing the sample electrically with dc biasing. The effects of implantation process on charge
accumulation and dissipation in the dielectric are studied by capacitance-voltage �C-V�
measurement qualitatively and quantitatively. The experimental results show that the charging and
discharging behavior of the ion implanted silicon nitride films deposited by LPCVD is quite
different from the one deposited by PECVD. The charge accumulation in the dielectric film can be
reduced by ion implantation with proper dielectric deposition method. © 2009 American Institute of
Physics. �DOI: 10.1063/1.3147862�

I. INTRODUCTION

rf microelectromechanical systems �MEMS� is currently
gathering an increased interest from academic and industrial
community working on microwave and antennas applica-
tions for defense or space technology.1 A rf MEMS switch is
one of the basic building blocks in the rf communication
systems.2 However, their commercialization is currently hin-
dered by their poor reliability. The accumulation of charge in
the dielectric layer of capacitive rf MEMS switches has been
identified as a primary source of switch failure.3,4 The devel-
opment of reliable switches requires a good understanding of
the charging and discharging mechanism in the dielectric
films, which were deposited using different processes.5 In
order to eliminate or minimize dielectric charging, one must
be able to understand and quantify the charging in the dielec-
tric.

In rf MEMS switches, the exact mechanisms for the
charge accumulation in the dielectric layers are not well
known. However, charge accumulation can be measured by
several methods that have already been reported. One
method to measure dielectric charging, implemented by
Goldsmith et al.,3 is to characterize switch lifetime. Reid and
Webster6 investigated dielectric charging in capacitive shunt
switches by measuring a shift in bias voltage after continu-
ously switching on and off the switches. It has been con-
firmed that the injected charge in the dielectric can cause
C-V curve of the switch to shift by an amount directly pro-

portional to the magnitude and polarity of the charge.7,8 After
an initial C-V measurement between the silicon substrate and
the capacitive bridge with no dc offset is made from the
difference which the initial C-V measurement is subtracted
from all subsequent C-V measurements with specific dc off-
sets, the quantity of the trapped charges can be calculated
quantitatively.9

In this paper, we modified the distribution of the energy
states in the dielectric films experimentally by ion implanta-
tion technology. By measuring and analyzing the C-V curves
of metal-insulator-semiconductor �MIS� structures, the relax-
ation process of injected charges in the dielectric layer after
dc bias stress was characterized qualitatively and quantita-
tively.

II. THEORETICAL ANALYSIS

A. MIS structure for studying charge accumulation
and relaxation in dielectric films in rf capacitive
MEMS switches

A schematic structure of rf MEMS capacitive switch is
shown in Fig. 1�a�. It consists of a freestanding bridge plate
above a coplanar waveguide �CPW� transmission line. Under
this “bridge,” a dielectric with high permittivity is present.
When a dc voltage is applied between the CPW central con-
ductor and the surrounding ground plane, the bridge is at-
tracted electrostatically, and it collapses and lands on top of
the dielectric when the dc actuation voltage is high enough
�as shown in Fig. 1�b��.

When the dielectric film contact the metal bridge, a high
electrical field will be produced across the layer so that it is

a�Author to whom correspondence should be addressed. Electronic mail:
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possible for charges to be injected and further to be trapped
in the dielectric film. The screening voltage resulted from
accumulated charge in the dielectric layer detracts the actua-
tion voltage until there is no more enough electrostatic force
pulling on the membrane to cause it to actuate, or when the
actuation voltage is removed, the accumulated charges pro-
vide enough electrostatic force to keep the membrane
down.3,10 That is the main failure mechanism for the stiction
of the rf MEMS switches.

According to the schematic structure of the switch
shown in Fig. 1�b�, metal-insulator-metal structure �MIM�
can be used to model the charge injection and trapping pro-
cess for rf MEMS switches. However, the quantification of
the trapped charges and their relaxation process cannot be
easily performed by using MIM structure. Fortunately, we
are more interested in the trapped charges and their relax-
ation process in the dielectric layer, so we can use MIS struc-
ture shown in Fig. 2 to model the rf MEMS switch after the
charge injection although the charge injection mechanisms
may not be the same as in the real rf MEMS switches. It will
be efficient to characterize the charges accumulated in the
dielectric and to study relaxation process of the trapped
charges by performing C-V measurement on the MIS struc-
tures. In Ref. 11, we have demonstrated that the effective
trapped charges in MIM and MIS have same expression
form, an analogous analysis for switch model can be realized
by means of the C-V characteristics of MIS structure.

B. dc stress and C-V measurements

It has been reported that the amount of charge accumu-
lated in a certain dielectric layer depends on the magnitude
and time of applied electric field.12 The dc pulse, simulating
the actuation voltage, is used to electrically stress the MIS
structure in this work. After the dc pulse stress, C-V mea-
surements are carried out by applying a dc gate voltage with

a superimposed small ac signal of varying frequency. The dc
gate voltage changes slowly to obtain a continuous curve
showing regions of accumulation, depletion, and inversion
for the conduction layer in the substrate semiconductor. The
charge variation due to the ac signal gives rise to a measur-
able capacitance which can be given by

C = −
dQ

dV
, �1�

where Q represents the total charge in the conduction layer
of the substrate semiconductor, V represents the gate voltage,
and C represents the capacitance.

Flat band voltage �VFB�, which is a negative voltage ap-
plied between the metal and semiconductor to achieve the
flat band, as a function of the time of the dc stress or the total
amount of the injected charges, provides information on how
many charges are trapped in the insulator in the MIS struc-
ture, so the amount of charges accumulated in the dielectric
layer can be obtained by measuring the VFB shift in the C-V
curves. The shifts of C-V curves toward the left or right
indicate that the net positive or negative charges injected into
the dielectric. In the experiments, the samples were first bi-
ased with dc stress, so that charges can be injected into the
dielectric films. The dynamic process of charging and dis-
charging can be analyzed by comparing the C-V curves mea-
sured before and after charge injection.

In order to determine the flat band voltage, we must
calculate the flat band capacitance �CFB�, the voltage corre-
sponding to which is VFB, the CFB is given by13

CFB

C0
= 1/�1 +

�ro

�rs
��rs�okoT

q2NAd0
�1/2	 , �2�

where C0 is the capacitance, which is corresponding to the
biggest capacitance shown in the C-V curve, �0 is the per-
mittivity of free space, �ro is the relative permittivity of the
dielectric, �rs is the relative permittivity of the semiconduc-
tor, ko is the Boltzman constant, T is the temperature, the
measurement was performed at room temperature, q is the
elementary charge, NA is the dopant concentration, and d0 is
the thickness of the insulator.

VFB can be extracted from the C-V data according to
CFB. In order to simplify the process of calculation, we can
assume that all the trapped charges are located at the silicon-
insulator interface although the trapped charges can be gen-
erated not only at the silicon-insulator interface, but also in
the bulk. The trapped charge, �Nt, can be calculated by

�Nt = −
C0

q
�VFB, �3�

where �VFB caused by the trapped charge is the magnitude
of measured VFB shift.

Trapped charge calculated from the change in flat band
voltage is an approximation of the charge located in the in-
sulator structure. By measuring the C-V curve shift along the
voltage axis as a function of dc stress to determine the charge
accumulation, this measurement technique has the advantage
of being simple and direct.

FIG. 1. �a� Schematic structure of rf MEMS capacitive switch. �b�. Down
states of rf MEMS capacitive switch.

FIG. 2. MIS capacitor structure.

124503-2 Li, San, and Chen J. Appl. Phys. 105, 124503 �2009�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



III. EXPERIMENT

A. Preparation of silicon nitride films

It is well known that SiO2 and Si3N4 thin films contain
high density of traps associated with dangling bonds. The
space charges can be built up by the trapping processes. Due
to the absence of convenient conducting paths in SiO2 or
Si3N4, the lasting time for trapped charge dissipation can be
of the order of seconds to days.1,3

In this work, we select Si3N4 as the insulator layer in the
MIS structure. For reference purposes, eight same Si wafers
were prepared, four of them deposited with low pressure
chemical vapor deposition �LPCVD� silicon nitride films, the
others deposited with LPCVD silicon nitride films. The re-
sistivity and doping level of the Si wafer are about 0.5 � cm
and 1.5�1016 cm−3, respectively. Hydrogen is built into the
deposited layer during the films preparation. For plasma en-
hanced chemical vapor deposition �PECVD� silicon nitrides
the hydrogen content can reach 40% while in LPCVD silicon
nitrides the concentrations as small as 3% was observed. H
atom is bonded mostly to nitrogen in the deposited layer.14

The deposition parameters are shown in Table I.

B. Ion implantation

By employing ion implantation, impurity energy levels
are introduced into the forbidden band of the dielectric layer.
Ion implanted samples will have different charging/
discharging properties from the virginal samples �samples
before the ion implantation�. Either P or B ions were im-
planted into both PECVD and LPCVD silicon nitride films.
Table II lists the parameters for the ion implantation process.

After ion implantation, two unimplanted samples, which
were selected from LPCVD and PECVD samples, respec-
tively, together with all implanted samples were rapidly ther-
mal annealed at 900 °C for 30 min to reduce the defects
caused by the ion implantation. Then Al was sputtered onto
the top surface as the gate electrode �150�150 �m2�, and
on the backside of the silicon substrate to form a better con-

tact between the sample and chuck plate for getting ideal
C-V curves. Table III lists the information of the eight dif-
ferent samples.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Results for samples without electrical stress

The C-V curves had been measured on all samples by
performing a voltage sweep from �20 to 20 V with fre-
quency of 100 kHz. As shown in Figs. 3�a� and 3�b�, the VFB

obtained from the C-V curves of different samples are differ-
ent. For the LPCVD samples shown in Fig. 3�a�, the VFB

obtained from the C-V curve of the virginal sample is
�11.47 V, which is the maximum observed one. The VFB

TABLE I. The parameters of the deposition process.

Sample 1 2

Deposition method PECVD LPCVD
Temperature �°C� 250 780
Pressure �Pa� 8 30
Flow ratio �SCCM:SCCM� SiH4:NH3 �38:11� SiH2Cl2 :NH3 �150:10�
Thickness �Å� 2000 3000

TABLE II. The parameters of the ion implantation process.

Parameter

Thickness
�nm�

200 300 200 300

Doping Ions B P
Implantation energy �KeV� 30 40 80 105
Implantation Depth �nm� 150 175 150 180
Implantation concentration �cm−3� 2�1012 2�1012 2�1012 2�1012

TABLE III. The information of the eight different samples.

LPCVD

1 Virginal sample
2 Annealed sample Annealing
3 P ions implanted sample Annealing, P ion implantation
4 P ions implanted sample Annealing, B ion implantation

PECVD

5 Virginal sample
6 Annealed sample Annealing
7 P ions implanted sample Annealing, P ion implantation
8 P ions implanted sample Annealing, B ion implantation

FIG. 3. �a� C-V curves measured on four different MIS samples prepared
with LPCVD process before charge injection. �b� C-V curves measured on
four different MIS samples prepared with PECVD process before charge
injection. �In the two figures, 1 is the C-V curve measured from the original
sample, 2 is for the annealed original sample, 3 is for the annealed B ion
implanted sample, and 4 is for the annealed P ion implanted sample.�
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obtained from the C-V curve of the annealed sample is
�9.01 V, which is the minimum observed one. For P and B
implanted samples, the values of VFB are �10.95 and
�10.37 V, respectively, which are between the value of the
VFB for the virginal sample and the annealed sample.

The distributions of positive space charges are observed
in all four LPCVD samples, which can be shown in Fig. 3�a�.
Because the greater absolute value of VFB, the more space
charges in the sample, among the four samples the virginal
sample contains the largest number of the space charges,
followed by the ion implanted samples, while the annealed
sample contains the lowest number of space charges.

Based on the virginal sample, changes in the quantity of
space charges in other samples can be calculated by using
Eq. �3�. Compared with the virginal sample, the quantity of
the positive space charges in the annealed sample can be
reduced about 9.84�107 due to the annealing process. How-
ever compared with the annealed sample, the positive space
charges have been introduced into the ion implanted
samples. We found that B ion implantation can reduce 2.32
�107 more space charges in the dielectric layer than P ion
implantation does. The above results can be explained as the
following.

Under the high temperature of the annealing, outgas of
hydrogen will occur because that Si–H and N–H bond will
break due to its low bonding energy in the silicon nitride
films. Apparently, the annealing process would lead to the
increase in N and Si dangling bonds, which are shown as
positive charges. However, all N and Si dangling bonds
would likely recombine during the annealing process. Fur-
thermore, high temperature can also repair the structural de-
fects in the film. So the dangling bonds shown as positive
charges in the dielectric can be significantly reduced as the
annealing result.

As the positive charges �implanted impurity ions� would
be introduced into the dielectric films by ion implantation,
more space charges would exist in the ion implanted samples
in comparison with the virginal sample. Because the P ion
has a higher chemical valence than B ion, thus, P ion implan-
tation can introduce more positive charge than B ion implan-
tation.

For PECVD nitride silicon films, our experimental re-
sults presented in Fig. 3�b� show different distributions of the
space charges from LPCVD samples. The VFB obtained from
the C-V curve of the virginal sample is �9.43 V, which is the
maximum observed one, while �6.36 and �5.86 V are the
VFB obtained from the C-V curve of P and B ions implanted
samples, respectively. Both of them are less than the VFB of
�7.76 V obtained from the C-V curve of the annealed
sample.

During annealing, the PECVD silicon nitride films will
go through similar crystal reparation process as LPCVD de-
posited films do. In addition, for the PECVD silicon nitride
films, the implanted ions have great chance to recombine
some N and Si dangling bonds, which appear because of bad
quality of the PECVD nitride silicon films. Therefore, com-
pared with the annealed sample, the ion implanted samples
contain the lowest number of space charges although the
positive charges are simultaneously introduced into the di-

electric films by ion implantation, and the annealed samples
contain less but not the lowest number of positive space
charges.

As shown in Fig. 3�b�, comparing the virginal sample
with the annealed sample, the quantity of the space charges
can be reduced about 9.84�107 by annealing. Compared
with the virginal and annealed samples, the C-V curves mea-
sured from P and B ion implanted samples both shift to the
right side. Obviously the positive space charges can be re-
duced by ion implantation. We can also find that B ion im-
plantation can reduce 2.8�107 more space charges in the
dielectric film than P ion implantation does.

B. Results for LPCVD samples after electrical stress

After making the C-V measurements without electrical
stress, all samples were electrically stressed by biased with

FIG. 4. �a� C-V curves measured on the annealed sample before and after
the charge injection. �b� C-V curves measured on the P ion implanted sample
before and after the charge injection. �c� C-V curves measured on the B ion
implanted sample before and after the charge injection. �In the three figures,
1 is the C-V curve measured before charge injection. 2 is the C-V curve
measured 0 min after charge injection. 3 is the C-V curve measured one
minute after charge injection. 4 is the C-V curve measured fifty minutes
after charge injection.�
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dc �80 V� for 30 s, while the gate electrode was connected to
the positive polarization. Then, the C-V measurements were
performed immediately �0 min�, 1 and 50 min after the stress
�charge injection�, respectively. For the LPCVD silicon ni-
tride samples, Figs. 4�a�–4�c� present the C-V curves mea-
sured before and after dc stress for the annealed sample and
the ion implanted samples. For the annealed sample, the
�VFB of 9.82 V is obtained by the measurement instanta-
neously �0 min� after the charge injection, while, for the P
and B ion implanted samples, we obtained the �VFB as 12.22
and 12.12 V, respectively. Clearly, after the same electrical
stress, there are more charges injected into the ion implanted
samples in comparison with the annealed samples.

The discharging processes of the trapped charges in the
dielectric layer can be analyzed by the measurement results
presented in Fig. 5. After the charge injection, the C-V
curves measured from both the implanted sample and the
annealed sample shift to left side along the voltage axis,
while the magnitude of the shift ��VFB� depends on the wait-
ing time before the C-V measurements. Following Eq. �3�,
the values of �Nt can be obtained for the different measure-
ments. From the measurement, which was made after dis-
charging for 0 min, 1 and 50 min after the charge injection,
the �Nt values were found to equal 3.92�108, 3.59�108,
and 2.86�108, respectively, for the annealed sample, 4.88
�108, 4.57�108, and 3.58�108, respectively, for the P ions
implanted sample, and 4.86�108, 4.60�108, and 3.92
�108, respectively, for the B ions implanted sample.

As a brief summary, the discharging processes in all
three different type of samples, e.g., the annealed samples,
and the P and B ion implanted samples, have similar behav-
ior. However, quantitatively, the number of the injected
charges finally remained in the annealed sample is the low-
est, and the discharging speed of the injected charges in the
annealed sample is the fastest. We can conclude that the trap
centers introduced into the silicon nitride layer by the P and
B ion implantation enhance the charge accumulation in the
dielectric layer.

C. Results for PECVD samples after electrical stress

In Fig. 6�a�–6�c�, the C-V curves were measured from
the PECVD samples before and after the dc stress �80 V for
30 s�. For the annealed sample, the �VFB of 17.15 V is ob-
tained from the measurement instantaneously after the

charge injection. For P and B ion implanted samples, such
�VFB are found to equal 16.16 and 15.98 V, respectively.
Unlike LPCVD samples, we found that for the PECVD
samples the electrical stress results in a smaller right shift of
C-V curves of the implanted samples than that of the an-
nealed samples. Thus, there are more space charges injected
into the annealed sample.

The relaxation processes in silicon nitride layer depos-
ited by PECVD can be analyzed by the results presented in
Fig. 7. The �Nt values were also obtained from the measure-
ments, which were made after discharging for 0, 1, and 50
min, respectively, after the charge injection. For the annealed
sample, the �Nt equals 10.06�108, 3.68�108, and 2.13
�108, respectively. For the P ions implanted sample, the �Nt

equals 9.48�108, 3.67�108, and 2.08�108, respectively.

FIG. 5. The quantity of trapped charges vs time after dc stress for the three
LPCVD samples.

FIG. 6. �a� C-V curves measured on the annealed sample before and after
the charge injection. �b� C-V curves measured on the P ion implanted sample
before and after the charge injection. �c� C-V curves measured on the B ion
implanted sample before and after the charge injection. �In the three figures,
1 is the C-V curve measured before charge injection. 2 is the C-V curve
measured 0 min after charge injection. 3 is the C-V curve measured one
minute after charge injection. 4 is the C-V curve measured fifty minutes
after charge injection.�
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For the B ions implanted sample, the �Nt equals 9.38�108

to 3.78�108 and 2.20�108, respectively. Those data exhibit
the different results from the LPCVD deposited samples,
e.g., the discharging process happened much quicker in the
PECVD samples than that in the LPCVD samples.

In order to analyze the effect of ion implantation on the
charging and discharging processes in the PECVD samples,
the results presented in Figs. 5 and 7 can be compared in
detail. We can see that there are more negative space charges
injected into the annealed sample than into the ion implanted
samples. After discharging for 50 mins, the quantity of in-
jected charges finally remained in the P ions implanted
sample is the lowest among all the PECVD samples. It
shows that the implanted ions can act as recombination cen-
ters in the dielectric layer, and P ion implantation can allevi-
ate the charge accumulation more efficiently than B implan-
tation.

We also found that the effect of ion implantation on the
charging and discharging in PECVD samples differ from that
in LPCVD samples. The implantation effect is not more ob-
vious in PECVD samples than in LPCVD samples, possibly
because of higher density of defects in PECVD samples than
in LPCVD samples. Our reasoning is that more defects will
screen the influence of the implantation to the charging and
discharging processes.

V. CONCLUSIONS

In this work, the charging/discharging behaviors of the
dielectric used in rf capacitive MEMS switch have been in-
vestigated by the C-V measurement on a MIS structure. The
results show that:

�1� Independent of the deposition methods �here LPCVD
and PECVD�, positive charges were observed in all
samples before the electrical stress, e.g., annealed
samples �annealing after deposition� and implanted
samples �ion implantation and then annealing after the
deposition�.

�2� Compared with the annealed sample, both P and B ion
implantation processes add more positive charges into
the implanted samples, which were deposited by

LPCVD, on the contrary, the implantation processes re-
duce some positive charges in the implanted samples,
which were deposited by PECVD.

�3� Electrical stress with dc bias �80 V, 30 s� injects negative
charges in all samples used in this work. After removal
of the bias voltage, some of the injected charges in the
dielectric layer will disappear quickly, and some of the
injected charges will remain in the dielectric layer for a
relative long period. Thus, both fast and slow states exist
in the samples.

�4� At the same electrical stress, charges are much more
easily injected into the samples deposited by PECVD
than by LPCVD. We find that the discharging process
happened much quicker in the PECVD samples than in
the LPCVD samples.

Above experimental results and analysis offer some use-
ful information for understanding the doping effect on the
charge injection and discharging in the dielectric layer. Ion
implantation and deposition methods will play a very impor-
tant role to cause or delay the stiction failure of capacitive rf
MEMS switch due to the charge accumulation in the dielec-
tric layer. In order to improve the lifetime and reliability of
the rf MEMS switch, fast states have to be created in the
dielectric layer to accelerate the relaxation processes with
proper ion implantation and deposition methods, and ion im-
plantation, which forms trap centers in the dielectric layer,
must be avoided.
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The development of reliable switches requires a good understanding of the dielectric 

charging and discharging characteristics. The ultimate goal of this research is to fully 

investigateand understand dielectric charging and discharging properties, and find the 

effective way to migrate charge accumulation in the dielectric for high reliable RF MEMS

switch. 

6.1 Charge accumulation in silicon nitride

6.1.1Charge injection in silicon nitride

The behaviors of charge injection in the silicon nitride of an Al/Si3N4

A charge injection model has been proposed for explaining these observed charge 

accumulation behaviors. This model proposes a balance of holes and electrons from the 

Fowler–Nordheim limited injection that is a major factor in the voltage dependence of charge

trapping. An essential feature of the model has been that hole injection, in addition to electron 

injection, has been taken into account. We emphasize that our model is not intended as a 

numerically precise analysis of what is (in reality)a very complicated situation. Rather, it is a 

basic model intended to provide justification and support for our basic physical hypotheses. 

At this level, the model can well explain the experimental results. From the experimental and 

modeling results, it follows that the tunneling barrier heights for electrons and holes in a 

given MIS structure are very important parameters to evaluate charge injection behaviors, 

/n-Si metal–insulator–

semiconductor (MIS) device are systematically studied before and after applying different

high constant DC bias conditions with the aim of controlling charge accumulation in the 

dielectric when a high actuation voltage is applied. We found that both polarity and

magnitude of charge accumulation in silicon nitride depend on the biasing direction. Charge 

injection from the semiconductor to the silicon nitride always dominates over charge

injection from the Al electrode to the silicon nitride. Negative charge accumulation happens 

in silicon nitride when the Al electrode is positively biased, and positive charge accumulation

occurs in silicon nitride when the Al electrode is negatively biased. The positive charge 

accumulation is much bigger than the negative charge accumulation under the same 

magnitude of stress voltage. Furthermore, the experimental results also show that the charge 

injection level exponentially increases with the applied voltage across the silicon nitride. 
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which will change as the bias polarity changes. The charge injection model developed in this 

paper may provide us with a possibility to control or change charge injection behaviors in the 

dielectric by changing the parameters related to charge injection in the model.

6.1.2Charge relaxation in silicon nitride

For both positive and negative dc bias polarities, fast and slow discharge stages were 

clearly observed in the early and late charge relaxation process, respectively.The discharge 

ratio was found to depend on both the polarity and magnitude of the bias voltage,the 

discharge ratio decreases as the dc bias voltage increases, and moreover, negative bias 

voltage will lead to a very high hole injection level but very low discharge ratio, while 

positive bias voltage will lead to a very low electron injection level but very high discharge 

ratio in MIS device. It was further found that the hole relaxation reaches the steady state

faster than the electron relaxation.

To explain the observed results we proposed a generalized charge relaxation model, in 

which charge escape from the traps close to the Si/Si3N4 interface plays an important role.

From the charge relaxation model, we attribute the fast discharge rate in the early relaxation 

process to the back tunneling of the trapped carriers near the Si/Si3N4

The behaviors of charge injection in the silicon oxide are also systematically studied in an 

Al/SiO

as well as the thermal 

excitation from shallow traps levels, while attribute the slow discharge rate to the random 

thermal excitation in the later stage.It is concluded that the low discharge ratio of hole 

relaxation comes from the limited number of shallow traps in silicon nitride. We further 

suppose that the discharge ratio increases with the stress voltage comes from the different 

trapping mechanisms, because the traps close to the interface will have a low probability to 

capture charges under high stress voltage.

6.2 Charge accumulation in silicon oxide

2/n-Si metal–insulator–semiconductor (MIS) device. Charge injection behaviors in 

SiO2 are different from that in Si3N4 films, the polarity of the bias voltage have little

influence on the sign and magnitude of charge injection in silicon oxide. Independent on dc

bias polarity, electrons injection in SiO2 always dominates the charge accumulation either the 
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metal electrode is positively biased or negatively biased. The charge accumulation under 

negative bias voltage is only slightly different from that under positive bias voltage with same

magnitude. Furthermore, the experiment results also show that charge injection level 

exponentially increases with the applied voltage in SiO2. Taking into account the roles of

electrons and holes in the process of charge injection, the observed experiment results can be 

simply explained by the tunneling barrier at each contact interface. The investigation of this 

work will enable us to have a better understanding of the effects on dielectric charging in 

Capacitive RF-MEMS switches.

6.3 Charge accumulation in multi-layer dielectrics

In order to develop a new solution to the problem of the irreversible stiction of capacitive 

RF MEMS switch attributed to the dielectric charging, we investigate how charge 

accumulates in multi- and single-layer dielectric structures by using metal-insulator-

semiconductor (MIS) capacitor structure. Two multi-dielectric-layers are structured, which 

are SiO2+Si3N4 and SiO2+Si3N4+SiO2 stack films. Meanwhile, Si3N4 single-layer dielectric 

structure is also fabricated for comparison. We found that the polarity of charge accumulated 

in the dielectric is influenced by the dielectric structure. When the metal electrode is 

positively biased, negative charge accumulates in the single- and triple-layer devices while 

positive charge accumulates in the double-layer devices. When positive bias voltage is 

applied to the metal electrode of MNOS device, the large potential barriers of oxide layer will

suppress the electron injection from silicon substrate, thus, the probability of electron

injection thus will be greatly reduced, as a result, the electron injection level becomes lower 

thanthe level of hole injection, hole injection dominates the charge injection in the MNOS

device. Furthermore, the experiment results also show that the lowest charge accumulation 

can be achieved using double-layer dielectric structure even though the fastest relaxation 

process takes place in triple–layer dielectric structure, the lowest charge level in MNOS 

device must be attributed to the narrowed difference between electron and hole injection

probabilities in comparison with MNS and MONOS devices. This paper proposes a new 

approach to the problem of the irreversible stiction of capacitive radio frequency (RF)

microelectromechanical (MEMS) switch attributed to the dielectric charging.
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The behaviors of charge accumulation in double-layer dielectric can be strongly affected by 

the SiO

6.4 Charge accumulation in double-layer dielectric

2 thickness between the Si3N4 and the Si substrate. When the metal electrode is 

positively biased, net negative charge accumulates in the thin-oxide Si3N4/SiO2 dielectric 

structure while net positive charge accumulates in the thick-oxide Si3N4/SiO2 dielectric 

structure. To explain the observed experimental results, we basically proposed a balance of 

holes and electrons from a modified Fowler-Nordheim limited charge injection model in 

combination with the interface trap assisted tunneling. It is demonstrated that the sign of the 

charge accumulated in the MNOS devices can be determined by the SiO2 thickness between 

the Si3N4 and the Si substrate. For the thin-oxide MNOS structure, we attributed the negative 

charge accumulation to the enhancement of electron injection from silicon substrate, which is

caused by Si3N4/SiO2 interface trap assisted tunnelling due to lower distance from this

interfaceto the electron injection interface. Conversely, the positive charge accumulation in 

the thick-oxide MNOS structure was assumed to come from the suppression of electron 

injection, because the oxide is too thick to allow the interface trap assisted tunnelling. The 

effects of SiO2 thickness on charge accumulation in Si3N4/SiO2 stacked dielectric may make 

it possible to balance the number of injected charges from the top and bottom electrodes by 

optimizing the thickness ratio of Si3N4 to SiO2.

1) Independent of the deposition methods (here LPCVD and PECVD), positive charges were 

observed in all samples before the electrical stress, e.g., annealed samples (annealing after 

deposition), implanted samples (ion implantation and then annealing after the deposition).

6.5 Charge accumulation in ion implanted dielectrics

In order to accelerate charge relaxation process for low charge accumulation, we 

investigated the charging and discharging behaviors in ion implanted dielectric. The 

experiments showed that:

2) Compared with the annealed sample, both P and B ion implantation processes add more  

positive charges into the implanted samples which were deposited by LPCVD, on the 

contrary, the implantation processes reduce some positive charges in the implanted samples



Chapter 6  Conclusions

75

which were deposited by PECVD.

3) Electrical stress with DC bias (80V, 30 seconds) injects negative charges in all samples used 

in this work. After remove of the bias voltage, some of the injected charges in the dielectric 

layer will disappear quickly, and some of the injected charges will remain in the dielectric 

layer for a relative long period. Thus, both fast and slow states exist in the samples.   

4) At the same electrical stress, charges are much more easily injected into the samples 

deposited by PECVD than by LPCVD. We find that the discharging process happened much

quicker in the PECVD samples than in the LPCVD samples.

6.6 Charge accumulation in SiO2 films containing silicon nanocrystals

The relaxation processes of both positive and negative charges are discovered in SiO2 films 

containing silicon nanocrystals under positive applied voltage. The negative charge injection 

is dominant under positive voltage stress, however, the relaxation process of negative charges 

injected in the dielectric is much faster than positive charges, as a result, the accumulation of 

net positive charge in the dielectric is observed at last. We confirmed that the charging and 

discharging characteristic can be modified by embedding nonocrystals into the dielectric, it is 

anticipated that the charge trapping and their relaxation in the dielectric of capacitive MEMS 

switch can be controlled by embedding nanocrystals into the dielectric in terms of materials 

(Ge, Si or other), density, size of nanocrystals and their distribution.
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In this thesis, we employed a metal-insulator-semiconductor (MIS) capacitor structure to 

investigate the dielectric charging and discharging for high reliable capacitive rf MEMS 

switches. The dielectric charging and discharging kinetics were qualitatively and 

quantitatively characterized by comparing the measured capacitance-voltage (C-V) curveson 

MIS structure before and after charge injection. Finally, we come up with the possible 

approach to migrate the charge accumulation in the dielectric.

The experiments of dielectric charging and discharging characteristic shows that for a 

certain dielectric, the effects of positive and negative voltage stress on dielectric charging are 

different, therefore, the stress polarity will lead to more serious charge accumulation should 

be avoid. Furthermore, if we use bipolar waveform stress, we should determine the 

magnitude of positive and negative voltage stress (peak voltage), the actuation waveform 

should be asymmetrical in magnitude and stress time for eliminating the charge accumulation 

in switch dielectric.

The experimental results of charging and discharging prosperities in ion implanted 

dielectric also offer useful information for understanding the doping effecton the dielectric

charging and discharging behaviors. Ion implantation and deposition methods will play a

very important role to cause or delay the stiction failure of capacitive RF MEMS switch due 

to the charge accumulation in the dielectric layer. In order to improve the lifetime and 

reliability of the RF MEMS switch, we should determine the best impurity ions to create fast 

states to accelerate trapped charge to be detrapped, meanwhile, the case of the impurity which 

will form trap centers in the dielectric should be avoid. 

From the experimental results and analysis of multiple dielectric layers, the behaviors of 

charge accumulation in double-layer dielectric can be strongly affected by the SiO2 thickness 

between the Si3N4 and the Si substrate. When the metal electrode is positively biased, net 

negative charge accumulates in the thin-oxide Si3N4/SiO2 dielectric structure while net 

positive charge accumulates in the thick-oxide Si3N4/SiO2 dielectric structure. The effects of 

SiO2 thickness on charge accumulation in Si3N4/SiO2 stacked dielectric may make it possible 
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to balance the number of injected charges from the top and bottom electrodes by optimizing 

the thickness ratio of Si3N4 to SiO2.
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