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1. Introduction 

1.1 Cell migration 

In 1863, Rudolf Virchow published his observations about motile cells, isolated from 

lymph fluid and cartilage tissue, and he already suggested that this is of importance 

for the concept of life processes (1). Today, we call this particular process cell 

migration and it has indeed an important role in several processes. Cell migration 

occurs due to different reasons, e.g. the need to feed in the amoeba Dictyostelium 

discoideum (2), but also during embryogenesis, organogenesis and regeneration due 

to the generation of new structures, layers or organs (reviewed in (3)). The most 

active cells are, however, cells of the immune system, because of the necessity to be 

able to respond to pathogenic invaders and to keep the organism under 

immunological surveillance.  

Depending on the cell type and the context, human cells exhibit different modes of 

cell migration. They can move collectively in a group, as it is the case in 

Dictyostelium discoideum aggregates or in Drosophila melanogaster oogenesis 

during border cell migration. Types of single cell migration can be amoeboid or 

mesenchymal. Amoeboid movement is characterized by a round or ellipsoid 

morphology and cells lack mature focal adhesions and stress fibers (reviewed in (4)). 

Movement is accomplished by rapid cycles of expansion and contraction, thereby 

enabling a primitive, but fast movement (reviewed in (5)). In contrast, mesenchymal 

migration shows an elongated shape, with cells having high levels of attachment and 

cytoskeletal contractibility. The movement is fibroblast-like and involves cell-matrix 

interactions including proteolytic degradation of the matrix, as well as cell polarity 

(reviewed in (5,6)). Mesenchymal migrating cells execute the complete migration 

cycle (described below), resulting in relatively slower migration velocities. 

Different external stimuli can be the driving force for migration. Directed migration, 

which is triggered by a gradient of dissolved chemicals, is called chemotaxis. If the 

chemical is surface-attached, it is termed haptotaxis. Other modes are known, like 

phototaxis, galvanotaxis or geotaxis. If a confluent monolayer of cells in culture is 
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scratched, cells will move into the denuded area (mechanotaxis). This mimics to 

some extent migration of cells in wound healing and is therefore called a wound 

healing assay (7,8).   

1.1.1 The Migration Cycle 

Mesenchymal cell migration is a chemically and physically integrated molecular 

process, where the components work together as a dynamic and integrated system 

(reviewed in (9)). In general, it can be understood as a cyclic process (10) (Figure 1). 

The different steps are briefly presented below. 

 

Figure 1. Schematic illustration of the migration cycle of a fibroblast. Protrusions form 
at the cell front, the leading edge, where actin filaments are organized in a branched 
network. Early adhesions, called focal complexes, form beneath. They mature into focal 
adhesions, which are connected to actin bundles. Golgi and microtubule-organizing center 
(MTOC) are in front of the nucleus, contributing to cell polarity. Focal adhesions are 
disassembled at the trailing edge, enabling the rear to retract. 



13 

 

Protrusion 

The word protrusion originates from the Latin word “protrusio” and means pushing 

forward or away. During cell migration, membrane extensions form in the direction 

of migration, at the leading edge, which are then called protrusions. First, the plasma 

membrane expands, then, an underlying supporting backbone is formed and finally, 

contacts with the substratum are made. Membrane protrusion is driven by local 

polarized actin filaments and their polymerization (11). The organization of the 

filaments determinates the type of protrusion. With a branched actin network, 

forming a broad, flat and fan-like protrusion, the extensions are called lamellipodia, 

whereas when the polymerized actin filaments are organized into long parallel 

bundles, establishing a spike-like protrusion, they are termed filopodia. Filopodia act 

rather as mechanosensory devices to explore the environment or are involved in 

long-range cell-cell communications, while lamellipodia provide traction-surfaces 

and a basis for directional migration (reviewed in (12)). The Arp2/3 complexes and 

the Rho family GTPases play important roles (13), branching actin filaments into 

networks (14) and defining the type of protrusions, respectively. Microinjection of 

Rac induces dramatic lamellar ruffling, while injection of Cdc42 leads to filopodia-

formation (15-17). In contrast, RhoA is degraded at protrusion sites through the 

activity of Smurf1, thereby preventing its signaling during dynamic membrane 

movements (18). However, a recent finding suggests a correlation of Rho activation 

with leading edge dynamics, which is restricted to the first 2 μm, whereas Cdc42 and 

Rac are activated behind (19).  

Furthermore, several actin-binding proteins, like profilin, cortactin or the Ena/VASP 

proteins (reviewed in (10)), are involved in regulating the rate and organization of 

actin polymerization. 

Polarity 

For a cell to be able to move, it must be polarized, meaning that processes at the 

front and at the back must be distinct and lead to an asymmetric cell. Different 

positive feedback loops, including Rho GTPases, PI3Ks, integrins and microtubules 

contribute in establishing and maintaining cell polarity in response to stimuli.  
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One of the Rho GTPases, Cdc42, is active at the front of a migrating cell (20). Cdc42 

influences polarity in several ways, e.g. by restricting where the leading edge forms 

and stabilizing it (21) or by localizing the microtubule-organizing centre (MTOC) 

and the Golgi apparatus in front of the nucleus (22-29). Local Cdc42 activation is 

accomplished by different feedback loops, among them a downstream target, PAK1 

(30) or integrins (31). Another Rho GTPase, Rac, is also activated at the front (21). 

As for Cdc42 activity, several feedback loops help to define where Rac is active: 

microtubule polymerization activates Rac, which then stabilizes microtubules 

(25,32); a positive feedback loop with integrins was found (33-35), where also 

PtdIns(3,4,5)P3 might be involved (36); Rac recruits and activates PI3K class I, 

which then produces PtdIns(3,4,5)P3, which acts on Rac-GEFs (21,37,38). The latter 

feedback loop plays a special role in the accumulation of PtdIns(3,4,5)P3 upon 

chemoattractant stimulation. The pathways of Rac and PI3K overlap, which is 

important for their intracellular functions and regulation of the responses (39). 

However, how Rac stimulates PI3K is not clear. The third best-characterized 

member of the Rho GTPase family, Rho, on the other hand, is active at the side and 

rear of the stimulated cell. It induces the formation of stress fibers, contributes to 

actomyosin contractility and microtubule stabilization (23,40,41).  

The phosphoinositides PtdIns(3,4,5)P3 and PtdIns(4,5)P2 do not only act as gradient 

amplifiers in the feedback loops, they also contribute to asymmetry themselves. The 

accumulated PI3Ks produce PtdIns(3,4,5)P3 at the cell front while the PTEN 

phosphatases act at the side and the rear to remove it (42,43).  

Furthermore, the organization of the cytoskeleton is involved in polarity. As 

described above, actin is organized at the cell front as a network, whereas it is more 

filamentous and bundled in the rear (44). Myosin II has been shown to be important 

as well, especially in defining the rear (45). 
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Integrins and Adhesion 

A cell does not only need to be polarized, it also must form adhesions at the leading 

edge and disassemble them at the trailing edge. Adhesion sites act as “molecular 

clutches”, controlling the mechanical coupling between actin and the substrate and 

thus enabling the traction of the cell body and the retraction of the tail (reviewed in 

(46)). A large family of heterodimeric transmembrane receptors, the integrins, is the 

key family of migration-promoting receptors (reviewed in (47,48)). They connect the 

extracellular matrix (ECM) to the actin cytoskeleton, thereby acting as the “feet” of a 

migrating cell (10). Ligands of integrins are components of the ECM, for example 

fibronectin, vitronectin, collagen or laminin, or receptors of other cells, such as 

ICAMs (inter-cellular adhesion molecules) (reviewed in (49,50)). Characteristic for 

integrins is their activation through “inside-out” or “outside-in” signaling (reviewed 

in (51)). Activation can either be achieved by different cytoplasmic signals, resulting 

in a conformational change and thus an increase in ECM ligand affinity of the 

integrin ectodomain (inside-out). But integrins are also activated when they bind to 

an ECM ligand, leading to conformational changes and integrin clustering, resulting 

in intracellular changes (outside-in) (52). In both signaling processes, talin and also 

mechanical force play central roles. Integrins themselves are not catalytic active, but 

they transmit signals through direct or indirect binding of several interaction 

partners, e.g. talin, -actinin, paxillin, FAK, vinculin, small GTPases and 

phospholipids (52). 

Adhesion structures differ in their size, shape, localization and dynamics. Rapidly 

migrating cells such as leukocytes have rather submicroscopic adhesions, consisting 

of only a few integrin clusters. Small adhesions, the focal complexes, are also highly 

dynamic and occur at the leading edge, providing attachment to the ECM at the 

lamellipodium. Large integrin clusters are called focal adhesions and are matured 

focal complexes which did not disassemble. They are more stable and show a slower 

turnover of the adhesions, thus being typical for nonmigratory or slowly moving 

cells (10,46). Focal adhesions contain high levels of vinculin, talin, paxillin, FAK 

and integrins (reviewed in (53)). 
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Fibrillar adhesions, on the other hand, are elongated, centrally located structures and 

can arise from focal adhesions. They are only associated with thin actin cables and 

contain high levels of tensin, a capping protein negatively regulating actin assembly. 

Other unique structures are podosomes and invadopodia, rich in actin and matrix 

degradation properties. They are involved in physiological, but also pathological 

invasion processes and are formed by monocytic, endothelial and smooth muscle 

cells, but also carcinoma cells (reviewed in (54,55)). 

However, not only adhesion structures towards the substrate are important. Cell-cell 

adhesions and subsequent initiated signaling is required to maintain the multicellular 

structure. Key components are cadherins and immunoglobulin-like cell-adhesion 

molecules (Ig-CAMs). Their involvement in cancer has also been shown, as 

reviewed by Cavallaro and Christofori (56). 

Adhesion Disassembly and Detachment 

Adhesion disassembly occurs both at the cell front and the back. At the front, the 

base of protrusions, adhesion structures must disassemble as new adhesions form 

near the leading edge (57). This process is termed adhesion turnover. It has been 

shown that FAK, Src, paxillin and ERK play a role in adhesion turnover at the cell 

front and that this is an important process for migration (58). Microtubules are 

involved, too, by bringing effectors in proximity with adhesion complexes and 

thereby promoting disassembly and remodeling (59). Several publications contribute 

to the model that the kinases FAK and Src play a role in the formation of a complex, 

which activates Rac and ERK locally, thereby leading to adhesion turnover at the 

leading edge (10,58,60,61). 

Detachment at the rear of a cell is necessary for rapid migration. It is accomplished 

by adhesion disassembly as well as by mechanical contributions from cytoskeletal 

contraction and tension (9). The tension of strongly attached adhesions is sufficient 

to break integrin-actin cytoskeleton complexes, enabling migration while leaving 

membrane remnants behind (62-64). The disassembly is regulated by different 
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mechanisms. Myosin II, activated by its kinase MLCK, has been shown to localize at 

the rear and play a role (65,66). Proteolytic cleavage of proteins that link integrins to 

the actin cytoskeleton is mediated by the calcium-activated protease calpain 

(reviewed in (67,68)). Furthermore, endocytosis of integrins contributes to 

disassembly (69,70). 

Together with the coordinated contraction of the actin cytoskeleton, the disassembly 

of adhesion sites promotes the retraction of the rear of a cell.  

Contractile Forces and Traction 

A migrating cell must at least generate two types of force: the protrusive force at the 

front and the contractile force, allowing the cell body to move forward. As described 

above, protrusion depends mainly on actin polymerization, whereas myosin-based 

motors provide contraction. These forces are not the only factors determining 

migration speed. Furthermore, the speed of a cell depends on the strength of its 

attachment. It is defined by the density of adhesive ligands, the density of adhesion 

receptors and finally, the affinity of the receptors for the ligands (10). 

At adhesion sites, physical signals from outside, such as stretch and flow, are 

converted into intracellular (chemical) signaling, thereby creating a biological 

response. Since the stiffness and flexibility of the ECM are highly alterable, a cell 

needs to tightly regulate the forces created by the actomyosin system. Regulation of 

the myosin motor activity by the myosin light chain and heavy chain, and the 

microfilaments are some of the regulators of actomyosin contractility (reviewed in 

(71)). If defects in tension homeostasis occur, this can lead to tumorigenesis 

(described below).  

1.1.2 Implications in Pathobiology 

Alterations due to defects in the cell migration machinery are caused by either an 

impaired or an increased cell migration. In development, impaired migration leads to 

abnormalities in brain and heart, whereas in regeneration and in the immune system, 

wound healing and immune responses are affected. In contrast, an increase in cellular 
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motility of cells of the immune system can lead to infiltrations of improper sites, 

resulting in chronic inflammatory syndromes, such as arthritis and multiple sclerosis. 

Another negative aspect of increased cell migration is the development of 

atherosclerosis, where migration of vascular smooth muscle cells contributes to 

vessel thickening.  

The most prominent pathological event of migration is occurring during cancer 

metastasis. Tumors resemble a wound that does not heal (72), because cells are able 

to hijack normal processes (73) and use them to spread into distant areas of a body. 

Metastasis 

Metastasis, the spread of malignant cells from the primary tumor to distant organs, is 

schematized as a multistep process (reviewed in (74-76)). First, tumor cells from the 

primary tumor must invade the surrounding tissue, then enter the bloodstream 

(intravasation) (77) or the lymphatics, survive the circulation until they arrest, 

followed by escaping the bloodstream (extravasation) and finally, colonize at distant 

organ site(s). At the new site, with a different microenvironment, the cells must 

initiate and maintain growth, and develop new blood vessels (angiogenesis). All of 

these steps must successfully be completed to lead to a metastatic disease. Studies 

have shown that especially the early steps are very efficient, whereas later steps are 

more inefficient (74). The infiltration of cancer cells into distant organs does not 

immediately lead to metastatic disease (reviewed in (78)). The time between primary 

tumor diagnosis and the colonization to detectable metastases can account up to 

decades and is called latency. Disseminated cells, unable to colonize, are termed 

dormant. A whole tumor mass can also be dormant, characterized by a balanced state 

of proliferation and apoptosis (reviewed in (78)).  

Another aspect of metastasis is the organ-specific pattern of spread. Already in 1889, 

Stephen Paget published the “seed and soil” hypothesis (79). He documented a non-

random pattern of metastasis and hypothesized that certain tumor cells (“seed”) have 

a special affinity for certain organs (“soil”). Forty years later, James Ewing proposed 
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that organ-specific metastasis occurs due to mechanical forces and circulatory 

patterns (80-82). Later, detailed analyses (83,84) showed that both seed-soil 

compatibility and mechanical factors contribute to these observations. Today, focus 

is also on the tumor microenvironment, which is not a passive bystander, but rather 

an active participant (85).  

Invasion 

Normally, cells in epithelial sheets are tightly bound to their neighbors and the 

underlying basement membrane. This immobilization is accomplished by adherens 

junctions, tight junctions, desmosomes and hemi-desmosomes. During tumor 

progression, cancer cells escape these associations and the first step is to dissolve the 

basement membrane. Then, they invade tumor-surrounding stroma and migrate to 

blood vessels or lymphatics (reviewed in (86)). Different modes of cancer cell 

migration are known, they move either as single cells or collectively. This depends 

on cell-specific as well as on microenvironment mechanisms (reviewed in (87)).  

Single-cell movement is observed when cell-cell-adhesions are absent, and cells 

invade either in a mesenchymal or in an amoeboid manner.  

Mesenchymal invasion is characterized by elongated cells, attaching to and pulling 

on the matrix, which show high levels of cell-matrix adhesions, Rac activity and 

proteolysis (88-90).  

In contrast, amoeboid invasion, where cells protrude through spaces by changing 

shape and pushing off the matrix, is independent of the above mentioned 

requirements and the matrix is left intact behind. Cells require high actomyosin 

contractibility and Rho activation to squeeze and pull (87,88,91-94).  

Collective cancer cell invasion is the most frequent type of invasion. Cells express 

cell-cell junctions and adhesion receptors and can therefore move in a multicellular 

unit (reviewed in (56)). Depending on the morphology, the cell-cell adhesions and 

the supracellular coupling of cell-cell signaling, collective invasion can vary. Cell 

groups can form small strands, bigger masses, where some cells do not have contact 

to the ECM, but also luminal structures (95). Within these broad masses, the 
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structure of the front varies, too. Depending on the invaded tissue, the front must 

combine proteolytic, protrusive and expanding functions. The underlying 

mechanisms still remain elusive, but collective invasion has initiated a debate on 

EMT (Epithelial-to-Mesenchymal Transition). EMT, a signaling program which 

weakens the cell-cell adhesions, thus enabling a higher motility of the cells, is 

thought to be an important factor during invasion. Tumors with intact adhesions and 

circulating grouped tumor cells demonstrate that metastasis can also occur without 

EMT. However, the possibility of EMT at the front of a moving cell mass may not be 

excluded (discussed in (87)). 

Additionally, cancer cells are able to switch between the different types of migration 

(reviewed in (6,89,94,96)), making them more flexible. This has especially an impact 

on therapy resistance, e.g. when protease inhibitors are applied.  

During invasion, the adherence to the ECM is mediated for example through 

integrins, whereas the cell-cell adhesions are mainly formed through cadherins. 

Recruitment of proteases, as mentioned above, is not only important to degrade the 

matrix, but also to liberate embedded growth factors and chemokines, and may 

activate cell surface proteins. Besides that, cancer cell invasion can also be 

ameliorated by the recruitment of inflammatory cells, which then produce matrix-

degrading enzymes (reviewed in (85)).  

Remodeling of the actin cytoskeleton plays of course, also an important role in 

cancer cell migration. Factors for actin polymerization have been found to be 

implicated in cancer (reviewed in (97,98)). As described above, phosphoinositides 

are involved in cell migration, and they clearly have a role in cancer progression, too 

(reviewed in (99,100)). Exemplary, the presently well studied phosphatase PTEN 

was found to be a tumor suppressor (reviewed in (101,102)) and mutations and 

amplifications of PI3Ks were identified (103-105), both being brought into cancer 

therapy as potential therapeutic candidates. 
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1.2 Phosphoinositides 

Phosphoinositides (PIPs) are phosphorylated derivates of phosphatidylinositol 

(PtdIns) and belong to the group of glycerophospholipids. They consist of a glycerol-

backbone, which is esterified by two fatty acids and a phosphate group substituted 

with an inositol polar head group, facing the cytosolic surface of membranes. The 

fatty acids form the lipid tail, which is mostly membrane-bound. Among the lipids, 

phosphoinositides together with their precursor phosphatidylinositol account for less 

than 10% of the total cellular phospholipids in eukaryotic membranes. However, 

they play a central role in a number of cellular processes; regulating membrane 

trafficking, cell signaling and cytoskeleton dynamics. They can act as components of 

membranes and can even define them.  

 

Figure 2. Overview phosphoinositides. To the left (yellow), phosphatidylinositol. 
Phosphorylated derivates of phosphatidylinositol are called phosphoinositides. They can 
either be monophosphorylated (purple), bisphosphorylated (green) or trisphosphorylated 
(blue). The glycerol-backbone esterified with two fatty acids is illustrated by red lines. The 
P indicates a phosphate group. 
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PtdIns is synthesized primarily in the endoplasmic reticulum, delivered then to other 

membranes either by vesicular transport or via cytosolic transfer proteins (reviewed 

in (106)). The inositol headgroup includes five stereochemically unique hydroxyls, 

where only three can reversibly be phosphorylated: the D3-, D4- and D5-position. 

Hence, this results in seven distinct, but interconvertible phosphoinositides. They can 

either be monophosphorylated, bis- or even trisphosphorylated (Figure 2). 

Phosphorylation is achieved by different kinases, whereas phosphatases hydrolyze 

the phosphate group. These phosphorylation/dephosphorylation cycles are highly 

regulated and build up a special spatio-temporal distribution of the phosphoinositides 

throughout a cell and its organelles (Figure 3). Therefore, the actual steady-state 

concentration of a phosphoinositide varies throughout the organelles. At the same 

time, it also defines them and their function. 

 

Figure 3. Localization of phosphoinositides (107-110). Phosphoinositides are distributed 
differently throughout the organelles of a cell. PtdIns(4,5)P2 is highly enriched at the plasma 
membrane. Other phosphoinositides of the membrane are PtdIns(3,4,5)P3 (at the leading 
edge), PtdIns3P, PtdIns4P, PtdIns5P and PtdIns(3,4)P2. PtdIns3P and PtdIns(3,5)P2 are 
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enriched at vesicles of the endocytic pathway. PtdIns3P is also enriched on phagosomes and 
autophagosomes. The major phosphoinositide at the Golgi is PtdIns4P. PtdIns5P is also 
found at the ER. Nuclear phosphoinositides are PtdIns5P and PtdIns(4,5)P2. Auto-PH, 
autophagosome; EE, early endosome; ER, endoplasmic reticulum; LE, late endosome; LY, 
lysosome; MVB, multivesicular bodies; PH, phagosomes; RE, recycling endosome; SV, 
secretory vesicle. 

Together with the high turnover through the activity of kinases and phosphatases, the 

different subcellular distributions make the phosphoinositides to optimal signaling 

mediators.  

1.2.1 Binding domains 

In addition to the well-studied role of phosphoinositides in generating second 

messengers, the regulation of different signaling effects can also be achieved by 

binding to cytosolic proteins or cytosolic domains of proteins. This occurs via special 

binding domains. Binding to these domains regulates the localization of the target 

protein and can activate it through conformational changes or through its recruitment 

to special membranes/organelles. At present, there are 15 modules considered to be 

phosphoinositide-binding domains, and the most common are briefly introduced 

here. 

PH domains 

This protein module of around 100 amino acids was the first domain found to 

associate with phosphoinositides (111-113). The name reflects the sequence 

homology to the protein pleckstrin, which contains two PH domains. PH domains 

can be very different in their primary structure, but the tertiary structure is similar: 

they have a 7-stranded -sandwich structure, where the loop between the first two -

strands functions as a “platform” for the interaction with the phosphoinositide 

(reviewed in (114)). Depending on the protein, PH domains bind PtdIns(4,5)P2, 

PtdIns(3,4,5)P3 or PtdIns(3,4)P2. More than 200 human proteins containing a PH 

domain are known, with a varying specificity and affinity among them (reviewed in 

(115)). 
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FYVE domains 

These domains are zinc finger modules and contain about 60-70 amino acids. The 

abbreviation evolved from the four proteins in which it has initially been found: 

Fab1p (formation of aploid and binucleate cells), YOTB, Vac1p (vacuolar 

segregation protein) and EEA1 (early endosome antigen 1) (116). The domain 

consists of two double-stranded antiparallel -sheets and a small -helix, which are 

held together by two Zn2+ ions (117). Even though zinc fingers are known to function 

in DNA-binding, the FYVE domain has to be distinguished because of the presence 

of other motifs, which form the actual binding site for PtdIns3P. The conserved 

sequences WxxD, RR/KHHCR and RVC form a highly positively charged binding 

site (118), thus enabling a high specificity and affinity for PtdIns3P. The 26 known 

FYVE-domain containing proteins have diverse functions and one major is the 

regulation of endocytic trafficking and fusion of endosomal membranes with 

transport vesicles and other organelles (119,120). Even though the FYVE domain is 

believed to be specific for only PtdIns3P (121-124), there is evidence that some 

atypical FYVE domains can bind the structural similar PtdIns5P as well (125) or 

even PtdIns(4,5)P2, PtdIns(3,4)P2 and PtdIns(3,4,5)P3 (126). 

PX domains 

First identified in two phagocyte NADPH oxidase (phox) subunits, p40phox and 

p47phox (127), this domain of 130 amino acids has been found in more than 30 human 

proteins. Like the PH domains, despite little sequence similarity, the PX domains 

show a highly conserved 3D structure consisting of a three-stranded -sheet, packed 

against a helical subdomain composed of three or four -helices (128). The preferred 

phosphoinositide is PtdIns3P, although there are examples in mammals where 

PtdIns(3,4)P2 or PtdIns(4,5)P2 are bound by PX domains. The binding of PtdIns3P 

is, like in the case of the FYVE domain, based on headgroup binding as well as on 

electrostatic attraction via hydrogen bonds (129). PX domains can also bind to other 

modules, such as the SH3 domain (130), which may contribute to phosphoinositide 

binding and function. 
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ENTH domains 

The Epsin N-terminal homology domain is a region of approximately 150 amino 

acids (131) and is forming a well defined pocket to bind PtdIns(4,5)P2. Proteins 

containing an ENTH domain are involved in endocytosis and regulation of 

cytoskeletal organization.  

GRAM domains 

This domain is found in Glucosyltransferases, Rab-like GTPase activators and 

Myotubularins, where the acronym comes from (132). It consists of 70 amino acids 

and can bind or contribute to binding to PtdIns(3,5)P2 (133,134). There has also been 

reported a binding to PtdIns4P (135). Interestingly, the crystal structure of one of the 

myotubularin phosphatases, MTMR2, revealed that the GRAM domain in it forms -

strands, which are part of a PH domain (136). Hence, the GRAM domain in the 

myotubularin family is referred to as the PH-GRAM domain and became a hallmark 

of this family. It was shown that the PH-GRAM domain enables a positive feedback 

loop through binding to the allosteric activator PtdIns5P (137,138).  

1.2.2 Phosphoinositide-metabolizing Enzymes 

As mentioned above, the spatio-temporal distribution of phosphoinositides plays a 

very important role. Highly specific kinases and phosphatases with a balanced 

activity are necessary, since the phosphoinositides are highly interconvertible. These 

enzymes are distributed unequally in the cell, so that each organelle is equipped with 

different enzymes (reviewed in (107)). They are divided into different classes 

according to their catalytic reactions and substrate specificity. 

Kinases 

3-Kinases 

Phosphoinositide 3-Kinases (PI3Ks) phosphorylate the inositol ring of three species 

of substrates at the D3-position. The 3-Kinases are divided into three classes, IA and 

B, II and III, showing different selective substrate specificity and subunit 

organization (reviewed in (139-142)).  
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The class I enzymes use PtdIns(4,5)P2 as a substrate, thereby generating 

PtdIns(3,4,5)P3. In mammals, they are present in all cell types and were shown to 

localize at the plasma membrane and in the nucleus (reviewed in (107)). 

The PI3Ks class II prefer the substrates PtdIns4P and PtdIns, producing 

PtdIns(3,4)P2 and PtdIns3P, respectively (143,144). The three mammal isoforms 

PI3K C2 ,  and  are monomeric and have different localizations, such as the Golgi 

complex, the plasma membrane or endosomes. 

Finally, the class III, which consists of the sole catalytic subunit VPS34 (vacuolar 

protein sorting), is specific for the phosphorylation of PtdIns only (145,146). 

Therefore, the correct name for this enzyme should be phosphatidylinositol 3-kinase, 

as discussed in (147). VPS34 localizes to endosomal membranes and can form 

distinct protein complexes which then define VPS34´s biological role. Known 

functions in mammals relate to the regulation of endocytosis, in autophagy, mTOR 

signaling and phagocytosis.  

Phosphatidylinositol 4-Kinases 

These kinases are specific for the phosphorylation at the D4-position of the inositol 

ring, thereby producing PtdIns4P. Two classes of phosphatidylinositol 4-Kinases 

exist, the type II PI4Ks, PI4KII  and PI4KII , and the type III PI4Ks, PI4KIII  and 

PI4KIII . All four isoforms use only PtdIns as substrate, but they differ in their 

localization (reviewed in (148)). 

Phosphatidylinositol phosphate kinases 

According to their substrate specificity, this family is subdivided into three classes. 

The type I phosphatidylinositol phosphate kinases are responsible for the bulk of 

PtdIns(4,5)P2 production. They use PtdIns4P as a substrate and phosphorylate it at 

the D5-position, hence called phosphatidylinositol phosphate 5-Kinases (PIP5Ks). 

Three isoforms exist ( ,  and ), not being redundant, with different localizations 

and different mechanisms of regulation (reviewed in (149)). Furthermore, it has been 
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suggested that they can also phosphorylate other phosphoinositides in vitro (150-

152).  

The second subclass, phosphatidylinositol phosphate 4-Kinases (PIP4Ks), uses 

PtdIns5P as a major and PtdIns3P as a minor substrate (153,154). Three isoforms 

with different localization are known, PI5P4K , PI5P4K  and PI5P4K , with 

striking differences in activity, PI5K4  having the highest (reviewed in (155)). Since 

it is unlikely that PIP4Ks contribute largely to the production of PtdIns(4,5)P2, their 

main function is suggested to be the regulation of PtdIns5P levels in the cell (155-

157). 

The third class of these kinases produces PtdIns(3,5)P2, using PtdIns3P as a substrate 

(158) and thus being 5-Kinases. They are found in almost all eukaryotic cells (159). 

The mammalian enzyme is PIKfyve, a homolog of the yeast Fab1 PtdIns3P 5-kinase, 

which localizes to early and late endosomes and lysosomes (160-164). The 

production of PtdIns5P through PIKfyve has been suggested (165-169), but is 

controversial and could be indirectly via PtdIns(3,5)P2 (170). Knockdown or knock 

out of the gene, or inhibition of the kinase activity results in enlarged vacuoles 

(169,171-174), suggesting a role in membrane and protein recycling. Other roles, 

like in Glucose transport, are reviewed by Shisheva (175,176). 

Phosphatases 

In mammalian cells, 35 phosphoinositide phosphatases have been identified (177). 

These phosphatases can be classified in different ways, e.g. by dividing them into 

two superfamilies according to their catalytic mechanisms (protein tyrosine 

phosphatase superfamily and inositide polyphosphate phosphatases) or by 

subdividing them on the basis of the position of the removed phosphate group. By 

giving a brief overview, the latter classification is used here. 

Phosphoinositide 3-phosphate phosphatases 

The probably most famous 3-phosphate phosphatase is PTEN, originally identified 

as a candidate tumor suppressor gene (178-181) and later found to be mutated in a 
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large number of cancers. It dephosphorylates PtdIns3P, PtdIns(3,4)P2 and 

PtdIns(3,4,5)P3, with the latter one being the primary substrate in vivo (180,182).  

Another group are the myotubularins, a family of currently 14 members (reviewed in 

(183-186). The first member, MTM1, was found to be mutated in myotubular 

myopathy, leading then to the name for the whole family. Substrate preferences are 

restricted to PtdIns3P and PtdIns(3,5)P2, resulting in the production of PtdIns and 

PtdIns5P (136,137,187-199). Interestingly, nearly half of the family members are 

inactive, but play however an important role: via heterodimerization they regulate the 

active members (reviewed in (183,186)).  

Phosphoinositide 4-phosphate phosphatases 

These phosphatases preferentially hydrolyze the D4-position phosphate of a target 

phosphoinositide. The family contains the two inactive members P-REX1 and P-

REX2 (200-202), which are thought to be critical for regulation, similar to inactive 

members of the myotubularin family. 

Active members can be subdivided into phosphatases specific for PtdIns(3,4)P2 or 

PtdIns(4,5)P2. Both groups contain each 2 mammalian isozymes (203), but 

interestingly, the group of PtdIns(4,5)P2 4-phosphatases includes also bacterial ones, 

e.g. IpgD (Invasion plasmid gene D). IpgD is directly injected by the pathogen 

Shigella flexneri, which is responsible for causing bacillary dysentery in humans. In 

consequence, host cell membrane PtdIns(4,5)P2 is dephosphorylated at the cell 

membrane, leading to membrane blebbing and actin filament remodeling (204-206).  

Phosphoinositide 5-phosphate phosphatases 

This relatively large family consists of 10 mammalian and 4 yeast enzymes. They 

remove the D5-position phosphate of polyphosphate phosphoinositides and inositol 

phosphates. The SHIP family, Synaptojanins as well as the INPP (inositol 

polyphosphate phosphatase) family belong to this group, to name some examples 

(reviewed in (177)). 
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Sac domain phosphoinositide phosphatases 

The Sac phosphatase domain, which was first identified in the yeast suppressor of 

actin (ySac1) (207), is characterizing this group. This domain exhibits a broad 

specificity, thus enabling the enzymes to hydrolyze PtdIns3P, PtdIns4P, PtdIns5P 

and even PtdIns(3,5)P2 (208). A subgroup is known, which utilizes in addition 

PtdIns(4,5)P2.  

1.2.3 Phosphoinositides 

Phosphatidylinositol monophosphates  

PtdIns3P is generated through the action of class II and class III PI3Ks. It can be 

further metabolized to PtdIns, PtdIns(3,4)P2 and PtdIns(3,5)P2 by kinases and 

phosphatases, as described above. PtdIns3P is highly enriched in early endosomes, 

intralumenal vesicles of MVEs and yeast vacuoles (209), but has recently been found 

also to localize at smooth endoplasmic reticulum and/or the Golgi (210) and the 

midbody (211). During autophagosome formation, PtdIns3P is highly enriched at 

compartments forming the autophagosome (212-214). The recruitment of 

intracellular proteins via PtdIns3P-binding domains, e.g. the FYVE or PX domains, 

is tightly linked to its functions. Roles of PtdIns3P are in endocytic membrane 

traffic, exocytosis and autophagy. Local pools of PtdIns3P control autophagy 

initiation and the regulation of autophagosome size (215). Furthermore, it has been 

suggested that this lipid can also act as an intracellular second messenger (reviewed 

in (216,217)). 

PtdIns4P is the most abundant phosphoinositide in mammalian cells with about 10% 

of total phosphoinositides (218). The so called “canonical pathway” describes this 

lipid mainly as a precursor for PtdIns(4,5)P2, however, it has its own direct effects  

(reviewed in (219)). Prevalent localization is at the Golgi complex, where it is crucial 

for function (reviewed in (157,218,220,221)). Interestingly, 2 studies showed that it 

was most abundant in the plasma membrane (210,222), where it fulfills its own 

functions (223).  
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PtdIns5P is the last member of the phosphoinositide family to be discovered (153). It 

was found to be constitutively present in many cell types, and to localize at the 

plasma membrane and at the smooth endoplasmic reticulum and/or Golgi (210). 

Several extracellular stimuli lead to an increase in PtdIns5P levels (154,166,206,224-

233). A nuclear role in regulating apoptosis has been proposed (225). The main route 

of PtdIns5P production involves the dephosphorylation of another phosphoinositide, 

PtdIns(3,5)P2 (170). A direct phosphorylation of PtdIns through PIKfyve has been 

suggested (165), but is controversial. It has been shown that 4-phosphatases are able 

to generate PtdIns5P, by using PtdIns(4,5)P2 as a substrate (203,206,229). PtdIns5P 

can be further phosphorylated by the type II PIPKs to PtdIns(4,5)P2 (153). 

Phosphatidylinositol bisphosphates  

PtdIns(3,4)P2 is a minor phosphoinositide. This lipid has mainly been considered to 

be the precursor of PtdIns(3,4,5)P3. However, through interaction with PH and PX 

domains it can also act independently (reviewed in (157)). 

The entire pool of PtdIns(3,5)P2 is synthesized through phosphorylation of its 

precursor, PtdIns3P, by the class III PIPkinase PIKfyve in mammals (170,234), or by 

Fab1 in yeast and plants (171,235). It is predominantly found on late endosomes and 

major roles are in endo-lysosome function, membrane trafficking, autophagy and 

Glucose transport (236-241). It can be further metabolized by the myotubularin 

phosphatases to PtdIns5P or by 5-phosphatases to PtdIns3P. The dephosphorylation 

through the myotubularins is very important for PtdIns5P synthesis, since it has been 

shown that most of the PtdIns5P pool is generated directly from PtdIns(3,5)P2 (170). 

PtdIns(4,5)P2 is enriched on the inner surface of the plasma membrane. The major 

route of its synthesis occurs via phosphorylation of PtdIns4P by PIP5Kinases. A 

minor pool is generated through the action of PIP4Kinases, which phosphorylate 

PtdIns5P. Both 5- and 4-phosphatases can act on PtdIns(4,5)P2, thus generating 

PtdIns4P or PtdIns5P, respectively. Initially, PtdIns(4,5)P2 was known for its role as 

precursor to the second messengers diacylglycerol (DAG), inositol (1,4,5)-
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trisphosphate and PtdIns(3,4,5)P3 (reviewed in (242)). But since then, PtdIns(4,5)P2 

became to an important regulator of the actin cytoskeleton (99,243,244), being 

involved in cell shape regulation, motility and cytokinesis. Other functions are in 

endo- and exocytosis (reviewed in (106)).  

Phosphatidylinositol trisphosphate 

Barely detectable in resting cells (245), the interest in PtdIns(3,4,5)P3 has highly 

increased since the discovery of its implications in cancer. Today, it is part of one of 

the most studied pathways in signal transduction. The main pool derives from 

PtdIns(4,5)P2 through phosphorylation by the class I PI3Ks. In yeast, the possibility 

of generating it from PtdIns(3,4)P2 has been suggested, and it might be an alternative 

route in mammals, too (reviewed in (157)). The tumor suppressor PTEN is the major 

phosphatase acting on PtdIns(3,4,5)P3, dephosphorylating it on the D3 position, 

thereby leading to PtdIns(4,5)P2 accumulation. As its precursor, it is found at the 

plasma membrane, but mainly at the leading edge (38,246-249). Briefly, roles of 

PtdIns(3,4,5)P3 are in insulin signaling, cell proliferation, survival and growth; and 

in cell migration (reviewed in (157)). 
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1.3 Intracellular signaling during cell migration 

During cell movement, a chemoattractant signal is detected by binding of 

chemokines or growth factors to specific cell membrane receptors. Chemokines, a 

large family of small secreted peptides, bind to G-protein-coupled receptors 

(GPCRs), whereas growth factors stimulate migration through the action of receptor 

tyrosine kinases (RTKs) (75). Signal transduction pathways are then activated to 

regulate the cytoskeleton and motility, but also invasion during cancer cell migration. 

GPCR stimulation results in the dissociation of a heterotrimeric G-protein into its 

subunits, which then initiate downstream signaling events. RTK activation, on the 

other hand, leads to receptor dimerization and subsequently to transphosphorylation 

of specific tyrosine residues (reviewed in (250-252)). This stabilizes catalytic activity 

and creates binding sites for adaptor and signaling proteins, such as SH2-domain 

containing proteins (reviewed in (253)). The binding of other phosphotyrosine-

binding domain containing proteins leads to the activation of PI3Ks, which have, as 

discussed below, important functions in phosphoinositide regulation, which are in 

turn, key regulators of cell migration. Adaptor and scaffold proteins, lacking 

enzymatic activity, may act to improve assembly of signaling proteins to the RTKs. 

For example, interactions of Src with growth factor receptors and FAK with 

(catalytic inactive) integrins stimulate the formation of a FAK-Src complex, which 

then can trigger invasion (reviewed in (254-256)).  

A well-known growth factor involved in motility is the hepatocyte growth factor 

(HGF), which binds to the c-met growth factor RTK. HGF is also called scatter 

factor, because dysregulation can lead to invasion (reviewed in (257,258)).  

Downregulation of the signaling can be achieved in different ways. Receptor 

dephosphorylation by protein tyrosine phosphatases, as well as downregulation 

through endocytosis and degradation are mechanism to modulate and terminate 

signaling (252).  
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There is increasing evidence that RTKs are also regulated due to their membrane 

distribution (reviewed in (259)). Locally high levels of RTKs can promote the 

formation of dimers or clusters even in the absence of their ligand, offering a 

“primed” state for ligand-activation. Surface abundance of the RTKs could be 

controlled through different membrane domains or the actin cytoskeleton. This 

compartimentalization can also have an impact on receptor trafficking and 

endocytosis.  

1.3.1 Fibroblast Growth Factor Receptors 

One of the subfamilies of the RTKs are the fibroblast growth factor receptors 

(FGFRs). This family consists of 4 structurally similar receptors, encoded as FGFR1-

4 (reviewed in (260)). A prototypical FGFR is composed of three extracellular 

immunoglobulin (Ig)-like domains (D1-D3), an acid box (within the D1-D2 linker), a 

single-pass transmembrane domain and a cytoplasmic tyrosine kinase domain 

(Figure 4). It has been shown that only the D2 and the D3 Ig-like domains, including 

their linker, participate in ligand binding, whereas the D1 and the acid box regulate 

receptor autoinhibition (261).  

Ligands of the FGFRs are the fibroblast growth factors (FGFs) (described below), 

discovered at first as mitogens for cultured fibroblasts (262). To date, 18 FGFs are 

known which bind with high affinity to their FGFRs, but also with low affinity to 

heparin sulfate proteoglycans (HSPG). In contrast to many other growth factors, 

FGFs are not able to induce receptor dimerization themselves. However, through 

binding to the low-affinity receptors, a dimeric 2:2:2 ternary complex, including 

FGF, FGFR and HSPG, is formed (263). Receptor dimerization enables then, in turn, 

transphosphorylation of tyrosine residues in the activation loop in the kinase domain. 

This autophosphorylation occurs in three stages (264,265). At the first stage, 

tyrosine653 in the activation loop is phosphorylated. The inactive or low activity state 

of the tyrosine kinase is thereby turned into an active state by removing a “molecular 

brake” of hydrogen bonds at the kinase hinge region (266). The kinase activity is 

increased 50- to 100-fold. During the second stage, another tyrosine, tyrosine583 at 
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the kinase insert region is autophosphorylated, followed by tyrosine463 in the 

juxtamembrane region, tyrosine766 in the C-terminal tail and tyrosine585 in the kinase 

insert region. The third stage phosphorylation takes again place in the activation 

loop, on the other tyrosine (tyrosine654), leading to an additional 10-fold stimulation. 

A seventh tyrosine is phosphorylated (tyrosine730), but with much lower 

stoichiometry, presumably due to its location at the end of an -helix (267). Thus, 

autophosphorylation in FGFR is a strictly ordered reaction. It was found that this 

sequential phosphorylation is kinetically controlled and limited by the rate of the 

phosphoryl transfer (265). Altogether, the activation of the receptors leads to the 

initiation of different signaling cascades and biological responses (reviewed in 

(260,268-271)). 

 

Figure 4. Illustration of the FGFR structure (activated). Prototypical FGFRs consist of 
three extracellular immunoglobulin (Ig)-like domains, an acid box, a single-pass 
transmembrane domain and an intracellular split tyrosine kinase domain. Ligand binding 
occurs between the second and the third Ig-like domain. The FGF-FGFR complex 
comprises two receptor molecules, two FGFs and two heparin sulfate proteoglycans 
(HSPG), which is known as the symmetric model. Complex formation leads to receptor 
autophosphorylation and activation. Major autophosphorylation sites are indicated (P). 
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Cellular signaling via FGFRs 

Among the signaling proteins, which are activated by a phosphorylated FGFR, are 

phospholipase C  (PLC ) and FRS2 (FGFR substrate 2) (272-274) (Figure 5).  

The C-terminal part of the receptor comprises a tyrosine residue (Tyrosine766 in 

FGFR1), which serves as a binding site for PLC  via its SH2 domain (272). 

Subsequently, PLC  is phosphorylated and activated, thus leading to PtdIns(4,5)P2 

hydrolysis. The second messengers diacylglycerol and Inositol(1,4,5)trisphosphate 

are generated, which activate protein kinase C (PKC) via released calcium storages. 

 

Figure 5. Signal transduction network downstream of FGFRs. Schematic overview of 
the three main pathways: PI3K-Akt, RAS-RAF-MAPK and PLC . Negative signaling and 
negative feedback loop are indicated in red. FRS2, FGFR substrate 2; SEF, similar 
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expression to fgf genes; GRB2, growth factor receptor-bound protein 2; GAB1, GRB2-
associated binding protein 1; PI3K, phosphoinositide 3-kinase; Sos, son of sevenless; MEK, 
MAP/ERK kinase; ERK, extracellular-signal-regulated kinase;  MKP3, MAPK phosphatase 
3; PLC , phospholipase C ; PIP2, PtdIns(4,5)P2; IP3, inositol(1,4,5)trisphosphate; DAG, 
diacylglycerol; PKC, protein kinase C. 

The two members of the FRS2 family, FRS2  and FRS2 , contain phosphotyrosine 

binding (PTB) domains, which bind to the juxtamembrane domain of FGFRs 

(273,274). Interestingly, FRS2 is constitutively, independent of ligand stimulation 

and tyrosine phosphorylation, associated with FGFR. It becomes phosphorylated 

upon FGF-stimulation and serves then itself as docking site for other signaling 

complexes, which activate Ras/MAPK and PI3K/Akt signaling pathways (reviewed 

in (270)).   

Another interesting aspect is the different routing of the receptors upon binding of 

distinct ligands. For example, depending on which FGF is bound to FGFR2, it is 

either degraded or recycled to prolong signaling (275). 

Deactivation mechanisms 

Mechanisms for signal attenuation of the FGFRs to prevent excessive intracellular 

signaling are not well understood at present. Two mechanisms have been shown to 

terminate the signals generated by activated FGFRs. Deactivation can be achieved on 

one hand through degradation of the receptor, via endocytosis and subsequent 

lysosomal degradation (276). On the other hand, negative regulators and negative 

feedback loops act to downregulate, such as ERKs, MAPK phosphatase 3, Sprouty 

proteins or Sef (similar expression to fgf genes) (271,277-279) (Figure 5). 

1.3.2 Fibroblast Growth Factors 

Fibroblast growth factors (FGFs) build a large family of total 22 structurally related 

polypeptides. They induce mitogenic, chemotactic and angiogenic activity in cells, 

which have mesodermal and neuroectodermal origin (reviewed in (280)). Most FGFs 

bind to specific receptor tyrosine kinase receptors, the FGFRs, with high affinity and 
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with lower affinity to HSPGs. Four of the growth factors do not bind to FGFRs and 

rather act intracellularly (FGF11-14; FGF homologous factors, FHFs), indicating a 

remarkable adaptability during evolution (reviewed in (281)). Depending on the 

status of a cell, different FGFRs and HSPGs are expressed on the surface, and FGF 

signaling can be modulated by the specific HSPGs. They can amplify, but also 

inhibit receptor activation. Furthermore, the presence of other growth factors can 

influence the effects of FGF signaling.  

Most of the FGFs are secreted through the classical polypeptide secretion pathway, 

however, three family members, FGF1, FGF2 and FGF9 lack classical leader 

sequences (reviewed in (269)). These three growth factors use a non-classical 

pathway and evade the ER and Golgi, by a mechanism which is still elusive. After 

secretion, most FGFs are stored in the ECM through binding to HSPGs. Thereby, the 

growth factors are protected from proteolysis and a biologic reservoir is created. 

They can then either act short-range directly on target cells or are released due to 

ECM digestion.  

As already mentioned, FGF signaling is important in embryonic development 

(reviewed in (282)) and wound healing processes. Some of the growth factors, 

FGF1-5 and FGF7, have angiogenic potential (269). FGFs might also play a role in 

apoptosis although this is not clear. Nuclear roles of FGFs have been identified, thus 

demonstrating downstream effects different from those initiated by the receptors 

(reviewed in (283-285)). Below, the role of FGF signaling in carcinogenesis will be 

described.  

1.3.3 Involvement of FGFR signaling in Cancer 

Since FGFRs are important regulators of fundamental processes, like organogenesis, 

tissue repair, angiogenesis and inflammation, it is not surprising that imbalances can 

cause severe diseases like cancer. There, increased FGFR signaling can be 

oncogenic, but might also be in some cases tumor suppressing.  

Several mechanisms are known to increase the signaling of the FGFR. Upregulated 

expression of the receptor due to amplification or aberrant transcriptional regulation 
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can lead to overactivation (reviewed in (286-288)). Alterations in FGFR expression 

are discussed whether being a “driver” or a “passenger” in carcinogenesis. One of the 

most amplified chromosomal regions in breast cancer, 8p11-12, contains the FGFR1 

gene. This region is amplified in approximately 10% of human breast cancers and 

associated with poor prognosis for the patients. Since this region is gene rich, and 

FGFR1 seems to be not always overexpressed even though amplified, its 

contribution is not clear. However, in vitro studies indicate an involvement of 

FGFR1 in breast cancer progression and FGFR1 might be a therapeutic target. 

Human prostate cancer patients showed overexpressed FGFR1 and in vitro studies in 

mice revealed that FGFR1 activation is inducing EMT. However, not only FGFR1 is 

known to be associated with carcinogenesis. Overexpression of FGFR2 has also been 

associated with breast cancer, due to constitutive activation or an altered binding of 

transcription factors. FGFR3 has been found overexpressed in Multiple Myelomas 

and could be a therapeutic drug target.  

Another mechanism which leads to altered signaling is the switch between 

alternatively spliced isoforms (reviewed in (286-288)). The shift to a more oncogenic 

isoform and/or modified ligand binding capacity can lead to excessive signaling of 

the receptors.  

Furthermore, different mutations of all four receptors in various cancer types have 

been found (reviewed in (286-288)). The mutations can lead to more active, or even 

to constitutively active receptors. Enhanced ligand binding capabilities have been 

described, as well as modified ligand specificities (mutations in the extracellular 

domain). Both constitutive dimerization and disruption of the autoinhibitory 

mechanisms are accountable for constitutive activation. Autophosphorylation 

promoting mutations were found in the case of FGFR4 in rhabdomyosarcoma. 

Interestingly, FGF signaling was found to be one the most commonly mutated 

systems amongst 1000 somatic mutations in a human cancer genome screen (289). 

Chromosomal translocations resulting in a fusion protein can also be potentially 

oncogenic. Examples from haematological malignancies show constitutive 
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dimerization and consequently constitutive activation after fusion of FGFR with 

various intracellular partners.  

Not only alterations at the receptor level influence carcinogenesis. Upregulated 

expression or increased release of the ligands, FGFs, resulting in increased receptor 

activation, can contribute to cancer development (reviewed in (286-288)). Increased 

expression of several FGFs has been identified in a number of cancers, such as 

melanoma, liver, colon and lung carcinomas. Not only the tumor cells themselves, 

but also the surrounding tissue has been found to overexpress FGFs which then can 

transform epithelial tissue. Another way of increasing the local levels of the ligand is 

via release of the reservoirs in the extracellular matrix. Proteases and heparanases 

secreted by tumor cells can enzymatically cleave the ECM and release ligands. 

In addition to increased signaling, impaired termination could play a role in 

carcinogenesis (reviewed in (286-288)). The decrease of a regulatory protein, Sef, 

leads to a weak negative-feedback loop action and thereby sustained receptor 

signaling in e.g. prostate cancer. FGFR mutations resulting in an escape into 

recycling pathways or causing the loss of an endocytic signal sequence, thereby 

leading to inefficient degradation and signal termination are also known in breast, 

ovary, prostate or bladder cancer.  

As already mentioned, FGFR has been suggested to act as a tumor suppressor gene 

(reviewed in (286-288)). FGFR2 seems to be downregulated in some cancers, 

leading to the assumption that it also functions as tumor suppressor. However, the 

detailed mechanisms are still unclear and might be context-dependent.  
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2. Aims of the studies 

This work aimed to gain new insights into mechanisms of normal cell motility and 

cancer cell migration. Furthermore, we wanted to elucidate negative-feedback 

mechanisms on activated growth factor receptors. All the studies could provide new 

potential drug targets for cancer therapy. 

PAPER I: Identification of novel effectors in cell migration 

 The main aim of this project was to identify new molecules involved in 

cell migration. Starting point was the observation that depletion of the 

PI3K class III catalytic subunit VPS34 resulted in decreased motility. 

Subsequently, we screened for PX- and FYVE-domain containing 

proteins and wanted to validate and closely investigate possible hits. 

PAPER II: Evaluation of PIKfyve and MTMR3 in cancer cell migration and 

invasion 

 In this follow-up study of paper I we wanted to investigate, if PIKfyve 

and MTMR3 are involved in cancer cell migration. We also intended to 

study their invasive potential. To improve and simplify the manual 

tracking, we sought to develop new software to track cell migration in 

phase contrast settings. 

PAPER III: Investigation of negative regulation mechanisms in FGFR 

signaling 

 Since deactivation mechanisms of FGF receptors are not well 

understood, we wanted to find out how the signaling of an activated 

receptor can be downregulated. In combination with that, we wanted to 

elucidate the role of the C-terminal tail of the receptor, since its 

function is not clear. 
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3. Summary of the included papers 

PAPER I: Production of phosphatidylinositol 5-phosphate via PIKfyve and 

MTMR3 regulates cell migration 

The depletion of the catalytic subunit VPS34 of the class III PI3K (PI3KIII) resulted 

in decreased cell velocity of fibroblasts in a wound healing scratch assay. 

Subsequently, an siRNA cell migration screen for effectors of PtdIns3P, the product 

of PI3KIII, was performed.  Possible candidates were validated by different methods, 

both in vitro and in vivo. In vitro studies included time-lapse live-cell imaging, 

rescue experiments and perfusion assays with an inhibitor. Border cell migration in 

Drosophila egg chambers was performed in order to investigate migration in vivo. 

MTMR3 and PIKfyve were among the positive validated hits and interestingly, both 

enzymes are involved in the biogenesis of a phosphoinositide, PtdIns5P (Figure 6). 

Because cells have to be polarized in order to be able to migrate, we then monitored 

Golgi positioning and actin fiber orientation/organization upon depletion of 

MTMR3. Indeed, knockdown of MTMR3 caused impaired cell polarization and 

impaired actin remodeling, whereas integrin trafficking and focal adhesions were not 

affected. Since PtdIns5P is the product of MTMR3 and its level was elevated upon 

migratory stimulation, we tested if PtdIns5P could directly influence cell migration. 

Both exogenously and endogenously added PtdIns5P was able to stimulate cell 

migration upon MTMR3 or PIKfyve knockdown.  

Thus, this study identified a novel role for a phosphoinositide pathway consisting of 

PI3KIII, PIKfyve and MTMR3, together with its product PtdIns5P in cell migration. 
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Figure 6. Schematic representation of pathways for PtdIns5P synthesis. First, PtdIns3P 
is produced by phosphorylation of PtdIns through PI3K class III with its catalytic subunit 
VPS34. Then, PtdIns3P is further phosphorylated by PIKfyve resulting in the generation of 
PtdIns(3,5)P2. Through the following dephosphorylation by MTMR3, PtdIns5P is finally 
generated. PtdIns5P can also be produced by the bacterial phosphatase IpgD, which is 
indicated to the right. 

PAPER II: Involvement of PIKfyve and MTMR3 in cancer cell migration and 

invasion 

In paper I we showed that both PIKfyve and MTMR3 are involved in migration of 

human normal fibroblasts. Here, we wanted to test if they are also important for 

cancer cell migration. First, we found that gene and protein expression of both 

enzymes are relatively unchanged in cancerous tissues and cell lines compared to 

healthy tissues / normal cell lines. We continued our studies on three different cancer 

cell lines of different origin. Overexpression of MTMR3 did not change cell 

migration velocity, whereas the depletion of both PIKfyve and MTMR3 resulted in 

decreased migration. The fact that this was concordant in all three cell lines indicates 

that PIKfyve and MTMR3 are also involved in cancer cell migration. Toxic effects 

upon siRNA treatment were ruled out using different assays. Our time-lapse imaging 

is performed in phase contrast settings to reduce phototoxicity as much as possible. 

Manual tracking had to be applied earlier, but to improve and simplify cell tracking 

under these settings, we developed a new computer software, called TrackCell. In an 

invasion assay we could furthermore show that invasion into matrigel was inhibited 
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upon PIKfyve or MTMR3 knockdown, revealing their role in also 3D migration. 

Importantly, since both are enzymes, they provide possible drug targets for 

metastasis therapy. 

PAPER III: ERK-mediated phosphorylation of FGF receptor 1 on Ser777 

confers negative feedback on FGF signaling 

FGF receptors are activated by 18 different fibroblast growth factors (FGFs). These 

activation mechanisms are well-studied, in contrast to the deactivation mechanisms. 

In this paper, we identified a novel regulatory mechanism to attenuate receptor 

signaling (Figure 7). First, it was tested whether a serine within a consensus 

sequence in the receptor could be phosphorylated in vitro by the MAP kinases 

(MAPKs) ERK1 and ERK2. Here we could show by several assays, that the receptor 

is phosphorylated directly and exclusively at serine777 by ERK1 and ERK2. 

Concordantly, ERK1 was identified to bind directly to FGFR1. Blocking MAPK 

activity by inhibitors or dominant-negative mutants abolished this serine 

phosphorylation and led to augmented and extended tyrosine phosphorylation of 

FGFR1. Similar effects were seen in FGFR1 serine777 mutants. Substituting serine777 

with alanine (S777A) resulted in increased FGFR1 signaling, whereas substitution 

with aspartate (S777D) caused decreased signaling. Thus, the phosphorylation status 

of serine777 influences FGF signaling. We tested effects on several biological 

responses, such as proliferation and cell migration. We found that cells stable 

transfected with an FGFR1 S777D mutant migrated slower than wildtype receptor 

transfected cells, whereas an S777A mutation resulted in increased cell migration. 

FGF-independent MAPK activation also induces serine777 phosphorylation, which 

provides an additional protection against excessive intracellular signaling. Thus, a 

novel mechanism, regulating FGFR signaling through both FGF-dependent and -

independent MAPK activation, was uncovered.  
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Figure 7. Schematic representation of negative feedback signaling on FGFR1. 
Following FGF1-induced FGFR activation, FRS2 is activated and further activates the 
MAPK pathway, including ERKs. ERKs can also be activated by other stimuli, e.g. serum 
or EGF. Activated ERKs facilitate negative feedback signaling via phosphorylation of 
FRS2, but also via direct phosphorylation of FGFR1 on serine777. This in turn results in 
reduced tyrosine phosphorylation of the FGFR1 and attenuates FGFR1 signaling. Negative 
feedback loops are indicated in red. Phosphorylation and phosphorylation sites are indicated 
(P). FRS2, FGFR substrate 2; GRB2, growth factor receptor-bound protein 2; MEK, 
MAP/ERK kinase; ERK, extracellular-signal-regulated kinase; EGF, epidermal growth 
factor. 
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4. Discussion 

The work presented in this thesis gave new insights into the regulation of cell 

migration. We proposed a novel role for the phosphoinositide PtdIns5P in cell 

migration. We have shown that the enzymes PIKfyve and MTMR3 are both involved 

in normal and cancer cell migration as well as in cancer cell invasion. Furthermore, 

we identified a novel negative feedback mechanism in FGF signaling, which also has 

an impact on cell migration. Since migration plays a critical role in development of 

metastasis, our results contribute to improve the understanding of the metastatic 

process. 

4.1 Hits of the cell migration screen – MTMR3 and PIKfyve 

Two of the best hits from the cell migration screen in paper I were MTMR3 and 

PIKfyve. Interestingly, both are involved in phosphoinositide metabolism, more 

precisely, they are the enzymes proposed to be important for the biogenesis of 

PtdIns5P (166,170,190). This intrigued us to validate these hits further and indeed 

they turned out to be involved in normal and cancer cell migration.  

4.1.1 MTMR3 

MTMR3 is a catalytically active member of the myotubularin family. It is a 3-

phosphatase specific for PtdIn3P and PtdIns(3,5)P2 (190), thereby generating PtdIns 

and PtdIns5P, respectively. Although it contains a FYVE domain, its localization is 

largely cytosolic, but is also found in a reticular staining pattern (suggested to be on 

the ER) and on membranous structures (190,290). Interestingly, the FYVE domain is 

atypical, since MTMR3 neither localizes to early endosomes, nor binds the FYVE 

domain its typical ligand PtdIns3P (138). Another domain of MTMR3, the PH-

GRAM domain, has been shown to be required for enzymatic activity (138), and is 

the binding site for PtdIns5P, which then creates a positive feedback-loop (137). 

Even though MTMR3 is ubiquitously expressed (290), there are not many roles 

known to date. One important and well-studied function is connected to autophagy-

initiation. Briefly, autophagy is induced by nutrient deprivation. In a multi-step 
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process, cytoplasm and organelles are sequestered, followed by their degradation. 

This leads to the recycling of cellular molecules and promotes therefore cell survival. 

A local increase of PtdIns3P on membranes plays a crucial role, produced by a 

special PI3K complex. Recently, it was reported that MTMR3 is involved in 

autophagosome formation and maintenance (215). MTMR3 suppresses autophagy 

under nutrient-rich conditions, by dephosphorylating PtdIns3P. This demonstrates a 

direct involvement of MTMR3 in autophagy regulation (291-293).  

It raised the question, whether the role of MTMR3 in autophagy is connected to its 

role in migration we found in paper I and II. Since we could not detect any changes 

in PtdIns3P levels (paper I), these processes seem to be independent. According to 

our data, the dephosphorylation of PtdIns3P does then only interfere with autophagy, 

but not with migration. Probably, depending on its localization, MTMR3 possesses 

different substrate specificity and thus, functions.  

The role of MTMR3 in cell migration would then be to accumulate PtdIns5P, 

facilitated via the positive feedback-loop. This could in turn recruit PtdIns5P binding 

effector proteins, which act on cell migration.  

The myotubularins 

Further investigation of the myotubularin family could also provide additional 

insight. MTMR3 is not the only active member; there are 7 more, where 5 of them 

are implicated in PtdIns5P production (reviewed in (186)). Therefore, other active 

members could potentially also be involved and combined knockdowns might reduce 

migration even more. Our screen in paper I was restricted to PX- and FYVE-domain 

containing proteins and aimed initially to find new PtdIns3P effectors. The 

involvement of other myotubularins is therefore not excluded. We could only see 

maximal 50% reduction in velocity, indicating that other molecules could be 

implicated in this process. Though MTMR4 was part of our screen, it did not appear 

to be a hit. However, we cannot exclude that this is due to poor knockdown 
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efficiency. It would still be a good candidate, since it is, besides MTMR3 itself, the 

only dimerization partner of MTMR3 (198). 

4.1.2 PIKfyve 

The evolutionary conserved protein PIKfyve is a phosphoinositide kinase, which is 

generating PtdIns(3,5)P2 (165,170). The suggested production of PtdIns5P is 

controversial and might be indirect via dephosphorylation of PIKfyve-produced 

PtdIns(3,5)P2 (discussed below). PIKfyve harbors, as the name indicates, a FYVE 

domain which binds to its substrate PtdIns3P (294). Colocalization of PIKfyve 

appears to be with markers of early and late endosomes as well as lysosomes (160-

164). Since disruption of its function causes enlarged vacuoles (171,173,174,295), 

main functions of PIKfyve are thought to be in maintaining cell morphology and 

endomembrane homeostasis (161,236) (and reviewed in (176)). PIKfyve is 

implicated in endosome trafficking to lysosomes, shown by e.g. a failure of fusion of 

MVBs with lysosomes after acute PIKfyve inhibition (296-299). Thereby, tyrosine 

kinase receptor downregulation is blocked, and also autophagy is affected due to a 

decreased rate of fusion with lysosomes. The regulation of early-endosome-to-TGN 

retrograde trafficking has also been shown to be one of the functions of PIKfyve 

(164).  

 

The follow-up studies in paper II showed that both enzymes are involved in cancer 

cell migration and also in invasion. The machinery controlled by MTMR3 and 

PIKfyve is thus not only maintaining normal cell migration, it also contributes to 

migratory and invasive phenotypes of cancer cells. It is known, that cancer cells 

“hijack” normal cellular functions to use them during carcinogenesis. MTMR3 and 

PIKfyve seem to belong to these basic mechanisms which are utilized by cancer 

cells. Subsequently, we also propose that the end product of the phosphoinositide 

pathway, consisting of VPS34, PIKfyve and MTMR3, PtdIns5P itself plays a role in 

cell migration. 
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4.2 Production of PtdIns5P 

Since PtdIns5P was discovered in 1997 (153), the debate about its biosynthesis is 

highly controversial. The same group suggested one year later, that the class I PIP 

kinase phosphorylates PtdIns in vitro and produces thereby PtdIns5P (150). Shortly 

after, another group had proof that it was actually the class III PIP kinase PIKfyve, 

which is specifically phosphorylating PtdIns at the D-5 position (160,165,166). 

Evidence, that PtdIns5P might not be generated through direct phosphorylation on 

the D-5 position of PtdIns came in 2001, when it was discovered that one 

myotubularin member, MTMR3, dephosphorylates PtdIns(3,5)P2 specifically on the 

D-3 position. This provided for the first time a clearly defined route for PtdIns5P 

synthesis (190). Other following studies revealed that this is a characteristic of all the 

active myotubularin members (183-186,195). Later it was also shown that PtdIns5P 

could be produced via dephosphorylation of PtdIns(4,5)P2 (203,206,229).  

Since then, it is a controversial issue, whether PIKfyve is able to directly produce 

PtdIns5P or not (175,176,300-302). To date it is not clear, if the effect of the kinase 

might be indirect, since PIKfyve produces the intermediate PtdIns(3,5)P2. 

Myotubularins might associate tightly with PIKfyve in vivo and could interfere with 

research on PIKfyve. Furthermore, assays showing a direct PtdIns5P production in 

vitro might reflect catalytic artifacts. Tolias et al. (150), for example, used the 

bacterial PIP5K, whereas Sbrissa et al. worked with an overexpressed recombinant 

PIKfyve (165,166). An in vivo functional study of PIKfyve actually showed that it 

does not prefer PtdIns as a substrate, even when PtdIns3P was only present at 

contaminant-like concentrations (158). Recently, a gene-trap mouse study showed 

that PIKfyve is indeed responsible for nearly all the PtdInd5P, but via generating the 

entire PtdIns(3,5)P2 pool (170). This demonstrated clearly in vivo, that PIKfyve is 

involved in PtdIns5P production, but as discussed earlier by different groups, only 

indirectly through its catalytic activity towards PtdIns3P. Interestingly, an article 

identified PI3K class II and its product PtdIns3P as important players in cell 

migration (303). Whether this effect is mediated through PtdIns(3,5)P2 and 
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subsequently PtdIns5P, or if PtdIns3P itself recruits effectors in this case, remains 

open. 

On the other hand, PtdIns5P levels are much higher than PtdIns(3,5)P2 levels, 

questioning the role of the latter one as a major precursor. Some studies were made 

in yeast where PtdIns5P has not been detected (discussed in (176)). A recent study 

with the PIKfyve inhibitor YM201636 supported the direct PtdIns5P production 

through PIKfyve (295). However, the observed effects on PtdIns5P levels could be 

indirect, since a constant PtdIns(3,5)P2 level is not a sufficient and satisfactory 

argument.  

Unfortunately, our own studies do not help to clarify the controversy. On one hand, 

PtdIns5P levels are slightly more reduced upon PIKfyve knockdown, than in 

MTMR3 knockdown cells (paper I). It is probably depending on the lipid turnover, 

but one might have expected to see PtdIns5P levels most reduced in MTMR3 

knockdown. On the other hand, we currently don´t know the redundancy in the 

myotubularin family and their interference. Another interesting aspect of paper I 

was, that we could rescue the PIKfyve knockdown phenotype with either 

exogenously added PtdIns(3,5)P2 or PtdIns5P. This supports the suggestion, that 

PtdIns5P is generated through dephosphorylation of PtdIns(3,5)P2. 

Altogether, most of the evidence so far indicates that the majority of PtdIns5P is 

produced via dephosphorylation of PtdIns(3,5)P2. However, we cannot exclude that a 

minor pool is generated by PIKfyve directly. Whether it is produced through 

dephosphorylation of PtdIns(3,5)P2 or if a minor contribution is made from direct 

phosphorylation of PtdIns, does nevertheless not affect our conclusion that PtdIns5P 

is involved in cell migration. 

4.3 A novel role for the phospholipid PtdIns5P 

In paper I we propose a novel role for PtdIns5P in cell migration. Specifically, the 

production of PtdIns5P is important for normal cell migration in vitro and in vivo and 

for cancer cell migration in vitro. Endogenously or exogenously added PtdIns5P is 

able to stimulate migration. Furthermore, elevated levels of this phosphoinositide 
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were found upon stimulation of migration, whereas no other detectable 

phosphoinositide was found to be increased.  

The specific roles of PtdIns5P are not completely clear yet. Due to its low abundance 

in cells (1-2% of PtdIns4P levels) and the lack of specific probes, it is still difficult to 

investigate its functions. Attempts to create probes were made with the PH-GRAM 

domain of MTMR3 (138) and the ING2 PHD domain (225). By constructing a 

tandem repeat PH-GRAM domain, it was found that PtdIns5P is indeed the preferred 

binding partner, but, unfortunately, not the sole one. The domain showed also 

binding activity for the other monophosphate phosphoinositides and to a lesser extent 

for PtdIns(3,5)P2. In case of ING2, a three tandem repeat of the PHD domain 

(PHDX3) was used and found to bind PtdIns5P, but again, it was not completely 

specific. Probably due to the structural similarity of PHD to FYVE domains, 

PtdIns3P functions as a minor ligand, too. It can therefore not be excluded that 

localizations or phenotypes caused by the use of these probes are not exclusively due 

to their binding to PtdIns5P.  

An alternative is offered by a novel and sensitive HPLC-based approach, which 

raised recently the possibility to detect cellular PtdIns5P directly via subcellular 

fractionation (210). Applying this assay, PtdIns5P was found mainly in the plasma 

membrane, but it was also enriched in the SER (smooth ER) and the Golgi. 

Interesting and new findings about the localization of several other phosphoinositides 

were made possible, e.g. that PtdIns4P was most abundant in the plasma membrane 

or that the majority of PtdIns3P was detected in the SER and Golgi. We used this 

assay to measure phosphoinositides directly in stimulated and knockdown cells 

(paper I). However, one should not forget that the approach is based on subcellular 

fractionation and possible errors can occur due to contaminations.  

So far, several other studies showed increased levels of PtdIns5P after diverse 

stimuli. Elevated levels have been reported after acute thrombin stimulation of 

human platelets (154), during cell cycle progression (224), upon osmotic stress (166) 

(even in plants (304)), after T-cell receptor stimulation (231) and upon insulin 
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stimulation (226,232). A completely different role of PtdIns5P is known during 

infection with Shigella flexneri (206,228) or Salmonella typhimurium (229). The 

injection of bacterial phosphoinositide 4 phosphatases (IpgD and SopB, 

respectively), producing PtdIns5P from PtdIns(4,5)P2 facilitates infection (233). 

Artificial increases in PtdIns5P levels, caused by ectopic expression of the IpgD, 

resulted in Akt phosphorylation (228,233,305). Thereby, PI3K/Akt and thus survival 

signaling is stimulated and bacterial colonization is promoted via delaying the onset 

of host cell apoptosis.  

How these stimuli, including our observations upon FGF stimulation, cause increases 

in PtdIns5P levels remains elusive. Since we observed reduced migration also 

without FGF stimulation in knockdown cells (paper I), and upon HGF (hepatocyte 

growth factor) stimulation (paper II), the involved signaling cascade must rather be 

part of a more general, basal machinery. If this includes only the PI3K/Akt pathway 

or others pathways in addition, needs to be addressed in the future. 

Furthermore, a nuclear role for PtdIns5P in regulating apoptosis by binding to ING2 

has been proposed (225,227,306). UV irradiation or DNA damaging agents induce 

phosphorylation of a PIP4-kinase through the p38 stress-activated protein kinase, 

thus inhibiting the activity of the lipid kinase and leading to increased PtdIns5P 

accumulation. Nuclear changes of PtdIns5P in turn, regulate the chromatin 

association of ING2. ING2 was reported to stimulate p53 acetylation and to induce 

apoptosis (225,307).  

Another interesting study demonstrated a link to cancer. In cells expressing an 

oncogenic tyrosine kinase, NPM-ALK (Nucleophosmin anaplastic lymphoma 

kinase), high levels of PtdIns5P were observed and it was suggested that this could 

be a general hallmark of transformed cells with deregulated tyrosine kinase activities 

(230). Wilcox et al. (308) also described the involvement of a tyrosine kinase in 

elevated PtdIns5P levels. Interestingly, Coronas et al. (230) found PIKfyve to 

localize at cell extensions, caused by cytoskeleton rearrangements. Their proposed 

mechanism that a pool of PtdIns5P can regulate actin remodeling, fits to our 

observations of altered actin organization upon lack of PtdIns5P. Furthermore, it is 
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consistent with data from Niebuhr et al., showing that expression of IpgD leads to 

actin filament remodeling (206). In a follow-up study of the NPM-ALK oncogene, it 

was shown that PIKfyve controls specifically the invasiveness and ECM degradation 

of cells expressing the oncogenic kinase (309). In paper II, we demonstrate similar 

effects upon PIKfyve knockdown, but we could also in addition show that MTMR3 

knockdown inhibits invasion in the same manner, thereby pinpointing even more 

towards an involvement of the product PtdIns5P. Since we could not find any 

evidence that the adhesion machinery is affected (paper I), and together with the 

findings of other studies, this let us to hypothesize that actin cytoskeleton 

regulation/organization is one important function of PtdIns5P. Additionally, a role of 

PtdIns5P in membrane trafficking and exocytosis has been discussed in the literature 

(300), which is in agreement with the above findings on ECM degradation. PtdIns5P 

could thereby control the exocytosis of factors needed for matrix degradation and 

thus promotes invasiveness, if produced excessively. 

It seems, as for other phosphoinositides, that the spatial distribution of PtdIns5P is of 

very high importance. Most likely, distinct pools localized at the plasma membrane, 

the nucleus and possibly on vesicular intermediates (between late endosomes and the 

membrane) fulfill different functions. If the system is disturbed due to oncogenic 

alterations, all the pools can contribute in their way to promote migration, survival 

and invasiveness.  

However, the relatively minor contribution to the PtdIns(4,5)P2 pool by 

phosphorylation of PtdIns5P should be kept in mind. The question, if the regulation 

of migration is really through membrane-localized, MTMR3-generated pools of 

PtdIns5P, arises. Would rather a PIP4-kinase act on PtdIns5P and the resulting 

PtdIns(4,5)P2 be the main regulator, since PtdIns(4,5)P2 is an important regulator of 

the actin cytoskeleton and focal adhesions? Whether PtdIns5P is the effector on cell 

migration or only a precursor, remains so far unclear and needs to be addressed in the 

future. 
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4.4 Actin remodeling during migration 

During cell migration, remodeling of the actin cytoskeleton is essential. Among the 

molecules which regulate these processes are phosphoinositides and Rho GTPases. 

Members of the Rho GTPase family, Cdc42, Rac and Rho, have been shown to be 

involved in regulation of the actin cytoskeleton, including polymerization and 

crosslinking (reviewed in (310,311)). Rac was found to be a key regulator in 

migration (312), especially because it is able to stimulate lamellipodia extensions. 

Since phosphoinositides (PtdIns(3,4,5)P3 and PtdIns(4,5)P2) are already known to 

play a role in Rac-signaling, it might be possible that also PtdIns5P interferes here. 

Whether Rac-activators bind PtdIns5P and if as a consequence their localization is 

affected, are points which could be addressed in future studies. Interacting molecules 

could for example be identified by a screen for PtdIns5P-binding proteins, even 

though a specific binding domain is not yet clear. A proper validation is then highly 

necessary.  

The possibility that PtdIns5P is an intermediate to generate PtdIns(4,5)P2 should also 

be considered. Maybe PtdIns5P is just a precursor and the final effector on actin 

cytoskeleton is actually PtdIns(4,5)P2. Actually, PtdIns(4,5)P2 is so far the best-

characterized phosphoinositide regarding the actin cytoskeleton regulation (99). It 

interacts with several different actin-binding proteins, leading to enhanced plasma 

membrane interactions, increased adhesion to the ECM, enhanced actin assembly 

and reduced disassembly (reviwed in (313-315)). Studies have shown that most of 

PtdIns(4,5)P2 is generated via 5-kinases, but whether there is a special pool derived 

from PtdIns5P that is responsible for cell migration cannot be excluded.  

How phosphoinositides, Rho GTPases and actin cooperate together shows the 

example of Shigella flexneri entry into host cells. The bacterial phosphatase IpgD 

dephosphorylates PtdIns(4,5)P2 and generates thereby attachment sites so that the 

pathogen can enter the host cell. The adhesion of the cytoskeleton to the membrane 

was found to be locally decreased, resulting in detachments. In addition, it was 

demonstrated that the actin remodeling effects of Cdc42 and Rac agonists were 
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enhanced by IpgD expression, showing that decreased levels of PtdIns(4,5)P2 could 

directly increase Cdc42/Rac activity (206). However, here in turn, one cannot 

exclude that effects are not due to increases in PtdIns5P levels, caused by IpgD. The 

authors speculate if PtdIns5P is the acting phosphoinositide and a role of IpgD is 

actually to generate PtdIns5P, besides reducing membrane tether force.  

In paper I, we expressed IpgD to restore PtdIn5P levels upon MTMR3 knockdown. 

This resulted in increased migration, even though PtdIns(4,5)P2 levels were 

presumably decreased. Whether PtdIns5P is actually responsible to create a special 

localized PtdIns(4,5)P2 pool, important for migration, remains to be tested. 

Another suggestion that PtdIns5P could play a role in actin remodeling was made 

when a recombinant putative PtdIns5P binding domain (tandem PHD of ING2) 

localized at extensions of transformed cells (230). These structures are highly 

dynamic and thought to result from Rac1 activity (316,317). Here, again, a 

relationship between PtdIns5P and a Rho GTPase could be of important function. 

Our results from paper I visibly show a connection between PtdIns5P and actin. 

Whether this is directly through PtdIns5P or via PtdIns(4,5)P2 and what the nature of 

the effectors is, is not clear. 

4.5 Implications in cancer: PIKfyve, MTMR3 and PtdIns5P 

Cancer has become a major cause of death, and rates are rising. Today, more than 

90% of cancer morbidity and mortality is associated with metastasis. The term 

“metastasis”, meaning displacement, arose in 1829 (318,319), when it became clear 

that malignant tumors invade to distant organs and tissues. Since more than a decade 

now, tumor invasion and metastasis are together considered as one of the hallmarks 

of cancer (85). Many attempts, to identify drivers of metastasis have been made 

(reviewed in (320)), but effective therapies are still missing. One important step of 

metastasis is invasion, where mechanisms are highly similar to those of normal 

migration. Since we identified PIKfyve and MTMR3 to be involved in normal cell 

migration (paper I), we thought to investigate their involvement in cancer cell 
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migration (paper II). Several studies already detected PIKfyve to be connected with 

cancer. It was suggested that PIKfyve plays a role in bladder oncogenesis, where it is 

implicated in EGFR trafficking to the nucleus and transcription function (321). 

Furthermore, in a microarray analysis, the PIKfyve gene PIP5K3 was found to be 

upregulated in gastric cancer (322). Two other studies showed that activity of 

PIKfyve and levels of PtdIns5P are increased in NPM-ALK transformed cells 

(230,309). NPM-ALK (nucleophosmin anaplastic lymphoma kinase) is an oncogenic 

tyrosine kinase which is detected in most of anaplastic large cell lymphomas of a 

special phenotype. PIKfyve associates with NPM-ALK and is responsible for the 

invasive characteristics of the cell line (309). These studies also showed for the first 

time a possible involvement of PtdIns5P in cancer.  

MTMR3 on the other hand, was indentified in a cancer mutation discovery screen to 

be among the candidate cancer genes (CAN) in breast cancers (323). This means that 

MTMR3 is mutated at significant frequency in the analyzed breast carcinomas. In 

another study of a breast cancer mouse model, MTMR3 was among the 

overexpressed genes in invasive carcinoma cells, compared to the general population 

of tumor cells in the primary tumors (324). A mutation of MTMR3 in gastric cancer 

was found in an analysis of a public genomic database (102). This frameshift 

mutation probably leads to a nonfunctional MTMR3. In a genome-wide association 

study of lung cancer cases in a Chinese population, MTMR3 was newly identified 

together with another susceptibility region (325).  

This suggests that both enzymes could be involved in carcinogenesis. In paper II we 

show that their contribution could possibly be through enhancing cell motility and 

invasion. Cells depleted for PIKfyve or MTMR3 have a decreased migration 

velocity, whereas proliferation was not affected. To strengthen our data, we 

performed the knockdowns in three cancer cell lines of different origin (lung, 

rhabdomyosarcoma and osteosarcoma) and obtained similar results. Furthermore, we 

could demonstrate that knockdown of PIKfyve or MTMR3 reduces the invasive 

phenotype of the H1299 lung carcinoma cell line. Altogether, PIKfyve and MTMR3 

have a role in cancer cell migration and invasion. They may provide new therapeutic 
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targets specifically aiming to inhibit cancer cell migration and thereby avoiding side 

effects. 

Not only the enzymes, also the product can in addition contribute to carcinogenesis. 

Altered PtdIns5P levels could disturb other normal cellular functions, since it is 

published that the lipid interferes with the PI3K/Akt pathway (228,233). The 

PI3K/Akt signaling is one of the most targeted pathways in cancer therapy and 

currently in various stages of clinical development (reviewed in (326)). Elevated 

PtdIns5P levels due to increased activity of PIKfyve/MTMR3 could lead to 

hyperactivation of the PI3K/Akt pathway which then results in cancer progression. 

Another interesting point of PtdIns5P is its interaction with the chromatin-associated 

protein ING2 (225) (described above). ING family proteins are presumably involved 

in cancer and might function as tumor suppressors (reviewed in (327)). 

4.6 Regulation of FGFR signaling 

In paper III, we identified a novel mechanism of FGFR1-signaling regulation. We 

found that activated MAPKs ERK1 and ERK2 phosphorylate a single serine residue 

in the C-terminal part of the FGF receptor, which reduces the tyrosine 

phosphorylation in the kinase domain. This results in decreased receptor signaling 

and thus defines a new negative feedback loop.   

A number of negative feedback loops for FGF signaling have been identified 

previously. These include MAPK phosphatase 3 (MKP3), Sprouty proteins and SEF 

(similar expression to fgf genes) (271,277-279). Another negative mechanism 

involves the MAPKs ERK1 and ERK2 (Figure 5). After stimulation and tyrosine 

phosphorylation of FGFRs, ERK1 and ERK2 are among the activated downstream 

signaling molecules. In addition to further activate other downstream molecules, 

ERKs also phosphorylate FRS2 , a major mediator of FGF signaling (reviewed in 

(270)), on multiple threonine residues (328). Thus, recruitment of other factors to 

FRS2  is prevented and FGFR signaling attenuated. 
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We could show that ERKs participate in another negative feedback loop, which is the 

direct phosphorylation of the receptor (paper III). Activated ERKs bind and 

specifically phosphorylate serine777 in FGFR1. Possible resulting consequences could 

be that either the phosphorylation of serine777 functions as binding site for tyrosine 

phosphatases, which are responsible for receptor inactivation; or it induces 

conformational changes within the receptor which then turns the receptor into a 

better substrate for tyrosine dephosphorylation. Furthermore, a phosphorylated 

serine777 could prevent interaction with specific binding partners and thereby disrupt 

downstream signaling. 

If FGFR signaling would not be attenuated, cells would receive sustained signals and 

signaling pathways would remain active. Since MAPK and PI3K/Akt are two of the 

major signaling pathways of the FGFR, continuous signaling could lead to increased 

proliferation, apoptosis inhibition and subsequently to cancer (271,286-288). Other 

functions of FGF signaling, such as its biological role in angiogenesis and wound 

healing (269,271), can contribute to cancer development, when the regulation of the 

signaling is perturbed. Altered FGF signaling could also be involved in migration 

and invasion steps. In vitro data show that FGFRs play a role in invasion of 

pancreatic and breast cancer cells (329,330). Another study demonstrates that 

constitutive FGF signaling leads to polarity loss and gain in matrix metalloproteases 

(331). During angiogenesis, FGF signaling is also required for endothelial migration 

and chemotaxis (332,333). Thus, FGFs promote cancer progression not only through 

mitogenic and angiogenic effects, they could additionally enhance metastasis via 

their migratory effects (334).  

Our results in paper III show that the phosphorylation status of serine777 of FGFR1 is 

important for proper signaling and thus regulates proliferation and migration. Upon 

expression of a mutant receptor, which mimics the unphosphorylated state of 

serine777, proliferation and migration was increased. This demonstrates that the 

negative feedback loop is crucial for deactivating the receptor signaling. So far, the 

C-terminal tail, which harbors the serine777, was relatively uncharacterized. 

Indications, that it might indeed be important, were provided by studies on FGFR2: 
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C-terminally shortened isoforms have been found to be overexpressed in cancers. In 

addition, it was shown that the deletion of the C-terminus in FGFR2 correlates with 

increasing transforming potency in human cancers (335). Possibly, the associated 

loss of the corresponding serine, which is important for the negative feedback loop, 

provides a mechanistic explanation for the observed transforming effect.  
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4.7 Conclusions and Future Perspectives 

In the first part of this work we identified novel molecules implicated in normal and 

cancer cell migration. Previously not described to have a role in cell migration, we 

found the phosphoinositide metabolizing enzymes PI3K class III, PIKfyve and 

MTMR3 to be involved. Furthermore, a novel function of their product, PtdIns5P, in 

cell migration was revealed. We demonstrated their role in cancer cell migration as 

well, and their contribution to invasiveness. The knowledge of invasive signaling 

cascades is important for the design of new treatments, and PIKfyve and MTMR3 

might provide new drug targets. The second part of this work elucidated a novel 

negative feedback loop in FGFR1 signaling. Altered signaling from FGF receptors is 

known to be involved in carcinogenesis, since they are regulating a range of 

biological signals, such as proliferation, survival and migration. A tight regulation of 

FGF signaling is therefore necessary to maintain normal cellular functions. For 

cancer therapy, a detailed understanding of the involved mechanisms and the 

complex signaling cascade system is crucial. This can contribute to the development 

of more efficient therapies. 

Since the initial cell migration screen was limited to PX- and FYVE-domain 

containing proteins, the investigation of other myotubularins could give more insight 

whether the whole family might be involved in migration. The question, if PtdIns5P 

or PtdIns(4,5)P2 is the final regulator of cell migration needs to be addressed. 

Effectors of PtdIns5P (or PtdIns(4,5)P2) remain elusive and screens could help to 

identify them. Furthermore, work on other candidate genes from our screen can be 

done, especially on those which gave an increase in migration upon knockdown. 

Regarding FGF signaling, other FGF receptors might be tested if the corresponding 

serine in the C-terminal tail also possesses a negative feedback loop. Direct serine 

phosphorylation through ERKs could represent a common mechanism of all four 

FGF receptors.  
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4.8 Experimental and Methodological Considerations 

The majority of the methods and model systems in this thesis are well-established 

and well-described in the literature. However, some considerations need to be taken 

and contribute to the learning process of a scientist. Therefore, some aspects and 

pitfalls will be discussed, without giving an introduction into the individual methods. 

4.8.1 Cell lines as model system 

Today, cell culture facilities are part of the basic equipment of a laboratory. 

Thousands of cell lines are commercially available at any time, and provide with 

their self-replicating abilities an almost unlimited source of biological material. 

Long-term studies can easily be performed, with quite similar base material. It is a 

powerful and versatile model system which often fits best for basic research or first 

steps in a project before continuing with animal models. However, it is obvious that 

cells in culture are not growing in their original environment and thus do not 

completely reflect conditions in vivo. Genotypic and phenotypic transformations can 

occur during culturing, as well as senescence-caused changes. These facts need to be 

always kept in mind when drawing conclusions and it is highly recommended to 

perform experiments in various cell lines and/or other model systems to strengthen 

the data. In paper I, human foreskin non-immortalized fibroblasts were used, which 

are less transformed compared to permanent cell lines. They were kept in low 

passages to prevent as much as possible alterations due to culturing. Since they are 

the prototype of mesenchymal cells, they are well-suited for cell migration studies. 

Among the disadvantages are the difficulties in plasmid transfection, leading to a 

lower number of cells available for analysis in rescue studies in paper I. However, 

they are bridging artificial systems and animal experiments due to their relatively 

normal properties. In contrast, permanent cell lines, like tumor lines used in paper II, 

show an altered morphology and might not possess all of their original 

characteristics. Artifacts due to chromosomal aberrations and newly occurring 

mutations during culturing demand controls. Even though they provide an excellent 
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model system for invasion studies, since fibroblasts are only suited for normal 

migration, they do not always represent cancerous behavior in vivo. Ideally another 

organism, but also several different cancer cell lines can serve as controls. In paper 

II, 3 different cancer cell lines, from different origins were used and similar results 

can indicate a general mechanism, independent of special properties of one cell line. 

For paper III, a stable transfected cell line was prepared, which is advantageous in 

the way of working with relatively similar base material throughout the experiments. 

Furthermore, cells were selected for low overexpression levels and several clones 

were tested in most cases.   

4.8.2 Depletion of proteins with siRNAs 

Even though it may sound paradoxical, to investigate the function of a protein we 

first switch it off by the use of small interfering RNAs. This “knockdown” of a 

protein is a simple and fast assay, with normally high efficiency and specificity and 

provides a much easier alternative to knock out studies in animals. However, caution 

is advised regarding off-target effects giving false phenotypes (336). These effects 

arise when sequence similarities to other mRNAs are given and they are obviously 

not related to the target protein. To exclude this, one can apply and compare several 

different siRNA oligos targeting the same gene and perform in addition rescue 

experiments (restoring the phenotype by reintroducing the target protein via cDNA). 

Another alternative are specific inhibitors, especially when working with druggable 

enzymes. All these approaches were applied in paper I and to some extent in paper 

II. In paper III, a well-established siRNA was used to complement the inhibitor 

experiments.  

To avoid unspecific effects due to the transfection procedure (337), a so called 

Control-siRNA experiment is always performed in parallel. The control siRNA 

nucleotide sequence does not match with any other sequence and interferes therefore 

not with the expression of any gene. However, cells go through the same procedure, 

including transfection reagent and siRNA treatment. 
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4.8.3 Confocal microscopy, Structured illumination microscopy and 
Electron microscopy 

Compared to wide-field microscopy, confocal microscopy offers an improved optical 

resolution and contrast by eliminating out-of-focus light. It is an important, fast and 

powerful tool with many applications, such as localization-, colocalization- and live-

studies. Quantitative information about differences in cell-staining can be gained, as 

done in paper III. Reconstruction of 3D-images makes it possible to depict for 

example invading cells in a matrix, as done in paper II.  

Structured illumination microscopy (SIM) can however, increase the spatial 

resolution of wide-field fluorescence microscopy (338,339). It is using spatially 

structured illumination light, thereby illuminating objects with multiple interfering 

beams of light. Normally unreachable high-resolution information is gained and via 

computational extraction and three-dimensional reconstruction, an improved 

resolution in all three dimensions is achieved. We performed this technique in paper 

I and obtained detailed information about actin fibers. 

Electron microscopy uses a beam of electrons to illuminate the specimen and gives 

an even greater magnification and resolution than optical microscopes.  

But in all microscopic applications, care has to be taken and a lot of experience is 

needed. In confocal and SIM studies, results must reflect the whole population of 

cells and other assays must be performed to strengthen the findings. To avoid biased 

results, randomization during quantifications is necessary. Choosing the right 

microscope settings is very important and training is needed. Artifacts in electron 

microscopy can be caused by ultrathin sectioning and staining procedures and 

therefore, even more experience is necessary.  

4.8.4 Cell migration studies 

The analysis of cell migration represents the key method in this thesis. The 

BioStation IM (Nikon) provides an easy and stable system to monitor cell migration 
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over longer periods of time. A large number of cells can easily be analyzed with 

tracking software, giving different parameters as output. Fluorescence microscopy 

enables the tracking of labeled cells, which was essentially necessary in the rescue 

experiments, due to low transfection efficiency. Wound healing, random migration 

and perfusion assays were performed. Due to the fact that proliferation can affect 

these experiments, as well as the varying size of the “wound” during manual 

scratching led us to analyze cell velocity and not differences in wound closure.  

Another assay, the Oris Cell Migration Assay, was used to perform the initial siRNA 

screen of paper I. This assay is advantageous in the way that it enables a high-

throughput screen for migration in a 96-well format. Furthermore, due to the stoppers 

in each well, the artificial “wound” has a defined size, thus giving the same 

conditions to every well. However, only the endpoint was measured and since we do 

not know the efficiency of the individual knockdowns, validation is strictly required. 

In paper I, the hits of the siRNA screen were validated by different methods, 

followed by investigation in different cancer cell lines in paper II. 

Both assays, however, do not resemble proper in vivo conditions. The 

microenvironment, consisting of cells, secreted factors and signaling molecules, 

extracellular matrix (ECM) and basement membranes can of course not completely 

be simulated in vitro. Normally, migration appears to be directed due to extracellular 

signals, but in tissue culture, cells can migrate randomly, since they are able to aquire 

transient polarized morphologies. Furthermore, a cell is not moving in 2D naturally. 

It was recently published, that many of the 2D migration data do not correlate with 

3D migration data (340). Thus, data gained from 2D in vitro studies must always be 

confirmed with 3D assays. In paper I, we used Drosophila melanogaster as a model 

organism and studied border cell migration (341), whereas in paper II, we worked 

with an invasion assay (342). The matrigel in the latter should thereby reflect the 

composition of the ECM. However, even though invasion is only one step of 

metastasis, and 2D migration is far from in vivo 3D migration, the executed 

experiments provide relatively cheap, efficient and easy-to-perform methods with a 

high throughput. 
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In paper III, cell migration analysis was one of three different assays to prove the 

biological significance of the phosphorylation status of the FGF Receptor. Here, cell 

proliferation assays, axonal-growth and -morphology analysis of neurons were 

carried out in addition to strengthen the findings.  

4.8.5 In vivo studies in Drosophila melanogaster 

Border cell migration was studied in the fruit fly Drosophila melanogaster. This is 

an excellent tool to study migration in vivo, since Drosophila is one of the 

genetically best known eukaryotic organisms and therefore, a lot of genetic tools and 

markers are available (for instance GFP-labeled border cells, RNAi). Drosophila 

breeds quickly, lays many eggs and the whole life cycle is short, resulting in 

relatively short expenditure of time and low expenses. It is widely used for biological 

research, and mutation analyses in Drosophila are often a good starting point for 

research of many diseases. Although the border cell migration assay allows us to 

investigate migration in 3D, it does not resemble invasion, where a basal membrane 

has to be degraded and cells loose contacts. Here, border cell migration occurs 

naturally within the egg chamber, with cells in close contact and moving together in 

a cluster. 

4.8.6 Detection of PtdIns5P 

The first method to detect PtdIns5P was based on the enzymatic reaction of the 

phosphatidylinositol phosphate 4-kinase (type II PIPKs), which generates 

PtdIns(4,5)P2 (154), followed by HPLC-measurements of PtdIns(4,5)P2. PtdIns5P 

itself was not measurable with conventional HPLC, due to its poor separation from 

PtdIns4P. In addition, so far, mass spectrometry is not able to distinguish the 

monophosphorylated phosphoinositides (343). Fluorescent probes to detect 

specifically PtdIns5P are unfortunately lacking. However recently, a new, optimized 

HPLC method, which is able to resolve PtdIns5P from PtdIns4P, was described 

(210). This made it possible to directly detect the levels of PtdIns5P independent of 

enzymatic reactions, which actually are sensitive to kinase inhibitors (such as the 
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product itself). Furthermore, information about its localization was gained by 

subcellular fractionation prior to the HPLC analysis. 

4.8.7 Use of FGF, chemical inhibitors and PIP Shuttle Kits 

When cells were stimulated with FGF, heparin was added in addition, to stabilize the 

growth factor and to facilitate its binding to receptors, but also to prevent 

sequestering to heparin sulfate on the cell surface. To exclude that observed effects 

were due to heparin only, it was added to control cells during the experiments.   

Chemical inhibitors facilitate fast and simple assays. Today, a wide range of 

inhibitors are available, but nevertheless, they do only provide a limited specificity. 

Concentrations have to be kept as low as possible to prevent side effects. Solvents, 

such as DMSO, have to be added to control experiments. 

The Phosphoinositide (PIP) Shuttle Kits enabled us to provide cells directly with 

various PIPs. As mentioned in the introduction, the spatio-temporal distribution of 

phosphoinositides plays a very important role. A suboptimal distribution could 

therefore be the reason that exogenously added PtdIns5P is not able to rescue 

MTMR3/PIKfyve knockdown completely in paper I. The applied carriers were 

added to knockdown cells in control experiments. To show that PtdIns5P is not 

enhancing cell migration in general and that it is specifically rescuing the 

knockdown, it was also added to control siRNA treated cells (paper I). 
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Abstract 

 

Fibroblast growth factor 1 (FGF1) controls cellular activities through activation of specific cell-

surface FGF receptors (FGFRs). Trans-phosphorylation of tyrosine residues in the kinase domain of 

FGFRs leads to activation of intracellular signal cascades including mitogen-activated protein 

kinases (MAPKs). In addition to the kinase domain, FGFRs contain a serine rich C-terminal tail of 

unknown function. Here, we unravel a novel regulatory mechanism of FGFR signaling based on 

direct phosphorylation of a specific serine residue (Ser777) in the C-terminal part of the receptor by 

the MAPKs ERK1/2. This serine phosphorylation substantially reduces the tyrosine 

phosphorylation in the kinase domain of the receptor. Prevention of FGFR1 Ser777 phosphorylation 

or S777A mutation results in enhanced receptor tyrosine phosphorylation, increased cell 

proliferation, cell migration and axonal growth, while a phosphomimetic mutation at Ser777 reduces 

FGFR1 signaling. Importantly, FGFR-independent activation of MAPKs also results in 

phosphorylation of Ser777 of FGFR1, thereby allowing cross-control of FGFR activity by other 

signaling receptors. Our data reveal a novel negative-feedback mechanism that controls FGF 

signaling and thereby protects the cell against excessive activation of FGFR. 
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Introduction 

Detailed understanding of the regulatory mechanisms of receptor tyrosine kinases (RTKs), 

including fibroblast growth factor receptors (FGFRs), is an important goal of current biomedical 

sciences since these transmembrane proteins are commonly affected in many kinds of human 

cancers and other pathological conditions, including skeletal and olfactory syndromes, and 

metabolic disorders. 

The FGFR family consists of four closely related receptors (FGFR1 to FGFR4) (1), that play 

important roles in diverse physiological processes such as cell proliferation, differentiation, 

migration and survival (2). They have a conserved structure composed of three extracellular Ig-like 

domains (D1 – D3), an acidic box, a transmembrane domain, and a well conserved intracellular 

tyrosine kinase domain. The second and the third Ig-like domains of the receptors are crucial for 

ligand binding, whereas the first Ig-like domain plays a role in receptor autoinhibition (3). Besides 

the fact that one of the tyrosine residues (Tyr766 in FGFR1) in the receptor C-tail serves as a binding 

site for PLCγ (4), very little is known about the biological function of the unordered C-terminal part 

of the FGFRs, which is composed of approximately 50-56 amino acids.  

FGFRs are activated by 18 high affinity extracellular ligands – fibroblast growth factors (FGFs). 

The binding of FGF to FGFR results in dimerization of the receptor which, in turn, activates the 

receptor’s tyrosine kinase domain by trans-phosphorylation. Phosphorylation of the receptor 

tyrosines is a precisely ordered sequential event that includes seven tyrosine residues (Tyr463, Tyr583, 

Tyr585, Tyr653, Tyr654, Tyr730, and Tyr766, in the case of FGFR1) (5, 6). The activated receptor 

phosphorylates multiple intracellular proteins including FRS2 (FGFR substrate 2) and PLCγ 

(phospholipase Cγ) (7). Phosphorylated FRS2α forms two specific binding sites for SHP2 (SH2 

domain-containing protein tyrosine phosphatase-2) and four binding sites for GRB2 (growth factor 

receptor-bound protein 2). GRB2 is constitutively bound via its SH3 domains to SOS (son of 

sevenless protein) and GAB1 (GRB2-associated-binding protein 1) and these proteins constitute a 
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signaling complex activating the RAS/MAPK (mitogen-activated protein kinase) and PI3K 

(phosphoinositide 3-kinase)/AKT signaling pathways (7). Several other pathways, including p38 

MAPK and JNK (c-Jun N-terminal kinase) pathways, and STAT (signal transducer and activator of 

transcription) signaling are induced by activated FGFR (8, 9). 

The precise regulation of FGFR signaling is crucial for the cell fate as it may influence the 

proliferation potential and in consequence carcinogenesis and tumor progression. However, in 

contrast to the well researched mechanisms of FGFR activation, those ensuring its deactivation are 

only sketchily understood (8). Attenuation of the signal generated by an activated receptor can be 

achieved by FGFR endocytosis followed by lysosomal degradation (10). In addition, a negative 

feedback leading to the silencing of FGF-induced signals is mediated by several proteins such as 

MAPK phosphatase 3 (MKP3), Sprouty proteins, and SEF (similar expression to FGF) family 

members that modulate receptor signaling at different steps of the signal transduction pathway (8, 

11-13). Furthermore, FGF receptor deactivation is also based on MAPK signaling and threonine 

phosphorylation of FRS2α (14). FGF stimulation has been shown to induce MAPK ERK1/2 

(extracellular signal-regulated kinases 1/2)-dependent phosphorylation on at least eight threonine 

residues of FRS2α. This threonine phosphorylation effectively reduces tyrosine phosphorylation of 

FRS2α, thereby decreasing the recruitment of GRB2 and attenuating FGFR signaling (14). 

In this study we reveal that FGF1 stimulation induces direct MAPK-mediated phosphorylation 

of a specific serine residue (Ser777) in the C-terminal part of the receptor. Phosphorylation of Ser777 

reduces the tyrosine phosphorylation in the receptor kinase domain and in this way provides a 

negative feedback route. Our work demonstrates a novel mechanism of FGFR1 activity control, 

which can protect against excessive intracellular signaling. 
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Results 

FGFR1 is directly phosphorylated on Ser777 by the MAP kinases ERK1 and ERK2 

The C-terminal part of FGFR1 (residues 755-822) is rich in serines (Fig. 1A), and we therefore 

considered the possibility that the signaling potential of the FGFR could be regulated by specific 

serine phosphorylation. Analysis of FGFR1 by the Scansite server (http://scansite.mit.edu) revealed 

that there is a strong consensus sequence in the C-terminal part of the receptor for the MAPK ERK1 

with a predicted phosphorylation site at Ser777 and a binding site at Pro781 (15). Interestingly, Ser777 

is conserved throughout the human FGFR family and also in different species ranging from 

zebrafish and newt to frog, rat, mouse and human (Fig. 1A). 

To examine whether ERK1 and ERK2 are able to directly phosphorylate FGFR1 at Ser777, we 

carried out an in vitro phosphorylation assay using recombinant kinases, [γ-33P]ATP, and 

recombinant GST-tagged C-tail of FGFR1 or its mutants as substrates. Wild-type FGFR1 could 

clearly be phosphorylated by active forms of ERK1 or ERK2, whereas two FGFR1 mutants at the 

critical serine, S777A and S777D, were not phosphorylated (Fig. 1B). We used recombinant p38α 

kinase which is known to phosphorylate FGFR1 (16), as a control. Using the same number of 

kinase units we observed that the phosphorylation of FGFR1 by the ERKs was much stronger than 

that by p38α (Fig. 1B). A radiolabeled band of p38α, could be detected only upon longer exposure 

(fig. S1A). For control we used an excess of GST alone, which was very weakly phosphorylated 

(Fig. 1B). In addition, we  performed phosphorylation reactions using a kinase unrelated to the 

MAPK pathway, AKT, which was completely unable to phosphorylate the C-terminal tail of 

FGFR1 (fig. S1A). Since we intended to block the ERKs in cellular experiments using specific 

inhibitors of the MAPK’s upstream kinase (MAPKK, MEK), we also investigated if that kinase 

could phosphorylate the C-tail of FGFR1. Using active MEK1 we did not observe any band derived 

from phosphorylated FGFR1 (fig. S1B).  
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To confirm that ERKs can phosphorylate full-length FGFR1 and that this phosphorylation 

occurs specifically on Ser777, we performed in vitro phosphorylation assay using recombinant 

kinases and FGFR1 immunoprecipitated from U2OS cells stably expressing FGFR1 or its mutants. 

The phosphorylation reaction was carried out in the presence of the specific FGFR tyrosine kinase 

inhibitor, PD173084, to prevent receptor autophosphorylation. The data clearly show that both 

ERK1 and ERK2 are able to efficiently phosphorylate wild-type FGFR1, but not the Ser777 mutants 

(Fig. 1C). 

The results unequivocally indicate that the MAPKs, ERK1 and ERK2, but not MEK, can 

directly and specifically phosphorylate FGFR1 at Ser777, and furthermore, that Ser777 is the only site 

in FGFR1 that is phosphorylated by the MAPKs. 

 

ERK1 binds to FGFR1  

To test whether ERK1 binds directly to the C-tail of FGFR1, we performed a pull-down 

experiment with recombinant active His-tagged ERK1, recombinant GST-tagged C-terminal part of 

FGFR1 or its mutants, and Dynabeads® with immobilized anti-GST antibodies. Using anti-MAPK 

antibody we found that only the GST-tagged C-tail of wild-type FGFR1 was able to pull down 

ERK1, in clear contrast to the S777A and S777D mutants (Fig. 1D). As a control of unspecific 

binding of ERK1 to GST we used GST alone and GST-tagged FGF1. For neither protein did we 

observe any bands reacting with anti-MAPK antibody. 

We also analyzed the binding of recombinant His-tagged ERK1 to full-length FGFR1 

immunoprecipitated from U2OSR1 cells with anti-FGFR1 antibodies conjugated to Dynabeads®. 

Using anti-His antibody we detected ERK1 in the complex with FGFR1 from cells (Fig. 1E). For 

negative control we used unspecific antibody for immunoprecipitation. 

Both binding experiments revealed that ERK1 can bind directly to FGFR1. Moreover, besides 

being the phosphorylation site for ERK1/2, Ser777 of FGFR1 is also necessary for MAPK binding.  
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Blocking MAPK activity inhibits Ser777 phosphorylation of FGFR1 

To study the involvement of MAP kinases (ERK1/2) in the phosphorylation of Ser777 of FGFR1 

in living cells, we generated a phospho-specific antibody against phosphorylated Ser777 (pS777-

FGFR1) and used two different cell lines: U2OS cells stably transfected with FGFR1 (U2OSR1) 

and NIH3T3 naturally expressing FGFR1. Using the specific antibodies against phosphorylated 

Ser777 of FGFR1, we observed that upon FGF1 stimulation, Ser777 was effectively phosphorylated in 

cells. Moreover, when the MAPKs ERK1/2 were inactivated (inhibited by U0126 or another 

MEK1/2 inhibitor – SL327) there was no phosphorylation of Ser777 (Fig. 2A).  

In addition, we performed confocal microscopy using the phospho-Ser777 antibody and the 

U2OSR1 cell line. The cells were starved for 4 hours and then stimulated with Cy3-labeled FGF1 

(Cy3-FGF1) for 20 min. Subsequently, the cells were fixed and stained with the anti-phospho-

Ser777-FGFR1 antibody and anti-EEA1 antibody, an endosomal marker (17). We observed clear 

staining for phospho-Ser777 in the presence of FGF1 (Fig. 2B, upper panel) and no traces of staining 

in unstimulated cells (Fig. 2B, middle panel). Moreover, the phospho-Ser777 staining colocalized 

with both Cy3-FGF1 and with the endosomal marker (EEA1) indicating that the staining is specific 

and can be detected intracellularly. We also performed the same experiment in the presence of a 

specific MEK inhibitor, U0126. Upon U0126 treatment we could not detect any phospho-Ser777 

staining (Fig. 2B, lower panel). There were no substantial differences in the colocalization patterns 

of Cy3-FGF1 and EEA1 in the presence and in the absence of the MEK inhibitor (Fig. 2B), 

indicating that cellular localization of the FGF1-FGFR1 complex was not affected. 

To investigate further the role of MAPKs ERK1/2 in the phosphorylation of FGFR1 on Ser777, 

we used expression constructs previously characterized by Pouyssegur and coworkers, which 

modulate either positively or negatively the activity of MAPKs (18, 19). They reported that a 

MAPK kinase (MAPKK, MEK1) construct mutated on its two phosphorylation sites Ser218 and 
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Ser222 to aspartic residues (MEK1-SS/DD) was able to activate MAPKs constitutively, in contrast to 

the dominant-negative form of MEK1 (MEK1-S222A) in which Ser222 was mutated to alanine. 

Upon expression of the dominant-negative mutant of MEK1 (MEK1-S222A) and stimulation of the 

cells with FGF1 no staining for Ser777-phosphorylated FGFR1 was visible (Fig. 2C). Conversely, 

when the constitutively active variant of MEK1 (MEK1-SS/DD) was expressed in U2OSR1 cells in 

the absence of FGF1, we observed staining of phospho-Ser777-FGFR1 which disappeared in the 

presence of U0126 (Fig. 2C), suggesting that MAPKs are likely to be directly involved in the serine 

phosphorylation of FGFR1. 

 

Tyrosine phosphorylation of FGFR1 is enhanced by blocking the activity of MAPKs ERK1 and 

ERK2 

To examine the potential impact of MAPKs (ERK1/2) on FGFR1 activity, we studied the effect 

of ERK inhibition on FGF1-induced signaling using NIH3T3 and U2OSR1 cells. In both cell lines, 

the FGF1-induced tyrosine phosphorylation of FGFR1 (Tyr653/Tyr654) as well as the 

phosphorylation of downstream signaling molecules were augmented and extended in the presence 

of different MEK1/2 inhibitors, either U0126 or SL327, as compared to untreated cells (Fig. 3A). 

Using antibodies against phosphorylated Ser777 of FGFR1, we observed that the kinetics of Ser777 

phosphorylation is similar to that of the tyrosine phosphorylation of FGFR1. Inactivation of 

MAPKs abrogated Ser777 phosphorylation, as seen before. To ensure complete blocking of the 

ERK1/2 activity, 20 μM U0126 was used in all experiments, even though 5 μM U0126 was found 

sufficient to inhibit the phosphorylation of ERK1/2 (fig. S2). Experiments in U2OSR1 and NIH3T3 

cells were performed in the presence of 10 μg/ml cycloheximide or 2 μg/ml brefeldin A to prevent 

the appearance of newly synthesized receptors. No substantial differences were observed between 

these two inhibitors as shown in fig. S3. 
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Treatment with the MEK inhibitors, U0126 or SL327, precluding the activation of ERK1/2 also 

brought about a shift in the electrophoretic mobility of phosphorylated FRS2α (phosho-Tyr196) and 

enhanced the intensity of the signal (Fig. 3A). This effect is triggered by a lack of ERK-mediated 

FRS2α phosphorylation on eight threonine residues which then in turn reduces Tyr196 

phosphorylation (14). 

To test further if the inhibition of the MAPKs ERK1/2 is the direct cause of the observed 

stronger and more sustained tyrosine phosphorylation of FGFR1, we attempted to specifically 

knock down the expression of ERK1 and 2 in U2OSR1 cells using validated siRNA 

oligonucleotides. Unfortunately, despite an efficient reduction of both proteins (fig. S4A), trace 

amounts remained that were highly active upon phosphorylation by upstream kinases. Therefore, 

we decided to use specific siRNA against GRB2, an adaptor protein recruited by activated FRS2α 

that is responsible for RAS activation and further MAP kinase pathway activation (20). A 

scrambled siRNA pool was used as a control. As demonstrated in Fig. 3B, the specific siRNA 

efficiently knocked down expression of GRB2, resulting in an almost complete deactivation of 

ERK1/2. As expected, depletion of GRB2 had a similar outcome as the chemical inhibition of 

MEK. We observed that the tyrosine phosphorylation of FGFR1 was prolonged and slightly more 

intense (Fig. 3B and fig. S4B). However, due to the residual activity of the ERKs, the observed 

effects were less pronounced as those caused by the low molecular weight inhibitors. Interestingly, 

we found that when GRB2 was depleted the phosphorylation of FRS2α was reduced. 

 

Blocking serine/threonine phosphatases reduces tyrosine phosphorylation of FGFR1 

In order to elucidate further the role of Ser777 phosphorylation, serum-starved U2OSR1 and 

NIH3T3 cells, after overnight treatment with 150 nM okadaic acid (a protein serine/threonine 

phosphatase (1 and 2A) inhibitor), were stimulated with FGF1. In U2OSR1 cells, the activation and 

tyrosine phosphorylation of FGFR1 (probed by anti-phospho-FGFR (Tyr653/Tyr654) antibody) upon 
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FGF1 treatment were substantially reduced when Ser777 of FGFR1 was prephosphorylated due to 

phosphatase inhibition (Fig. 4A). In the case of NIH3T3 cells, we hardly detected any tyrosine 

phosphorylation and in consequence cellular response upon pretreatment of the cells with okadaic 

acid (Fig. 4A). Taken together, the findings indicate that the phosphorylation status of Ser777 

influences the response to FGF1 treatment. 

 

FGF1-induced tyrosine phosphorylation of FGFR1 is prolonged in U2OS cells expressing the 

FGFR1 S777A mutant  

We showed that when the Ser777 phosphorylation is reduced or blocked by treatment with 

different MEK inhibitors, the tyrosine phosphorylation of FGFR1 induced by FGF1 is enhanced and 

prolonged. Conversely, inhibition of serine/threonine phosphatases by okadaic acid and the ensuing 

enhancement of Ser777 phosphorylation decrease the FGF1-induced tyrosine phosphorylation of 

FGFR1. To shed more light on the relationship between Ser777 and tyrosine phosphorylation we 

generated two stable U2OS cell lines expressing the S777A or S777D mutants of FGFR1 (U2OSR1 

S777A and U2OSR1 S777D). The S777A mutant cannot be phosphorylated and the S777D variant 

mimics the constitutively phosphorylated receptor. This made it possible to compare the biological 

responses of FGFR1 at different phosphorylation states in the same cellular system and under 

similar conditions.  

We found that in U2OSR1 S777A cells the duration of FGF1-induced tyrosine phosphorylation 

of FGFR was prolonged as compared to that in U2OSR1 wild-type cells (Fig. 4B). Conversely, in 

U2OSR1 S777D cells the signal from activated receptor was much weaker and lasted for a shorter 

time (Fig. 4B). As expected, MEK inhibitor U0126 did not substantially increase the tyrosine 

phosphorylation of FGFR1, neither in U2OSR1 S777A nor S777D cells. However, the tyrosine 

phosphorylation of FRS2α was elevated and prolonged in the presence of U0126 regardless of the 
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amino-acid at position 777 of FGFR1 (Fig. 4B). These results demonstrate that the phosphorylation 

state of Ser777 dictates the strength and the duration of the tyrosine phosphorylation of FGFR1. 

 

U2OSR1 S777A cells demonstrate enhanced mitogenic response and increased cell migration 

As shown above, we observed substantial differences in FGF1-induced signaling between the 

phosphorylation-incompetent and phosphomimetic Ser777 mutants of FGFR1. To investigate the 

biological consequences of Ser777 phosphorylation, we studied the ability of U2OS cells stably 

expressing the S777A or S777D variants of FGFR1 (in comparison to U2OSR1 WT cells) to 

proliferate in response to FGF1. The cells were incubated for up to 96 hours with 100 ng/ml of 

FGF1 in the presence of heparin. We found that the cells expressing the S777A mutant proliferated 

more efficiently than the cells with the wild-type receptor, whereas the proliferation potential of 

cells expressing the S777D variant was substantially reduced (Fig. 5A). Similar results were 

obtained by analyzing additional clones stably expressing wild-type FGFR1, the S777A or S777D 

variant (fig. S5A). This assay reveals that the Ser777 phosphorylation of FGFR1 negatively 

regulating its tyrosine phosphorylation is a crucial element in controlling of FGF1 signaling and cell 

proliferation. 

To test another functional consequence of the phosphorylation status of FGFR1 Ser777 we 

examined the motility of untransfected U2OS cells and those stably transfected with wild-type 

FGFR1 or its mutants. Time-lapse live-cell imaging upon stimulation with FGF1 revealed that 

U2OS cells expressing wild-type FGFR1 were moving faster than untransfected U2OS cells, 

indicating the role of FGFR1 in cell migration (Fig. 5B). The cell velocity was significantly 

increased for U2OSR1 S777A cells, in contrast to U2OSR1 S777D cells which migrated much 

slower than U2OSR1 wild-type (Fig. 5B). As similar results were obtained by investigating 

independent cell clones stably expressing the FGFR1 mutants, we conclude that the results are not 

cell clone dependent (fig. S5B). The observed effect of the phosphomimetic mutation demonstrates 
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that phosphorylation on Ser777 of FGFR1 is important in switching off multiple signal transduction 

pathways activated by FGF1.  

 

S777A mutation enhances axonal growth in DRG (dorsal root ganglion) neurons 

FGF signaling has been implicated in several processes during development and regeneration of 

the nervous system, such as neural induction, patterning, axon guidance and synapse formation 

(21). To further elucidate the physiological relevance of phosphorylation of Ser777, we examined 

axonal growth and branching in adult DRG neurons overexpressing wild-type FGFR1 or its mutants 

(S777A or S777D). DRG neuron culture is a well-characterized system to investigate the 

mechanisms of neuritogenesis and it has previously been reported that FGFR1 signaling in DRG 

neurons enhances elongative axon growth but not branching (22). Total axonal length of adult DRG 

neurons and the maximal distance of the longest axon (a parameter for elongative axon growth) 

were strongly increased in neurons overexpressing the S777A mutant compared to wild-type or the 

S777D mutant (Fig. 5C). In contrast, the number of branch points was not enhanced by the S777A 

variant (Fig. 5C). Thus, the elongating properties of FGFR1 S777A overexpressing neurons provide 

evidence for an enhanced regenerative capacity of adult neurons directed by phosphorylation status 

of Ser777. These findings are in accordance with previous results demonstrating that enhanced 

FGFR1 signaling leads to increased axon growth (22, 23).  

 

EGF or serum induce Ser777 phosphorylation of FGFR1 

Since other stimuli can activate MAP kinases in the absence of FGF-induced signaling, we 

tested if FGFR1 could be phosphorylated on Ser777 even without activation by its cognate ligand. 

We stimulated cells with EGF (epidermal growth factor) or serum, as both stimuli activate MAP 

kinases in an FGF1-independent manner and do not induce FGFR1 tyrosine phosphorylation or 

tyrosine phosphorylation of FRS2α. By immunoblotting we found that both EGF and serum 
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efficiently induced phosphorylation of Ser777 in FGFR1 in U2OSR1 cells and in NIH3T3 cells (Fig. 

6, A and B, lane 2). Addition of the MEK inhibitor U0126 duly abrogated FGFR1 Ser777 

phosphorylation (Fig. 6, A and B). We also pretreated both cell lines with serum or EGF for 30 min 

before stimulation with FGF1 in the presence or absence of the MEK inhibitor U0126 or the FGFR 

inhibitor PD173074. The phosphorylation of Ser777 induced by EGF or serum was again completely 

blocked in the presence of U0126 (Fig. 6, A and B). Under such conditions we also observed a 

strong shift in the electrophoretic mobility of FRS2α as described by Lax and others (14). Treatment 

of cells with the FGFR inhibitor PD173074 without addition of EGF or serum completely inhibited 

Ser777 phosphorylation (Fig. 6, A and B). However, when the cells were stimulated with EGF or 

serum, we could see a band representing FGFR1 phosphorylated at Ser777 even when PD173074 

was present. Although we could detect strong ERK activation upon EGF stimulation, we were not 

able to detect any phosphorylated EGF receptor on Western blotting in these cells. Since U2OS 

cells produce low amounts of the EGF receptor, we decided to repeat the experiment in U2OSR1 

cells transiently transfected with EGF receptor (Fig. 6A, U2OSR1 cells, lanes 7-12). Again, we 

observed substantial Ser777 phosphorylation upon EGF stimulation (Fig. 6A, U2OSR1 cells, lane 8) 

and no bands for phospho-Ser777-FGFR1 in the presence of the MEK inhibitor when cells were 

pretreated with EGF and then stimulated by FGF1 (Fig. 6A, U2OSR1 cells, line 11). 

In addition, we analyzed the effect of EGF on FGFR1 Ser777 phosphorylation by confocal 

microscopy in serum-starved U2OSR1 cells. Similarly to the immunoblotting results, we observed 

clear staining of phospho-Ser777-FGFR1 in cells stimulated with EGF in the absence of FGF1 (Fig. 

6C). 

We also monitored the kinetics of FGFR activation (tyrosine phosphorylation) and downstream 

signaling in response to FGF1 after EGF pretreatment. Under these conditions, FGFR1 Ser777 was 

already phosphorylated when FGF1 was added to the cells. We found that cells pretreated with EGF 

before addition of FGF1 responded weaker than did cells stimulated with FGF1 alone: the tyrosine 
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phosphorylation of FGFR1 and phosphorylation of downstream signaling molecules were reduced 

and less prolonged (Fig. 6D).  

Similar results were also obtained by confocal microscopy analysis. Serum-starved U2OSR1 

cells were treated either with EGF or FGF1 or with FGF1 after 30-min pretreatment with EGF and 

stained with anti-phospho-FGFR (Tyr653/Tyr654) antibody. In accordance with the immunoblotting 

data, we observed a significant decrease in phospho-tyrosine FGFR signal in response to FGF1 

upon pretreatment of the cells with EGF (by about 25%) (Fig. 6E). 

These experiments demonstrate that the phosphorylation of FGFR1 on Ser777 is regulated by 

MAP kinase activity and can occur independently of FGF induction and FGFR activation. Thus, 

both FGF1-dependent and independent MAP kinase activation inhibits FGFR signaling through its 

serine phosphorylation. 

 

Discussion 

Upregulation of FGFR signaling is of critical importance in many human cancers (2), it is 

therefore essential to understand the system modulating the receptor activity. In this report, we have 

described a novel mechanism for the regulation of FGFR1 signaling based on the activity of the 

MAPKs ERK1 and ERK2 (Fig. 7A). 

As the C-terminal part of the FGFRs is very rich in serine residues of unknown function, we 

analyzed potential phosphorylation sites in this region, finding that Ser777 in the C- tail of FGFR1 is 

a specific phosphorylation site for ERK1 and ERK2. We also showed that this phosphorylation 

takes place in cells in response to FGF1-dependent and FGF1-independent activation of ERKs. 

Furthermore, the phosphorylation status of FGFR1 Ser777 influenced the tyrosine phosphorylation of 

the receptor and its downstream signaling. We found that phosphorylation of Ser777 decreases the 

FGFR1 activity and its ability to propagate mitogenic signals. Analyzing the migratory response, 

we observed a clear correlation between the phosphorylation state of Ser777 and the ability of cells to 
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migrate, which can be of significant importance in many types of cancer. In addition, we showed 

that the phosphorylation status of Ser777 influences long distance axon extension required during 

nerve regeneration. Our results indicate that the lack of Ser777 phosphorylation has a clear 

physiological implication.  

It has been shown earlier that the MAPK pathway can function as a negative feedback amplifier 

(24). Several feedback loops for ERKs, involving RAF, SOS and FRS2α, have been implicated in 

the attenuation of FGF-induced signaling. Negative modulation of FRS2α activity is achieved by its 

phosphorylation by ERKs at eight threonine residues in response to different stimuli. An FRS2α 

mutant deficient in ERK-mediated phosphorylation displayed increased tyrosine phosphorylation of 

FRS2α (14). Here we show that the ERKs, in a similar manner, are able to regulate FGFR1 tyrosine 

phosphorylation and activity through direct phosphorylation of Ser777 in FGFR1. It is not clear how 

phosphorylation of threonines in FRS2α inhibits its tyrosine phosphorylation. It is possible that 

upon threonine phosphorylation, FRS2α becomes a poor substrate for the receptor kinase or that its 

association with subcellular compartments and/or subcellular components are altered. Similar 

mechanisms might apply for the negative regulation of FGFR1. We suggest that the phosphorylated 

Ser777 could act as a binding site for tyrosine phosphatases responsible for receptor inactivation; 

alternatively ERK-mediated phosphorylation can cause local conformational changes within the 

receptor which make FGFR1 a better substrate for Tyr-dephosphorylation. It is also possible that 

the phosphate group could disrupt interactions of FGFR1 with its binding partners, resulting in the 

attenuation of receptor signaling. 

Since ERKs can play a dual role in FGFR1 signal transduction by inducing both mitogenic 

signaling and negative regulation, it seems that their spatial and temporal dynamics is crucial for 

FGF1-induced biological activities. We observed that the maximal stimulation of ERK1/2 is 

reached already 5 min after FGF1 stimulation, while Ser777 phosphorylation attains its maximum 

approximately 10 min later. ERKs are therefore early event signaling molecules that are able to 
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activate their downstream targets before the activity of FGFR1 is negatively regulated by 

phosphorylated Ser777. 

Interestingly, an alternatively spliced variant of FGFR2 (FGFR2 IIIb) with a shortened C-

terminal tail has been shown to be expressed in certain human cancers. Cha and coworkers found 

that deletion of the carboxyl-terminal sequence of FGFR2 IIIb contributed to the transforming 

activity of the receptor (25). They suggested a dual mechanism of enhanced transformation caused 

by aberrant receptor recycling and persistent FRS2-dependent signaling. Furthermore, they 

correlated this effect with the deletion of specific Tyr770 and Leu773 in the C-terminal tail of FGFR2. 

However, it is possible that the transforming effect of truncated FGFR2 IIIb receptors could be due 

to the deletion of Ser781, corresponding to Ser777 in FGFR1, resulting in evasion of the MAPK-

mediated negative feedback here described.  

We showed that even in the absence of FGF1, ERKs activated by EGF, serum, or a 

constitutively active variant of MEK1 were able to phosphorylate Ser777 of FGFR1. Interestingly, 

pretreatment of cells with EGF leading to phosphorylation of Ser777 reduced the cell’s response to 

FGF1 stimulation. These data confirm multifarious interplay of different signaling pathways acting 

through a novel regulatory mechanism of FGFR1 signaling. Direct serine phosphorylation of 

FGFR1 controls the tyrosine phosphorylation within the kinase domain of the receptor and thereby 

it’s downstream signaling events and biological functions. This mechanism operates in addition to 

other negative feedbacks controlling FGFR1 activity and ensures tight and accurate signaling. The 

phosphorylation of Ser777 in FGFR1 following activation of ERKs protects the cell not only from 

ligand-independent receptor activation but also from simultaneous activation by several different 

stimuli. It is possible that this type of regulation also applies to other signaling receptors and 

functions as a mechanism to control inaccurate signaling upon exposure to multiple growth factors. 

Prephosphorylation of Ser777 in the absence of FGFR1 ligand desensitizes the cells regulating the 

magnitude of the response to upcoming FGF. Moreover, in the absence of FGFR1 ligand 
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prephosphorylation of Ser777 by other stimuli may protect the cell against inadvertent activation of 

FGFR1 signaling cascades by ligand independent dimerization of receptor molecules (14, 26). This 

could also be relevant in cancer where FGFRs are overactive and phosphorylated Ser777 may play a 

tumor suppressive role. 

Indeed, FGFR1 is not the only receptor phosphorylated by MAP kinases. ERKs have been 

shown to interact and phosphorylate other transmembrane proteins including EGFR and the netrin 

receptor DCC (27, 28). The cytoplasmic domain of DCC phosphorylated by ERK2 is unstructured, 

similarly to the C-tail of FGFR1. The exact role of the DCC phosphorylation by MAPKs is 

unknown, nevertheless the link between ERKs signaling and DCC signaling suggests physiological 

importance of that ERKs-mediated threonine/serine modification (28).  

The fact that the unordered C-terminal part of FGFR1 is very rich in serines is likely to be of 

physiological importance, as most serine-threonine phosphorylation sites are located in unstructured 

regions and are clustered in the primary amino acid sequence (29, 30). We suggest that Ser777 and 

probably other serines in the C-tail of FGFR1 work as molecular switches and modulate the primary 

response upon receptor stimulation attained by tyrosine phosphorylation. It has elegantly been 

shown by Tan and coworkers that the number of genomically encoded tyrosine residues (and thus 

potential phosphorylated tyrosines) decreases with increasing species complexity in metazoan 

species (31). This seems to be a result of evolutionary selection to eliminate phosphorylation events 

that could lead to uncontrolled or unspecific signaling. We calculated the number of tyrosine, serine 

and threonine residues in the cytoplasmic part of FGFR1 in different species and observed that the 

number of tyrosines decreases with the number of different cell types, in contrast to serines (and 

serines + threonines), whose number correlates positively with the organism’s complexity (fig. S6 

and Fig. 7B). The reason for this could lie in the fact that conserved phospho-tyrosine sites tend to 

be located in ordered protein domains, in contrast to phospho-serines located in disordered regions, 

which evolve rapidly and are more tolerant to extensive serine phosphorylation (31). The increased 
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number of serines and serines + threonines in FGFR1s of higher organisms suggests that 

simultaneously with the gain of new cell types, additional mechanisms of signaling control were 

developed. 

In summary, our study reveals a novel regulation mechanism of FGFR1 signaling involving 

ERK-dependent Ser777 phosphorylation. We discovered that the C-tail of FGFR1 is a direct 

substrate for the MAPKs ERK1/2 and that these powerful mitogens are able to regulate their own 

signaling by tuning down the activity of the receptor. This newly discovered negative feedback loop 

based on Ser777 phosphorylation in FGFR1 is part of a complex system controlling proliferation 

signals that in excess may lead to dramatic events including cancer. Better understanding of the 

regulatory mechanisms of FGFR1, which are often interrupted in oncogenic malignancies, should 

ultimately lead to more efficient drug discovery and design. 

 

Materials and methods 

Antibodies and reagents 

The following primary antibodies were used: rabbit anti-MAPK (ERK1/2, p44/p42), mouse anti-

phospho-MAPK (ERK1/2, p44/p42) (Thr202/Tyr204), rabbit anti-phospho-AKT (Ser473), rabbit anti-

FGFR1, mouse anti-phospho-FGFR (Tyr653/Tyr654), rabbit anti-phospho-FRS2α (Tyr196), rabbit anti-

GRB2 from Cell Signaling Technology, rabbit anti-phospho-PLC-γ (Tyr783), rabbit anti-FRS2α, 

mouse anti-GST, rabbit anti-GST and rabbit anti-FLAG from Santa Cruz Biotechnology, mouse 

anti-phospho-p38 MAPK antibody (Thr180/Tyr182), mouse anti-HSP90, mouse anti-early endosomal 

antigen 1 (EEA1), mouse anti-EGFR (activated form) from BD Transduction Laboratory, mouse 

anti-FLAG M2 from Sigma-Aldrich, mouse anti-Myc from Upstate Biotechnology, mouse anti-

HA.11 and mouse anti-6-His from Nordic Biosite. Specific anti-phospho-FGFR1 (Ser777) (pS777-

FGFR1) antibody was made by GenScript using the following phospho-specific peptide 

CSMPLDQYpSPSFPDTR. The antibody was purified using the phosphopeptide and by cross-
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adsorption to the corresponding non-phosphopeptide. HRP-conjugated and fluorescent secondary 

antibodies were from Jackson Immuno-Research Laboratories.  

Heparin-Sepharose CL-6B affinity resin was from Amersham. Mowiol, brefeldin A, okadaic 

acid, PD173074 and MEK1/2 inhibitor (SL327) were from Calbiochem. Cycloheximide, heparin 

and U0126 were from Sigma-Aldrich. Protease inhibitor cocktail tablets (EDTA-free, complete) 

were from Roche Diagnostics. FGF1 was labeled with Cy3-maleimide (GE Healthcare) following 

the manufacturer’s procedures. Hoechst 33342, AlamarBlue®, Dynabeads® anti-mouse IgG and 

Dynabeads® Protein G were purchased from Invitrogen. All other chemicals were from Sigma-

Aldrich. 

 

Cell lines and bacterial strains 

NIH3T3 cells were grown in Quantum 333 medium (PAA Laboratories) supplemented with 2% 

bovine serum (Gibco), 100 U/ml penicillin and 100 μg/ml streptomycin. DOTAP liposomal 

transfection reagent (Roche Diagnostics) was used according to the manufacturer’s protocol to 

obtain U2OS cells stably expressing S777A and S777D mutants of FGFR1. Clones were selected 

with 1 mg/ml geneticin (G-418) (Invitrogen). Clones presented in this paper were chosen based on 

their receptor expression level analyzed by immunofluorescence and immunoblotting. U2OS cells 

stably expressing FGFR1 have been described previously (10). The cells were propagated in 

DMEM supplemented with 10% fetal bovine serum, 100 U/ml penicillin and 100 μg/ml 

streptomycin. In addition, 0.2-1 mg/ml geneticin was added to the growth media of stably 

transfected U2OS cells. 

Adult rat dorsal root ganglia (DRG) were dissected, collected in ice-cold RPMI medium 

supplemented with antibiotic-antimycotic (100 U/ml penicillin, 100 μg/ml streptomycine, 0.25 

μg/ml amphotericine B, Gibco) and cultured as described previously [Hausott et al., 2008]. DRG 
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cultures were maintained in TNB 100 medium (Biochrom) supplemented with protein-lipid-

complex (Biochrom) and antibiotic-antimycotic.  

For expression of FGF1 and GST-C-tail FGFR1 constructs Escherichia coli strain 

Bl21(DE3)pLysS from New England Biolabs was used. 

 

Plasmids  

pcDNA3-FGFR1, pcDNA3-FGFR1 S777A and pcDNA3-FGFR1 S777D have been described 

previously (16, 32). A construct encoding 68 C-terminal amino acids from FGFR1 (residues 755-

822) in pGEX vector was used for expression of FGFR1 C-tail fused to the C-terminus of GST (16). 

The FGF1 construct comprised a truncated form (residues 21-154) of human FGF1 in the pET-3c 

vector (33). pECE-HA-MEK1-SS/DD and pECE-HA-MEK1-S222A plasmids were a generous gift 

from Professor Jacques Pouyssegur (Institute of Developmental Biology and Cancer Research, 

University of Nice) (18, 19). The pEGFR plasmid was kindly provided by Professor Harald 

Stenmark (Institute for Cancer Research, The Norwegian Radium Hospital) and was originally a 

gift from Professor Alexander Sorkin (Department of Pharmacology, School of Medicine, 

University of Colorado, Denver). 

 

siRNA oligonucleotides and cell transfection 

siRNA oligos targeting GRB2 (targeting sequence: 5- CAUGUUUCCCCGCAAUUAUTT-3) 

were purchased from Dharmacon RNA Technologies. siRNA targeting ERK1 (p44) (targeting 

sequence: 5-CTCCCTGACCCGTCTAATATA-3) and ERK2 (p42) (targeting sequence: 5-

AATGACATTATTCGAGCACCA-3) were purchased from QIAGEN. ON-TARGETplus 

siCONTROL siRNA were purchased from Dharmacon RNA Technologies.  

siRNA knockdown was performed using DharmaFECT transfection reagent according to the 

manufacturer’s protocol. Experiments were performed 72 hours after transfection.  
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Transient expression of the different constructs was performed by transfecting cells with plasmid 

DNA using Fugene 6 transfection reagent (Roche Diagnostics) according to the manufacturer’s 

protocol. Softened DRGs were transfected by electroporation (Amaxa Nucleofector™(Lonza, 

program O-003)) using Rat Neuron Nucleofector® solution (Lonza).  

 

Recombinant proteins 

Active human recombinant MAP kinases, ERK1 (p44) and ERK2 (p42), were purchased from 

Calbiochem. Active human MEK1 was from Chemicon International, inactive MEK1 was from 

Upstate and human recombinant p38α MAPK from R&D Systems. Recombinant FGF1 was 

produced in E.coli as described previously (33). Recombinant EGF and MBP was obtained from 

Sigma-Aldrich.Recombinant fusion protein of the C-terminal part of FGFR1 with GST (GST-C-

tail-FGFR1) and its mutants were produced in E.coli and purified with Glutathion Sepharose 

(Amersham Biosciences) according to standard procedure. 

 

Analysis of signaling cascades 

Serum-starved cells were stimulated with 20 ng/ml FGF1 in the presence of 10 U/ml heparin or 

20 ng/ml EGF or 10% serum in the presence or absence of indicated inhibitors for different times. 

Inhibitors were added 15 min prior to stimulation and kept throughout the experiments which were 

carried out in the presence or absence of 10 μg/ml cycloheximide or 2 μg/ml brefeldin A. The cells 

were lysed with SDS sample buffer, scraped and sonicated. Total cell lysates were separated by 

SDS-PAGE, transferred onto Immobilon-P membrane and subjected to immunoblot analysis. The 

membrane was stripped and re-probed with different antibodies. ImageQuant version 5 was used for 

quantification of the intensity of the bands of interest. In the case of quantification of the intensity 

of bands corresponding to phosphorylated FGFR1 from U2OSR1, U2OSR1 S777A and U2OSR1 

S777D cells, the intensity of the bands corresponding to phosphorylated FGFR1 were divided by 
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the intensity of bands for total FGFR1 and then normalized towards the maximum response of 

U2OSR1 WT cells. 

 

In vitro phosphorylation of recombinant C-tail of FGFR1 

In vitro phosphorylation experiments were performed with recombinant proteins. 1 μg of a 

fusion protein was incubated with kinases and 40 μCi/ml [γ-33P]ATP in reaction buffer (25 mM 

HEPES, pH 7.5, 20 mM MgCl2, 1 mM Na2MO3, 20 mM sodium β-glycerophosphate, 1 mM DTT, 5 

mM EGTA) at 30°C for 30 min. As a control, 2 μg of GST was used. The reaction was stopped by 

TCA precipitation (30 min on ice). Then, the samples were centrifuged, washed twice with cold 

acetone and dissolved in sample buffer. The proteins were analyzed by SDS-PAGE, electroblotting 

and autoradiography and then the membrane was stained with Coomassie Blue. 

 

In vitro coimmunoprecipitation of ERK1 with recombinant C-tail of FGFR1  

Human recombinant His-tagged ERK1 (100 ng) was incubated for 2 hours at 4°C with 500 ng of 

recombinant fusion protein of C-tail of FGFR1 or its mutants with GST-Tag or with GST alone or 

GST-FGF1 (controls) in PBS buffer supplemented with 0.1% (w/v) BSA and protease inhibitors. 

Complexes were then pelleted using mouse anti-GST antibodies immobilized on Dynabeads® anti-

mouse IgG. The Dynabeads® were washed six times with binding buffer and then proteins were 

eluted in sample buffer and analyzed by SDS-PAGE and immunoblotting.  

 

FGFR1 immunoprecipitation 

FGFR1 was immunoprecipitated from lysates of U2OS cells stably expressing FGFR1 or its 

mutants using anti-FGFR1 antibodies immobilized to Dynabeads® Protein G. The 

immunoprecipitates were washed three times with lysis buffer (100 mM NaCl, 10 mM Tris pH 7,4, 

5 mM EDTA, 1% Trixton-100) and once with PBS buffer supplemented with 0.1% (w/v) Tween 
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(washing buffer). To analyze binding of ERK1 to full-length FGFR1, FGFR1 immunoprecipitates 

were incubated with 50 ng of active recombinant His-tagged ERK1 at 4°C for 90 min. Complexes 

were then washed with washing buffer, eluted in samples buffer and analyzed by SDS-PAGE and 

immunoblotting. To test the phoshorylation of full-length FGFR1, FGFR1 immunoprecipitates were 

washed with high salt buffer (washing buffer with 1 M NaCl) and incubated for 15 min with 100 

nM PD17034 before performing the in vitro phosphorylation assay as described above for 

recombinant C-tail of FGFR1. 

 

Laser scanning confocal microscopy 

Cells grown on coverslips were starved for 4 hours and then incubated for 30 min at 37°C with 

100 ng/ml Cy3-FGF1 in the presence of 20 U/ml heparin or with 100 ng/ml EGF. The cells were 

fixed in 4% formaldehyde solution and permeabilized with 0.1% Triton X-100. Next the cells were 

incubated with primary antibodies for 20 min, washed and then incubated with secondary antibodies 

coupled to a fluorophore for 20 min before mounting in mowiol. The cells were examined with a 

Zeiss LSM 510 META confocal microscope (Carl Zeiss). Images were prepared with Zeiss LSM 

Image Browser version 3.2 (Carl Zeiss) and CorelDRAW11. Quantifications were performed using 

Image J software.  

 

Proliferation assay 

Serum-starved U2OS cells stably expressing FGFR1 or its mutants were treated with  FGF1 (100 

ng/ml) in the presence of heparin (10 U/ml) for 48, 72 and 96 hours. At each time point 

AlamarBlue® reagent was added to cells and after 3 h the fluorescence of reduced form of the dye 

was measured using EnVision® multimode plate reader (PerkinElmer). The fluorescence signal 

reflecting the number of cells in each experiment was normalized to the number of U2OSR1 cells at 

time point 0. 
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Time-lapse live-cell imaging and cell migration tracking 

Serum-starved U2OS cells and U2OS cells stably expressing FGFR1 or its mutants were plated 

on Hi-Q4 culture dishes (ibidi Integrated BioDiagnostics) and observed with a BioStation IM Live 

Cell Recorder (Nikon Instruments Inc.) with a 20x objective and phase contrast at 37°C and 5% 

CO2 in humidified air. In all experiments, cells were stimulated with Cy3-labeled FGF1 (200 ng/ml) 

and heparin (20 U/ml). Image acquisition was performed every 10 min over a period of 8 hours. 

Images were analyzed with Image J software with Manual Tracking and Chemotaxis and Migration 

Tool (ibidi GmbH) plugins. The velocity of cells was calculated for the whole timeframe.  

 

Analysis of axon growth 

For measurement of axon growth, DRG neuron cultures transfected with pcDNA3-FGFR1, 

pcDNA3-FGFR1 S777A or pcDNA3-FGFR1 S777D plus EGFP were documented by inverted 

fluorescence microscopy (Zeiss Axiovert 100) equipped with a SPOT RT digital camera. 

Transfected neurons were documented 48 hours and 72 hours after transfection before and after a 

24-hour treatment with 100 ng/ml of FGF1 in the presence of heparin (10 U/ml). MetaMorph® 

(Visitron Systems) morphometry software was applied to measure the maximal distance of the 

longest axon, the total axonal length and the number of branch points. All morphologically intact 

neurons per dish with the maximal distance of the longest axon ≥ 100 μm were analyzed.  

 

Statistical analysis 

For statistical analysis one-way ANOVA with Tukey´s post test was applied. 
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Supplementary Materials 

fig. S1. In vitro phosphorylation assay with recombinant C-tail of FGFR1 and AKT kinase or 

MEK1.  

fig. S2. Effect of U0126 inhibitor on ERK1/2 activity. 

fig. S3. Effect of MEK inhibitors on FGFR1 activity in the presence or absence of brefeldin A or 

cycloheximide. 

fig. S4. The effect of siRNA knockdown of MAPKs (ERK1/2) and GRB2 on FGFR1 activity. 

fig. S5. Effect of the phosphorylation state of FGFR1 Ser777 on cell proliferation and migration in 

additional clones of stably transfected U2OS cells. 

fig. S6. Correlation of tyrosine and serine/threonine content in the cytoplasmic part of FGFR1s with 

organism complexity.   
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Figure legends 

 

Fig. 1 

Phosphorylation of FGFR1 by MAPKs. 

(A) ClustalX2 alignment of C-terminal regions of FGFRs from various species. Numbers refers to 

amino acid numbering used for human FGFR1. Ser777 of FGFR1 and corresponding serines of other 

FGFRs are indicated by *. 

(B) In vitro phosphorylation of recombinant FGFR1 C-tail by MAPKs. GST-tagged C-terminal part 

of wild type FGFR1 (Ct-FGFR1-WT), its S777A mutant (Ct-FGFR1-S777A), S777D mutant (Ct-

FGFR1-S777D) or GST-tag alone were subjected to phosphorylation reaction with recombinant 

active kinase ERK1 or ERK2. Shown are autoradiography (upper panel) and Coomassie Blue 

staining (lower panel).  

(C) In vitro phosphorylation of full-length FGFR1 immunoprecipitated from U2OSR1, U2OSR1 

S777A or U2OSR1 S777D cells by MAPKs. Immunoprecipitated receptors were subjected to 

phosphorylation reaction with recombinant active kinase ERK1 or ERK2. Shown are 

autoradiography (upper panel) and immunodetection using anti-FGFR1 antibody (lower panel).  

(D) In vitro coimmunoprecipitation of recombinant FGFR1 C-tail and ERK1. GST-tagged Ct-

FGFR1-WT, its mutants or GST-tag alone were incubated with recombinant ERK1. Protein 

complexes were immunoprecipitated with anti-GST antibody and analyzed by Western blotting.  

(E) Binding of recombinant ERK1 to full-length FGFR1 immunoprecipitated from U2OSR1 cells. 

FGFR1 immunoprecipitates were incubated with active His-tagged ERK1 and complexes were 

analyzed by Western blotting. 

 

Fig. 2 

FGFR1 Ser777 phosphorylation depends on activity of MAPKs. 
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(A) Western blot analysis of serum-starved U2OSR1 or NIH3T3 cells pretreated with or without 

MEK1/2 inhibitors (20 μM U0126 or 1 μM SL327) and then stimulated with FGF1 for indicated 

times.  

(B) Confocal microscopy images of serum-starved U2OSR1 cells incubated with or without Cy3-

FGF1 for 30 min and stained with anti-pS777-FGFR1 and anti-EEA1 antibodies. As indicated, 

some cells were also incubated with U0126 before addition of FGF1 and throughout the 

experiment. Bar, 5 μm. 

(C) Confocal microscopy images of U2OSR1 cells transfected with indicated constructs, starved 

and incubated with or without Cy3-FGF1 for 30 min and stained with anti-pS777-FGFR1 and anti-

HA antibodies. As indicated, some cells were also incubated with U0126. d.n.MAPKK, dominant 

negative MAPKK and c.a.MAPKK, constitutively active MAPKK. Bar, 5 μm. 

 

Fig. 3 

Effect of blocking MAPK (ERK1/2) activity on FGFR1 signaling. 

(A) Western blot analysis of serum-starved U2OSR1 or NIH3T3 cells pretreated as indicated with 

U0126 (20 μM) or SL327 (1 μM) and then stimulated with FGF1 in the presence of brefeldin A (2 

μg/ml) for indicated times. Quantification of the bands representing phosphorylated FGFR1 

(Tyr653/Tyr654) is presented in the graphs and expressed as a fraction of maximum response in the 

absence of inhibitor. Graphs represent the mean ± SD of three independent experiments. 

(B) Western blot analysis of U2OSR1 cells transfected with GRB2 siRNA or a non-targeting 

siRNA control (scr), then serum-starved and stimulated with FGF1 for indicated times. The 

efficiency of knockdown was assessed in every experiment using anti-GRB2 antibody. 

Quantification of the bands representing phosphorylated FGFR1 (Tyr653/Tyr654) is presented in the 

graph and expressed as a fraction of the maximum response in cells transfected with control siRNA 

(scr). The graph represents the mean ± SD of three independent experiments. 
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Fig. 4 

Interplay between Ser777 phosphorylation and tyrosine phosphorylation of FGFR1. 

(A) Effect of blocking serine/threonine phosphatases on tyrosine phosphorylation of FGFR1. 

Western blot analysis of serum-starved U2OSR1 and NIH3T3 cells incubated overnight with or 

without 150 nM okadaic acid and then stimulated with FGF1 in the presence of cycloheximide (10 

μg/ml) for indicated times. Quantification of the bands representing phosphorylated FGFR1 

(Tyr653/Tyr654) is presented in the graphs and expressed as a fraction of maximum response in the 

absence of okadaic acid. The graphs represent the mean ± SD of three independent experiments. 

(B) Effect of Ser777 mutation on tyrosine phosphorylation of FGFR1. Western blot analysis of 

serum-starved U2OSR1, U2OSR1 S777A or U2OSR1 S777D cells pretreated with or without 

U0126 (20 μM) and then stimulated with FGF1 in the presence of brefeldin A (2 μg/ml) for 

indicated times. Quantification of the bands representing phosphorylated FGFR1 (Tyr653/Tyr654) 

divided by the intensity of total FGFR1 is presented in the graphs and expressed as a fraction of 

maximum response in U2OSR1 WT cells. Graphs represent the mean ± SD of three independent 

experiments. 

 

Fig. 5 

Biological significance of the phosphorylation state of FGFR1 Ser777. 

(A) FGF1-induced cell proliferation of U2OSR1, U2OSR1 S777A and U2OSR1 S777D cells. 

AlamarBlue® reagent was added to the serum-starved cells stimulated with FGF1 for indicated 

times and the fluorescence corresponding to number of cells was measured. The graph represents 

the mean ± SEM of three independent experiments. 
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(B) Effect of Ser777 mutants on cell migration. FGF1-stimulated U2OS, U2OSR1, U2OSR1 S777A 

and U2OSR1 S777D cells were subjected to time-lapse live-cell imaging. Values are given as 

means ± SEM of three independent experiments, where 30-50 cells per experiment were analyzed.  

(C) Effect of Ser777 mutants on axon growth and neuronal morphology of adult DRG neurons. Total 

axonal length, maximal distance of the longest axon and the number of branch points per cell were 

measured in FGF1-stimulated DRG neurons cotransfected with EGFP vector and indicated 

constructs. The graphs represent the mean ± SEM of three independent experiments with a total 

number of > 46 neurons per group. Representative images of neuronal morphology of adult DRG 

neurons before and after FGF1 treatment (24 hours) are shown.  

Statistical significance: * p < 0.05, ** p < 0.01, *** p < 0.001. 

 

Fig. 6 

EGF and serum induce Ser777 phosphorylation of FGFR1. 

(A, B) Western blot analysis of serum-starved U2OSR1, U2OSR1 transiently transfected with 

EGFR and NIH3T3 cells stimulated with FGF1 or EGF (A) or serum (B) for 15 min. When both 

stimuli are indicated cells were pretreated with serum or EGF for 30 min and subsequently treated 

with FGF1 for 15 min. U0126 (20 μM) and PD173074 inhibitor (100 nM) was added as indicated. 

(C) Confocal microscopy images of serum-starved U2OSR1 stimulated with Cy3-FGF1 or EGF for 

30 min. Bar, 5 μm. 

(D) Western blot analysis of serum-starved U2OSR1 and NIH3T3 cells pretreated for 30 min with 

EGF and then stimulated with FGF1 for indicated times. Quantification of the bands representing 

phosphorylated FGFR1 (Tyr653/Tyr654), FRS2α and ERK1/2 is presented in the graphs and 

expressed as a fraction of maximum response in cells untreated with EGF. The graphs represent the 

mean ± range of data of two independent experiments. 



35 
 

(E) Confocal microscopy images of serum-starved U2OSR1 cells incubated either with EGF or 

FGF1 alone or after 30-min pretreatment with EGF and stained with anti-pTyr-FGFR. Bar, 5μm. 

Quantifications of pTyr-FGFR staining is presented in the graph. 80-100 cells were quantified per 

experiment for each condition. Graphs represent the mean ± SEM of three independent experiments 

(*** p < 0.001). 

 

Fig. 7 

Mechanisms of ERK-mediated regulation of FGFR signaling and evolutionary analysis of 

serine content in the C-terminal tail of FGFR1. 

(A) Schematic representation of negative feedback attenuating FGFR1 signaling. FGF1-induced 

tyrosine phosphorylation of FGFR1 leads to activation of FRS2α followed by GRB2/SOS-mediated 

activation of RAS and MAPK (ERK1/2). ERK1/2 can also be activated by different pathways 

independent of FGFR e.g. in response to serum or EGF stimulation. Activated ERKs phosphorylate 

FRS2α on threonines (14) and FGFR1 on Ser777 resulting in reduced tyrosine phosphorylation of 

both FRS2α and FGFR1 and consequent attenuation of FGFR signaling. 

(B) Correlation of expansion of serines in the cytoplasmic part of FGFR1 with organism 

complexity. Number of different cell types correlates positively and significantly (R2=0.817) with 

serine content of FGFR1. 
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Supplementary Materials 

Supplementary Figure legends 

 

fig. S1 

In vitro phosphorylation assay with recombinant C-tail of FGFR1 and AKT kinase or MEK1.  

Recombinant GST-tagged C-terminal wild type FGFR1 (Ct-FGFR1-WT), its S777A mutant (Ct-FGFR1-

S777A), S777D mutant (Ct-FGFR1-S777D) or GST-tag alone were subjected to phosphorylation reaction 

with recombinant active AKT kinase (A) or MEK1 (B). p38 kinase, MBP (for AKT kinase), active 

ERK1/2 kinases and inactive ERK2 kinase (for MEK1) served as positive controls. “x” indicates inactive 

MEK1. U0126 (20 μM) was added as indicated. Shown are autoradiography (upper panels) and 

Coomassie Blue staining (lower panels).  

 

fig. S2 

Effect of U0126 inhibitor on ERK1/2 activity. 

Western blot analysis of serum-starved U2OSR1 and NIH3T3 cells pretreated with indicated 

concentrations of U0126 and then stimulated with  FGF1 for 15 min.  

 

fig. S3  

Effect of MEK inhibitors on FGFR1 activity in the presence or absence of brefeldin A or 

cycloheximide. 

Western blot analysis of serum-starved U2OSR1 or NIH3T3 cells pretreated with or without U0126 or 

SL327 and then stimulated with FGF1 in the presence or absence of brefeldin A (2 μg/ml) or 

cycloheximide (CHX, 10 μg/ml) for indicated times.  

 



fig. S4 

The effect of siRNA knockdown of MAPKs (ERK1/2) and GRB2 on FGFR1 activity. 

(A) Western blot analysis of U2OSR1 cells transfected with siRNA oligos targeting ERK1 and ERK2 or a 

non-targeting siRNA control (scr), then serum-starved and stimulated with FGF1 in the presence or 

absence of cycloheximide (10 μg/ml) for indicated times. The efficiency of knockdown was assessed by 

Western blotting using anti-ERK1/2 antibody.  

(B) Western blot analysis of U2OSR1 cells transfected with siRNA oligos targeting GRB2 or a non-

targeting siRNA control (scr), then serum-starved and stimulated with FGF1 in the presence of 

cycloheximide (10 μg/ml) for indicated times. The efficiency of knockdown was assessed by Western 

blotting using anti-GRB2 antibody. Quantification of the bands representing phosphorylated FGFR1 

(Tyr653/Tyr654) is presented in the graph and expressed as a fraction of the maximum response in cells 

transfected with control siRNA (scr). The graph represents the mean ± SD of three independent 

experiments. 

 

fig. S5 

Effect of the phosphorylation state of FGFR1 Ser777 on cell proliferation and migration in additional 

clones of stably transfected U2OS cells.  

(A) FGF1-induced cell proliferation of U2OSR1 cells (U2OSR1 WT #1*) and additional clones of stably 

transfected U2OS cells (U2OSR1 WT #2, U2OSR1 S777A #2 and U2OSR1 S777D #2). AlamarBlue® 

reagent was added to the serum-starved cells stimulated with FGF1 for indicated times and the 

fluorescence corresponding to number of cells was measured. The graph represents the mean ± SEM of 

three independent experiments. 

(B) Effect of Ser777 mutants on cell migration. FGF1-stimulated U2OSR1 cells (U2OSR1 WT #1*) and 

additional clones of the stably transfected U2OS cells (U2OSR1 WT #2, U2OSR1 S777A #2 and 

U2OSR1 S777D #2) were subjected to time-lapse live-cell imaging. Values are given as means ± SEM 

from three independent experiments, where 30-50 cells per experiment were analyzed.  
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U2OSR1 WT #1* denotes U2OSR1 cells used in throughout the paper previously described by Haugsten 

et al. (10). 

 

fig. S6 

Correlation of tyrosine and serine/threonine content in the cytoplasmic part of FGFR1s with 

organism complexity.  

Tyrosine content in the cytoplasmic part of FGFR1 correlates negatively (R2=0.520) and serine/threonine 

content positively (R2=0.660) with organism complexity as measured by number of different cell types. 

  



Supplementary Figures 

 

  



5 
 

 

  



6 
 

 

  



7 
 

 

  



8 
 

 

  



9 
 

 

  



10 
 

 







<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




