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Abstract 

 

Speciation involves the evolution of reproductive barriers that maintain the genetic integrity 

of species. Premating barriers, in particular, have been referred to as one of the most 

important mechanisms in keeping species segregated. In this study, I investigate such 

premating isolation between two closely related species, the house sparrow (Passer 

domesticus) and Spanish sparrow (P. hispaniolensis). These two species live in sympatry over 

most of the Spanish sparrow’s breeding range, but apparently, interbreeding between them is 

either infrequent or absent. During seven weeks of fieldwork over two breeding seasons, I 

studied the two species in an area where they are sympatric, but remain distinct, namely 

Badajoz, Spain. To examine the potential premating barriers that keep them isolated, a series 

of methods were implemented. Transect counts and radio-telemetry was conducted to 

investigate habitat use, and these methods mutually demonstrated significant habitat 

segregation between the species. House sparrows stay in closer proximity to human 

constructions, while maintaining a larger distance to water-sources, whereas Spanish sparrows 

do the opposite staying closer to water and further away from buildings and human activity. 

Further, observations of breeding colonies at a larger spatial scale revealed a between-species 

difference in choice of nest site with pure house sparrow colonies residing closer to cities than 

colonies including Spanish sparrows. By investigating phenology, I found a minimum 

difference of 13 days in timing of breeding, consistent with studies in aviaries, which would 

reduce gene flow significantly. Hence, the opportunities for hybridization are strongly 

reduced due to spatial and temporal isolation. Finally, ecological niche models indicate dry 

climate as the main driving force for the distribution of Spanish sparrow which can point to 

fundamental ecological differences between the species. Overall, my results suggest multiple 

ecological differences between the two species that most likely contribute towards isolating 

them, explaining why they do not interbreed extensively in areas of sympatry. 
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Introduction 

 

Ernst Mayr (1942) defined species as “groups of actually or potentially interbreeding natural 

populations, which are reproductively isolated from other such groups”. When two such 

groups meet in sympatry, and apparently do not interbreed (at least not at high rates), barriers 

have to be present between them in order for them to retain their genetic integrity. Identifying 

reproductive barriers that prevents gene flow between species is therefore vital for the 

understanding of speciation. 

 Reproductive barriers are mechanisms that block genes from flowing between taxa. 

Such isolation can be classified into three major categories depending on when in the 

reproductive cycle they act: premating, postmating prezygotic and postzygotic barriers. Of the 

three categories, premating barriers have often been referred to as the more important, critical 

and effective barriers against gene flow (e.g. Coyne and Orr 2004). They are mechanisms that 

can prevent or reduce the gene flow before postzygotic barriers even come into play. This 

gives the premating barriers an important role as the first defense to prevent different species 

from initiating courtship or copulation. Such barriers have been reported between many taxa, 

such as plants (Kay 2006; Martin and Willis 2007), amphibians (Littlejohn 1965), insects 

(Bailey et al. 2004; Morrow et al. 2000; Koeniger and Koeniger 2000) and birds 

(Balakrishnan and Sorenson 2006; Price 2007). Premating barriers can be further divided into 

three sub-categories, namely habitat isolation, temporal isolation and behavioral isolation 

(Coyne and Orr 2004). 

 Habitat isolation, is the set of mechanisms that arise when species exhibit preferences 

or adaptations for separate habitats, and consequently reduces the likelihood of reproductive 

encounters between the species (Funk et al. 2002). It may however not always rest solely on 

the organism's own preference, but also on competition that forces them to use different 

niches in areas of sympatry and on their ability to find the habitats to which they are best 

adapted (Coyne and Orr 2004). Basically, there are two forms of habitat isolation: 

Microspatial isolation occurs when members of the two species occupy the same general area, 

but their reproductive encounters are reduced by their different preference or adaptations to 

different parts of the area, such as different host plants. Macrospatial isolation, however, is 

when members of the two species cannot interbreed because their habitats are allopatric 

(Coyne and Orr 2004). The main difference between the two types is that in microspatial 

isolation the species regularly encounter each other, whilst for species with macrospatial 
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isolation; the contact between the species is highly reduced.  Finally, a mix of both forms of 

habitat isolation can restrict gene flow between species, as for the crickets Gryllus 

pennsylvanicus and G. firmus (Rand and Harrison 1989). These two closely related species 

are adapted to different habitats, the former preferring loamy soils and the latter sandy soils. 

Their different habitats are largely allopatric, but their ranges overlap in areas that hold 

patches of both habitats. Interestingly, in such areas, they are largely restricted to their 

respective preferred soil type resulting in a mosaic of populations. Their preference or 

adaptation for different soil type therefore acts as a barrier preventing gene flow between 

them (Rand and Harrison 1989). It is important to keep in mind that habitat isolation, like all 

forms of prezygotic isolation, can only work as a strong barrier during the period when pair 

formation occurs. For instance, many bird species overlap in their ranges in the winter and 

often appear in mixed flocks, but as soon as spring arrives and they are ready to breed, they 

split up and change to having different breeding ranges (Coyne and Orr 2004; Funk et al. 

2002). 

 Another isolating mechanism, temporal isolation, reduces gene flow because the 

species differ in mating period or season. Such isolation can either depend on different 

responses to environmental cues, for instance tidal or lunar cycles, which is often the case for 

marine species, or alternatively, it can depend on responses to different environmental cues, 

such as availability of food resources (Coyne and Orr 2004). The latter represents the case for 

the closely related cactus finch (Geospiza scandens) and the medium ground finch (G. fortis) 

on the Galápagos Islands of Daphne and Daphne Major. The breeding of the cactus finch is 

closely linked to the flowering of Opuntia echios before the annual rains, while the medium 

ground finch breeds only after the annual rains begin (Grant and Grant 1996; Millington and 

Grant 1984). Temporal isolation, however, has been suggested to be relatively unimportant 

(Mayr 1963 in Coyne and Orr 2004). Mayr argued that in animals, the contribution of such 

barriers to the preservation of reproductive isolation between species is largely unknown. 

Furthermore, he pointed out that in cases where temporal isolation was broken down due to 

unusual weather conditions, reproductive isolation was still preserved by other factors. The 

role and potential significance of temporal isolation in reducing gene flow therefore clearly 

needs further investigation. 

 Finally, behavioral isolation represents all species differences that lead to lack of 

attraction between opposite sexes of different species, and therefore prevents initiation of 

courtship or copulation between them. A typical scenario would be one sex (usually the male) 
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having a signal or trait (song, acoustic signals, plumage) that stimulates a preference in the 

other conspecific sex (usually the female) but does not stimulate individuals of other species 

(Coyne and Orr 2004). One of the best-known studies of behavioral isolation is on the wing 

melanin pattern in the western white butterfly (Pieris occidentalis) and the checkered white 

butterfly (P. protodice) (Wiernasz and Kingsolver 1992). They are closely related, live 

sympatrically in the western United States, and are morphologically similar. However, they 

do not hybridize in nature, even though their hybrids have proven to be more or less viable. 

The males of the two species differ in wing patterns; with those of P. occidentalis having 

much darker forewings. Field observations reveal that P. occidentalis females discriminate 

against courting heterospecific males relative to conspecific males. However, when 

experimentally darkening the forewings of P. protodice males, they were significantly more 

acceptable to the P. occidentalis females (Wiernasz and Kingsolver 1992). 

 Much of our knowledge regarding the evolution of reproductive isolation is derived 

from the rigorously studied Drosophila fruit flies. This has led to the revelation of two 

important patterns. Firstly, reproductive isolation increases with phylogenetic distance 

between the hybridizing species (Tubaro and Lijtmaer 2002). Studies have shown that in 

many taxa, the degree of hybridization may increase with increasing phenotypic similarities 

between the species in traits such as coloration, size, shape, song or courtship display (Grant 

and Grant 1992; Nagel and Schluter 1998; Seehausen and Alphen 1998). These studies 

suggest that species may have a hard time discriminating their own species from other species 

due to similarities in such traits. However, hybridization might not always result from failure 

in species recognition. It may also result from a scarcity of members of the other sex forcing 

heterospecific mating to happen (the so called Hubb’s principle; cf. Hubbs 1955). 

Hybridization can then be seen as a “best-of-a-bad-job” strategy (Burke and Arnold 2001; 

Hettyey and Pearlman 2003; Nuechterlein and Buitron 1998). Another hypothesis, suggested 

by Pierotti and Annett (1993), proposes that the rate of hybridization is influenced by parental 

care. Females may choose mates of another species that provides more or better paternal care 

than mates of their own species. An interesting example can be taken from Veen et al.’s 

(2001) study of the collared (Ficedula albicollis) and pied flycatcher (F. hypoleuca). In this 

study, female collared flycatchers pair with male pied flycatchers despite the fact there is a 

plentiful supply of male collared flycatchers. This happens especially in late breeding season 

and the heterospecific pairing has shown to yield 40 % more young than homospecific pairs. 

When hybrids formed between two species are of low fertility and fecundity, costs are to be 
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paid which leads to selection favoring the evolution of premating mechanisms that reduces 

hybridization (Saetre et al. 1997). Interestingly, female collared flycatchers reduce this cost of 

hybridization by engaging in extra-pair copulations with nearby conspecifics. In fact, an 

astonishing 60 % of all chicks of female collared flycatchers paired with male pied flycatchers 

are collared flycatchers and not hybrids (Veen et al. 2001).  

 Secondly, reproductive isolation is greater between sympatric than allopatric species 

with the same phylogenetic distance (Tubaro and Lijtmaer 2002). Two populations can be 

defined as being sympatric “…if individuals of each are physically capable of encountering 

one another (…) with moderately high frequency” (Bush and Howard 1986 in Rice and Salt 

1990). As many closely related species live sympatrically, sharing the same geographic areas, 

gene flow between the species is highly possible and likely. 

 In this project, I investigate potential premating barriers on both a fine and broad 

geographic scale between two closely related species, the house sparrow (Passer domesticus) 

and the Spanish sparrow (P. hispaniolensis). The house sparrow is a well-known, widely 

distributed bird with a close relationship to human settlements. Originating in the Middle 

East, it has followed the spread of agriculture some 3,000-7,000 years ago (Saetre et al. 2012). 

The Spanish sparrow, on the other hand, seems to be less associated with human habitation. 

The two species have a large sympatric range, with the distribution of the Spanish sparrow 

contained almost entirely within the distribution of the house sparrow (Figure 1). 

Interbreeding is usually very limited between the two taxa, but episodes of extensive 

hybridization have been documented in some areas, especially where the abundance of one of 

the species is low (Summer-Smith 1988).  The latter is likely to have been the case in the past 

in Italy where hybridization between them has led to the formation of a homoploid hybrid 

species (that is, a hybrid species with the same number of chromosomes as the parent 

species). This viable hybrid taxon, the Italian Sparrow (P. italiae) (Elgvin et al. 2011; 

Hermansen et al. 2011), resides on the entire Italian Peninsula and some Mediterranean 

Islands. It occurs in sympatry with the Spanish sparrow on the Gargano Peninsula in southeast 

Italy and meets the house sparrow in a narrow contact zone in the Alps. Interbreeding with its 

parent species is infrequent (with the house sparrow in the Alps) or apparently absent (with 

the Spanish sparrow on Gargano) (Hermansen et al. 2011). Still, although hybridization 

evidently has led to the formation of a viable hybrid taxon, the parent species are able to live 

in sympatry without much hybridization and introgression occurring. Thus, the study of 

potential premating barriers between the house sparrow and the Spanish sparrow in an area of 
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sympatry is very much of interest and essential for the understanding of speciation in this 

species complex. 

 

 

Figure 1. Breeding distribution of three Passer sparrow species North of the Mediterranean Sea: The house 

sparrow (grey), Italian sparrow (yellow) and Spanish sparrow (red). The hatched, red/grey areas indicate regions 

where the Spanish sparrow and house sparrow live in sympatry (Based on The EBCC Atlas of European 

Breeding Birds: Their Distribution and Abundance, Hagemeijer and Blair 1997). 

 

 No F1-hybrids have been found in the sympatric population in the study area in Spain, 

although some back-crossed individuals were detected (Hermansen, Haas and Saetre, 

unpublished data). Two general hypotheses may explain the lack of hybrids: (1) the house 

sparrow and the Spanish sparrow hybridize, but their offspring do not survive. I consider this 

hypothesis relatively unlikely due to the aforementioned successful homoploid hybrid 

speciation event in Italy (Hermansen et al. 2011) and the reported episodes of extensive 

hybridization elsewhere (Summers-Smith 1988). Also, in general, successful formation of F1-

hybrids is rather common in birds although problems may arise in the later generations (e.g. 

Price 2007). This is also strongly supported by studies of the two sparrow species conducted 
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in aviaries in which viable F1-crossess have been obtained (Alonso 1984; Haas and 

Eroukhmanoff, unpublished data). (2) Premating barriers are strong. Since, I a priori consider 

the first hypothesis relatively unlikely, my working hypothesis is that premating barriers are 

important in separating the two sparrow species. Thus, this study aims to investigate factors 

that may prevent them from interbreeding.  

 There are in fact some differences between the house sparrow and the Spanish sparrow 

that may potentially contribute to the reduction of gene flow. A difference in plumage 

(explained later) and small differences in song may act as potential sexual barriers (Summers-

Smith 1988). However, here I will focus on potential ecological barriers, including spatial and 

temporal segregation related to differences in habitat use, choice of breeding site, and timing 

of breeding.  

 A range of methods were used to study potential premating barriers between the two 

species. These include transects and radio-telemetry to investigate potential microspatial 

isolation; observations at breeding colonies to look for potential species differences in choice 

of nest site; examination of breeding phenology by catching birds to investigate beak color 

(males) and presence/absence of a breeding patch (females), traits that indicate when the bird 

is in breeding mode and finally; ecological niche modeling to investigate potential 

macrospatial isolation. 
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Materials and Methods 

 

Study Taxa 

The house sparrow 

Due to its commensal relationship with humans, the house sparrow is one of the most widely 

distributed species of land birds in the world (Summers-Smith 1988). Its natural range 

includes large parts of the world such as Europe, North Africa, parts of Asia and the Indian 

subcontinent. From these parts, it has been introduced by humans, both intentionally and 

accidently, to virtually the rest of the world. Over most of its breeding range, the house 

sparrow occurs only in manmade habitats, such as farmland and cities (Saetre et al. 2012). 

 The male house sparrow has a small black bib with no black flanking on the body side. 

Its nape and crown are grey, and it has greyish cheeks. The females and juveniles are in 

contrast quite dull in plumage, having a light brown color above and pale greyish brown 

underparts (Summers-Smith 1963). 

 The house sparrow’s domed nests are usually found under the roof of houses, or in any 

other holes and crevices in buildings, as well as behind the creepers on the walls of buildings. 

Another preferred nesting site is inside of the nests of large birds, such as storks and birds of 

prey, commonly seen in the study area in Spain. Even though it can build a nest practically 

anywhere, the construction of the nest is essentially the same, consisting of an exterior of hard 

dead grass or straw and an inside layer of softer materials (mostly feathers, but also 

occasionally hair, string, fine grasses, paper and bast) (Anderson 2006; Summers-Smith 

1963). The house sparrow breeds in colonies, and feeds in homospecific or heterospecific 

flocks. It commonly spends a great deal of time on the ground foraging on seeds, especially in 

open areas. Seeds of cultivated crops are favoured, such as oats, wheat, barley, corn, millet 

and rice. But as an opportunistic bird, it takes advantage of a variety of food sources that 

come to hand (Anderson 2006; Summers-Smith 1988).   

 

The Spanish sparrow 

Breeding in tightly packed colonies and foraging in flocks that can number in thousands of 

individuals outside the breeding season, makes the Spanish sparrow one of the most social 

Palaearctic passerine bird. Also known as the willow sparrow, this species breeds in a rather 

thin band of latitude from southern Europe and Northern Africa eastwards to Turkestan. It 
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thus has a rather wide distribution, and over most of its range it is in sympatry with the house 

sparrow (Summers-Smith 1988) (Figure 1). 

 Striking in appearance, the Spanish sparrow has a large black bib spreading sideways 

on the breast and going over to heavy black flanking along the body sides. Its crown, nape and 

sides of the neck are chestnut red, with brightly white-colored cheeks. Females and juveniles 

are very similar to house sparrows, and it takes a trained eye to distinguish them (Summers-

Smith 1988; Saetre and Tu, personal observation). 

 The Spanish sparrow makes use of open, deciduous woodland, plantations and 

roadside trees during the breeding season, and is above all found near water-sources, such as 

rivers. Where the Spanish sparrow occurs sympatrically with the house sparrow, their nests 

are in for the most part in trees and bushes, both openly and similar to the house sparrow, in 

the under-storey of nests of birds of prey, storks, herons and corvids. However, wherever the 

Spanish sparrows are free of house sparrows, they consume the role of their close relative, 

nesting in holes and creepers on man-made structures (Summers-Smith 1988). As a colonial 

nester, the breeding colonies in some places can be incredibly large; Gavrilov (1963) recorded 

colonies of 100,000 – 800,000 nests in Kazakhstan. The nests are firmly attached to trees, and 

consist of green grass, small plants, straws or leafy twigs taking an irregular, coarsely 

spherical form. The Spanish sparrow feeds predominantly on seeds of grasses and cultivated 

cereals (wheat, millet, barley and oats), and where it is widely distributed it is considered a 

serious crop pest (Summers-Smith 1988). 

 

Study Site 

The fieldwork was conducted during a six-week period in March-April 2011, and one week in 

April-May 2012. I made use of two study areas: 1) a major part of the largest province in 

Spain, Badajoz (38°52′44″N, 6°58′1″W, hereafter Badajoz province), where I by car 

crisscrossed the roads in search for Spanish and house sparrow breeding colonies, 2) the 

Marzala farm (4 km
2
, 38°38′55.42″N, 7°12′55.53″W), mainly consisting of open oak tree 

forests and farmland, giving the area both farmland as well as semi-natural habitats (Figure 

2).  

 

http://toolserver.org/~geohack/geohack.php?pagename=Badajoz&params=38_52_44_N_6_58_1_W_type:city
http://toolserver.org/~geohack/geohack.php?pagename=Badajoz&params=38_52_44_N_6_58_1_W_type:city
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Figure 2. A map of the Iberian Peninsula including a zoomed in panel of the study area. The black dots in both 

panels show the location of Badajoz city, the yellow star represent Marzala farm and finally, the small black 

triangles represent the locations of identified sparrow colonies in Badajoz province. 

 

Habitat Use 

Radio-telemetry 

Radio-tracking was conducted during March-April 2011 at Marzala Farm. For practical 

reasons we were not able to perform this in 2012. A total of 5 birds: 3 house sparrows and 2 

Spanish sparrows were caught using mist nets at two spots within the farm for the purpose of 

radio-tracking. The equipment used was from Biotrack (Biotrack Ltd, Wareham, Dorset, 

United Kingdom), and consisted of radio-transmitters (PicoPip Ag392), a receiver and an 

antenna. The radio-transmitters weigh approximately 1 gram, i.e. less than four percent of the 

weight of an average house or Spanish sparrow, and have a range of 200-600 meters. The 

transmitters were attached to the birds with leg-loop harnesses (Rappole and Tipton 1991). 

The making and the dimensioning of the leg-loop harnesses were done according to Naef 

Daenzer’s (2007) allometric function based on body mass data, but slightly modified to fit the 

transmitter birds in the best possible way. The procedure includes attaching two elastic strings 
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(loops) on both sides of the sender with superglue with a harness loop span of 50 mm. The 

result is a backpack-like radio-transmitter that fits well on the bird. The transmitter is then 

attached to the bird by pulling the loops over their thighs and placing the transmitter itself on 

the rump. It is of great importance to properly attach the radio-tags to avoid negative effects 

such as entanglement of the wing, leg or bill, which can lead to immobilization and fatal 

harm. The birds were tracked 1-5 times a day for a period of 1-2 weeks. The respective 

locations were recorded using a GPS (Garmin Norge AS, Dilling, Norway). 

 By using Google Earth version 6.2.2.6613 (Google Inc., Mountain View, CA 94043, 

USA), we measured the distance between the individuals’ tracked locations and the nearest 

farm building/construction, river and  pond. 

 

Transects 

I monitored the distribution of house and Spanish sparrows by systematically walking through 

the network of roads and paths at the Marzala Farm study area (approx. 4 km
2
) and recording 

the position of the sparrows we observed (road transects). For any given observation we noted 

the approximate number of birds (most observations concerned birds in flocks), the species 

(pure house sparrow, pure Spanish or mixed flocks) and the habitat type (Oak tree forest, near 

buildings, near water-sources). The location of each observation site was recorded using a 

GPS. The road transects were repeated each week for the study period of 2011. A total of 5 

transect walks were carried out. 

 The coordinates for all observations were exported to ArcGIS 9.3.1. (Esri, Redlands, 

CA), where they were plotted on a map of the study site. In addition, Google Earth was used 

to measure distance to the nearest farm building/construction, as well as river and pond. 

 

Choice of Breeding Site 

Observations of breeding colonies were made for an area consisting of large parts of Badajoz 

province during April-May 2012. A car was utilized for a three-day road-trip to find stork 

nests (a common nesting site for sparrows) along roads containing colonies of either house 

sparrows, Spanish sparrows, or a mix of both species. Quantification of the species was based 

on observation and a rough count of nests. A total of 38 colonies were recorded of which 18 

were of mixed species and 20 of pure house sparrows. 

 Google Earth was utilized to measure the distance between the different colonies and 

the nearest city and crop field. 
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Breeding Phenology 

A total of 193 sparrows (House sparrow: 53 females and 74 males; Spanish sparrow: 31 

females and 35 males) were caught using mist nets at five different spots within the Marzala 

Farm study area in 2011. In addition to measures of beak height, beak length, tarsus length, 

wing length and bib size, I recorded phenological traits that indicate the breeding status of the 

bird. In males we recorded the beak color, ranging from pale (pre-breeding) to black 

(breeding mode) and in females the presence or absence of an incubation patch. When 

incubation is initiated the female plucks off feathers of her belly to produce a bare skin patch 

that keeps the eggs warm. 

 

Hybrids 

Catching 

Male individuals were classified as pure house sparrow, Spanish sparrow or (if any) hybrid 

based on the plumage coloration (described above). Females were only classified to species 

(no hybrid class) as they are more similar in phenotype. In addition, in a parallel genetic 

study, all the individuals included in my study were genotyped for species diagnostic SNP-

markers (Hermansen, Haas and Saetre, in prep). The information from that study is used here 

to help classify birds as pure Spanish, pure house or F1-hybrids. 

 

Nest boxes 

To investigate the reproductive success of the potential heterospecific pairs relative to pure 

pairs of both species, we wanted to measure and compare the date of first egg, clutch size, 

hatching success and fledging success. 125 nest boxes for the sparrows were set up around the 

Marzala Farm at the start of 2011, scattered over five stations with 28 boxes each. These five 

stations were situated both close to the farm-houses and in more semi-natural sites. However, 

the sparrows did not make use of the nest boxes the first breeding season of 2011. Although 

some of the nest boxes were utilized the second season, we have no usable data. 

 

Permissions for radio-tracking, catching and measuring birds were obtained from the 

appropriate authorities in Spain. 



18 

 

Ecological Niche Modeling (ENM) 

To predict the potential distribution of the Spanish sparrows and the ecological factors that 

may explain their distribution, I made use of ecological niche modeling. Ecological niche 

models were constructed for the Spanish sparrow using the maximum entropy method 

implemented by the program MaxEnt version 3.3.3k (Phillips et al. 2004; 2006). This method 

finds the model that best predicts the probability distribution of a species as a function of 

environmental variables. The “best” probability distribution is the one that is consistent with 

the empirical presence data and the environmental conditions connected to it, and also makes 

the least constrained assumptions about the rest of the distribution (a distribution as close to 

uniform as possible) (Phillips et al. 2004). Ecological niche models use geo-referenced point 

locality data (presence) in combination with environmental data (i.e. climate and land cover) 

in the form of GIS data layers to identify areas that have the most suitable habitat for the focal 

species (Glor and Warren 2011; Soberón and Peterson 2005). I only modeled the distribution 

of Spanish sparrows due to the fact that the distribution of house sparrow is so strongly 

associated with human settlements, and it is basically found everywhere humans reside. Thus, 

making a model for such a species would not give any fruitful results. A more useful approach 

would be to utilize absence-points (i.e. where the house sparrow does not exist), but such data 

are difficult to obtain. 

 MaxEnt requires all layers to have the same projection, resolution and geographic 

boundaries.  

 

Data  

Presence data, with a resolution of 10 x 10 km, for the Spanish sparrow on the Iberian 

Peninsula and the Canary Islands were extracted from breeding bird atlases (Spain - Martín 

and Del Moral 2003; Portugal – Rufino 1989) All presence points deemed by the authors to 

indicate probable or confirmed breeding were digitalized and transferred to ArcGIS 9.3.1. A 

total of 897 presence locations were acquired. 

 The land cover information was taken from the European land cover and land-use 

classification CORINE (Coordination of Information on the Environment) 

(www.eea.europa.eu/data-and-maps/data). These layers have a resolution of 100m x 100m. 

 Climate and altitude data was taken from the WorldClim (19 climate and 1 altitude 

layer, www.worldclim.org) database. The climate data are biologically relevant temperature 

and precipitation layers set to a resolution of 2.5 arc-minutes. 

http://www.worldclim.org/
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Data preparation 

As the land cover information comes in one single layer, we had to split and modify it into 

multiple layers, each containing a single land cover class. The 12 most common land cover 

layers were extracted, which together cover 85 % of the Iberian Peninsula and the Canary 

Islands. These layers have a resolution of 100m x 100m, so to match the bioclimatic layers of 

2.5 arc-minutes, modifications in ArcGIS 9.3.1 (Spatial Analyst Tools,) were made. After the 

transformation, each cell in a given layer contained information on the coverage of a specific 

land cover class. Also, Worldclim data was re-projected to get the same projection as the 

CORINE Land cover data (ETRS_1989_LAEA_L52_M10). 

 Collinearity is a well-known problem with these kinds of spatial data (reviewed in 

Dormann et al. 2012) because it may result in the misidentification of relevant predictors in an 

analysis. To reduce the problem with highly correlated variables we constructed a correlation 

matrix with all 32 environmental layers (Spatial Analyst Tools, ArcGIS 9.3.1). We set the 

threshold for acceptance of a variable at r > 0.75. When a pair of variables exhibited r > 0.75 

we eliminated the variable we considered to be less biologically relevant and/or harder to 

interpret (cf. Rissler and Apodaca 2007). Using threshold values to eliminate highly 

correlated variables in spatial data sets to reduce the problems of collinearity have been 

shown to be as efficient as several of the more elaborate methods developed to deal with the 

same problem (Dormann et al. 2012) After the elimination process, a total of seven 

bioclimatic- and twelve land cover variables (Table 1; Table 2) were retained for further 

analyses. 

 

Table 1. An overview of the bioclimatic variables included in the modeling (www.worldclim.org/bioclim).  

Bioclimatic variables 

BIO3 = Isothermality (Monthly/annual temperature range) 

BIO4 = Temperature seasonality (standard deviation*100) 

BIO8 = Mean temperature of wettest quarter 

BIO9 = Mean temperature of driest quarter 

BIO15 = Precipitation seasonality (Coefficient of variation) 

BIO16 = Precipitation of wettest quarter 

BIO17 = Precipitation of driest quarter.  

http://www.worldclim.org/bioclim
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Table 2. An overview of the land cover variables included in the modeling (European Commission 1994). 

Land cover variables 

Lc12: Non-irrigated arable land = Cereals, legumes, fodder crops, root crops and fallow land 

Lc13: Permanently irrigated land = crops irrigated permanently or periodically, using a 

permanent infrastructure (irrigation channels, drainage network) 

Lc17: Olive groves = areas planted with olive trees 

Lc20: Complex cultivation patterns = Juxtaposition of small parcels of diverse annual crops, 

pasture and/or permanent crops 

Lc21: Land principally occupied by agriculture, with significant areas of natural vegetation = 

Areas principally occupied by agriculture, with significant areas of natural vegetation 

Lc22: Agro-forestry areas = Annual crops or grazing land under the wooded cover of forestry 

species 

Lc23: Broad-leaved forest = Vegetation formation composed principally of trees, including 

shrub and bush understories, where broad-leaved species predominate 

Lc24: Coniferous forest = Vegetation formation composed principally of trees, including 

shrub and bush understories, where coniferous species predominate 

Lc25: Mixed forest = Vegetation formation composed principally of trees, including shrub 

and bush understories, where neither broad-leaved nor coniferous species predominate 

Lc26: Natural grasslands = Low productivity grassland, often situated in areas of rough 

uneven ground 

Lc28: Sclerophylous vegetation = Bushy sclerophylous vegetation, includes maquis and 

garrigue.  

Lc29: Transitional woodland-shrub = Bushy or herbaceous vegetation with scattered trees.  
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Modeling and evaluation 

 I ran two models, one to predict the distribution of Spanish sparrows on the Iberian Peninsula 

and Canary Islands, and one to predict the distribution in south, and central Europe and 

Turkey. In the first model, I used both climate- and land cover data. In the second model I 

only used climate data due to the lack of land cover data for Greece. 

 In both runs I let the models train on a subsample of the present points extracted from 

the Spanish and Portuguese breeding bird atlases. Based on the training result MaxEnt 

extrapolated the distribution of Spanish sparrows in Iberia and Canary Islands, and across 

Europe and Turkey, respectively. The settings for the runs: 15 replicates were created and 

then averaged in combination with withholding 30 % of the data for testing (random test 

percentage) (cf. Thuiller et al. 2004; Virkkala et al. 2005), allowing us to test the performance 

of the model while taking advantage of all available data without having an independent 

dataset; I used subsample as the replicated run type as we have a large dataset; 5000 iterations 

to allow the model to have enough time for convergence to avoid over- and under-prediction; 

and finally, random seed for random sets of test/training for each run. Finally, the resulting 

ASCII file from MaxEnt was exported to ArcGIS and viewed. 

 The models were tested for accuracy and predictive power by using the area under the 

curve (AUC) of a receiver operating characteristic (ROC) plot (cf. Luoto et al. 2007; Thuiller 

et al. 2004; Pearson et al. 2004; Virkkala et al. 2005) and true skill statistic (TSS) (Allouche et 

al. 2006; Coetzee et al. 2009). The AUC is a threshold-independent method, and is the 

probability that a randomly chosen presence point will be scored above a randomly chosen 

absence point. A model that has the same performance as a random one will be given an 

average AUC of 0.5, and a perfect model will achieve a value closer to 1 (Fielding and Bell 

1997). The AUC-values were extracted from the MaxEnt output files for the 15 replicates (for 

each model) and averaged. Further, TSS, a threshold-dependent method, was also used to 

evaluate the model. The data for estimating TSS was extracted from the html file, sample 

predictions and background predictions from the MaxEnt output files. To estimate the 

sensitivity and specificity (below) of the models we used the logistic prediction values for the 

sample predictions, logistic value for background predictions and the 10 percentile threshold 

value located in the html file. Sensitivity and specificity was then later used to calculate TSS 

= Sensitivity + Specificity-1. Finally, the TSS for all the replicates (for each model) was 

averaged. The scores are as following: 0 – 0.40 = Poor; 0.40 – 0.55 = Fair; 0.55 – 0.70 = 
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Good; 0.70 – 0.85 = Very good; 0.85 – 0.99 = Excellent, and finally; 0.99 – 1 = Perfect 

(Monserud and Leemans 1992) 

 MaxEnt tested the importance of the variables included in the model by conducting a 

jackknife test of test gain.  

 

Sensitivity (the ability to correctly predict absence) = ((Number of values above the threshold 

value in the logistic prediction values for test data)/ ( Number of values above the threshold 

value in the logistic prediction values for test data + Number of values below the threshold 

value in the logistic prediction values for test data))  

Specificity (the ability to correctly predict absence) = ((Number of values below the threshold 

value in logistic value)/ (Number values above the threshold value in logistic value + Number 

of values below the threshold value in logistic value)) 

 

Statistical Analyses 

For the statistical analyses, SPSS version 15 (SPSS, Chicago, Ill., USA) was used.  

 

Habitat use 

Nested ANOVA was performed for all the radiotracked individuals’ nearest distance to a 

building, river and pond to test if the respective variables have any effect on the individual’s 

use of habitat. To avoid the risk of pseudo-replication, the “individual” variable was nested 

within species as a random factor. We then included distance to building, river and pond as 

covariates. 

  To assess if distance to building, river and pond have any effect on the distribution of 

the flocks (Pure house sparrow, pure Spanish sparrow and mixed) from transect data; three 

ANOVA analyses were performed with the distances to building, pond and river as response 

variables.  

 

Choice of breeding site 

I performed a type III generalized linear model (GLZ) with a probit link function to test if the 

distances to nearest building, city and field have any effect on the probability of a colony 

being of either pure house sparrows or containing any Spanish sparrow. Additionally, a 

Levene’s test of equality of error variances was conducted to compare variances between pure 
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house sparrow colonies and mixed colonies in any of the three covariates. I did not include the 

two non-stork’s nest colonies in this model. 

 

Breeding phenology 

I used the phenology data for beaks and incubation patch and plotted the 95 % confidence 

intervals for the mean.  
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Results 

 

Habitat Use 

The radio-tagged individuals showed clear differences in habitat use with respect to species. 

The house sparrows (n = 3) were at all times (when tracked) within a short range of farm 

buildings or other human constructions, such as pigsties and feeders. Moreover, none of the 

individuals were ever found far away from their previous tracked locations, indicating a small 

home range (Figure 3; Figure 4; Figure 5). In contrast, the Spanish sparrows (n = 2) were 

often further away from buildings, and were usually found closer to rivers or ponds (Figure 6; 

Figure 7). These results were further supported by the nested ANOVA analysis, where a 

significant effect of distance to pond was found (F1,4 = 28.826, P = 0.001), the Spanish 

sparrow being closer to ponds than the house sparrow (Figure 8). The two species also differ 

in their distance to farm buildings, the house sparrow keeping a close proximity (F1,4 = 

14.297, P = 0.001) (Figure 8). Similarly, a species-difference in distance to river was detected, 

where Spanish sparrows occurred closer to rivers than house sparrows (F1,4 = 9.415, P = 

0.001) (Figure 8). “Species” explains on average 53.1 % of the total variation found in the 

model (Table 3). 

 The spatial distribution of birds in flocks (Pure house sparrow, pure Spanish sparrow 

and mixed) (Figure 9) follow the same general pattern as the individual tracked birds. The 

pure house sparrow flocks are significantly closer to farm buildings than pure Spanish 

sparrow flocks (F2,80 = 23,429, P = 0.001) (Figure 10). Interestingly, the mixed flocks showed 

a tendency to be found at an intermediate distance to farm buildings (but with large variation). 

Distance to pond also showed a difference between the pure flocks with the Spanish sparrows 

being closer to ponds than house sparrows (F2,80 = 6,979,  P = 0.001) (Figure 10). The mixed 

flocks showed some tendency of being furthest away from ponds, but again with large 

variation (Figure 10). We found no significant effect of distance to river for the road transect 

analysis. 

 

Choice of Breeding Site 

The type III generalized linear model (GLZ) showed that the colonies containing any Spanish 

sparrows (i.e. mixed colonies) were significantly further away from cities compared to the 

colonies with no Spanish sparrows (i.e. pure house sparrow colonies) (χ
2

1, 37= 4.915, P = 

0.027) (Figure 11). However, we found no significant effect of distance to field (Unequal 
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variances, Levene’s test = 0.034). Furthermore, field observations revealed a clear difference 

between the two species within the mixed colonies. In all mixed colonies, the house sparrow 

seemed to occupy the nest spots closest to the center of the stork’s nest, while the Spanish 

sparrow occupied the spots on the outer parts of the nest. Finally, I also observed two large 

pure Spanish sparrow colonies with at least 1500-2000 pairs that were not in stork’s nests. 

 

Breeding Phenology  

The means and 95 % confidence intervals of the date when females showed incubation 

patches and the males black beaks are presented in Table 4. We identified a minimum of 13 

days difference in breeding time between the two species (Figure 12). The house sparrow 

males already had black beaks when we started our fieldwork 3
rd

 of March 2011, which 

means they were in breeding mode even before we arrived. The first female house sparrows to 

have a present incubation patch was documented on the 25
th  

of March. In contrast, the first 

documented Spanish sparrow male to gain black beak was on 16
th

 of March (i.e. min. 13 days 

after the house sparrows). We never documented the presence of incubation patch in the 

Spanish sparrow females. 

 

Hybrids 

No F1-hybrids were caught during the period of catching. Only a few back-crossed 

individuals were identified through genotyping (House sparrows with introgressed Spanish 

alleles; Hermansen, Haas and Saetre, in prep). 

 

Ecological Niche Modeling (ENM) 

I made two models that predict the distribution of the Spanish sparrow, displaying areas of 

habitat suitability on a map. The first model for the Spanish sparrow on the Iberian Peninsula 

is characterized by a high average AUC statistic of 0.822 with an average standard deviation 

of 0.007, and a fair average TSS-value of 0.548 (Figure 13; Table 5). The model predicts 

higher habitat suitability in the central and southern parts of the Iberian Peninsula and the 

Canary Islands (Figure 14), and is primarily driven by the environmental variable BIO17 = 

Precipitation of driest quarter (63.6 %) (Table 6). This is supported by the jackknife test on 

the importance of the variables included in the model (Figure 15). The response curve for 

BIO17 shows that the presence probability of Spanish sparrow decreases with higher 

precipitation (Figure 16). 
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 The second model predicting the distribution across Europe has a high AUC of 0.822 

with a standard deviation of 0.010 and a TSS-value of 0.550 (Figure 17; Table 5). The model 

predicts high habitat suitability in Spain, Sardinia (Italy), Sicily (Italy), Greece, Cyprus and 

Turkey (Figure 18). Similar to the previous model, the variable BIO17 is identified as the 

most important variable for explaining the distribution of Spanish sparrow (Table 7), this 

again supported by the jackknife test (Figure 19). Figure 20 shows a similar response curve 

for the BIO17.   

 

 

 

Figure 14. The ENM for the Spanish sparrow on the Iberian Peninsula, the Balearic Islands and the Canary 

Islands. The suitabilities are listed in a graded coloration from red (= highest suitability) to blue (= lowest 

suitability).  
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Figure 18. The ENM for the Spanish Sparrow in Europe. The suitabilities are listed in a graded coloration from 

red (=highest suitability) to blue (=lowest suitability) 
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Discussion 

 

Although the house sparrow and Spanish sparrow are similar in many ways, I did find clear 

differences between them in traits that likely function as premating barriers, and thus may 

help to explain the preservation of their species integrity. I have investigated premating 

reproductive barriers including micro-habitat differences, choice of breeding site, breeding 

phenology and broad-scale distribution patterns. The house sparrow is a human-commensal 

bird and its habitat use and choice of breeding site is typically close to buildings and cities. In 

contrast, the Spanish sparrow keeps a larger distance from humans and takes advantage of 

more semi-natural habitats, often near rivers and ponds. Investigation of their breeding 

phenology (color of beak and incubation patch) gave evidence of a large difference in 

breeding time. 

 

Differences in Habitat Use  

Studies of habitat use by wild animals frequently use radio tracking. However, estimation of 

habitat use based on radio-tracking of animals often poses large difficulties. First of all, a 

large sample size is hard to obtain (Aebischer and Robertson 1993). This is mainly caused by 

the economical costs of the equipment and the time consumption of the tracking. Although I 

was only able to obtain data for a total of 5 birds, the apparent difference between the species 

was statistically supported and the results were consistent with the road transect data and field 

observations. Another potential problem with radio tracking is a bias in sampling sites. All the 

tracked house sparrow individuals were from one catching spot, namely near the main farm 

building of Marzala farm, while Spanish sparrows were caught near bushes. This might have 

influenced the results. On the other hand, the road transects displayed similar patterns, as did 

the tracking of nest sites in Badajoz province. The house sparrow’s close proximity to farm 

buildings as well as to cities reflects their commensal relationship with humans. The Spanish 

sparrow’s closeness to rivers (i.e. semi-natural habitat) and ponds may reflect a preference for 

open bodies of water, but perhaps more importantly, rivers are typically surrounded by dense 

bushes that the sparrows thrive in. However, a direct comparison between the species cannot 

be made due to the fact that both species were tracked for the same time period albeit being at 

different stages in the breeding cycle. Hence, whereas the house sparrows were tracked in the 

midst of their breeding period, the Spanish sparrows were tracked partly before and partly at 

the start of their breeding period. This makes it difficult to compare the results directly. For 
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instance, the Spanish sparrow’s larger home range might partly be an artifact of the stage they 

were tracked. Nevertheless, the results display clear spatial segregation that would reduce 

encounters between the species during breeding time. Thus, habitat segregation seems to 

represent a barrier between the species that may reduce gene flow.  

 

Differences in Choice of Nest Site 

In Badajoz, the white stork (Ciconia ciconia) is a very common bird. Their large nests are 

usually placed on top of electricity masts along roads, and can contain large colonies of 

sparrows. The two Spanish sparrow colonies I observed were not in stork’s nests, but in oak-

tree forests with nests placed in trees. Interestingly, these colonies were the largest recorded 

ones, containing no less than a few thousand pairs. These sparrows feed off crops in large 

flocks and gather nesting materials nearby. The Spanish sparrows seem to be nomadic, 

choosing new breeding sites frequently (following resources), seeing as the locals said they 

had never seen the large colonies there before. This also corresponds to the fact that the 

Spanish sparrow colonies found on Marzala farm in 2011 had all scattered and were not to be 

found in 2012. 

 In accordance with results from habitat use, pure house sparrow colonies were 

significantly closer to cities, while colonies also containing Spanish sparrows were further 

away. I also detected a within-stork nest difference in the mixed colonies. In such colonies, 

the house sparrows place their nests in the center of the stork’s nest, while Spanish sparrows 

seem to occupy the ones in the outer parts of the large nest. This is likely the result of the fact 

that the house sparrow begins breeding first and occupies the best sites with presumably lower 

predation risk. Additionally, mixed colonies such as these may provide a platform in which 

hybridization can occur. However, as an immense number of Spanish sparrows breed in the 

above mentioned colonies, a large proportion can more or less be excluded from the 

possibility of contributing to gene flow between the species, and gene flow from Spanish 

sparrows into the smaller house sparrow populations may be more likely. 

  A bias in sampling should also be considered here, as we only traveled on roads giving 

an over-representation of colonies that have an easy access. In particular, I consider it likely 

that I would have missed a large number of pure Spanish sparrow colonies by this sampling 

strategy. 
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Difference in Breeding Time 

Before starting the breeding period, the two species usually amass in large heterospecific 

flocks (i.e. winter flocks). This naturally allows a lot of contact between the species. 

However, when their breeding seasons are closing in, they split from the large winter flocks 

and form smaller flocks (Anderson 2003; Summers-Smith 1988). This is when they start 

looking for nest sites and possibly start finding their mates. As I detected a minimum of 2 

weeks distance in breeding time between the two species it is reasonable to think that that the 

timing of leaving the winter flocks and then forming conspecific flocks would serve as a 

reproductive barrier. I do not know exactly how large this gap is since the house sparrows had 

already started breeding when we started our fieldwork, so the gap in breeding time may be 

larger than 2 weeks, which would further strengthen the barrier. The large distance between 

the species’ breeding time has also been supported by aviary studies (Haas and 

Eroukhmanoff, unpublished data). A difference in breeding time in birds usually reflects their 

response to different environmental cues, such as food availability (i.e. they make use of 

different food resources for their young), but I did not investigate this. I cannot ignore the fact 

that their breeding seasons do overlap to some extent, leaving a possibility of hybridization. 

However, these sparrows are usually monogamous and breed with the same mate throughout 

the breeding season (Anderson 2006). 

 

Ecological Niche Modeling and Evaluation 

Studies of reproductive isolation usually focus on areas of sympatry and ignore geographic 

isolation as part of total reproductive isolation. Ecological differences on a broad-scale, 

however, are important in speciation and ought to be considered (Kay 2006).  The two models 

for the Spanish sparrow based on the distribution data clearly suggest that the distribution of 

the Spanish sparrow is principally driven by dry habitats. The fact that one variable can 

explain 63.6 % of the driving force behind its distribution indicates niche-conservatism. In 

contrast, the house sparrow’s driving force, being tightly associated with human settlements 

and urban habitats, can most probably be explained by many diverse climate and land-cover 

variables. As the two species’ distributions are likely to be explained by different variables, it 

is reasonable to assume there also are fundamental differences in ecology. The Spanish 

sparrows’ more limited distribution also contributes to the reduction of contact between the 

species on a broad scale. 
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 The models I made had high AUC statistics and usable TSS values, and they also fit 

well with the actual distribution of the Spanish sparrow (Figure 1). The reason for evaluating 

the model with both methods is due to the relatively new criticism of the well-used AUC. This 

evaluation method has been used by a wide range of distribution modeling studies, and has 

long been considered to be the standard method to assess the predictive power of the models 

(Luoto et al. 2007; Thuiller et al. 2004; Virkkala et al. 2005). However, Lobo et al. 2008 

harshly criticize the method saying that the AUC value is partly determined by the grain size 

(scale) and the range of distribution compared with the extent of the study area. Thus, the 

AUC may increase due to the disproportionate relationship between a large study area and a 

species’ narrow geographical range. Secondly, it weighs omission (= misclassification of 

absences) and commission errors (= misclassification of presences) equally, which gives both 

errors the same importance (Elith et al. 2006, Phillips et al. 2006). One should consider a 

misclassification of absences (commission errors) a more severe drawback than a 

misclassification of presence according to Lobo et al. (2008). TSS has been suggested as an 

alternative, which is supposed to correct for both drawbacks: the problem of prevalence and 

equal weighting of omission and commission errors (Allouche et al. 2006). 

 In distribution modeling, there are also other pitfalls to consider. There are certainly 

several kinds of biases present, such as the bias in sampling, which usually occurs near roads 

or places where the accessibility is easy (Edwards et al. 2006; Wollan et al. 2008). Obviously, 

if the recoded presences do not represent the actual distribution of a species adequately, the 

quality of the modeling will be affected (Edwards et al. 2006). Overall, my strategy has 

attempted to make a model that has included the most important variables and is evaluated 

with methods considered good for such modeling.  

 

Relative Importance of Premating Barriers 

Other studies have combined different mechanisms of isolation (behavioral, temporal, spatial, 

hybrid viability) to estimate the relative contribution of different barriers to reproductive 

isolation. These include studies of Drosophila species (Coyne and Orr 1989; 1997), Asellus 

aquaticus isopods (Eroukhmanoff et al. 2011), Chorthippus grasshoppers (Bailey et al. 2004), 

Mimulus monkeyflowers (Ramsey et al. 2003), Costus gingers (Kay 2006) and Ficedula 

flycatchers (Saetre and Saether 2010). Coyne and Orr’s studies on Drosophila yielded 

important conclusions in relation to sympatric species and the relative strength of barriers. 

They show that at low genetic distances prezygotic barriers are usually far stronger than 
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postzygotic barriers in sympatric species (Coyne and Orr 1989). This pattern may be 

explained by reinforcement of prezygotic isolation by natural selection against sterile or 

inviable hybrids. The house sparrow and the Spanish sparrow, however, are able to produce 

fertile and viable hybrids. What is then maintaining the seemingly strong premating barriers 

between them? One possibility may be that hybrids formed may be disadvantaged, not 

because they have reduced fertility or viability, but because they fall between two different 

ecologies which make them unfit for any habitat (Coyne and Orr 1989). This is consistent 

with the lack of hybrids and the large difference between habitat use of the house sparrow and 

Spanish sparrow found in this study. Moreover, assortative mating is further strengthened if 

hybrids have an intermediate or a different breeding time relative to its parental species and/or 

if the courtship behavior of the hybrids makes it hard for them to secure mates (Coyne and 

Orr 1989). However, data on active mate choice in this species complex is lacking.  

 In nature, isolating mechanisms act sequentially, so that a given barrier can only 

decrease the potential gene flow that is not already excluded by earlier acting barriers (Coyne 

and Orr 1989). In addition, isolating barriers may work synergistically and so, two joint 

barriers may contribute more to isolation than one relatively strong barrier (Eroukhmanhoff et 

al. 2011). Multiple barriers between the species were indeed found in this study, together with 

the lack of F1-hybrids, I therefore expect premating barriers to be strong. However, this study 

does not yield data on which the relative contribution of different premating barriers can be 

quantified. The extent of sexual isolation via mate choice is still unknown, and it would have 

been better to estimate the habitat separation on a fine scale during the same time of the 

breeding seasons of the two species, at the time when they are choosing mates. The temporal 

difference would also be more accurately estimated by using the actual timing of pair 

formation. However, the evidence presented here nevertheless highlights the importance of 

premating barriers for the maintenance of this species complex. 

 The hybrid Italian sparrow is a living proof that isolating mechanisms present today 

have somehow been broken down in the past. If this event happened before the house sparrow 

became strongly commensal, the house sparrow and the Spanish sparrow were likely to be 

more similar ecologically. Specifically, they may have had more similar habitats creating a 

suitable habitat for the hybrid to be born into. Timing of breeding was also likely to be more 

synchronized since commensalism promotes food availability, thus leading to longer and 

earlier reproductive periods (see Saetre et al. 2012 and references therein). It is then likely that 

as the house sparrow became more commensal, habitat- and temporal isolation that was 



33 

 

reduced or absent at that time may have over time led to a stronger differentiation in ecology 

leading to the barriers that are present today. It may be possible to test this hypothesis using 

ancient DNA analysis of fossil sparrows, provided one could find adaptive genetic changes 

associated with adaptation to commensalism. 
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Conclusion 

 

In this project, I have investigated multiple aspects of reproductive isolation between the 

house sparrow and the Spanish sparrow, all the way from the local scale to the broad 

geographic scale. All the methods I applied to accomplish this yielded results that showed 

significant segregation between the species. This thesis therefore presents evidence suggesting 

multiple potential isolation mechanisms that reduce gene flow between the two sparrow 

species, keeping the interbreeding at a minimum. I find that spatial segregation on both a fine 

scale and on a large geographic scale constricts the contact between the species. Moreover, 

the ecological niche models suggest fundamental ecological differences. Non-synchronized 

timing of breeding also represents a significant barrier. Although I covered many aspects of 

the isolating mechanisms between the house sparrow and the Spanish sparrow, further 

questions have been generated. Is there any sexual isolation between the species? Does the 

sharing of stork’s nests affect the probability of hybridizing? More generally, how does the 

structure of the landscape affect contact between the species? Finding answers to these 

questions may complete our understanding of reproductive isolation in this species complex. 
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Tables 

 

Table 3. Sum of squares, F-ratio, P-value and variance components for distances to pond, 

building and river of the radiotracking. 

 

 Sum of Squares (SS) F1,4 

 

P Variance components (VC) 

Pond 

 

802157.380 28.826 0.000 67.8 % 

Building 

 

171446.374 14.297 0.000 51.0 % 

River 

 

101225.374 9.415 0.000 40.6 % 

 

 

Table 4. Mean date and standard deviation (in days, hours: minutes: seconds) for each 

phenology trait. 

 

 

Species 

 

Sex 

Beak Color/ 

Incubation Patch 

 

Mean 

 

SD 

 

N 

House  

Sparrow  

M Black 17.03.11 7 13:00:51.820 74 

M Pale - - - 

F Present 27.03.11 1 03:42:46.127 12 

F Absent 14.03.11 6 12:54:00.781 41 

Spanish Sparrow M Black 25.03.11 4 04:41:53.598 14 

M Pale 12.03.11 6 09:16:54.528 21 

F Present - - - 

F Absent 18.03.11 8 06:15:10.855 31 
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Table 5. TSS, AUC, and AUC standard deviation for the Iberian Peninsula- and Europe 

model replicates. 

 

Replicate Iberian Peninsula Europe 

 TSS AUC TSS AUC 

1 0.549 0.817 0.537 0.819 

2 0.566 0.835 0.566 0.838 

3 0.547 0.819 0.528 0.817 

4 0.563 0.833 0.659 0.819 

5 0.567 0.824 0.581 0.836 

6 0.516 0.816 0.537 0.822 

7 0.533 0.825 0.516 0.804 

8 0.530 0.812 0.560 0.833 

9 0.579 0.831 0.521 0.814 

10 0.558 0.832 0.523 0.810 

11 0.522 0.811 0.540 0.816 

12 0.564 0.821 0.539 0.818 

13 0.545 0.817 0.539 0.824 

14 0.545 0.820 0.539 0.835 

15 0.540 0.820 0.573 0.828 

Average 0.548 0.822 0.550 0.822 
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Table 6. Overview of the relative contributions of the variables to the MaxEnt model for the 

Iberian Peninsula.  

 

 

Variable Percent Contribution 

BIO17 63.6 

Lc22 6.2 

BIO15 5.3 

BIO9 3.8 

BIO3 3.4 

Lc12 2.4 

BIO8 2 

Lc17 1.9 

Lc20 1.8 

Lc25 1.6 

Lc24 1.6 

BIO4 1.3 

Lc26 1.3 

BIO16 1.3 

Lc23 0.6 

Lc29 0.6 

Lc13 0.5 

Lc28 0.4 

Lc21 0.3 
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Table 7. Overview of the relative contributions of the variables to the MaxEnt model for 

Europe.  

 

Variable Percent Contribution 

BIO17 70.5 

BIO9 10.8 

BIO15 6.1 

BIO8 4.3 

BIO3 3.9 

BIO4 2.3 

BIO16 2.1 
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Figures 

 

 

 

Figure 3. Map of radiotracking of house sparrow individual 1. The blue diamonds represent 

the tracked locations of the house sparrow; hatched orange areas show where the human 

constructions (such as pig feeders, farm buildings and stables) were located, and finally; the 

blue line marks the river. 
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Figure 4. Map of radiotracking of house sparrow individual 2. The blue diamonds represent 

the tracked locations of the house sparrow; hatched orange areas show where the human 

constructions (such as pig feeders, farm buildings and stables) were located, and finally; the 

blue line marks the river. 
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Figure 5. Map of radiotracking of house sparrow individual 3. The blue diamonds represent 

the tracked locations of the house sparrow; hatched orange areas show where the human 

constructions (such as pig feeders, farm buildings and stables) were located, and finally; the 

blue line marks the river. 
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Figure 6. Map of radiotracking of Spanish sparrow individual 1. The red diamonds represent 

the tracked locations of the Spanish sparrow; hatched orange areas show where the human 

constructions (such as pig feeders, farm buildings and stables) were located; the blue line 

marks the river, and finally; the light blue dotted polygons represent the ponds. 
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Figure 7. Map of radiotracking of Spanish sparrow individual 2. The red diamonds represent 

the tracked locations of the Spanish sparrow; hatched orange areas show where the human 

constructions (such as pig feeders, farm buildings and stables) were located; the blue line 

marks the river, and finally; the light blue dotted polygons represent the ponds. 
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Figure 8. Mean and 95 % confidence intervals of distances (m) to nearest pond, 

building/human construction and river for radiotracked house sparrow (blue) and Spanish 

sparrow (red). 
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Figure 9. Map of the road transects. The blue circles represent the house sparrow flocks; the 

red circles represent the Spanish sparrows; hatched orange areas show where the human 

constructions (such as pig feeders, farm buildings and stables) were located; the blue line 

marks the river, and finally; the light blue dotted polygons represent the ponds. 
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Figure 10. Mean and 95 % confidence intervals of distances (m) to nearest building/human 

construction and pond for the pure house sparrow (blue), pure Spanish sparrow (red) and 

mixed flocks (purple). The negative values of the confidence interval of the distance to 

building in the mixed flocks is an artifact resulting from the Gaussian assumption, and the 

dotted line indicates the minimum possible distance to any building. 
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Figure 11. Mean and 95 % confidence intervals of distances (m) to nearest city for colonies 

with no Spanish sparrows (green) and with Spanish sparrow (Orange). 
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Figure 12. Mean (± SD) dates for beak color in males (top) and incubation patch  in females 

(bottom)  for house sparrow (blue) and Spanish sparrow (red). 
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Figure 13. The receiver operating characteristic (ROC) curve for the average test data 

(Iberian Peninsula model). On the X-axis is the 1 – Specificity (the ability to correctly predict 

absence) and on the Y-axis is the Sensitivity (the ability to correctly predict presence). The 

red curve represents the mean AUC (= 0.922), and the blue shows the mean +/- one standard 

deviation (= 0.007). The black line represents the value of a randomly predicted model.   
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Figure 15. A jackknife test of variable importance by using the test gain (Iberian Peninsula 

model). The figure shows the relative contribution of each variable to the model. The dark 

blue bars shows the gain (goodness of fit) when the variable is used in isolation, while the 

light blue bars how the gain is decreased when the variable is not used in the model. The red 

bar at the bottom represents the gain of the model.  
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Figure 16. The single variable response of Spanish sparrow to BIO17 = Precipitation of driest 

quarter (Iberian Peninsula-model). The figure shows how probability of presence (Y-axis) 

changes as the precipitation is varied (X-axis). The red curve shows the mean response of the 

15 replicate runs and blue represents the mean +/- one standard deviation. 
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Figure 17. The receiver operating characteristic (ROC) curve for the average test data 

(Europe-model). On the X-axis is the 1 – Specificity (the ability to correctly predict absence) 

and on the Y-axis is the Sensitivity (the ability to correctly predict presence). The red curve 

represents the mean AUC (= 0.822), and the blue shows the mean +/- one standard deviation 

(= 0.010). The black line represents the value of a randomly predicted model.   



58 

 

 

 

 

 

Figure 19. A jackknife test of variable importance by using the test gain (Europe model). The 

figure shows the relative contribution of each variable to the model. The dark blue bars show 

the gain (goodness of fit) when the variable is used in isolation, while the light blue bars show 

how the gain is decreased when the variable is not used in the model. The red bar at the 

bottom represents the gain of the model. 
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Figure 20. The single variable response of Spanish sparrow to BIO17 = Precipitation of driest 

quarter (Europe-model). The figure show how probability of presence (Y-axis) changes as the 

precipitation is varied (X-axis). The red curve show the mean response of the 15 replicate 

runs and blue represent the mean +/- one standard deviation. 

 

 


