
UNIVERSITY OF OSLO
Department of Informatics

Multi-objective
Evolutionary Path
Planning with
Neutrality

Master Thesis

Eivind Samuelsen

May 8, 2012

Multi-objective Evolutionary Path Planning
with Neutrality

Eivind Samuelsen

May 8, 2012

ii

Abstract

One of the main challenges when developing mobile robots is path plan-
ning. Efficient and robust algorithms are needed to produce plans for the
movements of the robot. Many classical path planning algorithms depend
on geometrically simple environments to achieve good performance, oth-
erwise the paths produced tend to be far from ideal - especially when the
paths are to be optimized for multiple objectives.

Evolutionary algorithms have proved to be able to optimize paths in
complex environments in a way that is easily adapted to solving multiple
objectives. However, the solution space in path planning problems is very
complex, marred by infeasible regions and local optima. This makes finding
true optimal solutions difficult.

In the last decade or so, neutrality - the ability to generate the same
solution in multiple ways - has gained attention in evolutionary computing.
Some work indicate that neutrality improves optimization in problems with
difficult solution spaces.

In this thesis an evolutionary algorithm for path planning with a neutral
chromosome encoding is proposed. The chromosomes are encoded as
sets of points, which are translated into roadmap graphs, which are then
traversed to find one or more optimal solutions within the graph. To best
represent the various strenghts of each chromosome, selection methods
are proposed that let a number of solutions compete collectively for their
chromosome.

The algorithm has been implemented and tested thoroughly on four
different environments, first for single-objective optimization, and then
for multi-objective optimization problems. A comparison has been done
to a reference algorithm that is similar but without a neutral solution
representation.

The proposed algorithm is not very efficient when optimizing distance
only, but shows promising performance in multi-objective problems where
other objectives are involved. The performance is significantly more robust
than the reference algorithm in an environment that has many routes that
separate and cross multiple times, finding a near-optimal solution up to
27% of the time, while the reference algorithm finds solutions of the same
quality only 7% of the time.

iii

iv

Contents

1 Preface xi

2 Introduction 1
2.1 Motivation . 1
2.2 Research Goals . 2
2.3 Outline . 2

3 Background 3
3.1 Path Planning . 3

3.1.1 Definition . 3
3.1.2 Configuration space . 4
3.1.3 Overview of Classical Algorithms 5
3.1.4 Artificial Potential Fields 5
3.1.5 Global Planners . 6
3.1.6 Combinatorial Path Planners 7
3.1.7 Sampling-Based Planners 8

3.2 Evolutionary Algorithms . 10
3.2.1 General Principles . 11
3.2.2 Evolutionary Operators 12
3.2.3 Genetic Algorithms . 13
3.2.4 Other Evolutionary Algorithms 14
3.2.5 Evolutionary Path Planning 15

3.3 Multi-Objective Optimization . 16
3.3.1 Reduction to a Single Objective 16
3.3.2 Pareto-Optimality . 17
3.3.3 Non-dominated Sets and Sorting 18
3.3.4 The Hypervolume Indicator 19
3.3.5 Multi-Objective Evolutionary Algorithms 19
3.3.6 SPEA and Hierarchical Clustering 20
3.3.7 Non-dominated Sorting Genetic Algorithm-II 21
3.3.8 Multi-Objective Graph Traversal 22

3.4 Neutrality . 22
3.4.1 Neutral Theory in Biology 23
3.4.2 Neutrality in Evolutionary Algorithms 23

v

4 The Evolving Roadmaps Algorithm 25
4.1 Single-Objective Approach . 25

4.1.1 Choice of Methods . 25
4.1.2 Representation and Evaluation Function 26
4.1.3 Evolutionary Operators 26
4.1.4 Initial Population and Evolutionary Process 28

4.2 Multi-Objective Approach . 28
4.2.1 Adaption to Multiple Objectives 29
4.2.2 Adapting the Evolutionary Process to NSGA-II 29

5 Benchmark 31
5.1 Reference Algorithm . 31
5.2 Objective Functions . 32

5.2.1 Distance . 32
5.2.2 Estimated Work . 32

5.3 Benchmark Environments . 35
5.4 Benchmark Setup . 35

5.4.1 Initialization and Evaluation Algorithms 37
5.4.2 Termination Criteria . 37

6 Results 39
6.1 Single-Objective Benchmark . 40
6.2 Multi-Objective Benchmark . 43

7 Conclusion 49
7.1 Discussion . 49

7.1.1 Shortest Distance Performance 49
7.1.2 ROCKY Versus the Other Environments 50
7.1.3 Initialization in Evolutionary Path Planning 51

7.2 Future Work . 52
7.3 Conclusion . 53

A Environment Definition Listings 61

B A Neutral Evolutionary Path Planner 63

vi

List of Figures

3.1 An example of a path planning environment 4
3.2 An artificial potential field . 6
3.3 A visibility graph . 7
3.4 A Voronoi diagram . 8
3.5 An adaptively sampled environment 9
3.6 A probabilistic roadmap . 10
3.7 Visibility-based PRM . 11
3.8 A Path Represented by a Sequence of Points 15
3.9 A price-performance problem . 17
3.10 Weighted price-performance sum 17
3.11 Dominance and non-dominated sorting 18
3.12 An 2D Hypervolume . 19

4.1 Two different roadmap chromosomes 26

5.1 An example of the curve used to estimate work 33
5.2 The four environments tested in the benchmark 36

6.1 Single-objective results for the ROCKY environment 41
6.2 Single-objective results for the SPIRALS environment 41
6.3 Single-objective results for the DETOUR environment 42
6.4 Single-objective results for the STAR environment 42
6.5 Example solutions for the ROCKY environment 44
6.6 Multi-objective results for the ROCKY environment 46
6.7 Multi-objective results for the SPIRALS environment 46
6.8 Multi-objective results for the DETOUR environment 47
6.9 Multi-objective results for the STAR environment 47

7.1 A Simple Path Planning Problem 52

vii

viii

List of Tables

5.1 Parameters Used in the Tests . 36

6.1 Single-objective run time per iteration 39
6.2 Shortest distances found . 40
6.3 Shortest distances found during multi-objective optimization 43
6.4 Multi-objective run time per iteration 43
6.5 Distribution between hypervolume groups in ROCKY 44

List of Algorithms

1 Rough sketch of an evolutionary algorithm 12
2 Average Linkage Hierarchical Clustering 21
3 Crowding Distance Calculation 22
4 Single-objective phenotype translation and fitness evaluation 27

ix

x

Chapter 1

Preface

Thanks go to my two supervisors, Kazi Shah Nawaz Ripon and Kyrre Harald
Glette for all the support and advise you have given me during the process
of making this thesis and for encouraging me to try to write a paper along
the way. The resulting trip to the AROB conference in Japan was very
inspirational, not to mention loads of fun.

I also want to thank my parents and familty, and especially my wife,
who has been very loving and supportive through all of this, including
inspiration and our continued heated discussions. I might not be where
I am today if it were not for your support.

Also, in no particular order: Excess, Outracks, Portal Process, Gammel
Opland af 1891, BitFlavour, Odd, PlayPsyCo, Youth Uprising, Indigo, Panda
Prowess, Darklite, Loonies, SystemK & nonoil et al: pants off!

xi

xii

Chapter 2

Introduction

This chapter will give a short explanation of the motivation and goals of this
thesis, followed by a brief outline of the rest of the text.

2.1 Motivation

For several decades, robots have been used in the industry to automatize
physical labor such as assembly or logistics. These robots are highly
specialized machines, contained in their own separate environment so that
they can be programmed on an offline basis.

However, there is also a demand for automation outside of the
contained environments of the factory floor. Robots could perform
construction tasks, such as painting or laying tiles on large surfaces. They
could do heavy lifting or other physical labor in the health care industry.
Or they could be used for logistic tasks in office buildings. These are
just some of many concieveable applications. All these tasks require safe
and robust ways of planning paths and motions in complex environments.
Most of these environments would have people or other autonomous agents
present, so the robot must be able to do the planning in real time.

As robots move into less controlled environments, the need to handle
multiple objectives simultaneously also increases. Moving objects and inac-
curate measurements of the environment requires that trade-offs between
path length and safety are considered. Mobile robots need a mobile power
source, so it becomes necessary to consider the physical work needed to
move along different paths. When the robot shares the environment with
other agents, especially people, visibility and predictability becomes impor-
tant factors as well.

Evolutionary algorithms have shown good results in real-time path
planning in dynamic environments [51]. They are also easily adapted to
solving multi-objective problems, and there are examples of multi-objective
evolutionary path planners [25, 1]. However, path planning problems often
have solutions spaces that can be very hard for evolutionary algorithms to
navigate in. Obstacles can create barriers between different local optima
that can be close to impossible to traverse.

Neutrality is present in an evolutionary algorithm if it is able to search

1

along networks of equally good solutions. If implemented correctly,
these networks may improve the chances of finding solutions that would
otherwise be very difficult to find for an evolutionary algorithm. However,
little or no neutrality is present in existing evolutionary path planners.

2.2 Research Goals

The primary goal of this thesis has been to design and implement a multi-
objective evolutionary path planner with neutrality, and then study the
performance this algorithm.

Based on general work on neutrality [16] it is hypothesized that a neutral
path planner should be able to tunnel across these barriers through neutral
networks, thereby being less reliant on having solutions on each side of
the barriers initially. To examine whether this is the case was therefore an
important goal.

Since the environments can be expected to change over time, run
time performance is important. A neutral solution coding will in the
path planning case necessarily require additional computation compared
to a conventional representation. Therefore, advantage in the quality of
solutions produced by the algorithm, if any, must be seen in close relation
to the run time used.

2.3 Outline

The thesis is separated into five chapters, comprising the background,
methods, experiments, results and conclusion of the thesis. Chapter 3 gives
a introductory summary of the theory and works related to this thesis in
the fields of path planning, evolutionary algorithms and multi-objective
optimization problems.

Chapter 4 proposes a new, hybrid evolutionary path planning algo-
rithm, designed to increase robustness and quality through neutrality. The
algorithm is first described as a single-objective path planner and then ex-
panded into a more general multi-objective approach.

Chapter 5 describes the experimental setup and tests used to compare
the performance of the proposed algorithm to a more standard evolutionary
path planner, and in chapter 6 results from these tests are presented.
Finally, chapter 7 concludes the thesis with discussion of the results and
some final concluding sections.

2

Chapter 3

Background

This chapter attempts to give an overview of the fields of path planning, evo-
lutionary algorithms and multi-objective optimization, including pointers
to recent work in these fields, especially where they intersect. In tradition
with other literature relating to evolutionary algorithms, algorithms which
are not population-based or otherwise based on principles similar to evolu-
tionary algorithms are called ’classical’ to separate them from evolutionary
variants.

3.1 Path Planning

In this section we will first introduce path planning viewed as an optimiza-
tion problem. Then the concept of a configuration space will be introduced.
Finally, a short summary of popular classical path planning algorithms is
given.

3.1.1 Definition

In essence, path planning consists of finding a path for some moving object
though an environment. Ideally, we want to find the optimal path for
the given circumstances. The moving object - the subject of the path
planning problem - could be a robot or autonomous vehicle, or maybe some
computer game character or other simulated agent. The indtroductory part
of [32] can be referred to for more detailed examples.

One can define path planning as the problem of optimizing

F
(
γ
)

, γ ∈C

Where C is the set of feasible paths in the given environment. F
(
γ
)

is
some function which quantifies how good the curve γ is according to the
problem circumstances. A path is here mathematically the same as a curve
- a set of points that can be parametrized as a function from R to some space
convenient for describing relevant information about the subject.

A path is feasible if it obeys all constraints upon the subject. For
example, the subject should usually not collide with any obstacles in the
environment, and the path should obey the physical limitations of the

3

Start

Goal

Figure 3.1: An example of a path planning problem. Find a path from start
to goal. A path γ is in C if and only if it is inside the environment boundaries
and do not intersect any obstacles (the gray areas).

subject such as rates of acceleration and turning. An example of a simple
environment for a path planning problem is illustrated in Figure 3.1.

Commonly, F
(
γ
)

is just the curve length of γ, but it could also be an
estimate of the work needed to traverse the path, or maybe some result of
a detailed simulation of the subject trying its best to follow the path. If
there are more than one quality we want to optimize, F

(
γ
)

can be a vector
function. It then becomes a multi-objective optimization problem, which
can have any number of optimal solutions. How to handle this will be
discussed in Section 3.3.

3.1.2 Configuration space

When considering the movements of a path planning subject it is useful to
do so in terms of its mechanics and degrees of freedom. In robotics, the
base position of the a robot, its rotation and the rotation or translation of
all its links is called the configuration of the robot. The set of all possible
configurations constitute the configuration space, or C-space [35].

Working in C-space simplifies the path planning problem, because the
subject here consists of a single point. All obstacles in the environment then
becomes regions of C-space that are infeasible robot configurations. If the
subject is a simple translational robot, i.e. a robot that does not rotate, have
no links and can move in the same speed in any direction at any time, then
C-space is identical to world space except obstacles in C-space are “padded”
with the shape of the robot. For robots with many complex parts making
an precise translation into C-space can become time-consuming. But it is
often relatively easy to at least find a worst-case estimate, which is sufficient
for most purposes.

4

A curve through C-space would constitute a transition between config-
urations. A configuration is feasible if it is in unobstructed C-space, that
is, it is not inside any obstacles. However, in addition to obstacles, there
might be dynamics constraints on the subject that limit its movements.
These constraints are not captured by C-space, so a configuration transi-
tion might not be feasible even if every point on the curve is feasible. When
the dynamic constraints are not too limiting then one can assume that any
line segment not intersecting any obstacle is a feasible configuration transi-
tion for path planning purposes. It is then left up to some kind of low-level
control system to make the subject follow the path to its best ability.

When dynamic constraints cannot be safely ignored during path
planning one can expand C-space into state-time space [14], created by
adding a time dimension plus one dimension for each constrained dynamic
variable to C-space. Then the dynamic constraints can be translated into
infeasible areas of state-time space, in effect representing the constraints
as state-time obstacles.

3.1.3 Overview of Classical Algorithms

This section will give a brief overview of the main families of algorithms
that have been developed to solve path planning problems. A more detailed
overview of the algorithms can be found in [31] and [32].

The most basic distinction between the different algorithms is between
local and global planners. Global planners find a complete path based on
information on the entire environment. Local planners only proposes a way
to get onward from the current state given the immediate surroundings. By
applying a local planning algorithm repeatedly one may then plan a full
path. Only one local planner - the artificial potential fields algorithm - will
be discussed here.

3.1.4 Artificial Potential Fields

Artificial potential fields (APF) is a local path planning algorithm based
on the idea of guiding the subject around using attractive and repulsive
artificial field functions. One regards the goal as the focus of an attractive
potential field and the obstacles as having a repulsive potential field
associated to them. A total potential field function made from summing
up all the individual field functions can then be calculated and a path is
generated by doing a gradient descent of this field, as illustrated in Figure
3.2.

First formulated in [27], it was soon discovered that it was impossible
to guarantee that there were no local minima in the APF except for the goal,
or even that the goal is a local minimum when the goal lies near an obstacle.

Since gradient descent terminates once a local minimum is reached,
one cannot guarantee that this algorithm will find a path to the goal in
all situations. A number of workarounds for this has been proposed,
improving the performance of the algorithm by making local minima more

5

Start

Goal

Figure 3.2: An artificial potential field. The black curve is the path
obtained by a gradient descent from the start point.

unlikely [28] and using techniques for helping the gradient descent escape
local minima [31], but it is still an unreliable algorithm in many situations.

While unreliable for complex environments, it is very useful as a local
planner since it has low complexity - for each point along the path one
only needs to evaluate a simple gradient function of the goal and each
nearby obstacle once. Thus it can be useful for local obstacle avoidance
between waypoints laid out by a global path planner, or as an alternative
connectivity check between points in the environment in some of the
algorithms discussed below.

3.1.5 Global Planners

Global planners find solutions by creating a suitable representation of the
environment and then searching for solutions in that representation. Usu-
ally the representation is some kind of graph with feasible configurations as
nodes and feasible configuration transitions as edges. Finding the shortest
path from start to goal is then a matter of running a graph traversal algo-
rithm such as A* [20] from the start node to the goal node. This kind of
graph is often referred to as a roadmap.

The different roadmap-based algorithms differ in how the nodes are
distributed in the environment or C-space, and how they are connected.
A main distinction here is whether the graph construction method can
guarantee that the graph will contain a path from start to goal if such a path
exists, or rather, under what conditions such a guarantee can be given.

6

Start

Goal

Figure 3.3: A visibility graph. Each corner in the environment generates
a node. One can visually confirm that the graph contains the shortest path
from start to goal.

3.1.6 Combinatorial Path Planners

Combinatorial path planners create a roadmap by analyzing the geometry
of the entire environment and all obstacles. This includes the visibility
graph, Voronoi diagram, and other algorithms that divide or analyze the
environment in some exact way.

The visibility graph has a node for each corner on each obstacle, and
an edge for each pair of nodes that are mutually “visible”, e.g. the straight
line between them is a feasible transition [36]. The visibility graph for the
environment in Figure 3.1 is shown in Figure 3.3.

This algorithm is often used as a reference algorithm because the
shortest path in the visibility graph is guaranteed to be the shortest path
possible if the environment is two-dimensional. For higher-dimensional
spaces that property no longer holds, and the number of nodes will often
become very large in high-dimensional geometry.

Variants of the visibility graph, such as the art gallery algorithm
described in [37] amend the performance problems of the visibility graph
by reducing the number of nodes and edges used, while still keeping the
main concept of making sure that all parts of unobstructed space are
“visible”. However, these variants will usually not contain the shortest
possible path.

A Voronoi diagram algorithm finds all points in the environment where
there are two or more obstacles that are equally close, as shown in Figure
3.4. This set of points forms the Voronoi diagram of the environment.
The Voronoi diagram will consist of curves and intersections, forming
corridors throughout C-space. The resulting roadmap has a node for each
intersection in the diagram and an edge for each curve [3, 5]. This roadmap

7

Start

Goal

Figure 3.4: A Voronoi diagram. The gray curves are equally far from the
two or more nearest obstacles. By following these curves one can get from
start to goal while staying as far as possible from any obstacles on the way.

will not contain the shortest path in most cases, but it has the property of
generating maximally safe paths - paths which stay as far from any obstacle
as possible at all times.

All the combinatorial algorithms have in common that the way they
create the graph guarantees that you can find a feasible solution if one
exists. Thus they are said to be complete. However, for many-dimensional
spaces or environments with high geometrical complexity they can become
impractically slow, because of the complexity of creating the graph, or
because the graph becomes too large to search efficiently.

3.1.7 Sampling-Based Planners

Sampling-based planners do not analyze the environment geometrically
in the way combinatorial planners do, but rather sample them. Thus
they cannot guarantee to always find paths in the same way the complete
planners do. However, they do guarantee that if enough samples are taken
they can find a path from one point to another if any such paths exists.
They are said to be resolution-complete or probabilistically complete,
depending on whether the sampling is done in a systematic fashion or by
some probabilistic method.

Though they are less reliable than the combinatorial algorithms, they
are less dependent upon the complexity and accuracy of the obstacles
geometry, because they only need to be able to find out whether the
points they sample are obstructed or not and some way of determining
whether a straight-forward path can be taken between them. Combinatorial
algorithms, on the other hand, need the surface of the obstacles to be
defined in a manner they can process. Furthermore, real-world geometry is

8

Start

Goal

Figure 3.5: An adaptively sampled environment. Progressively smaller
squares are tested for intersection with the environment until unobstructed
squares are found. One near-optimal solution through the data structure is
shown.

usually so complex you have to simplify it in order to make combinatorial
algorithms run with decent performance, and then the completeness
guarantee given by those algorithms is weakened.

The simplest way to sample a space is to sample evenly along every axis,
creating a grid. The grid will have obstructed and unobstructed nodes,
and one would assume that all straight lines between two neighboring
unobstructed nodes are feasible transitions. This is a popular approach
in many situations, because it enables efficient memory storage and makes
the underlying traversal algorithm easy to implement.

The resolution necessary to find paths through tight passages will
often give rise to an enormous amount of nodes, though, and memory
usage quickly becomes high when C-space has high dimensionality. These
problems can be amended by using an adaptive resolution sampling
scheme like quad-trees, effectively taking more samples near the borders
of obstacles [22]. An example of this is shown in Figure 3.5.

A different approach to sampling C-space is to take random samples
[26, 41]. One usually discards obstructed samples and keep sampling until
a certain number of unobstructed samples are found, or until a path has
been found. These samples are then connected to other samples nearby
to form a roadmap, as shown in Figure 3.6. Because of their probabilistic
nature these algorithms are called probabilistic roadmaps (PRM).

Uniformly random sampling will result in many of the same trade-offs
between graph size and completeness as the grid-based algorithms, and so
different methods have been designed to amend this. In [4] two points are
generated at a time at a normally distributed distance from each other. A
point is added to the graph only if it is feasible and the other is not, thus

9

Start

Goal

Figure 3.6: A probabilistic roadmap. Nodes are generated randomly. All
non-obstructed nodes are connected by visibility.

sampling mostly near edges.

In [40] a new sample is only added to the graph if it is not visible from
any node already in the graph or if it connects two previously disconnected
parts of the graph. This ensures that large, open areas in C-space do not get
more samples than necessary. An example is given in Figure 3.7.

3.2 Evolutionary Algorithms

Evolutionary algorithms (EAs) give a general framework for population-
based optimization algorithms, inspired by evolution in nature and adopt-
ing terminology from evolutionary biology and genetics. The general idea
is to cross a set of solutions to a problem, letting information about which
solutions are better and which are worse guide the creation of iteratively
better sets of solutions [11].

Besides good evidence that the evolutionary processes that has inspired
these algorithms have worked out well in nature, there has been done some
work to explain why evolutionary algorithms can optimize efficiently even
when little is known of the problem to be optimized except for a fitness
function and a good way to represent a solution. A summary of that
explanation can be found in [30].

The following sections will give a short overview of evolutionary
algorithms, with focus on the variant most relevant for path planning,
genetic algorithms.

10

Start

Goal

Figure 3.7: Visibility-based PRM. Nodes are generated randomly, but are
only inserted if they cover some "unseen" area (visible by zero existing
nodes) or connect two or more "seen" areas (visible by nodes in at least
two unconnected sub-graphs). Solution quality can be a lot worse than
with a simple PRM, but run time is greatly reduced because much fewer
connectivity checks are needed.

3.2.1 General Principles

Since the first EAs were first suggested in [24] and became popular through
genetic algorithms like [17] the terminology of evolutionary algorithms
have slowly developed into what it is today. This section will give a
quick guide to the terminology and then explain the basic principles of
EAs. A more in-depth explanation of the terminology and principles
can be found in [11] and also in the chapters introducing single-objective
evolutionary algorithms in [7] or [6]. Algorithm 1 outlines the general flow
of evolutionary algorithms.

An object that can be used to generate a solution is called a chromo-
some. The chromosome directly or indirectly represents a solution. The
information stored in the chromosome is called the genotype. The solution
it encodes is called the phenotype. Often both chromosome and solution is
referred to as the individual, which is a kind of catch-all for both genotype
and phenotype. It fits very well with the biological analogy: Each individ-
ual starts out out as just the genotype and then grows up into a genotype-
phenotype pair.

A set of individuals is called a population. A generation refers
to an iteration in the algorithm, and also to the population present
at the beginning of that iteration. Each new generation partially or
completely replaces the old population, generated from the old generation
by evolutionary operators.

These operators take one or two parent individuals and creates new

11

Algorithm 1 Rough sketch of an evolutionary algorithm
P ← generate-initial-population ()
for all I ∈ P do

fitness (I) ← calculate-fitness (chromosome (I))
end for
while ¬satisfied (P) do

P ′ ←;
while |P ′| < new individuals per generation do

P ′ ← P ′ ∪ select-parents-and-generate-offspring (P)
end while
for all I ∈ P ′ do

fitness (I) ← calculate-fitness (chromosome (I))
end for
P ← select-survivors

(
P, P ′)

end while

child individuals until a certain number of offspring (often denoted as
λ) have been created. Which individuals that are used as parents is
determined by a parent selection method.

After the offspring have been created, a surviving population is pro-
duced for the next iteration of the algorithm. The surviving population can
be based either on just the new generation or on a combination of old and
new individuals. Which individuals survive and which are replaced is then
determined by some survival selection method.

At least one of the two selection stages are based on the fitness of the
individuals. The fitness of an individual is a function f (x) of its phenotype,
and should measure of how well this solution solves the problem. Usually
this function is simply the function we want to optimize.

Initially, few or maybe none of the solutions generated will be especially
good, and in some cases even solutions known to be invalid are included.
But, taken together the individuals give an indication as to what combina-
tion of parameters makes a solution better or worse.

By relating the fitness - which ideally is a measure of distance from
optimality - of each individual to its chances to propagate its parameter
values to the next generation, the population as a whole is gradually
steered towards more optimal solutions. If part of the surviving population
is reserved for the best individuals among both the old and the new
generation the EA is elitist - a selection of the “elite” individual are kept
through generations.

3.2.2 Evolutionary Operators

There are two basic kinds of evolutionary operators: The first, crossover,
combines chromosomes from two individuals into one or more new ones.
The second, mutation, changes one existing chromosome in some random
fashion. Often these two are used in sequence or with some probability each
to create one new individual, and some times several different variants of

12

crossover and mutation is used in the same algorithm.
Crossover creates a mix of two solutions so the new solution will be

somewhere between or near its parents in the search space. Some selection
procedure ensures that good solutions are selected for parenthood more
often than bad solutions, and new solutions created this way are mostly
somewhere around or between known good solutions.

Mutation, on the other hand, displaces a solution in a random manner
in the search space. Mutation operators are traditionally intended to
explore randomly, and introduce new variation to the population. This
stands in contrast to the crossover operator which is meant to exploit
information from earlier generations by searching near solutions that are
known to be good, a process that generally decreases variation.

Some EAs have no crossover operator, and creates the next generation
from mutation only. In that case the algorithm relies on which individuals
are selected for mutation to do the exploitation and steer the population
towards optimality.

Regardless of how the old population is exploited, exploitation is es-
sential to the evolutionary process. Without some measure of exploitation
evolutionary algorithms would essentially be the same as a random search.
Therefore, it is also important that the initial population is diverse enough
to cover all parts of the solution space, so that it is not dependent on a long
string of random mutations before exploitation can begin to act towards the
global optimum.

3.2.3 Genetic Algorithms

Genetic algorithms (GAs) was the first variant of population-based opti-
mization to appear, with early works including [24]. In its original form
the solution representation was a fixed-length binary string, inspired by
the strings of DNA that make up genetic material, which also inspired the
crossover and mutation operators used.

In binary coded GAs crossover is usually done by taking two individuals
and creating offspring where different segments of its binary string is taken
from different parents. There are many variations on how to do this, but
basically each bit in the resulting string is inherited from either one parent
or the other. The mutation operator takes a solution and flips one or more
random bits in the binary string.

Real-valued GAs have also been created, using operators that operate
value-by-value instead bit-by-bit. These operators change values with
operations like randomly weighted averaging, interpolation or addition of
some kind of random values.

There are many different schemes used for parent selection in GAs.
During parent selection fitness proportional, rank-based and tournament
selection are the most common. In fitness proportional selection each
individual has a probability of selection proportional to its fitness value.
In rank-based selection the probability of selection is proportional to the
rank of the individual, i.e. individuals are sorted by fitness and assigned a
probability based on their place on the list. In tournament selection two or

13

more individuals are picked at random and the most fit is selected. Survival
selection is usually done by truncation, that is, the population size is set to
some constant µ, and the µ fittest individuals always survive.

3.2.4 Other Evolutionary Algorithms

In addition to GAs there are three main classes of evolutionary algorithms:
evolution strategies (ES), evolutionary programming (EP) and genetic
programming (GP).

Evolution strategies is similar to GAs on many points, but concerns
itself mainly with continuous parameter optimization. Central to ES
is the addition of strategy parameters to the chromosomes. These are
parameters that do not affect the phenotype directly, but rather control
how large changes are made to the solution parameters during mutation.
Usually, parameters are mutated by adding a normally distributed variable
to them and the strategy parameters then set the deviation used for those
distributions. Much of ES then revolves around getting the strategy
parameters to work as efficiently as possible. [11]

Parents are usually selected completely at random, while survival is
determined by the fitness value alone: the new generation is made much
larger than the old one and then the least fit are removed so that the new
generation is the same size as the old.

Evolutionary programming, on the other hand, generates exactly one
offspring, from mutation alone, from each individual in the previous
generation. Survival is then determined by several rounds of pairwise
tournaments between any two parent of offspring individuals. Each
individual takes part in some fixed number of tournaments, and then the
half of the individuals that have the most wins survive. [11]

Other than the difference on selection methods and the lack of crossover
EP is very similar to ES - they both usually use a real-valued vector
representation and a strategy variable-based normally distributed mutation
operator.

All the evolutionary algorithms mentioned so far represent their
solutions as some sort of fixed or variable length string of parameters,
which is then used by a pre-defined formula or algorithm to give a solution
to the problem. However, in some cases there might be so little known
about the problem that no such algorithm is known, or there might be
several candidate algorithms.

Genetic programming, introduced in [30], is an EA that represents
solutions as computer programs. The claim is that that most optimization
problems can be reformulated as a problem of finding an optimal program
for solving a certain task, and that such a program can be found efficiently
by EA methods.

The programs are represented in a tree structure where each leaf node is
a constant and each other node represents some operation or conditional.
The child nodes act as operands for the parent nodes. Here, the crossover
operator usually takes two parents and exchanges random subtrees of the

14

Start

Goal

(x1, y1) (x2, y2) (x3, y3) (x4, y4) (x5, y5) (x6, y6)

Figure 3.8: A Path Represented by a Sequence of Points. The chromosome
that produced the path is shown, with arrows to the corresponding points
on the path.

solutions, creating two offspring, while the mutation operator takes a leaf
node or subtree and replaces it with a new random leaf or subtree.

3.2.5 Evolutionary Path Planning

Evolutionary algorithms have been successfully applied to the path plan-
ning problem as a replacement to classical path planning algorithms in
many environments. As will be seen below, the real valued, variable-length
genetic algorithm is a popular choice in path planning, but there exist other
variant, such as the genetic programming algorithm in [19].

Several representation schemes have been used in evolutionary path
planning. In [2] paths are represented as iterative displacements along
a grid. Several spline representations are explored in [1], and [25] uses
cubic spiral segments. In [23] the path is represented as piecewise linear
curves using recursively split and displaced line segments, coded as a tree
structure.

The most intuitive representation is perhaps a sequence of points. The
path is then formed by using these points as milestones that are to be
followed in order. One algorithm using this representation that have been
studied extensively is the evolutionary planner / navigator (EP/N). It was
first presented in [34] and extended in [52], [12] and others. In order to
evolve efficiently the EP/N uses several specialized mutation operators that
smooth out corners or repair infeasible solutions by stretching them around
obstacles they intersect.

15

The easiest choice of initial population in algorithms like EP/N is to
generate a set of random paths, feasible or unfeasible. This leads to a
long initial planning time as it may take a while for the algorithm to evolve
good solutions in complex environments. [39] suggests using probabilistic
roadmaps to generate a set of feasible initial solutions instead. In this way
the initial population will contain a random sample of the feasible solution
space, with more individuals distributed near fit parts of the solution space.

3.3 Multi-Objective Optimization

When one wants to find problem solutions that are optimal with relation to
not only one, but several objectives one is presented with a multi-objective
optimization problem (MOOP). A good introduction to the topic, as seen
from a EA perspective, can be found in [7] and [6]. In mathematical terms,
instead of a scalar objective function f(x) we have a m-dimensional vector
objective function

F(x) = [
f1(x) . . . fm−1(x) fm(x)

]T

comprised of m scalar objective functions. In contrast to single-
objective optimization problems where there is usually sufficient to con-
sider only one optimal solution, there may be any number of different so-
lutions in an MOOP that are better according to one objective function and
worse according to another in relation to each other and usually there won’t
be a single solution that is best in every way.

A common example of a MOOP is that of cost versus quality. In a
store we may choose between four models of computers. Let’s imagine
that we can choose between five models, with performance and price as
plotted in 3.9. Model A is more powerful than model B, which again is
more powerful than model C and E, which finally is more powerful than the
severely outdated model D. Based only on how powerful the models are,
the obvious choice would be model A. But, it so happens that the models
range from expensive to cheap in the same order, except for model E which
is both slower and more expensive than model C. Then we would have to
make a careful consideration of how much computing power we can afford.

3.3.1 Reduction to a Single Objective

If we had set up a strict budget before going to to the computer store,
then our choice would be simple - just buy the most powerful computer
below a certain price. Setting up a worst-acceptable value for each objective
function except one and the optimizing that single objective within those
limits is called the ε-constraint method.

When there is no such budget one might think up some measure of
benefit - how much value computing power has relative to the money spent.
Based on those priorities one can set up a numerical weight for each factor,
multiply the cheapness and the performance with their respective weights

16

Performance inverted

P
ri

ce

AB
C

D

E

Figure 3.9: A price-performance problem. Notice that the performance
axis is inverted, so that both axis are to be minimized.

Performance inverted

P
ri

ce

AB
C

D

E
1 2

3

4
5

Figure 3.10: Weighted price-performance sum. For these particular
weights solution E is ranked as the next-best solution.

and sum them up. This gives a single number signifying how much value
each computer has and we can choose the one that is best.

This is called the weighted sum approach, and an application of it to
the computer purchase example above is given in Figure 3.10. A number of
other methods also exist aiming to reduce multiple objectives into one so
that we can find a single best solution using a conventional single-objective
optimizing algorithm. A overview of the most common ones can be found
for example in chapter 3 of [7].

3.3.2 Pareto-Optimality

The reduction methods mentioned above will find a single best computer
for us, but ideally we would like to know what the selection is before
planning a budget or deciding our preferences weight-wise. Furthermore,
we want to avoid taking model E, which is both more expensive and slower
than model C into consideration. With the weighted sum approach model
E might seem a better choice than either of models A,B or D. Worse, there
might not be any pair of weights that make model B the best solution at all.

To make an informed choice among a large number of trade-offs we

17

f0

f1

x

y

z

(a) Dominance. Here, x is not dominated by
anything and dominates both y and z , while
neither y nor z dominates any other point.
If x is removed, both y and z will be non-
dominated.

f0

f1

1

2

3

4
5

(b) Non-dominated Sorting: Non-dominated
fronts are found iteratively by finding the non-
dominated front of the current set of points,
removing that front from the set and repeating,
each time assigning a higher rank to the front
removed.

Figure 3.11: Dominance and non-dominated sorting.

need the concepts of domination and Pareto-optimality. A solution x is
said to dominate a solution y , written x ¹ y , if and only if it is as good as or
better than y for all objective functions and strictly better for at least one
objective function. When all objective functions are to be minimized this
can be expressed as:

x ¹ y ≡ ∀i
(
fi (x) ≤ fi (y)

) ∧ ∃ j
(
f j (x) < f j (y)

)
A simple example of dominance i shown in Figure 3.11a. A solution

x is said to be Pareto-optimal if and only if there is no other solution in
the entire solution space S that dominates it. Notice that if a solution
x is better in one way and solution y in another, then neither solution
dominates the other, so there can be any number of Pareto-optimal
solutions. The set of all Pareto-optimal solutions is called the Pareto set
or the Pareto front (since the Pareto set tends to form a surface in objective
space).

3.3.3 Non-dominated Sets and Sorting

Using the definition of dominance, we can device several ways of ranking
the solutions in a given set. One simple way would be to count the number
of solutions that dominate each given solution and the assign lower ranks to
solutions dominated by fewer solutions. A slightly more involved approach
would be to iteratively “peel” off layers of non-dominated solutions from the
set, assigning each layer equal rank. This method is called non-dominated
sorting. An illustration is given in Figure 3.11b. In each iteration the non-
dominated front of the set is removed. The non-dominated front is the
subset of solutions that are not dominated by any solutions in the current

18

f0

f1 W

(a) The hypervolume. One can see that it mea-
sures how much of [0,W0]× [0,W1] is dominated
by the set of points.

f0

f1 W

(b) How a 2D hypervolume can be divided for
easy calculation.

Figure 3.12: An 2D Hypervolume.

set. The set of solutions removed in the first iteration is usually given rank
1, the second rank 2, and so on.

3.3.4 The Hypervolume Indicator

Summarising the performance of multi-objective optimization algorithms
(for example for comparison with other algorithms) can be difficult,
especially when using stochastic algorithms like EAs that need to be
run multiple times and treated statistically. Interpreting a set of multi-
dimensional non-dominated fronts in comparison to another directly will
usually be too complex. Therefore, a number of methods has been
developed to interpret and compare such results, some of which are
summarized in chapter 8 of [7]. If one knows the ideal solution set
beforehand one can create some sort of measure of distance to that, but
in complex problems this is often not available.

The hypervolume indicator is one of the common metrics for multi-
objective optimization performance. It measures the volume of the union
of the hyper-rectangles created with a non-dominated solution and some
reference point W as opposite corners, as shown in Figure 3.12. This gives
an indication of how well a non-dominated front covers some relevant part
of objective space.

The hypervolume is not a perfect measure of the performance of the
quality of a solution set (for example, it is not independent of scaling of the
different objective functions), but it is often used, as it can produce a scalar
value for each run of an algorithm which then can be used for analysis later.

3.3.5 Multi-Objective Evolutionary Algorithms

For MOOPs there is one big advantage with using an evolutionary algo-
rithm: it inherently optimizes a large number of solutions. Most other
kinds of algorithms work on finding only one solution at a time and can

19

only optimize for a single objective function, forcing the use of some sort of
reduction method.

Sometimes optimization algorithms with specialized reduction methods
can work out pretty well, as in [47]. But finding a good reduction method
might be difficult for many problems, and as always with reduction meth-
ods you have to know the priority of the different objectives beforehand.
And while specifying priorities beforehand may not always be a disadvan-
tage - a reduction method that optimizes multiple objectives in turn accord-
ing to priority is utilized in [33], for example - it can be a disadvantage in
many situations.

The main difficulty with how to adapt evolutionary algorithms to multi-
objective problems is how to select individuals for reproduction and to
keep good diversity. One simple solution to this, as presented in [44]
(VEGA), is to choose one of the different objective functions for different
sub-populations, selecting a number of solutions from each sub-population
for crossover, and then let all the selected solutions cross over at random.

However, even with a mutation operator added this can lead to “nich-
ing” - that solutions cluster up at the optimums for the different objective
functions. As a sort of generalization on this one could use a weighted
sum approach, but with different weights for different individuals. In [18]
(WBGA) this is done with weights contained in each chromosome and in
[38] (RWGA) random weights are used for each fitness evaluation.

Another way of solving this problem is to rank solutions by dominance,
either by counting how many solutions that dominate each solution
[13] (MOGA) or by sorting the solutions into non-dominated sets [48]
(NSGA). The first non-dominated set contains all the solutions that are not
dominated by any other solution in the entire population. The next non-
dominated set contains all solutions that are only dominated by solutions
in the first non-dominated set, the third set contains the solutions only
dominated by solutions int the first and second sets and so on. The
disadvantage to this is that you need to keep track of who dominates who
in the entire population, which has high time complexity.

Several more advanced algorithms also exist. Two of these, SPEA and
NSGA-II, will be covered in some detail below.

3.3.6 SPEA and Hierarchical Clustering

The strength Pareto evolutionary algorithm, or SPEA, was proposed in [53].
It keeps an elite population as an external record containing a selection
of the non-dominated solutions so far alongside a non-elitist population.
For each generation these non-dominated solutions are ranked according
to how many of the current population they dominate. This measure is
termed the strength of those solutions. Each individual in the population is
then assigned a fitness based on the sum of strengths of the non-dominated
solutions that dominate them.

The method used in SPEA to reduce the size of the elite population is
called hierarchical clustering and is of interest in this text. It solves the
following problem: We want to reduce the number of solutions to some

20

Algorithm 2 Average Linkage Hierarchical Clustering
function reduce-size(P)

C ← { {
p

} | p ∈ P
}

while |C | > N do
ca ,cb ← argmin

ci ,c j

(
distance

(
centroid (ci),centroid

(
c j

)))
C ←C \ { cb }
ca ← ca ∪ cb

end while
return { centroid (c) | c ∈C }

end function

maximum number of elite solutions, N , while maintaining a good spread
of solutions. The algorithm solves this by iteratively merging clusters of
solutions: Initially, each solution is assigned its own cluster. Then, the two
clusters with the shortest distance between them are merged. This is done
iteratively until only N clusters remain (see Algorithm 2).

The centroid of each cluster - the point with shortest average distance
to all points in the cluster - is used to calculate the distances. When the
number of clusters have been reduced, the elite population is made out
of those centroids. In SPEA it is proposed to use objective space distance
for the clustering, but in theory any distance measure can be used by the
clustering algorithm.

3.3.7 Non-dominated Sorting Genetic Algorithm-II

Ranking solutions by which non-dominance set it is in helps keep variation
near the Pareto front since solutions that are close to being Pareto-optimal
are more likely to survive, no matter where they are along the front. If
the algorithm also makes sure solutions are more likely to survive when
they are far from other solutions in objective space, then a good and varied
selection of solutions along the Pareto front can be achieved.

In [8] an elitist non-dominated sorting GA is suggested. The algorithm
was termed NSGA-II to reflect that it was based on experiences from
NSGA. NSGA-II selects parents by binary tournaments and survivors by
truncation. The same comparison operator is used both for determining the
winner in binary tournaments and for sorting the population for truncation.

The comparison operator works in the following manner: All individ-
uals have a rank given by non-dominated sorting. If the two individuals
compared have different rank, the one with lowest rank is best. If their
ranks are equal then the individual with the highest crowding distance is
best.

Crowding distance is a measure of objective space distance between
individuals on the same non-dominated front. It is calculated as shown
in Algorithm 3: The individuals are sorted for each dimension of objective
space. The crowding distance of an individual is the sum of the distances
between the two neighboring solutions in each dimension. A solution that

21

Algorithm 3 Crowding Distance Calculation
function assign-crowding-distance(S)

for all s ∈ S do
crowding-dist (s) ← 0

end for
for m = 1 → M do

sort-by-component (S,m)
crowding-dist (S1) ←∞
crowding-dist (SN) ←∞
for i = 2 → N −1 do

crowding-dist (Si) ← crowding-dist (Si)+ (
Si−1,m −Si+1,m

)
end for

end for
end function

is best or worst in a dimension is assigned infinite crowing distance.

3.3.8 Multi-Objective Graph Traversal

In order to solve multi-objective path planning problems using classical
graph-based algorithms like visibility graphs or probabilistic roadmaps one
must either use some function to reduce to a single objective in order to
use the usual graph traversal algorithms the way they are, as is done in for
example [47], or one can adapt some traversal algorithm to multi-objective
problems, for example using concept domination and non-dominated sets.
An example of this can be found in [15].

A* - perhaps the most common graph traversal algorithm - has been
proved in [49] to be adaptable to solve multi-objective problems, while
keeping the same theoretical properties as single-objective A*. Basically,
for each node in the graph one records a front of non-dominated partial
solutions reaching that node instead just one best partial solution. Then,
when the search can no longer improve the front of any node, the loop ends
and the non-dominated set of solutions at the goal node(s) is returned.

3.4 Neutrality

Traditionally chromosome encoding is chosen so that any change to the
genotype would result in some change to the phenotype and the fitness.
In some optimization problems it might happen that “barriers” are formed
between local optima: As the population settles into one or more local
optima it gets increasingly difficult to find new, better local optima.

This can happen when the sequence of evolutionary operators needed
to get to a better local optima would be several generations long, and some
of the generations are so unfit that they cannot survive. Then the other local
optima can no longer be reached in that run of the algorithm.

Some have suggested that to remedy this, we can again look to

22

evolutionary biology, this time to what is called neutral theory. In the
following sections neutral theory and neutrality will be presented, first
by as brief overview of its biological origins and then in the context of
evolutionary algorithms. A more detailed summary can be found in [16].

3.4.1 Neutral Theory in Biology

In evolutionary biology it is common that the genetic material contains a
high degree of redundancy, with multiple chromosome encodings lead to
the same result. When two different genotypes lead to the same fitness it
can be possible for a mutation to lead from one to the other. A mutation
that does this is called a neutral mutation.

Since it was suggested in [29] that neutral mutations play a big role
in evolutionary changes at the molecular level, much work has been done
studying the effects of neutral mutations. These studies seem to indicate
that the neutrality helps the genetic material stay robust at high rates of
mutation while adapting efficiently in both flat landscapes with difficult-to-
find optima, and rugged landscapes with many scattered local optima.

3.4.2 Neutrality in Evolutionary Algorithms

Inspired by neutral theory, much work has been done on exploring the
effects of neutrality in evolutionary algorithms. The term neutral networks
was introduced in [21] to describe sets of equally-fit points in the search
space that can be traversed through neutral mutations.

Several ways of artificially introduce neutrality with the use of genotype-
phenotype mappings were described in [46] and [45]. These mappings
were later investigated further in [9, 10] and [42].

The latter claims that in order to have an effect beyond that of a random
search, any redundancy should be synonymously redundant. That is,
genotypes that lead to the same phenotype should be close to each other
in the sense that they belong to the same neutral network.

It was pointed out in [50] that self-adapting methods such as those
used in evolution strategies add neutrality to the chromosome, since
strategy parameters are not used in fitness evaluation, but rather affect the
evolutionary process indirectly.

The exact effects and usefulness of neutrality in EAs are still undeter-
mined. The summary in [16] seems to indicate that neutrality in itself is no
guarantee for improved performance and that the right kind of neutrality is
needed to improve upon a non-neutral EA or even a random search . How-
ever, as to exactly what makes the right kind of neutrality is the opinion is
more divided.

23

24

Chapter 4

The Evolving Roadmaps
Algorithm

In this chapter an evolutionary path planning algorithm is described which
uses a neutral, roadmap-like representation. The motivation for designing
such a method was to explore the possibilities for an evolutionary algorithm
with neutrality in path planning problems. It was first proposed and tested
for single-objective path-planning in [43]. The single-objective approach
described below is essentially identical to the algorithm presented in that
paper.

4.1 Single-Objective Approach

The following sections will detail the evolving roadmaps (ERM) algorithm.
First, the reasons for choosing this approach are outlined. Then chromo-
some representation and evaluation is explained. The evolutionary opera-
tors used are described, and finally the method for population initialization
and the rest of the evolutionary process will be described.

4.1.1 Choice of Methods

In order to have neutrality in an evolutionary path planner one would have
to design a chromosome encoding which would make it probable that two
different chromosomes result in the same fitness. While two different paths
may have the same fitness, the simples way to guarantee the presence of
neutral networks is to make sure that equal paths can be generated by
chromosomes few mutations apart. One way of doing this is by using
some representation where not every gene in the chromosome affects the
resulting path. Ideally, the non-contributing genes would only come into
effect if they are mutated in a manner that enhances the phenotype.

Looking to classical path planning for inspiration, it is clear that the
graphs used in PRMs and similar algorithms has this property. All nodes
in the graph that are not part of the best path through it can be move quite
liberally around or even duplicated, added or deleted without affecting the
result - that is, unless they enable a better path to be found.

25

Start

Goal

Figure 4.1: Two different roadmap chromosomes. The two chromosomes
are shown in different hues. Notice that the grey edge can become feasible
with only a slight mutation in the red chromosome. Then the best path in
the graph will “tunnel” to the other side of the pentagon.

Like most evolutionary path planners, PRMs handles high-dimensional
spaces well and only require that pairs of points can be tested for
connectivity. However, since the nodes are generated more or less blindly
the results are rarely close to optimal. The method presented here can
be seen as a way of iteratively improving the nodes in “PRMs” using an
evolutionary process.

4.1.2 Representation and Evaluation Function

The chromosome encoding chosen to code the graphs is simply a string of
points in the environment or C-space. Instead of connecting the points by
sequence, they represent the set of nodes in a graph. This is illustrated
in Figure 4.1. These nodes are connected by some local path planner.
Each node is connected to all nodes that can be reached from it by the
local algorithm. Like in classical graph-based algorithms, any traversal
algorithm can then be used to find the best path in the graph.

The path produced by the graph traversal will then be the phenotype
of the individual, and can be given a fitness evaluation like any other path.
However, the graph traversal will most likely have to calculate the fitness of
the path in order to find it, and the translation from genotype to phenotype
becomes heavily entangled with fitness evaluation.

4.1.3 Evolutionary Operators

In essence, the chromosomes are sets of points, so the evolutionary
operators should be adapted to that. Crossover is implemented so a pair

26

Algorithm 4 Single-objective phenotype translation and fitness evalua-
tion

function assign-fitness(I)
g ← empty-graph ()
nodes

(
g
)← {

st ar t , g oal
}

if local-planner-find-path
(
st ar t , g oal

)
then

edges
(
g
)← edges

(
g
)∪{ {

st ar t , g oal
} }

end if
for all p ∈ chromosome (I) do

if ¬obstructed
(
p

)
then

for all q ∈ nodes
(
g
)

do
if local-planner-find-path

(
p, q

)
then

edges
(
g
)← edges

(
g
)∪{ {

p, q
} }

end if
end for
nodes

(
g
)← nodes

(
g
)∪{

p
}

end if
end for
path (I) ← graph-traversal

(
g
)

fitness (I) ← evaluate (path (I))
end function

of parents generate a pair of offspring and each point in each parent
chromosome is transferred to one and only one of the offspring. This is
done by taking each point of both parents’ chomosomes and copying them
one at a time to one of the offspring, selected at random.

The chromosome size of each offspring will then be binomially dis-
tributed, which ensures that chromosome sizes get averaged out a bit and
do not fluctuate too much. Notice that if both parents are actually the same
individual or if the parents have common ancestry some points are likely to
appear more than once in the offspring.

This is not considered a problem here, as long as the graph generated
later ensures that duplicate points do not create duplicate entries in the
roadmap constructed during evaluation (otherwise some graph traversal
algorithms would return duplicate solutions). That is because point
duplication can be beneficial later if one of the points mutate.

Three mutation algorithms are used in the algorithm: Change, insert
and delete. Change is closest to the standard GA mutation operator in both
operation and intent: to randomly explore close solutions. For each point
in the chromosome it makes a normally distributed addition with a certain
probability Pm. The normal distribution has a constant standard deviation.

The insert and delete mutations are meant to keep variation in the
population and restrain chromosome size. The insert mutation inserts a
random point, using a uniform distribution over the entire environment
both obstructed and unobstructed.

The delete mutation takes each point in the chromosome and erases
it with a probability Pd. The insert mutation provides variation through

27

adding a fixed number of completely random points, while the delete
mutation on average deletes n ·Pd random points from each chromosome,
where n is the size of the chromosome.

The insert mutation is applied to each offspring Ni times and the
delete mutation once. Together they are likely to spread the points in
the chromosome a little more evenly through the environment. And since
the delete mutation is an order “stronger” than the insert mutation, they
put some pressure on the evolutionary process to stabilize chromosome
size, which has a tendency to grow over time in EAs with variable-size
chromosomes (if only the offspring survive in each iteration and no other
factor had affected chromosome size, it will average out to Ni · (1−Pd)/Pd).

4.1.4 Initial Population and Evolutionary Process

The population is initialized to size N , and the same amount of offspring are
generated in each new generation (rounded up to the nearest even number
since the crossover operation always generate two individuals). Parents are
selected by binary tournament selection. After crossover each offspring is
mutated once by the change operator, a constant number of times by the
insert operator and then once by the delete operator. Binary tournaments
are then used to select N different individuals for survival.

Naively, since the chromosomes are just collections of points, one could
initialize the population with a random amount of random points in each
chromosome. As mentioned above, each chromosome acts as a roadmap so
that would in effect initialize the population with simple PRMs.

However, without knowing how many points are needed on average in
a PRM to find a path in the give environment one could end up with too
few feasible solutions. Therefore it is best to initialize each chromosome
in some way that at least guarantees a high probability of giving feasible
solutions in the graph traversal algorithm used in the fitness evaluation.

Actually, almost all the ways of constructing graphs mentioned in clas-
sical path planning literature should be applicable for initializing the pop-
ulation, as long as it generates graphs that are feasible most of the time. As
the important thing during initialization is to find as varied a distribution of
initial solutions as possible, it might even be beneficial to initialize different
individuals using different graph construction techniques.

4.2 Multi-Objective Approach

In this section the single-objective algorithm presented above is adapted
to multi-objective problems. Basically, the steps in the evolutionary
process is generalized to vector fitness values using NSGA-II as a reference
framework, but since the algorithm uses a graph traversal algorithm during
fitness evaluation, and graph traversal may result in any number of non-
dominated solutions it was decided to adapt the methods used in NSGA-II
to multiple solutions per individual.

28

4.2.1 Adaption to Multiple Objectives

In the single-objective ERM the graph traversal algorithm is assumed to
only return one solution. This is a relatively reasonable assumption - two
or more equally good solutions could appear, but since their fitness will be
exactly the same choosing just one of them should not affect the survival
chances of the individual anyway.

In the multi-objective case however, a graph traversal algorithm could
return any number of solutions representing different trade-offs present
within the graph. Indeed this is desirable, as it can not be known at this
stage which these are good or bad among the population as a whole.

One could use a weighted sum approach like WBGA and use single-
objective graph-traversal based on weights decided by the chromosome.
This would, admittedly remove the single genotype - multiple phenotype
problem and retain the neutrality property well.

However, the idea of having multiple phenotypes generated from a
single genotype might not be as bad an idea as one might think. To make an
analogy, consider the case of identical twins. While they will usually grow
up to look more or less the same, one might argue that in order to maximize
the chances of procreation it might be wise for the twins to learn different
skill-sets and proficiencies.

If they always make the same choices in life chances will be higher that
none of them will find a mate, since there is (in this analogy, at least) no way
for them to know if those choices make them fit relative to the rest of the
population. Based on this thought the algorithm proposed here lets each
chromosome produce a number of phenotypes. These solutions sometimes
act as a single entity and sometimes act as separate individuals.

In order to stop large families from overpowering smaller families
a limit is set to the number of solutions that can be generated per
chromosome. This is done by taking the complete set of solutions returned
by the graph-traversal algorithm and then reducing to the maximum
number of solutions using the hierarchical clustering algorithm used in
SPEA.

4.2.2 Adapting the Evolutionary Process to NSGA-II

Having several solutions per chromosome leads to some challenges in the
evolutionary process. The perhaps simplest way to solve this would be
to just let each solution be a completely separate individual. This would
increase the selection pressure a lot, and potentially give a disadvantage to
chromosomes that result in only one or two very good solutions.

Instead, a method was developed that threats each group of solutions
as one individual (or maybe sibling group would be a better term) during
parent and survival selection and as separate individuals during the non-
dominated sorting and crowding distance calculation phase.

For parent selection a binary tournament style operator was used: A
given number of rounds are done between two sibling groups, each round
being a binary tournament between a random solution in each of the two

29

groups. The group with the most wins is selected as a parent. (In the case
of a draw one of the groups are selected at random.)

For survival selection each individual of each group is put individually
in a large solution set and sorted by non-domination and crowding distance
as usual in NSGA-II. However, when the first individual of a group is
given a rank, that rank is assigned to the entire group, and the rest of the
individuals of the group are ignored. In this way, the survival of a group is
only tied to the best solution in it globally.

30

Chapter 5

Benchmark

This chapter will present the method used to evaluate the performance of
the proposed algorithm. First, a reference algorithm used for comparison
is described. Then, the objective functions used in the tests are explained.
Finally, the environments and parameters used are presented.

5.1 Reference Algorithm

In order to examine the effects of the roadmap chromosome encoding
in the ERM, an algorithm that is as similar as possible in other aspects
was constructed. NSGA-II is used for the evolutionary process, with
initialization, chromosome encoding and evolutionary operators based on
[39].

The initial population is generated using graph construction and
traversal, so that the populations of the two algorithms can be initialized
in the exact same way. The evolutionary operators used are single
point crossover and the three mutation operators change, shortcut and
smoothen.

The change mutation moves a random point in the chromosome a
normally distributed distance in some direction. The shortcut mutation
picks two random points in the chromosome and removes all points
between them, creating a shortcut. The smoothen mutation takes a
random point in the chromosome and replaces it with two points, uniformly
randomly distributed the each of the adjacent edges.

All three mutation operators will check if the affected areas of the
chromosome is feasible or not after the mutation. The operation will be
retried up to 7 times if the feasibility tests fail. On the 8th try the mutation
will be applied regardless of feasibility. After being generated by the
crossover operator, each offspring is either modified by one of operators or
left as it is with probabilities Pch for the change mutation, Psc for shortcut,
Psm for smoothen and (1−Pch −Psc −Psm) for no change.

31

5.2 Objective Functions

To test the multi-objective algorithms two different objective functions will
be defined. The first is a normalized version of the standard curve length
function used to solve shortest distance problems. The second is derived
from a simple model of the work that the subject must exert to follow the
path at a fixed speed.

5.2.1 Distance

As a measure of distance a normalized curve length is used. This is done
to lessen effect the size of the environments has on the algorithm and the
results. Since the solutions are piecewise linear paths the curve length can
be expressed as the sum of the Euclidean norms of each linear piece:

∥∥γ∥∥=
n−1∑
i=1

∥∥p i+1 −p i

∥∥
However, this metric will be dependent on the scale of the environment,

which is not of importance in a benchmarking context. Therefore, the curve
distance is divided by the Euclidean distance from start to goal, forming a
normalized distance function:

f1
(
γ
)= 1∥∥pn −p1

∥∥ n−1∑
i=1

∥∥p i+1 −p i

∥∥
5.2.2 Estimated Work

As a secondary objective, an estimation of the work that needs to be exerted
by a subject to follow a given path has been used. It is assumed that the
subject proceeds at a constant speed. The estimation used is based on the
following expression for work:

W =
t1ˆ

t0

F vdt +
t1ˆ

t0

τωdt

Here, the first term is the translational work and the second term is the
rotational work. The speed v is constant, and it is assumed that the force
translational force parallel with the velocity is also constant also constant.
In that case the translational work is proportional with v · (t1 − t0) = v ·∆t
which is equal to the curve length of the path,

∥∥γ∥∥.
In order to approximate the second term we will assume that the subject

will make a small deviation from the piecewise linear path in order to keep
constant speed at the corners. The subject is assumed to always make a turn
of constant curvature at each corner that deviates at most ε from the path.
Further, it is assumed that the subject requires no torque to be applied to
keep a constant rotational speed (i.e. air resistance, friction and so on does
not affect rotation). Then torque is only applied in a short moment before
and after the turn. The torque for each corner can then be approximated

32

Start

Goal

ε

r1

ε

r2

Figure 5.1: An example of the curve used to estimate work. The original
curve γ produced by the path planner is in gray dashes. The “rounded” curve
γ′ is in black, together with some of the geometry used to construct it.

in terms of the times ta and tb of entering and leaving the curve and some
short duration h:

τ (t) =

ωc /h t ∈ [ta , ta +h)

−ωc /h t ∈ [tb −h, tb)

0 else

The rotational speed will then be

ω (t) =
tˆ

ta

Iτ
(
t ′

)
dt =

I wc

h (t − ta) t ∈ [ta , ta +h)

I wc t ∈ [ta +h, tb −h)

I wc
h (tb − t) t ∈ [tb −h, tb)

0 else

Which in turn lets us calculate the rotational work expended during that
turn:

tbˆ

ta

τ (t)ω (t)dt =
ta+hˆ

ta

I
ω2

c

h2 (t − ta)dt +
tbˆ

tb+h

I
ω2

c

h2 (tb − t)dt

= I
ω2

c

h2

([
1

2
t 2

]h

0
+

[
1

2
t 2

]h

0

)
= I

ω2
c

h2 h2

= Iω2
c

All that is left now is to find an expression for the constant rotational
speed, ωc . For small h it can be approximated by a circular arc tangential to

33

both of the line segments that meet at the corner. The rotational speed of a
body rotating along with the tangent of a circle with radius r while moving
at a speed v has the rotational speed

ω= v

r

Thus we can approximate the rotational work with a value proportional
to the square reciprocal of the turn radius, and the total work exerted can
be approximated as

W = cT ·∥∥γ∥∥+ cR ·
n−2∑
i=1

r−2
i

cR /cT then determines the relative importance of a short path versus
a smooth path. If we set cT = ∥∥pn −p1

∥∥−1 then the first term equals the
distance function f1

(
γ
)

defined earlier. After initial testing, cR /cT was set to
4, giving the following expression for the second objective function:

f2
(
γ
)= f1

(
γ
)+ 4∥∥pn −p1

∥∥ n−2∑
i=1

r−2
i

To find an expression for r we need to apply the restriction given above
that the “rounded” curve γ′ that the subject will actually follow does not
deviate more than ε from the piecewise linear curve γ given by the path-
planning algorithm. The maximal deviation around a corner will happen
between the exact corner of γ and the middle of the corresponding circle
arc in γ′. With some straightforward trigonometry one can find that the
radius is related to the deviation and the angle α between the adjacent line
segments by

r = (r +ε)sin
α

2
⇒ r = ε sin α

2

1− sin α
2

However, this constraint sets no limits to how far into each line segment
the circle arc starts, and may give values for r that lead to unconstructable
curves. To avoid this, a second criteria is used that will override the
deviation criteria when it leads to values for r such that the circle arc
extends more than d

2 into each line segment, where d is the length of the
shortest segment. The expression for r such that the arc extends exactly d

2
into each segment is

r = d

2
tan

α

2

In order for the second criteria to hold we can simply set r to be the
minimum of these two expressions:

r = min

{
ε

sin α
2

1− sin α
2

,
d

2
tan

α

2

}

34

5.3 Benchmark Environments

Four two-dimensional environments, shown in Figure 5.2, have been
selected. The four maps are topologically similar to test environments used
in the literature. The first two maps are identical to maps used in [43].
For future reference, the environments are defined in a simple text-based
format and enclosed as Appendix A.

The first map (Figure 5.2a) has many smaller, convex obstacles
scattered around the environment. This gives rise to many possible routes
between the obstacles, and many of the short paths are not very straight.

The second map (Figure 5.2b) contains two large spiral structures. The
start point is at the center of one of them and the goal at the other, so the
path planner has to successfully optimize several turns while finding a way
into the goal spiral.

The obstacles in the third map (Figure 5.2c) create a thick barrier
between start and goal, with one narrow zigzagging passage between them
and a wide open way around one of them. The narrow passage is designed
so that it is much shorter than the way around, but requires three times as
many turns.

Finally, the fourth map (Figure 5.2d) is a relatively simple, open
environment, except for two “hooks” blocking the straight path between
start and goal. This map should not pose any big problems for either
algorithm tested, but is included here to test the efficiency of the algorithms
in optimising simpler problems.

5.4 Benchmark Setup

The two algorithms that were compared are designed to be as similar as
possible, except for chromosome encoding and differences in selection and
evolutionary operators as a consequence of that. The parameters used for
the two algorithms are summarized in Table 5.1. Since the encoding in
ERM requires a graph traversal for each chromosome evaluation it is more
complex computationally than the reference algorithm.

However, initial experiments indicated that in several of the environ-
ments ERM could produce solutions that match the reference algorithm
in quality (as measured by the hypervolume indicator) at lower population
sizes. To examine the relation between run time and solution quality both
algorithms were tested at four population sizes in each environment. The
population sizes used are shown in Table 5.1. Each of these 8 algorithm
variants were run 200 times per map.

Additionally, this benchmark was run twice, once with one objective
(shortest distance) and once with two objectives (shortest distance and
estimated work). Notice that although only a single objective is used in
the first run of the benchmark, the multi-objective algorithms are used in
both runs.

For each of run of each of the algorithm variants the front of non-
dominated solutions in the population after the final iteration is recorded

35

start
goal

(a) The ROCKY environment

start

goal

(b) The SPIRALS environment

start

goal

(c) The DETOUR environment

start

goal

(d) The STAR environment

Figure 5.2: The four environments tested in the benchmark. The ROCKY
and SPIRALS environments are based on [52], while DETOUR and STAR
are taken from [22].

Algorithm Reference algorithm Evolving roadmaps

Population sizes N = 30, 50, 70, 90 N = 5, 15, 25, 35
Offspring/iteration λ= N λ= N

Termination
s0 = 2

smin = 0.01
α= 0.002

s0 = 2
smin = 0.01
α= 0.02

Operators
Pch = 0.25
Psc = 0.2
Psm = 0.3

Pm = 0.1
Ni = 2

Pd = 0.07

Table 5.1: Parameters Used in the Tests

36

along with the iteration number and the total CPU time of the run. The
hypervolume of the population after each iteration is also recorded. The
tests were run on 8-core Intel i7 870 (2.93GHz) computers, using a single
thread for each run and registering the CPU time used by that thread only.

5.4.1 Initialization and Evaluation Algorithms

For generality, no specific method of initialization, local planning or graph
traversal is mentioned in the description of ERM in section 4.1. In these
tests, both ERM and the reference algorithm uses a version of the visibility-
based PRM described in section 3.1.7 for initialization.

This algorithm is much faster than an ordinary PRM while creating
more varied solutions. As a stand-alone path planner the large variation
in solutions is a drawback, but as a method of population initialization
this is an advantage, since a diverse initial population is favorable for an
evolutionary algorithm.

The local planner is implemented as a visibility test, simply checking
whether the straight line between the two nodes is obstructed or not.
The graph traversal algorithm used is the multi-objective A* algorithm
described in section 3.3.8.

5.4.2 Termination Criteria

Termination is determined by exponentially-weighted moving average of
the improvements to the hypervolume indicator each iteration. The average
is given some initial value s0 and then calculated as:

si = (1−α)si−1 +α∆HVi

Where ∆HVi is the difference in hypervolume between this iteration
and the previous one. Negative ∆HVi are truncated to zero. When si

reaches below a constant smin the run is terminated. This ensures that
the algorithm is given extra iterations when progress is made by running
for at least ln(smin/si)/ ln(1−α) additional iterations waiting for subsequent
improvements after iteration i . The values used in the test is shown in
Table 5.1. These values were set based on initial experiments that indicated
that the reference algorithm showed significantly less improvement per
iteration than ERM. The settings used force ERM to do at least 263
iterations, while the reference algorithm has to do ten times as much.

37

38

Chapter 6

Results

In this chapter the results of the benchmark described in the previous
chapter will be presented. Results from the single-objective benchmark and
the multi-objective one will be presented in turn, with a brief introduction,
a summary of each environment and then a general summary of the
tendencies observed.

Since each of the two algorithms has been tested with four different
settings, each of which has been run 200 times, there are 1600 data points
for each environment. The results have different characteristics for each of
the four environments and can not easily be merged or averaged between
them.

Furthermore, the results from each class do not vfit the normal
distribution very well, and are sometimes even multi-modal. There is often
correlation between run time and solution quality.

All these factors make it difficult to get a good overview of the results
using boxplots or simple scatterplots. In order to visualize the distribution
of the results better, each dataset of 200 points is first clustered by distance
into 15 clusters, which are then merged further when neccesary to reduce
overlap on the plots. These clusters are then plotted as circles with area
proportional to the number of points in the cluster. The circles are centered
at the mean coordinates of the points it represent.

Reference algorithm (N = 50) Evolving roadmaps (N = 15)
Mean Deviation Mean Deviation

ROCKY 3.4797ms 0.2475ms 9.3554ms 1.4893ms
SPIRALS 2.2796ms 0.0452ms 9.6658ms 1.2471ms
DETOUR 1.5686ms 0.0550ms 4.3798ms 0.6157ms

STAR 1.7216ms 0.0565ms 9.0248ms 1.1176ms

Table 6.1: Single-objective run time per iteration

39

ROCKY SPIRALS DETOUR STAR

Visibility graph 1.0406 3.0002 1.5400 1.2101
Reference algorithm 1.0476 3.0002 2.2393 1.2101
Evolving roadmap 1.0433 3.0658 2.2398 1.2105

Table 6.2: Shortest distances found

6.1 Single-Objective Benchmark

Figures 6.1, 6.2, 6.3 and 6.4 show plots of run time versus shortest distance
for all eight tests on each of the four maps. The shortest distance for each
map, as found by the visibility graph algorithm, compared to the minimum
distance found by each algorithm on any run is summarized in Table 6.2.

The plots show that the run time of the two algorithms are within the
same order of magnitude with the parameters used. Considering that the
termination criteria are set differently, this does not say anything about
the run time needed per iteration. Table 6.1 summarizes the per iteration
run time for the algorithms. For both algorithms the mean and standard
deviation increase nearly linearly with population size, therefore only one
population size is shown for each of them.

On the first map ERM performs as good as the reference algorithm
even at low population sizes. The algorithms are able to find equally good
solutions, but ERM produces a much smaller tail of sub-optimal solutions.
The solutions produced by the reference algorithm seem to fall into discrete
levels, possibly indicating local optima.

On the second map, SPIRALS, the solution quality produced by the
reference algorithm is excellent, while the ERM solutions are much farther
from the optimal value. ERM also shows large variation in solution quality
for the smaller population sizes and in run time for the larger population
sizes.

On the DETOUR map the reference algorithm has the best performance,
with ERM showing more variation in solution quality, especially at lower
population sizes. However, even the result range of the five-individual ERM
is within half a percentage point of the total distance. Both algorithms fail
to come close to the shortest path, however, indicating that neither of them
have been able to find the narrow passage between the obstacles.

On the last map the reference algorithm is again able to find better
solutions than ERM, with very little variation in solution quality, as in
both SPIRALS and DETOUR. As in the SPIRALS environment, ERM has
comparatively large variation in solution quality for the small populations,
which decreases with population size, while run time variation increases.

Overall, the performance is clearly in favor of the reference algorithm in
the single-objective case. The exception to this is the ROCKY environment,
where ERM performs as good or perhaps better than in the other
environments, while the reference algorithm performs substantially worse
and has a different distribution of solution quality that could indicate that
it has some difficulties escaping the local minima of this map.

40

0 5 10 15 20 25 30

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

1.22

1.24

Run time (s)

D
is

ta
nc

e

Ref. algorithm (N = 30)
Ref. algorithm (N = 50)
Ref. algorithm (N = 70)
Ref. algorithm (N = 90)
ERM (N = 5)
ERM (N = 15)
ERM (N = 25)
ERM (N = 35)

Figure 6.1: Single-objective results for the ROCKY environment

0 2 4 6 8 10 12 14 16 18

3

3.05

3.1

3.15

3.2

3.25

3.3

3.35

3.4

Run time (s)

D
is

ta
nc

e

Ref. algorithm (N = 30)
Ref. algorithm (N = 50)
Ref. algorithm (N = 70)
Ref. algorithm (N = 90)
ERM (N = 5)
ERM (N = 15)
ERM (N = 25)
ERM (N = 35)

Figure 6.2: Single-objective results for the SPIRALS environment

41

0 5 10 15

2.239

2.24

2.241

2.242

2.243

2.244

2.245

2.246

2.247

Run time (s)

D
is

ta
nc

e

Ref. algorithm (N = 30)
Ref. algorithm (N = 50)
Ref. algorithm (N = 70)
Ref. algorithm (N = 90)
ERM (N = 5)
ERM (N = 15)
ERM (N = 25)
ERM (N = 35)

Figure 6.3: Single-objective results for the DETOUR environment

0 5 10 15

1.21

1.211

1.212

1.213

1.214

1.215

1.216

1.217

1.218

Run time (s)

D
is

ta
nc

e

Ref. algorithm (N = 30)
Ref. algorithm (N = 50)
Ref. algorithm (N = 70)
Ref. algorithm (N = 90)
ERM (N = 5)
ERM (N = 15)
ERM (N = 25)
ERM (N = 35)

Figure 6.4: Single-objective results for the STAR environment

42

6.2 Multi-Objective Benchmark

Figures 6.6, 6.7, 6.8 and 6.9 plot run time versus hypervolume for the multi-
objective tests for each of the four environments. The per iteration run time
statistics are shown in Table 6.4. The shortest distances found in any run in
the multi-objective test are shown in table 6.3. These results do not deviate
significantly from the ones found in the single-objective case.

The reference point for all hypervolume calculations were [200,200].
Because of the way the fitness functions are normalized, the straight line
between start and goal would have had fitness [1,1] if it was feasible. This
is the optimal path for both objectives, so the maximum hypervolume
obtainable is less than 199×199 ≈ 3.96×104.

ROCKY SPIRALS DETOUR STAR

Visibility graph 1.0406 3.0002 1.5400 1.2101
Reference algorithm 1.0476 3.0002 2.2393 1.2102
Evolving roadmap 1.0480 3.0301 2.2396 1.2106

Table 6.3: Shortest distances found during multi-objective optimization

In the results for the ROCKY environment the hypervolume shows a
clear tendency to separate into distinct levels. The highest level, around
3.95×104, is reached infrequently by both algorithms, while most runs settle
around 3.94×104.

Figure 6.5 shows typical results from two of the hypervolume levels.
Both results were generated by ERM with a population size of 15. Finding
the green path in Figure 6.5a results in a significant improvement in the
best estimated work and a corresponding improvement in hypervolume.

While the results in the upper level clearly forms a separate group,
the results below are not spread out evenly, either. There is one level at
approximately 3.943×104, in addition to the main group near 3.941×104. In
addition, the results far below the main group probably belong to a separate
distribution as well. In Table 6.5 the data has been divided into four groups
by threshold the hypervolume values at 3.948×104, 3.942×104 and 3.939×104.

From the table one can see that the reference algorithm has produced
solutions in group 1 more rarely than ERM, and actually has a decreasing
number of results in group 1 and 2 when the population size is increased.
In both algorithms the number of results that fall into group 4 decreases

Reference algorithm (N = 50) Evolving roadmaps (N = 15)
Mean Deviation Mean Deviation

ROCKY 3.6682ms 0.2866ms 14.0524ms 1.8033ms
SPIRALS 2.1132ms 0.0872ms 34.2536ms 5.9525ms
DETOUR 1.4510ms 0.0544ms 16.1827ms 2.1694ms

STAR 1.5402ms 0.0480ms 34.4735ms 5.5661ms

Table 6.4: Multi-objective run time per iteration

43

start
goal

(a) Example 1: Two distinct groups
of solutions have formed, one with
with lower estimated work and one
with slightly shorter distance. The
hypervolume is 39517, with distances
within [1.0494,1.0729] and estimated
work within [1.3726,2.0307].

start
goal

(b) Example 2: Only one of the
groups have been found. The hy-
pervolume is 39410, with distances
within [1.0491,1.0682] and estimated
work within [1.9109,2.1579].

Figure 6.5: Example runs for the ROCKY environment, showing all
solutions from each run. Each solution is color-coded according to its fitness
so that solutions close to the minimum distance are red and those close to
the observed minimum work are green.

with population size, but the reference algorithm has a slightly higher
percentage of its results in this category.

In the SPIRALS environment both algorithm show the same tendency:
variants with few individuals have large variation in solution quality and
low variation in solution quality, while for large populations the opposite is
the case. Overall, the reference algorithm runs faster while ERM gives less
varied quality. Especially with ERM the variance in run time is very high
and there is much overlap between the different population sizes.

The results from the DETOUR environment paint much of the same

Group 1 Group 2 Group 3 Group 4
From 3.948×104 3.942×104 3.939×104

To 3.948×104 3.942×104 3.939×104

Ref (30) 7.0% 17.0% 58.5% 17.5%
Ref (50) 4.0% 15.5% 75.5% 5.0%
Ref (70) 3.0% 12.0% 81.5% 3.0%
Ref (90) 0.5% 10.5% 86.0% 3.0%
ERM (5) 6.5% 19.0% 69.5% 5.0%
ERM (15) 17.0% 5.0% 75.0% 3.0%
ERM (25) 24.5% 1.5% 72.0% 2.0%
ERM (35) 27.0% 1.0% 70.5% 1.5%

Table 6.5: Distribution between hypervolume groups in ROCKY

44

picture as those of the SPIRALS environment: Low population sizes give
high variation in solution quality, high population sizes give high variation
in run time. The variations are smaller along both axes, however, and
the population variants do not overlap in run time nearly as much as in
SPIRALS. As with the single objective, both algorithms fail to come close to
the shortest distance.

In the STAR environment one can again see the same patterns as in
DETOUR and SPIRALS, except here there seems to be a ceiling to the
solution quality of ERM, that does not apply to the reference algorithm.
Thus the average result produced by the reference algorithm end up being
better than that of ERM. And, while the reference algorithm has about the
same run time as in DETOUR, ERM is significantly slower here.

As in the single-objective case, the results on the ROCKY environment
differ from the trend in the other three environments. Overall, ERM
performed slightly better in ROCKY, while in the other three environments
the two algorithms present different trade-offs between short, predictable
run time and reliable solution quality. However, in the STAR environment
the average solution quality of the reference algorithm is significantly better
than ERM, making that trade-off of little relevance.

45

0 10 20 30 40 50

3.932

3.934

3.936

3.938

3.94

3.942

3.944

3.946

3.948

3.95

3.952

x 10
4

Run time (s)

H
yp

er
vo

lu
m

e

Ref. algorithm (N = 30)
Ref. algorithm (N = 50)
Ref. algorithm (N = 70)
Ref. algorithm (N = 90)
ERM (N = 5)
ERM (N = 15)
ERM (N = 25)
ERM (N = 35)

Figure 6.6: Multi-objective results for the ROCKY environment

0 50 100 150 200 250

2.05

2.1

2.15

2.2

2.25

2.3

2.35

2.4

2.45

2.5
x 10

4

Run time (s)

H
yp

er
vo

lu
m

e

Ref. algorithm (N = 30)
Ref. algorithm (N = 50)
Ref. algorithm (N = 70)
Ref. algorithm (N = 90)
ERM (N = 5)
ERM (N = 15)
ERM (N = 25)
ERM (N = 35)

Figure 6.7: Multi-objective results for the SPIRALS environment

46

0 5 10 15 20 25 30 35 40

3.9

3.9005

3.901

3.9015

3.902

3.9025

3.903

3.9035

3.904
x 10

4

Run time (s)

H
yp

er
vo

lu
m

e

Ref. algorithm (N = 30)
Ref. algorithm (N = 50)
Ref. algorithm (N = 70)
Ref. algorithm (N = 90)
ERM (N = 5)
ERM (N = 15)
ERM (N = 25)
ERM (N = 35)

Figure 6.8: Multi-objective results for the DETOUR environment

0 10 20 30 40 50 60 70 80
3.936

3.937

3.938

3.939

3.94

3.941

3.942

3.943
x 10

4

Run time (s)

H
yp

er
vo

lu
m

e

Ref. algorithm (N = 30)
Ref. algorithm (N = 50)
Ref. algorithm (N = 70)
Ref. algorithm (N = 90)
ERM (N = 5)
ERM (N = 15)
ERM (N = 25)
ERM (N = 35)

Figure 6.9: Multi-objective results for the STAR environment

47

48

Chapter 7

Conclusion

This chapter will conclude the thesis, beginning with a discussion of the
results and some related issues. Then, possibilities for futher studies are
suggested, before a final conclusive summary is given.

7.1 Discussion

The results show that the proposed algorithm does not perform better in
general than a non-neutral reference algorithm, and often considerably
worse in the single-objective case.

However, there is significant variation between environments in the
performance of the two algorithms. Some of the environments are quite
simple, and may not give a good indication of the performance in real-world
scenarios.

In the most crowded and perhaps most realistic of the environments,
ROCKY, ERM performed at least as well as the reference algorithm in the
single-objective case, with a notably higher chance of reaching the best
results in the multi-objective case. The performance in this environment
will be discussed in more detail in section 7.1.2.

Neither algorithm was able to find the optimal but significantly more
complex solution present in the DETOUR environment. This is likely a
symptom of a larger issue related to population initialization, which is
discussed in section 7.1.3.

7.1.1 Shortest Distance Performance

In the single-objective case, where minimization of distance was the lone
objective, the reference algorithm showed much better performance than
ERM, except for the ROCKY environment. While the reference algorithm
performed at least as good as ERM in the same environments in the multi-
objective case, it did not show nearly as big a difference in solution quality
as with only a single objective.

One reason for this might lie in the evolutionary operators. While the
evolutionary operators of ERM are about as general as they can be, the

49

mutation operators of the reference algorithm are designed with shortest
distance optimization in mind.

Both shortcut and smoothen operators are guaranteed to shorten the
path length if used. Only the change operator and crossover can create
longer paths. With a different objective function longer paths might
sometimes be better, and then the shortcut and smoothen mutations might
not be as efficient as they are when optimizing for shortest distance.

This gives the reference algorithm an advantage over ERM, which does
not make use of any domain knowledge beyond that it should try to connect
points in some Cartesian space. If the estimated work had been used
instead of the distance as the objective function the results might not have
been as clearly in favor of the reference algorithm.

7.1.2 ROCKY Versus the Other Environments

In both the single- and multi-objective case there is a significant perfor-
mance difference in the algorithms between ROCKY and the other three en-
vironments. The differences are most likely caused by differences in topol-
ogy.

SPIRALS and STAR both have only one general route from start to
goal, with a large open area in the middle of the route. The DETOUR
environment has a second route in it, but the results show that this route
was not found even once by the two algorithms in any of the tests.

The ROCKY environment, however, has a multitude of different routes,
and no large open spaces between start and goal. The results indicate that
either ERM performs better in this kind of environment, or the reference
algorithm performs worse. It is here argued that there are at least two
separate factors at work, one in favor of the reference algorithm in the other
environments and one in favor of ERM in the ROCKY environment.

The first factor is related to one of the main reasons for developing
ERM: The suspicion that algorithms like the reference algorithm are unable
to reliably avoid the kind of local optima that are created when the solution
space is split into separate routes. The single-objective results for the
ROCKY environment seems to confirm these suspicions.

The fact that the results for ERM do not fall into fitness levels in the
same way indicates that it is more robust in these situations, giving it an
advantage over the reference algorithm that is not present in the other
environments.

The other factor is the openness of the environment. When there are
large open areas, the graphs created by the chromosomes in ERM will be
more densely connected (there is a higher average number of outgoing
edges per node) than in environments with narrow passages between
evenly spread obstacles.

When the graphs are more densely connected more computations will
be required to traverse these graphs. The best-first search of the A*
algorithm minimizes the effect, but that is dependent on how good the
heuristics of the objective functions are.

50

The distance heuristic estimates the remaining distance as the Eu-
clidean distance between the current node and the goal, giving priority to
edges that lead straight towards the goal. In the STAR and SPIRALS envi-
ronments this is not of much use, since the only route available sometimes
leads in a completely different direction. In these two environments ERM
performs noticeably worse in run time in the single-objective tests.

No heuristic has been used for the rotational term of the estimated
work function, while for the translational term the same heuristic is used
as for the distance. Thus, the guesses made by the graph traversal are
generally a bit worse in the multi-objective case, which coincides with
smaller differences in run time variation for ERM between the different
environments.

The ROCKY environment is important because it has similar topology
to real-world indoor scenarios, with the obstacles representing equipment
or furniture scattered around, possibly alongside autonomous agents or
people. Good performance in this environment could suggest robustness
outside of controlled environments as well.

7.1.3 Initialization in Evolutionary Path Planning

As mentioned, both algorithms failed to find the shortest path in the
DETOUR environment. It is here suggested that this is because it is highly
improbable that solutions going through the tight passage are generated
during initialization. Furthermore, the subspace these solutions constitute
is disconnected from the rest of solution space in such a way that it is also
highly unlikely that they are generated through crossover and mutation
from solutions outside of that subspace.

As an analogy, lets look at a simpler problem and a simpler algorithm.
In Figure 7.1a a very simple path planning problem consisting of a single
obstacle placed near one edge of the environment. The problem is
constructed so that the shortest path passes through the tight passage
between the boundary of the environment and the obstacle. The shortest
path to the right side of the obstacle is about 14 percent longer than the
shortest path to the left side.

The simplified algorithm is an evolutionary algorithm that represents
the path using a single milestone, coded as an x-value and an y-value. The
resulting solution space is mapped in Figure 7.1b. The small feasible area to
the far left is 355 times smaller than the area to the right. If the population
is initialized with feasible individuals that are randomly distributed, and a
population size of 100 individuals, there would only be a 24.5% chance of
having one or more individuals in the left area.

So around three out of four times the algorithm is run, no part of the
initial population will be in the left area. Because of its exploitive nature,
a pure crossover operator would not be able to generate a solution in that
area either.

The only way left for a solution in the left area to appear would be
through mutation. If the fitness function does not differentiate infeasible
solutions (for example by assigning worse fitness to individuals digging

51

Start

Goal

(a) The problem: Find the shortest
path from start to goal.

Start

Goal

(b) The solution space using a single-
milestone EA. Infeasible parts are
shaded dark gray. The optimal solu-
tion is in the small “island” of feasibil-
ity on the far left.

Figure 7.1: A Simple Path Planning Problem

deeper into obstacles) then the algorithm will not be any better at finding a
solution in the left area than a random search.

If the algorithm does differentiate infeasible solutions (for example by
assigning better fitness close to the edges of obstacles) then it might actually
be even worse off here, because it might stop solutions from migrating
across the infeasible area by leading them back to the nearest feasible point.

The similarities between this example and the situation in the DETOUR
environment is striking. Since the passage containing the optimal solution
is both narrower and requires more points to define than the way around,
the VIS-PRM algorithm has a much higher chance of finding the way
around rather than the way between the obstacles. Since the passage is
narrow relative to the thickness of the obstacles, the probability of finding
the optimal path by random mutation is very small.

This seems to indicate that the initialization method plays an important
role in evolutionary path planners. Path planning problems are not only
often multi-modal, but both the jumps between local optima and the
differences in size of the basins of attraction between them can be so large,
that the only way to ensure robust performance might be to ensure that the
initialization covers all basins of attraction.

7.2 Future Work

An important motivation for exploring neutral algorithms for path planning
is for the potential added robustness in changing environments. The
algorithm performed its best with the cluttered ROCKY environment, and
environments with moving objects might present some similar challenges,
so it could be of great interest to apply the algorithm to dynamic
environments.

52

In the tests done in this thesis, the simplest possible local planner
(checking if the straight line between two points is obstructed) was used.
However, more advanced local algorithms could be used, such as using
artificial potential fields or even running an algorithm capable of global
planning. Doing this might be beneficial to performance by reducing the
number of nodes needed in each chromosome and improving obstacle
avoidance in dynamic environments.

The algorithm proposed here, and the reference algorithm used, has
some parameters related to the magnitude of mutations that were set to
some fixed values during initial experiments. In order to improve fine-
optimization and increase robustness to varying environment shapes and
sizes it will most likely be beneficial to make these mutation parameters
adapt over iterations, for example by adding one or more strategy parame-
ters.

The initialization problems present in evolutionary path planners pose a
serious problem to the general performance of these algorithms. Research
is needed to find good, robust solutions to this problem for them to work
efficiently out in the real world.

Using several of the many different graph construction methods in
classical path planning might help. For example, initializing one individual
with a visibility graph of the environment would almost guarantee that
the shortest-distance path would be found. However, for many problems
complete planners such as the visibility graph and Voronoi graph are too
expensive to be run, or unknown or dynamic elements in the environment
that are too complex could render them useless.

Both ERM and the reference planner has proved to be quite proficient
at taking a sub-optimal path along a certain route and optimizing for that
given route. So what might really be needed is a simple but robust meta-
planner that can produce a graph of (all) possible routes.

7.3 Conclusion

This thesis presented evolving roadmaps (ERM), a multi-objective evolu-
tionary path planner with neutrality. The algorithm introduces neutrality
by coding chromosomes as nodes in a roadmap instead of a single path.
Chromosomes then produce solutions by applying a graph traversal algo-
rithm on it.

When optimizing for several objectives this method naturally results in
multiple solutions being produced per chromosome. In the proposed algo-
rithm several such solutions can be associated with a single chromosome,
breaking with EA convention. To accommodate this a new multi-objective
parent selection method was presented, along with a modification to the
survival selection method of NSGA-II.

The performance of the algorithm was compared to that of a reference
algorithm in four different environments and using both one and two
objectives. A normalized distance measure was used as the first objective,
and to act as a second objective, an estimation of the physical work needed

53

to follow the path at a constant speed was introduced.
Four different population sizes were used for each of the two algorithms

in all tests. Lower population sizes were used for ERM than the reference
algorithm after it was determined during initial tests that ERM could
produce better solutions with low population sizes than what was possible
with the reference algorithm. With the lower population sizes run time was
of the same order of magnitude for both algorithms.

When optimizing for distance as a lone objective the reference algo-
rithm was clearly superior to ERM in most of the environments. This may
be attributed to the mutation operators in the reference algorithm being
more specialized toward this objective function. In the multi-objective case
the two algorithms were more even, with the reference algorithm showing
a slight advantage in run time while ERM had somewhat less variation in
solution quality.

In one environment, the results deviated significantly from the descrip-
tion above. This environment was more crowded, with many obstacles
scattered around, creating a very large number of possible combinations
of routes between the obstacles.

Here, ERM performed at least as well as the reference algorithm with
both one and two objectives. In the single-objective case the reference
algorithm fell into different discrete levels of fitness, a clear indication that
it got stuck in local optima.

In the multi-objective case both algorithms fell into discrete levels of
hypervolume, but ERM had a significantly higher probability of reaching
the most favorable level. With ERM the chance of finding solutions on
that level increased with population size, reaching 27% with the highest
population size tested. In contrast, the reference algorithm’s chances of
finding that level was 7% the lowest population size, and actually decreased
with population size.

This supports the hypothesis that a neutral algorithm would be more
robust in complex, cluttered environments. However one of the other
environments was set up to have a shortcut that would be very hard to
find. This shortcut was not found by either algorithm, illustrating a limit
to the power of evolutionary algorithms in general: When the method of
initialization is unable to generate solutions from a basin of attraction with
any certainty, the algorithm is no better (and usually worse) than a random
search at finding solutions in that basin.

54

Bibliography

[1] F. Ahmed and K. Deb. Multi-objective path planning using spline
representation. In Proceedings of the IEEE International Confer-
ence on Robotics and Biomimetics (IEEE-ROBIO 2011), Piscatway,
pages No–pp. Proceedings of the IEEE International Conference on
Robotics and Biomimetics (IEEE-ROBIO 2011), Piscatway, 2011.

[2] I. Ashiru and C. Czarnecki. Optimal motion planning for mobile
robots using genetic algorithms. In Industrial Automation and
Control, 1995 (I A C’95), IEEE/IAS International Conference on (Cat.
No.95TH8005), pages 297 –300, 5-7jan 1995.

[3] Franz Aurenhammer. Voronoi diagrams - a survey of a fundamental
geometric data structure. ACM Comput. Surv., 23:345–405, Septem-
ber 1991.

[4] V. Boor, M.H. Overmars, and A.F. van der Stappen. The gaussian sam-
pling strategy for probabilistic roadmap planners. In Robotics and
Automation, 1999. Proceedings. 1999 IEEE International Conference
on, volume 2, pages 1018 –1023 vol.2, 1999.

[5] John Canny and Bruce Donald. Simplified voronoi diagrams. Discrete
& Computational Geometry, 3:219–236, 1988. 10.1007/BF02187909.

[6] C.A.C. Coello, G.B. Lamont, and D.A. Van Veldhuizen. Evolutionary
algorithms for solving multi-objective problems, volume 5. Springer-
Verlag New York Inc, 2007.

[7] K. Deb. Multi-objective optimization using evolutionary algorithms,
volume 16. Wiley, 2001.

[8] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and
elitist multiobjective genetic algorithm: Nsga-ii. Evolutionary
Computation, IEEE Transactions on, 6(2):182 –197, apr 2002.

[9] M. Ebner, P. Langguth, J. Albert, M. Shackleton, and R. Shipman.
On neutral networks and evolvability. In Evolutionary Computation,
2001. Proceedings of the 2001 Congress on, volume 1, pages 1–8.
IEEE, 2001.

[10] M. Ebner, M. Shackleton, and R. Shipman. How neutral networks
influence evolvability. Complexity, 7(2):19–33, 2001.

55

[11] A.E. Eiben and J.E. Smith. Introduction to evolutionary computing
(Natural computing series). Springer, 2008.

[12] A. Elshamli, H.A. Abdullah, and S. Areibi. Genetic algorithm for
dynamic path planning. In Electrical and Computer Engineering,
2004. Canadian Conference on, volume 2, pages 677 – 680 Vol.2, may
2004.

[13] C.M. Fonseca, P.J. Fleming, et al. Genetic algorithms for multiob-
jective optimization: Formulation, discussion and generalization. In
Proceedings of the fifth international conference on genetic algo-
rithms, volume 1, page 416. Citeseer, 1993.

[14] T. Fraichard. Trajectory planning in a dynamic workspace: a’state-
time space’approach. Advanced Robotics, 13, 6(8):75–94, 1999.

[15] K. Fujimura. Path planning with multiple objectives. Robotics
Automation Magazine, IEEE, 3(1):33 –38, mar 1996.

[16] Edgar Galván-López, Riccardo Poli, Ahmed Kattan, Michael O’Neill,
and Anthony Brabazon. Neutrality in evolutionary algorithms... what
do we know? Evolving Systems, 2:145–163, 2011. 10.1007/s12530-
011-9030-5.

[17] D.E. Goldberg. Genetic algorithms in search, optimization, and
machine learning. Addison-Wesley Professional, 1989.

[18] P. Hajela, E. Lee, and C.Y. Lin. Genetic algorithms in structural
topology optimization. Topology design of structures, 227:117–134,
1993.

[19] S. Handley. The genetic planner: The automatic generation of plans
for a mobile robot via genetic programming. In Intelligent Control,
1993., Proceedings of the 1993 IEEE International Symposium on,
pages 190 –195, aug 1993.

[20] P.E. Hart, N.J. Nilsson, and B. Raphael. A formal basis for the
heuristic determination of minimum cost paths. Systems Science and
Cybernetics, IEEE Transactions on, 4(2):100 –107, july 1968.

[21] Inman Harvey and Adrian Thompson. Through the labyrinth
evolution finds a way: A silicon ridge. In Tetsuya Higuchi, Masaya
Iwata, and Weixin Liu, editors, Evolvable Systems: From Biology to
Hardware, volume 1259 of Lecture Notes in Computer Science, pages
406–422. Springer Berlin / Heidelberg, 1997. 10.1007/3-540-63173-
9_62.

[22] D. Henrich, C. Wurll, and H. Worn. On-line path planning by
heuristic hierarchical search. In Industrial Electronics Society, 1998.
IECON ’98. Proceedings of the 24th Annual Conference of the IEEE,
volume 4, pages 2239 –2244 vol.4, aug-4 sep 1998.

56

[23] C. Hocaoglu and A.C. Sanderson. Planning multi-paths using
speciation in genetic algorithms. In Evolutionary Computation,
1996., Proceedings of IEEE International Conference on, pages 378
–383, may 1996.

[24] J.H. Holland. Adaptation in natural and artificial systems: An
introductory analysis with applications to biology, control, and
artificial intelligence. U Michigan Press, 1975.

[25] Kao-Ting Hung, Jing-Sin Liu, and Yau-Zen Chang. A compara-
tive study of smooth path planning for a mobile robot by evolution-
ary multi-objective optimization. In Computational Intelligence in
Robotics and Automation, 2007. CIRA 2007. International Sympo-
sium on, pages 254 –259, june 2007.

[26] L. Kavraki and J.-C. Latombe. Randomized preprocessing of config-
uration for fast path planning. In Robotics and Automation, 1994.
Proceedings., 1994 IEEE International Conference on, pages 2138 –
2145 vol.3, may 1994.

[27] O. Khatib. Real-time obstacle avoidance for manipulators and mobile
robots. The international journal of robotics research, 5(1):90–98,
1986.

[28] P. Khosla and R. Volpe. Superquadric artificial potentials for
obstacle avoidance and approach. In Robotics and Automation, 1988.
Proceedings., 1988 IEEE International Conference on, pages 1778 –
1784 vol.3, apr 1988.

[29] M. Kimura et al. Evolutionary rate at the molecular level. Nature,
217(5129):624, 1968.

[30] J.R. Koza. Genetic programming. Citeseer, 1992.

[31] J.C. Latombe. Robot motion planning. Kluwer international series in
engineering and computer science. Kluwer Academic, 1991.

[32] S.M. LaValle. Planning algorithms. Cambridge Univ Pr, 2006.

[33] C. Leger. Automated synthesis and optimization of robot configura-
tions: an evolutionary approach. PhD thesis, Citeseer, 1999.

[34] H.S. Lin, J. Xiao, and Z. Michalewicz. Evolutionary algorithm for
path planning in mobile robot environment. In Evolutionary Compu-
tation, 1994. IEEE World Congress on Computational Intelligence.,
Proceedings of the First IEEE Conference on, pages 211–216. IEEE,
1994.

[35] T. Lozano-Perez. Spatial planning: A configuration space approach.
IEEE Transactions on Computers, 32:108–120, 1983.

57

[36] Tomás Lozano-Pérez and Michael A. Wesley. An algorithm for
planning collision-free paths among polyhedral obstacles. Commun.
ACM, 22(10):560–570, October 1979.

[37] L. Lulu and A. Elnagar. A comparative study between visibility-
based roadmap path planning algorithms. In Intelligent Robots
and Systems, 2005. (IROS 2005). 2005 IEEE/RSJ International
Conference on, pages 3263 – 3268, aug. 2005.

[38] T. Murata and H. Ishibuchi. Moga: multi-objective genetic algo-
rithms. In Evolutionary Computation, 1995., IEEE International
Conference on, volume 1, page 289, nov-1 dec 1995.

[39] M. Naderan-Tahan and M.T. Manzuri-Shalmani. Efficient and safe
path planning for a mobile robot using genetic algorithm. In
Evolutionary Computation, 2009. CEC ’09. IEEE Congress on, pages
2091 –2097, may 2009.

[40] C. Nissoux, T. Simeon, and J.-P. Laumond. Visibility based proba-
bilistic roadmaps. In Intelligent Robots and Systems, 1999. IROS ’99.
Proceedings. 1999 IEEE/RSJ International Conference on, volume 3,
pages 1316 –1321 vol.3, 1999.

[41] M.H. Overmars et al. A random approach to motion planning.
Technical report, 1992.

[42] F. Rothlauf and D.E. Goldberg. Redundant representations in
evolutionary computation. Evolutionary Computation, 11(4):381–
415, 2003.

[43] Eivind Samuelsen, Kyrre Harald Glette, and Kazi Shah Nawaz
Ripon. A neutral evolutionary path-planner. In Masanori Sugisaka
and Hiroshi Tanaka, editors, Proceedings of the 17th International
Symposium on Artificial Life and Robotics, pages 851–854, 2012.

[44] J.D. Schaffer. Some experiments in machine learning using vec-
tor evaluated genetic algorithms. PhD thesis, Vanderbilt Univ.,
Nashville, TN (USA), 1985.

[45] M. Shackleton, R. Shipman, and M. Ebner. An investigation of re-
dundant genotype-phenotype mappings and their role in evolutionary
search. In Evolutionary Computation, 2000. Proceedings of the 2000
Congress on, volume 1, pages 493–500. IEEE, 2000.

[46] R. Shipman, M. Shackleton, M. Ebner, and R. Watson. Neutral search
spaces for artificial evolution: A lesson from life. Artificial Life, 7:162–
169, 2000.

[47] A.R. Soltani and T. Fernando. A fuzzy based multi-objective path
planning of construction sites. Automation in Construction, 13(6):717
– 734, 2004.

58

[48] N. Srinivas and K. Deb. Muiltiobjective optimization using non-
dominated sorting in genetic algorithms. Evolutionary computation,
2(3):221–248, 1994.

[49] Bradley S. Stewart and Chelsea C. White, III. Multiobjective a*. J.
ACM, 38(4):775–814, October 1991.

[50] M. Toussaint and C. Igel. Neutrality: A necessity for self-adaptation.
In Evolutionary Computation, 2002. CEC’02. Proceedings of the
2002 Congress on, volume 2, pages 1354–1359. IEEE, 2002.

[51] J. Vannoy and Jing Xiao. Real-time adaptive motion planning (ramp)
of mobile manipulators in dynamic environments with unforeseen
changes. Robotics, IEEE Transactions on, 24(5):1199 –1212, oct.
2008.

[52] J. Xiao, Z. Michalewicz, L. Zhang, and K. Trojanowski. Adaptive
evolutionary planner/navigator for mobile robots. Evolutionary
Computation, IEEE Transactions on, 1(1):18–28, 1997.

[53] E. Zitzler, L. Thiele, E. Zitzler, E. Zitzler, L. Thiele, and L. Thiele.
An evolutionary algorithm for multiobjective optimization: The
strength pareto approach. Citeseer, 1998.

59

60

Appendix A

Environment Definition
Listings

The environments used in the benchmark are listed below as Listings A.1,
A.2, A.3 and A.4. The environments are defined in a simple Lisp-like syntax,
and should be relatively easy to parse:

The (bounds ...) expression describes the boundary of the environ-
ment, and each (object ...) expression defines an obstacle.

(polygon x0 y0 x1 y1 ...) defines a polygon by pairs of numbers
representing the x and y coordinates of the corners of the polygon. The
geometric definition of the border and obstacles was separated in order
to make it easy to add other types of geometry later (for example circular
obstacles).

(start x y) and (goal x y) defines the position of the start and goal
points respectively.

61

Listing A.1: ROCKY definition

(bounds (polygon 2.5 2 11.5 2 11.5 9.9 2.5 9.9))
(object (polygon 4.7 4.2 4.5 4.5 4.8 4.9 5.3 4.5))
(object (polygon 6.4 4.9 6.1 5.3 6.5 6 7 5.4))
(object (polygon 5.3 6 5 6.6 5.3 7.4 6.2 6.6))
(object (polygon 7.3 6.4 7 7.3 7.9 7.4 7.9 6.7))
(object (polygon 7.6 5.1 7.5 5.7 8.1 6.2 8.2 5.6))
(object (polygon 6.2 7.5 5.8 8.4 6.2 9.4 7.2 8.8 7 7.8))
(object (polygon 5.5 2.8 5.2 3.4 5.8 4 6.5 3.2 6 2.7))
(object (polygon 6.7 2 6.5 2.6 7.2 3 7.7 2.5 7.5 2))
(object (polygon 5.5 4.8 5.2 5.2 5.7 5.7 6.1 4.9 5.9 4.5))
(object (polygon 7.2 4.3 6.8 4.5 7.1 5 7.4 4.7))
(object (polygon 8.7 2.7 8.3 3.3 8.9 3.7 9.4 3.5 9.3 3))
(object (polygon 9.2 4.6 8.8 5.1 9 5.4 9.7 5.2 9.6 4.7))
(object (polygon 9 6.3 8.5 6.5 8.5 7.1 9.5 7.1 9.5 6.7))
(object (polygon 8.7 7.9 7.9 8.5 8.3 9.2 9 9.1 9.4 8.5 9.3 8.1))
(object (polygon 4.4 8 3.8 8.6 4.3 9.1 5 8.7 5 8.2))
(object (polygon 3.8 5.2 3.6 5.7 3.9 6.4 4.8 5.9 4.5 5.4 4.3 5.3))
(object (polygon 3.4 7 2.6 7.8 3 8 3.7 8 3.8 7.4))
(object (polygon 10.5 3.7 9.7 4.2 10.1 4.5 10.7 4.4 10.8 3.9))
(object (polygon 10.4 5.6 9.7 5.9 10 6.5 10.4 6.4 10.6 6))
(object (polygon 5.3 9.2 4.5 9.6 4.5 9.9 5.8 9.9 5.8 9.6))
(object (polygon 8.3 2 8.3 2.1 9.3 2.5 9.4 2))
(object (polygon 8.1 4 8 4.5 8.5 4.7 8.6 4.1 8.4 4))
(object (polygon 6.6 3.7 6.5 4.3 7.2 4 7 3.6))
(object (polygon 7.5 9.2 6.8 9.6 6.7 9.9 8.1 9.9 8 9.6))
(object (polygon 5.6 2 5.5 2.2 6.3 2.5 6.4 2))
(object (polygon 4.1 3 3.7 3.9 4.7 3.9 4.7 3.4))
(start 2.9 5.5)
(goal 10.6 5.2)

Listing A.2: SPIRALS definition

(bounds (polygon 2.5 2 11.5 2 11.5 9.9 2.5 9.9))
(object (polygon 4.5 4.5 5 4.5 5 5 4 5 4 3.5 6 3.5 6 6 4 6 4 6.5

6.5 6.5 6.5 3 3.5 3 3.5 5.5 5.5 5.5 5.5 4 4.5 4))
(object (polygon 8.5 7 9 7 9 7.5 8 7.5 8 6 10 6 10 8.5 8 8.5 8 9

10.5 9 10.5 5.5 7.5 5.5 7.5 8 9.5 8 9.5 6.5 8.5 6.5))
(start 4.6 4.7)
(goal 8.7 7.2)

Listing A.3: DETOUR definition

(bounds (polygon -8 -4 -8 13 14 13 14 -4))
(object (polygon -8 -1 1 -1 1 0 -3 0 -3 3 1 3 1 4 -3 4 -3 7

1 7 1 8 -3 8 -3 10 -8 10))
(object (polygon 4 -1 4 1 -1 1 -1 2 4 2 4 5 -1 5 -1 6 4 6

4 9 -1 9 -1 10 9 10 9 -1))
(start 0 11)
(goal 0 -2)

Listing A.4: STAR definition

(bounds (polygon 11 -4 -8 -4 -8 14 11 14))
(object (polygon -8 0 -4 0 -4 -3 -3 -3 -3 1 -8 1))
(object (polygon 11 10 7 10 7 13 6 13 6 9 11 9))
(start 9 12)
(goal -6 -2)

62

Appendix B

A Neutral Evolutionary
Path Planner

63

A neutral evolutionary path-planner
Eivind Samuelsen, Kyrre Harald Glette, and Kazi Shah Nawaz Ripon

Department of Informatics, University of Oslo, Norway
{eivinsam,kyrrehg,ksripon}@ifi.uio.no

Abstract: This paper explores methods for path-planning using evolutionary algorithms. Inspired by research on neutral muta-
tions in evolutionary algorithms, we propose an algorithm based on the idea of introducing redundancy in the solutions, adding
explicit neutrality to the evolutionary system. The algorithm introduce explicit neutrality by evolving roadmaps rather than single
paths. Since some of the mutation and crossover operators used in conventional evolutionary path-planners are not well suited
for this representation, appropriate evolutionary operators will also be explored. The performance of this algorithm on shortest
distance path planning problems is compared to a known good genetic algorithm in three different static environments.

Keywords: genetic algorithm, neutrality, path-planning, roadmap

1 INTRODUCTION

Path planning is the problem of finding an optimal
obstacle-free path through an environment. In a shortest dis-
tance problem, the optimal path is the one going from a start
point to a goal point in the shortest possible distance trav-
elled. Many methods have been proposed for solving this op-
timization problem. They all have certain trade-offs between
planning time, robustness, requirements on environment rep-
resentation and so on. An overview of the most common
no-evolutionary methods can be found in [1].

Probabilistic roadmaps (PRMs) are one of the more com-
mon methods in path planning. A PRM samples random
points in order to simplify the problem and scale well with
environment dimensionality. However, it will seldom find
optimal solutions unless the amount of samples taken is made
impractically large. They also have problems with finding so-
lutions at all in narrow passages and maze-like environments,
a problem that to some extent can be remedied by sampling
adaptively [2].

Several path-planning methods using evolutionary algo-
rithms (EAs) have also been proposed. A straightforward
approach to the shortest distance problem is presented in [3].
Once a good set of solutions has been found by an EA path-
planner, it can easily adapt to changes in the environment
simply by running the a few more iterations of the algorithm
on the updated environment data. However, finding a good
set of initial solutions from a set of random solutions can take
some time. A remedy for this is to initialize the population
with results from a PRM planner has been proposed in [4].

There has recently been some interest in EAs using neu-
trality and neutral mutations. Neutrality is having redun-
dancy or extra information in the chromosomes so that they
can change in ways that do not affect fitness. It is claimed
that this can be greatly beneficial to EAs, making them both
converge faster to the optimum and also escape local optima

more easily. This is inspired by similar theories in biologi-
cal evolution and some experimental findings, though many
of these findings are considered inconclusive by others. A
summary of this research can be found in [5].

Although the effects of neutrality in EAs in general are
still inconclusive, it is an interesting avenue to explore in
solving path-planning problems. One such method is pro-
posed in this paper. Instead of trying to evolve good paths
directly, this method tries to evolve good roadmaps for find-
ing paths. We will rank the roadmaps only by the best path
found in them by a graph traversal algorithm. Since this rank-
ing does not consider the points in the roadmap that are not
part of the resulting path it has explicit neutrality.

2 PROPOSED METHOD
Starting out with a set of PRMs as initial population, our

algorithm evolves these roadmaps over many generations.
We call this method a roadmap evolver. Roadmaps well
suited to find a good path are more likely to survive to the
next generation. The nodes that are not on a roadmap’s best
path can mutate without affecting the roadmap’s fitness. This
can enable the population to escape local optima more easily.

2.1 Representation and evaluation function
Each chromosome is a set of floating-point vectors that

together with the start point and the goal constitute the nodes,
or milestones, of a roadmap. If one can draw a straight line
between two nodes without intersecting any obstacle, they
are connected. A graph traversal algorithm is run to evaluate
the chromosomes, finding the best path through it from the
start to the goal node.

When an optimal path through the roadmap has been
found, the fitness of that path is taken as the fitness of the
roadmap. In the experiments done in this paper the path’s
are optimized for the shortest path. So the fitness of the path

is the path’s curve length, and the graph traversal is done by
A*.

Since not all nodes are necessarily visited during the
traversal, the connectivity of the roadmap graph is done dy-
namically during the graph traversal in order to reduce the
number of connectivity checks needed. Still, in general,
O(n2) connectivity checks will be needed in the traversal,
where n is the number of nodes in the roadmap.

2.2 Evolutionary operators
The algorithm proposed has a single crossover operator

and three mutation operators: nudge, insert and reduce size.
In order to emphasize average-sized children we use a

crossover operator similar to uniform crossover: First each
point in parent A is given to either child A or child B with
equal probability. Then the points in parent B are distributed
in the same way. The size of each child is the sum of n coin
flips, so it has a binominal distribution. The chromosomes
are sets of points and thus inherently unordered. Therefore,
there is no need to try to maintain any ordering.

The nudge mutation goes through all the points in a chro-
mosome. Each point has a probability Pnudge of being dis-
placed a small distance in some random direction, but only if
that displacement does not move the point into or over an ob-
stacle: A normal-distributed vector is added to the point if the
straight line between the original point and the point plus the
random vector is obstacle-free. If this fails, it is reattempted
up to 6 times with a new random vector with increasingly
narrow normal distribution. If all attempts fail that point is
left unchanged.

The insert mutation tries to add a single point to an in-
dividual. A candidate point is generated randomly with uni-
form probability within the bounds of the environment. If the
candidate is obstructed, a short random walk is performed
until an unobstructed point is found, or a maximum of three
steps are taken. If the candidate is still obstructed, we try
it up to 5 more times with different random start points. If
no feasible candidate has been found, the operator leaves the
individual unchanged.

The reduce size mutation goes through all the points in
a chromosome and removes that point with a probability
Premove . Thus, on average n × Premove points are removed
from the set, where n is the original size of the set.

2.3 Initial population and evolutionary process
The population is initialized with N PRMs with an aver-

age of Ng non-obstructed nodes in uniform distribution over
the environment. If none of the roadmaps give a feasible path
from start to a goal then Ng is increased by a constant and N

new PRMs are created. This is repeated until at least one
initial feasible solution is found.

Each generation is generated as follows: N new individu-
als are created by crossover. The parents for each crossover

Table 1: Average run-time, including initialization
Environment Reference

path-planner
(per iteration)

Roadmap evolver
(per iteration)

“Rocks” 19.0s (10.6ms) 78.3s (174.0ms)
“House” 49.0s (27.2ms) 163.6s (363.6ms)
“Spirals” 25.7s (14.3ms) 131.0s (291.1ms)

operation are selected by simple tournament selection with
a tournament size of 2. This is repeated until two different
parents have been selected.

All the new individuals are then subjected to mutation.
The nudge mutation is performed once, then the insert muta-
tion is performed once with probability Pinsert . Finally the
reduce size mutation is performed. After that, new popula-
tion is merged with the old. To reduce the population size
back to normal, N one-round tournaments are held, and the
losing individuals are removed.

Each new individual has Pinsert points added on average,
while n×Premove points are removed. This helps the average
chromosome size to stay relatively stable, while allowing for
variations in order to adapt to different environments.

3 RESULTS AND DISCUSSION
The algorithm has been tested against a reference path-

planner in different environments. The reference algorithm
used is similar to the one described in [4], differing mainly
in the parameters and selection operators used. It is run with
a population size of 40 and a tournament-based selection. It
should be noted that the parameters and implementation of
the reference algorithm are not fine-tuned or optimized, and
can therefore only serve as a general guideline to the perfor-
mance of a reasonably robust evolutionary path-planner.

The roadmap evolver was run with a population size of 35
and an average initial number of nodes per chromosome of
35 or more. Mutation parameters were set to Pnudge = 0.2,
Pinsert = 0.4 and Premove = 0.05.

Three different environments, shown in Fig.1 are tested.
Each environment has different characteristics: The “rocky”
environment consists of a number of scattered convex shapes,
and has a large number of intersecting local optima. The sec-
ond environment imitates the interior of a single-floor home,
and has wall- and corridor-like obstacles, leading to a few,
far-apart local optima. The third environment contains two
spiral structures and has only one hard-to-find optimum.

The result of 100 runs of each algorithm in each environ-
ment is shown in Fig.2. The reference algorithm is run for
1800 iterations, while the roadmap evolver is run for 450 iter-
ations. The large difference in number of iterations is due to
differences in run-time per iteration and to differences in how

start
goal

(a) The “rocks” environment

start

goal

(b) The “house” environment

goal

start

(c) The “spirals” environment

Figure 1: The different environments tested

quickly the algorithms converge. The average run-times are
shown in Table 1. The average iteration time of the roadmap
evolver is more than ten times that of the reference algorithm.

The reference algorithm shows very good performance in
the “house” environment, with a good start and little varia-
tion. In “rocks” it converges quickly, but seems to get stuck in
local optima, because the variation between runs stays high.
In the last environment it closes in on the optimum with low
variation, but at a very slow pace.

The roadmap evolver has good performance in the “rocks”
environment, converging quickly towards a near-optimal so-
lution quickly and with little variation between runs. In the
other two environments it closes in on the optimal solution at
a good average pace, but the pace is very uneven, with large
variations in fitness between runs for many generations.

Compared to the reference algorithm in terms of genera-
tions only, the roadmap evolver performs as good or better
in both “rocks” and “spirals” environments, but needs more
generations to reliably produce near-optimal solutions in the
“house” environment. In “rocks” it seems to avoid local op-
tima better, while in “house” it shows signs of jumping out
of local optima it have been temporarily stuck in. Note that
both algorithms fail to ever find the globally optimal path in
the “rocks” environment.

The good performance of the reference algorithm on
“house” might be explained by the way the populations are
initialized - the reference algorithm guarantees N different
feasible solutions, while the roadmap evolver only guaran-
tees at least one.

4 CONCLUSION
In this paper, we proposed a path-planning method using a

genetic algorithm that has explicit neutrality. The algorithm
was compared to an existing genetic path-planning algorithm
that has no neutrality. The proposed algorithm closes in on
the optimal solution in comparatively few generations, and
shows signs of both avoidance and escape of local minima in

a small selection of tested environments. However, run-time
performance is poor, most likely because of comparatively
high complexity in the fitness function.

The algorithm did display properties expected of a neutral
evolutionary system. For future work it would be of interest
to examine whether these properties are displayed in other
situations too, such as dynamic or partially unknown environ-
ments, or path-planning problems with multiple objectives.
Initializing the population in the same way as the reference
algorithm might increase performance in early generations.
Another possibility is developing other different and possi-
bly more efficient neutral path-planning EAs and examine if
the same properties appear in them.

REFERENCES
[1] S. LaValle, Planning algorithms. Cambridge Univ Pr,

2006.

[2] V. Boor, M. Overmars, and A. van der Stappen, “The
gaussian sampling strategy for probabilistic roadmap
planners,” in Robotics and Automation, 1999. Proceed-
ings. 1999 IEEE International Conference on, vol. 2,
pp. 1018 –1023 vol.2, 1999.

[3] H. Lin, J. Xiao, and Z. Michalewicz, “Evolutionary algo-
rithm for path planning in mobile robot environment,” in
Evolutionary Computation, 1994. IEEE World Congress
on Computational Intelligence., Proceedings of the First
IEEE Conference on, pp. 211–216, IEEE, 1994.

[4] M. Naderan-Tahan and M. Manzuri-Shalmani, “Efficient
and safe path planning for a mobile robot using genetic
algorithm,” in Evolutionary Computation, 2009. CEC
’09. IEEE Congress on, pp. 2091 –2097, may 2009.

[5] E. Galván-López, R. Poli, A. Kattan, M. O’Neill, and
A. Brabazon, “Neutrality in evolutionary algorithms...
what do we know?,” Evolving Systems, vol. 2, pp. 145–
163, 2011. 10.1007/s12530-011-9030-5.

0 500 1000 1500
1

1.05

1.1

1.15

1.2

Generation

F
itn

es
s

Best individual − average run ± σ
Best individual − average run
Best individual − best run
Average individual − average run

(a) “Rocks” environment - reference path-planner

0 100 200 300 400
1

1.05

1.1

1.15

1.2

Generation

F
itn

es
s

Best individual − average run ± σ
Best individual − average run
Best individual − best run
Average individual − average run
Reference algorithm −
best individual, average run

(b) “Rocks” environment - roadmap evolver

0 500 1000 1500
1

1.1

1.2

1.3

1.4

Generation

F
itn

es
s

Best individual − average run ± σ
Best individual − average run
Best individual − best run
Average individual − average run

(c) “House” environment - reference path-planner

0 100 200 300 400
1

1.1

1.2

1.3

1.4

Generation

F
itn

es
s

Best individual − average run ± σ
Best individual − average run
Best individual − best run
Average individual − average run
Reference algorithm −
best individual, average run

(d) “House” environment - roadmap evolver

0 500 1000 1500
1

1.1

1.2

1.3

1.4

Generation

F
itn

es
s

Best individual − average run ± σ
Best individual − average run
Best individual − best run
Average individual − average run

(e) “Spirals” environment - reference path-planner

0 100 200 300 400
1

1.1

1.2

1.3

1.4

Generation

F
itn

es
s

Best individual − average run ± σ
Best individual − average run
Best individual − best run
Average individual − average run
Reference algorithm −
best individual, average run

(f) “Spirals” environment - roadmap evolver

Figure 2: Fitness development for each algorithm in each environment. All fitness values are relative to the optimal solution
as found by the vismap algorithm. The blue line is the average best fitness for each run. The light grey area around it signifies
one standard deviation from that average. The red line is the average fitness of all feasible solutions in the current generation,
averaged over all runs. The cyan line in the roadmap evolver plots shows the average best fitness for the reference algorithm for
the same iterations.

	Preface
	Introduction
	Motivation
	Research Goals
	Outline

	Background
	Path Planning
	Definition
	Configuration space
	Overview of Classical Algorithms
	Artificial Potential Fields
	Global Planners
	Combinatorial Path Planners
	Sampling-Based Planners

	Evolutionary Algorithms
	General Principles
	Evolutionary Operators
	Genetic Algorithms
	Other Evolutionary Algorithms
	Evolutionary Path Planning

	Multi-Objective Optimization
	Reduction to a Single Objective
	Pareto-Optimality
	Non-dominated Sets and Sorting
	The Hypervolume Indicator
	Multi-Objective Evolutionary Algorithms
	SPEA and Hierarchical Clustering
	Non-dominated Sorting Genetic Algorithm-II
	Multi-Objective Graph Traversal

	Neutrality
	Neutral Theory in Biology
	Neutrality in Evolutionary Algorithms

	The Evolving Roadmaps Algorithm
	Single-Objective Approach
	Choice of Methods
	Representation and Evaluation Function
	Evolutionary Operators
	Initial Population and Evolutionary Process

	Multi-Objective Approach
	Adaption to Multiple Objectives
	Adapting the Evolutionary Process to NSGA-II

	Benchmark
	Reference Algorithm
	Objective Functions
	Distance
	Estimated Work

	Benchmark Environments
	Benchmark Setup
	Initialization and Evaluation Algorithms
	Termination Criteria

	Results
	Single-Objective Benchmark
	Multi-Objective Benchmark

	Conclusion
	Discussion
	Shortest Distance Performance
	ROCKY Versus the Other Environments
	Initialization in Evolutionary Path Planning

	Future Work
	Conclusion

	Environment Definition Listings
	A Neutral Evolutionary Path Planner

