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Abstract: The aim of the present work is to predict the ultimate strength of simply 
supported plates subjected to in-plane compressive load using a semi-analytical method. 
Based on large deflection theory in combination with first order shear deformation 
theory, two degradation models have been developed. In the simplest model, at any 
position in a ply, which has exceeded the given stress criterion, the corresponding 
stiffness properties are instantaneously degraded throughout that ply. In a slightly more 
detailed model, the instantaneous material degradation is only applied to the affected 
regions of a failed ply. For thin plates, there is remarkable improvement by using the 
more detailed model, while for thick plates the differences are quite insignificant. To 
give a more accurate estimation of the ultimate stresses, it is necessary to implement a 
linear material degradation model.    
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1     INTRODUCTION 

1.1   Background 

Plates made of fibre-reinforced composites are widely used in many structures, for 
example wind turbine blades and ships. In design of such structural elements, to avoid 
large and significant damages due to regularly acting forces, buckling and ultimate 
strength are important issues. Finite element (FE) analysis will normally be used in such 
cases. But these analyses tend to be complex and time consuming to prepare, perform 
and post-process. Lately, as an alternative to the FE analysis, semi-analytical 
approaches for buckling and strength analysis have become more common and practical 
due to their user-friendliness and computational efficiency. The approaches are often 
tailor-made for specific cases for certain load and boundary conditions, thus they are not 
so general as FE method. Previously, to estimate the ultimate strength of stiffened and 
unstiffened thin steel plates under in-plane compression, Steen [1], Brubak et al. [2], 
Brubak and Hellesland [3,4,5,6] have developed several simplified semi-analytical 
methods. It is desired to extend these methods to fibre-reinforced composite plates 
having a range of thicknesses.                     

1.2   The present study 

The present paper concerns the prediction of the ultimate strength of composite 
plates in compression using a semi-analytical method. As a first step to establish a more 
accurate, simplified and reliable method, several models based on small deflection 
theory have been presented in [7]. For thicker plates, the results showed reasonable, but 
somewhat conservative estimations of ultimate strength. For thinner plates, neglect of 
post-buckling behaviour makes the results very conservative. As an extension of the 
previous work, the present method is able to take account of: 

• failure and degradation models for composites, 

• initial geometric imperfections, 

• out-of-plane shear deformations which are most relevant for thick composite and 
sandwich plates, and 

• post-buckling deformations, thus the reserve strength of plates which is 
especially important for thin plates. 

Two different degradation approaches in combination with the Hashin failure 
criterion [8] from 1973 have been developed: 

• Complete ply degradation model (CPDM): The material degradation is applied 
on ply level. 

• Ply region degradation model (PRDM): The stiffness degradation is limited to 
the affected regions of a failed ply.  

For both approaches, an energy solution is performed using assumed deformations in 
the form of a truncated double Fourier series. Further, to validate the method, the results 
are compared with the FE analysis performed by Misirlis using ABAQUS, and this is 
reported by Hayman et al. [9].    
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2     LARGE DEFLECTION PLATE THEORY 

2.1   Introduction 
In order to describe the post-buckling behaviour, the classical large deflection theory 

(assumptions of moderate rotations, but small in-plane strains) combined with the first 
order shear deformation theory have been used.  

2.2   Kinematics 

Based on the classical large deflection theory, the nonlinear strains including the 
initial imperfections are defined by [10,11]: 
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The terms with the super index “0” denote the mid-plane membrane strains, while κ are 
the flexural (bending) strains, known as the curvatures. Further, u0 and v0 are the mid-
plane displacement fields in the x- and y-direction, respectively. The out-of-plane 
displacement is given by w, and winit is an initial out-of-plane imperfection. Further, z is 
a distance from the middle plane of the plate. The rotations of a transverse normal about 
axes parallel to the y and x axes are given by φx and φy.  

2.3   Material law 

For a two-dimensional stress state, the stresses σx, σy and τxy in an arbitrary ply are 
given by [12]: 
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Further, the stresses in the longitudinal (fibre) direction, denoted by subscript 1, the 
transverse direction, denoted by subscript 2, can be found by 
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Where [T] is the transformation matrix for ply i.  

2.4   Boundary conditions and displacement fields 

	
  
Fig. 1. Plate geometry and load condition. 

A plate with dimensions a × b (Fig. 1) with an initial deformation winit is considered.	
  
The plate is simply supported on all edges and subjected to uniform compression Nx in 
the x-direction. In the analyses, this is achieved by restraining the edge x = 0 in the x-
direction and applying a mean compressive loading Nx in the x-direction on the edge x = 
a, all edges being held straight. The total out-of-plane deformation is wtot=winit+w, 
where w is an additional deformation because of the load Nx. The following double 
Fourier series are assumed to represent u, v, φx, φy and wtot [6,12]: 
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Here, umn, vmn, xmn, ymn and wmn are the unknown series coefficients, while uc and vc are 
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the unknown coefficients in the linear in-plane displacement fields. Further, m, n, M and 
N are positive integers, and wimn are given imperfection amplitudes. 

3     POTENTIAL ENERGY 

3.1   Introduction 

The total potential energy consists of three contributions associated, respectively, 
with in-plane strain energy, shear strain energy and external forces: 

Π =Up +Us +U f      (5) 
 

3.2   Membrane and bending strain energy 

The in-plane strain energy can be divided into a membrane contribution and a 
bending contribution, and then Up can be written as  
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where Um and Ub are the potential membrane and bending strain energy, respectively. 
Umb gives the potential strain energy due to the coupling terms between the membrane 
and bending contributions.    
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The extensional stiffness matrix is given by Aij, while Bij and Dij are the bending-
stretching coupling matrix and the bending stiffness matrix, respectively.  
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3.3   Shear strain energy 

The potential energy due to shear strain is given in equation (8): 
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Here, Aij  (i = j = 4, 5) is the stiffness matrix for transverse shear and k (= 5/6) is the 
shear correction coefficient. 

3.4   External forces 

The potential energy of an external, in-plane load Nx in the x-direction is given by 

U f = ΛNxbuc  (9) 

where Λ is a load parameter, b is the width of the plate and uc is the plate shortening in 
the x-direction. 

4     SOLUTION PROCEDURE 

4.1   Incremental response propagation 

The post-buckling response is traced by an incremental procedure [1]. Here, an arc 
length parameter is used as a propagation parameter.  

 
Using large deflection theory, the equilibrium equations obtained from the Rayleigh-

Ritz method are nonlinear. Instead of solving the nonlinear equations directly, these are 
solved incrementally by computing the rate form of the equilibrium equations with 
respect to an arc length parameter η. Further, the change in the arc length parameter is 
associated with a change in the external stresses and the displacements/rotations. This 
relationship can be illustrated graphically (Fig. 2).	
  	
  
 

 
Fig. 2. Relationship between an arc length parameter increment Δη, a load increment ΔΛ and an 
incremental displacement/roration amplitude Δλi. 



 7 

As the increment size approaches zero, the relationship can be given by   
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Where Ntot is the total number of degrees of freedom, while Λ is the load parameter, λi 
represents the displacement and rotation amplitudes and t is the plate thickness. A dot 
above a symbol can be interpreted as differentiation with respect to the arc length 
parameter η. From equations (4), the displacement and rotation components are defined 
by 
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Further, in the incremental procedure, the load parameter Λ and displacement/roration 
amplitudes λi are functions of the arc length parameter η. For an increment Δη along 
the equilibrium curve from point s to (s +1), a Taylor series expansion gives 
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The second and higher order terms are neglected in the present work, i.e. the expansion 
is of first order. In other works, such as in Byklum [13], it is shown how to include the 
second order terms. However, it is believed that by choosing smaller increment, the 
results achieved by the first order expansion are satisfactory. Besides, retaining the 
second or higher order terms, or using equilibrium corrections after each increment such 
as Riks arc length method [14] to improve the accuracy, is computationally costly and 
will not likely give significant computational gains.   
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4.2   Incremental equilibrium equations 

The Rayleigh-Ritz method on an incremental form or rate form as mentioned in 
Section 4.1 has been used to solve the problem. The total potential energy is given by 
equation (5). Now, equilibrium requires that	
   δ Π = 0 , then 
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Here,	
  Cij is a generalised, incremental stiffness matrix and	
   Fi Λ 	
  is a generalised, 
incremental load vector. Further, i indicates the row number, while j indicates the 
column number in a matrix. The total number of unknowns are Ntot + 1 (λi and Λ), while 
there are Ntot equations in equation (13). The additional equation required is given by 
equation (10). 
 

Based on equation (11), equation (13) can be written in matrix form: 
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The row number is indicated by f and g for corresponding displacement and rotation 
amplitude with two subscripts. Further, in a similar way, i and j are used to indicate the 
column number. 

4.3   Procedure for solving the equations  

First,  
λ j  and  Λ  can be found by solving the equations (10) and (13). The solution of 

equation (13) is given by 

 
λ j = − ΛCij

−1Fi   
(15) 

Now, substituting equation (15) into equation (10): 

 

Λ2 t 2 + Cij
−1Fi( )2

i, j=1

Ntot

∑
⎛

⎝⎜
⎞

⎠⎟
= t 2  

    
(16) 

The load rate parameter  Λ  can be determined as 

 

Λ = ±
t

t 2 + Cij
−1Fi( )2

i, j=1

Ntot

∑
  

(17) 

According to equation (17), there are two possible solutions with same numerical 
values, but opposite signs along the equilibrium curve. For choosing the correct 
solution, the angle criterion is applicable to use. Based on the assumption that the 
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equilibrium curve is smooth, it is interested to find the solution giving a continuous 
increase of the arc length. This is achieved by the requirement that the absolute value of 
the angle between the tangents of the consecutive increments (s − 1) and s in the load-
displacement/rotation space (Λ − λj/t) is smaller than 90°. For the positive sign of the 
load rate  Λs  at stage s, the following equivalent criterion must be satisfied [1]: 

 

Λs

i, j=1

Ntot

∑
−Cij

−1Fi( )s λ j
s−1

t 2
+ Λs−1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
> 0  

 

(18) 

When	
   Λs 	
  at stage s is found, the displacement and rotation rate amplitudes	
   
λ j
s 	
  at the 

stage s are given by equation (15). The displacement and rotation amplitudes, and load 
parameter at the next stage are then obtained by the first order Taylor series expansion: 

 

λ j
s+1 = λ j

s + λ j
sΔη

Λs+1 = Λs + ΛsΔη
 

(19a) 
(19b) 

As mentioned in section 4.1, Δη has to be small to give a satisfactory result. The 
solution propagation is continued until a given failure criterion is reached. 

5     PROGRESSIVE FAILURE MODELS 

5.1   Hashin failure criterion 

The 1973 Hashin failure criterion for in-plane stresses can be written [8]: 

f1
T =

σ1

Xt

⎛
⎝⎜

⎞
⎠⎟

2

= 1

f1
C =

σ1

Xc

⎛
⎝⎜

⎞
⎠⎟

2

= 1

f2
T =

σ 2

Yt

⎛
⎝⎜

⎞
⎠⎟

2

+
τ12
S12

⎛
⎝⎜

⎞
⎠⎟

2

= 1

f2
C =

σ 2

Yc

⎛
⎝⎜

⎞
⎠⎟

2

+
τ12
S12

⎛
⎝⎜

⎞
⎠⎟

2

= 1

 

(20a) 

 

(20b) 

 

(20c) 

 
(20d) 

Failure occurs when any of the four failure functions from equations (20) reaches unity. 
Each is associated with a dominant failure mode. 

5.2   Degradation of properties 

When failure occurs in a laminated composite plate, the effective material properties 
change. This results in a new stiffness of the plate. To describe this behaviour, a 
damaged stiffness matrix for in-plane deformations is defined [9]: 
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R[ ] =
1− d1( )R11 1− d1( ) 1− d2( )R12 0

sym. 1− d2( )R22 0

sym. sym. 1− d6( )R66

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 

 

(21) 

Here d1 is the damage factor in the longitudinal direction of the material, d2 is the 
damage factor in the transverse direction, and d6 is the damage factor in the in-plane 

shear	
  component.	
  The remaining parameters in equation (21) are defined as	
   R11 =
E1
Δ

,	
  

R22 =
E2
Δ

, R12 =
ν12E2
Δ

, R66 = G12 	
  and Δ = 1−ν12ν21 1− d1( ) 1− d2( ) .	
  

For the Hashin criterion, because the shear failure component is associated with the 
fibre and matrix modes of failure, the damage variable d6 is defined as: 

d6 = 1− 1− d1( ) 1− d2( )  (22) 

The transverse (out-of-plane) shear stiffness matrix is defined in equation (23), and 
(following Misirlis [9]) is not degraded during the analysis: 

K[ ] = K44 0
0 K55

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 
 

(23) 

where K44 =G23 and K55 =G13. 
 

The instantaneous degradation of material properties is used in the progressive 
failure model reported here. When any ply or region fulfils a stress criterion, its 
corresponding properties are instantaneously reduced to a predefined value equal to 1% 
of the respective initial values [15]. Thus the associated damage factor di  = 0.99. In 
contrast, Misirlis [9] assumed a linear degradation of the properties [16] in his 
progressive failure model when using the Hashin criterion. Fig. 3 shows these material 
degradations mentioned here.  

 

Fig. 3. Material degradations. 
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6     DEGRADATION MODELS 

6.1   Complete ply degradation model (CPDM) 

The model presented in this sub-section is based on using the Rayleigh-Ritz method. 
The boundary condition is given in Section 2.4 with the corresponding displacement 
field assumed in equations (4). The total potential energy is provided in equation (5) and 
equations (7)-(9). The unknown coefficients could be found by following the solution 
procedure described in Section 4.3. In the ply which has exceeded a given stress 
criterion, the degradation of the corresponding properties is then applied to the entire 
ply. The load is then applied with the reduced stiffness until either a further criterion is 
exceeded in the same ply or failure occurs in a different ply. Again, the associated 
material degradation is applied to the entire ply. The process is repeated until the 
maximum value of load is reached; this is considered to be the ultimate load.  

 
The more detailed degradation procedure is the following: 
 
• From equations (19), the corresponding displacements, rotations, and load 

parameter are found for a given value of applied reference load, Nx. 
• Then, the in-plane stresses in each ply are calculated using equations (2)-(3). 
• The Hashin failure criterion is applied for failure checking. 
• Repetition of the previous steps with increasing applied load based on the 

solution procedure described in Section 4.3. This is continued until first ply 
failure (FPF) is detected. 

• The failure location is determined (both ply number and (x,y)-coordinates).  
• In the ply which has exceeded a given stress criterion, the corresponding 

properties are degraded. The degradation is applied to the entire ply. 
• The A-, B- and D-matrices are computed for the degraded plate. 
• For a given value of applied load, the corresponding displacements, rotations, 

load parameter and stresses in each ply are calculated. 
• The failure criterion is applied in order to find the load and location at which 

failure next occurs in the degraded plate. This may involve either a further 
criterion being exceeded in the same ply as before, or failure occurring in a 
different ply. 

• Again, the appropriate degradation is applied to the entire ply. 
• The process is continued until the loading at occurrence of failure reaches its 

highest value (the ultimate load). 
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6.2   Ply region degradation model (PRDM) 

 
Fig. 4. Plate geometry. 

The model presented in this sub-section is based on Fig. 4. A plate with dimensions a 
× b has been divided into 9 regions. The displacement fields are assumed in equations 
(4), while the total potential energy is again given by equation (5) and equations (7)-(9). 
The unknown displacement and rotation amplitudes can be found by solution procedure 
described in Section 4.3. The progressive failure model with degraded material 
properties is now implemented by reducing the appropriate terms in the equations (7)-
(8) in the specific region of the ply where failure has occurred.  

 
The degradation procedure is similar to that described in Section 6.1, but degradation 

at each stage is applied only over that region of a ply that has fulfilled the failure 
criterion as indicated above. 

 

7     RESULTS FROM THE PARAMETRIC STUDY ON SQUARE PLATES 

7.1   Geometries and material properties 

The parametric studies have been performed for a series of square plates, with a = b 
= 500 mm, having various breadth/thickness (b/t) ratios. The plates are simply 
supported on all edges and subjected to uniform compression Nx in the x-direction (see 
Fig. 1, Section 2.4). Three different maximum initial imperfection amplitudes have been 
examined. They are respectively 0.1%, 1% and 3% of the width b (= 500 mm). The 
assumed shape of the initial geometric imperfection is a single half sine wave in each 
direction, so that wimn = 0 for all values of m and n other than 1. Further, the ultimate 
strength has been estimated by investigating a last ply failure condition. Two different 
types of composite layup are considered [9]: 

• Case A, a triaxial layup: −45 / +45 / 04 / +45 / −45 / 04 / −45 / +45 / 03[ ]S  

• Case B, a quasi-isotropic, quadriaxial layup: 0 / +45 / 90 / −45[ ]X ,S  

For the triaxial layups (case A), the required b/t values are achieved by scaling the 
thickness of each individual ply [9]. For the quadriaxial layups (case B), the thickness is 
increased by adding groups of plies (increasing X) to give the desired b/t values [9]. The 
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material properties and the plate thicknesses for cases A and B are given in Tables 1-3. 
 
For the ply region degradation model (see Fig. 4), the size of regions 1, 3, 7 and 9 is 

160 mm × 160 mm. Regions 2 and 8 are each 180 mm × 160 mm, while regions 4 and 6 
is 160 mm × 180 mm. Finally, region 5 has the size 180 mm × 180 mm. 

                                                  Table 1 
 Material properties (strengths and moduli). 

Property Value Units 
E1 49627 MPa 
E2 15430 MPa 
ν12 0.272 - 
G12 4800 MPa 
G13 4800 MPa 
G23 4800 MPa 
Xt 968 MPa 
Xc 915 MPa 
Yt 24 MPa 
Yc 118 MPa 
S12 65 MPa 

                                             Table 2 
Plate thicknesses and ply thicknesses for case A. 

b/t t (mm) t0 (mm) t±45 (mm) 
10 50.00 1.95 0.59 
20 25.00 0.97 0.30 
50 10.00 0.39 0.12 

Table 3  
Plate thicknesses and ply thicknesses for case B. 

b/t t (mm) X t0, t±45, t90 (mm) 
62.50 8.00 1 1.00 
20.83 24.00 3 1.00 
10.42 48.00 6 1.00 

	
  

7.2   Step size and total number of degrees of freedom 

The physical step size along the equilibrium path is dependent on the chosen 
propagation parameter value Δη and the chosen size of the load interval (the applied 
reference load value Nx). Further, as an option, the reference load Nx could be 
determined by the elastic critical load. In Fig. 5, the influence of the step size Δη on the 
accuracy of ultimate strength estimations is presented. The total number of increments 
used in a calculation is given as the inverse of the propagation parameter, 1/Δη. Further, 
the ultimate strengths are plotted relative to a ultimate strength σmax,100 estimated with a 
small value of Δη = 0.01 (1/Δη = 100).  
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Fig. 5.	
  The ultimate strength relation is plotted against 1/Δη for case A with t = 24.94 mm and 1% 
imperfection using CPDM.   

In order to reduce the computation time, larger propagation parameter values may be 
considered. The calculated strength using Δη = 0.05 is about 1.5% larger than σmax,100, 
but is time consuming to run. To achieve reasonable results within a reasonable 
computational time, Δη = 0.10 has been chosen for further calculations for all cases 
even the deviation is about 3% compared to σmax,100. For case B, t = 8 mm, the ultimate 
strengths have been predicted using Δη = 0.01 due to few plies and small thickness. 

 
 The total number of degrees of freedom is defined by the total number of terms 

given in equations (4) and is another factor that will influence the accuracy of ultimate 
strength predictions. A convergence test has been performed for some of the cases using 
both degradation models and they are presented in Tables A.1-A.3 in Appendix A. In 
the tables, for different imperfections, plate thicknesses and the total number of degrees 
of freedom included, the strength estimations using the present method have been 
compared to the results provided by Misirlis [9]. Again, the computation time plays an 
important role for choosing the applicable total number of degrees of freedom. In 
general, more degrees of freedom that only gives less than 1% improvement has been 
discarded.   

 
For case A using CPDM, based on Table A.1: 

• t = 10.02 mm and all imperfections, implemented with 407 degrees of freedom. 
• t = 24.92 mm and all imperfections, implemented with 127 degrees of freedom. 
• t = 49.98 mm and all imperfections, implemented with 127 degrees of freedom.  

 
For case B using CPDM, based on Table A.2: 

• t = 10.02 mm and all imperfections, implemented with 407 degrees of freedom. 
• t = 24.92 mm and all imperfections, implemented with 247 degrees of freedom. 
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• t = 49.98 mm with 0.1% and 1% imperfections, implemented with 127 degrees 
of freedom. 3% imperfection has been implemented with 247 degrees of 
freedom. 

 
For case A using PRDM, based on Table A.3: 

• t = 10.02 mm and all imperfections, implemented with 407 degrees of freedom. 
Not applicable with more degrees of freedom due to time consuming 
calculation. Besides it is believed that 407 degrees of freedom will give a good 
approach of deformations.   

• t = 24.92 mm with 0.1% imperfection, implemented with 127 degrees of 
freedom. 1% and 3% imperfections are implemented with 247 degrees of 
freedom. 

• t = 49.98 mm and all imperfections, implemented with 127 degrees of freedom. 
 
For case B using PRDM, there is no convergence test performed. But according to 
Table A.2 (CPDM), the following is believed to provide a satisfactory approach of 
deformations: 
 

• t = 8 mm and all imperfections, implemented with 407 degrees of freedom.  
• t = 24 mm and all imperfections, implemented with 247 degrees of freedom. 
• t = 48 mm and all imperfections, implemented with 247 degrees of freedom. 

7.3   Load-displacement response without material degradation 

The load-deflection response without material degradation for an imperfect plate 
using the present method implemented in Fortran is presented below. According to Figs. 
6-7, to give a reasonable load-deflection responses for case A (t = 10.02 mm and 1% 
imperfection) and case B (t = 24 mm and 1% imperfection), respectively, at least 127 
degrees of freedom will be needed. 

 
Fig. 6. Load vs. centre out-of-plane displacement and load vs. end shortening for case A, t = 10.02 mm 
and 1% imperfection. The stars show the results for 47 degrees of freedom, while the line shows for 127 
degrees of freedom. The circles provide the results given by 247 degrees of freedom. 
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Fig. 7. Load vs. centre out-of-plane displacement and load vs. end shortening for case B, t = 24 mm and 
1% imperfection. The circles show the results for 47 degrees of freedom, while the line shows for 127 
degrees of freedom.  

Further, the load-displacement responses obtained by the present method 
(implemented with 127 degrees of freedom) have been compared with finite element 
analyses using ANSYS with element type SHELL281 and element size 25 × 25 mm2 for 
a range of plate thicknesses and imperfections (Figs. 8-13).  

 
Fig. 8. Load vs. centre out-of-plane displacement and load vs. end shortening for case A, t = 10.02 mm 
and 0.1% imperfection. The line shows the results from the present method and the circles are the results 
form ANSYS. 

 
Fig. 9. Load vs. centre out-of-plane displacement and load vs. end shortening for case A, t = 10.02 mm 
and 1% imperfection. The line shows the results from the present method and the circles are the results 
from ANSYS. 
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Fig. 10. Load vs. centre out-of-plane displacement and load vs. end shortening for case A, t = 10.02 mm 
and 3% imperfection. The line shows the results from the present method and the circles are the results 
from ANSYS. 

 
Fig. 11. Load vs. centre out-of-plane displacement and load vs. end shortening for case B, t = 24 mm and 
0.1% imperfection. The line shows the results from the present method and the circles are the results from 
ANSYS. 

 
Fig. 12. Load vs. centre out-of-plane displacement and load vs. end shortening for case B, t = 24 mm and 
1% imperfection. The line shows the results from the present method and the circles are the results from 
ANSYS. 
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Fig. 13. Load vs. centre out-of-plane displacement and load vs. end shortening for case B, t = 24 mm and 
3% imperfection. The line shows the results from the present method and the circles are the results from 
ANSYS. 

From Figs. 8-13, the present method gives slightly greater plate stiffness than the 
ANSYS analyses, especially in the post-buckling area. Deviations are greatest for small 
imperfection, while good agreements are achieved for larger imperfections. The reason 
for this rather surprising trend is unclear at this stage of the work. Anyway, the small 
geometric imperfection investigated (0.1%) in the parametric study is quite unrealistic 
in the real world, and is intended as an academic imperfection.  

7.4   Ultimate strength predictions using CPDM 

Tables 4 and 5 show the results for case A and B, respectively, using the complete 
ply degradation model. For a given initial geometric imperfection amplitude, plate 
thickness (t) and total number of plies, the following are shown in these tables: 

 
• At first ply failure (FPF), the calculated stress (σFPF) and location of first failure in 

terms of ply number and direction of that ply. 
• The ultimate stress (σmax) estimated by investigating a last ply failure condition 

(“LPF”). Also shown are the ply in which this last ply failure occurs (as ply number 
and direction) and the number of plies that have failed (both matrix and fibre) at 
this stage. 
 

Further, in Tables 4 and 5, the results from the analysis are compared with those 
conducted by Misirlis (σmax from [9]). The ratio of the ultimate strength from the 
present model to that found by Misilis are given in the last column (σmax /σmax from 
[9]). These are shown again in Figs. 14 and 15 for various values of the plate thickness t 
and imperfection amplitude. 
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Table 4 
Complete ply degradation model: Case A (triaxial layup) with Hashin failure criterion. 

FPF  “LPF” 

Imp. 
% of 
b 

t 
(mm) 

No. 
of 
plies 

σFPF 
(MPa) 

Ply no. 
(direction) 

σmax 
(MPa) 

No. of 
matrix 
(fibre) 
failed 
plies 

Ply no. 
(direction) 

σmax  
from 
[9] 
(MPa) 

σmax

σmax 9[ ]  

0.1 10.02 34 39.86 32 (0°) 94.94 34 (1) 34 (-45°) 130 0.73 
0.1 24.94 34 172.00 32 (0°) 186.66 34 (1) 34 (-45°) 240 0.78 
0.1 49.98 34 382.13 1 (-45°) 453.24 34 (1) 3 (0°) 570 0.80 
1.0 10.02 34 31.64 32 (0°) 90.92 34 (1) 34 (-45°) 130 0.70 
1.0 24.94 34 71.64 32 (0°) 171.40 34 (1) 34 (-45°) 235 0.73 
1.0 49.98 34 149.55 32 (0°) 374.88 34 (1) 3 (0°) 435 0.86 
3.0 10.02 34 22.96 32 (0°) 87.73 34 (1) 34 (-45°) 130 0.67 
3.0 24.94 34 39.05 32 (0°) 149.98 34 (1) 34 (-45°) 218 0.69 
3.0 49.98 34 64.26 32 (0°) 292.84 34 (1) 34 (-45°) 360 0.81 
	
  

	
  

	
  
Fig. 14. Case A (triaxial layups) with complete ply degradation model: the ultimate strength from the 
present analyses are compared to those of Misirlis [9] for various plate thickness t and imperfection 
amplitude. 
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Table 5  
Complete ply degradation model: Case B (quadriaxial layup) with Hashin failure criterion. 

FPF  “LPF” 

Imp. 
% of 
b 

t 
(mm) 

No. 
of 
plies 

σFPF 
(MPa) 

Ply no. 
(direction) 

σmax 
(MPa) 

No. of 
matrix 
(fibre) 
failed 
plies 

Ply no. 
(direction) 

σmax  
from 
[9] 
(MPa) 

σmax

σmax 9[ ]  

0.1 8.00 8 29.08 8 (0°) 89.85 8 (1)  7 (45°) 105 0.86 
0.1 24.00 24 170.92 24 (0°) 177.66 24 (1)  1 (0°) 215 0.83 
0.1 48.00 48 204.13 3 (90°) 301.97 36 (1*)  1 (0°) 340 0.89 
1.0 8.00 8 27.38 8 (0°) 91.51 8 (2)  2 (45°) 107 0.86 
1.0 24.00 24 69.49 24 (0°) 171.48 24 (1)  23 (45°) 210 0.82 
1.0 48.00 48 144.77 48 (0°) 250.92 42 (1*)  1 (0°) 302 0.83 
3.0 8.00 8 26.08 8 (0°) 94.11 8 (1)  7 (45°) 115 0.82 
3.0 24.00 24 35.62 24 (0°) 162.77 24 (2)  2 (45°) 205 0.79 
3.0 48.00 48 61.70 48 (0°) 211.24 48 (1)  1 (0°) 260 0.81 

*In these plies fibre failure occurred without matrix failure. 

 

	
  
Fig. 15. Case B (quadriaxial layup) with complete ply degradation model: the ultimate strengths from the 
present analyses are compared to those of Misirlis [9] for various plate thickness t and imperfection 
amplitude. 

7.5   Ultimate strength predictions using PRDM 

Table 6 gives the results for the case A layups, using the ply region degradation 
model. Table 7 shows the corresponding results for the case B layups. For a given initial 
geometric imperfection amplitude, in addition to the number of plies, these tables also 
provide the total number of regions for each plate thickness. For the ultimate stress 
(σmax), it is interesting to show the number of matrix failed regions and fibre failed 
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regions. Further, the results from the analysis are compared with those conducted by 
Misirlis (σmax from [9]). The ratio of the ultimate strength from the present model to 
that found by Misirlis are given in the last column (σmax /σmax from [9]). These are again 
shown in Figs. 16 and 17 for various values of the plate thickness t and imperfection 
amplitude. 

 
Table 6  
Ply region degradation model: Case A (triaxial layup) with Hashin failure criterion. 

FPF  “LPF” 
Imp. 
% of 
b 

t 
(mm) 

No. of 
plies 
(no. of 
regions) 

σFPF 
(MPa) 

Ply no. 
(directi
on) 

σmax 
(MPa) 

No. of 
matrix 
failed 
regions 

No. of 
fibre 
failed 
regions 

σmax  
from 
[9] 
(MPa) 

σmax

σmax 9[ ]  

0.1 10.02 34 (306) 39.86 32 (0°) 106.24 277 9 130 0.82 
0.1 24.94 34 (306) 172.00 32 (0°) 186.68 293 2 240 0.78 
0.1 49.98 34 (306) 382.13 1 (-45°) 453.24 306 1 570 0.80 
1.0 10.02 34 (306) 31.64 32 (0°) 99.57 302 18 130 0.77 
1.0 24.94 34 (306) 71.39 32 (0°) 175.34 276 12 235 0.75 
1.0 49.98 34 (306) 149.55 32 (0°) 375.89 301 1* 435 0.86 
3.0 10.02 34 (306) 22.96 32 (0°) 96.03 303 18 130 0.74 
3.0 24.94 34 (306) 38.92 32 (0°) 155.30 276 10 218 0.71 
3.0 49.98 34 (306) 64.26 32 (0°) 299.73 301 14 360 0.83 

*In these regions fibre failure occurred without matrix failure. 

 

	
  
Fig. 16. Case A (triaxial layups) with ply region degradation model: the ultimate strength from the 
present analyses are compared to those of Misirlis [9] for various plate thickness t and imperfection 
amplitude. 
	
  

 



 23 

Table 7  
Ply region degradation model: Case B (quadriaxial layup) with Hashin failure criterion.  

FPF  “LPF” 
Imp. 
% of 
b 

t 
(mm) 

No. of 
plies 
(no. of 
regions) 

σFPF 
(MPa) 

Ply no. 
(directi
on) 

σmax 
(MPa) 

No. of 
matrix 
failed 
regions 

No. of 
fibre 
failed 
regions 

σmax  
from 
[9] 
(MPa) 

σmax

σmax 9[ ]  

0.1 8.00 8 (72) 29.08 8 (0°) 101.71 57 3 105 0.97 
0.1 24.00 24 (216) 170.92 24 (0°) 178.32 209 1 215 0.83 
0.1 48.00 48 (432) 204.13 3 (90°) 301.97 324 1* 340 0.89 
1.0 8.00 8 (72) 27.38 8 (0°) 101.54 56 4 107 0.95 
1.0 24.00 24 (216) 69.49 24 (0°) 177.05 208 4 210 0.84 
1.0 48.00 48 (432) 144.77 48 (0°) 250.92 378 1* 302 0.83 
3.0 8.00 8 (72) 26.08 8 (0°) 101.86 54 4 115 0.89 
3.0 24.00 24 (216) 35.62 24 (0°) 170.62 202 6 205 0.83 
3.0 48.00 48 (432) 61.70 48 (0°) 209.70 392 1* 260 0.81 

*In these regions fibre failure occurred without matrix failure. 

 

	
  
Fig. 17. Case B (quadriaxial layup) with ply region degradation model: the ultimate strengths from the 
present analyses are compared to those of Misirlis [9] for various plate thickness t and imperfection 
amplitude. 

Further, in Fig. 18, the applied load is plotted against displacement in the centre and 
the end shortening response for case A with t = 10.02 mm and imp. = 0.1%. The 
corresponding results are presented in Fig. 19 for case A with t = 49.98 mm and imp. = 
1%. For case B with t = 24 mm and imp. = 3%, the similar results are shown in Fig. 20.  
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Fig. 18. Case A (triaxial layup), for t = 10.02 mm and 0.1% imperfection amplitude, using ply region 
degradation model. Load vs. centre out-of-plane displacement and end shortening. 
 

 
Fig. 19. Case A (triaxial layup), for t = 49.98 mm and 1% imperfection amplitude, using ply region 
degradation model. Load vs. centre out-of-plane displacement and end shortening. 
 

 
Fig. 20. Case B (quadriaxial layup), for t = 24 mm and 3% imperfection amplitude, using ply region 
degradation model. Load vs. centre out-of-plane displacement and end shortening. 
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8     DISCUSSION OF RESULTS 

8.1   Results using CPDM 

	
  For case A – first ply failure: 
 
• Failure usually occurs in the outer plies, most of all those of the convex side of the 

plate. The outermost 0° plies always fail (matrix) first for all cases except for the 
thickest plate (t = 49.98 mm) with 0.1% imperfection. For that case, the matrix 
failure occurred in the outermost -45° ply.  
	
  

For case A – “last ply failure”: 
 

• For all cases, all plies have to fail in matrix and the ultimate strength is reached at 
the first incidence of fibre failure. 

• Compared to Misirlis’s FE analysis, the deviations are in the range of 14-33%. 
 

For case B – first ply failure: 
 
• Failure usually occurs in the outer plies, primarily those at the convex side of the 

plate. The outermost 0° plies always fail (matrix) first for all cases except for the 
thickest plate (t = 48 mm) with 0.1% imperfection. For that case, the matrix failure 
occurred in the 90° ply. 

 
For case B – “last ply failure”: 
 
• For thin (t = 8 mm) and moderately thick plates (t = 24 mm), all plies have to 

experience matrix failure. The ultimate strength is attained at the first, sometimes 
the second incidence of fibre failure. 

• For the thick plate (t = 48 mm) with 3% imperfection, all plies experienced matrix 
failure and the ultimate strength is reached at the first occurrence of fibre failure. 

• For the thick plate with 0.1% imperfection, all ±45° plies have to fail in matrix 
before the occurrence of the ultimate strength, which is at the first incidence of 
fibre failure in a 0° ply without matrix failure. 

• For the thick plate with 1% imperfection, in addition to all ±45° plies, some of the 
0° plies have to fail in matrix before the occurrence of the ultimate strength, which 
is at the first fibre failure in a 0° ply without matrix failure. 

• Compared to Misirlis’s FE analysis, the deviations are in the range of 11-21%.	
  
 

In general, the 0° and 90° plies often fail first in the centre of the plate, while the 
±45° plies fail at the corners. 

8.2   Results using PRDM 

Compared to CPDM, the ultimate strength predictions using PRDM need more 
degrees of freedom for some of the cases investigated. There are no significant 
differences for first ply failure compared with CPDM, i.e. more degrees of freedom 
implemented in PRDM will only cause deviations in negligible decimals.   
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For case A – “last ply failure”: 

 
• For all cases, many regions have to fail in matrix before the ultimate strength is 

attained at the fibre failure. For the thick plate (t = 49.98 mm) with 1% 
imperfection, the ultimate strength is reached at the first incidence of fibre failure 
in a region without matrix failure. 

• Compared to Misirlis’s FE analysis, the deviations are in the range of 14-29%. 
 
For case B – “last ply failure”: 
 
• For all cases, many regions have to experience matrix failure before the ultimate 

strength is attained at fibre failure. For thick plates (t = 48 mm), fibre failure 
occurred in regions without matrix failure. 

• Compared to Misirlis’s FE analysis, the deviations are in the range of 3-19%. 
 

Further, the central out-of-plane response and the end shortening of a thin plate in 
case A (t = 10.02 mm and imp. = 0.1%) are provided in Fig. 18. The ultimate load is 
reached at 106.24 MPa and resulted in a central displacement of 29.54 mm and an end 
shortening of 4.33 mm. 

 
The centre out-of-plane displacement and the end shortening of a thick plate in case 

A (t = 49.98 mm and imp. = 1%) are given in Fig. 19. The central out-of-plane 
displacement and the end shortening are 13.25 mm and 5.18 mm, respectively, at the 
ultimate load of 375.89 MPa. 

 
For a moderately thick plate in case B (t = 24 mm and imp. = 3%), Fig. 20 shows the 

out-of-plane displacement in the centre and the end shortening response. The ultimate 
load is achieved at 170.62 MPa with the corresponding lateral displacement of 21.17 
mm in the centre and end shortening of 7.96 mm.  

8.3   Comparison between results using CPDM, PRDM and Misirlis’s model 

From the analyses with CPDM, the predicted ultimate stresses are 11% – 33% 
smaller than those of Misirlis. The most significant differences are observed in the 
triaxial layup configuration, case A. The greatest deviations are found for thin plates (t 
= 10.02 mm), being in the range of 27% – 33%. For moderately thick (t = 24.94 mm) 
and thick plates (t = 49.98 mm), they are in the range of 22% – 31% and 14% – 20%, 
respectively. However, for the balanced layup configuration, case B, the ultimate 
strength predictions using CPDM produced a more stable deviation in the range of 11% 
– 21%. The analyses with PRDM provide better estimates for some of the cases. 
Especially for thin plates, which are more sensitive to material degradation, PRDM 
gives significantly better results. The greatest improvements (7% – 11%) between the 
results using CPDM and PRDM are found for the quadri-axial layup configuration, case 
B. For case A, the improvements are about 7% – 9%. The improvements achieved are 
either negligible or quite small for moderately thick and thick plates for both cases (0% 
– 4%).  
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The current analyses have been implemented with an instantaneous material 
degradation assumption when failure occurs. Thus, it will result in too much 
degradation of the plate stiffness. This is believed to be the main reason of the 
underestimations of ultimate strength since the fully nonlinear FE analyses use a linear 
material degradation in their progressive failure model.     

9     CONCLUSION 

The ultimate strength analysis of simply supported square plates subjected to in-
plane compressive load has been performed using a semi-analytical method. Based on 
large deflection theory and first order shear deformation theory in combination with two 
degradation approaches, the present model is able to take account of post-buckling 
deformations, out-of-plane deformations and geometric imperfections. The results have 
been compared with an advanced analysis conducted by Misirlis using fully non-linear 
FE analysis. In the first approach, called complete ply degradation model (CPDM), 
fulfilment of the failure criterion at any position in a ply leads to instantaneous 
degradation of corresponding stiffness properties throughout that ply. In the slightly 
more detailed approach, called ply region degradation model (PRDM), the plate is 
divided into nine regions and the stiffness degradation is limited to the affected regions 
of a failed ply. Both approaches are shown to give reasonable, but still conservative 
estimates of ultimate loads. For thinner plates, the analyses with PRDM provide 
significantly better predictions, while there is no obvious improvement between the 
results using CPDM and PRDM for thicker plates. Underestimations by using the 
present method compared with the nonlinear FE analysis is due to a linear degradation 
of the material properties in Misirlis’s progressive failure model, while the current 
analyses assumed a instantaneous degradation of the material properties. To improve 
the results and give a more accurate estimation of the ultimate stresses, future extension 
of the work will implement a linear degradation model combined with PRDM. 
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APPENDIX A: TABULATED RESULTS FOR SECTION 7.2 

Table A.1 
The ultimate strengths for case A using CPDM. 

Imperfection 
in % of b 

Plate 
thickness 
(mm) 

Total number of 
degrees of 
freedom 

Ultimate 
strength, 
σmax (MPa) 

Ultimate 
strength, σmax 
(MPa) from [9] 

σmax/σmax,[9] 

47    (N = M = 3) 133.85 130 1.03 
127  (N = M = 5) 105.76 130 0.81 
249  (N = M = 7) 97.50 130 0.75 
407  (N = M = 9) 94.94 130 0.73 

0.1 10.02 

607  (N = M = 11) 94.22 130 0.72 
127  (N = M = 5) 101.89 130 0.78 
249  (N = M = 7) 91.40 130 0.70 
407  (N = M = 9) 87.73 130 0.67 

3.0 10.02 

607  (N = M = 11) 86.65 130 0.67 
47    (N = M = 3) 177.17 235 0.75 
127  (N = M = 5) 171.40 235 0.73 
249  (N = M = 7) 170.65 235 0.73 

1.0 24.94 

407  (N = M = 9) 170.16 235 0.72 
47    (N = M =3)  159.51 218 0.73 
127  (N = M =5) 149.98 218 0.69 

3.0 24.94 

249  (N = M =7) 148.49 218 0.68 
47    (N = M =3)  376.88 435 0.87 1.0 49.98 
127  (N = M =5) 374.88 435 0.86 

 
Table A.2 
The ultimate strengths for case B using CPDM. 

Imperfection 
in % of b 

Plate 
thickness 
(mm) 

Total number of 
degrees of 
freedom 

Ultimate 
strength, 
σmax (MPa) 

Ultimate 
strength, σmax 
(MPa) from [9] 

σmax/σmax,[9] 

127  (N = M = 5) 111.27 107 1.04 
249  (N = M = 7) 96.75 107 0.90 
407  (N = M = 9) 91.51 107 0.86 

1.0 8 

607  (N = M = 11) 90.38 107 0.84 
47    (N = M = 3) 175.64 210 0.84 
127  (N = M = 5) 174.05 210 0.83 
249  (N = M = 7) 171.48 210 0.82 

1.0 24 

407  (N = M = 9) 169.42 210 0.81 
127  (N = M = 5) 301.97 340 0.89 0.1 48 
249  (N = M = 7) 301.97 340 0.89 
47    (N = M = 3) 212.28 260 0.82 
127  (N = M = 5) 210.72 260 0.81 

3.0 48 

249  (N = M = 7) 211.24 260 0.81 
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Table A.3 
The ultimate strengths for case A using PRDM. 

Imperfection 
in % of b 

Plate 
thickness 
(mm) 

Total number of 
degrees of 
freedom 

Ultimate 
strength, 
σmax (MPa) 

Ultimate 
strength, σmax 
(MPa) from [9] 

σmax/σmax,[9] 

127  (N = M = 5) 162.27 218 0.74 
249  (N = M = 7) 155.30 218 0.71 

3.0 24.94 

407  (N = M = 9) 154.80 218 0.71 
127  (N = M = 5) 299.73 360 0.83 3.0 49.98 
249  (N = M = 7) 302.73 360 0.84 

	
  

	
  


