
UNIVERSITY OF OSLO
Department of Informatics

Master thesis

SAT-based preimage attacks on SHA-1
Vegard Nossum

November, 2012

ii

Abstract

Hash functions are important cryptographic primitives which map arbitrarily
long messages to fixed-length message digests in such a way that: (1) it is easy
to compute the message digest given a message, while (2) inverting the hashing
process (e.g. finding a message that maps to a specific message digest) is hard.
One attack against a hash function is an algorithm that nevertheless manages to
invert the hashing process. Hash functions are used in e.g. authentication, digital
signatures, and key exchange. A popular hash function used in many practical
application scenarios is the Secure Hash Algorithm (SHA-1).

In this thesis we investigate the current state of the art in carrying out preimage
attacks against SHA-1 using SAT solvers, and we attempt to find out if there is any
room for improvement in either the encoding or the solving processes.

We run a series of experiments using SAT solvers on encodings of reduced-
difficulty versions of SHA-1. Each experiment tests one aspect of the encoding or
solving process, such as e.g. determining whether there exists an optimal restart
interval or determining which branching heuristic leads to the best average solving
time. An important part of our work is to use statistically sound methods, i.e.
hypothesis tests which take sample size and variation into account.

Our most important result is a new encoding of 32-bit modular addition which
significantly reduces the time it takes the SAT solver to find a solution compared
to previously known encodings. Other results include the fact that reducing the
absolute size of the search space by fixing bits of the message up to a certain point
actually results in an instance that is harder for the SAT solver to solve. We have
also identified some slight improvements to the parameters used by the heuristics
of the solver MiniSat; for example, contrary to assertions made in the literature,
we find that using longer restart intervals improves the running time of the solver.

iii

iv

Acknowledgements

First and foremost, I thank my thesis advisors, Fabio Massacci and Martin Giese, for
their insights, help, and feedback, and for directing me back onto the right path when
I lost sight of my goal. Secondly, I thank Mate Soos for participating in countless
discussions about SAT solving. Thirdly, I thank my wife, Cristina Onete, my parents,
Erik and Tove Nossum, and my family-in-law, for their love and enduring support.
Thank you.

v

vi

Contents

List of figures ix

List of tables xi

Introduction xiii

1 Background 1
1.1 Cryptographic hash functions . 1
1.2 SHA-1 . 2
1.3 Propositional logic . 3

1.3.1 Inference rules . 4
1.3.2 Conjunctive Normal Form . 4
1.3.3 Boolean circuits . 5
1.3.4 Tseitin transformation . 6
1.3.5 Resolution proofs . 6
1.3.6 Pseudo-boolean constraints . 7

1.4 SAT solvers . 8
1.4.1 The DPLL algorithm and modern CDCL solvers 9

1.5 Algebraic cryptanalysis . 11
1.5.1 Logical cryptanalysis . 11

2 Encodings 15
2.1 Circuit (functional) vs. imperative encodings 16
2.2 High-level constraints . 17

2.2.1 XOR constraints . 18
2.2.2 32-bit modular addition . 19
2.2.3 Pseudo-boolean constraints . 22
2.2.4 Unary/binary constraints . 22

2.3 Encoding of SHA-1 . 22
2.3.1 Message schedule . 22
2.3.2 Round-dependent logical functions . 23
2.3.3 Intermediate state and final hash value 24

2.4 Reduced instances . 24
2.5 Implementation . 25

vii

3 Methodology 27
3.1 Estimating running time . 27
3.2 Comparing configurations . 28
3.3 Multiple comparisons . 29
3.4 Censoring . 30
3.5 Data collection . 30

4 Experiments 31
4.1 SAT solvers . 32
4.2 Running time distribution . 36
4.3 Reduced instances . 39
4.4 Fixing specific message/hash bits . 44
4.5 Encodings . 46
4.6 Pseudo-boolean and unary/binary constraints 48
4.7 XOR constraints and Gaussian elimination . 53
4.8 Preprocessing and simplification . 54
4.9 Branching heuristics . 56
4.10 Restart heuristics . 60
4.11 Conflict analysis . 66
4.12 Learnt clause cleaning heuristics . 67
4.13 Multiple solutions (nth-preimage attacks) . 69
4.14 Reusing learnt clauses . 71

5 Conclusions and future work 75

A Variable and clause statistics 77
A.1 Per-variable statistics . 77
A.2 Learnt clause statistics . 84

Bibliography 89

viii

List of figures

1.1 The Merkle-Damgård construction . 2
1.2 Gate types . 5
1.3 Example of a boolean circuit . 5
1.4 An example of a (tree) resolution proof . 7
1.5 The original DPLL algorithm. 8
1.6 Example of a search tree . 10

2.1 Functional encoding . 17
2.2 Circuit diagram for the full-adder circuit . 19
2.3 Circuit diagram for the ripple-carry adder circuit 19
2.5 Grade school addition schema . 21

4.1 Running time distributions for 12 solvers . 33
4.2 Running time distribution Q-Q plot . 38
4.3 Running time as a function of the number of rounds 40
4.4 Running time as a function of the number of fixed hash bits 42
4.5 Running time as a function of the number of fixed message bits 43
4.6 The effects of fixing certain message/hash bits 45
4.7 Unary/binary constraint propagation . 49
4.8 Outliers when using clasp for 22 rounds and 128 fixed hash bits 50
4.9 Running times for different constraint types 51
4.10 Running time as a function of the variable activity decay factor 58
4.11 Running time distributions for different restart heuristics 63
4.12 Running time as a function of the restart interval factor 64
4.13 Running time as a function of the first restart interval 65
4.14 Running time as a function of the clause activity decay factor 68
4.15 Running time per solution for multiple solutions using clasp 70
4.16 Running time per solution for multiple solutions using MiniSat 71
4.17 Running time for instances augmented with learnt clauses 73

A.1 Frequency of solver events for W . 78
A.2 Frequency of solver events for a . 79
A.3 Frequency of solver events for c0 . 80
A.4 Frequency of solver events for c1 . 81
A.5 Frequency of solver events for f . 82
A.6 Frequency of variable occurrences in learnt clauses 85
A.7 Frequency of variable occurrences in learnt clauses 86

ix

x

List of tables

1.1 Published literature on SAT-based cryptanalysis 13

4.1 Difference in running time for 12 solvers . 34
4.2 Running time distribution measures . 38
4.3 Occurrence of message words in the message schedule 41
4.4 Mean running times for three encodings . 47
4.5 Difference in running time for 3 encodings . 47
4.6 Difference in running time for 3 types of constraints 52
4.7 Running times with and without Gaussian elimination 54
4.8 Difference in running times for different preprocessing options 55
4.9 Mean running times for different branching heuristics 59
4.10 Difference in running times for different branching heuristics 59
4.11 Difference in running times for different phase-saving settings 60
4.12 Running times for Luby and geometric restarts 61
4.13 Difference in running times for conflict clause minimisation settings in

MiniSat . 67
4.14 Difference in running times for conflict analysis settings in clasp 67

A.1 Distribution of solver events over instance variables 83
A.2 Lengths of learnt clauses . 84
A.3 Variables in learnt clauses . 87
A.4 Rounds in learnt clauses . 87

xi

xii

Introduction

“Our greatest weakness lies in giving
up. The most certain way to succeed
is always to try just one more time.”

Thomas A. Edison

Hash functions are fascinating — given the specification of a hash function f, we can
easily calculate the hash value h= f(m) of any message m. However, finding a message
m (called a preimage) so that it hashes to a specific value h is extremely difficult. We
know exactly what f does, so why is it so difficult? Even worse, we know that every
message has practically an infinite number of preimages, so how difficult could it be?

It is not difficult to construct an algorithm which finds preimages: using brute force,
we can simply calculate the hash value of every possible messages in turn until we
find one that hashes to the right value. However, this procedure would on average
take longer than the lifetime of the universe to complete. Thus, the challenge lies in
efficiently finding such a message.

SAT solvers are programs which essentially carry out a brute force search. The
difference between a SAT solver and a naïve brute force search is that the SAT solver
can exploit hidden algebraic structures in the problem it is trying to solve. Put simply, in
the context of searching for preimages, the SAT solver can deduce that whole classes of
messages (messages with a certain structure) can never be preimages — and therefore
skip them during the search.

This thesis focuses on preimage attacks on a specific hash function, SHA-1, using
SAT solvers. We remark that the goal of the thesis is not to produce a fully-fledged
attack; rather, the goal is to assess the current state of the art and find out where there
is room for improvement. A large part of the thesis is dedicated to the individual
experiments where we assess the impact of different encodings and SAT solving
techniques on the running time of the solver.

The use of SAT solvers to speed up brute force attacks against cryptographic
primitives was for the first time thoroughly investigated in [Massacci and Marraro,
2000]. Their paper describes an attack on reduced-round versions of the block cipher
DES. Their results were not particularly encouraging; however, SAT solvers have
successfully been put to use in collision attacks against hash functions (e.g. [Mironov
and Zhang, 2006]) and attacks against stream ciphers (e.g. [Courtois et al., 2008]).

The thesis is structured as follows: In chapter 1, we give a more formal introduction
to hash functions, SHA-1, and SAT solving in general. In section 1.5 we give a short

xiii

introduction to algebraic and logical cryptanalysis (i.e. the use of SAT solvers to carry
out attacks against cryptographic primitives) and review the published literature in this
field.

In chapter 2, we discuss how to encode SHA-1 and preimage attacks as a SAT
problem, including encodings used in the literature and our proposed modifications.
We also briefly describe our implementation of the instance generator which is used in
most of our experiments.

In chapter 3, we discuss the different statistical methods that we need in order to
ensure that the results of our experiments are accurate and trustworthy (e.g. not simply
due to chance variation).

In chapter 4 we carry out the experiments themselves. First, we test the performance
of 12 freely available SAT solvers in order to identify the best unmodified solver(s) for
our type of problems. Then we proceed to examine the effect of various difficulty
parameters — e.g. how does the number of rounds in the hash function affect the
running time of the SAT solver? The following experiments deal with different
encodings, different constraint types, and different SAT solver heuristics (including e.g.
branching heuristics and restart heuristics).

We summarise our findings and suggest a few topics for further research in
chapter 5.

xiv

For Cristina, who opened my eyes...

xvi

Chapter 1

Background

1.1 Cryptographic hash functions

Cryptographic hash functions are functions designed specifically so as to easily to
compute a fixed-length message digest (“hash”) given a message with arbitrary length,
while making it difficult to gain any information about a message given its hash (i.e.
by obscuring the relationship between messages and their hashes). In particular, a
cryptographic hash function f should have the following properties:

• Preimage resistance. Given a hash H, it is infeasible to find a message M such
that f(M) = H.

• Second-preimage resistance. Given a message M, it is infeasible to find another
message M′ such that f(M′) = f(M).

• Collision resistance. It is infeasible to find distinct messages M and M′ such that
f(M) = f(M′).

The relationships between these properties are as follows: if a hash function is
not preimage resistance, then it is also not collision and second-preimage resistant.
Furthermore, if a hash function is not second-preimage resistant, then it is also not
collision resistant.

An attack on a cryptographic hash function generally refers to any algorithm that
can find what the above properties specify is infeasible to find, regardless of whether
it is efficient (e.g. we still call a brute force algorithm an attack, even though it is
infeasible in practice). Since these attacks generally work by hashing messages and
verifying that the hashes match, the difficulty of an attack is usually given in the number
of messages that must be hashed before a correct solution is found. A generic attack on
preimage resistance is a brute force search which tries all messages until one is found
that hashes to the given value; since each bit in the hash has a probability of 1/2 of being
correct (by chance), we expect to find a correct solution after trying approximately 2n

messages, where n is the number of bits in the hash.
A generic attack on collision resistance is the birthday attack [Katz and Lindell,

2007]. By a probabilistic argument, one can show that no more than 2n/2 messages
must be hashed on average to find a collision, where n is the number of bits in the
hash, a constant which depends on the hash function in question.

1

1.2 SHA-1

SHA-1 is a cryptographic hash function that was designed by the National Security
Agency (NSA) and published in 1995 [SHA, 1995] as a follow-up to its flawed
predecessor SHA-0 from 1993. It has a fixed hash size of 160 bits and is based on
the Merkle-Damgård construction [Katz and Lindell, 2007]. The Merkle-Damgård
construction is a way to construct a collision-resistant hash function of arbitrary input
size from a collision-resistant compression function with a fixed input size (see figure
Figure 1.1).

fComp fComp fComp fComp

M0, . . . ,Mn−1 Mn, . . . ,M2n−1 M2n, . . . ,M3n−1 . . .

IV HFinal

Figure 1.1: The Merkle-Damgård construction.

SHA-1 has a compression function that takes a 160-bit hash value and a 512-bit part
of the message and outputs another 160-bit hash value. The first hash value is called
the initialisation vector and is a constant. The last hash value is used as the final output
of the hash function.

Since an attack against the compression function implies an attack against the hash
function, we will in this thesis only focus on attacks against the compression function.
The SHA-1 compression function fComp is given as follows:

fComp(H0‖ · · · ‖H4,M0‖ · · · ‖M15) = (H0+ a80)‖ · · · ‖(H4+ a84), (1.1)

where ‖ denotes concatenation of sequences, H0, . . . ,H4 are sequences of 32 bits (the
initialisation vector), M0, . . . ,M15 are sequences of 32 bits (the part of a message), and
a80, . . . ,a84 are sequences of 32 bits. The intermediate states at are given as follows:

at =

(

Ht , 0≤ t ≤ 4

at−1+ ft(at−2,at−3,at−4) + at−5+ kt +Wt−5, 5≤ t ≤ 84
(1.2)

where + denotes 32-bit modular addition, ft is a round-dependent logical function, kt

is a 32-bit round-dependent constant, and Wt is a part of the message schedule, given
as follows:

Wt =

(

Mt , 0≤ t ≤ 15

(Wt−3⊕Wt−8⊕Wt−14⊕Wt−16)≪ 1, 16≤ t ≤ 79
(1.3)

where ⊕ denotes the bitwise XOR operation and≪ denotes 32-bit rotation.

2

The round-dependent logical functions are given as follows:

ft(x,y,z) =

Ch(x,y,z), 0≤ t ≤ 19

Parity(x,y,z), 20≤ t ≤ 39

Maj(x,y,z), 40≤ t ≤ 59

Parity(x,y,z), 60≤ t ≤ 79

(1.4)

where Ch(x,y,z) is the choice function

Ch(x,y,z) = (x∧ y)⊕ (¬x∧ z), (1.5)

Maj(x,y,z) is the majority function

Maj(x,y,z) = (x∧ y)⊕ (x∧ z)⊕ (y∧ z), (1.6)

and Parity(x,y,z) is the parity function

Parity(x,y,z) = x⊕ y⊕ z, (1.7)

where ¬ denotes the bitwise NOT operation, ∧ denotes the bitwise AND operation, and
∨ denotes the bitwise OR operation.

1.3 Propositional logic

A propositional variable is an atomic proposition which is either true or false. We
denote propositional variables by lowercase letters: p, q, x1, x2, etc. We denote the
set of all propositional variables by V . Propositional formulae include V and are built
inductively using the unary operator ¬ and the binary operators ∧, ∨, →, ↔, and ⊕.
We denote propositional formulae by lowercase Greek letters: φ, ψ, etc.

The set of truth values is {0, 1}. A (partial) valuation v is a (partial) function from
the set of propositional formulae to {0, 1} such that

v(¬φ) =
(

1 if v(φ) = 0, and
0 if v(φ) = 1

v(φ ∧ψ) =
(

1 if v(φ) = 1 and v(ψ) = 1, and
0 if v(φ) = 0 or v(ψ) = 0

v(φ ∨ψ) =
(

1 if v(φ) = 1 or v(ψ) = 1, and
0 if v(φ) = 0 and v(ψ) = 0

v(φ→ψ) = v(¬φ ∨ψ)
v(φ↔ψ) = v((φ→ψ)∧ (ψ→ φ))

v(φ ⊕ψ) = v(¬(φ↔ψ))

When v(φ) = 1, we say that v is a model for φ.

3

1.3.1 Inference rules

Inference rules are a cornerstone of logic and allow us to prove that a conclusion is true
if the premises are true. We give an example of a famous inference rule below:

φ→ψ φ
Modus ponens

ψ

The rule states that if φ implies ψ and φ is true, then ψ is true. Here, φ→ψ and φ are
premises, and ψ is the conclusion. Premises always appear above the inference line,
while the conclusion appears below the inference line. The name of the rule is written
to the right.

Derivations are tree-like objects where the conclusion of one inference is the premise
of another inference.

1.3.2 Conjunctive Normal Form

A literal is a variable or its negation; thus, p and ¬p are both literals. For convenience,
we sometimes write the literal ¬p as p̄.

Negation Normal Form (NNF) formulae are formulae containing only conjunctions,
disjunctions, and negations of propositional variables. Any propositional formula
can be rewritten in NNF by systematically applying the laws of boolean algebra,
in particular by rewriting implications, equivalences, and antivalences in terms of
negations, conjunctions, and disjunctions, and “pushing” negations down to the
propositional variables:

φ→ψ ¬φ ∨ψ,

φ↔ψ (φ→ψ)∧ (ψ→ψ),
φ ⊕ψ φ↔¬ψ,

¬(φ ∧ψ) ¬φ ∨¬ψ,

¬(φ ∨ψ) ¬φ ∧¬ψ.

A clause is a disjunction l1 ∨ l2 ∨ . . .∨ ln of literals. Conjunctive Normal Form (CNF)
formulae are conjunctions c1 ∧ c2 ∧ . . .∧ cm of clauses. We usually denote CNF formulae
by uppercase Greek letters: Φ, Ψ, etc. We will sometimes view a CNF formula as a set
of clauses and a clause as a set of literals.

Any NNF formula (and, by transitivity, any propositional formula) can be rewritten
in CNF by systematically applying the laws of boolean algebra, in particular by
distributing ∨ over ∧:

φ ∨ (ψ1 ∧ψ2) (φ ∨ψ1)∧ (φ ∨ψ2) (1.8)

In the worst case, rewriting a propositional formula in CNF using the above rules
may yield an exponentially large formula in CNF; every time we apply rule 1.8, we
potentially double the size of the original formula since φ occurs twice in the new
formula.

4

NOT (¬) AND (∧) OR (∨) XOR (⊕)

Figure 1.2: Gate types, their names, and corresponding logical connectives.

∧

∨

¬

p

∨

¬

q p q

Figure 1.3: Two equivalent drawings of the boolean circuit representing the
propositional formula (¬p∨q)∧(p∨¬q); the left drawing shows a graph with (labelled)
nodes and edges, while the right drawing shows a circuit diagram.

1.3.3 Boolean circuits

Note that propositional formulae are really just strings of symbols. If we want to
include the same subformula more than once, we can use metavariables like φ and
ψ as abbreviations. However, if we were to spell out a formula that was defined using
several nested abbreviations, the fully expanded formula could potentially be very large
indeed. We see that even if we had an algorithm that rewrites an arbitrary formula to
CNF in linear time, the input formula itself would be too big to be of any use. This is
the motivation for the use of boolean circuits, a data structure which explicitly allows
subformulae to be defined and used more than once.

A boolean circuit is a directed, acyclic graph (DAG) where vertices correspond
to propositional connectives (gates) or propositional variables (inputs) and edges
indicate operands (wires). We can draw circuits using graphs or using circuit diagrams
(Figure 1.2). See Figure 1.3 for the graphical representations of an example boolean
circuit.

For a more formal and general treatment of boolean circuits, see [Vollmer, 1999].
Our adaptations include the use of a fixed basis consisting of the boolean operators ∧,
∨,↔, and ⊕, and including a set of designated wires that act as inverters rather than
including negation as a type of gate. Sometimes we will also limit the arity of gates to
2.

5

1.3.4 Tseitin transformation

We can encode boolean circuits as CNF formulae using the Tseitin transforma-
tion [Tseitin, 1968]. Instead of distributing ∨ over ∧, we introduce a new variable
for each vertex that corresponds to a propositional connective (except negation) and
add clauses that define the value of the new variable in terms of its inputs. For the
circuit in Figure 1.3, we would introduce the extra variables t1, t2, and t3 and their
definitions:

t1↔ (¬p ∨ q) t2↔ (p ∨¬q) t3↔ (t1 ∧ t2)

The new definitions are then encoded in CNF using the method described in
subsection 1.3.2 (distribution of ∨ over ∧). We show the CNF encodings for two such
definitions below:

¬t ∨ a ¬t ∨ b
¬t ∨ (a ∧ b)
t → (a ∧ b)

¬a ∨¬b ∨ t
(¬a ∨¬b)∨ t
¬(a ∧ b)∨ t
(a ∧ b)→ t

t↔ (a ∧ b)

¬t ∨ a ∨ b
¬t ∨ (a ∨ b)
t → (a ∨ b)

¬a ∨ t ¬b ∨ t
(¬a ∧¬b)∨ t
¬(a ∨ b)∨ t
(a ∨ b)→ t

t↔ (a ∨ b)
We note that there exist variations of the Tseitin transformation where only some

gates are encoded as new variables. In that case, to obtain the definition of a gate, we
have to make a depth-first traversal of the graph starting in the given gate (and ending
in propositional variables or other gates that should be encoded as new variables).
Which gates to encode as new variables can be decided heuristically; for example, one
heuristic could introduce new variables only for gates which are used more than once
(gates which have an in-degree greater than 1).

1.3.5 Resolution proofs

The resolution rule states that given two clauses containing literals of opposite polarity,
we can obtain a new clause (the resolvent) containing all the literals from the two
clauses except the two literals of opposite polarity. A schema for the inference rule is
given as follows:

x ∨ a1 ∨ a2 ∨ . . .∨ an ¬x ∨ b1 ∨ b2 ∨ . . .∨ bm Resolutiona1 ∨ a2 ∨ . . .∨ an ∨ b1 ∨ b2 ∨ . . .∨ bm

Resolution is a proof system which uses (only) the resolution rule. A resolution
proof π of φ given Φ, where φ is a clause and Φ is a set of clauses, is a sequence of
clauses such that each clause is either a clause in Φ or a clause obtained by applying the
resolution rule to two clauses which appear earlier in the sequence, and the last clause
in the sequence is φ. We call π a proof of unsatisfiability of or a refutation of Φ if the
last clause in the sequence is the empty clause.

If we add the restriction that each resolvent (derived clause) can only be used
once, we call the proof system tree resolution. Tree resolution is strictly weaker than
unrestricted resolution [Rossi et al., 2006], in the sense that the shortest tree resolution
proof of a formula is longer than the shortest unrestricted resolution proof of the same
formula, since the same clause may have to be derived more than once.

See Figure 1.4 for a visual example of a (tree) resolution proof.

6

p ∨ q p ∨¬q p ¬p ⊥

Figure 1.4: An example of a (tree) resolution proof that the CNF formula
�

p ∨ q
� ∧

�

p ∨¬q
�∧¬p is unsatisfiable.

1.3.6 Pseudo-boolean constraints

A pseudo-boolean constraint (sometimes called linear zero-one constraint or simply
linear inequality) in normal form is a constraint of the form

c1l1+ . . .+ cnln ≥ k,

where c1, . . . , cn (the weights) and k (the threshold) are positive integers, and l1, . . . , ln

are literals. We expand the notion of a valuation to a valuation for pseudo-boolean
constraints v by requiring that the following also holds:

v(c1l1+ . . .+ cnln ≥ k) =

(

1 if
∑n

i=1 ci · v(li)≥ k holds, and
0 otherwise.

For convenience, we will sometimes use negative weights when writing pseudo-
boolean constraints. We can show, using simple algebra, that these constraints can
always be rewritten in normal form:

cx + . . . ≥ k+ c
−c+ cx + . . . ≥ k
−c(1− x) + . . . ≥ k

−c x̄ + . . . ≥ k

Inverted constraints (using ≤ instead of ≥) can similarly be rewritten by multiplying
both sides by −1 and applying the rule for negative weights:

−c1l1− . . .− cnln ≥−k
c1l1+ . . .+ cnln ≤ k

Furthermore, equalities can always be written as a conjunction of two pseudo-
boolean constraints in normal form (after applying the rules for inverted constraints
and negative weights):

c1l1+ . . .+ cnln ≤ k c1l1+ . . .+ cnln ≥ k
c1l1+ . . .+ cnln = k

7

function DPLL(Φ)
for all literals l where l ∈ Φ do . Unit propagation

Remove clauses containing l . Remove satisfied clauses
Remove all occurrences of ¬l . Remove falsified literals

end for
if Φ = ; then . Satisfying valuation

return SAT
end if
if ; ∈ Φ then . Empty clause

return UNSAT
end if
x ← p where p is a variable in Φ . Pick branching literal
if DPLL(Φ∪ {x}) = SAT then . Branch

return SAT
end if
if DPLL(Φ∪ {¬x}) = SAT then . Branch

return SAT
end if
return UNSAT

end function

Figure 1.5: The original DPLL algorithm. Φ is the CNF formula we are trying to satisfy.

1.4 SAT solvers

Defined loosely, SAT solvers are programs that search for a model for a given formula.
Formulae are usually given in CNF, although some solvers additionally also support
pseudo-boolean constraints (using the OPB format) or XOR constraints. We can
classify a solver as either complete or incomplete. Complete solvers are guaranteed to
(eventually) terminate, regardless of whether a model exists or not (and some solvers
will even output a resolution proof of unsatisfiability). Incomplete solvers, on the other
hand, will only terminate when a model is found; if no model exists, then the solver
will never terminate. The difference between the two classes of solvers is that complete
solvers are based on a systematic (exhaustive) search, while incomplete solvers are
based on stochastic local search (SLS) and have no way to know when all possibilities
have been tried.

There are several different algorithms which yield complete solvers. For example,
one could simply try all combinations of assignments to the variables in a particular
order, essentially constructing the formula’s truth table one row at a time. If no row is
true, then the formula is unsatisfiable. Of course, the truth table has 2n rows, where n
is the number of variables, so checking all rows may not be feasible in practice.

Variants of Gilmore’s algorithm [Gilmore, 1960] transform a CNF formula to a
DNF formula by “multiplying” clauses (i.e. distributing ∧ over ∨) and shortening the
resulting conjunctions by removing duplicate literals and removing conjunctions which
contain opposite literals. When there are no more clauses, any conjunction in the DNF
formula represents a model of the original formula.

8

Gentzen’s sequent calculus for propositional logic [Buss, 1998] is a form of natural
deduction since connectives are analysed in a top-down manner; i.e. the outermost
connective is analysed first. It is a search procedure that branches on disjunctions
and stops when there are no more connectives to be analysed. Leaves in the search
tree represent models of the original formula if they do not contain any opposite
literals (contradictions). As pointed out in [D’Agostino, 1992], algorithms based on
sequent calculus which do not implement the cut rule are exponential in the number of
connectives of the input formula.

1.4.1 The DPLL algorithm and modern CDCL solvers

The foundation for most complete solvers is the DPLL algorithm [Davis and Putnam,
1960; Davis et al., 1962]. The DPLL algorithm branches on each variable in turn by
assigning a value to it (a decision) and applying unit propagation until fixpoint (see
Figure 1.5). Unit propagation is the process of discovering unit clauses (clauses where
all literals are falsified except one which is undefined) and augmenting the current
valuation in the only way that will satisfy all unit clauses. A conflict occurs when
all literals in a clause have been falsified. When a conflict is detected, the algorithm
backtracks to the last decision and instead tries the opposite value for the chosen
variable or, if both possibilities have already been tried, backtracks even further.

Modern SAT solvers differ from the relatively simple DPLL algorithm in many ways.
Firstly, they employ highly specialised algorithms and data structures in order to make
unit propagation and backtracking as efficient as possible. One of these specialised
algorithms is the two-watched literal scheme [Moskewicz et al., 2001], which allows
one to detect conflicts as soon as possible without having to visit every clause where a
literal occurs. More specifically, the two-watched literal scheme works by maintaining,
for each literal, a list of clauses which must be visited when the literal in question
is falsified. Not every clause that contains the given literal is on that literal’s list; as
long as a clause still contains two undefined literals, we know that it cannot propagate
or cause any conflicts. The trick is therefore to select two (undefined) literals from
each clause which are the watched literals. Only when one of these two literals are
falsified do we need to visit the clause during unit propagation to find a new watched
literal (or, if none can be found, check if the clause is already satisfied or propagate
the last undefined literal). The two-watched literal scheme also does not incur any cost
when backtracking, since the watches and watchlists remain valid when variables are
undefined.

Secondly, modern SAT solvers analyse conflicts to learn new clauses which represent
the reasons why a particular partial assignment can never be extended to a model of
the formula. This gives rise to the name conflict-driven clause-learning (CDCL) solvers.
Conflict analysis in the context of SAT solving was first described in [Marques-Silva and
Sakallah, 1999]. Put simply, a conflict happens when the solver was unable to detect
a falsifying partial valuation through unit propagation alone. The result of conflict
analysis is a clause (called a learnt clause) which would have prevented the conflict if
the solver had known it; i.e. the conflict clause forces the propagation of some literal
so that it has the only value which could possibly satisfy the instance under the current
partial valuation. Conflict analysis also allows the solver to backtrack further than just

9

Figure 1.6: An example of search tree for a CDCL solver. The blue node is the root; red
nodes denote conflicts; and the green node denotes a solution. Dashed lines indicate
backjumping.

the previous decision (see Figure 1.6).
Conflict analysis works by looking at the implication graph of a conflict. By

definition, we know that the solver tried to propagate a variable in both polarities. If we
make the solver keep track of which clauses that caused each variable to be propagated,
we see that we end up with a DAG where nodes represent clauses (implications and
decisions) and edges represent propagations. Each clause in the graph contains exactly
one satisfied or undefined literal (the implied literal for implications and the decision
literal for decisions); the rest are falsified. Consequently, any pair of clauses which are
connected by an edge contain opposite literals and can be resolved with each other. By
recursively resolving all clauses starting from the clause which propagated the conflict
in a breadth-first manner until we get to the first unique implication point (1UIP; the
first point through which all paths from the conflict pass), we obtain a new clause which
will keep the solver from entering the same search space (the same partial valuation)
again.

The newly learnt clause also gives us the point to which we must backtrack (or
backjump, since it may skip more than one decision). It was proved in [Audemard et al.,
2008] that the 1UIP scheme is optimal in terms of how far the solver can backtrack. At
this point, the clause is unit and the solver is forced to carry out an implication that it
previously (without the learnt clause) would not have carried out.

10

Thirdly, modern CDCL solvers employ fine-tuned heuristics for branching, such as
e.g. the VSIDS (Variable-State Independent Decaying Sum) heuristic, simplification
passes, and search restarts, etc.

1.5 Algebraic cryptanalysis

Algebraic cryptanalysis is a collection of methods that uses the manipulation of
symbolic representations of cryptographic primitives according to laws of algebra.
Usually, this means specifying the cryptographic primitive in question as a system of
equations (encoding) and finding solutions to the system (solving) [Bard, 2009]. This
is in contrast to other well-established methods of cryptanalysis, such as differential
and linear cryptanalysis, which are probabilistic in nature.

Many algebraic attacks encode the cryptographic primitive in question as a set of
polynomial equations over GF(2). In other words, each side of the polynomial equation
is a sum (modulo 2) over products of variables and the constants 0 and 1. We give a
very simple example of such a system:

s = x + y + cin

cout = x y + xcin+ ycin

Here, x , y, cin, s, and cout are variables, + denotes addition modulo 2 (i.e. XOR), ·
denotes multiplication (i.e. conjunction), and the degree of the system is 2 (since no
product has more than 2 factors). Of course, systems representing real-world ciphers
will have thousands of variables and equations. When the system is such that the
right-hand side of each equation is 1, the system is said to be in algebraic normal form
(ANF).

Although solving these systems of equations is an NP-hard problem [Bard, 2007],
some systems which exhibit a certain hidden algebraic structure (e.g. polynomials of
low degree) can be solved efficiently in practice using Gröbner bases (e.g. the F4 and
F5 algorithms [Faugère, 1999, 2002]) or a combination of linearisation and Gaussian
elimination (e.g. the XL algorithm [Bard, 2009] and its variants [Ding et al., 2008]).
These techniques are used in AIDA [Vielhaber, 2007] and Cube attacks [Dinur and
Shamir, 2008].

1.5.1 Logical cryptanalysis

The term “logical cryptanalysis” was coined in [Massacci and Marraro, 1999] and
refers to the use of propositional logic to encode and solve cryptographic primitives; in
particular, the system of equations specifying the cryptographic primitive is expressed
in CNF, and a SAT solver is used to find solutions of the said system.

In Table 1.1 we list reports of the use of SAT solvers to break the security of
cryptographic primitives found in the literature. In most cases, the SAT-based attack is
not successful. Notable exceptions to this are [Mironov and Zhang, 2006] and [Courtois
et al., 2008]. In [Mironov and Zhang, 2006], the authors encode collision attacks on
MD4, MD5, and SHA-0. However, in addition to encoding the cryptographic algorithm
itself, they further constrain the resulting system of equations using differential paths

11

(from differential cryptanalysis). Differential paths are conditions on the message and
internal state bits which hold with a certain non-negligible probability. Differential
paths apply only to collision attacks, however.

In [Courtois et al., 2008], the authors encode a known-plaintext, key recovery
attack against the block cipher KeeLoq. The crucial idea behind this attack is to
exploit a weakness in the algorithm that causes the round-dependent keys to repeat
predictably within the key schedule. This knowledge is taken advantage of by encoding
the repeating keys using extra constraints.

We find it interesting that both of these successful SAT-based attacks were made
possible using extra constraints in addition the original instance. Additionally, the extra
constraints are not known to hold with probability 1, so the attack does not necessarily
find all possible solutions (or any solution at all). Apart from these two attacks, all
other successful SAT-based attacks seem to be made against stream ciphers.

With regards to the SAT solvers used to carry out the attacks, there is a clear
preference towards using MiniSat and (to a lesser degree) zChaff. In [Massacci,
1999], the authors compare the SLS solver Walk-SAT with the DPLL-based Rel-SAT
and find that the SLS solver is definitely worse. We find no subsequent accounts of
attempts to use SLS solvers. In [Mironov and Zhang, 2006], the authors test MiniSat,
BerkMin, Siege, and zChaff, and find MiniSat (with preprocessing) to be the best
solver. In Semenov2011a, Semenov2011b, Semenov2011c, we find the first accounts
of experiments using parallel solvers on a cluster.

12

Table 1.1: Overview of published literature on SAT-based cryptanalysis. We cannot
guarantee that the list is complete, however we are fairly sure that it covers the most
widely cited papers. Only papers were a SAT solver was used are listed.

Paper Primitive Attack

1999 Massacci and Marraro DES key recovery
1999 Massacci DES key recovery
2000 Massacci and Marraro DES key recovery
2003 Fiorini et al. RSA signature forgery
2005 Jovanović and Janičić MD4; MD5 preimage
2006 Mironov and Zhang MD4; MD5; SHA-0 collision (differential)
2007 De et al. MD4; MD5 preimage
2007 Srebrny et al. RSA factorisation

SHA-1 preimage
2007 McDonald et al. Bivium key recovery
2007 Courtois and Bard DES key recovery
2008 Rivest et al. MD6 preimage

MD6 collision
2008 Eibach et al. Bivium key recovery
2008 Courtois et al. KeeLoq key recovery (slide attack)
2008 Chen Bivium key recovery
2009 Courtois et al. Hitag2 key recovery
2009 Erickson et al. SMS4 key recovery

S-SMS4 key recovery
2009 Soos et al. Bivium; Crypto-1;

Hitag2; Trivium
state recovery

2009 Renauld and Standaert PRESENT (side channel) key recovery
2009 Renauld et al. AES (side channel) key recovery
2009 McDonald et al. SHA-1 collision (differential)
2010 McDonald Bivium; Trivium state recovery
2010 Soos Bivium; Grain;

Hitag2; Trivium
state recovery

2010 Gwynne AES –
2010 Béjar et al. RSA factorisation

DSA discrete logarithm
2011a Semenov et al. A5/1 (multiple) key recovery
2011 Ignatiev and Semenov A5/1 key recovery
2011b Semenov et al. A5/1 (multiple) key recovery

13

14

Chapter 2

Encodings

The first step in any attack using SAT solvers is to obtain a propositional formula that
encodes the attack.

In general, an encoding is the way in which some problem in a higher-level language
is modelled as a propositional problem, i.e. it specifies how to translate higher-level
variables and constraints into propositional variables and constraints. In our case, an
encoding is a particular way of translating the SHA-1 preimage attack to a CNF formula
(sometimes also including XOR and pseudo-boolean constraints).

There is often more than one way to encode a particular (sub-)problem, each of
which has its own performance characteristics. For example, one encoding may have
many propositional variables, but few clauses or vice versa; another encoding may have
few propositional variables and few, but long clauses. The encoding also influences the
running time of the SAT solver, perhaps even in different ways for different SAT solvers.
Not all encodings are obvious, and some creativity may be needed to discover encodings
which allow the problem to be solved efficiently using SAT solvers. For an introduction
to encodings of constraint satisfaction problems (CSPs) to SAT problems, see [Walsh,
2000]. Recently, the hardness of different encodings of boolean functions has been
investigated in [Gwynne and Kullmann, 2011].

Once we have an encoding of SHA-1 itself, the encoding of a preimage attack
consists of simply fixing the bits of the hash to the value that we want to find a preimage
for. Assuming that the encoding is sound, any solution to the resulting instance will
contain the message that hashes to the given value.

An important property that some encodings have is arc consistency. In the context
of constraint satisfaction problem (CSP) solving, arc consistency has a very precise
definition, however, in this thesis we will use the informal definition given in [Eén and
Sörensson, 2006]: “Simply stated, arc-consistency means that whenever an assignment
could be propagated on the original constraint, the SAT-solver’s unit propagation,
operating on our translation of the constraint, should find that assignment too”. In
other words, if we e.g. had an arc-consistent encoding of SHA-1, the SAT solver
could never make a decision that lead to a conflict, since any variable which would
necessarily have a particular value would always be implied through unit propagation.
Arc-consistency is obviously a desirable property, but arc-consistent encodings could be
exponential in the number of variables [Eén and Sörensson, 2006].

15

2.1 Circuit (functional) vs. imperative encodings

The most obvious encoding for the compression function of SHA-1, as many other
cryptographic algorithms taking fixed numbers of bits as input and output, is to use the
Tseitin transformation on the circuit implementing the algorithm (see subsection 1.3.4).
In [Massacci and Marraro, 2000], the authors considered this approach for attacks
on the block cipher DES: “The straightforward approach would be describing the
VLSI circuit implementing DES and transforming the circuit into a logical formula.
Unfortunately, the resulting formula is too big to be of any use.”

We see that there are at least two possible approaches to the encoding process,
namely (1) using the Tseitin transformation on a circuit representation (the circuit or
functional encoding), and (2) giving an explicit encoding of higher-level variables and
constraints (the imperative encoding). In the remainder of this section, we outline both
methods and their advantages/disadvantages; the following two sections describe how
the encodings differ for the various constraints used in SHA-1.

Circuit (functional) encoding Despite the apparent drawbacks of constructing
and encoding the circuit directly using the Tseitin transformation, this has been
the preferred method of encoding hash functions in the literature (e.g. MD4 and
MD5 [Jovanović and Janičić, 2005; Mironov and Zhang, 2006; De et al., 2007],
MD6 [Rivest et al., 2008], and SHA-1 [Morawiecki and Srebrny, 2010]).

In [Jovanović and Janičić, 2005], the authors advocate the use of their so-called
“uniform encoding”. Using this method, a circuit is automatically constructed from a
high-level description of the hash algorithm using C++ operator overloading. They
define a new class (called Word in their paper) which, instead of holding a concrete
value represented by a sequence of bits, holds an unrealised boolean value represented
as a boolean circuit. The operators for Word then, rather than compute concrete values,
construct circuits from their arguments (see the example in Figure 2.1).

We call this encoding functional, since the algorithm in question is represented as a
circuit; the input to (resp. output of) the algorithm coincides with the input to (resp.
output of) the circuit. The construction of the circuits for various operators is relatively
straightforward; bitwise operators map trivially to the corresponding gate types. The
only operator which is used in SHA-1 and requires extra explanation is modular 32-bit
addition.

One variant of the circuit encoding restricts the set of gate types used in the
construction of the circuit (i.e. the basis in the terminology of [Vollmer, 1999]). For
example, we know from boolean algebra that every boolean function can be expressed
in terms of ¬ and ∧ only, since p ∨ q ≡ ¬(¬p ∧¬q), p↔ q ≡ ¬(¬p ∧ q)∧¬(p ∧¬q), etc.
In fact, restricting the gates to ¬ and ∧ gives us what is called an and-inverter graph
(AIG).

And-inverter graphs can be useful because they are a conceptually simple data
structure that lends itself to optimisation algorithms that attempt to minimise the
number of nodes without changing the function computed by the circuit [Brummayer
and Biere, 2006]. We may be able to use such algorithms on an AIG representation of
SHA-1.

16

bits:

circuits:

x3 y3x2 y2x1 y1x0 y0

1 1 0 0 & 1 0 1 0 = 1 0 0 0

& =

Figure 2.1: The difference between operators on sequences of bits and operators on
circuits. Here showing the 4-bit bitwise AND operator.

Imperative encoding An imperative encoding is an encoding which explicitly states
how to translate each high-level variable and each constraint into propositional logic.
Although more laborious to specify and highly specific to the primitive in question, it
also allows finer control over the encoding process.

In fact, the Tseitin transformation is frequently mentioned as a weak point of the the
studies found in the literature: In [Jovanović and Janičić, 2005], the authors state: “We
are planning to further investigate alternative ways for transforming obtained formulae
to CNF (apart from Tseitin’s approach) and investigate a possible impact of this on the
hardness of generated formulae.” Similarly, in [Mironov and Zhang, 2006], the authors
state: “For clausification, currently we use the straightforward Tseitin transformation
on the propositional formulas. We believe that more optimization can be obtained from
careful examination of the encoding process.”

Since we find no accounts in the literature of hash functions being encoded in
CNF without constructing a big circuit and encoding it in CNF using the Tseitin
transformation, we consider this an interesting topic for further research.

2.2 High-level constraints

In this section we will describe some high-level (i.e. non-clausal) constraints which we
will use in the encoding of the SHA-1 compression function. Some of these constraints
may be accepted directly by the solver or, if not, further encoded in CNF. Where
possible, we will discuss several encodings for each constraint.

17

2.2.1 XOR constraints

An XOR constraint is a formula that consists only of⊕ (XOR) and literals, i.e.: l1⊕· · ·⊕ln.
We call n the length of the constraint. There are two equations in the specification of
SHA-1 where we have XOR constraints: the message schedule (Equation 1.3) and one
of the round-dependent logical functions (Equation 1.7).

The most straightforward way to encode an XOR constraint with n literals is to
transform it to CNF using the methods outlined in subsection 1.3.2. We see that we
always end up with a conjunction of 2n−1 clauses, where each clause contains all the n
variables of the XOR constraint (but as literals with different polarities). For example,
to encode the XOR constraint p⊕q⊕ r, we need the following 23−1 = 4 clauses (each of
which is a logical consequence of the original XOR constraint):

p ∨ q ∨ r p ∨¬q ∨¬r ¬p ∨ q ∨¬r ¬p ∨¬q ∨ r

Since the number of clauses is exponential in the length of the XOR constraint, it
may be advantageous to find an alternative encoding for very long XOR constraints.
If we introduce extra variables, we can “cut” the XOR constraint into several smaller
constraints [Bard et al., 2007]. For example, an XOR constraint with n literals can be
cut into two smaller XOR constraints with 1+ dn/2e and 1+ bn/2c literals, respectively.
Thus, by introducing one extra variable, we can encode an XOR constraint of 20 literals
using 211 clauses intead of 219 clauses. At the expense of introducing even more extra
variables, we can cut the constraint multiple times and use even fewer clauses. This
approach is explored further in [Bard et al., 2007], where they find that the optimal
“cutting number” (the number of literals per new XOR constraint) is 6. Consequently,
XOR clauses with 6 or fewer literals should be encoded directly without introducing
any extra variables.

Some solvers can handle XOR constraints in addition to regular disjunctive clauses.
In [Soos et al., 2009], the authors extend the watched literal scheme (for efficient unit
propagation) to XOR constraints. The advantage is obvious: the solver only needs
to store and perform unit propagation for the equivalent of 1 regular clause, rather
than the exponential number of clauses (or extra variables) needed to encode a single
XOR constraint. For instances with many/long XOR constraints, this can make a big
difference in the running time of the solver.

Additionally, in [Soos et al., 2009; Soos, 2010], the authors extend the DPLL/CDCL
algorithm to learn new facts by using Gaussian elimination on the linear system of
equations that the XOR constraints form. While gaussian elimination is a polynomial
algorithm, their approach requires that it is executed at each decision in the search
tree (at least until a certain depth), which quickly becomes quite expensive. In their
first implementation, they found that Gaussian elimination gave only a 5% speedup,
however, a later improvement to the algorithm gave up to 29% faster solving times.

The approach used in [Soos et al., 2009] for conflict analysis was to treat XOR
clauses as the regular disjunctive clause that propagated a literal. For example, for the
XOR constraint p ⊕ q ⊕ r and a partial valuation v where v(p) = 0 and v(q) = 1, the
reason for propagating v(r) = 0 is the clause p∨¬q∨¬r. The problem with this approach
is that traditional conflict analysis can only learn one disjunctive clause at a time.
Recently, there has also been research into extending conflict analysis to learn XOR

18

x

y

cin

s

cout

+

x y

s

cincout

Figure 2.2: A circuit diagram for the full-adder circuit. Here, x , y, and cin (the carry
in) are the three bits to be summed, while s is the lower bit of the sum and cout (the
carry out) is the upper bit of the sum. On the left we show the full circuit, and on the
right, we give an abbreviation of it.

+

x0 y0

s0

+

x1 y1

s1

+

x2 y2

s2

+

x3 y3

s3

+

x4 y4

s4

+

x5 y5

s5

. . . 0

Figure 2.3: A circuit diagram for the ripple-carry adder circuit. The ripple-carry adder
is built using a chain of full-adder circuits; cin of bit 0 is wired to 0, while cin of bit i is
wired to cout of bit i+ 1. The very last cout is discarded in modular-arithmetic adders.

constraints [Laitinen et al., 2012]. By extending conflict analysis to XOR constraints
so that conflict analysis can learn XOR constraints where possible, we see that learning
becomes exponentially more powerful in the best case; e.g. instead of learning 2n−1

clauses in 2n−1 conflicts, we can learn a single XOR constraint with n literals from a
single conflict.

2.2.2 32-bit modular addition

Addition is frequently used in cryptographic primitives because it provides diffusion
and non-linearity, while being cost-effective; this being a fundamental and frequently
executed operation, most CPUs have very fast adders. While the adder circuit is not
very difficult to understand conceptually, encoding it in such a way that a SAT solver
can handle it efficiently is not straightforward.

A full-adder circuit takes three inputs, x , y, and cin (the three bits to be summed),
and outputs two bits, s (the lower bit of the sum) and cout (the carry bit). We can give
s and cout as functions as follows:

s(x , y, cin) = x ⊕ y ⊕ cin

cout(x , y, cin) = ((x ⊕ y)∧ cin)∨ (x ∧ y)

The Tseitin transformation (or a variant thereof), described in subsection 1.3.4, can
be used to obtain a CNF representation of the circuit. Apart from the variables encoding

19

x , y, and s, we have to introduce 4 extra variables per full-adder, corresponding to the
intermediate gates (including cout , but excluding s). Each of the binary XOR gates
requires 4 clauses to encode, while each of the binary AND and OR gates requires 3
clauses. Encoding a binary 32-bit adder circuit therefore requires 32× 4 variables (in
addition to the 3× 32 variables for x , y, and s) and 32× (2× 4+ 3× 3) = 544 clauses.

From [Eén and Sörensson, 2006], we have a different clausification of the full-adder
circuit that introduces an extra variable only for the carry bit:

x ∨ y ∨ cin ∨ s ¬x ∨¬y ∨¬cin ∨¬s ¬y ∨¬cin ∨ cout y ∨ cin ∨¬cout

x ∨¬y ∨¬cin ∨ s ¬x ∨ y ∨ cin ∨¬s ¬x ∨¬cin ∨ cout x ∨ cin ∨¬cout

¬x ∨ y ∨¬cin ∨ s x ∨¬y ∨ cin ∨¬s ¬x ∨¬y ∨ cout x ∨ y ∨¬cout

¬x ∨¬y ∨ cin ∨ s x ∨ y ∨¬cin ∨¬s

This clausification follows from a straightforward conversion of the formula (s ↔
x⊕ y⊕cin)∧(cout ↔ ((x⊕ y)∧cin)∨(x∧ y)) to CNF. We see that we need 32 extra variables
and 32× 14 = 448 clauses to encode a 32-bit adder circuit using this method. This is
almost certainly better than the circuit encoding, which requires both more variables
and more clauses.

By chaining several full-adder circuits, we obtain what is called a ripple-carry adder
(see Figure 2.3). This is the simplest type of adder circuit for k-bit integers. However,
when implemented as a hardware circuit (and especially when k is large), the physical
signal propagation delay for the upper bits of the output may be greater than the desired
period of the clock signal (i.e. the circuit is too deep; the longest path between an input
and an output is too long). There exist other types of adders which were designed to
overcome these problems, generally called carry-lookahead adders. An investigation
of the performance of different types of adder circuits was made in [Brady and Yang,
2006], however the results were inconclusive (i.e. there was no significant difference
between the types of adders).

It is well known that adder networks (adders built using half- and full-adders) do
not preserve arc-consistency [Wedler et al., 2004; Eén and Sörensson, 2006]; in other
words, under certain partial valuations, there exist possible propagations which are not
detected by the SAT solver. These undetected propagations will eventually slow down
the SAT solver as it will make decisions which can never lead to a solution and has to
invoke conflict analysis and store the conflict clause to prevent the same wrong decision
from being made again.

The problem gets worse with more and wider operands: a binary k-bit (k ≥ 2)
ripple-carry adder encoded using the Tseitin transformation has 4 × k − 8 “hidden”
clauses, i.e. clauses which must be learnt through conflict propagation. For adders
with more operands, the problem is even more severe. For a 4-bit ternary ripple-carry
adder, there are at least 525 such clauses. These numbers were derived experimentally
using a SAT solver modified to output learnt clauses and restarting the search after each
conflict.

This problem motivates the search for an encoding of adders that better preserves
implicativity. We propose two encodings of n-ary k-bit modular addition based on
pseudo-boolean constraints. Pseudo-boolean constraints are theoretically capable of
expressing n-ary k-bit modular addition using only a single pseudo-boolean constraint

20

c3

c2 c1

c0

x3 x2 x1 x0

y3 y2 y1 y0

+ z3 z2 z1 z0

= w3 w2 w1 w0

x0+ y0+ z0 = 2c0+w0

c0+ x1+ y1+ z1 = 4c2+ 2c1+w1

c1+ x2+ y2+ z2 = 4d0+ 2c3+w2

c3+ c2+ x3+ y3+ z3 = 4d2+ 2d1+w3

Figure 2.5: Grade school (binary) addition schema and corresponding pseudo-boolean
constraints for ternary 4-bit addition. c0, . . . , c3 are extra variables introduced to encode
the carry bits. d0, . . . , d2 are dummy variables encoding the carry bits which carry
beyond the 4-bit result.

(two linear inequalities). Let F+n,k
(f , x1, . . . , xn) be the encoding of f = x1 + · · · + xn,

where f and x1, . . . , xn encode f and x1, . . . ,xn, respectively, and f and x1, . . . ,xn are
sequences of k bits:

F+n,k
(f , x1, . . . , xn) =

k−1
∑

i=0

2i · fi =
k−1
∑

i=0

2i · (x i,1+ . . .+ x i,n)

!

=

k−1
∑

i=0

2i · (fi − x i,1− . . .− x i,n) = 0

!

.

Applying the rewriting rules given in subsection 1.3.6, we can obtain two pseudo-
boolean constraints in normal form. However, most solvers impose a limit on the
values of the weights. Many solvers do not support weights or a threshold greater
than 224−1, and many solvers do not support constraints where the sum of the weights
(possibly also including the threshold) is greater than 232 − 1. These limitations are
consequences of the fact that most implementations use 32-bit integers to store and
handle the weights and thresholds in pseudo-boolean constraints. Some solvers use
arbitrary-precision arithmetic; however, this comes at the expense of efficiency when
compared to solvers using fixed-width arithmetic.

In order to bypass these limitations, we can introduce a few extra variables and split
the constraints into several smaller (shorter) constraints. Looking at Figure 2.2, we see
that the role of the adder circuit is essentially that of summing three 1-bit numbers (two
operands and one carry-in) and outputting the result as a 2-bit number. Generalising
this to more than two operands, we would obtain a circuit that sums n 1-bit numbers
and outputs their sum as a

�

1+ log2 n
�

-bit number. The most significant bits of the sum
are given as additional inputs to the next adders. These circuits can be encoded using a
single pseudo-boolean constraint over n+

�

1+ log2 n
�

variables; in Figure 2.5 we show
a concrete example of how to use multiple such pseudo-boolean constraints to encode
ternary 4-bit addition.

This encoding has to our knowledge never before been described in the literature.

21

2.2.3 Pseudo-boolean constraints

If we use a SAT solver that doesn’t support pseudo-boolean constraints directly, we
can also translate pseudo-boolean constraints to CNF in an extra step. In [Eén and
Sörensson, 2006], the authors construct a circuit that encodes whether the constraint
is satisfied or not and force the circuit’s output to true. The construction of the circuit is
done using three mechanisms: Binary Decision Diagrams (BDDs), adder networks, and
sorter networks.

We instead consider a more direct approach. For any constraint over n propositional
variables, its truth table has exactly 2n entries. When n is small, we can enumerate
the truth table and use a logic minimiser such as Espresso [Rudell and Sangiovanni-
Vincentelli, 1987] to minimise the function. The final number of clauses needed to
encode the constraint varies depending on the constraint, but is in any case bounded
by the size of its truth table.

2.2.4 Unary/binary constraints

As we noted in subsection 2.2.2, the pseudo-boolean constraints used to encode mod-
ular addition are essentially conversions between the unary and binary representations
of a number (in particular, we are using these constraints to count the number of 1s
in a particular column of the adder; each digit of the binary representation of the sum
carry over to the next column, except the lowermost bit which becomes the output
bit of that position). We can define a new constraint type, a specialisation of pseudo-
boolean constraints, that implements these exact semantics: a unary/binary constraint
is a constraint of the form

ln−1+ · · ·+ l0 = rm−1 ◦ · · · ◦ r0

where l0, . . . , ln−1 and r0, . . . , rm−1 are literals. We expand the notion of a valuation to a
valuation for unary/binary constraints v by requiring that the following also holds:

v(ln−1+ · · ·+ l0 = rm−1 ◦ · · · ◦ r0) =

(

1 if
∑n−1

i=0 v(li) =
∑m−1

i=0 2i · v(ri) holds, and
0 otherwise.

2.3 Encoding of SHA-1

2.3.1 Message schedule

Let FW(f , x , y, z, w) denote the encoding of f = (x⊕ y⊕ z⊕w)≪ 1, where f , x , y, z,
and w encode f, x, y, z, and w, respectively. We can specify it as follows:

FW(f , x , y, z, w) =
31
∧

i=0

fi ↔ x i≪1⊕ yi≪1⊕ zi≪1⊕wi≪1

=
31
∧

i=0

¬ fi ⊕ x i≪1⊕ yi≪1⊕ zi≪1⊕wi≪1

22

where i≪ 1 denotes a permutation on the integers 0, . . . , 31 applied to i such that

i≪ 1=

(

31, i = 0

i− 1, i ≥ 1

(i.e. a i ≪ 1 denotes left-rotation of the index i by 1). Using this to encode Wt for
16≤ t ≤ 79, we obtain 64×32= 2048 XOR constraints, each with 5 literals. Since each
XOR constraint only has 5 literals, it seems pointless to try to split the constraints into
further, smaller constraints.

We can, however, also consider a second approach to encoding the message
schedule. Instead of defining each bit of each word W16, . . . ,W79 of the message
schedule in terms of Wt−3, Wt−8, Wt−14, and Wt−16, we can substitute the definitions
of these words until we can express each bit in W16, . . . ,W79 only in terms of the bits
of W0, . . . ,W15. This would result in 64× 32 = 2048 XOR constraints of varying lengths
(between 5 and 75; on average 35), but with the same number of variables.

2.3.2 Round-dependent logical functions

Next we describe how to encode the round-dependent logical functions Ch(x,y,z),
Maj(x,y,z), and Parity(x,y,z) given in section 1.2.

Let FCh(f , x , y, z) denote the encoding of f = Ch(x,y,z), where f , x , y, and z
encode f, x, y, and z, respectively. Recall that the choice function Ch is defined as
Ch(x,y,z) = (x∧ y)⊕ (¬x∧ z). We define FCh(f , x , y, z) as:

FCh(f , x , y, z) =
31
∧

i=0

fi ↔ (x i ∧ yi)⊕ (¬x i ∧ zi)

=
31
∧

i=0

(¬ fi ∨¬x i ∨ yi)∧ (¬ fi ∨ x i ∨ zi)∧ (¬ fi ∨ yi ∨ zi)

∧ (fi ∨¬x i ∨¬yi)∧ (fi ∨ x i ∨¬zi)∧ (fi ∨¬yi ∨¬zi).

We note that the choice function is essentially what is called a MUX circuit. It is well
known that applying the naïve Tseitin transformation to these circuits will introduce
more variables and clauses than are really needed [Eén and Biere, 2005]. Each ∧ gate
gives rise to an extra variable and 3 clauses. The ⊕ gate will need 4 clauses. The Tseitin
transformation would thus need 2 extra variables and 10 clauses, whereas the direct
conversion to CNF would need no extra variables and only the 6 clauses shown above.

Let FMaj(f , x , y, z) denote the encoding of f = Maj(x,y,z), where f , x , y, and z
encode f, x, y, and z, respectively. Recall that the majority function Maj is defined as
Maj(x,y,z) = (x∧ y)⊕ (x∧ z)⊕ (y∧ z). We define FMaj(f , x , y, z) as:

FMaj(f , x , y, z) =
31
∧

i=0

fi ↔ (x i ∧ yi)⊕ (x ∧ z)⊕ (y ∧ z)

=
31
∧

i=0

(¬ fi ∨ x i ∨ yi)∧ (¬ fi ∨ x i ∨ zi)∧ (¬ fi ∨ yi ∨ zi)

∧ (fi ∨¬x i ∨¬yi)∧ (fi ∨¬x i ∨¬yi)∧ (fi ∨¬yi ∨¬zi).

23

Finally, let FParity(f , x , y, z) denote the encoding of f = Parity(x,y,z), where f , x , y,
and z encode f, x, y, and z, respectively. Recall that the parity function Parity is defined
as Parity(x,y,z) = x⊕ y⊕ z. We define FParity(f , x , y, z) as:

FParity(f , x , y, z) =
31
∧

i=0

fi ↔ x i ⊕ yi ⊕ zi

=
31
∧

i=0

¬ fi ⊕ x i ⊕ yi ⊕ zi.

We see that we end up with 32 XOR constraints which may be further encoded in CNF
using the method outlined in subsection 2.2.1.

2.3.3 Intermediate state and final hash value

In order to encode Equation 1.1 and Equation 1.2, we need to encode binary and 5-ary
addition, respectively. We can do this using any of the methods for encoding addition
described earlier.

To encode n-ary k-bit modular addition using pseudo-boolean constraints, we need
k pseudo-boolean constraints. Each constraint corresponds to a bit of the output and
encodes the relationship between the input bits and output bits at each bit position,
including the carry-in and carry-out bits. In order to encode 5-ary 32-bit modular
addition, we need 1 constraint of length 8, 1 constraint of length 9, and 30 constraints
of length 10. We need to introduce two extra variables for each output bit to represent
the carry bits. (Note that we don’t need carry bits for the most significant output bits,
since they are not used. This fact could be used to reduce the number of variables even
further.)

Since no pseudo-boolean constraint (for the binary and 5-ary adders in SHA-1)
has more than 10 literals, the whole truth table has at most 210 = 1024 entries,
which is entirely feasible to enumerate. We use the logic minimiser Espresso [Rudell
and Sangiovanni-Vincentelli, 1987] to minimise the function to 173 clauses (1185
literals). Although we don’t have any proof ready, we believe that this encoding of
modular addition preserves more implications (i.e. is closer to achieving the goal of
arc-consistency) than the Tseitin transformation of an adder circuit.

2.4 Reduced instances

We cannot actually measure the time it would take a SAT solver to break SHA-1, since
it would take too long; besides, if we could, we would have no reason to undertake the
investigation in the first place. We must therefore always work with reduced instances,
i.e. instances which are easier to solve, but similar in nature to the full instances that
we wish to solve.

There are several ways to reduce the difficulty of the instance. Firstly, we can reduce
the number of rounds of the SHA-1 algorithm; the full algorithm uses 80 rounds where
the message block is the direct input of the first 16 rounds, so possible number of rounds

24

range from 16 to 80. The purpose of each round is to complicate the relationship
between the input bits and the output bits, e.g. by removing linearities and making
each output bit depend on all the input bits.

Secondly, we can reduce the number of message bits by fixing them to particular
values. The message bits are the independent variables of the instance and give an
upper bound on the size of the search space (a brute force attack would in the worst
case have to try all combinations of the message bits1). Since SHA-1 operates on fixed
message blocks of 512 bits, the possible number of bits to leave as free variables range
from 0 to 512.

We additionally have the choice of fixing message bits to random values or to values
which we know have at least one solution. If we fix the message bits to random values,
we run the risk of creating unsatisfiable instances. While the running time of SAT
solvers is known to be more stable on unsatisfiable instances, the SAT solver must be
able to output a resolution proof if we want to verify that indeed no solution exists.
Another reason to avoid unsatisfiable instances is that they are never encountered in
non-reduced instances.

Thirdly, we can reduce the number of output bits by not fixing them to particular
values. That is, we allow some of the output bits to deviate from the particular hash
value that we are trying to find a preimage for. Because of the pseudo-random property
of the compression function, we expect that a random message block maps to a given
hash value with probability 2−n, where n is the number of output bits. We therefore
expect to reduce the difficulty of the instance by a factor of 2 for each output bit that
remains unfixed. Since the output of SHA-1 is 160 bits, the possible number of output
bits to leave unfixed ranges from 0 to 160.

It is not completely unreasonable to expect that certain bits of either the message
or the hash will influence the running time more or less than other bits, especially if
we also reduce the number of rounds. To mitigate a potential unknown bias due to
the choice of which bits are fixed, the choice is made at random for each generated
instance.

Soos et al. investigated the effect of fixing (“guessing”) the independent bits of a
SAT instance encoding a state recovery attack on stream ciphers [Soos et al., 2009]
and found that the average running time of the SAT solver changes almost perfectly-
exponentially with the number of fixed bits; each additional bit that is fixed reduces
the average running time by a factor 2−0.7.

2.5 Implementation

We have implemented the instance generator in C++. Parameters include the number
of rounds and the number of message and hash bits to fix in advance. It can generate
instances in both DIMACS CNF and OPB formats. For CNF output, explicit XOR and
unary/binary constraints can be enabled optionally (otherwise, XOR constraints of
length n are encoded using 2n−1 clauses and no extra variables, and unary/binary
constraints are encoded using Espresso to minimise their truth tables). For OPB

1On average, we expect a brute force attack to succeed much sooner, however, since we expect each
hash value to have a multitude of inputs that map to it.

25

output, it is possible to use either compact adders (one pseudo-boolean constraint
per adder circuit) or unary/binary constraints (k pseudo-boolean constraints per k-bit
adder circuit).

Although the program relies on the external program Espresso for minimisation of
unary/binary constraints, the whole encoding process is self-contained; i.e. from the
perspective of the user, the program only needs to be invoked once from the command
line to generate the complete instance.

In addition, two scripts are provided which (1) check that the solution found by a
SAT solver indeed satisfies the generated instance (in either CNF or OPB format); and
(2) check that the solution found by a SAT solver indeed is a valid preimage. The first
script allows us to detect errors in SAT solvers. The second script allows us to detect
errors in the encoding process (assuming that any solution found satisfy the generated
instance). By using these scripts to check every solution found during experiments, we
ensure that our results are valid.

The program and scripts are available as Free Software (under the GNU General
Public License version 3) from https://github.com/vegard/sha1-sat/ or
http://folk.uio.no/vegardno/sha1-sat.

26

https://github.com/vegard/sha1-sat/
http://folk.uio.no/vegardno/sha1-sat

Chapter 3

Methodology

Our ultimate goal is to investigate how effective SAT solvers can be at breaking the
preimage resistance property of SHA-1. Our baseline measure is the efficiency of an
off-the-shelf SAT solver on an instance generated using standard techniques. We will
try to change the various heuristics of the solver and instance generation process in
order to identify the ones that are better. Each such change therefore forms the basis
of an experiment.

In the SAT literature and in the SAT solver competitions, the most common way
to test the merits of a new solver, technique, or encoding is to solve a relatively large
set of benchmark instances with a predetermined per-instance timeout. Both the total
number of solved instances and the total time spent on solving are used as indicators
of the performance of a solver. However, most SAT papers run the solver on the whole
set of instances only once; as such, we have no idea of the variability of the total
time. Combined with the fact that the running time of the same solver and the same
instance can vary quite a lot (up to 2–3 orders of magnitude) [Bard et al., 2007; Eibach
et al., 2008] it becomes impossible to tell whether the result presented in the paper is
representative of the true performance of the solver or merely a chance result.

It was pointed out in [Nikolić, 2010] and later [Gelder, 2011] that the traditional
method of evaluating the performance of SAT solvers is deficient and that the SAT
community should move to statistically well-founded methods. In the following
sections, we will outline the methodology we have used for the experiments in the
rest of the thesis.

3.1 Estimating running time

Because of the big variation in the running time of a SAT solver on the same instance,
it is not enough to run the solver just once for each configuration; instead, we have
to obtain a sample consisting of multiple runs. From a sample we can use statistical
procedures to calculate a confidence interval that almost surely (e.g. 95% of the time)
contains the true value of the parameter that we are estimating.

We also have to choose the parameter of interest ; we might want to carry out a
worst-case analysis by looking at the sample maximum, but this is in general difficult
because the sample maximum is not robust with respect to outliers and cannot be used

27

as an estimator of the actual worst-case scenario. For average-case analysis, which is
what we will use in this thesis, the parameter of interest is the expected value of the
running time, for which the sample mean is an unbiased estimator.

As noted in [Bard et al., 2007], and as we shall see in section 4.2, the running
time of SAT solvers for at least some cryptographic instances appears to be well
approximated by a lognormal distribution. This complicates the procedure for finding
confidence intervals for the estimated mean somewhat, since the usual textbook
procedure assumes that the sample comes from a normal distribution. Some sources
advocate the use of a log-transformation on the lognormal data to obtain a confidence
interval which can then be transformed back using exponentiation. However, this will
give us a confidence interval for the geometric rather than the arithmetic mean.

We consider three approaches for calculating confidence intervals for the estimated
mean: (i) We can use the usual procedure for normal data on our untransformed
sample. Due to the law of large numbers, the sample mean is asymptotically normal in
the number of samples, so a sufficient sample size could still give reasonably reliable
results; (ii) We can use a bootstrap procedure such as the BC a procedure advocated in
[DiCiccio and Efron, 1996]. In short, bootstrap procedures create new samples using
the original sample as an approximation of the underlying distribution; (iii) We can use
the approximate method for calculating confidence intervals for the mean assuming a
lognormal distribution suggested by Sir David Cox and described in [Land, 1972; Zou
et al., 2009]. In section 4.2, we will investigate whether lognormality is a reasonable
assumption. Unless specified otherwise, all confidence intervals reported in this thesis
will be calculated using the BC a procedure, since it is expected to perform best when
the underlying distribution of the population is unknown or known to be non-normal.

3.2 Comparing configurations

A configuration is the combination of a (possibly modified) solver, the parameters
of the solver, and the parameters of an encoding. Most of our experiments will be
comparisons between two or more configurations. There are two ways to compare
such measurements, essentially corresponding to the following questions:

1. Which configurations are the fastest?

2. Which configurations scale better?

The first question is relatively straightforward to answer; we simply have to
compare the two (or more) configurations on the same (reduced) instance. In the
methodology of Nikolić [Nikolić, 2010], the parameter of interest is the probability
that one configuration finishes before the other when run in parallel. In other words,
we say that configuration C1 is better than configuration C2 if the probability that C1

finishes before C2 is smaller than 0.5 (at a certain significance level). However, this
is not equivalent to the mean running time of C1 being smaller than C2; in fact, they
are independent measures. (To see this, consider the case that C1 always solves the
instance very fast, except that it has a very small probability of taking an extremely
long time to finish, while C2 always solves the instance just a little bit slower than the

28

typical case of C1. Then C1 is more likely to solve the instance before C2, but its mean
running time will be greater.)

In order to test that the observed difference between two means is statistically
significant, we have to use a statistical test such as e.g. Student’s t-test. However, as
with the normal procedure for computing confidence intervals, the t-test is not sufficient
for our purposes, since it assumes that the underlying distribution is normal. If the t-
test is performed on the log-transformed data, this will actually test the median rather
than the mean [Zou et al., 2009], and if the variances are unequal, we can end up
concluding either that there is not enough evidence to discern any difference when
there is in fact a difference (failing to reject a false null hypothesis), or we can end up
concluding that there is a difference when in fact there is no difference (falsely rejecting
the true null hypothesis) [Zhou et al., 1997]. For samples that we know come from a
population that is lognormal-distributed, we can use the procedure described in [Zhou
et al., 1997].

If we cannot assume a specific distribution for the population, a straightforward
test to see if there is a significant difference between two means is to use the
aforementioned BCa bootstrap procedure to obtain a confidence interval for the
difference between the means. If this interval contains zero (no difference), then we
do not have enough evidence to reject the hypothesis that the two means are the same.
Conversely, if the interval does not contain zero, we can reject the hypothesis that the
two means are the same.

When working with reduced instances, simply testing the difference between two
configuration is not always enough, since it does not necessarily tell us much about the
difference for more difficult instances. For example, it could happen that configuration
C1 is faster than configuration C2 for 20 rounds, but slower for 25 rounds. To answer the
second question (“Which configuration scales better?”), we can run both configurations
on a range of difficulties (degrees of reduction) and attempt to extrapolate the pattern
to even more difficult instances. However, while we expect e.g. solving time to be
approximately exponential in the number of fixed hash bits, it is also perfectly possible
that this is not at all the case.

3.3 Multiple comparisons

When performing multiple hypothesis tests (or deriving multiple confidence intervals),
the overall confidence level of the analysis will be lower than the confidence level of
the individual tests (or intervals). This is because the confidence level expresses the
probability of obtaining the significant result by chance; if we construct 100 confidence
intervals at the 95% confidence level, we expect approximately 5 of the intervals to
fail to contain the true parameter that they estimate. The overall confidence level of
the analysis (the confidence that all the confidence intervals cover their true means) is
therefore much lower than 95%.

For experiments where we make multiple comparisons (e.g. between many different
solvers or between many different settings of a solver parameter), we must therefore
take into account the overall confidence level as well as the confidence level of
the individual tests or estimates. One procedure for testing all pairwise differences

29

between m populations, taking the overall confidence level into account, is Tukey’s test.
However, Tukey’s test makes two assumptions that are unreasonable in our context:
firstly, it assumes that the populations are approximately normal; secondly, it assumes
that the populations have equal variance. A better procedure for our purposes might
be the Games-Howell test [Games et al., 1979], since it does not make the assumption
of equal variance.

Another option is to plan which comparisons we want to make before obtaining
or inspecting the data (to prevent biasing our decisions of which comparisons to
make) and use the so-called Bonferroni correction to adjust the significance level. The
Bonferroni correction makes no assumptions about the dependence or independence
of the tests, so if some of our tests are dependent, the procedure is not necessarily as
powerful as it could have been if we had assumed (some) dependence. If we wish to
make m comparisons, the adjusted significance level α′ is α/m [Abdi, 2007]. Similarly,
if we wish to derive m confidence intervals, the adjusted confidence level 1 − α′ is
1−α/m.

3.4 Censoring

Due to the unknown and potentially very long solving times, many studies and SAT
solver competitions employ a time limit for the solver. Any sample containing runs
where the solver was stopped before a solution was found is said to contain censored
data. When calculating the mean (and many other statistics), these runs can neither
simply be discarded, nor included with the time at which the solver was stopped, since
this would tend to underestimate the mean. Instead, the missing samples must be
estimated using a combination of assumptions and the other samples. While many
statistical procedures have been developed to take censored data into account (as in
e.g. the methodology of Nikolić [Nikolić, 2010]), to simplify the analyses in this thesis
we will not consider censored data at all, i.e. all experiments will run to completion or
not even be considered if the time is too large to obtain a complete sample.

3.5 Data collection

To carry out the experiments, we run the solvers on a cluster of identical machines. Each
machine has 8 Intel Core i7-870 CPUs at 2.93GHz with 8 MiB cache and 8 GiB RAM,
however we use only one core at a time for any given machine to prevent contention for
shared resources like higher-level cache and RAM. Because of the high variability of the
running times of SAT solvers, we will usually use a sample size of n = 100 runs, using
different random seeds for both instance generation and the solver. We will sometimes
use smaller sample sizes, in particular when we just wish to get a rough idea of the
distribution or when the high running time prohibits collecting more samples. Every
solution is verified to satisfy the encoded instance (e.g. the CNF file) and to be an actual
preimage by external programs.

All values computed from the running times (such as e.g. means, confidence
intervals, etc.) are computed using the statistical package R [R Core Team, 2012].

30

Chapter 4

Experiments

This chapter contains our experiments and their results. Each section first describes the
motivation and purpose of the experiment and how it will be carried out. Then we give
the results and a discussion of the results. Our experiments are organised as follows:

Category Sect. Description

Preliminaries 4.1 Comparison between 12 SAT solvers
4.2 Running time distribution of MiniSat
4.3 Running time as a function of the difficulty
4.4 The effect of fixing specific message/hash bits

Encodings 4.5 Comparison between CNF encodings
4.6 Comparison between CNF, pseudo-boolean constraints, and

unary/binary constraints
4.7 The effect of XOR constraints and Gaussian elimination

Simplification 4.8 The effect of preprocessing and simplification

Heuristics 4.9 Comparison between branching heuristics; search for the
optimal variable activity decay factor

4.10 Comparison between geometric and Luby restart heuristics;
search for the optimal restart interval

4.11 The effect of conflict clause minimisation and the use of
reverse arcs

4.12 Search for the optimal clause activity decay factor

Learnt clauses 4.13 Running time when searching for multiple solutions
4.14 The effect of reusing learnt clauses

31

4.1 SAT solvers

In our first experiment, we will compare the performance of a number of unmodified,
freely available SAT solvers and standard encodings. The purpose of this first
experiment is twofold; first, to establish a baseline measure with which we can compare
subsequent experiments, and second, to pick one or two configurations, our best
candidates, which we will modify in the subsequent experiments. We make this
selection under the assumptions that (1) any improvement found in the best solver
would yield corresponding improvements for other configurations (where applicable),
and (2) any improvement found in the best solver would yield corresponding
improvements for larger instances. We will use the Games-Howell procedure to test
for significant differences between the running times of all the solvers.

The solvers which we would like to test are the following: glucose [Audemard and
Simon, 2009], lingeling [Biere, 2010], clasp [Gebser et al., 2007], PrecoSAT [Biere,
2010], Rsat [Pipatsrisawat and Darwiche, 2007a], PicoSAT [Biere, 2010], Min-
iSat [Eén and Sörensson, 2004], CryptoMiniSat [Soos et al., 2009], and Sat4J [Berre
and Parrain, 2010]. These solvers have ranked high in the SAT Competitions and Races
of the last few years. We do not test the solvers SATzilla2012 [Xu et al., 2012] (because
we could not find out how to make it output the satisfying solution), march [Heule
et al., 2005; Heule and van Maaren, 2006] (because it does not solve even compar-
atively easy instances in reasonable time), or any SLS solver, since we expect them
to perform badly on difficult instances like cryptographic problems [Massacci, 1999;
Massacci and Marraro, 2000]. Very preliminary tests with sparrow2011 [Balint et al.,
2011] and ubcsat [Tompkins and Hoos, 2005] seem to confirm this, as they were un-
able to solve even a single instance (the best algorithm in ubcsat still had around 200
unsatisfied clauses as its best result after running for an hour).

Since we only wish to get a rough impression of the performance of the various
solvers and since we cannot predict how long it will take to obtain all the samples, we
choose a relatively easy instance with 21 rounds, 0 fixed message bits, and 160 fixed
hash bits.

Results

The boxplot in Figure 4.1 shows that the running time varies a lot, both between
the solvers (up to 3 orders of magnitude) and for a single solver (up to 4 orders of
magnitude).

It appears that clasp-2.0.6-opb is the best configuration with a mean running time
at 40.48 s, followed by MiniSat-2.2.0 at 81.14 s, and clasp-2.0.6-cnf at 103.84 s, after
which follows a plateau of four solvers with means that are quite close to one another
(174.32–238.91 s). The worst solver appears to be glucose-2.0 at 1,148.77 s. We can
also see several cases where the mean of one sample is greater than the mean of another
while the median is smaller, e.g. between Minisat-2.2.0 and clasp-2.0.6-cnf. This
illustrates the importance of not simply testing for significant differences using the t-
test on the log-transformed samples.

Table 4.1 lists all the pairwise differences between the solvers. The first thing to
notice is that the differences between the best solver (clasp-2.0.6-opb) and all the

32

cla
sp

-2
.0.

6-
op

b

Mini
Sat-

2.2
.0

cla
sp

-2
.0.

6-
cn

f

Pre
co

SAT
-5

76

lin
ge

lin
g-

58
7f

sa
t4j

-p
b-

v2
01

11
03

0

Cryp
toM

ini
Sat-

2.9
.4

Cryp
toM

ini
Sat-

3

sa
t4j

-sa
t-v

20
11

10
30

Rsa
t-r

ac
e0

8

Pico
SAT

-9
36

glu
co

se
-2

.0

2−2

20

22

24

26

28

210

212

214

Ti
m

e
(s

)

Figure 4.1: Box plot showing the quartiles of the sampling running time distributions
for each of the 12 solvers we test. Dots indicate the mean running time. Each sample
has the size n= 100.

other solvers (MiniSat-2.2.0) are all significant at the 5% level. We do not have enough
evidence to rule out that MiniSat-2.2.0 and clasp-2.0.6-cnf have the same mean, but
the difference between MiniSat-2.2.0 and PrecoSat-576 is significant.

None of the difference between the solvers PrecoSat-576, lingeling-587f, sat4j-
pb-v20111030, and CryptoMiniSat-2.9.4 are significant. Although we measured the
mean of CryptoMiniSat-2.9.4 to be smaller than CryptoMiniSat-3, we do not have
enough evidence to conclude that they are really different. Lastly, the differences
between the worst solver, glucose-2.0, and all the other solvers were all found to be
significant.

33

Table 4.1: All pairwise significance tests on the difference between the mean running
times (the Games-Howell procedure) for the 12 solvers that we test. The solvers are
ordered by the mean running time. Each sample has the size n= 100.

Solver 1 Mean (s) Solver 2 Difference (s) p-value

clasp-2.0.6-opb 40.48 MiniSat-2.2.0 40.66 0.003
clasp-2.0.6-cnf 63.35 0.025
PrecoSAT-576 133.84 0.000
lingeling-587f 155.86 0.000
sat4j-pb-v20111030 156.26 0.000
CryptoMiniSat-2.9.4 198.43 0.000
CryptoMiniSat-3 314.02 0.000
sat4j-sat-v20111030 610.32 0.000
Rsat-race08 1,081.14 0.000
PicoSAT-936 1,108.28 0.004
glucose-2.0 2,486.77 0.000

MiniSat-2.2.0 81.14 clasp-2.0.6-cnf 22.69 0.987
PrecoSAT-576 93.18 0.000
lingeling-587f 115.20 0.001
sat4j-pb-v20111030 115.60 0.000
CryptoMiniSat-2.9.4 157.77 0.000
CryptoMiniSat-3 273.36 0.000
sat4j-sat-v20111030 569.66 0.000
Rsat-race08 1,040.48 0.000
PicoSAT-936 1,067.62 0.007
glucose-2.0 2,446.11 0.000

clasp-2.0.6-cnf 103.84 PrecoSAT-576 70.48 0.070
lingeling-587f 92.51 0.084
sat4j-pb-v20111030 92.91 0.051
CryptoMiniSat-2.9.4 135.08 0.003
CryptoMiniSat-3 250.66 0.000
sat4j-sat-v20111030 546.97 0.000
Rsat-race08 1,017.78 0.000
PicoSAT-936 1,044.93 0.010
glucose-2.0 2,423.41 0.000

PrecoSAT-576 174.32 lingeling-587f 22.03 1.000
sat4j-pb-v20111030 22.43 0.999
CryptoMiniSat-2.9.4 64.59 0.647
CryptoMiniSat-3 180.18 0.032
sat4j-sat-v20111030 476.49 0.000
Rsat-race08 947.30 0.000
PicoSAT-936 974.45 0.022
glucose-2.0 2,352.93 0.000

34

Solver 1 Mean (s) Solver 2 Difference (s) p-value

lingeling-587f 196.35 sat4j-pb-v20111030 0.40 1.000
CryptoMiniSat-2.9.4 42.57 0.992
CryptoMiniSat-3 158.16 0.165
sat4j-sat-v20111030 454.46 0.000
Rsat-race08 925.28 0.000
PicoSAT-936 952.42 0.030
glucose-2.0 2,330.90 0.000

sat4j-pb-v20111030 196.75 CryptoMiniSat-2.9.4 42.17 0.990
CryptoMiniSat-3 157.76 0.154
sat4j-sat-v20111030 454.06 0.000
Rsat-race08 924.88 0.000
PicoSAT-936 952.02 0.030
glucose-2.0 2,330.51 0.000

CryptoMiniSat-2.9.4 238.91 CryptoMiniSat-3 115.59 0.671
sat4j-sat-v20111030 411.89 0.000
Rsat-race08 882.71 0.000
PicoSAT-936 909.85 0.047
glucose-2.0 2,288.34 0.000

CryptoMiniSat-3 354.50 sat4j-sat-v20111030 296.31 0.009
Rsat-race08 767.12 0.000
PicoSAT-936 794.27 0.155
glucose-2.0 2,172.75 0.000

sat4j-sat-v20111030 650.81 Rsat-race08 470.81 0.113
PicoSAT-936 497.96 0.810
glucose-2.0 1,876.44 0.000

Rsat-race08 1,121.62 PicoSAT-936 27.15 1.000
glucose-2.0 1,405.63 0.000

PicoSAT-936 1,148.77 glucose-2.0 1,378.48 0.009

Discussion

We conclude that the most interesting solvers to use in further experiments are clasp
and MiniSat. It also seems that the use of pseudo-boolean constraints greatly speeds up
the solving process, as clasp-2.0.6-opb is significantly better than clasp-2.0.6-cnf and
sat4j-pb-v20111030 is significantly better than sat4j-sat-v20111030. Furthermore,
sat4j, which is written in Java and routinely loses to highly optimised solvers like
lingeling and CryptoMiniSat in SAT competitions, was not significantly different from
these when using the version supporting pseudo-boolean constraints.

35

4.2 Running time distribution

After some preliminary analysis of the running time of some test runs, it seems that the
running time of MiniSat is approximately log-normal distributed. In this experiment,
we aim to determine whether our assumptions of log-normality for the running time
holds, or if not, to what degree it is violated. This is important for the rest of our
experiments since a significant violation could invalidate the results of other analyses
(such as e.g. the computation of confidence intervals).

To test our assumption of lognormality, we can use a normality test such as
the Shapiro-Wilk test on the log-transformed sample. Formally, we assume the null
hypothesis H0 : the log-transformed sample comes from a normal distribution, and we
compute the probability of observing a value for the test statistic which is at least
as extreme as the one observed. We will sometimes report the p-value for the test
statistic. A low p-value (below 0.05 for a significance level of 5%) indicates that the
log-transformed sample may not come from a normal distribution and we reject the
null hypothesis; otherwise, we do not have enough evidence to prove that the log-
transformed sample doesn’t come from a non-normal distribution (note that this does
not imply that we accept the null hypothesis). In this experiment, we will report both
the Shapiro-Wilk test statistic W , which is a measure of how much the sample deviates
from the normal distribution, and the corresponding p-value.

One of the most frequently used graphical tools for comparing distributions is the
Q-Q plot. In our case, we plot the quantiles of our log-transformed sample vs. the
theoretical quantiles of the standard normal distribution. If the log-transformed sample
comes from the normal distribution (regardless of the parameters of the underlying
distribution), the points will fall along a single line. For reference, a straight line going
through the points corresponding to the 25% and 75% quantiles is also drawn.

We also compute and list skewness and excess kurtosis, two parameters for the
shape of the distribution. Skewness is a measure of symmetry; negative skewness
means that the distribution is left-skewed, positive skewness means that the distribution
is right-skewed, and skewness 0 means that the distribution is symmetric. For normality
of our log-transformed sample, we would like the skewness to be as close to 0 as
possible. Excess kurtosis is a measure of the height and the sharpness of the peak
relative to the normal distribution, and it ranges from −2 to ∞, where a value of −2
signifies that no central peak and no tails exist. The excess kurtosis of the normal
distribution is 0, and we would like the excess kurtosis of our log-transformed sample
to be as close to that value as possible.

In [Bard et al., 2007], the authors investigate the running time of SAT solvers
for the problem of solving sparse systems of low-degree multivariate polynomials
over GF(2) (the MQ problem). This problem is important in cryptography because
many cryptographic primitives are specified in terms of such polynomials. They claim
that the distribution of the sample they obtained (on the encoding of an unspecified
cryptographic problem) is log-normal with excess kurtosis (of the log-transformed
samples) ranging from −0.38 to 2.41. However, they used a timeout with the SAT
solver, so the upper (right) tail is not completely visible.

We will run MiniSat on two different types of reduced instances. First, we obtain
a sample of n = 1000 runs for 21 rounds and 160 fixed hash bits; then, we obtain a

36

sample of n = 100 runs for 22 rounds and 128 fixed hash bits. The smaller number of
runs for the second sample is due to time constraints.

Results

From the Q-Q plot in Figure 4.2, we see that the 21-round sample is not quite log-
normal, since the right tail is shorter than it would be if the sample truly came from
a log-normal distribution. This is also reflected in the sample skewness which was
measured to be −0.594 (see Table 4.2) and the Shapiro-Wilk test which rejects the
hypothesis that the sample came from a log-normal distribution.

The Q-Q plot shows that the 22-round sample is virtually indistinguishable from
a sample from a true log-normal distribution, although the sample skewness was
measured to be −0.287. Here we do not have enough evidence to reject the hypothesis
that the sample came from a log-normal distribution.

Discussion

From these results we conclude that, although close, the running time distributions
are not completely log-normal. Since the sample for the more difficult instance was
closer to log-normal, we can hypothesise that the running times are asymptotically
log-normal, although this is difficult to prove.

We can try to explain the approximate log-normality as follows: Log-normal
distributions arise from multiplicative processes, i.e. in this case, the running time of
a single run can be seen as the product of many (positive) factors. We could explain
these factors as being the time to find the correct value for a single variable; since the
instances have only very few solutions (all of which are far apart1) compared to the
size of the whole search space, we see that solutions are characterised by combinations
of the values of the variables rather than each variable tending towards having a
particular value. In this interpretation, we see two ways to explain why the more
difficult instances are closer to the true log-normal distribution: 1. with more rounds,
the solutions are expected to be further apart; and 2. with more variables, the law of
large numbers ensures that the product of the individual times converges faster towards
log-normality.

Since the running time distribution for the easier instance is quite left-skewed, the
approximate method of calculating a confidence interval for the mean of a log-normal
distribution is going to overestimate the underlying mean. For this reason, we are
better off using either the usual method of computing a confidence interval for the
mean of a sample from the normal distribution or computing a boostrap confidence
interval [Huber, 2012].

1The Hamming distance between the solutions is great. The Hamming distance is the number of
positions in which two sequences of bits differ.

37

22 rounds

21 rounds

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3

2−1

21

23

25

27

29

211

213

215

Theoretical quantiles

Sa
m

pl
e

qu
an

ti
le

s
(s

)

Figure 4.2: Q-Q plot showing the sample quantiles of the time it takes to find a 21-
round preimage with 160 fixed hash bits and a 22-round preimage with 128 fixed hash
bits using MiniSat vs. the theoretical quantiles of the standard normal distribution.

Table 4.2: The number of samples n, the Shapiro-Wilk test statistic W and p-value,
skewness, and kurtosis for two different (log-transformed) samples.

Configuration n W p Skewness Excess kurtosis

21 rounds, 160 fixed hash bits 1000 0.972 < 0.001 −0.594 0.146
22 rounds, 128 fixed hash bits 100 0.990 0.633 −0.287 −0.184

38

4.3 Reduced instances

Next, we investigate how running time varies as a function of the three difficulty
parameters, number of rounds, number of fixed hash bits, and number of fixed message
bits. Knowing this (1) makes it easier to estimate the difficulty of an instance and
(2) may give some insights into the strengths and weaknesses of the both SHA-1 and
the SAT approach. Regarding the first point, being able to estimate the difficulty of an
instance is important since it allows us to design experiments that are expected to finish
within a certain time limit. It may also allow us to extrapolate some results obtained
on easier instances to more difficult instances.

For the number of rounds, we already know (through preliminary testing) that
instances encoding 16 to 20 rounds are very easy (they are solved in less than a minute),
21 rounds is easy (1 to 2 minutes), 22 is hard (around 5 hours), and 23 is extremely
hard (2 to 3 days). In order to see how even higher number of rounds affect the
running time, we will reduce the difficulty by only fixing 16 (out of 160) bits of the
hash. Similarly, in order to see how the number of fixed message bits and the number
of hash bits affect the difficulty, we will reduce the difficulty by only solving for 21 (out
of 80) rounds.

Results and discussion

Figure 4.3 shows the mean running time for every possible number of rounds from 16
to 80. There appear to be three distinct “phases”: (1) between 16 and 21 rounds, the
mean running time is less than 2−2.30 s; (2) between 21 and 27 rounds there is a very
steep and almost perfectly exponential curve going from 2−2.30 s at 20 rounds to 28.12 s at
27 rounds; (3) between 27 and 80 rounds, the mean running time barely grows from
approximately 28.12 to approximately 29.61. It is important to stress the fact that this
curve is limited to attacks where 16 hash bits are fixed, although we may have reason
to suspect that the difficulty of the instance scales more or less exponentially with the
number of fixed hash bits (see Figure 4.4).

We observe that the overall shape of the curve is quite different from the results
obtained in [Rivest et al., 2008] for SAT-based analysis of the compression function of
their proposed hash function MD6: “Moreover, after 6–7 rounds [out of at least 80],
both running time and memory usage appear to grow superexponentially in the number
of rounds.” This could indicate either that their encoding of MD6 was poor or that MD6
is intrinsically harder than SHA-1.

One explanation for the rapid increase in mean running time starting for instances
with 22 and more rounds might come from looking at the occurrences of message
words in the message schedule (see Table 4.3). We see that 22 rounds is the lowest
number of rounds where each message word occurs more than once in the full formula;
variables encoding words that only appear once in the formula are essentially just extra
degrees of freedom. It could also simply be the fact that the final hash value (which is
completely fixed in these experiments) is also the state of the last 5 rounds. In other
words, for n rounds, the state for rounds n− 5 to n− 1 is known.

Figure 4.4 shows the mean running time as a function of the number of fixed hash
bits. Due to time constraints, we were not able to obtain samples for more than 96

39

16 20 30 40 50 60 70 80

2−4

2−3

2−2

2−1

20

21

22

23

24

25

26

27

28

29

210

211

Number of rounds

Ti
m

e
(s

)

Figure 4.3: The mean time (with uncorrected 95% confidence band) to find a preimage
for 16 fixed hash bits as a function of the number of rounds.

fixed hash bits for 22 rounds. As stated in section 2.4, we expected that the running
time would be exponential in the number of fixed hash bits. However, disregarding the
instances with fewer than 16 fixed hash bits (since they are very easy to solve and the
running time could easily be dominated e.g. by time it takes to parse the instance file),
it appears that the mean running time for both 21 and 22 rounds is sub-exponential.

It appears that the difficulty increases faster for a lower number of fixed hash bits
(e.g. for less than 48 bits for 22 rounds) and slower for a higher number (e.g. for more
than 64 bits for 22 rounds). Figure 4.5 shows the mean running time as a function
of the number of fixed message bits. The first thing to notice is that both fixing a low
number of message bits and fixing a high number of message bits yield instances that
are easier than if we fix a number lying in-between. This is contrary to our prediction
that the difficulty will simply be exponential in the number of unfixed bits; however,
one explanation for this trend could be that fixing many message bits lowers the upper
bound on the size of the search space (2n, where n is the number of independent
variables), but it also lowers the expected number of solutions (2n−160).

While certainly not a rigorous method, extrapolating the trends seen in Figure 4.5

40

Table 4.3: The number of occurrences of each message words in the message schedule
of round-reduced SHA-1 instances. For 16 rounds, no word appears more than once,
and for 22–80 rounds, every word appears more than once. (Note that each word
additionally appears exactly once in rounds 0 to 15.)

Rounds W0 W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 W15

16 · · · · · · · · · · · · · · · ·
17 1 · 1 · · · · · 1 · · · · 1 · ·
18 1 1 1 1 · · · · 1 1 · · · 1 1 ·
19 1 1 2 1 1 · · · 1 1 1 · · 1 1 1
20 2 1 3 2 1 1 · · 2 1 1 1 · 2 1 1
21 2 2 3 3 2 1 1 · 2 2 1 1 1 2 2 1
22 2 2 4 3 3 2 1 1 2 2 2 1 1 3 2 2

using straight lines yields an intersection at the point
�

389.11,250.60
�

. While the
straight-line extrapolations are not supported by hard data (and thus also not the
intersection point), the location of the intersection point is interesting because it is close
to the point where we expect (on average) to find only a single solution. As we already
explained and saw in Table 4.3, for 21 rounds, the 32 bits of w7 are essentially just extra
degrees of freedom, i.e. the point where we expect to find only a single solution is at
512− 160+ 32 = 384 fixed message bits (for 21 rounds). Thus it seems that the SAT
solver benefits from having more solutions in the search space, even though the whole
search space is bigger.

As an overall conclusion, we suggest that it is better to reduce the difficulty of
instances by fixing hash bits rather than using fewer rounds or fixing fewer message
bits, since this appears to be the function showing the simplest relationship between
the parameter and the mean running time.

41

0 16 32 48 64 80 96 112 128 144 160

2−1

20

21

22

23

24

25

26

27

28

29

210

211

212

Number of hash bits

Ti
m

e
(s

)

Figure 4.4: The mean time (with uncorrected 95% confidence band) to find 21- and
22-round preimages as a function of the number of fixed hash bits.

42

0 64 128 192 256 320 384 448 512
2−6

20

26

212

218

224

230

236

242

248

254

intersection

Number of message bits

Ti
m

e
(s

)

Figure 4.5: The mean time (with uncorrected 95% confidence band) to find 21-round
preimages as a function of the number of fixed message bits.

43

4.4 Fixing specific message/hash bits

In the previous experiment, we investigated what effect fixing a certain number of
message and hash bits has on the mean running time for the SAT solver. However,
the choice of exactly which bits to fix was made at random for each instance. Because
SHA-1 was designed to be a hash function, we expect each message and hash bit to
contribute equally to the difficulty of the instance. This does not necessarily hold
for reduced-round versions, however. Our goal in this experiment is, therefore, to
determine whether there exist certain bits which, when fixed, change the average
difficulty of the problem in one direction or the other.

We could form 512+160 hypotheses of the form “the running time when fixing bit i
is the same as the running time when not fixing bit i”. It would take too long to obtain
all the samples, however. Instead, we generate a larger number of instances where both
message and hash bits are fixed at random. Since we know for each instance exactly
which bits were fixed, we can, for each bit, divide the sample in two: the runs where
the bit was fixed and the runs where the bit was unfixed. Since the other bits were
fixed at random, their effects cancel out with a large enough sample, and we obtain a
mean difference for each bit.

We generated and solved 2370 instances, each with 21 rounds, 32 fixed message
bits, and 96 fixed hash bits. On average, we expect each message bit to have
32 · 2370/512 = 148.125 samples for the case when they are fixed and (512 − 32) ·
2370/512 = 2221.875 samples for the case when they are not fixed. Similarly, we
expect each hash bit to have 96 · 2370/160 = 1422 samples for the case when they are
fixed and (160− 96) · 2370/160= 948 samples for the case when they are not fixed.

Results

Although we have collected data for each variable individually, we will combine and
describe the results from two perspectives. Recall that the message consists of 16 words
of 32 bits each. Likewise, the hash consists of 5 words of 32 bits each.

Figure 4.6 shows the combined results of each bit and each word separately; i.e. for
each message/hash word, we compute the average effect of fixing each bit within that
word; similarly, for each bit number, we compute the average effect of fixing each bit at
that position across all the message/hash words. For example, according to Figure 4.6c,
fixing a random bit of hash word 0 will on average increase the running time of the SAT
solver by nearly 6 seconds.

Discussion

Firstly, there is a very clear pattern for the hash word number: fixing bits in words 0
and 1 increases the difficulty of the instance, while fixing bits in words 2 to 4 decreases
the difficulty.

Secondly, there is also a fairly clear pattern for the bits in each word of both the
message and the hash: fixing the middle bits decreases the difficulty while fixing the
most significant bits (and one or two of the least significant bits) increases the difficulty
drastically.

44

0 2 4 6 8 10 12 14 16

−5

0

5

10

15

M
ea

n
di

ff
er

en
ce

(s
)

(a) Message word number

0 4 8 12 16 20 24 28 32

−5

0

5

10

15

(b) Message word bit

0 1 2 3 4 5

−5

0

5

10

15

M
ea

n
di

ff
er

en
ce

(s
)

(c) Hash word number

0 4 8 12 16 20 24 28 32

−5

0

5

10

15

(d) Hash word bit

Figure 4.6: The effects on the mean running time when certain message/hash bits are
fixed.

45

For fixing bits in the message words, there doesn’t immediately seem to be a clear
pattern. However, on closer inspection, there seems to be some correlation with
the number of occurrences of that word in the message schedule for 21 rounds (see
Table 4.3). For example, notice the peaks at W3 and W4 where there is a decrease the
running time; those are the two most constrained words in the message schedule for
21 rounds. The least constrained word, W7, is also where fixing bits seems to increase
the running time the most.

4.5 Encodings

In subsection 2.2.2 and subsection 2.2.3 we described two CNF encodings of modular
addition: standard Tseitin-encoded ripple-carry adder circuits and Espresso-minimised
(and CNF-encoded) pseudo-boolean constraints; we label them Tseitin and Espresso,
respectively. In [Morawiecki and Srebrny, 2010] the authors presented their toolkit,
CryptLogVer, which generates a CNF formula from a circuit specified in the Verilog
hardware description language (HDL). The toolkit relies on proprietary software from
Altera2 to create the circuit. Since Verilog looks more like a usual programming
language, adapting the SHA-1 algorithm from C is straightforward, and the authors
even include Verilog code for SHA-1 as one example of an algorithm that can be
encoded in SAT using their toolkit.

The purpose of the experiment is twofold: (1) to find out whether adders are better
encoded using Espresso-minimised pseudo-boolean constraints or using the Tseitin
transformation; and (2) to find out whether the CryptLogVer toolkit can compete with
either of the two previous encodings.

We wanted to run the experiment for 21 rounds and 160 hash bits, 22 rounds and
48 hash bits, and 80 rounds and 4 hash bits, but due to an unexpected error (or perhaps
feature of) the CryptLogVer encoding, we must always fix all the message bits. If we
don’t, we will sometimes find solutions where the hash found is not the correct hash
for the message found (i.e. the encoding is not sound). For this reason, we were only
able to obtain complete samples for 21 rounds.

We use MiniSat-2.2.0 with default settings for all three encodings.

Results

Our results are outlined in Table 4.4 and Table 4.5. The Espresso encoding for
the adders outperforms the Tseitin and the CryptLogVer encodings by a factor of
approximately 2.48. It is also the encoding with the fewest variables and the highest
number of clauses. The CryptLogVer encoding is significantly better than the Tseitin
encoding (for the adders), but the two methods appear to have a similar ratio of clauses
to variables (4.88 and 4.85, respectively), while the Espresso encoding has a ratio of
30.32.

2Vendor of digital circuits, including FPGA devices and ASICs.

46

Table 4.4: The number of variables, number of clauses, their ratio, and the mean
running time (with uncorrected 95% confidence intervals) for the solver for three
different encodings; two imperative handcrafted encodings where the only difference
is the encoding of the adders (Espresso and Tseitin), and one encoding where we used
the CryptLogVer toolkit. Each sample has the size n= 100.

Encoding Rounds Variables Clauses Ratio Mean (s) Mean 95% CI (s)

espresso 21 3,968 120,328 30.32 76.04 63.92 92.64
22 4,128 126,420 30.62 – – –
80 13,408 478,476 35.69 – – –

CryptLogVer 21 9,322 45,494 4.88 188.77 156.35 232.88
22 9,792 48,147 4.92 – – –
80 44,812 248,220 5.54 – – –

Tseitin 21 17,404 84,411 4.85 272.80 228.76 329.95
22 18,060 86,791 4.81 – – –
80 56,108 223,551 3.98 – – –

Table 4.5: All pairwise significance tests on the difference between the mean running
times (the Games-Howell procedure) for the 3 encodings that we test. The encodings
are ordered by mean running time. Each sample has the size n= 100.

Encoding 1 Mean (s) Encoding 2 Difference (s) p-value

espresso 76.04 CryptLogVer 112.73 0.000
Tseitin 196.75 0.000

CryptLogVer 188.77 Tseitin 84.03 0.026

Discussion

Firstly, we remark that the number of variables and number of clauses that we obtained
for the Tseitin encoding are very similar to those obtained for 80-round SHA-1 in
[Srebrny et al., 2007]: “We obtained a propositional formula . . . with nearly 55
thousand propositional variables and nearly 235 thousand clauses.” (By comparison,
we get 56,108 variables and 223,551 clauses; the differences can probably be attributed
to other parts of SHA-1 that were not encoded using the Tseitin transformation, such
as the round-dependent logical functions.)

The large difference in the number of variables and clauses between the Espresso
and the Tseitin encodings indicate that a large part of the encoding comes from the
adders alone and that there is a great potential both for making the instance more
compact (in terms of the number of variables) and for making the instance easier to
handle for the solver.

We can also safely conclude that adders encoded using Espresso-minimised pseudo-

47

boolean constraints are better for the solver, even though it requires a lot more clauses
than the Tseitin-encoded counterpart. In fact, we might suspect that the CryptLogVer
toolkit also uses a variant of the Tseitin encoding, since the two encodings have very
similar ratios of clauses to variables. Note, however, that the instance we obtain using
the CryptLogVer toolkit is much smaller than our naïve Tseitin encoding. We suspect
that this is due to the use of minimisation/simplification algorithms in CryptLogVer.

We guess that the fewer variables and greater number of clauses help the solver
because the encoding has better implicativity, i.e. it is closer to arc-consistency than
the other encodings. Also, longer clauses are in general better than shorter clauses
because “propagation in a SAT solver is roughly proportional to the number of clauses,
independent of their size” [Eén and Biere, 2005].

Unless otherwise specified, we will be using Espresso-minimised pseudo-boolean
constraints as the encoding in all further experiments.

4.6 Pseudo-boolean and unary/binary constraints

In section 4.1 we compared the performance of both plain CNF solvers and OPB solvers
and found clasp-2.0.6 and MiniSat to be the best solvers (and that in both cases
where we had a solver that accepted both CNF and OPB input, the OPB instance
was significantly easier to solve). In section 4.5 we compared the performance of
different CNF encodings of 32-bit modular addition and found Espresso-minimised
pseudo-boolean constraints to be significantly easier than any other CNF encoding.

As a further step, we now compare the best CNF encoding (Espresso-minimised
pseudo-boolean constraints) on the best CNF solver (MiniSat) with the OPB encoding
(using pseudo-boolean constraints) on the best OPB solver (clasp) and with an
encoding using explicit unary/binary constraints on the best CNF solver (MiniSat)
modified to support unary/binary constraints. In order to evaluate scalability as well,
we will test each configuration on a range of difficulties.

We defined unary/binary constraints in subsection 2.2.4. We added support for
reasoning directly with these constraints to MiniSat by extending the input language
with an “h” line so that e.g. the constraint x1+ x2+ x3 = x4 ◦ x5 can be expressed using
the line

h 1 2 3 0 4 5 0.

We also extend the input language with a “d” line so that we can indicate to the solver
that certain variables are not to be branched on; in particular, the dummy variables
mentioned in subsection 2.2.4 are needed only to satisfy the syntactic requirements of
the constraint. For example, the line

d 6 -7 0

would indicate that variable 6 is a potential decision variable, while variable 7 is not.
Whenever a value is assigned to a variable that appears in the constraint, we check

the number of ways in which each variable in the constraint can still be assigned.
To check all the ways in which the clause can be satisfied given the current partial
valuation, we first calculate a lower and an upper bound for the value of the left-hand

48

c1+ x2+ y2+ z2 d0 c3 w2

0 0 0 0
1 0 0 1
2 0 1 0
3 0 1 1
4 1 0 0
5 1 0 1
6 1 1 0
7 1 1 1

Figure 4.7: All possible assignments to the RHS of the unary/binary constraint
c1 + x2 + y2 + z2 = d0 ◦ c3 ◦ w2 under the valuation v where v(c1) = 1, v(x2) = 1, and
v(d0) = 0. Impossible assignments have been struck out. We see that we can propagate
v(c3) = 1 because no other value could satisfy the constraint.

side (LHS). The lower bound is the number of satisfied literals on the LHS, while the
upper bound is the number of satisfied literals on the LHS plus the number of undefined
literals on the LHS. For example, given the constraint

c1+ x2+ y2+ z2 = d0 ◦ c3 ◦w2

and a partial valuation v where v(c1) = 1, v(x2) = 1, and v(d0) = 0, the value of the
LHS is bounded by the interval [2, 4] (see Figure 4.7).

Once we have established the bounds for the LHS, we iterate over all the
assignments to literals in the RHS which would satisfy the LHS. Potential assignments
to the RHS which are incompatible with v are skipped. In this case, since v(d0) = 0,
we can immediately rule out 4 as a possible value of the RHS. For each variable in the
RHS, we check whether both 0 and 1 occur; if not, we propagate the variable. In our
example, w2 could be either 0 or 1, so we have no valid reason why it should be one or
the other. However, c3 can only be 1, so we can propagate v(c3) = 1.

In order to facilitate conflict analysis, we always have to provide a reason for why
a variable was propagated. We simply take the conjunction of the literals in the
constraint which are currently defined as the condition and the implied variable(s)
as the consequence. In our example, we would derive the fact (c1 ∧ x2 ∧ d0) → c3,
which can be written in clausal form as ¬c1 ∨ ¬x2 ∨ ¬d0 ∨ c3. If a conflict is detected,
we similarly create a reason clause by negating the combination of the variables in the
constraint which are currently defined. Since these “reason clauses” are only needed
for conflict analysis, we never add them to the clause database, but free them as soon
as they are no longer needed, i.e. because we backtracked past the decision level where
the propagation was made.

There are two known possible drawbacks to this direct implementation of
unary/binary constraints. Firstly, we do not have a watchlist scheme for the constraint,
so we must always visit every unary/binary constraint that contains the variable x
whenever a value is assigned to x . Secondly, the generated reason clauses are not
necessarily minimal.

49

0 10 20 30 40 50 60 70 80 90 100
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8
·105

Observation number

Ti
m

e
(s

)

Figure 4.8: All observations (sorted) using clasp for 22 rounds and 128 fixed hash
bits. Clearly, there are two outliers (observations 29 and 91). Without these two very
influential observations, the mean time to solve drops from 9939.66 s to 5547.54 s.

Results

We first note that there are several apparent outliers in the data we obtained
for clasp. An observation is considered an outlier if it lies outside the range
�

Q1− 10(Q3−Q1),Q3+ 10(Q3−Q1)
�

, where Q1 and Q3 are the lower and upper
quartiles, respectively [AST, 2008]. For example, two outliers are clearly visible in
Figure 4.8, which shows all observations for 22 rounds and 128 fixed hash bits. We
also find one such outlier in each of the samples obtained using clasp for 64 and 96
fixed hash bits. There are no outliers in the other samples.

The mean times to find 22-round preimages for the different solvers/constraints and
difficulties are shown in Figure 4.9. We also include clasp-opb with outliers removed.
The general trend is as follows: for the easier instances, clasp is the fastest and MiniSat
is the slowest, while for the harder instances, clasp (including the outliers) is the
slowest and MiniSat is the fastest.

50

48 64 80 96 112 128

25

26

27

28

29

210

211

212

213

214

215

Number of fixed hash bits

Ti
m

e
(s

)
MiniSat MiniSat-ub
clasp-opb clasp-opb (outliers removed)

Figure 4.9: The mean time (with uncorrected 95% confidence intervals) to find a 22-
round preimage with three solvers as a function of the number of fixed hash bits.

We test all pairwise differences between the solvers for significance; the results
are listed in Table 4.6. For the easiest instance, with 48 fixed hash bits, clasp-opb
and MiniSat-ub are both significantly better than MiniSat; however, we do not have
enough evidence to conclude that there really is difference between clasp-opb and
MiniSat-ub. For 96 fixed hash bits, there are no significant differences between any of
the solvers. For 112 fixed hash bits, where there were no outliers, we find that MiniSat
is significantly better than clasp-opb, however, for 128 fixed hash bits, even though the
difference between the means is very large, we do not have enough evidence to say
that they are really different (this is most likely a consequence of the outliers, which
also affect the variability of the estimate of the mean).

51

Table 4.6: All pairwise significance tests on the difference between the mean running
times (the Games-Howell procedure) for the 3 configurations that we test. Each sample
has the size n= 100.

Hash bits Configuration 1 Mean (s) Configuration 2 Difference (s) p-value

48 clasp-opb 44.06 minisat-ub 17.91 0.148
minisat 115.72 0.000

minisat-ub 61.96 minisat 97.81 0.000

64 clasp-opb 209.03 minisat-ub 155.48 0.012
minisat 376.73 0.000

minisat-ub 364.50 minisat 221.25 0.013

80 clasp-opb 456.16 minisat 414.38 0.002
minisat-ub 539.77 0.000

minisat 870.54 minisat-ub 125.38 0.701

96 minisat 1,312.36 minisat-ub 94.31 0.921
clasp-opb 260.28 0.796

minisat-ub 1,406.67 clasp-opb 165.96 0.908

112 minisat 1,849.47 minisat-ub 1,065.20 0.017
clasp-opb 1,328.68 0.041

minisat-ub 2,914.67 clasp-opb 263.49 0.898

128 minisat 3,748.15 minisat-ub 2,179.36 0.036
clasp-opb 6,191.51 0.143

minisat-ub 5,927.51 clasp-opb 4,012.15 0.443

Discussion

It seems that we can draw the following conclusions: Although slower than the other
solvers/encodings for the easiest instances in this experiment, MiniSat scales well
and is the fastest solver for the most difficult instances. The solver with support for
unary/binary constraints, MiniSat-ub, seems to be better than clasp-opb, even for the
more difficult instances, but this could depend a little bit on the cause of the outliers
we observed with clasp-opb.

We have two possible explanations for why the plain CNF solver seems to scale
better with more difficult instances: (1) pseudo-boolean and unary/binary constraints
reduce the overall number of constraints (and literals) that the solver needs to keep
track of, and so gives the solver a boost by giving it a smaller cache footprint. It
is possible that this benefit is lost for the more difficult instances, since the solvers
need to learn many more clauses which saturate the cache anyway; (2) unary/binary
and pseudo-boolean constraints have no watched literal scheme and a more elaborate
watched literal scheme, respectively.

One possible explanation for the outliers in clasp comes from Marijn Heule (through
private correspondance with Mate Soos): clasp sets an absolute upper limit on the

52

number of learnt clauses to three times the number of clauses and constraints in the
original instance. Combined with restarts, this actually makes the solver incomplete,
since it is not guaranteed to always make progress [Moskewicz et al., 2001]. Although
unlikely to get stuck in an infinite loop, it could very well be possible that the progress
slows down dramatically when the solver reaches the limit; by restricting the number
of learnt clauses, the reasoning power also decreases (indeed, we can see the limit as a
restriction on the resolution proof constructed by the solver). This would also explain
why more difficult instances appear to have more outliers; easier instances also have
less variation in the running time, so it is less likely that we get a value so extreme that
the number of learnt clauses reaches the limit.

It would be interesting to investigate whether lowering the limit on the number of
learnt clauses also lowers the threshold for when the time to solve an instance becomes
much longer. If so, we can conclude that having an absolute upper limit on the number
of learnt clauses is detrimental to the mean time to solve an instance.

4.7 XOR constraints and Gaussian elimination

In [Soos et al., 2009] and [Soos, 2010], the authors add support for XOR clauses to
MiniSat. Explicit XOR constraints can improve the performance of the solver primarily
in the following two ways. Firstly, an XOR constraint of n literals must be encoded
using 2n−1 CNF clauses, all having n literals, if no new variables are introduced. The
two-watch literal scheme [Moskewicz et al., 2001] also works for XOR clauses. This
saves both memory and time. Secondly, sets of XOR clauses can be viewed as a set
of linear equations over GF(2), and one can thus use other reasoning procedures such
as Gaussian elimination to detect conflicts and propagations which were not detected
using unit propagation alone.

Since XOR operations are ubiquitous in cryptography, the resulting solver supporting
XOR clauses and Gaussian elimination was appropriately called CryptoMiniSat.
Indeed, we have good reason to believe that XOR reasoning can speed up the solving
of SHA-1, since the whole SHA-1 message schedule can be expressed as a 2560× 512
matrix over GF(2).

To see whether Gaussian elimination speeds up the solver for SHA-1, we run
CryptoMiniSat on the encoding using XOR clauses for the message schedule. Since
the matrix of XOR constraints encoding the message schedule is bigger when solving
for more rounds, we only try instances with 80 rounds. In order to ensure that Gaussian
elimination was used at every decision level and that all possible matrices were
used, we passed the options --gaussuntil=15000 --maxnummatrixes=10
--maxmatrixrows=4096 to the solver.

Results

The Gaussian elimination procedure was called an average of 167,882 times per
instance. Out of these, 0.84% resulted in a conflict and 7.75% resulted in a propagation.

From Table 4.7, we see that the mean running time appears to be lower when
Gaussian elimination is enabled; however the confidence intervals overlap greatly.

53

Table 4.7: Running times for CryptoMiniSat when Gaussian elimination is enabled and
disabled. Each sample has the size n= 100.

Configuration Mean (s) Mean 95% CI (s)

CryptoMiniSat (Gaussian elimination) 861.68 613.78 1,349.66
CryptoMiniSat 1,049.77 815.80 1,389.95

Indeed, the p-value for the Games-Howell procedure is 0.394, which means that we do
not have enough evidence to reject the hypothesis that there is no difference between
the two means.

Discussion

We see that Gaussian elimination does help in some way: it is able to learn some facts
which weren’t discovered using unit propagation alone. However, it is questionable
whether this is enough to help improve the running time. Of course, we have
purposefully used a cut-off value which is very large, so it could be the case that the
procedure runs more often than necessary.

It is hard to draw any conclusions about the mean running time when the observed
difference is not statistically significant.

4.8 Preprocessing and simplification

In the influential paper [Eén and Biere, 2005], the authors described a preprocessing
technique called variable elimination. The technique was first implemented as a
standalone preprocessor called SatELite and later included in MiniSat under the elim
option.

The purpose of preprocessing is to overcome naïve encodings that include
“meaningless internal variables, equivalent literals, and unpropagated shallow facts”.
The authors state that encoding and preprocessing are “two sides of the same coin”,
i.e. that preprocessing is a general approach to optimising the encoding of an instance,
and that preprocessing is unlikely to show large improvements for encodings that are
already highly optimised.

MiniSat includes two other simplification options: asymm and rcheck, enabling
asymmetric branching and checking whether added clauses are already implied,
respectively. Both techniques work by propagating, for each clause, the negations of
its literals. Asymmetric branching propagates all except (the negation of) one literal,
and if a conflict is detected, the literal can be removed. The other option, rcheck,
propagates (the negation of) each literal of the clause in turn, and if a literal is found
to already have been implied, we know that the clause is redundant and can be removed
from the instance.

In this experiment, we aim to determine how much these preprocessing and
simplification options affect the running time of the SAT solver. We will try five different

54

Table 4.8: Mean running times (with uncorrected 95% confidence intervals) and all
pairwise significance tests on their differences (the Games-Howell procedure) for the
5 combinations of options that we test. The configurations are ordered by the mean
running time. Each sample has the size n= 100.

Configuration 1 Mean (s) Mean 95% CI (s) Conf. 2 Difference (s) p-value

(all) 78.28 64.58 99.20 (none) 5.11 0.994
elim 10.80 0.899
asymm 14.28 0.768
rcheck 35.34 0.091

(none) 83.38 69.55 106.21 elim 5.70 0.991
asymm 9.18 0.947
rcheck 30.23 0.214

elim 89.08 74.25 107.65 asymm 3.48 0.999
rcheck 24.54 0.412

asymm 92.56 76.65 111.87 rcheck 21.05 0.575

rcheck 113.61 95.13 139.55

combinations of options and compare them all against each other: (1) no option;
(2) only elim; (3) only async; (4) only rcheck; and (5) all options.

Results

Our results are listed in Table 4.8. We do not have sufficient evidence to conclude that
the difference between any two configurations was not simply the result of chance.

Discussion

Since we were unable to discern any significant differences at all between the five
combinations of options that we tested, we can conclude that we either need bigger
samples in order to see the difference or simply that there is no difference. Since all
times were fairly low, the experiment should perhaps be repeated with a more difficult
instance.

Taking into account that preprocessing and simplification was designed to help
solvers cope with “bad” (unoptimised) encodings, we could take this as an encouraging
sign that our encoding does not contain any obvious redundancies.

An interesting object of further study is whether preprocessing and simplification
make a difference for the other encodings that we considered in section 4.5. If
preprocessing/simplification is effective for the other encodings, it could help explain
why they are slower than our hand-crafted encoding.

55

4.9 Branching heuristics

Branching heuristics. The topic of branching heuristics runs all the way back to the
original papers for the DP and DPLL algorithms. The authors admit that the choice
of which variable to branch on first could have a big influence of the efficiency of the
algorithm: “It is possible that the choice of p to be eliminated first is quite crucial in
determining the length of computation required to reach a conclusion: a program to
choose p is used, but no tests were made to vary this segment of the program beyond a
random selection, namely the first entry in the formula table” [Davis et al., 1962].

Since then, several different heuristics were used [Marques-Silva, 1999]; the
BOHM, MOMS, and Jaroslaw-Wang heuristics all attempt to (1) pick variables that
occur frequently as a way to reduce the size of the instance as much as possible and
speed up further computation; and (2) satisfy short clauses first, since (intuitively)
short clauses are harder to satisfy than long clauses. Assuming that each variable is
equally likely to be true or false, a longer clause has a greater probability of being
satisfied than a short clause.

When the simple backtracking DPLL search evolved (at the turn of the millennium)
into the modern algorithm of conflict-driven clause learning (CDCL) with its fast
unit propagation [Marques-Silva and Sakallah, 1999; Moskewicz et al., 2001], these
heuristics became too expensive to compute for every decision made by the solver. In
[Moskewicz et al., 2001], the authors introduce the extremely successful and one of
the first dynamic heuristics, Variable State Independent Decaying Sum (VSIDS).

The VSIDS heuristic is set apart from earlier heuristics primarily in that it does not
have to be recomputed for every decision level; instead, the solver can simply pick
the literal or variable with the currently highest score. Scores are also not reset when
the solver backtracks, but updated continuously as the solver encounters new conflicts.
The heuristic is widely cited as being dynamic, since it attempts to pick variables which
were encountered during conflict analysis of recent conflicts first. Newer variants (for
example the ones implemented in MiniSat and clasp) differ from the original VSIDS
heuristic in keeping scores per variable rather than per literal and updating scores in a
more efficient way.

One important parameter of the VSIDS heuristic is the variable activity decay factor,
δ. During conflict analysis, the score of each variable is “bumped”, i.e. it is increased by
a certain amount, the activity increment. The activity increment is given as δ−n where
n is the conflict number; the activity increment is an increasing sequence and this is the
mechanism that ensures that recent conflicts dominate earlier conflicts. δ is a number
between 0 and 1 (exclusive), and we see that values closer to 0 will give higher priority
to newer conflicts while values closer to 1 will give old and new conflicts equal priority.3

For MiniSat, the default decay factor is δ = 0.95. In the first experiment, we will
measure the mean running time for values from 0.80 to 0.99 to see whether an optimal
value exists. If the optimal value is closer to 0.80, it would mean that the instance is
solved faster when more priority is given to newer conflicts (i.e. the heuristic is more
dynamic), while if the optimal value is closer to 0.99, it would mean that the instance

3In practice, the values of the variable scores and the activity increment will overflow the hardware
registers. Implementations typically overcome this problem by scaling down all the scores whenever an
overflow would have occured.

56

is solved faster when priority is given more equally to past and current conflicts (i.e.
the heuristic is less dynamic).

In [Goldberg and Novikov, 2002], the authors introduce a heuristic similar to VSIDS.
In addition to keeping track of scores reflecting participation in recent conflicts, the
heuristic selects the variable with the highest score among the most recently learned
unsatisfied clause first. The heuristic was implemented in the Berkmin solver and is
typically referred to as the Berkmin heuristic.

In [Ryan, 2004], the author introduces another heuristic called Variable Move-To
Front (VMTF). This heuristic also tries, like the Berkmin heuristic, to be even more
dynamic than VSIDS by branching on literals in recently learned conflict clauses. The
heuristic maintains a list of literals where the first literal is always the next to be
branched on. Initially, the list is sorted such that literals which occur frequently are
closer to the front of the list. When a new conflict clause is derived, some fixed, small
number of literals from the clause is moved to the front.

In [Simons et al., 2002], the authors describe the Unit heuristic. This heuristic
attempts to minimise the size of the remaining search space by minimising the number
of unassigned variables. This is essentially a lookahead heuristic; it asks, for each literal
l, how many variables could we get rid of by assuming l? We see that this heuristic is
closer in spirit to the BOHM, MOMS, and Jaroslaw-Wang heuristics, and likely very
expensive to compute compared to the VSIDS, Berkmin, and VMTF heuristics.

The solver clasp implements all of these heuristics: the original (random) heuristic
of the DP/DPLL procedures, VSIDS, Berkmin, Unit, and VMTF. This gives us the
chance to compare the heuristics in a neutral setting (barring any peculiarities of the
implementations) in the context of SHA-1 preimage attacks.

Polarity caching. The first implementation of the VSIDS heuristic kept track of scores
for each literal rather than for each variable. This is not the case for newer solvers.
Instead, they first pick a variable to branch on, then they decide which branch to try
first. It has been observed that for many problems, most solutions are sparse in the
sense that only a few variables of the model are 1. Therefore, most solvers employ the
strategy of branching on 0 first.

In [Pipatsrisawat and Darwiche, 2007b], the authors noted that in instances with
disjoint components (i.e. sets of clauses which do not share any variables), SAT solvers
display suboptimal behaviour: the solver could spend a lot of time finding the solution
to one affine subproblem, only to make a bad decision involving a variable from a
different subproblem. Because of backjumping, the solver will skip over (and thus in a
sense lose) the solution it found to the first subproblem. Keep in mind that subproblems
do not necessarily need to exist in the original formula for this to happen; by branching
on some variables near the root of the search, the solver could partition the instance
into sets of (unsatisfied) clauses that do not share any (undefined) variable.

Their solution to the problem was to introduce the concept of polarity caching. The
idea is to save the value of a variable when the variable becomes undefined. If the
solver later branches on that variable, it will use the saved value. Thus it may solve the
same subproblem again, but this time very quickly.

For SHA-1, we expect that polarity caching will not make a very big difference in
the time it takes to solve an instance. This is because hash functions are designed to

57

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98

40

60

80

100

120

140

160

180

200

default

Variable activity decay factor

Ti
m

e
(s

)

Figure 4.10: The mean (with uncorrected 95% confidence interval) time to find a 21-
round preimage with minisat as a function of the variable activity decay factor.

exhibit the avalanche effect; flipping a single bit of the input should flip each bit of the
output independently with probability 1/2. Therefore, when the solver backjumps and
tries the alternative branch of the wrong decision, it is likely that any cached polarities
will no longer be relevant.

In the third experiment, we will run MiniSat with its three modes of polarity
caching: none, limited (only variables which were implied as a consequence of the
very last decision will have their cached polarities updated), and full.

Results

In Figure 4.10 we show how the mean running time of the solver varies as a function of
the variable activity decay factor. There is a clear trend towards larger values making
the instance easier to solve; the best measurement was obtained for δ = 0.99.

In Table 4.9 and Table 4.10 we compare all the branching heuristics implemented
in clasp. We find that all differences are significant and conclude that the Berkmin

58

Table 4.9: The mean running times (with uncorrected 95% confidence intervals) for
different branching heuristics in clasp. The heuristic None did not solve a single
instance.

Heuristic n Mean (s) Mean 95% CI (s)

Berkmin 100 98.08 77.77 154.86
Vsids 100 291.93 224.82 400.97
Vmtf 100 922.24 673.56 1,277.39
Unit 50 12,615.14 8,853.95 21,949.02
None — — — —

Table 4.10: All pairwise significance tests on the the differences between the mean
running times (the Games-Howell procedure) for different branching heuristics in
clasp. Each sample has the size n = 100, except Unit, where n = 50 due to time
constraints.

Heuristic 1 Mean (s) Heuristic 2 Difference (s) p-value

Berkmin 98.08 Vsids 193.86 0.000
Vmtf 824.16 0.000
Unit 12,517.06 0.000

Vsids 291.93 Vmtf 630.30 0.000
Unit 12,323.20 0.000

Vmtf 922.24 Unit 11,692.90 0.001

heuristic is clearly superior to the other heuristics (as they are implemented in clasp),
solving the instance in less than half the time of the next best heuristic, VSIDS. For the
Unit heuristic, we had to lower the number of samples to n = 50 because it was taking
too long. For the None heuristic, the solver did not finish even a single run and we
aborted the attempt after 24 hours.

According to Table 4.11, we do not have enough evidence to say that any polarity
caching mode is different from any of the others.

Discussion

We obtained a best value for the variable activity decay factor at δ = 0.99. This indicates
that the instance is solved faster when priority is given more equally to past and current
conflicts (i.e. there is “less dynamicity”). However, we also found that the Berkmin
heuristic, which is supposedly more dynamic, was better than the VSIDS heuristic.

Considering the difference between the Berkmin and VSIDS heuristics, it would
be very interesting to see if an implementation of the Berkmin heuristic in Minisat
could give similar improvements to the running time. We find one explanation in the

59

Table 4.11: Mean running times (with uncorrected 95% confidence intervals) and all
pairwise significance tests on their differences (the Games-Howell procedure) for the
three possible phase-saving settings. Each sample has the size n= 100.

Option 1 Mean (s) Mean 95% CI (s) Option 2 Difference (s) p-value

full 73.07 61.10 90.36 limited 2.79 0.230
none 20.54 0.139

limited 75.86 63.58 92.11 none 17.75 0.960
none 93.62 79.14 111.12

literature of why the Berkmin heuristic performs so much better: “. . . another important
advantage of Berkmin’s heuristic over VSIDS: newly assigned variables tend to embrace
. . . variables whose joint assignment increases the chances of both quickly reaching a
conflict in an unsatisfiable branch and satisfying out ‘problematic’ clauses in satisfiable
branches” [Dershowitz et al., 2005]. The same paper proposes yet another heuristic,
called the Clause-Based Heuristic (CBH), which they claim is better than the Berkmin
heuristic. It would be interesting to see if CBH could offer even bigger improvements
for our instances.

The fact that we could not obtain statistically significant differences when using
different polarity caching settings could indicate that SHA-1 indeed does not lend itself
to this type of optimisation. On the other hand, the difference between full polarity
caching and no polarity caching seems large. To settle the question of whether polarity
caching in fact does improve the running time, the experiment should be repeated with
a more difficult instance and a larger sample size.

4.10 Restart heuristics

Simple combinatorial search algorithms (such as DPLL) sometimes exhibit a phe-
nomenon known as heavy-tailed behaviour. This means that the algorithm’s running
time distribution exhibits a so-called heavy tail, or, in other words, that there is a small
probability that the solver will run for a very long time before finding a solution. It turns
out that it is possible to avoid these very long running times by occasionally restarting
the search from the beginning and making a different set of choices (i.e. branching on
different variables in a SAT solver). This works because it “prevents the procedure from
getting trapped in the long tails” [Gomes et al., 1998].

The strategy used in [Gomes et al., 1998] was to restart the search after a fixed
number of conflicts. This was also the strategy adopted by the early CDCL solvers.
A geometric restart strategy was suggest in [Walsh, 1999] and adopted in an early
version of MiniSat. In [Huang, 2007], the author demonstrated the utility of a restart
strategy based on the Luby sequence [Luby et al., 1993]. This strategy was subsequently
adopted by most modern CDCL solvers, including MiniSat.

The Luby restart strategy implemented in MiniSat is characterised by two
parameters: the first restart interval k and the restart interval factor b. The restart

60

Table 4.12: Running times for MiniSat using the Luby and geometric restart strategies.
Each sample has the size n = 100. The difference between the two configurations is
significant (with a p-value of p = 0.027).

Configuration Mean (s) Mean 95% CI (s)

Luby 68.41 58.72 80.85
geometric 112.98 83.61 162.26

interval is the number of conflicts that the solver will analyse before performing a full
restart and is given as k · blog2 Li , where L = (1,1, 2,1, 1,2, 4, . . .) is the Luby sequence and
i is the restart number. By default, MiniSat uses the parameters k = 100 and b = 2.

In the literature, we find several recommendations for the use of small restart
intervals: “. . . frequent restarts in combination with saving and reusing the previous
phase can speed up SAT solvers on industrial instances tremendously, particularly on
satisfiable ones” [Biere, 2008]; “Note that our proof requires the solver to restart at
every conflict. While no actual solver utilizes this particular restart policy, the proof
suggests that a frequent restart policy might be a key to the efficiency of modern
solvers” [Pipatsrisawat and Darwiche, 2009]; and “The optimal restart strategy for this
test set seems around a unit run of 6 or 8” [Haim and Heule, 2010].

In this experiment, we will first compare the geometric and Luby restart strategies,
which are both implemented in MiniSat. Then we will try different values for the first
restart interval and restart interval factor parameters of the Luby restart strategy in
MiniSat in order to find the optimal values for our instance. Since we don’t really
know what to expect for the solving times for the first restart interval and the restart
interval factor, these experiments are somewhat exploratory in nature. We do not define
the range of the parameters that we test in advance, but will adjust them based on the
observed results. Consequently, we cannot make hypotheses for specific tests (such
as a comparison between the mean running time for the default value of a parameter
and the mean running time for the observed best value of a parameter) in advance.
Instead, the results of these experiments can be used to form specific hypotheses, but
new samples (for the specific values that we want to compare) should be obtained
before the hypothesis test is carried out.

Results

As listed in Table 4.12, we obtained the mean running times 68.41 s for the Luby restart
strategy and 112.98 s for the geometric restart strategy. According to the Games-Howell
test, the difference between the means is significant with a p-value of p = 0.027. The
cactus plot in Figure 4.11 shows the difference between the distributions.

In Figure 4.12 we show the mean running time as a function of the restart interval
factor k. The two measurements closest to the default value of k = 100 were 90.72 s at
k = 64 and 84.86 s at k = 128. The smallest observed mean was 46.39 s at k = 16384.
The (uncorrected) confidence intervals do not overlap.

In Figure 4.13 we show the mean running time as a function of the first restart

61

interval b. For the default value of b = 2 we obtained a mean of 77.55 s, while the
smallest observed mean was 60.47 s at b = 4.

Discussion

We have showed that the Luby restart strategy indeed performs better than the
geometric strategy. This confirms that the generally held belief also holds for our
specific instance.

In the case of restart intervals, however, our results contradict the assertions of
[Biere, 2008; Pipatsrisawat and Darwiche, 2009; Haim and Heule, 2010] that shorter
restart intervals lead to better solving times; [Haim and Heule, 2010] claims that the
best times were obtained for k = 6 and k = 8, while in our experiments the best times
were obtained for k = 16, 384. For the restart interval factor, the results are not as
clear. The best time we obtained was for b = 4, which indeed also increases the restart
intervals; however, it seems the effect of varying the value of b is less dramatic than
that of varying the value of k. In any case, we can safely conclude that larger restart
intervals, rather than shorter, are better for our instances.

62

0 10 20 30 40 50 60 70 80 90 100
100

101

102

103

Number of instances solved

Ti
m

e
(s

)

Luby geometric

Figure 4.11: “Cactus plot” showing the time it takes to solve 100 instances for Luby vs.
geometric restart strategies using MiniSat. The distribution of running times for the
Luby restart strategy clearly has a sharper peak while maintaining the overall shape;
note, however, that the logarithmic scale means that much more time is saved in the
right tail than is lost in the left tail.

63

2 3 4 5 6 7 8 9 10

40

50

60

70

80

90

100

110

120

130

140

150

160

default

Restart interval factor

Ti
m

e
(s

)

Figure 4.12: The mean time (with uncorrected 95% confidence intervals) to find a
21-round preimage with minisat as a function of the restart interval factor b.

64

20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215 216 217 218 219
20

40

60

80

100

120

140

160

180

200

default

First restart interval

Ti
m

e
(s

)

Figure 4.13: The mean time (with uncorrected 95% confidence intervals) to find a
21-round preimage with minisat as a function of the first restart interval k.

65

4.11 Conflict analysis

We have already explained the mechanism of conflict analysis. Several extensions
and improvements have been suggested since its introduction in [Marques-Silva and
Sakallah, 1999]. In this experiment, we aim to explore the potential of some of these
additional techniques.

Conflict clause minimisation was suggested in [Sörensson and Eén, 2002] after
an observation that many conflict clauses can be made smaller by “resolving out”
certain literals (because the literal in question was propagated from a clause which,
when resolved with the conflict clause, subsumes the conflict clause). A slightly more
expensive version also handles the cases where the reason clause contains additional
literals, but where the additional literals can be ignored because they would be implied.
A more detailed description of these algorithm can be found in [Sörensson and Biere,
2009]. These two clause minimisation techniques are implemented in MiniSat and
can be enabled using the --ccmin option. There are three possible settings: 0 (no
minimisation), 1 (cheap minimisation), and 2 (expensive minimisation).

During unit propagation, it is entirely possible that the same literal is implied by
multiple clauses. It is even possible that a decision variable is implied by later decisions.
However, most SAT solvers take into account only the first implication they encounter,
and completely ignore any additional implications. An extended notion of implication
graphs where all implications are taken into account was proposed in [Audemard et al.,
2008]. Extra implications are called “inverse arcs” in their terminology. Although
it is possible to use inverse arcs to generate multiple new learnt clauses, they only
use the extra information to possibly shorten the conflict clause and derive a better
backjumping level. This feature has been implemented in clasp and can be enabled
using the --reverse-arcs option. There are four possible settings: 0 (don’t resolve
any reverse arcs with the conflict clause), 1 (allow at most one literal to be removed
using inverse arcs), 2 (allow at most half the literals in the conflict clause to be removed
using inverse arcs), 3 (allow any number of literals in the conflict clause to be removed
using inverse arcs).

We will run the respective solvers with all the different settings on instances with
21 rounds and 160 fixed hash bits to find out if they improve the average running time
or not.

Results

Our results are listed in Table 4.13 and Table 4.14. In short, we find no significant
difference between any pair of settings.

Discussion

Since none of our tests were significant, we cannot reject the hypothesis that there is
in fact no difference between the various settings of the two techniques. However, it is
still possible that these techniques are more useful for more difficult instances.

66

Table 4.13: Mean running times (with uncorrected 95% confidence intervals) and all
pairwise significance tests on their differences (the Games-Howell procedure) for the 3
clause minimisation settings in MiniSat. The configurations are ordered by the mean
running time. Each sample has the size n= 100.

Setting 1 Mean (s) Mean 95% CI (s) Setting 2 Difference (s) p-value

2 74.79 62.87 89.59 1 0.40 0.999
0 8.02 0.744

1 75.19 63.16 91.06 0 7.61 0.765

0 82.80 69.46 103.64

Table 4.14: Mean running times (with uncorrected 95% confidence intervals) and all
pairwise significance tests on their differences (the Games-Howell procedure) for the 4
conflict analysis settings in clasp. The configurations are ordered by the mean running
time. Each sample has the size n= 100.

Setting 1 Mean (s) Mean 95% CI (s) Setting 2 Difference (s) p-value

0 48.35 39.76 59.86 3 7.12 0.933
1 18.01 0.325
2 23.26 0.127

3 55.48 40.83 88.26 1 10.89 0.871
2 16.14 0.671

1 66.36 51.39 88.82 2 5.25 0.978

2 71.62 57.18 95.21

4.12 Learnt clause cleaning heuristics

While conflict analysis clause learning allows the solver to prune large parts of the
search space, it also slows the solver down during unit propagation. Therefore, most
solvers also try to identify the most useful learnt clauses and delete the rest. Lately, the
topic of which clauses to keep has become an increasingly important topic in research
on parallel solvers which need to know which clauses to share between threads. One
simple heuristic is based on the size of the clause; shorter clauses are clearly better
from a purely objective point of view, since they exclude a much larger part of the
search space than longer clauses (a clause of length 1 fixes one variable to a particular
value and therefore halves the size of the total search space; similarly, a clause of length
n divides the total search space by 2n).

The heuristic used in MiniSat was inspired by that of variable activities. Every time
a clause participates in conflict analysis, its activity is multiplied by δ−i, where δ is the
clause activity decay factor and i is the current conflict number. The clause activity

67

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99
60

65

70

75

80

85

90

95

100

105

110

115

Clause decay factor

Ti
m

e
(s

)

Figure 4.14: The mean (with uncorrected 95% confidence intervals) time to find a
21-round preimage with MiniSat as a function of the clause activity decay factor.

therefore intuitively corresponds to how much the clause has contributed to recent
progress. Correspondingly, MiniSat’s clause cleaning heuristic periodically deletes
clauses which have a low activity.

The object of this experiment is to determine if there exists an optimal value for δ.
Possible values lie between 0 and 1. Just like for variable activities, a value close to 0
means that clauses that contributed to recent conflicts are prioritised over clauses that
contributed to old conflicts, while a value closer to 1 means that the solver treats old
and new conflicts more equally. By default, MiniSat uses a value of δ = 0.999.

Results

Our results are shown in Figure 4.14.

68

Discussion

There does not appear to be any systematic change in the running time of the solver as
a function of the decay factor and any variation observed is likely due to chance alone.
This could indicate that our instances are not very sensitive to exactly which clauses
are deleted.

4.13 Multiple solutions (nth-preimage attacks)

Some solvers have the possibility to search for more than one model. This is typically
implemented by augmenting the instance with the negation of the current set of
decisions that lead to the solution. For example, if the solution is x1 ∧ x2 ∧¬x3 ∧ x4, we
can add the clause ¬x1∨¬x2∨ x3∨¬x4 to the instance and continue the solving process.
The newly added clause will prevent the same solution from being found again. This
process can be repeated until we learn the empty clause (i.e. until the instance is no
longer satisfiable).

Finding multiple solutions is essentially an nth-preimage attack, where the first
solution is a preimage attack (with no restrictions on what the message may be), the
second solution is a second-preimage attack (the message must be different from the
first), etc.

The purpose of the following experiment is to find out whether it is easier or harder
to find subsequent solutions. We might expect that it gets easier because the solver has
(1) learnt clauses which are useful regardless of the specific hash value we are trying to
find a preimage for; (2) established useful variable activities (and other statistics used
in various heuristics); (3) entered a part of the search space where there are multiple
solutions with a low Hamming distance (this is unlikely, however, assuming the pseudo-
random property of SHA-1). If it gets easier to find subsequent solutions, we can try to
use this to our advantage by finding out why it is faster to find subsequent solutions and
supply this information to the solver before we search for the first solution. However,
we might also expect that it gets harder, since the instance is getting more constrained
as we exclude possible solutions.

The solver clasp has an option to search for any number of solutions before stopping
the search. We will measure the time it takes to find 1, 2, 4, 8, and 16 solutions, and
divide the mean time by the number of solutions found to obtain the mean time per
solution. Because of time constraints, we do not try to find more than 16 solutions. We
will use instances with 21 rounds, 160 fixed hash bits, and 0 fixed message bits.

Because of the problem with outliers in the running time when using clasp (see
section 4.6; the problem is exacerbated by the fact that we are searching for multiple
solutions), we also modify MiniSat to look for 16 solutions and output the time it took
to find each solution.

Results

The results for clasp and MiniSat are given in Figure 4.15 and Figure 4.16, respectively.

69

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
24

25

26

27

Number of solutions

Ti
m

e
pe

r
so

lu
ti

on
(s

)
clasp clasp (outliers removed)

Figure 4.15: The mean (with uncorrected 95% confidence intervals) time to find
multiple distinct 21-round preimages for the same hash using clasp. Each data point is
independent of the others (i.e. each data point was calculated using 100 distinct runs).

Discussion

Looking at the results for MiniSat, there is no clear trend; the observed variation is
likely due to chance. For clasp, the results are also somewhat ambiguous because
of the outlier problem. If we assume that the outliers are due to an error in the
implementation of the solver and discard these runs, there is a clear trend: subsequent
solutions are easier to find.

70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

25.8

26

26.2

26.4

26.6

26.8

Solution number

M
ea

n
ti

m
e

(s
)

MiniSat

Figure 4.16: The mean (with 95% confidence interval) time to find multiple distinct 21-
round preimages for the same hash using MiniSat. Each data point is not independent
of the others (i.e. each data point was calculated using the same 100 runs).

4.14 Reusing learnt clauses

As we have already mentioned, clause learning prunes the remaining search space by
guiding the search away from areas which are proven (using resolution) to contain no
solutions. Clause learning is one of the cornerstones of the modern CDCL solver.

Clause learning is very closely connected with the concept of consistency in
constraint set programming. Informally, arc consistency of a set of clauses means
that there is no way to make a decision that will lead to a conflict (assuming unit
propagation is carried out as usual). When a conflict does occur, the learnt clause will
prevent the solver from making the same wrong decision again (since the learnt clause
will propagate the last variable before the solver has a chance to branch on it). We
can thus view clause learning as a process that brings the instance closer to a state of
consistency.

71

Consistency is a desirable property, since it means that we can find solutions (and
detect unsatisfiability) quickly. If we had a consistent encoding of SHA-1, we would
essentially have a polynomial algorithm for finding preimages. However, such an
encoding would probably yield a number of clauses exponential in the number of
variables. In fact, we do have such an encoding already, we just have to enumerate
all possible messages and their solutions. The whole instance would have 2512 × 160
clauses.

Regardless of whether we can achieve full consistency, clause learning still improves
the propagativity of the instance. In our case, we can divide all learnt clauses into two
categories: those which are specific to the particular hash value we are trying to find a
preimage for, and those which are valid regardless of the hash value. In this experiment,
we will try to identify those learnt clauses which are not specific to a particular hash
value; in doing so, we can provide them directly to the solver as part of the input and
(hopefully) allow the solver to focus on learning those clauses which are specific to the
particular hash value.

The experiment consists of two parts: the clause learning part (where we try to
identify universally valid clauses that are not explicit in the original encoding), and
the experiment proper (where we measure the time it takes to solve an instance that
includes the extra clauses).

In order to identify those clauses which are universally valid, we will assume the
following proposition: any clause which is learnt by sufficiently many runs of the solver
on instances with different hash values, chosen at random, is valid for all instances (i.e.
it follows logically from the encoding of SHA-1 alone). In other words, if we run the
solver on 100 instances encoding attacks on different hash values and e.g. 90 of those
runs have learnt the exact same clause, we will assume that the clause is actually valid
for all instances regardless of any specific hash value.

In order to obtain the extra learnt clauses, we use the solver clasp which comes
with an option to output all learnt clauses before the solver exits. We set a time limit of
300 seconds and disable clause deletion so that we can better see all the clauses learnt
by the solver (until a solution is found or the time limit is reached).

For the second part of the experiment, we will run MiniSat on instances which are
augmented with (some of) the extra clauses learnt in the first step.

Results

Our results are depicted in Figure 4.17. Augmenting the instances with clauses which
were learnt in 20 or more runs (out of the 100 runs), we found that the instance became
unsatisfiable. Using the clauses which were learnt in 30 or more runs, we found that
the running time increased significantly. For clauses which were learnt in 40 or more
runs, 50 or more runs, etc., there was little or no difference in the average running
time.

Discussion

The results are slightly disappointing and we have to wonder why supplying the extra
clauses to the solver before starting the search did not improve the running time. One

72

30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

26

27

Number of runs

Ti
m

e
(s

)

Figure 4.17: The mean running time (with uncorrected 95% confidence intervals) to
solve an instance which has been augmented with clauses that were learnt in previous
runs. We collected the learnt clauses from 100 runs. Each data point represents
instances which include clauses which were found in more than a certain number of
runs.

reason could be that the extra clauses induce an overhead during propagation.
We also refer to section A.2, which contains some statistics on the learnt clauses.

73

74

Chapter 5

Conclusions and future work

Our goal was to find ways to improve SAT-based attacks on SHA-1. Towards this goal,
we have investigated many aspects of both the encoding and the solving processes.
Our most important finding is that the encoding typically used in the literature
(the straightforward use of the Tseitin transformation on a circuit representation)
is suboptimal, and we have proposed a new “handcrafted” encoding which cuts the
solving time by a factor of more than 2 compared to the best known encoding used in
the literature (see section 4.5). In particular, our improved encoding of SHA-1 makes
use of a new encoding of 32-bit modular addition based on pseudo-boolean constraints.

We have also studied the performance of the SAT solver as a function of the difficulty
of the instance. One startling result is that fixing parts of the message (to values which
are known to be part of at least one solution) actually makes the instance harder, even
though the absolute size of the search space becomes smaller (see section 4.3). This
indicates that the SAT solver is better able to find a solution when there are more
possible solutions to find, regardless of the size of the search space. In light of these
considerations, it becomes very interesting to consider attacks on multiple message
blocks (i.e. two or more instances of the compression function). This could be a topic
for further research.

In the area of SAT solving techniques, we have not made any substantial new
findings. We examined variations of several popular heuristics for branching, restarts,
and clause deletion. The most interesting result is probably the fact that longer
restart intervals improve the mean running time of the solver (see section 4.10).
This dirctly contradicts the claim found in recent literature that very short restart
intervals are better. We also found it surprising that the BerkMin branching heuristic
so outperformed the popular VSIDS heuristic as they are implemented in clasp (see
section 4.9). It would be interesting to see whether we can get a similar improvement
in MiniSat (which we found to be the fastest solver for the more difficult instances)
by replacing its VSIDS heuristic with the BerkMin heuristic. Although it was shown
that MiniSat beats clasp (with pseudo-boolean constraints), we believe that further
research on the use of XOR and pseudo-boolean constraints, especially with regards to
conflict analysis, could yield even better results.

Lastly, we note that our results on the encoding process and parameters of the
solver likely transfer to any SAT problem that includes an encoding of SHA-1, e.g.
collision attacks (which are a practical target for SAT-based techniques [McDonald

75

et al., 2009]).

76

Appendix A

Variable and clause statistics

A.1 Per-variable statistics

In order to learn something about how the solver works internally, we modified
MiniSat to count the number of times each variable is (1) used as a decision variable
(“decisions”), (2) propagated (“propagations”), (3) the source of a conflict (“conflicts”),
and (4) asserted while backtracking (“implications”). . We have four types of variables:
(1) the message and message schedule words W ; (2) the internal state a; (3) the carry
bits c0 and c1 used in encoding addition; and (4) the per-round logical functions f .

We ran the modified solver on 100 instances with 80 rounds and 4 fixed hash bits.
For reference, the mean running time was 952.60 s, although some of this time was
spent on updating the statistics we gathered.

In Table A.1, we show the distribution of each type of solver event over the different
types of variables. We note that the percentages for conflicts and implications seem
to be highly correlated. Also noteworthy is the fact that roughly 50% of conflicts and
implications occur for variables encoding the message and the message schedule.

In Figure A.1, Figure A.2, Figure A.3, Figure A.4, and Figure A.5, we show more
detailed statistics: for each bit in each word in each round, we indicate its activity in
each type of solver event using heatmaps. We make a few observations: some of the
heatmaps (e.g. decisions in Figure A.2) show a similar pattern in the bits across each
word as we saw in section 4.4: 2–3 of the least significant bits and 5–6 of the most
significant bits seem to behave differently from the middle bits. Also keep in mind
that rounds 0–15 are special, since they operate directly on words of the message;
rounds 0–19, 20–39, 40–59, and 60–79 use different per-round logical functions. These
variations are observable: for example, very few decisions are made in the bits of the
message (e.g. Figure A.1) compared to the immediately following rounds (from round
16 onwards).

77

0 20 40 60 80
0

8

16

24

32

Round number

B
it

nu
m

be
r

0 0.5 1 1.5 2

(a) Decisions

0 20 40 60 80
0

8

16

24

32

Round number

0 0.5 1 1.5 2

(b) Propagations

0 20 40 60 80
0

8

16

24

32

Round number

B
it

nu
m

be
r

0 1 2 3 4 5

(c) Conflicts

0 20 40 60 80
0

8

16

24

32

Round number

0 1 2 3 4 5 6

(d) Implications (when backtracking)

Figure A.1: Heatmaps showing how often (in parts per ten thousand) the variables
encoding Wi, j (bit j of the message schedule entry for round i) participate in the given
activity when using MiniSat and the VSIDS branching heuristic.

78

0 20 40 60 80
0

8

16

24

32

Round number

B
it

nu
m

be
r

0 0.5 1 1.5 2

(a) Decisions

0 20 40 60 80
0

8

16

24

32

Round number

0 0.2 0.4 0.6 0.8 1 1.2

(b) Propagations

0 20 40 60 80
0

8

16

24

32

Round number

B
it

nu
m

be
r

0 0.2 0.4 0.6 0.8 1

(c) Conflicts

0 20 40 60 80
0

8

16

24

32

Round number

0 0.2 0.4 0.6 0.8 1 1.2 1.4

(d) Implications (when backtracking)

Figure A.2: Heatmaps showing how often (in parts per ten thousand) the variables
encoding ai, j (bit j of state for round i) participate in the given activity when using
MiniSat and the VSIDS branching heuristic.

79

0 20 40 60 80
0

8

16

24

32

Round number

B
it

nu
m

be
r

0 0.2 0.4 0.6 0.8 1 1.2 1.4

(a) Decisions

0 20 40 60 80
0

8

16

24

32

Round number

0 0.2 0.4 0.6 0.8 1 1.2 1.4

(b) Propagations

0 20 40 60 80
0

8

16

24

32

Round number

B
it

nu
m

be
r

0 0.2 0.4 0.6 0.8 1 1.2

(c) Conflicts

0 20 40 60 80
0

8

16

24

32

Round number

0 0.2 0.4 0.6 0.8 1

(d) Implications (when backtracking)

Figure A.3: Heatmaps showing how often (in parts per ten thousand) the variables
encoding the first carry bit of the per-round adder participate in the given activity when
using MiniSat and the VSIDS branching heuristic.

80

0 20 40 60 80
0

8

16

24

32

Round number

B
it

nu
m

be
r

0 0.2 0.4 0.6 0.8 1 1.2 1.4

(a) Decisions

0 20 40 60 80
0

8

16

24

32

Round number

0 0.2 0.4 0.6 0.8 1 1.2

(b) Propagations

0 20 40 60 80
0

8

16

24

32

Round number

B
it

nu
m

be
r

0 0.2 0.4 0.6 0.8 1

(c) Conflicts

0 20 40 60 80
0

8

16

24

32

Round number

0 0.2 0.4 0.6 0.8 1

(d) Implications (when backtracking)

Figure A.4: Heatmaps showing how often (in parts per ten thousand) the variables
encoding the second carry bit of the per-round adder participate in the given activity
when using MiniSat and the VSIDS branching heuristic.

81

0 20 40 60 80
0

8

16

24

32

Round number

B
it

nu
m

be
r

0 0.2 0.4 0.6

(a) Decisions

0 20 40 60 80
0

8

16

24

32

Round number

0 0.2 0.4 0.6 0.8 1 1.2

(b) Propagations

0 20 40 60 80
0

8

16

24

32

Round number

B
it

nu
m

be
r

0 0.1 0.2 0.3 0.4 0.5

(c) Conflicts

0 20 40 60 80
0

8

16

24

32

Round number

0 0.1 0.2 0.3 0.4

(d) Implications (when backtracking)

Figure A.5: Heatmaps showing how often (in parts per ten thousand) the variables
encoding fi, j (bit j of the state combiner function for round i) participate in the given
activity when using MiniSat and the VSIDS branching heuristic.

82

Table A.1: Distribution of solver events (decisions, propagations, conflicts, and
implications) over instance variables. Each percentage is the mean of a sample with size
n= 100. All numbers are accurate to within ±1 percentage point with 95% confidence.

Variable Decisions (%) Propagations (%) Conflicts (%) Implications (%)

w 28.00 42.09 50.83 49.56
a 30.23 14.41 17.65 18.29
c0 17.83 13.75 15.34 14.64
c1 14.36 13.54 10.64 12.72
f 9.59 16.22 5.54 4.79

83

A.2 Learnt clause statistics

In experiment section 4.14, we tried to reuse the most frequently learnt clauses from
several runs. If the same clause is learnt during several runs although the instances
(i.e. the hash values) are different, this indicates that the clause may be valid for all
message-hash pairs. Moreover, since these clauses were derived by conflict analysis, we
know that they are not trivially implied by our encoding (i.e. unit propagation using
the clauses of the original instance on the negation of the learnt clause will not detect
a conflict). We could thus view these clauses as a defect of the encoding. (Clearly, if we
had an arc-consistent encoding of SHA-1, we would also have a polynomial algorithm
for finding preimages, since unit propagation would never lead to a conflict. An arc-
consistent encoding might be exponential in the number of variables, however.)

In order to learn in exactly what way the encoding is deficient, we can look at the
learnt clauses. As in section 4.14, we have generated and solved 100 instances, but this
time with 80 rounds. We also set a timeout at 600 seconds. We will summarise some of
the characteristics of the clauses which were learnt in 40 or more runs.

In Figure A.6, we show how often each variable (except variables encoding W)
occurs in a learnt clause. The most obvious thing to notice is that variables used in
rounds 0 to 19 are the most frequent, followed by variables used in rounds 40 to 59.
The variables in rounds 20 to 39 and in rounds 60 to 79 are almost completely absent.
Another thing to notice is that the first few lower bits and last upper bits of each word
appear less frequently in learnt clauses.

For the variables encoding W (the message and the message schedule), shown in
Figure A.7, the situation is a little bit different; there, the variables in rounds 16 to 19
appear to be even more frequent than the rest. The upper bits of each word for some
rounds are also more frequent than in the other variables.

An interesting question is why the variables encoding rounds 20 to 39 and 60 to
79 are nearly absent in the learnt clauses. We know that exactly these rounds use the
same round-dependent logical function, Parity(x,y,z) = x⊕y⊕z, which in our encoding
is encoded using 24−1 = 8 clauses of length 4. The other round-dependent logical
functions, Ch and Maj, are both encoded using 6 clauses of length 3. One explanation
could be that the shorter clauses propagate more easily and are therefore more likely
to take part in a conflict (and contribute its literals to the final conflict clause).

We have also included Table A.2, Table A.3, and Table A.4, which list, respectively,
the lengths of, the unique variables in, and the rounds of the variables in the learnt
clauses.

Table A.2: Lengths of the clauses which were learnt in more than 50% of the runs.

Length Number Percentage (%)

4 11,246 64.78
5 2,856 16.45
6 2,800 16.13
7 459 2.64

84

0 20 40 60 80
0

8

16

24

32

Round number

B
it

nu
m

be
r

0 20 40 60 80 100 120

(a) a

0 20 40 60 80
0

8

16

24

32

Round number

0 10 20 30 40

(b) f

0 20 40 60 80
0

8

16

24

32

Round number

B
it

nu
m

be
r

0 10 20 30 40 50 60

(c) c0

0 20 40 60 80
0

8

16

24

32

Round number

0 20 40 60 80

(d) c1

Figure A.6: Heatmaps showing how often each bit of a, f , c0, and c1 occur in the clauses
which were learnt in more than 50% of the runs.

85

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
0

8

16

24

32

Round number

B
it

nu
m

be
r

0 2 4 6 8 10 12 14 16 18 20 22 24 26

Figure A.7: Heatmaps showing how often each bit of W occur in the clauses which
were learnt in more than 50% of the runs.

86

Table A.3: (Unique) variable types in the clauses which were learnt in more than 50%
of the runs.

Variables Number Percentage (%)

a c0 c1 f 4,830 27.82
a c1 f 4,210 24.25
a c0 c1 3,415 19.67
a c1 1,841 10.60
a c1 f W 989 5.70
a c1 W 676 3.89

c0 c1 f 454 2.62
a c0 c1 f W 386 2.22
a c0 f 293 1.69
a c0 c1 W 59 0.34

c0 c1 W 53 0.31
a c0 f W 32 0.18
a c0 W 23 0.13

c1 f W 23 0.13
c0 c1 20 0.12

a c0 19 0.11
c0 c1 f W 15 0.09

a f W 8 0.05
c1 f 8 0.05

a W 7 0.04

Table A.4: Rounds of the variables in the clauses which were learnt in more than 50%
of the runs.

Variables from rounds Number Percentage (%)

t, t + 5 5,826 33.56
t, t + 1 4,790 27.59
t, t + 4, t + 5 3,852 22.19
t 2,893 16.66

87

88

Bibliography

(1995). Secure Hash Standard. vol. 180-1, of FIPS National Institute of Standards and
Technology.

(2008). ASTM-E178-08: Standard Practice for Dealing With Outlying Observations.
ASTM International, West Conshohocken, PA.

Abdi, H. (2007). The Bonferonni and Šidák Corrections for Multiple Comparisons. In
Encyclopedia of Measurement and Statistics pp. 103–107.

Audemard, G., Bordeaux, L., Hamadi, Y., Jabbour, S. and Sais, L. (2008). A generalized
framework for conflict analysis. In Proceedings of the 11th international conference
on Theory and applications of satisfiability testing SAT’08 pp. 21–27, Springer-Verlag,
Berlin, Heidelberg.

Audemard, G. and Simon, L. (2009). Predicting learnt clauses quality in modern
SAT solvers. In Proceedings of the 21st international jont conference on Artifical
intelligence IJCAI’09 pp. 399–404, Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA.

Balint, A., Fröhlich, A., Tompkins, D. A. D. and Hoos, H. H. (2011). Sparrow2011.
Technical report.

Bard, G. V. (2007). Algorithms for solving linear and polynomial systems of equations
over finite fields with applications to cryptanalysis. PhD thesis, University of
Maryland, College Park.

Bard, G. V. (2009). In Algebraic Cryptanalysis. Springer-Verlag Berlin Heidelberg.

Bard, G. V., Courtois, N. T. and Jefferson, C. (2007). Efficient methods for conversion
and solution of sparse systems of low-degree multivariate polynomials over GF(2)
via SAT-solvers. http://eprint.iacr.org/2007/024.

Béjar, R., Fernández, C. and Guitart, F. (2010). Encoding Basic Arithmetic Operations
for SAT-Solvers. In Proceedings of the 2010 Conference on Artificial Intelligence
Research and Development: Proceedings of the 13th International Conference of the
Catalan Association for Artificial Intelligence pp. 239–248, IOS Press, Amsterdam.

Berre, D. L. and Parrain, A. (2010). The Sat4j library, release 2.2. Journal on
Satisfiability, Boolean Modeling and Computation 7, 59–64.

89

http://eprint.iacr.org/2007/024

Biere, A. (2008). Adaptive restart control for conflict driven SAT solvers. In SAT
’08: Proceedings of the 11th International Conference on Theory and Applications
of Satisfiability Testing vol. 4996, of LNCS Springer-Verlag Berlin Heidelberg.

Biere, A. (2010). Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT Race 2010.
Technical Report 10/1 Institute for Formal Models and Verification, Johannes Kepler
University, Linz, Austria.

Brady, B. and Yang, Y. (2006). The Effects of Arithmetic Encodings on SAT Solver
Performance. http://www.eecs.berkeley.edu/~bbrady/documents/
BradyYang-report.pdf.

Brummayer, R. and Biere, A. (2006). Local two-level And-Inverter Graph minimization
without blowup. In MEMICS ’06: Proceedings of the 2nd Doctoral Workshop on
Mathematical and Engineering Methods in Computer Science.

Buss, S. R. (1998). An introduction to proof theory. Elsevier, Amsterdam.

Chen, B. (2008). Strategies on Algebraic Attacks Using SAT Solvers. In Proceedings of
the 2008 The 9th International Conference for Young Computer Scientists ICYCS ’08
pp. 2204–2209, IEEE Computer Society, Washington, DC, USA.

Courtois, N. and Bard, G. V. (2007). Algebraic Cryptanalysis of the Data Encryption
Standard. In Proceedings of the 11th IMA international conference on Cryptography
and coding Cryptography and Coding’07 pp. 152–169,.

Courtois, N. T., Bard, G. V. and Wagner, D. (2008). Algebraic and Slide Attacks on
KeeLoq. vol. 5086, of LNCS pp. 97–115,.

Courtois, N. T., O’Neil, S. and Quisquater, J.-J. (2009). Practical Algebraic Attacks on
the Hitag2 Stream Cipher. vol. 5735, of LNCS pp. 167–176, Springer-Verlag Berlin
Heidelberg.

D’Agostino, M. (1992). Are Tableaux an Improvement on Truth-Tables? Cut-Free proofs
and Bivalence.

Davis, M., Logemann, G. and Loveland, D. (1962). A machine program for theorem-
proving. Commun. ACM 5, 394–397.

Davis, M. and Putnam, H. (1960). A Computing Procedure for Quantification Theory.
J. ACM 7, 201–215.

De, D., Kumarasubramanian, A. and Venkatesan, R. (2007). Inversion Attacks on Secure
Hash Functions Using SAT Solvers. vol. 4501, of LNCS pp. 377–382,.

Dershowitz, N., Hanna, Z. and Nadel, A. (2005). A clause-based heuristic for SAT
solvers. In SAT ’05: Proceedings of the International Conference on Theory and
Applications of Satisfiability Testing pp. 46–60, Springer-Verlag.

DiCiccio, T. J. and Efron, B. (1996). Bootstrap Confidence Intervals. Statistical Science
11, 189–212.

90

http://www.eecs.berkeley.edu/~bbrady/documents/BradyYang-report.pdf
http://www.eecs.berkeley.edu/~bbrady/documents/BradyYang-report.pdf

Ding, J., Buchmann, J., Mohamed, M., Moahmed, W. and Weinmann, R.-P. (2008).
MutantXL. In SCC ’08: Proceedings of the 1st International Conference on Symbolic
Computation and Cryptography pp. 16–22,.

Dinur, I. and Shamir, A. (2008). Cube Attacks on Tweakable Black Box Polynomials.
Cryptology ePrint Archive, Report 2008/385. http://eprint.iacr.org/.

Eén, N. and Biere, A. (2005). Effective preprocessing in SAT through variable and
clause elimination. In SAT ’05: Proceedings of the 8th International Conference
on Theory and Applications of Satisfiability Testing vol. 3569, of LNCS pp. 61–75,
Springer-Verlag Berlin Heidelberg.

Eén, N. and Sörensson, N. (2004). An Extensible SAT-solver. In Theory and Applications
of Satisfiability Testing, (Giunchiglia, E. and Tacchella, A., eds), vol. 2919, of LNCS
chapter 37, pp. 333–336. Springer-Verlag Berlin Heidelberg.

Eén, N. and Sörensson, N. (2006). Translating Pseudo-Boolean Constraints into SAT.
Journal on Satisfiability, Boolean Modeling and Computation 2, 1–26.

Eibach, T., Pilz, E. and Völkel, G. (2008). Attacking Bivium Using SAT Solvers. vol.
4996, of LNCS pp. 63–76,.

Erickson, J., Ding, J. and Christensen, C. (2009). Algebraic Cryptanalysis of SMS4:
Gröbner Basis Attack and SAT Attack Compared. vol. 5984, of LNCS pp. 73–86,
Springer-Verlag Berlin Heidelberg.

Faugère, J.-C. (1999). A new efficient algorithm for computing Gröbner bases (F4).
Journal of Pure and Applied Algebra 139, 61–88.

Faugère, J.-C. (2002). A new efficient algorithm for computing Gröbner bases without
reduction to zero (F5). In Proceedings of the 2002 international symposium on
Symbolic and algebraic computation ISSAC ’02 pp. 75–83, ACM, New York, NY, USA.

Fiorini, C., Martinelli, E. and Massacci, F. (2003). How to fake an RSA signature by
encoding modular root finding as a SAT problem. Discrete Applied Mathematics 130,
101–127.

Games, P., Keselman, H. and Clinch, J. (1979). Tests for homogeneity of variance in
factorial designs. Psychological Bulletin 86, 978–984.

Gebser, M., Kaufmann, B., Neumann, A. and Schaub, T. (2007). clasp: A conflict-driven
answer set solver. In LPNMR’07 pp. 260–265, Springer.

Gelder, A. V. (2011). Careful ranking of multiple solvers with timeouts and ties. In SAT
’11: Proceedings of the 14th International Conference on Theory and Application
of Satisfiability Testing vol. 6695, of LNCS pp. 317–328, Springer-Verlag Berlin
Heidelberg.

Gilmore, P. (1960). A proof method for quantification theory: its justification and
realization. IBM J. Res. Dev. 4, 28–35.

91

http://eprint.iacr.org/

Goldberg, E. and Novikov, Y. (2002). BerkMin: A fast and robust SAT-solver. In DATE
’02: Proceedings of Design, Automation, and Test in Europe pp. 142–149,.

Gomes, C. P., Selman, B. and Kautz, H. (1998). Boosting combinatorial search through
randomization. In AAAI ’98: Proceedings of the Fifteenth National Conference on
Artificial Intelligence pp. 431–437, AAAI Press.

Gwynne, M. (2010). The Interaction between Propositional Satisfiability and
Applications in Cryptography and Ramsey Problems. Master’s thesis Swansea
University.

Gwynne, M. and Kullmann, O. (2011). Towards a better understanding of hardness. In
CP ’11: Proceedings of the 17th International Conference on Principles and Practice
of Constraint Programming.

Haim, S. and Heule, M. (2010). Towards Ultra Rapid Restarts. Technical report UNSW
and TU Delft.

Heule, M. J. and van Maaren, H. (2006). March_dl: Adding Adaptive Heuristics
and a New Branching Strategy. Journal on Satisfiability, Boolean Modeling and
Computation 2, 47–59.

Heule, M. J. H., van Zwieten, J. E., Dufour, M. and van Maaren, H. (2005). March_eq:
Implementing Additional Reasoning into an Efficient Lookahead Sat Solver. In SAT
2004, (Hoos, H. H. and Mitchell, D. G., eds), vol. 3542, of Lecture Notes in Computer
Science pp. 345–359, Springer.

Huang, J. (2007). The effect of restarts on the efficiency of clause learning. In
Proceedings of the 20th International Joint Conference on Artifical Intelligence
IJCAI’07 pp. 2318–2323, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Huber, W. A. (2012). http://stats.stackexchange.com/questions/
35630/can-i-assume-log-normality-for-this-sample.

Ignatiev, A. and Semenov, A. (2011). DPLL+ROBDD Derivation Applied to Inversion of
Some Cryptographic Functions. In SAT pp. 76–89,.

Jovanović, D. and Janičić, P. (2005). Logical Analysis of Hash Functions. vol. 3717, of
LNAI pp. 200–215,.

Katz, J. and Lindell, Y. (2007). Chapman and Hall/CRC Press.

Laitinen, T., Junttila, T. and Niemelä, I. (2012). Conflict-driven XOR-clause learning.
In Proceedings of the 15th international conference on Theory and Applications of
Satisfiability Testing SAT’12 pp. 383–396, Springer-Verlag, Berlin, Heidelberg.

Land, C. E. (1972). An evaluation of approximate confidence interval estimation
methods for lognormal means. Technometrics 14, 145–158.

Luby, M., Sinclair, A. and Zuckerman, D. (1993). Optimal Speedup of Las Vegas
Algorithms. Information Processing Letters 47, 173–180.

92

http://stats.stackexchange.com/questions/35630/can-i-assume-log-normality-for-this-sample
http://stats.stackexchange.com/questions/35630/can-i-assume-log-normality-for-this-sample

Marques-Silva, J. P. (1999). The impact of branching heuristics in propositional
satisfiability algorithms. In In 9th Portuguese Conference on Artificial Intelligence
(EPIA) pp. 62–74,.

Marques-Silva, J. P. and Sakallah, K. A. (1999). GRASP: A Search Algorithm for
Propositional Satisfiability. IEEE Transactions on Computers 48, 506–521.

Massacci, F. (1999). Using Walk-SAT and Rel-SAT for Cryptographic Key Search.
In IJCAI ’99: Proceedings of the 16th International Joint Conference on Artificial
Intelligence pp. 290–295, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Massacci, F. and Marraro, L. (1999). Towards the Formal Verification of Ciphers:
Logical Cryptanalysis of DES. In Proceedings of the Third LICS Workshop on Formal
Methods and Security Protocols, Federated Logic Conferences.

Massacci, F. and Marraro, L. (2000). Logical Cryptanalysis as a SAT Problem: Encoding
and analysis of the U.S. data encryption standard. Journal of Automated Reasoning
24, 165–203.

McDonald, C. (2010). Analysis of Modern Cryptographic Primitives. PhD thesis,
Macquarie University.

McDonald, C., Charnes, C. and Pieprzyk, J. (2007). Attacking Bivium with MiniSat.
Cryptology ePrint Archive, Report 2007/024.

McDonald, C., Hawkes, P. and Pieprzyk, J. (2009). Differential Path for SHA-1 with
complexity O(252). Cryptology ePrint Archive, Report 2009/259.

Mironov, I. and Zhang, L. (2006). Applications of SAT Solvers to Cryptanalysis of Hash
Functions. vol. 4121, of LNCS pp. 102–115,.

Morawiecki, P. and Srebrny, M. (2010). A SAT-based preimage analysis of reduced
KECCAK hash functions. Cryptology ePrint Archive, Report 2010/285.

Moskewicz, M. W., Madigan, C. F., Zhao, Y., Zhang, L. and Malik, S. (2001). Chaff:
Engineering an Efficient SAT Solver. In Annual ACM IEEE design automation
conference pp. 530–535, ACM.

Nikolić, M. (2010). Statistical Methodology for Comparison of SAT Solvers. In SAT
’10: Proceedings of the 13th International Conference on Theory and Applications of
Satisfiability Testing pp. 209–222, Springer-Verlag New York Inc.

Pipatsrisawat, K. and Darwiche, A. (2007a). RSat 2.0: SAT Solver Description. Tech-
nical Report D–153 Automated Reasoning Group, Computer Science Department,
UCLA.

Pipatsrisawat, K. and Darwiche, A. (2007b). A Lightweight Component Caching
Scheme for Satisfiability Solvers. In SAT ’07: Proceedings of the 10th International
Conference on Theory and Applications of Satisfiability Testing pp. 294–299,.

93

Pipatsrisawat, K. and Darwiche, A. (2009). On the power of clause-learning SAT solvers
with restarts. In Proceedings of the 15th International Conference on Principles
and Practice of Constraint Programming CP’09 pp. 654–668, Springer-Verlag, Berlin,
Heidelberg.

R Core Team (2012). R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing Vienna, Austria. ISBN 3-900051-07-0.

Renauld, M. and Standaert, F.-X. (2009). Algebraic Side-Channel Attacks.

Renauld, M., Standaert, F.-X. and Veyrat-Charvillon, N. (2009). Algebraic Side-Channel
Attacks on the AES: Why Time also Matters in DPA. In CHES pp. 97–111,.

Rivest, R. L., Agre, B., Bailey, D. V., Crutchfield, C., Dodis, Y., Elliott, K., Khan, F. A.,
Krishnamurthy, J., Lin, Y., Reyzin, L., Shen, E., Sukha, J., Sutherland, D., Tromer, E.
and Yin, Y. L. (2008). The MD6 hash function. A proposal to NIST for SHA-3.

Rossi, F., van Beek, P. and Walsh, T. (2006). Handbook of Constraint Programming.

Rudell, R. and Sangiovanni-Vincentelli, A. (1987). Multiple valued minimization for
PLA optimization. IEEE Transactions Computer Aided Design of Integrated Circuits
and Systems 6, 727–750.

Ryan, L. (2004). Efficient algorithms for clause-learning SAT solvers. Master’s thesis
Simon Fraser University.

Semenov, A., Zaikin, O., Bespalov, D. and Posypkin, M. (2011a). Parallel algorithms
for SAT in application to inversion problems of some discrete problems. CoRR
abs/1102.3563.

Semenov, A., Zaikin, O., Bespalov, D. and Posypkin, M. (2011b). Parallel Logical
Cryptanalysis of the Generator A5/1 in BNB-Grid System. In PaCT pp. 473–483,.

Simons, P., Niemelá, I. and Soininen, T. (2002). Extending and implementing the stable
model semantics. Artif. Intell. 138, 181–234.

Soos, M. (2010). Enhanced Gaussian Elimination in DPLL-based SAT Solvers. In
Pragmatics of SAT Workshop.

Soos, M., Nohl, K. and Castelluccia, C. (2009). Extending SAT Solvers to Cryptographic
Problems. vol. 5584, of LNCS pp. 244–257, Springer-Verlag Berlin Heidelberg.

Sörensson, N. and Biere, A. (2009). Minimizing Learned Clauses. In Proceedings of the
12th International Conference on Theory and Applications of Satisfiability Testing
SAT ’09 pp. 237–243, Springer-Verlag, Berlin, Heidelberg.

Sörensson, N. and Eén, N. (2002). MiniSat v1.13 - A SAT solver with conflict-clause
minimization. Technical report. SAT ’05 poster.

Srebrny, M., Srebrny, M. and Stepień, L. (2007). SAT as a programming environment
for linear algebra and cryptanalysis. In ISAIM.

94

Tompkins, D. A. D. and Hoos, H. H. (2005). UBCSAT: An Implementation and
Experimentation Environment for SLS Algorithms for SAT and MAX-SAT. In
Revised Selected Papers from the Seventh International Conference on Theory and
Applications of Satisfiability Testing (SAT 2004), (Hoos, H. and Mitchell, D., eds),
vol. 3542, of Lecture Notes in Computer Science pp. 306–320, Springer Berlin /
Heidelberg.

Tseitin, G. (1968). On the complexity of derivations in propositional calculus. In Studies
in Mathematics and Mathematical Logic, Part II, (Slissenko, A. O., ed.), pp. 115–125.
Consultants Bureau, New-York-London.

Vielhaber, M. (2007). Breaking ONE.FIVIUM by AIDA an Algebraic IV Differential
Attack. Cryptology ePrint Archive, Report 2007/413. http://eprint.iacr.
org/.

Vollmer, H. (1999). Introduction to Circuit Complexity. Springer Berlin.

Walsh, T. (1999). Search in a Small World. In Proceedings of the Sixteenth
International Joint Conference on Artificial Intelligence IJCAI ’99 pp. 1172–1177,
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Walsh, T. (2000). SAT v CSP. In CP ’00: Proceedings of the 6th International Conference
On Principles and Practice of Constraint Programming pp. 441–456, Springer-Verlag.

Wedler, M., Stoffel, D. and Kunz, W. (2004). Arithmetic Reasoning in DPLL-Based SAT
Solving. In Proceedings of the Conference on Design, Automation and Test in Europe
vol. 1, of DATE ’04 IEEE Computer Society, Washington, DC, USA.

Xu, L., Hutter, F., Shen, J., Hoos, H. H. and Leyton-Brown, K. (2012). SATzilla2012: Im-
proved Algorithm Selection Based on Cost-sensitive Classification Models. Technical
report.

Zhou, X.-H., Gao, S. and Hui, S. L. (1997). Methods for Comparing the Means of Two
Independent Log-Normal Samples. Biometrics 53, 1129–1135.

Zou, G. Y., cindy Yan Huo and Taleban, J. (2009). Simple confidence intervals for
lognormal means and their differences with environmental applications. Environ-
metrics 20, 172–180.

95

http://eprint.iacr.org/
http://eprint.iacr.org/

	List of figures
	List of tables
	Introduction
	Background
	Cryptographic hash functions
	SHA-1
	Propositional logic
	Inference rules
	Conjunctive Normal Form
	Boolean circuits
	Tseitin transformation
	Resolution proofs
	Pseudo-boolean constraints

	SAT solvers
	The DPLL algorithm and modern CDCL solvers

	Algebraic cryptanalysis
	Logical cryptanalysis

	Encodings
	Circuit (functional) vs. imperative encodings
	High-level constraints
	XOR constraints
	32-bit modular addition
	Pseudo-boolean constraints
	Unary/binary constraints

	Encoding of SHA-1
	Message schedule
	Round-dependent logical functions
	Intermediate state and final hash value

	Reduced instances
	Implementation

	Methodology
	Estimating running time
	Comparing configurations
	Multiple comparisons
	Censoring
	Data collection

	Experiments
	SAT solvers
	Running time distribution
	Reduced instances
	Fixing specific message/hash bits
	Encodings
	Pseudo-boolean and unary/binary constraints
	XOR constraints and Gaussian elimination
	Preprocessing and simplification
	Branching heuristics
	Restart heuristics
	Conflict analysis
	Learnt clause cleaning heuristics
	Multiple solutions (nth-preimage attacks)
	Reusing learnt clauses

	Conclusions and future work
	Variable and clause statistics
	Per-variable statistics
	Learnt clause statistics

	Bibliography

