
UNIVERSITY OF OSLO
Department of Informatics

Performance
Evaluation of the
Apache Traffic Server
and Varnish Reverse
Proxies

Shahab Bakhtiyari
Network and System Administration

University of Oslo

May 23, 2012

Performance Evaluation of the Apache Traffic Server
and Varnish Reverse Proxies

Shahab Bakhtiyari
Network and System Administration

University of Oslo

May 23, 2012

Contents

1 Introduction 8
1.1 Why Cache? . 8
1.2 Motivation . 9
1.3 Problem statement . 11
1.4 Thesis Outline . 11

2 Background and Related Workj 12
2.1 Web servers . 12

2.1.1 Static web resources . 12
2.1.2 Dynamic web resources . 13

2.2 Cache servers . 13
2.2.1 Client side proxy . 14
2.2.2 Organization and ISP proxy caches 14
2.2.3 Server ISP or CDN reverse proxy caches 14
2.2.4 Server side reverse proxy cache 15
2.2.5 Distributed Caches and ICP 15

2.3 Cache replacement algorithms . 16
2.3.1 Replacement strategies . 16

2.4 HTTP . 21
2.4.1 HTTP Message Structure . 22

2.5 Caching software . 25
2.5.1 Apache Traffic Server . 25
2.5.2 Varnish . 27
2.5.3 Others . 28

2.6 Challenges . 28
2.6.1 Realistic Workloads . 28
2.6.2 Lack of recent works . 30
2.6.3 Tools specifically designed for cache benchmarking 30

3 Model and Methodology 32
3.1 Approach . 32
3.2 Test environment . 34
3.3 Web Polygraph . 36

3.3.1 Polygraph testing phases . 37
3.3.2 Command line options . 39
3.3.3 Polygraph console output . 40

3.4 Surrogate tests . 41

1

3.4.1 Blktrace . 41
3.4.2 Seekwatcher . 42

3.5 Varnish Configuration . 43
3.6 Traffic Server Configuration . 44
3.7 The custom scripts . 44
3.8 Polygraph Configuration . 46

3.8.1 IP Addresses . 46
3.8.2 Working Set Size . 47
3.8.3 Cache size . 48
3.8.4 Content types . 49
3.8.5 The phases . 50
3.8.6 Server configuration . 51
3.8.7 Client configuration . 51

3.9 Defining the Experimental Phases and Workloads 52
3.9.1 The best effort method . 52
3.9.2 Baseline Workloads . 53
3.9.3 The increasing rate workload 54

4 Results and Analysis 55
4.1 Sample Polygraph results . 55
4.2 Best effort workload results . 57
4.3 Single content type workload results 60

4.3.1 Results for image content type 60
4.3.2 HTML content type results 64
4.3.3 Download content type results 67
4.3.4 Summary and Discussion . 70

4.4 Results for the mixed content, increasing rate experiments 72
4.4.1 Results for the top1 phase 73
4.4.2 Increasing traffic rate phase inc 76
4.4.3 Summary and Discussion . 80

4.5 Surrogate data results . 82

5 Discussion 88
5.1 Summary of the results . 88
5.2 Analysis of the ATS saturation point 89
5.3 Pitfalls and Issues with the Server Software 91
5.4 Difficulties with the Polygraph tool 92
5.5 Open Issues and Future Work . 93

6 Conclusion 94
6.1 Appendix: The automation and Surrogate scripts 99
6.2 Appendix: The baseline, configuration files 105

2

LIST OF FIGURES

List of Figures

2.1 Apache TrafficServer processes . 26
2.2 Popularity of web objects follows the Zipf-like Law with α close to 1.

Figures illustrate a Zips-Like law distribution with α=0.90 29
2.3 Zipf versus uniform popularity models, taken from Cacheoff [1] . . . 30

3.1 Different possible experimental approaches 34
3.2 Experimental private network setup 35
3.3 Phases . 38
3.4 The current phase state: client side console output 40
3.5 The runtime output: client side console 41
3.6 Content type distribution . 53

4.1 The General form of Polygraph result plots 56
4.2 The of Polygraph result scatter plots 56
4.3 Best effort request rate and throughput 57
4.4 Best effort response times . 58
4.5 Best effort document and byte hit rates 58
4.6 Best effort response time vs request rate distribution, client side 59
4.7 Best effort response time vs request rate distribution, server side . . . 59
4.8 Image content type throughput . 61
4.9 Image content type response time trace 62
4.10 Image content type document and byte hit rates 63
4.11 Image content type response rate vs response time 63
4.12 HTML content type throughput . 64
4.13 Response time trace, Varnish . 65
4.14 Response time trace, ATS . 65
4.15 HTML content type document and byte hit rates 66
4.16 HTML content type response time vs response rate, client side 66
4.17 HTML content type response time vs response rate, server side 67
4.18 Throughout results for the Download content type 68
4.19 Response times for Download content type 68
4.20 Download content type document and byte hit rates 69
4.21 Download content type response time vs response rate 69
4.22 Summary of the Baseline tests . 70
4.23 Mixed content workload content type distribution 73
4.24 Modest request rate throughput . 73
4.25 Response time results for top1 phase 74
4.26 Document and byte hit rates, top1 phase 75

3

4.27 Response time vs response rate, top1 phase 76
4.28 Mixed content workload phase inc 77
4.29 Varnish response time, inc phase . 78
4.30 ATS response time, inc phase . 78
4.31 Hit rates during the inc phase . 79
4.32 Response time vs response rate, inc phase 80
4.33 Performance during the constant rate phase 80
4.34 Performance during the increasing rate phase 81
4.35 CPU and Memory Usage, Best Effort Workload 82
4.36 Disk I/O - mixed content type,increasing rate 83
4.37 CPU/memory usage, single content type workloads 84
4.38 Disk I/O - HTML content type . 85
4.39 Disk I/O for Image content type . 85
4.40 Disk I/O - Download content type 85
4.41 CPU/memory usage, mixed content type workload 86
4.42 Disk I/O, mixed content type workload 87

5.1 Concurrent HTTP connections for ATS 89
5.2 Concurrent HTTP/TCP connections for ATS 90
5.3 Concurrent HTTP connections for Varnish 90
5.4 Concurrent HTTP/TCP connections for Varnish 91

List of Tables

2.1 The Cache Control directives . 23
2.2 HTTP protocol methods . 25
2.3 Replacement policies for RAM and Disk, Varnish vs ATS 28

3.1 Test hardware specifications . 35
3.2 IP addresses . 36
3.3 Parameters for the Best Effort workload 53
3.4 The Phases for the Best Effort Workload 53
3.5 The Phases for each individual content type workload 54

4.1 Image workload defined and generated parameters 60
4.2 HTML workload defined and generated parameters 64
4.3 Download workload defined and generated parameters 67
4.4 The better performer of each scenario 71
4.5 The workload phases for the mixed content type experiment 72
4.6 Mixed content workload parameters 72
4.7 Summary of results from the inc phase 82
4.8 Mean %CPU usage for various workloads (2 cpus) 83

4

LIST OF TABLES

âĂŐ

5

LIST OF TABLES

Abstract

The aim of this thesis was to investigate different performance aspects of two
reverse proxy cache servers which are called Varnish and Apache Traffic Server.
It uses the tool Web Polygraph to generate various types of web traffic work-
loads.Both artificial and realistic workloads were designed and generated for
each proxy in an identical test set up. In addition several system metrics(so-
called Surrogate tests) were collected simultaneously to have the overview of
overall system performance.For the experiments conducted in this research, the
results indicated that Apache Traffic Server reached better cache hit rates and
slightly better bandwidth throughput with the cost of higher system and net-
work resource usage. Varnish on the other hand managed to response higher
request rates with better response time, especially for the cache hits. The find-
ings in this thesis indicates that Varnish seems to be more promising reverse
proxy.

6

LIST OF TABLES

Acknowledgement

I would like to use this opportunity to thank all of people who helped me along
with this work.

My special thanks goes to my wonderful supervisor AEleen Frisch who dedicated
a lot of her time, always being available for me, providing me needed resources,
ideas, encouragement when things didn’t go well. Without her support thing
would have been more difficult.

Secondly I want to thank University of Oslo and Oslo University collage ,with
all my teachers during this master program Especially Haarek Haugerud,Kyrre
Begnum and Ismail Hassan who provided us a friendly and instructive environ-
ment during this master program.

I want to thank my beloved family and specially sister whose sacrifices allowed
me to be here and finish this work.

Last but not least, I thank all of my friends and classmates whose inspiring
discussions and tips helped me through doing my thesis.

7

Chapter 1

Introduction

In early days of the Internet, when there were only a small number of web ob-
jects in existence, which hardly exceeded a couple of hundred thousand, one
could easily search for any web resource and retrieve it from the origin server
relatively fast due to the ease of indexing. Today, however, each search engine
indexes billions of objects, which are only a fraction of all of the materials found
on the Internet[2]. From the user’s point of view, the time required to access a
web page matters. The "eight-second rule" states that when there is a signifi-
cant likelihood of losing a website visitor if the request is not satisfied within 8
seconds. Users quickly move to another website if they are not happy with the
current website’s response[2]. Caching was originally introduced to reduce the
response time for a request experienced by the client.

The enormous and rapid growth of the Internet in recent years continues, with
the number of users continually getting larger. Users nowadays use multiple de-
vices which are connected to internet. One estimation says in 2012 the number
of mobile devices connected to the Internet exceeds the whole world’s popula-
tion, and the global IP traffic will increase fourfold by 2015 when the annual
IP traffic will reach the zeta byte (1021byte) threshold. The number of devices
connected to IP networks will be twice as high as world’s population in 2015.[3].

1.1 Why Cache?

Caches are intermediary servers which shorten the path between clients and
servers by storing web resources. Caching achieves this by introducing an effi-
cient mechanism for distributing objects on the web. Here is a simple example
from the real world. Consider the relationship between a book publisher and a
customer. Book publishers distribute thousands of copies of books to wholesale
distributors and book stores. The customer purchases his book from a nearby
book store instead of buying directly from a publisher. This requires spend-
ing more time and money to travel where the book is originally printed and
published[4]. In a similar way, a cache server is an intermediary between the
client and the web server.

8

1.2. MOTIVATION

Since the majority of web documents are static and cacheable, caching them
can reduce the response time and the network traffic[5]. Caches generally re-
duce network bandwidth usage, but the specifics depend on the architecture of
network and cache unit(s). A forward proxy decreases the amount of costly traf-
fic to an external network, which is important for both Internet Service Provider
on the client side and the client itself. On the other hand, a reverse proxy cache
accelerates the web traffic in the origin server’s network. A server-side proxy
not reduces the amount of the traffic but makes the origin server considerably
scalable. Different caching topologies and their properties are discussed in fol-
lowing sections.

Many developing countries are far behind the developed countries in terms of
integrating online services. However, a great deal of work is under way to
fully digitalize their systems and provide online services. Thus, we can expect
Internet demands to continue to increase for the foreseeable future.
In addition to overall Internet usage, caching is also relevant for individual
websites. For example, an incidence or news event might make a website or a
web page suddenly very popular. This can result in the website’s web server
becoming a bottleneck at some critical points, with the web server being unable
to respond to all of the requests. A server side cache proxy can be a the solution
for such circumstances.

1.2 Motivation

When it comes to server side cache servers, there are not many choices to make.
There are only a few server side reverse proxy servers available. Individuals,
universities, companies, news agencies and government departments which host
large or medium sized websites need reverse proxy servers. There is little inde-
pendent work evaluating the performance of the available servers. In early 2000s,
when the caching was a hot topic, some work was done to evaluate the perfor-
mance of existing technologies. In the intervening years since then, however,
despite the entrance of new products, there was almost no research comparing
them. The most popular cache servers today are Apache Traffic Server, Varnish
and Squid. The initial purpose of this study is to create an identical scenario
for each of them and analyse their performance. Hopefully, this work make it
easier for web masters to make an appropriate choice.

In reality, no web traffic traces are totally identical, and web servers have their
own unique conditions. But there are common elements, such as patterns in
their request streams, their content types, the mean size of their typical web
page, all of which give indications of their workload. When benchmarking, all
these elements will be considered so that the result will indicate which servers
performs better under different circumstances.
Benchmarking cache servers is not a simple task. One reason is that the cache
servers are more powerful than existing benchmarking tools. This means that

9

1.2. MOTIVATION

these tools are incapable of providing realistic load simulations for performance
measurements. In addition, traditional web server benchmarking tools cannot
measure all of the metrics relevant to cache server performance. They include
end-user oriented items such as throughput and response time, but cannot mea-
sure other important items such as hit/miss rates. Finally,conventional web
server benchmarking tools lack the ability to create requests according to a
specified distribution function. Thus, it makes sense to try to identify the diffi-
culties in measuring cache server performance and propose solutions.

10

1.3. PROBLEM STATEMENT

1.3 Problem statement

This study focuses on the performance evaluation of leading open source re-
verse proxy servers. Varnish and Apache Traffic Server are currently the most
prominent ones. The comparison will include:

• Throughput

• Response time

• Hit ratio

• Byte hit ratio

• Surrogate performance metrics

Throughput indicates how many requests a server can handle; the more requests
handled, the better for the server. Response time means the mean response
time as it is impossible to see the response time for each single request. Hit
rate (DHR) indicates about the number of web objects or Documents that are
served by the cache rather than the web server itself, while the byte hit ratio
(BHR) is the number bytes served by cache.

However, measuring performance will not be limited to above mentioned metrics.
In order to have a deeper understanding of cache server performance, so-called
Surrogate tests will be identified to provide more comprehensive results perfor-
mance evaluation. CPU, memory, disk usage and network-related metrics will
be monitored through the experiments, and the data will be analysed and cor-
related with the benchmark results in order to identify key indicators of cache
server functionality.

Finally, a stress tests will be performed on each of the servers. This sort of test
is what ordinary users would most probably do in order to benchmark a cache
server as the more technical benchmarking tools are too difficult for common
use. Their results will also be correlated with the benchmark tool results and
general performance metrics.
This research will be performed using the Polygraph [6] a benchmarking tools
as well as custom scripts developed as part of this project.

1.4 Thesis Outline

In chapter 2, the background of web traffic caching is presented. Related work
and methods which have been done previously will be discussed.
In the chapter 3, the methodology will presented, with discussion of different
possible approaches.
In the chapter 4 , the results will be presented and analysed.
Discussion and a conclusion are the final parts of this thesis in chapter 5 and
chapter 6 .

11

Chapter 2

Background and Related Workj

Caching has its history in the design of central processor units (CPUs) in com-
puter architecture. CPUs are generally much faster than memory. When the
CPU requests a piece of data in memory, it has to slow down to the memory’s
speed. Designers introduced a cache consisting of memory which is close to
or within the CPU itself. When the data for a memory request is present in
the cache, a cache hit, the processor does its work without slowing down it’s
speed[8, 2] . However, when the data is not in the cache, a cache miss occurs,
and the data must be fetched from the memory. In the case where there is
not enough space for all the data in the cache, the new data will replace some
existing data in the cache.

Web caching uses more or less the same concepts as memory caching. The major
difference is that cached items from the memory system have the same type and,
more importantly, the same size. On the other hand, web resources are different
from object to object in terms of cacheability, type, size and retrieval cost [2].

2.1 Web servers

Web servers are entities/software on the network which provide web objects to
clients. A web server might be connected to a database and make queries in
order to make web objects. When a client needs a web resource, it needs to
know the object’s universal identifier. To do so, it needs to know which host on
the internet provides that resource.

2.1.1 Static web resources

A static web resource is a set of information, e.g. web pages, which are previously
generated and stored. The content is not altered due to various requests. Static
web objects can be cached by a cache server since they are not dependant of time
or client provided parameters. However, for security and data privacy reasons,
not all static objects should be cached.

12

2.2. CACHE SERVERS

2.1.2 Dynamic web resources

Dynamic page generation technologies make it possible to generate pages at
run-time based on clients’ parameters [9, 10]. This gives the clients the luxury
of customizing their own preferences. But the problem is that the generation
of dynamic pages require processing at the server side, thus potentially creating
delays in response time.
Unlike static web resources, dynamic resources are dependant on clients’ re-
quests. Even the same parameters given by the same client may result in differ-
ent object generation at different times. Some solutions have been proposed to
cache all dynamic pages [11, 12, 9]. However these models are not likely to func-
tion properly since there is no guarantee that future generated objects would
be identical even when requested by the same client with the same parameters
[9, 10].

There has been some work to find solutions so that dynamic pages can be par-
tially cached [10, 9]. Consider a web site which requires a login. Despite the
dynamic content of an authentication page, some parts of request may still be
cached, such as the website’s navigation bar, ads which are identical to all pages,
and so on. Aninda Datta, Kaushik Dutta and coworkers investigated the idea
of caching fragments or components of dynamically generated pages, and they
proved that their solution, which they call DCA (Dynamic Content Accelerat-
ing), reduced the web server response time considerably [9].

Dynamic pages consist of several blocks of code which run independently. After
tagging, they are stored in the buffer. Each code block belongs to a component
of the page: e.g. a personalized component, a navigation component and an ad
component. The HTML page will be generated by gathering all of the parts
from the buffer. When parsing the request and running the dynamic script, the
server is instructed to check the cache before running all the code blocks. If
a code block is found in the cache, then the correspondent part in the script
would be bypassed [9].

The cache management is crucial in order for caching to be effective. Datta and
colleagues used a Least Likely to Use LLU algorithm in their implementation.
They considered not only how recently that object has been referenced but even
how likely it is to be used again by a user.

2.2 Cache servers

Cache servers are intermediary servers which store any web resource which is
passed through it. It keeps a copy of object to serve any future request. Cache
servers look at the HTTP headers when making the decision either to keep a
local copy or not. There are generally two types of caches: browser caches and
proxy caches. The browser cache is part of client’s web browser; this feature
is also called a client side proxy. In contrast, proxy caches are network servers
(shared devices). They send requests to origin servers on behalf of the clients

13

2.2. CACHE SERVERS

[13].

2.2.1 Client side proxy

Web browsers typically store a copy of recently visited web pages. Most popular
web browsers like Mozilla Firefox[14] on Linux machines, Internet Explorer[15]
on the Windows Operating system, and Safari[16] on Mac OS X systems, have
the caching capability. Typically, the browser stores visited pages on a part of
disk which is already allocated for that purpose in the software’s cache settings.
The web browser verifies the objects’ freshness once a session, making sure the
local copy is up-to-date with the originating web server. This kind of cache
is particularly useful when browsing Internet, for example, pressing the back
button. However, pressing the Reload button will always fetch a new copy
rather than using the old one.

2.2.2 Organization and ISP proxy caches

When using a proxy, a TCP connection is established to the proxy instead of
to the content server. The proxy may be visible to the client. This is typically
called a forced cache. In earlier years when dial-up connections were used by
clients, establishing a connection to the external networks was both time con-
suming and costly. Thus, the ISP forced clients to use the ISP’s cache server for
external networks [13]. In such cases, the client is configured to send its requests
through the proxy. The proxy in turn receives the requests, and forwards them
to the server where the content actually resides. When the response has come
back, the proxy saves it and forwards a copy to the client. In the future, when
the same URI is requested, after checking the freshness of the cached object, it
is sent to the client without bothering the origin server or any upstream caches
(when multiple levels of cache servers are in use).

2.2.3 Server ISP or CDN reverse proxy caches

The ISP for a web server might want to reduce traffic bandwidth usage in its
network based on the same motivations as the client ISP. While the mechanism
of caching is almost the same, the name of cache is slightly different when it
resides in the origin server’s side. The term reverse proxy is typically used for
server side caches. Reverse proxies can be implemented by the web server’s ISP,
the website owner or even a third party [17].

Content Distribution Networks or CDNs (e.g., Akamai [18]) play an enormous
role in today’s high speed internet. The competitive and popular websites want
to provide their services as fast and efficiently as possible, at the lowest cost.
CDNs are designed for this purpose. They are geographically spread out servers
which facilitate popular web publishers’ content. In addition to the typical ad-
vantages of web cache servers, which are reduced latency and network load,
CDNs also increase the contents’ availability [19]. If one server fails, the object

14

2.2. CACHE SERVERS

can still be retrieved from another server through the CDN network.

An important issue with CDNs is placement of the server so that it yields the
optimal service to clients. Bo Li, Golin and co-workers designed an algorithm for
this. Their goal was to place M caches among N websites. However, the results
revealed that their dynamic programming algorithm didn’t suit the multiple
target servers case [20].
Lili, Qiu, Padmanabhan and Voelker later introduced their greedy algorithm,
which achieved close to optimal results with low computational cost [21, 19].
However, the problem with this algorithm [21] and as well as older algorithms
is that they may trap in local optimization. Jun Wu and colleagues introduced
their generic algorithm in 2009 which alleviates this problem. The results from
simulations with different rates and cost for replica placements illustrated that,
except for one case for which they had the same cost, the cost for replica re-
placement in the generic algorithm was a half of the greedy algorithm’s cost
[19]. Their generic algorithm consists of a search technique for finding true or
approximate solutions to optimization. It was inspired by evolutionary algo-
rithms that are influenced by biological functions such as inheritance, mutation,
selection and so on[19].

2.2.4 Server side reverse proxy cache

The main idea of having a server side cache is to make the web server scal-
able. A server side accelerator is not especially designed for reducing the overall
traffic in the network and thus reducing bandwidth usage. Nevertheless, it can
significantly improve the web servers’ performance. Reverse proxy servers help
to offload work from the origin server and improve the throughput [17]. This
kind of cache is transparent to clients. However, the web server itself should
know about the cache and be configured to listen only to the traffic coming from
the front end cache server. This work has its focus on this kind of cache server.
It is reasonable for medium-sized and large organizations to set up this type
of proxy as they might have some peak points in their traffic patterns and the
origin server might not handle all the work alone.

2.2.5 Distributed Caches and ICP

Generally when talking about a cache server, we mean one cache server. How-
ever, with today’s Internet’s size, a single cache may not satisfy all requests on
its own. Distributed caches were designed to increase the probability of finding
a hit for a document somewhere within a set of caches before going to upstream
network or eventually the origin server.

Distributed caches make use of a lightweight protocol to locate objects in the
cache mesh. ICP [22] is a simple protocol relying on the UDP protocol [23].
When a cache queries a neighbour cache with ICP, the response simply includes

15

2.3. CACHE REPLACEMENT ALGORITHMS

HIT or MISS, allowing it to come back as soon as possible. A cache can not
wait more than a really short time before it redirects the request to an upstream
network. Thus, establishing a TCP connection for such a small query requires
too much overhead. The essence of a distributed cache and caches generally is
that its response should not be longer than the response without any cache.

Bruno and co-workers [17] performed a comprehensive study on the trade-offs of
various distributed reverse proxy designs. In their analysis, they bounded proxy
CPU and memory to origin servers, using dynamic as well as static assignment.
They performed three tests with different scenarios. In the first case, where they
allocated equal loads, 5 of 10 websites, to each cache node, the result showed
that the CPU was the bottleneck. For the second configuration, where they
assigned 9 websites to one cache node and one website to the other one, the
disk became a bottleneck on the heavier loaded server. In configuration 3, all
the ten websites were assigned to both cache nodes. The result revealed that the
throughput at which the disk saturation point occurs in Configurations 2 and
3 increased with increasing values of α, where the α is the zipf-like distribution
factor.

2.3 Cache replacement algorithms

A cache program stores its resources or objects either in a memory, on disk
or both. In either case, the capacity is quickly filled. The cache software has
policies related to replacing old objects with new ones. Cache replacement
algorithms differ in the ways that they select an object to be deleted. The
overall goal is to obtain optimized performance for cache while increasing the
likelihood of cache hits [2].

2.3.1 Replacement strategies

There are different classifications of replacement policies. Aggarwal [24] pro-
posed a three type classification: direct extensions of traditional strategies,
key-based replacement strategies and function-based replacement strategies. In
2001, Krishnamurthy and Rexford [25] proposed another scheme which classi-
fied algorithms according to their complexity: one-level strategies that used one
factor, two level strategies that uses a primary factor and secondary factors and
weighted strategies that combines multiple factors. Factors which are important
for cache algorithms are recency, frequency, size, cost of fetching, modification
time and expiration time [26].

There are however two problems with the algorithms cited above. First, since
traditional algorithms also use a key (factor), the first two classes can be com-
bined in one. Second, randomized policies can not be included in any of the
classes above described.
Jin and Bestavors [27] created a strategy classification based on recency, fre-
quency and recency/frequency. This has the benefit that it distinguishes be-
tween recency and frequency, which are the most considered factors, but it still

16

2.3. CACHE REPLACEMENT ALGORITHMS

lacks the classification of randomized strategies. It in addition, has problems
with algorithms which do not use frequency and recency.

Considering previous works, [24, 25, 27] Podling and Laszlu [26] proposed their
classification which comprehensively covers most existing policies.

Recency based policies

These strategies consider recency as the main factor. LRU (least recently used)
is the most popular implementation of this strategies. All other variations are
more or less extensions to LRU. LRU looks at the locality of objects. There are
two kinds of locality, temporal and spatial. Temporal locality looks at the time
the object was last referenced. Spatial locality, on the other hand, considers
known object access patterns and extrapolates them to other objects. Locality
of object characterizes the ability to anticipate future calls for objects from the
past calls.
Some of the more important implementations of recency-based strategies are:

• LRU: this strategy removes the least recently used object.

• LRU-Threshold: in this strategy, an object is not cached if Si (the size of
object i) is larger than a given threshold[28].

• Pitkow/Recker’s strategy uses LRU, but differentiates between objects by
their size. For example, for objects that are requested on the same day,
the object with largest size will be removed first[29].

• EXP1 uses the current time and last time the object was accessed to
weight the importance of the object[30].

• Value-Aging uses an 2.1 formula. Vnew(i) is updated each time the ob-
ject is requested, according to the formula below (where Ct is the current
time)[31]:

Vnew(i) = Vold(i) + Ct ∗
√

Ct − ti

2
(2.1)

• HLRU records the number of times a web page has been referenced (its
access history). It defines a hist function where hist(x,h) is the time of
the past hth reference to a specific cached object x. HLRU evicts the
object with the maximum hist value. Value hist=0 uses the original LRU
strategy[32].

• PSS(Pyramidal selection scheme): this strategy builds a pyramidal classi-
fication of objects depending on their size. All objects of class i have the
size between 2i−1 and 2i − 1. Therefore there are N different classes where
N = log2(M + 1) where M is the cache size. Each class has an LRU list.
When choosing an item for replacement, PSS compares the least recently
used object of all classes. The object i with largest value of si∆Ti of all
lists will be evicted[24].

17

2.3. CACHE REPLACEMENT ALGORITHMS

• LRU-LSC: this strategy takes advantage of LRU and finds out the activity
of objects. When replacing, objects with less activity will be moved to a
second list as long as the size of the new list is less than a given thresh-
old θB where the θ is the threshold parameter and B is total cache size.
Objects are removed from the new list until the accumulated size of them
subtracted from a total cache size is less than a specific value[33].

• Partitioned caching: according to this strategy, the cache is divided into
the parts: small, medium and large. Each part keeps its own lists and
implements LRU. The thresholds for this classifications are derived from
previous web traces. Assume Sc is total size of cache and Sc1,Sc2 and Sc3
are cache sizes for classifications 1, 2 and 3, with Sc=Sc1+Sc2+Sc3. Mutra
et. al. [34] experimentally showed that Sc1<Sc2<Sc3 should hold[34].

Frequency-based policies

These algorithms focus on the number of time an object has been referenced.
The more frequently an object has been referenced, the more probable it is to be
requested in the future. The best implementations of this policy is LFU (least
frequently used). Many other implementations are extensions of LFU. There
are two main design considerations for LFU perfect LFU and in-cache LFU.

Perfect-LFU takes in account all times an object in referenced, even if it has
been evicted from the cache. The next time when it comes in to the cache,
there are already counters exist for that. This method gives a better overview
and understanding of the traffic. Its drawback however is greater CPU and disk
usage.

In-cache LFU performs the same as perfect-LFU, but it resets the counter each
time an object is evicted from the cache.
In the following strategies LFU means In-cache LFU.

• LFU removes the least frequently used object.

• LFU-Aging: Objects which were popular in a previous period will be kept
in cache even though they have not been not used for a long time time.
This is don because of their high frequency rank. In order to reduce
this cache population, an effective age threshold is introduced. When the
average value of all frequency counters breaches the the threshold, LFU-
Aging divides the counters by 2.[35].

• LFU-DA: The problem with the previous strategy (LFU-Aging) is that
it is highly dependant on the threshold value and other parameters like
maximal frequency value. LFU-DA solves this problem with calculating
a new value, Ki for object i . Ki = fi + L where L is an aging factor that
starts at zero. LFU-AD chooses the objects with smallest value of Ki and
then this value is assigned to L [35].

18

2.3. CACHE REPLACEMENT ALGORITHMS

• α - Aging: This is an explicit aging method with a periodic aging function[31].

f (v) = α ∗ fi 0 ≤ α ≤ 1 (2.2)

• sw-LFU (server weighted LFU): this policy makes use of a weighted fre-
quency counter. The wi weight of object i shows how much the server
of i appreciates caching of that object i. Thus, the server can affect the
caching of the object[36].

Recency/Frequency based strategies

These strategies use both recency and frequency as the decisive criteria for se-
lecting objects for replacement. Depending on the design there might be other
factors involved to make the best decision.

• SLRU [35, 26]: This strategy divides the cache space in two parts: one
protected, which is specified for popular objects, and another unprotected
part. Both parts implement LRU. When an object is fetched to the cache,
it will first be placed into the unprotected segment. After the first hit,
the object will be transferred to the protected part. Evicted objects are
chosen only from the unprotected segment. Objects are moved back to the
unprotected part, as the most recently used item, when space is needed in
the protected part.

• Generational replacement: In this method, all objects are listed in n lists(n
≥ 2). Each list i <n contains objects which have been called i times. List
n contains all objects with n or more calls. A request for an object deletes
it from its current list and inserts it into the next list (at the beginning).
In this method, objects are inserted at the beginning of the list and are
deleted from the end of the list[37].

• LRU*: All the objects are stored in a single LRU list, and each has a
counter. When there is hit for an object, it will be moved to the top
of the list, and its counter increments by one. At each replacement, the
counter of least recently used object is checked. If it is zero, the object
will be removed; if not, the counter will be decreased by one and the item
will be moved to the beginning of the list[38].

• LRU-HOT maintains two lists: one hot list for popular objects and one
cold list for less popular objects. An object is considered hot if its fre-
quency counter is larger than a threshold set on the server. This informa-
tion is sent along with the object to the client/cache server, and the object
will be inserted to the corresponding list. This technique maintains two
counters: a base counter which increments after each request, and a hot
object counter which increases after each α . When an object is requested,
it is stored at the beginning of the corresponding list and assigned the ac-
tual value of base counter. When a replacement is needed, the values of
the last two objects in both lists are recalculated and the object with the
smallest value is discarded[39].

19

2.3. CACHE REPLACEMENT ALGORITHMS

• HYPER-G [40], CSS(Cubic Selection Scheme)[41] and LRU-SP [42] are
other strategies which are more or less similar to above methods.

Function based strategies

These strategies use a general function to compute the value of an object. They
generally choose the object with smallest value. The following are most popular
implementations of function based strategies.

• GD(Greedy Dual)-Size algorithm[43]: It maintains an identifying value
Hi. After each request or hit, the Hi is recalculated by

Hi =
ci

si
+ L (2.3)

where si and ci are size and cost of retrieval for object i and L is a run
aging factor which like LFU-DA starts from zero. The GD-size algorithm
chooses the object with the smalest value and assigns this value to L.

• GDSF Greedy Dual Size Frequency[35] is similar to GD-size but calculates
the Hi by

Hi = fi ∗
ci

si
+ L (2.4)

where fi is the frequency of the object. This was more generally proposed
by Cherkasova and Ciardo[5] as:

Hi =
f α
i

sβ
i

+ L (2.5)

where α and β are weighting factors and Ci is set to 1 .

• GD* The function for calculating Hi is:

Hi = (
fi ∗ ci

si
)

1
β + L (2.6)

Here, β is the weighting factor which characterizes reference correlation via
the distribution of reference intervals for objects with the same popularity[27].

• Other strategies Server assisted cache replacement[44], TSP(Tailor Series
Prediction)[45], MIX[46], HYBRID[47] , LRV[48] and LUV[49] are other
implementations of function based strategies.

20

2.4. HTTP

Randomized strategies

These strategies use randomized decision making to find an object to remove.
The following are the major randomized algorithms.

• RAND: This strategy simply chooses a random object to remove.

• HARMONIC [33]: Unlike RAND, which uses an equal probability for all
objects, HARMONIC uses a probability inversely proportional to its cost,
where cost = ci

si

• LRU-C and LRU-S[50]: LRU-C is a randomized version of LRU. It defines
cmax = max{c1, c2, ..., cN} as the maximum access cost of all N objects, and
c̄ = ci

cmax
as the normalized cost of the object i. When the object i is re-

quested, it will be moved to the top of the cache with the probability of
c̄; otherwise, nothing happens.
LRU-S is similar but it uses size instead of access cost. smin = min{s1, s2, ..., sN}
is the smallest size among all N objects, and di = smin/si is the normal-
ized density of the object i. LRU-S acts as LRU with di as probability;
otherwise, nothing happens.

• Randomized replacement with general value functions[51]: In this method,
N objects are drawn from the cache and the least used one is discarded.
Any utility function can identify usefulness of the objects. After removal
of the chosen object, the rest of the objects M(M < N) are retained in the
memory. In the next replacement, however, M-N objects are drawn from
the cache and the least useful of all collection (including M from before
and N-M new objects) is removed.

2.4 HTTP

Caching of individual pages is controlled to some extent by the information
contained in the HTTP headers of the web documents.
The Hyper Text Transfer Protocol is the most used web transport protocol.
The intention of Tim Berners-Lee and his co-workers in the HTTP group was
to design a simple lightweight protocol [4] specifically for the web. HTTP is
an application-level protocol which is used between distributed, collaborative,
network-based and hypermedia information systems RFC2068 [52]. It relies on
the Uniform Resource Identifier, via the URI Standard RFC3986 [53].
Since the early 1990s when the first vesion of HTTP was designed, there have
been three revisions of the protocol. The first one, retroactively called HTTP/0.9,
was a very simple protocol that lacked many basic features which are relied on
today. In 1996, HTTP/1.0 was designed. It had a small set of features but
still kept the simplicity of the design. However, with the large growth of web,
web developers quickly discovered that HTTP/1.0 could not provide all the
functionality needed for the new web services [4].
The HTTP working group of Internet Engineering Task Force worked long and
hard to evolve the initial simple protocol into a complicated protocol which

21

2.4. HTTP

features that could handle the most of the requirements. Persistent connections,
better cache control, content negotiations and range requests are important
features which were added to HTTP/1.1 [4].

2.4.1 HTTP Message Structure

HTTP uses a well-defined message structure. An HTTP message may be either
a request or a response. Either way, it consist of two parts: the header and the
body. Every HTTP message must have a header, but having a body is optional.

Example HTTP Request Header
HTTP header

GET /http.html Http1.1
Host: www.example.com
Accept: image/gif,image/x-xbitmap,image/jpeg,image/pjpeg,
Accept-Language: en
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0
Connection: Keep-Alive

Example http Reponse Header

HTTP/1.1 200 OK
Date: Mon, 12 Mar 2011 19:12:16 GMT
Server: Apache/1.3.12 (Unix) Debian/GNU mod_perl/1.24
Cache-Control: max-age=3600, must-revalidate
Last-Modified: Fri, 22 Sep 2010 14:16:18
Accept-Ranges: bytes
Content-Length: 3369
Content-Type: text/html

Message Headers

The syntax of a header is a series of attributes in the form of Name:Value
pairs. Multiple values are separated by commas [4, 52]. HTTP defines four
categories for headers: entity, request, response and general. Some headers are
only specified for request messages while others are defined only for responses.
For example, Host and If-Modified-Since are only request headers. Using such
headers in responses would be meaningless. On the other hand, Date, Last-
Modifird and Expires are reponse only headers.

Cache-Control Headers The Cache-Control general header field specifies di-
rectives that MUST be complied by caching mechanisms for request/response
chain. There are two subtypes of Cache-Control directives: cache-request-
directive and cache-response-directive [52]. Each of them supports several at-
tributes which are listed in table 2.1.

22

2.4. HTTP

Header : Cache-Control
cache-request-directive cache-response-directive
no-cache public
no-store private
max-age no-cache
max-stale no-store
min-fresh no-transform
no-transform must-revalidate
only-if-cached proxy-revalidate
cache-extension max-age, s-maxage

cache-extension

Table 2.1: The Cache Control directives

Here is a short explanation of each directive taken directly from the RFC. A
full description of all of the headers is found in RFC2616 [54].

• no-cache: If the no-cache directive does not specify a field-name, then
a cache MUST NOT use the response to satisfy a subsequent request
without successful revalidation with the origin server

• no-store: The purpose of the no-store directive is to prevent the inadver-
tent release or retention of sensitive information

• max-age: Indicates that the client is willing to accept a response whose
age is no greater than the specified time in seconds

• max-stale: Indicates that the client is willing to accept a response that
has exceeded its expiration time, but not the max-stale specified time

• min-fresh: Indicates that the client is willing to accept a response whose
freshness lifetime is no less than its current age plus the specified time in
seconds

• no-transform: the cache or proxy MUST NOT change any aspect of the
entity-body that is specified by these headers, including the value of the
entity-body itself

• only-if-cached: In some cases, such as times of extremely poor network
connectivity, a client may want a cache to return only those responses
that it currently has stored, and not to reload or revalidate with the origin
server. To do this, the client may include the only-if-cached directive in a
request

• cache-extension: The Cache-Control header field can be extended through
the use of one or more cache-extension tokens, each with an optional
assigned value. Informational extensions (those which do not require a

23

2.4. HTTP

change in cache behaviour) MAY be added without changing the semantics
of other directives

• public: Indicates that the response MAY be cached by any cache, even if
it would normally be non-cachable or cachable only within a non- shared
cache

• private: Indicates that all or part of the response message is intended for
a single user and MUST NOT be cached by a shared cache

• must-revalidate: Because a cache MAY be configured to ignore a server’s
specified expiration time, and because a client request MAY include a
max- stale directive (which has a similar effect), the protocol also includes
a mechanism for the origin server to require revalidation of a cache entry
on any subsequent use

• proxy-revalidate: The proxy-revalidate directive has the same meaning as
the must- revalidate directive, except that it does not apply to non-shared
user agent caches

• s-maxage: If a response includes an s-maxage directive, then for a shared
cache (but not for a private cache), the maximum age specified by this
directive overrides the maximum age specified by either the max-age di-
rective or the Expires header

The headers Cache-Control, Expires, If-Modified-Since and Last-Modified are
most important for caching. The Cache-Control header specifies whether the
object is cacheable or not, with the diverse values they can get.

The first line in a message is special. In a request, the line called request line
and includes a method, a uri and a HTTP version.

GET︸︷︷︸
method

/︸︷︷︸
uri

HTTP/1.1︸ ︷︷ ︸
version

(2.7)

Table 2.2 lists the different HTTP methods [52, 4].

24

2.5. CACHING SOFTWARE

Method Description
GET A request for information identified by the request URI
HEAD HEAD is identical to GET but without a body
POST A request to server which requires it to process information in the message
PUT A request to save the attached body to the URI
TRACE A loopback method which is useful for testing proxies between client and server
DELETE A request which requires server to eliminate a named URI
OPTIONS A request for information about the server’s support for optional features
CONNECT Used to tunnel certain protocols via a proxy

Table 2.2: HTTP protocol methods

Message Body

The body of the message is optional, and the content which is going to be
transferred appears in this part.

2.5 Caching software

2.5.1 Apache Traffic Server

Apache Traffic Server(ATS) [55] is a fast, scalable and extensible HTTP/1.1
compliant caching proxy server. It was originally a Yahoo product which was
donated to the Apache software foundation[56]. Traffic Server is a high perfor-
mance web proxy-caching server, and it has a robust plug-in API that allows
users to modify and develop its behaviour and abilities. From the beginning it
was designed as a multi-threaded event driven server, and therefore scales very
well on modern multi-core servers. Its native support for dynamically loading
shared objects makes it to interact with the core engine. Apache proxy server
is a generic implementation that can be utilized to proxy and cache a variety of
workloads, from single site acceleration to CDN deployment and very large ISP
proxy caching, and it includes features like partitioning of the cache.

Structure and components

Traffic Server consists of five components. They are:

• The cache(object store database), the object store data base indexes the
objects using their URLs and the headers.Then using the policies, store
both small and large objects efficiently.

• The Ram cache : maintains extremely high ranked objects to off-load the
disks under heavy peaks.

• The host database: maintains the DNS entries of origin servers along with
HTTP version of each host and health of backends.

25

2.5. CACHING SOFTWARE

• DNS resolver: Traffic Server includes a fast DNS resolver that issues
directly DNS commands rather than using traditional resolver libraries,
which leads to parallel and faster commands.

• Traffics Server Processes: TS includes three processes :

– traffic_server is the main engine which receives, indexes, caches and
serves the requests.

– traffic_manager which takes care of traffic-server. It can monitor,
reconfigure and launch the traffic_server process. In case the traffic-
server failes, the traffic-manager makes a FIFO queue from the in-
coming requests while restarting the traffic-server process.

– traffic_cop is responsible for health of both traffic_server and traf-
fic_manager. It sends heartbeat requests in small intervals to both
processes. If there are no responses, that restarts the traffic_manager
and traffic_server processes.

Figure 2.1: Apache TrafficServer processes

Replacement policy

Apache Traffic Server uses a combination of several policies to evict
the objects from the Ram. It uses all the LFU, LRU,CLOCK ,GDFS
and 2Q together. It is called CLFUS (Clocked Least Frequently Used
by Size).
It maintains two lists of objects. The Cached List includes the actual
pages in the memory. The new objects are inserted in a FIFO queue

26

2.5. CACHING SOFTWARE

with a LRU policy. When there is a hit from the list, the hit object
is reinserted to the top of the list. The History List keeps a list of
objects that at least once have been requested. Each CLOCK the
list is dequeued and the least recently used object is deleted if the
hit field of this list is not grater than 1[57].

The policy implemented for disk object eviction is a simple FIFO,
but some minor policies are also implemented to not blindly throw
the objects out of the cache, like

2.5.2 Varnish

Varnish [58]is free software licensed under a two-clause BSD licence, also known
as the FreeBSD licence. The project was initiated in 2005. Its first version was
released in September 2006(Varnish cache 1.0), and the latest version Varnish
cache 3.0.2 was released in October 2011. The key features of Varnish are its
performance and flexibility. Via its own configuration language vcl (Varnish
configuration language), it is highly configurable, and users can make policies
how to handle various traffic scenarios[58].

Structure and policy

Varnish runs a parent and a child process. When starting Varnishadm daemon,
The parent will start the child process and when the child process dies for any
reason the parent will recover the process again.

In the Varnish’s code there are subroutines which running the process. The sub-
routines vcl_recv,vcl_fetch,vcl_pipe,vcl_ pass,vcl_hit,vcl_miss, and vcl_error
are the most used ones. The vcl_recv and vcl_fetch alone can handle the most
part of customized VCL files.

• vcl_recv: receives the requests, parse them, makes decision of serving
from the cache or a backend etc. It is able to alter the headers as well.

• vcl_fetch: This method is called when an object is retrieved from a back
end. The basic operations here are to change the header, change the back
end if previous one was unhealthy etc.

When it comes to replacement strategies, Varnish does not know objects are on
the disk and what objects are in the RAM. It implements a singe global LRU
covering both of them.

To put it all together Table 2.3 shows the different policies implemented by
Apache Traffic Server and Varnish server for replacement of pages.

27

2.6. CHALLENGES

RAM Policy Disk policy
Apache Traffic Server CLOCK, LRU,LFU, GDFS, FIFO
Varnish LRU LRU

Table 2.3: Replacement policies for RAM and Disk, Varnish vs ATS

2.5.3 Others

Other known reverse proxies are Nginx, Perlbal, pound, lighttpd, HAProxy,
MacAfee web gateway, Citrix Systems Netscaler, aiCache. Most of these prod-
ucts are free and have the capability of load balancing as well.

2.6 Challenges

The vastness of Internet and the large number of elements involved in the http
traffic, makes it quite challenging to deal with the http traffic, especially in a
cached environment which introduces more complexity. There are some main
challenges which are discussed in the following sections.

2.6.1 Realistic Workloads

In order to measure the performance of a Traffic Server, it should be exposed
to a stream of requests and the real web servers behind that. The workload
however should be reproduceable in order to run several experiments and verify
the correctness of the results. A traffic pattern seen from a reverse proxy’s point
of view if quite different from a forward proxy’s view. The reverse proxies cache
traffic from specific and possibly a few number of websites while the forward
proxies generally cache the traffic from any number of websites.
When benchmarking an origin server mostly throughput and bandwidth are
considered as the main factors. The hit ratio and the object freshness are not
taken care of, while those two are important factors in web cache environment.
The challenge is produce and measure the traffic to address these factors.

Zipf’s Law distribution model

Zipf’s Law states that the relative probability of a request for the i’th most
popular page is proportional to l/i[59]. In other words Zipf’s law , is the ob-
servation that frequency of occurrence of some event (P), as a function of the
rank (i) when the rank is determined by the above frequency of occurrence, is
a power-law function with the exponent α close to unity.

Pi ∼ 1/iα

An important characteristic of a request trace to a cache follows a Zipf’s Law[59,
60, 61] or Zipf-like Law [62, 59]distribution. Zips’s Law is a mathematical model

28

2.6. CHALLENGES

which stats that a specified number of elements have a high probability score
and an average number of elements have a middle probability and a large num-
ber of elements have a small probability of occurring.

(a) Linear scale (b) Log-Log scale

Figure 2.2: Popularity of web objects follows the Zipf-like Law with α close to 1.
Figures illustrate a Zips-Like law distribution with α=0.90

The probability of occurring one event is proportional to its ranking. As the
rank grows the occurrence of event falls dramatically in the top part of ranking
table.

The generated workload and the popularity distribution of objects should satisfy
the characteristics of a real trace which follows the Zipf-like law. That needs
lots of accurate calculations. In the generated workload the unique objects and
their ranks should be kept track.

The problem in the simulated environment is the time. A test can not last as
long as a real scenario, therefore the time should be "compressed". This has
side effects on the other characteristics of the workload. One the side effects is
on the Zipf-like popularity model. As in the Zipf law the "hot data set" is small
and easily can reside in the memory. That causes a big percentage of "memory
hits". The caches mostly depend up on their disk systems, and in this case due
to high memory hits the cache’s disk hits are not pushed enough [6, 1].

Figure 2.3 which is taken from cache-off’s web site shows how small a "hot data
set" can be in zipf like trace compared with a uniform model.

29

2.6. CHALLENGES

Figure 2.3: Zipf versus uniform popularity models, taken from Cacheoff [1]

Figure illustrates that there are only 10 or more URLs which have been requested
more than 10000 times in the zipf model while 100000 or more URLs have been
requested 10000 times or more in uniform model. Each trace contains 1.5 million
URLs. The real trace is taken by [1] from sv.cache.nlanr.net and the poly-unif
and poly-zipf are generated by polygraph tool which comes in the following
section.

2.6.2 Lack of recent works

In late 90s and early 2000s, the web traffic caching was a hot topic. There
exist quite many works in this area from those times. However after introduc-
ing the CDNs or Content Delivery Networks the main focus of work turned
to CDN caches rather than proxy caches. However during this period Inter-
net has grown rapidly and the tendency shows the growth is still continuing
in high tempo. That means the characteristics of web traffic has changed ac-
cordingly and understanding the new traffic and its characteristics is important.

A number of Cache-Off benchmarks was performed in early 2001. Unfortunately
there are no recent works and enough documentations to identify important
elements and their significance according to today’s web traffic when it comes
to reverse proxy caching. Besides, Benchmarking forward proxies is different
from benchmarking reverse proxies, and nearly all of work done in Cache-Offs
are about forward proxies.

2.6.3 Tools specifically designed for cache benchmarking

Benchmarking a cache is not something which is done very often and by in-
dividuals. There are quite a good number of web server benchmarking tools.
Unlike web servers, for cache servers the choice is very limited.There are only
a few number of open source tools exist. In the next section the most popular
ones and their capabilities are shortly discussed. As mentioned previously the
proxy caching topic was popular in early 2000s and most of today’s existing
tools were developed then. Web polygraph is the only one which came with

30

2.6. CHALLENGES

updates afterwards.

WebJamma and proxysizer There are however a small number of tools which
can read from a real trace and play back http access log files. WebJamma and
proxysizer can generate workloads by reading existing traces and log files.

Winconsin is a tool that initially was made to benchmark the proxy servers.
That is able to generate a very simple workload and supports the concept of
server and client processes. However this tool was not updated afterwards and
does not support many of new features in a web traffic trace. Among others
HTTP/1.1 which is most commonly used protocol on the web traffic is not
supported by the Winconsin.

Web polygraph is a powerful tool which claims to be able to generate a variety
of workloads. It supports HTTP/1.1 and have got many features which enriches
the load generated with almost all the needed characteristics. It simulates both
clients and servers as well as generating the requests.

31

Chapter 3

Model and Methodology

In this chapter, the approach, test environment, benchmarking tools and basic
cache server configuration parts will be discussed:

• Section 3.1 discusses the possible and proposed approaches to the problem.

• Section 3.2 describes the test environment including hardware specifica-
tions and network configuration.

• Sections 3.3 and 3.4 describe the tools which were used for this work:

– Web Polygraph
– blktrace
– Seekwatcher
– Custom scripts

• Sections 3.5 through 3.8 describe the configuration specifications for Var-
nish, Apache Traffic Server and Polygraph.

• Finally, Section 3.9 describes the various workloads designed for this ex-
periment.

3.1 Approach

There are two dimensions that are considered in the proxy evaluation archi-
tecture: the implementation environment and the source of workload. The
possible workload sources divide into three categories: artificial, captured logs
and current requests (the workload source space). Similarly, three main algo-
rithms are available for the evaluations; simulated system and networks, real
system/isolated networks and real system/real networks comprise the imple-
mentation space. This is illustrated in Figure3.1

In an ideal test model, the following characteristics are desirable in order to get
the best possible results:

• Reproducibility

32

3.1. APPROACH

• Flexibility of testing

• Observability of direct results

• Testing based on real traffic

• Testing performed on real systems

The first priority for this work is reproducibility. It is important to be able to
reproduce tests as needed for both the Varnish server and Apache Traffic Server.
In addition, the tests should be reproducible across runs in order to confirm the
results. Furthermore, other people who might want to repeat the experiment
should be able to do so.

Flexible testing is important because it provides the opportunity to produce
scenarios that are interesting. Thus, by changing some characteristics of the
configurations it is possible to create a variety of tests which can figure out how
different variables affect the results.

Tests should be designed so that the results produced are direct measures of the
behaviour and performance of the servers being tested.
Testing on real systems and real networks is also desirable because these envi-
ronments give the most realistic results. Therefore, a scenario with real traffic
on real systems would seem to be ideal. However, such a situation is not repro-
ducible both because the state of a real scenario changes over time, and because
real networks are inherently chaotic. A real system on an isolated network is
a very good alternative. Since the main purpose of this work is to focus on
performance of two products, an isolated network eliminates all the variations
and unpredictability of a real network.

Doing the experiment with the real traffic again gives the most realistic results
as it comprises real traffic patterns and the exact sizes of documents and their
associated cost of retrieval. However, the main constraint in this case is again
the reproducibility of the test. A good alternative which provides reproducibil-
ity is using traffic generated from the captured logs of real servers running in
production. Captured logs maintain all the characteristics of live traffic. Fur-
thermore, such replayed traffic is reproducible. The problem, however, is the
flexibility of the trace; captured logs cannot be tuned to assume whatever traffic
characteristics become desirable as the experiment proceeds. The other issue
with captured logs is the validity of objects, due to the fact that not all the ob-
jects in the captured log trace are still valid or in existence at the time the trace
is used for testing. An artificial workload does not have any of these problems.

33

3.2. TEST ENVIRONMENT

Figure 3.1: Different possible experimental approaches

Figure3.1 summarizes the different possibilities for the generation of workload
and implementing the test systems. It indicates which scenarios can satisfy the
various requirements. The green highlighted area is the approach selected for
this work
The artificial workload is reproducible, flexible and generates valid objects. The
disadvantage of using an artificial workload is its not being real. However, there
is advanced and complicated softwares which can produce close to real traffic
to alleviate this problem. It can produce the long-tailed distributions of object
size and object popularity which are characteristic of real traffic.
Thus, the selected method for this work is the scenario with real systems (as they
are the most realistic), but with an isolated network to eliminate the variations
from the Internet. The focus is to compare the performance of the proxies in
the most realistic but identical scenario that is possible. The testing workload
is close to realistic despite the fact that it is generated artificially. The workload
also satisfies the reproducibility, flexibility and other requirements.

3.2 Test environment

Three computers were used for this work, connected to each other by a Gigabyte
L2 switch. The specifications for machines summarized in Table 3.1.

34

3.2. TEST ENVIRONMENT

Manufactorer DELL Optiplex 745
OS Debian: kernel 2.6.32

RAM 4GB DDR2
Disk 2 x 80 GB 7200 RPM SATA
CPU Intel(R) Core(TM)2 CPU 6600 @ 2.40GHz

Network Card PCI Gigabit NIC and 5754 Gigabit Ethernet

Table 3.1: Test hardware specifications

Figure 3.2 shows the network setup. All three machines are directly connected
to the Gigabyte switch. Two of machines have 2 network cards with two IP ad-
dresses. The private network 192.168.0.0 addresses with netmask 255.255.255.0
were used.

Figure 3.2: Experimental private network setup

The figure shows how the cache server, the web server and the client machine
are connected together and to the Internet, as well as the IP addresses assigned
to each machine. The cache server is where the Varnish and Apache Traffic
Server caching servers will run, the web server is the back end machine which
the caching proxy serves, and the client machine is the source of the network
traffic and where the experimental results will be recorded.

35

3.3. WEB POLYGRAPH

Machine/Interface eth0 eth1
Cache server 192.1680.1 158.36.91.196
Web server n/a 192.168.0.2

Client 128.39.75.101 192.168.0.3

Table 3.2: IP addresses

The web server machine which does not have a public IP address; it gets the
Internet from via the cache server machine. The ssh traffic destined for the
cache server machine’s port number 222 is forwarded to the web server. Here
are the iptables rules which forward the traffic to and masquerades traffic from
the web server machine.

iptables

iptables -t nat -A PREROUTING -i eth1 -p tcp --dport 222 -j DNAT --to-destination 192.168.0.2:22

iptables -t nat -A POSTROUTING -o eth1 -j MASQUERADE

These iptables rules do not persist across system reboots. The following com-
mands rewrite the iptables rules after each restart. The rules are stored in the
file /etc/firewall.conf, and a shell script is run by the ifup command when the
interface restarts, so that the rules are installed again. For this to work, port
forwarding for the system must be enabled (first command below), and then the
firewall configuration can be saved to a text file:

echo 1 > /proc/sys/net/ipv4/ip_forward
iptables-save > /etc/firewall.conf

The simple shell script iptables, located in /etc/network/if-up, is used to restore
the rules from firewall.conf on reboot:

/etc/network/if-up/iptables

#!/bin/sh

iptables-restore </etc/firewall .conf

3.3 Web Polygraph

Web Polygraph [6] is the main tool will be used for benchmarking in this work
(referred to hereafter as simply Polygraph). Polygraph is a freely available tool
which is used for performance testing. Polygraph is de-facto industry standard

36

3.3. WEB POLYGRAPH

for testing HTTP intermediaries. Testing of proxy caches, origin server accel-
erator and L4/7 switches, content filters and other web intermediaries can be
performed using this tool. Its most important features are

• High-performance HTTP clients and servers

• Realistic HTTP traffic generation

• Flexible content simulation

• A powerful configuration language

The plan for this research was to use an existing tool rather than writing such a
tool from scratch. The main focus was to be on observing cache server behaviour
rather than developing a sophisticated tool. As discussed in Chapter 2, Poly-
graph is best and only choice for this purpose. It can generate the desired load
patterns needed for this research. It is also generally up-to-date with current
caching software, and it also supports more features than other software. This
tool was chosen despite the fact that the significant start up overhead would be
significant, which turned out to be even greater than initially anticipated. The
difficulties and bugs with this tool are discussed in Chapter 5.

Polygraph can simulate a large number of clients and server processes provided
that system resources support them. The main bottleneck is limited memory, as
the process will die if it runs out of the memory. The other limited resources are
CPU capacity, the number of TCP ports and network bandwidth. Polygraph
use a custom configuration language called PGL which must be used to define
workload parameters and characteristics.

Polygraph works by creating a set of client processes that it calls robots. Each
robot (client) is able to behave like a real web user and can request a variety of
web object content types with predefined distribution probabilities.
Polygraph runs two type of processes: polygraph-server and polygraph-client
which simulate clients and servers on the network (respectively). The generated
traffic from the polygraph-client is sent to the polygraph-server through the
proxy.

3.3.1 Polygraph testing phases

Polygraph tests are accomplished via a series of phases. These phases are con-
figured using PGL, and there are a variety of parameters available for doing do.
For example, each phase has its own begin and end request rate factors. After
reaching to each phase’s goal Polygraph automatically moves to next phase.

The Polygraph phases warm, fill, inc, top1, dec, idle, top2 and cool are the
phases used for reverse proxy benchmarking, as illustrated in Figure 3.3.

37

3.3. WEB POLYGRAPH

Figure 3.3: Phases

The different phases are defined as follows:

• warm: In this warm-up phase, the client and server robots try to find each
other and negotiate their configurations in order to detect any problems.

• fill In this the phase, the initially empty cache is filled by the client robots.
The time of filling varies depending on the size of the cache, the request
rate, and the recurrence rate of requests. To obtain the best results, the
goal of this phase is to fill twice the size of the cache in order to reach a
steady state. In this experiment, the recurrence rate is set to 5% to speed
up the filling.

• link: The purpose of this phase is to prevent a sudden increase in the
request rate. In this phase, which links the fill phase and the first main
testing period, the request rate is gradually increased to the desired rate
for the following top1 phase (the peak rate for the test).

• top1: This key testing phase runs at the maximum specified request rate.
The rate is kept at the constant peak level during this phase. In order to
focus on caching behavior, the recurrence of objects is set to a high value
(95%) to prevent clients from generating new objects.

• dec: This phase decreases the request rate gradually down to the level
selected for the following idle phase, which is typically 10% of the top1
peak rate.

• idle: During this phase, the request rate is set to a very low level in order
to compare the performance under low and heavy traffic conditions. In
this phase, the proxy server should have the time to do its regular off-line
activities such as lazy garbage collection.

38

3.3. WEB POLYGRAPH

• inc: This phase is similar to the link phase. During the inc phase, the
request rate is gradually increased from 10% to 100% of peak rate, in
preparation for the following top2 phase.

• top2 This phase is the most important phase. Comparing the results from
top1 and top2 shows if the proxy is truly in a steady state. When the test
reaches this phase and the proxy server has reached a steady state, it has
experienced both high and low request rates requests. The results from
this phase is are used for comparison with the previous high request rate
phaser, top1.

• cool Once the testing is finished, the robots and servers will cool down
from the peak request rate to zero during this phase.

3.3.2 Command line options

Polygraph has a large number of command line options. Some of them can also
be specified in the configuration files. When running Polygraph for this test,
the following options are used:

• –config: Specify configuration file.

• –unique_world: Whether or not to use unique URLs.

• –local_rng_seed: Seed for the random number generator.

• –http_proxies: Proxy server.

• –verb_lvl: Verbosity level.

• –dump: Items to dump.

• –log: Log file location.

By default, Polygraph runs its tests using a unique load. That means that the
URLs are unique, and their request sequence is different from run to run. By
setting the command line option unique_world to off, then the URLs generated
will not be unique, making Polygraph free to use the same objects for various
tests. To further ensure that the runs are identical for both proxy servers, Poly-
graph’s random number generators should be provided the same seed, using the
command line option local_rng_seed. While there is no guarantee that the
random number generator will generate exactly the same numbers, nevertheless
the results would be nearly the same[6]. The combination of these two options
makes it possible to reproduce essentially the same URL sequence for separate
tests.

To run the test, the server and client processes are run separately. They can be
run on the same machine provided that they use different ports, or they can be
run on different machines.

39

3.3. WEB POLYGRAPH

On the server side, the following command is used to start the Polygraph server
for these tests:

server process

./polygraph-server --unique_world off --local_rng_seed 501 --config config.pg --verb_lvl 10 \
--dump errs --log results/log_server

One the client side, the following command is used to start the Polygraph client
process:

client process

./polygraph-client --unique_world off --local_rng_seed 601 --config config.pg --verb_lvl 10 \
--dump errs --log results/log_client

3.3.3 Polygraph console output

The Polygraph console periodically reports the state of the test and the progress
of its various phases. The phase duration (in minutes) and the fill size (in MB)
as well as percentage completion of the current phase and the current frozen
working set size are shown for each interval. Figure 3.4 shows an example of
the client side console display.

Figure 3.4: The current phase state: client side console output

Runtime messages are also displayed, at more frequent intervals than the pre-
ceding periodic status reports, in a tabular format. Any error messages are also
included. Figure 3.5 identifies the most important parts of these messages.

40

3.4. SURROGATE TESTS

Figure 3.5: The runtime output: client side console

The Polygraph package also inclues several additional tools along with the main
servers. They have different functionality, including extract logs and trou-
bleshoot runtime problems.

In addition to polygraph-server and polygraph-client,the polygraph-reporter
command is used to generate a report from the server and client robots’ log
files. The generated report is in HTML format and can be viewed by any web
browser. Here is an example command:

generating the report

./polygraph-reporter --label "results" --report_dir /var/www server.log client.log

Polygraph configuration and workload definition are discussed later in this chap-
ter, in Sections 3.8 and 3.9, respectively.

3.4 Surrogate tests

Surrogate testing is originally a concept from medicine. When it is not possible
to examine a body organ directly, so-called surrogate tests are performed that
attempt to determine the characteristics of monitor the behaviour of that organ
in a non direct manner. In the same way, various system metrics are monitor
here in order to provide another view of proxy server functioning and perfor-
mance. For this purpose, data for CPU usage, memory usage, and disk I/O are
also collected to be considered in conjunction with the Polygraph results.

3.4.1 Blktrace

One of the aspects that will be monitored during the experiments is the disk
usage of each accelerator. As is known, disk I/O can be a bottleneck for a web
proxy when the read and writes operations become slow under heavy loads.

blktrace is a block layer I/O tracing tool which records detailed information
about disk request queue events. The desired block device is specified with its
dev option. blktrace records all events that happen on that device as long as it

41

3.4. SURROGATE TESTS

is running, storing the generated trace to the file specified to the o option[63].

blktrace generates a separate file for each CPU. By default, when an output
file name is given, the generated event trace is stored as filename.blktrace.0 and
filename.blktrace.1 for a two core system.

The following is an example blktrace command:
blktrace run

blktrace -d /dev/sda1 -o output -n 4 -b 4096

The options used are:

• -d: The device name

• -o: The output file

• -n: The number of buffers which store the collected data

• -b: The size of buffer(s)

Since the test duration may be quite long, the size of the blktrace output file
may easily become very large, consuming several gigabytes. In order to pre-
vent a disk resource shortage during the Polygraph run, a customized script
was written to start blktrace only after the test has reached to the link phase.
This serves to eliminate the events generated during the fill phase, which are
not important and need not be recorded, saving a considerable amount of disk
space. The script can be found in the Appendix.

3.4.2 Seekwatcher

Seekwatcher is a tool which can generate simple graphs from the traces made by
blktrace. It utilizes the matplotlib library to visualize the I/O patterns and per-
formance recorded by blktrace. It is possible to create graphs from with multiple
traces in order to easily compare the differences between separate benchmark
runs.[64] In order to do so, the option -t is used multiple times with the seek-
watcher command:

seekwatcher can make graphs for multiple traces

seekwatcher -t varnish.blktrace.0 -t trafficserver.blktrace.0 -l Varnish -l ATS \
-o varnish_vs_trafficserver.png

The three command line parameters specify the following:

42

3.5. VARNISH CONFIGURATION

• -t: the blktrace trace file

• -l: assigns a label to the specified trace in the output graph

• -o: specifies the name of output file

3.5 Varnish Configuration

Varnish uses its own configuration language, called VCL (Varnish Configura-
tion Language). There are two main files in the configuration. In the /etc/de-
faults/Varnish file, a number of runtime elements for the Varnishd daemon are
configured.

• -a :80 – The address:port that Varnish is listening to. Here, Varnish is
listening to localhost and the port http(80).

• -T 127.0.0.1:6082 – The management interface address. Using this IP
address/port pair, which in this case is the localhost and port 6082, it is
possible to manage the Varnishadm daemon in real time without stopping
the daemon.

• -P /var/run/Varnish.pid – The file storing the running Varnish parent
PID.

• -S /etc/Varnish/secret – The secret file used for authentication, required
for the Varnishadm utility.

• -t 0 – The hard time to live or ttl for objects which are cached/ Here, it
is set to zero.

• -f /etc/Varnish/default.vcl – Varnish is informed of the location of the
VCL file by this option (discussed below).

• -s file,/var/lib/Varnish/$INSTANCE/Varnish_ storage.bin,1G – Varnish
supports three types of storage. On disk, memory and a persistent mode.
Here, Varnish is configured to use the given file on disk with the size of 1
GB.

In the /etc/Varnish/default.vcl VCL file, the vcl methods vcl_recv , vcl_fetch , vcl_ pipe,vcl_
pass, vcl_ hash,vcl_ hit,vcl_ miss, vcl_ deliver and vcl_ error are defined.
The backend(s) are also set here. In this case, the experiment’s web server is
specified.

backend polygraphServer {
. host = "19 2 . 1 6 8 . 0 . 2 " ;
. port = "9000";

}

43

3.6. TRAFFIC SERVER CONFIGURATION

3.6 Traffic Server Configuration

Apache Traffic Server uses different configuration files. Since ATS is initially a
forward proxy, the reverse proxy mode must be activated. The main configura-
tion file is /etc/trafficserver/records.config.

Those parts that have been edited from the default are shown below. In line 1,
ATS is instructed to listen to port 80. The second line is the amount of RAM
the proxy should use (here 1GB). In line 3, the reverse proxy mode is enabled.
In the final line, the server redirects requests without any host address to the
machine 192.168.0.2 port 9000.

CONFIG proxy.config.http.server_port INT 80
CONFIG proxy.config.cache.ram_cache.size INT 1073741824 # 1G

CONFIG proxy.config.reverse_proxy.enabled INT 1
CONFIG proxy.config.header.parse.no_host_url_redirect STRING http://192.168.0.2:9000

Next, the server should be assigned to the back end server. The map key in
the /etc/trafficserver/remap.conf file tells ATS to look for the URLs beginning
with the first field one the back end server specified in the second field:

map http://192.168.0.2:9000/ http://192.168.0.2:9000/

In the file /etc/trafficserver/storage.conf, the server is instructed to use 1 GB
of disk, located at the specified location:

/var/cache/trafficserver 1073741824

3.7 The custom scripts

When running each test, a number customized scripts are used to simultaneously
monitor the resource usage. The results should be extracted from the log files,
and a number of other tasks should be done. The main script does the task,
and organizes the results in a structured way that is easier to reach the results.
The following pseudo code outlines the structure of the script:

Automation script: polystart.pl

<create log files>
<refresh the system caches>
<refresh the proxy cache>

while (exist proxies) {
<start the proxy>

<start the server and client processes>
while (<client process runs>) {

44

3.7. THE CUSTOM SCRIPTS

if (<reached the link phase>) {
<run the blktrace script>
<run the vmstat script>
<run the top script>

}
} # end client process run

} # end loop over proxies

<stop all other scripts>
<run seekwatcher>
<copy files from all machine to result directory>
<generate the polygraph report>

The polystart.pl scripts calls another script(awkp.pl) on the client machine in order
to determine whether the client processes are running and what phase they are
currently in. Based on its output, polystart.pl decides whether to quit.

awkp.pl

#!/usr/bin/perl
my $num= "ps aux | grep polygraph | wc -l ";
system("$num");

The blktrace.pl script controls the running of blktrace. The following pseudo
code illustrates its structure:

blktrace.pl

<get the proxy name>
<get the output file name>

\$command = "blktrace -d \$dev -b 4096 -n 20 -o \$output";
<run \$command>

The top.pl script records key system resource metrics while the experiment runs.
Here is its structure in pseudo code format:

top.pl

<get the proxy name>
<get the output file name>

open(output file)

while (polygraph-client runs) {
find_the_proxy_PID();
<extract the top command entry for PID>
<extract the MEMORY and CPU PERCENTAGE>
<write TIME, MEMORY CPU\& to output file>

}

<close output file>

45

3.8. POLYGRAPH CONFIGURATION

3.8 Polygraph Configuration

Polygraph can freely be configured using PGL in configuration files. The con-
figuration file then is provided to the running server and client processes.
The following pseudo code describes the general organization of the Polygraph
configuration file:

pseudo polygraph configuration file

<include contents.pg>
<include phases.pg>

calculate { <Peak rate, Fill rate, Working Set Size, Cache Size, ... >}

IP Addresses { <client, server, proxy> }

Server S = { <server agent configuration> };

Robot R = {<robot configuration> };

PeakRate = (number of robots) x (robot.req rate)

phases {<define different phases>
<set various parameters>
}

schedule(<sequence of the phases in the run time>);

calculate working set length>

address assignment <client><server>

<commit configuration of these servers and robots>

3.8.1 IP Addresses

After configuring the network metrics, the Polygraph servers and clients are con-
figured. First, the number of robot (client) agents is specified for the workload.
When the Polygraph process starts, the agent finds the the network interfaces
on the system and associates the client and server addresses with the interface.
The "cloning" feature of PGL (denoted by ** in the configuration file) allows
Polygraph to clone the interface and assign as many as robots to each interface
as is desired. See lines 38-40 in the configuration file attached in the appendix
6.2.

IP addresses

addr[] srv_ips = [’192.168.0.2:9000’];

addr[] rbt_ips = [’192.168.0.3’ ** 1000];

addr[] proxy_ip = [’192.168.0.1:80’];

The above assignments create 100 client agents associated with the eth1 inter-
face on the IP address 192.168.0.3. The server robots are instructed to listen
to the IP address 192.168.0.2:9000. The client robots talk to proxy on port 80,

46

3.8. POLYGRAPH CONFIGURATION

and the proxy is configured to fetch the objects corresponding to cache misses
from the backend server (process) at 192.168.0.2:9000.

3.8.2 Working Set Size

The working set size (WSS) is an amount of memory chosen to correspond to the
set of objects that have a non-zero probability to be requested at any given time
of test. This variable mimics the size of the simulated web site whose traffic is
being accelerated. A medium-sized web site which is worth accelerating begins
with around 100 MB of data at the start of the Polygraph simulations. A 1
GB working set size is used for large websites. The working set size is an initial
value which is gradually increased as needed during the course of the Polygraph
run.

The WSS could be any arbitrary number, but it should not be much smaller
than the cache to get realistic results. Otherwise, the entire working set can be
cached in the memory. On the other hand, if the WSS is much larger than the
cache size, Polygraph may generate a lot of new objects before freezing its size,
resulting in a very low hit rate, which is again unrealistic.

size WSS = 100 MB;

A WSS of 100MB is used in several tests in this research, but it is not the
standard size for all. Each workload/scenario uses own working size set. To
calculate an adequate initial WSS for each test, the size of the cache is divided
by mean object size for that test. However, the benchmarking process should
introduce new cachable objects into the working set during the course of the run
to simulate cache misses. This causes the WSS to grow. The problem comes
when the working set size grows so large it exceeds the system’s memory capac-
ity or causes the hit rate to drop to an unacceptable level.

The solution is to limit (freeze) the size of working set. The size should be
small enough to not take an inordinately long time to reach the steady state
but large enough to make the proxy to cache a realistic amount of cachable
objects. Polygraph solves this problem by defining working_ size_ lengh which
is the WSS’s time rather than number of objects. See line 78 in configuration
file.

working_set_length(WSS/(10KB*FillRate)/5\%/80\%);

This configuration line means that the working set can grow until the time that
the fill phase has reached 80% of it phase time. When running the test, the
time is given in minutes. It is dependant on the fill rate, and this it is defined
as an expression rather than as a fixed value.

47

3.8. POLYGRAPH CONFIGURATION

3.8.3 Cache size

The size of the cache should be set to the configured size of the disk cache set
for the proxy server. In addition, since the proxy uses part of the memory to
index the objects, as well as to store very popular objects, the total amount of
memory used by the cache also should be added to the preceding when specify-
ing the cache size attribute.

Apache Traffic Server and Varnish are configured to use 100 MB of RAM, and
the total cache size configured for the accelerator is 1 GB. Since Varnish and
Traffic Server do not use the same amount of the memory, it is not possible to
select one value that is correct for both. Thus, the cache size is set to the disk
cache size, and the cache utilization is measured by the surrogate tests during
the experiment.

size CacheSize = 1100MB;

Object Life Cycle

The Object Life Cycle (olc) component of Polygraph is in charge of the mod-
ification and expiration of the objects. All the objects have a cyclic life cycle,
meaning that the objects are modified periodically. The modification of objects
is mostly independent and differs from object to object. The changes are not
done at constant intervals but rather may vary over time. The variance vari-
able in olc objects gives Polygraph the possibility of modifying the objects with
realistic behaviour.

// HTML object life cycle
ObjLifeCycle olcHTML = {

length = logn(7day, 1day);
variance = 33\%;
with_lmt = 100\%;
expires = [nmt + const(0sec)];

};

// Image object life cycle
ObjLifeCycle olcImage = {

length = logn(30day, 7day);
variance = 50\%;
with_lmt = 100\%;
expires = [nmt + const(0sec)];

};

// Download object life cycle
ObjLifeCycle olcDownload = {

length = logn(0.5year, 30day);
variance = 33\%;
with_lmt = 100\%;
expires = [nmt + const(0sec)];

};

// object life cycle for "Other" content
ObjLifeCycle olcOther = {

length = unif(1day, 1year);

48

3.8. POLYGRAPH CONFIGURATION

variance = 50\%;
with_lmt = 100\%;
expires = [nmt + const(0sec)];

};

The Object Life Cycle olcHTML specification has four variables which will be
explained below.

• Length: The cycle duration or lifetime specified as a distribution func-
tion. For example, logn(30day,7day) is a heavy tailed (logarithmic) model,
which updates each month with deviation of 7 days

• variance: The percentage of modification time variation from the middle of
the interval.

• with_lmt: The percentage of objects that include the last modified time
header from the server side. For example, 100% means that this header is
present in all the objects.

• expires: Specifies when objects expire (as an expresion). For example, the
nmt + const(0sec) value means that at time of next modification, the
object will be expired.

3.8.4 Content types

Polygraph can generate objects having a variety of content types. In the contents
part of the configuration, the server agents are told what kinds and percentages
of the various content type are going to be used. Supported content types for
polygraph are Image, HTML, DownloadD and Other, which have the following
specifications:

Content cntImage = {

kind="image";
mime={type=undef(); extensions=[".gif", ".jpeg", ".png"];};
obj_life_cycle=olcImage;
size=exp(4.5KB);
cachable=80\%;
checksum=1\%;

};

Content cntHTML = {
kind="HTML";
mime={type=undef();extensions=[".html" : 60\%, ".htm"];};
obj_life_cycle=olcHTML;
size=exp(8.5KB);
cachable=90%;
checksum=1%;
may_contain=[cntImage];
embedded_obj_cnt=zipf(13);

};

Content cntDownload = {
kind="download";
mime={type=undef();extensions=[".exe":40\%,".zip",".gz"];};

49

3.8. POLYGRAPH CONFIGURATION

obj_life_cycle = olcDownload;
size=logn(300KB, 300KB);
cachable=95%;
checksum=0.01%;

};

The fields kind and mime, as their names suggest, indicate the type name and
allowed file name extensions of the associated objects. The size is the range of
sizes for the objects, and it is defined by three different models: the logarithmic
model, logn(), for long tail distributions, the exponential model, exp(), for ob-
ject sets where the size may vary highly, and the uniform, unif(), model. The
parameter to the model function specifies the mean value for the distribution.

The cachable variable determines what many percent of this type object should
be cachable. The checksum variable determines the percentage of objects which
have a MD5 checksum, which is computed and attached to the Content-MD5
header.

3.8.5 The phases

The following phases are used during the tests’ run time. Phases are accom-
plished one after another, after each phase reaches its goal. The following are
definitions of several of the phases:

Phase phWarm = {
name = "warm";
goal.duration = 5min;
load_factor_beg = 0.1;
load_factor_end = FillRate/PeakRate;
log_stats = false;

};

Phase phFill = {
name = "fill";
goal.fill_size = 2*CacheSize;
recur_factor_beg = 5\%/95\%;

};

Phase phLink = {
name = "link";
goal.duration = 5min;
load_factor_end = 1.0;
recur_factor_end = 1.0;

};

Phase phTop1={name="top1";goal.duration=60min;};

Phase phDec={name="dec"; goal.duration=5min;load_factor_end=0.1;};

Phase phIdle={name="idle";goal.duration=10min;};

Phase phInc ={name="inc";goal.duration=5min;load_factor_end=1.0;};

Phase phTop2={name="top2";goal.duration=120min;};

50

3.8. POLYGRAPH CONFIGURATION

3.8.6 Server configuration

The server configuration specific the content type selection and distribution for
the run. The content types specified to the contents variable can directly be
requested from the robots.

In the example below, the server latency, or think time (xact_think), is con-
figured to follow a normal distribution with a mean of 300 milliseconds. The
number of requests in the persistent connections follows a Zipf distribution with
the mean 16 (pconn_use_lmt). The timeout for idle connections is set to 15
seconds to free the ports and make better use of resources (idle_pconn_tout).

kind = "WebAxe-1-srv";
contents = [cntImage: 65\%, cntHTML: 15\%, cntDownload: 0.5\%,cntOther];
direct_access = [cntImage, cntHTML, cntDownload, cntOther];
xact_think = norm(0.3sec, 0.1sec);
pconn_use_lmt = zipf(16);
idle_pconn_tout = 15sec;
http_versions = ["1.1"];

3.8.7 Client configuration

This is the main configuration part that provides instruction to the robots that
will generate the traffic for the run. The proxy address is given is by the http_
proxies variable. The recurrence field is the probability that a previously re-
quested object will be asked for again. In this case, 95% of pages will be
requested again. The embed_recur variable says that all (100%) of the em-
bedded objects should be requested via a persistent connection. The interests
field specifies the percentage of common URLs that robots can use versus the
URLs specifically for this robot designed.

kind = "WebAxe-1-rbt";
origins = srv_ips;
http_proxies = proxy_ip;
recurrence =95\%;
embed_recur =100\%;
interests = ["public": 90\%, "private"];
pop_model = { pop_distr = popUnif(); };
req_rate = 1/sec;
pconn_use_lmt = zipf(64);
open_conn_lmt = 4;
http_versions = ["1.0"];

When clients want to generate hits, they use the uniform() distribution for the
popularity model of object set. As discussed in the section 2.6.1, according to
Zipf’s law, when the time factor is shortened, the hot data set will become too
small and will be mostly served from the memory rather than disk for a simu-
lated environment. Therefore, the uniform model is used.

51

3.9. DEFINING THE EXPERIMENTAL PHASES AND WORKLOADS

The uniform() model initially ranks all the objects with the same probability,
meaning that it chooses the object randomly from the the set of objects which
previously have been requested. However, since the objects from the beginning
of the test are more often requested than the later objects, it still implies some
notion of popularity.

3.9 Defining the Experimental Phases and Workloads

As noted above, one key requirement for an experiment to run successfully is
that the frozen working set should be sized appropriately. The frozen working set is
the maximum size to which the original working set which grows during the fill
phase to generate cache misses. However, this parameter cannot be set directly.
Moreover, the growth of the working set varies according to several factors, in-
cluding the length of the fill phase, the object size range and type, the extent of
object cache-ability, and the like. Thus the size of frozen working set is different
from workload to workload despite using same WSS setting of 100 MB. Thus,
substantial experimentation and tweaking is required to determine the proper
parameters for a workload in order to achieve the desired traffic characteristics
and other properties.

Several different workloads were designed and tuned for use in this research.
They are described individually in the following subsections.

3.9.1 The best effort method

In this scenario, the robots were configured to use the best effort method. The
best effort method means that a robot sends the next request as soon as a
response is received for the previous request, but not sooner. In practice,this
means that no robot makes parallel connections at any given time. In this sce-
nario, the cache never gets overloaded. This method shows how fast a proxy is
by "nature" – what request rate the proxy is convenient with – and the rate of
requests is indirectly justified by the proxy itself.

To run such a test, the req_ rate variable of robot objects is set to null or is
simply removed from the robot part of the configuration files. The workload
specifications which were used in this part are given in Table 3.3. Note that the
frozen working set size is the one resulting from specifying the other parameters.

52

3.9. DEFINING THE EXPERIMENTAL PHASES AND WORKLOADS

Best Effort workload
Varnish Apache Traffic Server

Working set size (MB) 100 100
Cache Size (MB) 1100 1100
Frozen WSS (GB) 2.9 3.2

Mean object size (xact) 147625 141027
Robot population 100 100

Content Type All All
Peak Rate not specified not specified

Table 3.3: Parameters for the Best Effort workload

The following graph illustrates the content type mix for this workload.

Figure 3.6: Content type distribution

The phases used for this workload are described in Table 3.4.

Phase Request rate(%Peak) Recurrence (%) Goal
warm 10 to 100 5 5 min

fill 100 5 2*Cache Size
link fill to 100 95 5 min
top1 100 95 60 min
dec 100 to 10 95 5 min
idle 10 95 10 min
inc 10 to 100 95 5 min

top2 best effort 95 120 min
cool 100 to 0 95 1 min

Table 3.4: The Phases for the Best Effort Workload

3.9.2 Baseline Workloads

A series of baseline workloads were created in order to measure cache perfor-
mance under controlled circumstances with limited amounts of variation. These
workloads use a single content type and the constant method request rate pro-
file. In the constant method, the robots are instructed to send requests at a
constant rate throughout the test. The req_rate variable for each robot specifies
the interval after which the client should send a new request.

53

3.9. DEFINING THE EXPERIMENTAL PHASES AND WORKLOADS

req_rate = 0.4/sec;

In these workloads, each robot is instructed to issues requests at an average
request rate of 0.4 requests/sec. WHile the clients are capable of generating
much higher request rates, that is somewhat artificial in that typical real world
clients in the web do not generate such large amounts of requests. Therefore a
small value for each individual client was chosen.
A large part of this work was conducted using individual types of objects. That
means that the three major type of web objects (Images, HTML and Down-
load) are used one by one to determine the baseline behaviour for each proxy.
The workloads cannot be totally identical in these cases. For example, using
a working set size which is suitable for HTML objects would generate a much
higher, excessive frozen working set for Downloads and a smaller frozen WSS
for Images. Thus, each workload has its own specifications. The specifications
used for each workload are specified in the corresponding section of the results
discussion in Chapter 4. However, the phases are identical for each baseline and
are shown in Table 3.5.

Phase Request rate(%Peak) Recurrence (%) Goal
warm 10 to 100 5 5 min

fill 100 5 2*Cache Size
link fill to 100 95 5 min
top1 100 95 60 min
dec 100 to 10 95 5 min
idle 10 95 10 min
inc 10 to 100 95 5 min

top2 100 95 60 min
cool 100 to 0 95 1 min

Table 3.5: The Phases for each individual content type workload

3.9.3 The increasing rate workload

After completing the baseline experiments, a final scenario were designed to
combine all the object types. In this case, the request rate was gradually in-
creased during one phase in order to simulate a real, stressful load for the cache.
The phases and workload specifications for this workload are described in con-
junction with the results in Chapter 4 in order to facilitate the discussion. The
results for both top1 and inc phases are important in this test. The top1 phase is
a phase with a relatively low request rate which is not stressful and simulates
a normal web traffic situation. In the phase inc, on the other hand, the load is
increased gradually to reach to the saturation points of the proxies.

54

Chapter 4

Results and Analysis

This chapter will discuss the results of the Polygraph tests for the two cache
servers described in the previous chapter. They consist of the following:

• Sample output from a complete Polygraph run showing all phases.

• Results from the best effort workload to illustrate the proxy servers’ nat-
ural throughput and processing rates.

• Single content-type workload results: Image-only, HTML-only and download-
only workload results will be examined in order to establish baseline per-
formance levels for various types of web content.

• Increasing rate mixed workload results. There are two distinct parts to
this test. In the first part, Polygraph’s top1 phase, there is a steady
request rate in order to test both cache serves under completely identical
workloads and conditions. In the second part, the request rate increases
gradually to 100% of the peak rate in an attempt to saturate the cache
server. Both phases use a mix of content types for testing.

4.1 Sample Polygraph results

Figure 4.1 below illustrates the general form of Polygraph result plots. The time
in minutes forms the X-axis with the measured results plotted as Y (here, the
request rate per second). The various phases of the Polygraph run are labeled
(as defined previously in Figure 3.3).

55

4.1. SAMPLE POLYGRAPH RESULTS

Figure 4.1: The General form of Polygraph result plots

For each run, Polygraph produces many graphs of this type for all of the various
data it collects. In general, the early periods of the test have a different data
pattern from the remainder, Thus, in many cases, only the rightmost parts of
the graphs are important for analysis. The comparisons in this chapter are
mainly conducted between the later phases: top2 for the best effort workload
and baseline comparison, and top1 and inc for the mixed workload. This is the
period where the proxies are in their steady state and give the most valid and
meaningful results.
Polygraph produces several different kinds of plots. Many of them are analogous
to the one above, plotting the value of a collected data items or comparing two
related ones, such as offered vs. achieved (measured) bandwidths. Another type
of plot is the following:

Figure 4.2: The of Polygraph result scatter plots

Figure 4.1 is a scatter plot of the response rate (X) vs. the mean response time

56

4.2. BEST EFFORT WORKLOAD RESULTS

for requests at that rate (Y). In this particular example, the data is widely di-
vergent and shows no particular pattern.

In the sections that follow, the separate Polygraph results for Varnish and
Apache Traffic Server (ATS) are combined into a single plot using the gnuplot
application [65].

4.2 Best effort workload results

In this section, the results from the best effort workload are presented. In the
best effort scenario, the next request is made as soon as the response to the pre-
vious request is received. This ensure that the cache does not get overloaded.
Accordingly, it reveals the "natural" request rate that the proxy supports/is
comfortable with.

Figure 4.3 illustrates the request rate (xact/sec) and bandwidth usage (Mbit-
s/sec) during the experiment. The results show that ATS managed to handle a
request rate with a mean of 520.6 xact/sec (the green line), achieving a through-
put of 49.6 Mbits/sec (the pink line), while the results for the Varnish server
are 500.3 xact/sec and 43.4 Mbits/sec (the green and red lines, respectively).

Figure 4.3: Best effort request rate and throughput

Figure 4.4 shows the response time for each server. As the chart indicates, the
response time for cache hits is considerably lower with Varnish than for ATS.
In contrast, the two servers’ the response time plots for misses are virtually the
same line, at around 300 ms.

57

4.2. BEST EFFORT WORKLOAD RESULTS

Figure 4.4: Best effort response times

The mean response time is slightly better for ATS at 251 ms, compared to 261
ms for Varnish (a difference of about 4%).

Figure 4.5 compares the offered and measured document and byte hit rates for
both servers. The Y axis plots the percentage of cacheable documents or bytes
for all the requests over the time plotted on the X axis. With the offered rate of
76% of the peak rate, Varnish kept 17.2% of the documents, which corresponded
to 16.6% of the transferred bytes. Traffic Server cached 19.0% of the documents,
which was 19.1% of the offered data in bytes.

(a) (b)

Figure 4.5: Best effort document and byte hit rates

Figure 4.6 show the distribution of response rates by response time. The X
axis shows the response rate as seen from the client side. The Y axis shows the
corresponding mean response time for that specific response rate. ATS values

58

4.2. BEST EFFORT WORKLOAD RESULTS

are plotted in red, and they are mostly concentrated between 515 and 525 mil-
liseconds, with a mean response rate of 520.6. For Varnish (in blue), response
times are clustered between 248 and 254 msec, with a mean of 251. In this case,
the performance of the Varnish server exhibits lower response rates and higher
response times.

Figure 4.6: Best effort response time vs request rate distribution, client side

Seen from the server side, the situation is quite different. In Figure 4.7, the
response time is quite similar for both servers, but the response rate is higher
for Varnish. Note that the spread of response times is much narrower here
(about 4 msec vs. 28 msec from the client side), although the magnitude is
higher by about 40 msec; the response rate range is also different, by about 100
transactions/sec in favor of the client side. These observations can be explained
by noting that the traffic on the server side is much lower than the originating
traffic on the client side due to the effects of the proxy server.

Figure 4.7: Best effort response time vs request rate distribution, server side

59

4.3. SINGLE CONTENT TYPE WORKLOAD RESULTS

4.3 Single content type workload results

The following sections discuss the results of Polygraph experiments for single
types of web items. The purpose of these test is to benchmark proxies with only
a single type of content at a time.

Some care was required in order to ensure that the workloads created by Poly-
graph were the same for the two servers and also remained within realistic
resource limits. The desired cache capacity was decided to be 1GB. Polygraph’s
frozen working set size, which represents the total website content, should be
very close to this size. However, this parameter cannot be set directly but rather
is computed by Polygraph based on the initial working set size and the content
object size distribution and mean.

Selecting values for these parameters designed to mimic real world web usage as
closely as possible did not always result in reasonable workloads. For example,
using a starting working set size of 100MB and an image mean size of 4KB
(exponential distribution), resulted in a frozen WSS of only 400-600MB. Even
worse, using the same 100MB initial working set and a 300KB object size for
the mean download object size (logarithmic distribution) resulting in a frozen
WSS of 33GB! Experimentation ultimately lead to the values used in the final
tests presented here. These parameters are summarized for each content type
at the beginning of their discussion.

4.3.1 Results for image content type

Table 4.1 gives an overview of the configuration variables for the image con-
tent type scenario. Table indicates that the 1000 clients generate a load of 400
requests/sec using a starting working size set of 100 MB. The workload param-
eters specify an exponential distribution for the images sizes with a mean of
9KB. This results in a mean size of objects generated of 4612.66 bytes for the
constructed workload, as well as a working set freeze size of about 640MB. The
phases for this workload were described earlier in Table 3.5.

The image workload
Varnish Apache Traffic Server

Working set size (MB) 100 100
Cache Size (MB) 1000 1000

Frozen WSS (MB) 640 640
Mean object size (bytes) 4612.66 4612.66

Robot population 1000 1000
Content Type Image Image

Peak Rate (req/s) 400 400

Table 4.1: Image workload defined and generated parameters

60

4.3. SINGLE CONTENT TYPE WORKLOAD RESULTS

This workload consists of 3 major phases, including with 2 top phases and
one idle phase. In the idle phase, which is a low rate of 10% of the peak
rate (40 xact/sec), both Varnish and Traffic Server utilize the full offered rate,
corresponding to a bandwidth which of 2MB/sec. In the top2 phase, Varnish
and Traffic Server perform almost the same, with mean rates 400.11 vs 400.05
xact/sec and mean bandwidths of 15.3 vs 15.34 MB/sec (respectively).

Figure 4.8: Image content type throughput

When it comes to response time, Figure 4.9 illustrates that the response time
in this phase is higher for Varnish. The mean time for all responses is 78 msec
for ATS (the brown line), while the response time for Varnish is 122 msec(the
light blue).

The response time for misses is almost the same for either case with a few small
spikes for ATS. When it comes to hits, The response time is better for Varnish
with just a few msec (1-3 msce) while the time for ATS is longer with occasional
spikes.

61

4.3. SINGLE CONTENT TYPE WORKLOAD RESULTS

Figure 4.9: Image content type response time trace

The charts 4.10a and 4.10b in Figures 4.10 show the document and byte hit
rates. The green line shows the offered percentage of cachable data, whose
mean 76% in both cases. The pink line shows Traffic Server’s performance: a
document hit rate (DHR) of 75.1% and a byte hit rate (BHR) of 75.5% for all
transactions. In comparison, the DHR and BHR for Varnish are 60.5% and
60.9%, respectively.

ATS hit rate is higher than Varnish(the purple vs red line). However we can see
a periodic fall of 2% whenever it reaches to the highest level (the green line).
Varnish hit rate (red line) seems more stable with an almost level line during
the whole phase.

62

4.3. SINGLE CONTENT TYPE WORKLOAD RESULTS

(a) (b)

Figure 4.10: Image content type document and byte hit rates

Figures 4.11a and 4.11b show the response rate vs response time rate distribu-
tions for the client and server sides, respectively. The first figure shows that the
Varnish server responded to the request rate of 400 requests/sec (with 5 request
deviation) with a constant mean response time of 120-130 msec. ATS responded
to the same workload with response rates ranging from 70 to 90 requests/sec.

(a) client side (b) server side

Figure 4.11: Image content type response rate vs response time

On the server side, the difference is much less when it comes to the response
time. Varnish and ATS both response with a mean response rate between 298
and 304 xcat/sec. The response rate for ATS is 90-110 requests/sec while it is
150-160 xect/sec for Varnish. This is illustrates a clearly higher response rate

63

4.3. SINGLE CONTENT TYPE WORKLOAD RESULTS

for Varnish with almost the same response time with ATS.

4.3.2 HTML content type results

Table 4.2 shows the workload specifications used for HTML object type bench-
marking. The phases are as described previously in Table 3.5.

The HTML workload
Varnish Apache Traffic Server

Working set size (MB) 100 100
Cache Size (GB) 1 1

Frozen WSS (GB) 1.12 1.14
Mean object size (bytes) 8713.25 8713.25

Robot population 1000 1000
Content Type HTML HTML

Peak Rate (req/sec) 400 400

Table 4.2: HTML workload defined and generated parameters

Figure 4.12 shows the throughput for the HTML content type. The mean trans-
action rate for Varnish is 400.2 requests/sec, and the mean bandwidth usage is
27.4 MB/sec. The mean rate for ATS is a bit lower: 324.79 xcat/sec and 22.65
MB/s bandwidth usage. Thus, Varnish throughput is higher and the load uti-
lization is more stable, as it is seen in the larger rate fluctuations in the graph
for ATS (purple line).

Figure 4.12: HTML content type throughput

Since the response time difference is very high, and it is difficult to scale the
data for both servers in a single picture, they are shown in separate figures
bleow. Figures 4.13 and 4.14 show the response time for Varnish and ATS,
respectively. The mean response time for Varnish cache hits is 1 msec, while
the corresponding value for cache misses is 300 msec for misses, resulting in an
overall mean of 152 msec for all responses. In contrast, Figure 4.14 shows the

64

4.3. SINGLE CONTENT TYPE WORKLOAD RESULTS

response times for ATS, which are all 2 orders of magnitude higher. As with the
image workload, the response time is higher for hits than for misses for ATS.

Figure 4.13: Response time trace, Varnish

Figure 4.14: Response time trace, ATS

In Figure 4.15, the document and byte hit rates are shown. Out of 85.60%
offered cachable data, the document hits rate for ATS was 54.4%, and the byte
hit rates was 54.4% out of the 85.8% offered. The corresponding data for Varnish
is a 47.5% document hit rate out of 85.8% offered and a byte hit rate of 47.7%
out of 85.6% offered. The ATS hits rates also oscillate greatly throughout the
experiment while the Varnish line is almost flat.

65

4.3. SINGLE CONTENT TYPE WORKLOAD RESULTS

(a) DHR (b) BHR

Figure 4.15: HTML content type document and byte hit rates

Figures 4.16 and 4.17 show the response time vs rate scatter plots for the HTML
content type. The Varnish response rate is closely clustered around 400 request-
s/sec with a nearly constant rate of 160-170 msec. On the other hand, the ATS
response rate varied between 200 and 450 xact/sec, with response times from
2000 to 15000 msec and a few outliners in the range 20000-30000 (not visible in
the figure).

Figure 4.16: HTML content type response time vs response rate, client side

66

4.3. SINGLE CONTENT TYPE WORKLOAD RESULTS

Figure 4.17: HTML content type response time vs response rate, server side

4.3.3 Download content type results

Table 4.3 shows the workload specifications used for HTML object type bench-
marking. The phases are as described previously in Table 3.5.

The Download workload
Varnish Apache Traffic Server

Working set size (MB) 50 50
Cache Size (GB) 1 1

Frozen WSS (GB) 1.71 3.19
Mean object size (KB) 294.9 294.9

Robot population 1000 1000
Content Type Download Download

Peak Rate 400 req/sec 400 req/sec

Table 4.3: Download workload defined and generated parameters

The workload described in table 4.3 contains only Download type content, which
has relatively large files and is more challenging for cache servers to handle. The
different frozen WSS values for the two servers come from the fact that the ATS
fill phase last longer than for Varnish, allowing the working set size to grow to
a larger final value.

Figure 4.18 shows that neither of the servers can attain the maximum request
rate of 400 xact/sec. Nevertheless, ATS has better throughput (green line) than
Varnish (blue line), with a rate of 155.7 xact/sec against 148.2. The bandwidth
is higher for ATS as well, reaching an amount of 348.6 MB/sec out of the 353.04
offered rate against 336.5 MB/sec out of 343.95 offered for Varnish.

67

4.3. SINGLE CONTENT TYPE WORKLOAD RESULTS

Figure 4.18: Throughout results for the Download content type

Figure 4.19 shows the response times for cache hits and misses. It shows that,
unlike for the other tests, Varnish had clearly better performance. The blue and
light blue lines show the Varnish hit and miss response times, which are just
under 14000 msec. Interestingly, ATS, despite having longer response times
than Varnish for this case, behaves the same as for earlier workloads, with a
mean hit response time of 21000 msec and of 24000 msec for misses.

Figure 4.19: Response times for Download content type

Figure 4.20 shows that Traffic Server caches more than 20% of the load it receives
while Varnish caches less than 10%. The same pattern is observed in the byte
hit rate data.

68

4.3. SINGLE CONTENT TYPE WORKLOAD RESULTS

(a) (b)

Figure 4.20: Download content type document and byte hit rates

Figure 4.21 illustrates how fast the proxy servers responded to requests during
these experiments. The client side plot indicates that the response rate for Var-
nish varied from 140 to 154 xact/sec, with a mean response time of about 1300
msec. The results for ATS have a mean response time of 24000 msec, along with
response rates in the range of 150-160 xact/sec.

On the server side, the response rate for ATS is less than for Varnish, but the
response time is much higher than for Varnish. The ATS response rate varies
from 120 to 128 xact/sec, with the response time landing between 8000 to 10000
msec. The response time for Varnish, however, is almost 10000 msec, with the
response rate ranging between 130 to 140 xact/sec.

(a) (b)

Figure 4.21: Download content type response time vs response rate

69

4.3. SINGLE CONTENT TYPE WORKLOAD RESULTS

4.3.4 Summary and Discussion

In this section a short summary of the results attained from the baseline tests
is presented and the important points are discussed. Figure 4.22 shows the
results taken from the Image-only, HTML-only and Download-only content type
experiments.

Figure 4.22: Summary of the Baseline tests

The results gained from each proxy in individual test are already taken in con-
sider in their corresponding sections. In this section the discussion is most
focused on comparing the results from different tests together. That means
comparing/contrasting results from one individual proxy for all content types
and then compared with results taken from the other proxy.

The blue lines illustrate that the number of transactions that proxy server can
handle. For Varnish the number for Image and HTML types are almost equal
with 400 xact/sec while the value is lower for Download content types as it is
only 155 xact/sec.

ATS handles more Image content type than HTML with 400 vs 324 caxt/sec for
each. Like Varnish, The number for Download type is much lower for ATS as
it is only 148 xact/sec. The bottom line is Varnish can response to the Image
and HTML types almost the same while ATS is responding to more Image-only
types than HTML-only types. Both of them handle lower rate of Download-
only content type with nearly the same rate; 155 vs 148 xact/sec for Varnish
and ATS respectively.

As the transaction/sec rate was the same for Varnish Image and HTML, the
bandwidth utilization is also nearly the same with 29 vs 27 MB/sec(orange
lines). The value is much more for Download type scenario as it is 336MB/sec.
This huge difference comes from the difference in mean objects size for Down-
load type which is objects with mean value 300KB while the size is 4 and 9KB

70

4.3. SINGLE CONTENT TYPE WORKLOAD RESULTS

for Image and HTML types. ATS shows more or less the same behaviour.
The bandwidth usage is 15.3 vs 22.5 MB/sec for Image and HTML which is
better for HTML. That can be correlated to the larger object size for HTML.
The throughput for Download is 348 MB/sec which like Varnish case is much
higher than Image and HTML. Varnish has higher bandwidth usage for Image
and HTML cases which was predictable as Varnish has higher xact/sec rate for
those scenarios. The interesting point in this case is that despite having lower
transaction rate for ATS in Download case, it has a better bandwidth usage
than Varnish; 348 vs 336 MB/sec. This mean that the objects that ATS has
served have larger sizes.

The results for response times(yellow lines) are showing clear differences be-
tween performances. Varnish mean response time for Image and HTML are 122
and 162 msec. But the response time is considerably longer for Downloads with
13-14 seconds(the actual size is not shown in the figure because of large value
and scaling problem). Despite having the same rate(xact/sec), it has longer
response time for HTML which is explainable considering the mean size of ob-
jects. ATS response time is 78 msec for Images. Unlike Images , the response
time is largely higher for HTML and Download cases which are 14 and 24 sec-
onds respectively. The bottom line is that in Image scenario ATS has a better
response time for Image-only content type while having worse results in HTML
which is considerably higher(early signs of getting saturated) and double longer
time in Download case. Varnish server could handle HTML content types as
good as Image ones, but the performance reduced for Download test.

Document and Byte hit rates almost all of the time following very close pattern,
for that reason they are categorized as one category. Varnish managed to cache
60% of 76% offered cachable data in Image test, while the number reduces to
47 out of 85 in HTML and 10 out of 90 % in Download cases. ATS follows the
reducing pattern. It perfectly caches 75 out of 76% of offered cachable objects,
but caches 54 and 20 % out of 85 and 90% of cachable items in HTML and
Download scenarios respectively.

To summarize it all together and see which proxy performed better in individual
cases the table 4.4 is made and shows the better performer in each case.

Throughput Response time DHR/BHR Resp. time/rate, client Resp. time/rate, server
Best effort ATS (slightly) ATS (slightly) ATS(slightly) ATS Varnish

Image almost same ATS ATS ATS Varnish
HTML Varnish Varnish ATS Varnish Varnish

Download almost same Varnish ATS Varnish Varnish

Table 4.4: The better performer of each scenario

To summarize it all together, as we see in the table 4.4 in the Best effort scenario
ATS performs slightly better. In other cases mostly Varnish has got a better

71

4.4. RESULTS FOR THE MIXED CONTENT, INCREASING RATE
EXPERIMENTS

response time specially a much better hit response time. ATS in all cases out
performs Varnish with better Document and Byte hit rates. In HTML case
Varnish has a much better performance, and thr early signs of getting saturated
is seen from ATS.

4.4 Results for the mixed content, increasing rate experi-
ments

This section reports the results for the mixed content workload. Table 4.5 shows
the phases included in this experiment. The key phases are highlighted. Their
results will be discussed in separate subsections below.

Phase Request Rate (% Peak Rate) Recurrence (%) Goal
warm 10 to 100 5 5 min

fill 100 5 2*Cache Size
link fill to 100 95 5 min
top1 100 95 60 min
idle 10 95 0 min
inc 10 to 100 95 100 min

top2 100 95 10 min
cool 100 to 0 95 1 min

Table 4.5: The workload phases for the mixed content type experiment

The generated workload has two main parts which are highlighted in the table
4.5: The phase top1, which lasts for one hour and the phase inc, which lasts
in 100 minutes. During the latter, the transaction rate will increase to 1600
requests/sec in order to find the saturation point and the bottlenecks of the
proxies. The phase top1 use a constant rate of 320 requests/sec (20% of the
peak rate), and both proxies can handle that rate without getting saturated.
The workload parameters are defined in Table 4.6.

Mixed content workload phases
Varnish Apache Traffic Server

Working set size (MB) 100 100
Cache Size (GB) 1.1 1.1

Frozen WSS (GB) 4̃73 6̃40
Mean object size (bytes) 4612.7 Bytes 4612.7 Bytes

Robot population 1600 1600
Content Type all all

Peak Rate (req/sec) 1600 1600

Table 4.6: Mixed content workload parameters

The distribution of content types for this workload is illustrated in Figure 4.23.
The Other type refers to any other types of contents that can be found on the
Internet other than the baseline types (Image, HTML, Download) which were
discussed in the previous section.

72

4.4. RESULTS FOR THE MIXED CONTENT, INCREASING RATE
EXPERIMENTS

Figure 4.23: Mixed content workload content type distribution

4.4.1 Results for the top1 phase

In this phase of the test, the request rate is a constant rate of 320 xact/sec
which is 20% of the peak rate of this experiment as a whole. The workload is a
realistic workload, but delivered at a modest traffic rate which does not stress
the proxy servers.

Figure reffig:top1load demonstrates that the offered rates are the same (blue
and green lines) for both proxy servers.

The bandwidth utilization for ATS is higher, with the mean throughput of 21.5
vs 19 MB/sec for Varnish. Comparing the results with the baseline results for
throughput; here ATS performs slightly better, at the same level as the best
effort workload results. In the baselines, the throughput is almost the same for
the Image and Download contents, while in the Best Effort case ATS yields a
bit better results.

Figure 4.24: Modest request rate throughput

Figure 4.25 shows that the response time for misses is essentially the same (the
blue and purple lines) at 300 msec. This number comes from the configured

73

4.4. RESULTS FOR THE MIXED CONTENT, INCREASING RATE
EXPERIMENTS

"server think time" variable of Polygraph which is configured as 0.3 sec. The
mean response time for all replies is slightly better for Varnish at 326 msec
vs 332 msec for ATS. The reason for that is the better hit response time for
Varnish, which is 1-2 msec against 15-17 msec for ATS. Recall the results from
the baseline tests where ATS has a better response time for Images while Varnish
has a better response time for the HTML and Download content types.

Figure 4.25: Response time results for top1 phase

Figure 4.26 shows the document and byte hit rates. Varnish’s document hit
rate is 27% of 74% offered and it byte hit rate is 27% of 75% offered cachable
data; the corresponding values for ATS are 30.7% of 76.7% and 29.5% of 78%.
The performance is again better for ATS, but the difference is not nearly as
much. Comparing that with the baseline results reveals that ATS in all cases
out performs Varnish with respect to hit rate results. It can be speculated that
the better hit rates for ATS are a result of utilizing multiple replacement policies
in RAM replacement as well as the policy which is used for disk hits. The various
algorithms used for evicting objects from the cache are shown in Table 2.3. As
mentioned, ATS uses both recency-based and frequency-based algorithms as
well as greedy size policies, including CLOCK policy implementation. Varnish
on the other hand implements only a recency based policy (LRU).

74

4.4. RESULTS FOR THE MIXED CONTENT, INCREASING RATE
EXPERIMENTS

(a) (b)

Figure 4.26: Document and byte hit rates, top1 phase

Figure 4.27a shows the distribution of response rates by response time. As pre-
viously explained, the X axis shows the response rate as seen from the client
side. The Y axis shows the corresponding mean response time for that specific
response rate. ATS values are plotted in red, and they are mostly concentrated
between 315 and 325 milliseconds, with a mean response rate of 230-235 msec.
For Varnish (in blue), the distribution of response rates are spread mostly be-
tween 315 and 325 xact/sec, and these results are very similar to ATS. The
response time rate is a bit better for Varnish, with times between 220 and 230
msec against ATS’s 230-235 msec.

Seen from the server side, the situation is a bit different. In Figure 4.27b, the
response time and response rate are quite similar for both servers. They don’t
follow any particular pattern, and the response rate is mostly spread between
230 and 250 xact/sec for Varnish, and the same values apply for ATS. The
response time range lies in a very narrow interval between 300 and 303 msec for
both servers. Thus, they both have very similar distributions a slightly better
response time for Varnish.

75

4.4. RESULTS FOR THE MIXED CONTENT, INCREASING RATE
EXPERIMENTS

(a) (b)

Figure 4.27: Response time vs response rate, top1 phase

The conclusion for this phase is that both servers handle the load decently with
only minor differences. ATS had a larger bandwidth throughput (21.5 vs 17
MB). Varnish had a better response time, specifically the hit rates’ response
time was considerably better (2 vs 15 msec), but the all replies response time
was very close with a small difference in the favour of Varnish (228 vs 232 msec)

4.4.2 Increasing traffic rate phase inc

The inc phase is the second part of the mixed content test. It consists of
an increasing the current rate, beginning at the current rate of 320 xact/sec
(20% of the peak rate) to a maximum of 1600 xact/sec. The rate is gradually
increased over 100 minutes so that the saturation point is found for servers
under investigation. The workload parameters and content distribution are the
same as for the top1 phase (see Table 4.6 and Figure 4.23).
After completing the top1 phase, the test enters the inc phase which immedi-
ately increases the rate of the requests.

Figure 4.28 shows the total timeline of the test. The phase inc (minute 125)
starts just after phase top1 (minutes 65-125) ends. It is clearly seen that Varnish
(the green and red lines) handle requests up to maximum rate (1600 xact/sec
which is the peak rate). However, ATS shows signs of getting saturated at
the rate 500 xact/sec (the blue line), and it cannot handle a rate higher than
800 xact/sec. Aside from a few spikes, it remains at a rate with the mean
between 600 and 800 requests per second. The bandwidth does not exceed
60 MB/sec while Varnish can handle 1600 xact/sec and 100 MB/sec at its
maximum performance.

76

4.4. RESULTS FOR THE MIXED CONTENT, INCREASING RATE
EXPERIMENTS

Figure 4.28: Mixed content workload phase inc

Figures 4.29 and 4.30 show the response time for Varnish and ATS respectively.
Due to their huge differences, the results are presented in separate figures. The
hits again have a very small values ranging from 1 msec to 7 msec at the end of
the phase. A random spike is seen in all three types of response times, which
means Varnish is showing the very early indications of getting to the saturation
point. The miss response times which start at 300 msec grow during the experi-
ment, reaching 316 msec.The same behavior applies to all replies responses, with
a start point of 230 msec and a final value of 245 msec. This is the behavior for
Varnish that was observed in all baseline tests except for the Download content
type.

The response time for ATS in this phase is relatively high. The overall response
time has a mean value of 8-10 seconds while the miss response time fluctuates
between 6 and 10 seconds. The interesting point here again is the hit response
time. Like HTML baseline test, where ATS got to saturation point, the hit
response time in this phase is higher than the misses. This indicates that ATS
cache handling is worsening under stress.

The results attained in this phase are similar to results obtained in HTML test,
where ATS get saturated before Varnish and yields somewhat odd results with
poor hit response time. Varnish performs as in the Image and HTML single
content scenarios.

77

4.4. RESULTS FOR THE MIXED CONTENT, INCREASING RATE
EXPERIMENTS

Figure 4.29: Varnish response time, inc phase

Figure 4.30: ATS response time, inc phase

Hit rates have quite different behaviour in this phase (see Figure 4.31). ATS
performs better in the beginning, with 30% of 76% offered cachable items, which
is similar to all the baseline experiments, where ATS caches more data. The
noticeable issue in this case is that, unlike the HTML-only case where ATS get
saturated but still maintains higher hit rates than Varnish, here the hit rate
reduces as the time goes forward. ATS ultimately caches only 20% of data,
which is even worse than Varnish. Varnish during whole period maintains a
constant rate of 25% caching of 76% offered cacheable data, exhibiting a stable
hit rate value.

78

4.4. RESULTS FOR THE MIXED CONTENT, INCREASING RATE
EXPERIMENTS

(a) (b)

Figure 4.31: Hit rates during the inc phase

Figure 4.32 shows the response rate vs response time plot for this phase. Var-
nish’s mean response time range is quite narrow, just as in the baselines, while
ATS has the same response pattern as Varnish while the request rate is in the
range below about 450 xact/sec. As the rate grows, there is no change in behav-
ior seen from Varnish as it just continues with a linear response time. But ATS
acts differently. As the rate increases above 450 xact/sec, the response time
shows an initial exponential growth pattern, and afterwards if remains in the
range between 800 and 1200 xact/sec on the client side. This is quite different
from the way ATS reaches to the saturation point in the HTML scenario, where
the response time is spread randomly from 2000 msec to 14000 msec.

Over the course of the experiment, Varnish’s response rate range is wide because,
unlike in the baseline experiments, the request continues to increase throughout
this phase. The interesting issue for Varnish is that, despite large growth of the
response rate, the response time remains almost unchanged.

79

4.4. RESULTS FOR THE MIXED CONTENT, INCREASING RATE
EXPERIMENTS

(a) (b)

Figure 4.32: Response time vs response rate, inc phase

4.4.3 Summary and Discussion

Results in this experiment are divided in two distinct parts, corresponding to
the top1 and inc phases. In the top1 phase, which simulates a typical scenario
for a cache/web server, the results reveal that either of servers can handle the
load in a reasonable manner, and they can respond to the full offered rate. The
results are summarized in figure 4.33

Figure 4.33: Performance during the constant rate phase

As the chart illustrates, the request/sec throughput (dark blue lines) for both
servers is similar, and they both respond to full offered rate of 320 xact/sec.
The bandwidth throughput for ATS is slightly better at 22 vs 19 MB (orange

80

4.4. RESULTS FOR THE MIXED CONTENT, INCREASING RATE
EXPERIMENTS

lines).

The hit response time is considerably better for Varnish, with an average 3 msec
against ATS’s 16 msecs. The average response times for misses and all replies
are more or less similar.

When it comes to document and bte hit rates, ATS outperforms Varnish with
better hit rates for either type.

Figure 4.34 shows the results attained from inc phase. Varnish yields better
performance in all cases. The dark blue lines show the much higher xact/sec
throughput for Varnish. Note that the graph shows the mean throughput over
the whole period of the test: 100 minutes. In the final minutes of the phase,
Varnish managed to handle a request rate of 1600 xact/sec (see Figure 4.28),
which is much higher than the mean in Figure 4.34. ATS, on the other hand,
can not handle rates higher than 600 xact/sec, beginning at minute 150 of the
test, and remains at this level until the end of the test.

As a consequence of the higher request rate, the bandwidth throughput is larger
for Varnish as well (the orange line). Despite huge differences in mean xact/sec,
the bandwidth throughput exhibits smaller differences (cf. difference between
the dark blue and orange lines).

The response time is the factor that shows the real difference from the client
point of view. It can be observed in the chart that all three kinds of response
times (hit, miss and all replies) have large values for ATS compared to those
with Varnish. The peak response times for ATS are not shown in the figure due
to having large values which exceed the scale. Overall, the mean response time
for ATS is between 6-12 seconds while the corresponding numbers for Varnish
are dramatically shorter, at only 300 msec at maximum.

Figure 4.34: Performance during the increasing rate phase

Table 4.7 shows the results of each scenario from the above summarized results.

81

4.5. SURROGATE DATA RESULTS

Throughput Response time DHR/BHR Resp. time/rate, client Resp. time/rate, server
top1 ATS (slightly) Varnish(slightly) ATS(slightly) Varnish(slightly) almost the same
Iinc Varnish Varnish Varnish(slightly) Varnish Varnish

Table 4.7: Summary of results from the inc phase

4.5 Surrogate data results

In this section, the results of the surrogate data are discussed in the context of
the preceding Polygraph results.

Best Effort Workload

Figure 4.35 shows the system CPU and memory usage during the Best Effort
test. ATS uses both less CPU and a smaller percentage of memory throughout
the test. Especially in terms of memory resources, ATS resource requirements
remain relatively constant over the period of the test.

Figure 4.35: CPU and Memory Usage, Best Effort Workload

Varnish uses more CPU and more memory than ATS, and its CPU usage range
is narrower than for ATS.

Figure 4.42 illustrates the Seekwatcher plots from the blktrace data recorded
during the same experiment. Varnish sustains a higher I/O throughput rate
from disk than ATS. The dip in the throughput graph occurs at the same time
as the spike in the seek count plot. This is a logical result. These features occur
during the experiment’s idle phase. Varnish may have entered a garbage collec-
tion mode when the request rate dropped to 0, accounting for these artifacts.
Otherwise, the Varnish seek rate is quite low, indicating that it is either serving
data from RAM or sending requests to the back end server.

82

4.5. SURROGATE DATA RESULTS

Figure 4.36: Disk I/O - mixed content type,increasing rate

Single Content Workloads

Figure 4.37 illustrates the CPU and main memory use for the three single con-
tent type workloads. ATS is relatively consistent in its memory usage; after a
startup period, it uses between 25% and 34% of main memory across the various
tests, with the maximum for HTML, the scenario for which it becomes satu-
rated. Even after this occurs, ATS does not continually increase its memory
use. In general, ATS is quite consistent in its memory usage across all of the
experiments.

Varnish has completely flat memory usage for the HTML and Image test, al-
though it uses more memory than ATS. For the Download content type, Varnish
again uses more memory than ATS, and its usage oscillate very slightly during
the course of the test.

For the Image and Download workloads, the CPU usage pattern for both servers
is similar to that for the Best Effort workload, although the mean values shift as
shown in Table 4.8. Note that the CPU percentage values are for 2 CPUs and
so can exceed 100%. The idle phase for the Image experiment, during which
server activity drops to zero, is excluded from the calculation of the mean.

Best Effort Image Download
ATS 20 7 102
Varnish 23 9 99

Table 4.8: Mean %CPU usage for various workloads (2 cpus)

The CPU usage for the HTML workload again indicates the stress experienced
by the ATS server, evidenced by the numerous usage spikes (green line). In
contrast, Varnish’s CPU usage remains steady at a quite low value of about
10% (again excluding the idle period).

83

4.5. SURROGATE DATA RESULTS

Figure 4.37: CPU/memory usage, single content type workloads

Figures 4.38 and 4.39 provide the Seekwatcher plots of the blktace data for
the HTML and Image content types. In both cases, there is again an upsurge
in seeks on the part of Varnish during the idle phase; in contrast, ATS seeks
decrease almost to zero over the same period. In addition, Varnish exhibits
another large spike later in both runs. This behavior is hard to explain, but it
recurs during experiment repetitions and is something that happens periodically
with Varnish. It is certainly worth additional investigation.

84

4.5. SURROGATE DATA RESULTS

Figure 4.38: Disk I/O - HTML content type

The two servers’ disk I/O throughput for these experiments show a very similar
pattern to one another, although ATS again has a lower throughput level for
both content types.

Figure 4.39: Disk I/O for Image content type

The Seekwatcher results for the Download content type are much more straight-
forward. The seek rates and I/O throughput are both flat, and the two servers
have essentially the same behavior profiles. This is in line with their similar
results for throughput and close results for other metrics from the Polygraph
tests.

Figure 4.40: Disk I/O - Download content type

85

4.5. SURROGATE DATA RESULTS

Mixed content results

Figure 4.41 shows the CPU and memory usage over the period of the mixed
content workload experiment. The period prior to 70 minutes corresponds for
the most part to the top1 phase. The two servers have essentially the same CPU
usage over this period, with ATS being slightly more volatile. The memory
usage again has ATS using several fewer percent of the CPU. These results are
completely in agreement with those from the best effort and non-HTML single
content tests.

Figure 4.41: CPU/memory usage, mixed content type workload

After minute 70, the inc phase begins, and the data changes significantly. Var-
nish uses gradually increasingly more CPU and slightly more memory than
during the top1 phase as the request rate rises.

ATS behavior is quite different. The CPU usage dramatically increases and os-
cillates wildly as the request rate rises. At times, the system is close to running
out of CPU resource. Memory use also increases, rising to a level significantly
over that of Varnish.

Figure 4.42 shows the Seekwatcher results for the same experiment. After the
initial fill phase (from about the minute point), the two servers again have very
similar results during the top1 phase. During the inc phase, Varnish throughput
rises as it is capable of handling the increasing workload. In contrast, ATS’s
throughput remains at a lower level corresponding to the fraction of the offered
workload that it is capable of handling.

86

4.5. SURROGATE DATA RESULTS

Figure 4.42: Disk I/O, mixed content type workload

The Varnish seek data again includes one very large and one smaller spike during
the inc phase. However, this characteristic if unexplained behavior does not
affect its I/O throughput results or its ability to handle the workload. Clearly,
this data feature must correspond to some routine function of Varnish.

87

Chapter 5

Discussion

5.1 Summary of the results

The following points summarize the most important results of the experiments
in this project.

• ATS performs slightly better in the Best Effort workload than Varnish
although the difference is not very large.

• When ATS performs better that Varnish, it is on the more artificial, single
content type workloads. For these workloads, the results can also be the
same for the two servers.

• Varnish performs much better on the HTML content type workload where
ATS becomes saturated.

• ATS has better document hits rates in almost all cases where it can handle
the request rate. This means that it caches more of the offered cacheable
data.

• Not considering the inc scenario where ATS is in the saturation state, the
throughput for these products are mostly the same or slightly better for
ATS.

• Varnish performs much better under the increasing request rate stress
portion of the most realistic, mixed content workload.

• The most important metrics for reverse proxy servers are throughput and
response time, and in most cases, Varnish’s results are superior to those
of ATS.

• In the results for response time versus response rate on the client side,
performance is almost the same, if slightly better for Varnish. In the
response time vs response rate on the server side, Varnish always performs
better

88

5.2. ANALYSIS OF THE ATS SATURATION POINT

• When ATS is under stress, it tends to consume a great deal of CPU
resources. This is only a serious problem if other work is intended to be
done on the same server.

• Resource usage patterns are generally similar to the Polygraph perfor-
mance results.

The most surprising point of the results is the much lower saturation point for
ATS than Varnish: 500-600 xact/sec for ATS, while Varnish manage to response
request rates of up to 1600 xact/sec.

5.2 Analysis of the ATS saturation point

Having a closer look at network metrics of each benchmark reveals that the
number of pending connections when the request rate increases in the inc phase
grows exponentially with a long-tailed distribution for ATS (see Figure 5.1). In
early minutes of the inc phase, ATS gets a high number of concurrent HTTP
connections. Thirty minutes after starting the phase, the concurrent HTTP
connections reach 500,000 connections, and this tendency continues until the
end of the test, ultimately reaching 2.5 million concurrent connections.

Figure 5.1: Concurrent HTTP connections for ATS

At the same time, considering the total number of TCP/HTTP connections (see
Figure 5.2), ATS cannot handle more than 6000 concurrent connections. ATS
remains at constant level of 6000 while the request rate continue to increase.
This is the reason for exponential growth of waiting connections for ATS.

89

5.2. ANALYSIS OF THE ATS SATURATION POINT

Figure 5.2: Concurrent HTTP/TCP connections for ATS

Figures 5.3 and 5.4 also show the network metrics for Varnish, which exhibits
numbers that are dramatically lower than for ATS. At the start of phase inc
in minute 125, the number of concurrent HTTP connections increases linearly,
proportional to the request rate increase. The connections do not reach to a level
more than 500 concurrent connection even at the highest request rates toward
the end of period. The pending connections do not exceed 150 connection at
any given time.

Figure 5.3: Concurrent HTTP connections for Varnish

Figure 5.4 shows that the number of TCP connections grow linear and propor-
tional to request rate as well, starting with 1000 concurrent TCP connections
and reacheing a peak of 3500 at the end of the experiment.

90

5.3. PITFALLS AND ISSUES WITH THE SERVER SOFTWARE

Figure 5.4: Concurrent HTTP/TCP connections for Varnish

5.3 Pitfalls and Issues with the Server Software

The process of installating of Varnish is quite straightforward. The only issue
here is that Debian and other distribution repositories may not have the latest
version, and earlier versions are significantly more unstable. For example, the
first version used for this research had a memory leakage bug causing Varnish
to crash. In order to mitigate the problem, it is better to install the product
from the varnish-cache.org repository or install from the source.

There are some potential pitfalls in configuring Varnish as well.

• By default, Varnish aggressively caches the objects and ignore the client
header "Cache-Control: no-cache" which it shouldn’t. This resulted in
too many Polygraph "hit on uncachable request" errors. This problem
was solved by adding the flag -t (timeout) when running varnishadm dae-
mon and assigning the value of zero, which tells Varnish to finish the
operation – in this case, caching the object – immediately.

• The same problem occurs with the Reload HTTP type request which Var-
nish serves from the cache instead of via a fresh object from the backend
server. The attempt to solve this was unsuccessful. Modifications to
vcl_fetch() didn’t solve the problem but instead caused another problem
which leaded to memory leakage. The errors resulting from this bug were
ignored in the analysis.

• Another problem with configuring Varnish is that the amount of the mem-
ory that it is using for indexing pages and other "housekeeping" activities
is not controllable, meaning that Varnish utilizes as much memory as it
wants. By experience it was observed that Varnish regularly used up to
30% of the whole memory capacity and ATS was not using more than
8-10%. In order to make the two test configurations as identical as possi-
ble, an additional 1 GB of RAM was given to ATS, which resulted actual
memory use that was much closer to Varnish. The surrogate tests revealed

91

5.4. DIFFICULTIES WITH THE POLYGRAPH TOOL

that ATS used more memory than was expected during the mixed content
workload, by about 10%.

Apache Traffic Server installation process was also straightforward. However the
initial configuration of ATS was more tricky than Varnish. The ATS package is
configured as a forward proxy server. In order to make it a reverse proxy server,
further configuration was needed (discussed in Section 3.6).

When using a reverse proxy server in front of an actual web server, the proxy
acts as if it is the actual web server. Thus the requests should be sent to the
proxy rather than (actual backend) web server. It means that the proxy is
transparent to clients, and clients send their requests thinking they are sending
traffic to the real web server.

When trying to benchmark ATS using Polygraph, the requests didn’t get through,
and Polygraph generated an error for each single request and the test failed. By
further investigation and sniffing the request packets with tcpdump[66], it was
determined that Polygraph was generating requests destined forto the actual
web server which did not match ATS’s remap rules. By changing the remap
rules to what is presented in section 3.6, this problem was solved. The remap
rule was changed to remap requests destined to "the web server" to again to
the ”web server”!

5.4 Difficulties with the Polygraph tool

Web Polygraph is an advanced tool which supports many features of the HTTP
protocol, but there are quite a lot challenges using that.

First of all, the lack of good documentation. Although there is a website in-
tended to be a resource for users, the website does not actually provide sufficient
information. What it seems to be trivial for Polygraph developers is not for other
users. The existing documentations do not give proper knowledge to identify
and understand the key concepts using the tool. Concepts are introduced with
little explanation and without working examples. It was a time consuming pro-
cess to try and fail with various changes in the configuration files to identify the
impact of each change, as it takes relatively long time to fill the caches and run
a test.

The second problem with Polygraph is that it does not tolerate even small time
differences between systems that it works with. After detecting some few hun-
dred millisecond time drift between them, it kills the client process and the test
fails. The problem shows itself when trying to send higher rates of requests.
This problem however could be partially solved by installing an NTP (Network
Time Protocol) server on the proxy server machine and NTP clients on the
client and web server machines.

92

5.5. OPEN ISSUES AND FUTURE WORK

However, despite having NTP installed, the problem persisted with high request
rates. The other measurement which was taken to alleviate the problem was
adding more robots with a lower request rate for each, so that the final peak
request rate is equal to previous one, with the difference that short time drifts
do not kill the process.

An other issue with Polygraph is that it does not provide the raw numeric data
for its results, instead producing HTML pages with graphical output. To solve
the problem, some code was added to the ReportFigure.cc file of the Polygraph
source code in order to store a local copy of processes data.

5.5 Open Issues and Future Work

Benchmarking web caches contains relatively wide range of elements to be taken
into account. There are quite many other things which can be done in conjunc-
tion with this project. One of them is using HTTP traffic with range headers and
different types of HTTP requests. Since considerable time was spent learn how
Polygraph generates loads, there was insufficient time to design and configure
all of the desirable workload types.
SSL traffic is common on the Internet, but could not be tested during this
research. SSL traffic can be generated by Polygraph, but Varnish does not
support SSL traffic. The arguement that Varnish developers make is that the
whole Varnish code is smaller than, for instance, the OpenSSL code, making it
unreasonable to introduce mechanisms for SSL support into Varnish. What is
recommended to overcome this shortcoming is to use an SSL proxy like nginx
or pound in front of Varnish. Apache Traffic Server does supports SSL traffic.

Another possibility for testing is generating SSL workloads, and traffic which
needs to be authenticated. However, neither Varnish nor Apache Traffic Server
support authentication of traffic. ATS removed this feature in 2008 when the
product was converted to an open source product. For Varnish, the developers’
philosophy is that authentication should be handled by the backend (private
communication).
The scenarios for all these tests have been identical and fair but performed in an
isolated network. Thus the results for response times are shorter than in reality.
Because of the identical scenarios, the best results in this project would be the
best in real networks and the worst results would be worst in real networks.
However, to get results which are closer to real numbers, one would need to
inject artificial latencies in the network. One can use software like Dummynet
for that purpose.

Another thing that might be helpful is to collect additional system data in order
to investigate more the unexpected disk I/O usage gained from the surrogate
tests. Metrics like buffer cache sizes and block I/O in/out operations to/from
memory. Such research could begin using a common tool like vmstat. Use of the
buffer cache by proxy servers is also an interesting area of future investigaiton.

93

Chapter 6

Conclusion

This thesis describes research into reverse proxy server performance. It has
accomplished the following:

• After learning about its working and functionality, several experimental
workloads were created using the Web Polygraph tool.

• These workloads were run using the Varnish and Apache Web Server proxy
servers configured to be as similar as possible.

• Additional system metrics were collected simultaneously with the Poly-
graph runs.

• These results were extracted and analyzed in order to compare the behav-
ior of the two servers.

Overall, ATS is shown to have better cache hit rates, thus reducing the traffic
to the backend web server. While this an important goal for forward proxy
servers, in reverse proxy servers, the important issue is to accelerate the data
traffic rather than trying to save bandwidth to the backends. Varnish shows
better response time performance, which is desirable. In addition, Varnish can
tolerate much higher request rate pressures. Based on this research, Varnish
seems the more promising reverse proxy server.

94

Bibliography

[1] http://cacheoff.ircache.net/.

[2] B.D. Davison. A web caching primer. Internet Computing, IEEE, 5(4):38
–45, jul/aug 2001.

[3] Cisco visual networking index: Forecast and methodology, 2010-2015.

[4] Web Caching. O’Reilly & Assosiates Inc, 2001.

[5] Ludmila Cherkasova and Gianfranco Ciardo. Role of aging, frequency, and
size in web cache replacement policies. lecture notes in computer science,
2001.

[6] http://www.web-polygraph.org/.

[7] http://www.hpl.hp.com/research/linux/httperf/.

[8] Alan Jay Smith. Cache memories. ACM Computing Surveys (CSUR),
14(3):473 –530, sept. 1982.

[9] Helen Thomas Anindya Datta, Kaushik Dutta and Debra VandeMeer. A
comparative study of alternative tier caching solutions to support dynamic
web content acceleration.

[10] A. Datta, K. Dutta, H. Thomas, D. VanderMeer, and K. Ramamritham.
Accelerating dynamic web content generation. Internet Computing, IEEE,
6(5):27 – 36, sep/oct 2002.

[11] Improving web server performance by caching dynamic data. In USENIX
symposium on Internet technologies and systems.

[12] H. Zhu and T. Yang. Class-based cache management for dynamic web con-
tent. In INFOCOM 2001. Twentieth Annual Joint Conference of the IEEE
Computer and Communications Societies. Proceedings. IEEE, volume 3,
pages 1215 –1224 vol.3, 2001.

[13] Geoff Huston and Telstra. Web caching. The internet Protocol Journal,
1999.

[14] http://www.mozilla.org/.

[15] http://windows.microsoft.com/en-us/internet-explorer/products/ie/home.

95

BIBLIOGRAPHY

[16] http://www.apple.com/safari/.

[17] B. Ciciani, F. Quaglia, P. Romano, and D. Dias. Analysis of design al-
ternatives for reverse proxy cache providers. In Modeling, Analysis and
Simulation of Computer Telecommunications Systems, 2003. MASCOTS
2003. 11th IEEE/ACM International Symposium on, pages 316 – 323, oct.
2003.

[18] Content distribution network. http://akamai.com.

[19] Jun Wu and K. Ravindran. Optimization algorithms for proxy server place-
ment in content distribution networks. In Integrated Network Management-
Workshops, 2009. IM ’09. IFIP/IEEE International Symposium on, pages
193 –198, june 2009.

[20] Bo Li, M.J. Golin, G.F. Italiano, Xin Deng, and K. Sohraby. On the opti-
mal placement of web proxies in the internet. In INFOCOM ’99. Eighteenth
Annual Joint Conference of the IEEE Computer and Communications So-
cieties. Proceedings. IEEE, volume 3, pages 1282 –1290 vol.3, mar 1999.

[21] Lili Qiu, V.N. Padmanabhan, and G.M. Voelker. On the placement of web
server replicas. In INFOCOM 2001. Twentieth Annual Joint Conference
of the IEEE Computer and Communications Societies. Proceedings. IEEE,
volume 3, pages 1587 –1596 vol.3, 2001.

[22] D. Wessels and K. Claffy. Internet Cache Protocol (ICP), version 2. RFC
2186 (Informational), September 1997.

[23] J. Postel. User Datagram Protocol. RFC 768 (Standard), August 1980.

[24] C. Aggarwal, J.L. Wolf, and P.S. Yu. Caching on the world wide web.
Knowledge and Data Engineering, IEEE Transactions on, 11(1):94 –107,
jan/feb 1999.

[25] B. Krishnamurthy and C.E. Wills. Proxy cache coherency and replacement-
towards a more complete picture. In Distributed Computing Systems, 1999.
Proceedings. 19th IEEE International Conference on, pages 332 –339, 1999.

[26] Stefan Podlipnig and Laszlo Böszörmenyi. A survey of web cache replace-
ment strategies. ACM Comput. Surv., 35(4):374–398, dec 2003.

[27] S Jin and A Bestavros. GreedydualâĹŮ web caching algorithm: exploiting
the two sources of temporal locality in web request streams. Computer
Communications, 24(2):174 – 183, 2001.

[28] Marc Abrams, Charles R. Standridge, Ghaleb Abdulla, Stephen Williams,
and Edward A Fox. Caching proxies: Limitations and potentials. Technical
report, Virginia Polytechnic Institute and State University, 1995.

[29] Mimi Pitkow, James Edward ; Recker. A simple yet robust caching algo-
rithm based on dynamic access patterns. Technical report, Georgia Insti-
tute of Technologys, 1994.

96

BIBLIOGRAPHY

[30] Mike Reddy & Graham P. Fletcher. Intelligent web caching using docu-
ment life histories: A comparison with existing cache management tech-
niques. Technical report, J228, School of Computing,University of Glam-
organ, Pontypridd, 1998.

[31] J. Zhang, R. Izmailov, D. Reininger, and M. Ott. Web caching frame-
work: analytical models and beyond. In Internet Applications, 1999. IEEE
Workshop on, pages 132 –141, aug 1999.

[32] A. Vakali. Lru-based algorithms for web cache replacement. In Kurt
Bauknecht, Sanjay Madria, and GÃĳnther Pernul, editors, Electronic Com-
merce and Web Technologies, volume 1875 of Lecture Notes in Computer
Science, pages 409–418. Springer Berlin / Heidelberg.

[33] Saied Hosseini-Khayat. Investigation of generalized caching. PhD thesis,
St. Louis, MO, USA, 1998. UMI Order No. GAX98-07761.

[34] Analyzing performance of partitioned caches for the WWW, 1998.

[35] Martin Arlitt, Rich Friedrich, and Tai Jin. Performance evaluation of web
proxy cache replacement policies. Performance Evaluation, 39(1âĂŞ4):149
– 164, 2000.

[36] Variable QoS From Shared Web Caches: User-Centered Design and Value-
Sensitive Replacement., 2001.

[37] Noritaka Osawa, Toshitsugu Yuba, and Katsuya Hakozaki. Generational
replacement schemes for a www caching proxy server. In Bob Hertzberger
and Peter Sloot, editors, High-Performance Computing and Networking,
volume 1225 of Lecture Notes in Computer Science, pages 940–949. Springer
Berlin / Heidelberg, 1997. 10.1007/BFb0031665.

[38] MCGREGOR T. CHANG, C.-Y. and G HOLMES. The lru* www proxy
cache document re- placement algorithm. In âĂć.

[39] Improving effectiveness of Web caching. In Re- cent Advances in Distributed
Systems, chapter âĂć. âĂć, 2000.

[40] Marc Abrams, Charles R. Standridge, Ghaleb Abdulla, Edward A. Fox, and
Stephen Williams. Removal policies in network caches for world-wide web
documents. SIGCOMM Comput. Commun. Rev., 26(4):293–305, August
1996.

[41] Igor Tatarinov. An efficient lfu-like policy for web caches. Technical report,
Computer Science Department, North Dakota State University, Wahpeton,
ND., 1998.

[42] Kai Cheng and Y. Kambayashi. Lru-sp: a size-adjusted and popularity-
aware lru replacement algorithm for web caching. In Computer Software
and Applications Conference, 2000. COMPSAC 2000. The 24th Annual
International, pages 48 –53, 2000.

97

BIBLIOGRAPHY

[43] Pei Cao Pei Cao. Cost-aware www proxy caching algorithms. Technical
report, University of Wisconsin-Madison, University of California-Irvine,
1997.

[44] Edith Cohen, Balachander Krishnamurthy, and Jennifer Rexford. Evalu-
ating server-assisted cache replacement in the web. In Gianfranco Bilardi,
Giuseppe Italiano, Andrea Pietracaprina, and Geppino Pucci, editors, Al-
gorithms âĂŤ ESAâĂŹ 98, volume 1461 of Lecture Notes in Computer
Science, pages 1–1. Springer Berlin / Heidelberg, 1998. 10.1007/3-540-
68530-8_26.

[45] Qiang Yang, H.H. Zhang, and Hui Zhang. Taylor series prediction: a
cache replacement policy based on second-order trend analysis. In Sys-
tem Sciences, 2001. Proceedings of the 34th Annual Hawaii International
Conference on, page 7 pp., jan. 2001.

[46] Nicolas Niclausse, Zhen Liu, and Philippe Nain. A new efficient caching
policy for the world wide web, 1997.

[47] Roland P. Wooster and Marc Abrams. Proxy caching that estimates page
load delays. Computer Networks and ISDN Systems, 29(8âĂŞ13):977 –
986, 1997. <ce:title>Papers from the Sixth International World Wide Web
Conference</ce:title>.

[48] Luigi Rizzo and Lorenzo Vicisano. Replacement policies for a proxy cache.
IEEE/ACM Trans. Netw., 8(2):158–170, April 2000.

[49] Hyokyung Bahn, Kern Koh, S.H. Noh, and S.M. Lyul. Efficient replacement
of nonuniform objects in web caches. Computer, 35(6):65 –73, jun 2002.

[50] David Starobinski and David Tse. Probabilistic methods for web caching.
Performance Evaluation, 46(2âĂŞ3):125 – 137, 2001. <ce:title>Advanced
Performance Modeling</ce:title>.

[51] K. Psounis and B. Prabhakar. A randomized web-cache replacement
scheme. In INFOCOM 2001. Twentieth Annual Joint Conference of the
IEEE Computer and Communications Societies. Proceedings. IEEE, vol-
ume 3, pages 1407 –1415 vol.3, 2001.

[52] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-Lee. Hypertext
Transfer Protocol – HTTP/1.1. RFC 2068 (Proposed Standard), January
1997. Obsoleted by RFC 2616.

[53] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Identifier
(URI): Generic Syntax. RFC 3986 (Standard), January 2005.

[54] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616
(Draft Standard), June 1999. Updated by RFCs 2817, 5785, 6266.

[55] Apache traffic server. http://trafficserver.apache.org/.

98

6.1. APPENDIX: THE AUTOMATION AND SURROGATE SCRIPTS

[56] Apache review2009. http://ostatic.com/blog/guest-post-yahoos-cloud-
team-open-sources-traffic-server.

[57] Apache traffic server wiki. https://cwiki.apache.org/confluence/display/TS/RamCache/.

[58] Varnish reverse proxy. https://www.varnish-cache.org/.

[59] L. Breslau, Pei Cao, Li Fan, G. Phillips, and S. Shenker. Web caching
and zipf-like distributions: evidence and implications. In INFOCOM ’99.
Eighteenth Annual Joint Conference of the IEEE Computer and Communi-
cations Societies. Proceedings. IEEE, volume 1, pages 126 –134 vol.1, mar
1999.

[60] Steven Glassman. A caching relay for the world wide web. Computer
Networks and ISDN Systems, 27(2):165 – 173, 1994. <ce:title>Selected
Papers of the First World-Wide Web Conference</ce:title>.

[61] V. Almeida, A. Bestavros, M. Crovella, and A. de Oliveira. Characterizing
reference locality in the www. In Parallel and Distributed Information
Systems, 1996., Fourth International Conference on, pages 92 –103, dec
1996.

[62] Norifumi Nishikawa, Takafumi Hosokawa, Yasuhide Mori, Kenichi Yoshida,
and Hiroshi Tsuji. Memory-based architecture for distributed www caching
proxy. Computer Networks and ISDN Systems, 30(1âĂŞ7):205 – 214, 1998.
<ce:title>Proceedings of the Seventh International World Wide Web Con-
ference</ce:title>.

[63] http://linux.die.net/man/8/blktrace/.

[64] http://oss.oracle.com/ mason/seekwatcher/.

[65] http://www.gnuplot.info/.

[66] http://www.tcpdump.org/.

6.1 Appendix: The automation and Surrogate scripts
The polystart.pl script

1 #!/usr/bin/perl
2 use Getopt::Std;
3 use strict "vars";
4 use Net::SCP;
5

6 my $VERBOSE = 0 ;
7 my $DEBUG = 0;
8

9 my $optString = ’vdhc:s:l:a:’;
10 getopts($optString,\my %opt) or usage() and exit 1;
11

12 if ($opt{’h’}) {
13 usage();
14 exit 0;
15 }
16

99

6.1. APPENDIX: THE AUTOMATION AND SURROGATE SCRIPTS

17 $VERBOSE = 1 if $opt{’v’};
18 $DEBUG = 1 if $opt{’d’};
19

20 my $client = "192.168.0.3";
21 my $server = "192.168.0.2";
22

23 verbose("Verbose is enabled");
24 debug("Debug is enabled");
25 my @accelerators = (trafficserver);
26 my @logs = (be4);
27

28 my $log = $opt{’l’} ? $opt{’l’} : "test";
29 my $accelerator = $opt{’a’};
30

31 print "\nhave you checked the working set storage, unique world ..etc parameters?..."; sleep 10;
32 verbose("flush varnish cache...");
33

34 foreach $log (@logs){
35 verbose("flushing the caches");
36 ‘/etc/init.d/varnish start‘; sleep 5;
37 ‘varnishadm -T 127.0.0.1:6082 ban.url .‘;sleep 5;
38 ‘/etc/init.d/varnish stop‘;sleep 5;
39 verbose("flush traffic server cache...");
40 ‘/etc/init.d/trafficserver stop‘; # sleep 5; ‘traffic_server -Cclear‘;sleep 5;
41

42 foreach $accelerator (@accelerators){
43

44 verbose("killing previous server and client processes, if any ...");
45 ‘ssh -l root $client "pkill poly"‘;
46 ‘ssh -l root $server "pkill poly"‘;
47

48 system("/etc/init.d/varnish stop; /etc/init.d/trafficserver stop");
49 my $log_server = "$accelerator"."_server_"."$log".".log";
50 my $log_client = "$accelerator"."_client_"."$log".".log";
51

52 my $s_config = "configs/$log".".pg";
53 my $c_config = "configs/$log".".pg";
54

55 verbose("log is $log");
56 verbose("config file is $c_config and $s_config");
57 verbose("Accelerator is: $accelerator");
58 verbose("server log file : $log_server");
59 verbose("client log file : $log_client");
60

61 verbose("Setting ulimits to 500000");
62 system("ulimit -n 500000");
63 ‘ssh -l root $server "ulimit -n 500000"‘;
64 ‘ssh -l root $client "ulimit -n 500000"‘;
65 print "\nhave you checked the working set storage, unique world ..etc parameters?..."; sleep 10;
66 verbose("Flushing the system caches...");
67 system("sync; echo 3 > /proc/sys/vm/drop_caches");
68 ‘ssh -l root $client "sync; echo 3 > /proc/sys/vm/drop_caches"‘;
69 ‘ssh -l root $server "sync; echo 3 > /proc/sys/vm/drop_caches"‘;
70

71

72 sleep 10;
73

74 verbose("Flushing network connections caches...");
75 system("/etc/inint.d/networking restart"); sleep 50;
76 ‘ssh -l root $client "/etc/init.d/networking restart"‘;
77 ‘ssh -l root $server "/etc/init.d/networking restart"‘; sleep 50;
78

79 my $run_server = "ssh -l root $server ’(ulimit -n 65000 ; /usr/local/polygraph/bin/polygraph-server
80 --unique_world off --local_rng_seed 501 --config $s_config --verb_lvl 10 --dump errs --log results/$log_server)’";
81

82 my $run_client = "ssh -l root $client ’(ulimit -n 65000 ; /usr/local/bin/polygraph-client --unique_world off

100

6.1. APPENDIX: THE AUTOMATION AND SURROGATE SCRIPTS

83 --local_rng_seed 601 --config $c_config --verb_lvl 10 --dump errs --log results/$log_client)’";
84

85 verbose("starting $accelerator ...");
86 my $start_accelerator = "(ulimit -n 100000 ; /etc/init.d/$accelerator start)";
87

88 system("$start_accelerator");
89 sleep 5;
90

91 verbose("running server and client processes.... may take long time ...");
92 open(SR, "$run_server | ") or die "could not run server process: $!\n";
93 verbose("poly server is started...");
94 sleep 5;
95

96 open(CL, "$run_client | ") or die "could not run server process: $!\n";
97

98 my $directory = "$accelerator$log";
99

100 ## start vmstat and blktrace
101

102 my $blkt = "./blktrace.pl -s $accelerator -o $directory ";
103 my $vstat = "./vmstat.pl -f $directory";
104 my $top = "./top.pl $accelerator $log";
105 my $adad = ‘ssh -l root $client "./awkp.pl"‘;
106 verbose("adad is $adad..");
107

108 my $afill = 1;
109

110 sleep 10;
111 verbose("poly-graph is running ... if client finished, waiting til server is done with cold phase");
112 while($adad > 2){
113 $adad = ‘ssh -l root $client "./awkp.pl"‘;
114 verbose("adad is $adad sleep 20...\n");
115 my $lr = "polygraph-lr results/$accelerator"."_client_"."$log".".log | grep i-link | wc -l";
116

117 if($afill eq "1"){
118 my $inc = ‘ssh -l root $client "$lr" ‘; verbose("inc is $inc");
119 if($inc > 3){
120 open(BLK, "$blkt | ") or die "could not run blktrace $!\n";
121 verbose("blktrace started...");
122 open(VS, "$vstat | ") or die "could not run vmstat $!\n";
123 verbose("vmstat started..."); sleep 10 ;
124 open(TP, "$top | ") or die "could not run top $!\n";
125 verbose("top started...");
126 $afill = 0 ;
127

128 }
129 }
130 sleep 20;
131 }
132 verbose("poly-graph finished ... killing poly processes(if any)...");
133 ‘ssh -l root $client "pkill poly"‘;
134 ‘ssh -l root $server "pkill poly"‘;
135

136 verbose("kill vmstat, blktrace and stop $accelerator..");
137 ‘pkill vmstat‘ ;
138 ‘pkill blktrace ‘ ;
139

140 verbose("stopping $accelerator");
141 system("/etc/init.d/$accelerator stop");
142

143 sleep 10;
144 if($accelerator eq "trafficserver") { $accelerator = "traffic_server"; }
145 verbose("copying the files ...");
146 my $csv_file = "$directory".".csv";
147 my $blktrace0 = "$directory".".blktrace.0";
148 my $blktrace1 = "$directory".".blktrace.1";

101

6.1. APPENDIX: THE AUTOMATION AND SURROGATE SCRIPTS

149 my $top_file = "top."."$accelerator"."$log".".csv";
150 my $png0 = "$blktrace0".".png";
151 my $png1 = "$blktrace1".".png";
152

153 verbose("running seekwatcher ...");
154 system("seekwatcher -t $blktrace0 -o $png0");
155 system("seekwatcher -t $blktrace1 -o $png1");
156

157 system("mkdir $directory; mv $csv_file $top_file $directory");
158 system("mkdir $directory; mv $csv_file $blktrace0 $blktrace1 $top_file $directory");
159

160 verbose("copying the files, preparing for reporter ...");
161

162 my $scp1 = Net::SCP->new("$server", "root");
163 my $scp2 = Net::SCP->new("$client", "root");
164

165 $scp1->get("results/$log_server") or die $scp1->{errstr};
166 $scp2->put("$log_server") or die $scp2->{errstr};
167 ‘ssh -l root $client "mv $log_server results/$log_server"‘;
168 system("rm $log_server");
169

170 $scp2->put("$png1") or die $scp2->{errstr};
171 $scp2->put("$png0") or die $scp2->{errstr};
172

173 system("mv $png1 $png0 $directory");
174

175

176 my $reporter_command = "/usr/local/bin/polygraph-reporter --report_dir /var/www/$directory
177 --label"." \"$directory\" " . "results/$log_server results/$log_client" ;
178

179 verbose("reporter command : $reporter_command");
180 ‘ssh -l root $client "$reporter_command"‘;
181

182 ‘ssh -l root $client "mkdir /var/www/$directory/"‘;
183 ‘ssh -l root $client "mkdir /var/www/$directory/figures"‘;
184 ‘ssh -l root $client "mkdir /var/www/$directory/seekwatcher"‘;
185 ‘ssh -l root $client "cp -r /tmp/polyrep/$directory/figures/*.* /var/www/$directory/figures/"‘;
186 ‘ssh -l root $client "cp -r /tmp/polyrep/$directory/*.* /var/www/$directory/"‘;
187 ‘ssh -l root $client "mv $png1 $png0 /var/www/$directory/seekwatcher"‘;
188

189

190 }
191 verbose("wait until TIME_WAIT connections are terminated...");
192 sleep 60;
193 verbose("\n \n done with $accelerator..\nkilling previous server and client processes, if any ...");
194 ‘ssh -l root $client "pkill poly"‘;
195 ‘ssh -l root $server "pkill poly"‘;
196 sleep 60;
197 }
198

199 print "\n\n\n***********test finished ************** \n";
200

201

202 sub top{
203 my $ts = $_[0];
204 my $log = $_[1];
205

206 my $pid = pid($ts); verbose("pid is $pid");
207

208 }
209 sub usage {
210 print "Usage: \n";
211 print "-h Usage \n";
212 print "-v Verbose \n";
213 print "-s server config file\n";
214 print "-c client config file \n";

102

6.1. APPENDIX: THE AUTOMATION AND SURROGATE SCRIPTS

215 print "-l log file name \n";
216 print "-a accelerator \n";
217 print "- \n";
218 print "./script [-d] [-v] [-h] \n";
219 }
220

221 sub verbose {
222 print $_[0]."\n" if $VERBOSE;
223 }
224

225 sub debug {
226 print $_[0]."\n" if $DEBUG;
227 }

The blktrace.pl script

1 #!/usr/bin/perl
2

3 use Getopt::Std;
4 use strict "vars";
5

6 my $VERBOSE = 0 ;
7 my $DEBUG = 0;
8

9 my $optString = ’vhs:o:’;
10 getopts($optString,\my %opt) or usage() and exit 1;
11

12 my $ser = $opt{’s’} ;
13 my $output = $opt{’o’};
14 my $dev;
15 if ($ser eq "varnish"){ $dev = "/dev/sda1" }
16 if ($ser eq "trafficserver"){ $dev = "/dev/sda1" }
17 my $command = "blktrace -d $dev -b 4096 -n 20 -o $output";
18 system("$command");
19

20 if ($opt{’h’}) {
21 usage();
22 exit 0;
23 }
24

25 $VERBOSE = 1 if $opt{’v’};
26

27 verbose("Verbose is enabled");
28 sub usage {
29 print "Usage: \n";
30 print "-h Usage \n";
31 print "-v Verbose \n";
32 # print "-d Debug \n";
33 print "./script [-d] [-v] [-h] \n";
34 }
35

36 sub verbose {
37 print $_[0]."\n" if $VERBOSE;
38 }
39

40 sub debug {
41 print $_[0]."\n" if $DEBUG;
42 }

The top.pl script

1 #! /usr/bin/perl
2 use Getopt::Std;
3 use strict "vars";
4

5 my $VERBOSE = 0 ;
6 my $DEBUG = 0;

103

6.1. APPENDIX: THE AUTOMATION AND SURROGATE SCRIPTS

7

8 my $optString = ’vdh’;
9 getopts($optString,\my %opt) or usage() and exit 1;

10

11 if ($opt{’h’}) {
12 usage();
13 exit 0;
14 }
15

16 $VERBOSE = 1 if $opt{’v’};
17 $DEBUG = 1 if $opt{’d’};
18

19 verbose("Verbose is enabled");
20 debug("Debug is enabled");
21

22 my $ts = $ARGV[0];
23 my $log = $ARGV[1];
24

25 if ($ts eq "trafficserver"){
26 $ts = "traffic_server";
27 }
28 if ($ts eq "varnish"){
29

30 }
31

32 my $OUT_FILE = "top."."$ts"."$log".".csv";
33 open(OUT, "> $OUT_FILE") or die "cant open $OUT_FILE $!\n";
34 print OUT "Time,%CPU,%MEMORY\n";
35

36 my $tmp = "top."."$ts";
37

38 my $tim;
39

40 while(‘ssh -l root 192.168.0.3 "ps aux | grep polygraph" | wc | awk ’{print $1}’‘ > 2){
41

42 my $pid = findpid();
43 system("top -b -n 1 -p $pid > $tmp ");
44 sleep 3; $tim = time;
45 open(F, "< $tmp ") or die "can not open $tmp ... $!\n";
46 while(my $line = <F>){
47

48 if($line =~ /^.*$pid\s+nobody.*\D\s+(\d+)\s+(\d+\.\d+).*$/){
49 print OUT "$tim,$1,$2\n";
50

51 }
52 if($line =~ /^.*$pid\s+traffics.*\D\s+(\d+)\s+(\d+\.\d+).*$/){
53

54 print OUT "$tim,$1,$2\n";
55 }
56

57 }
58 close F; sleep 20;
59 }
60

61

62 sub findpid {
63

64 my $command = "ps aux | grep $ts ";
65 open(TOP, "$command | ") or die "cant run top $!\n";
66

67 my $pid;
68 if($ts eq "varnish"){
69

70 while(my $line = <TOP>){
71

72 if($line =~ /^.*nobody\s+(\d+).*$ts.*$/){

104

6.2. APPENDIX: THE BASELINE, CONFIGURATION FILES

73

74 $pid = $1; return $pid;
75 }
76 }
77

78 }elsif($ts eq "traffic_server"){
79

80 while(my $line = <TOP>){
81 if($line =~ /^.*107\s+(\d+).*traffic_server.*$/){
82 $pid = $1; return $pid;
83

84 }
85 }
86 }
87 close TOP;
88 }
89

90 sub usage {
91 print "Usage: \n";
92 print "-h Usage \n";
93 print "-v Verbose \n";
94 print "-d Debug \n";
95 print "./script [-d] [-v] [-h] \n";
96 }
97

98 sub verbose {
99 print $_[0]."\n" if $VERBOSE;

100 }
101

102 sub debug {
103 print $_[0]."\n" if $DEBUG;
104 }

6.2 Appendix: The baseline, configuration files
The IMAGE.gp

1 #include "/usr/local/share/polygraph/workloads/include/contents.pg"
2 #include "/usr/local/share/polygraph/workloads/include/phases.pg"
3 rate PeakRate = 400/sec;
4

5 // Fill rate (must be between 10% and 100% of peak request ratePeakRate)
6 rate FillRate =100% * PeakRate;
7

8 // the two standard working set sizes are 100MB and 1GB
9 size WSS = 100MB;

10

11 // Cache size affects the duration of the "fill" phase below
12 // Use the sum of RAM and cache disks physical capacity
13 size CacheSize = 1GB;
14

15 // Random body with a length from 50KB to 100KB.
16 Content cntSimple = {
17 size = unif(50KB, 100KB);
18 };
19

20 // describe WebAxe-1 server
21 Server S = {
22 kind = "WebAxe-1-srv";
23

24 // contents = [cntImage: 50%, cntHTML: 15%, cntDownload: 0.5%, contentims: 20%, cntOther];
25 contents = [cntImage];//
26 direct_access = [cntImage];//
27

105

6.2. APPENDIX: THE BASELINE, CONFIGURATION FILES

28 xact_think = norm(0.3sec, 0.1sec);
29 pconn_use_lmt = zipf(16);
30 idle_pconn_tout = 15sec;
31 http_versions = ["1.1"]; //newer agents use HTTP/1.1 by default
32

33 };
34

35 // where the simulated servers and robots will be located
36 // these ips will need adjustments based on your local environment,
37 // working set size, and request rate!
38 addr[] srv_ips = [’192.168.0.2:9000’];
39 addr[] rbt_ips = [’192.168.0.3’ ** 1000];
40 addr[] proxy_ip = [’192.168.0.1:80’];
41

42

43

44 Robot R = {
45 kind = "WebAxe-1-rbt";
46 origins = srv_ips;
47 http_proxies = proxy_ip;
48

49 recurrence = 95%;
50 embed_recur = 100%;
51 pop_model = { pop_distr = popUnif(); };
52

53 req_rate = 0.4/sec;
54 pconn_use_lmt = zipf(64);
55 open_conn_lmt = 4; // open connections limit
56

57 //launch_win = 2.5min; // avoid burst of requests at start
58 http_versions = ["1.1"]; // newer agents use HTTP/1.1 by default
59

60

61 // 10% of requests have a Range header
62 req_types = ["Basic"]; // : 70%, "Ims200" :10%, "Ims304" : 10%, "Reload"] ; //, "Range": 20%];
63

64 };
65

66 // compute actual request rate
67 PeakRate = 400/sec;
68 //PeakRate = count(rbt_ips)*R.req_rate;
69

70

71 /* phases */
72

73 Phase phWarm = {
74 name = "warm";
75 goal.duration = 5min;
76 load_factor_beg = 0.1;
77 load_factor_end = FillRate/PeakRate;
78 log_stats = false;
79 };
80

81 Phase phFill = {
82 name = "fill";
83 goal.fill_size = 2*CacheSize;
84 recur_factor_beg = 5%/95%;
85 };
86

87 Phase phLink = {
88 name = "link";
89 goal.duration = 10min;
90 load_factor_end = 1.0;
91 recur_factor_end = 1.0;
92 };
93

106

6.2. APPENDIX: THE BASELINE, CONFIGURATION FILES

94 Phase phTop1 = { name = "top1"; goal.duration = 60min; };
95 Phase phDec = { name = "dec"; goal.duration = 5min; load_factor_end = 0.1; };
96 Phase phIdle = { name = "idle"; goal.duration = 10min; };
97 Phase phInc = { name = "inc"; goal.duration = 5min; load_factor_end = 1.0; };
98 Phase phTop2 = { name = "top2"; goal.duration = 60min; };
99

100 // build schedule using some well-known phases and phases defined above
101 schedule(phWarm , phFill, phLink,phTop1, phDec, phIdle, phInc, phTop2, phCool);
102 //schedule(phWarm);
103

104 working_set_length(WSS/(10KB*FillRate)/5%/80%);
105

106 S.addresses = srv_ips;
107 R.addresses = rbt_ips;
108 use(S, R);

The mixed increasing rate configuration file pipee.gp

1

2 #include "/usr/local/share/polygraph/workloads/include/contents.pg"
3 #include "/usr/local/share/polygraph/workloads/include/phases.pg"
4

5

6 // Request rate is determined by the number of robots and is computed
7 // later; setting request rate here has no effect
8 rate PeakRate = 1600/sec;
9

10 // Fill rate (must be between 10% and 100% of peak request rate PeakRate)
11 rate FillRate = 10% * PeakRate;
12

13 // the two standard working set sizes are 100MB and 1GB
14 size WSS = 100MB;
15

16 // Cache size affects the duration of the "fill" phase below
17 // Use the sum of RAM and cache disks physical capacity
18 size CacheSize = 1100MB;
19

20 // describe WebAxe-1 server
21

22 Content contentims = {
23 client_behavior.req_types = ["Ims200": 50%,"Ims304"];
24 client_behavior.req_methods = ["POST"];
25 size = exp(11KB);
26 cachable = 80%;
27 };
28

29

30 Server S = {
31 kind = "WebAxe-1-srv";
32

33 contents = [cntImage: 65%, cntHTML: 15%, contentims:10% , cntDownload: 0.5%,cntOther];
34 direct_access = [cntHTML,cntDownload, cntOther];
35

36 xact_think = norm(0.3sec, 0.1sec);
37 pconn_use_lmt = zipf(16);
38 idle_pconn_tout = 15sec;
39 http_versions = ["1.1"]; // newer agents use HTTP/1.1 by default
40 };
41

42 // where the simulated servers and robots will be located
43 // these ips will need adjustments based on your local environment,
44 // working set size, and request rate!
45 addr[] srv_ips = [’192.168.0.2:9000’];
46 addr[] rbt_ips = [’192.168.0.3’ ** 1600];
47 addr[] proxy_ip = [’192.168.0.1:80’];
48

49 // describe WebAxe-1 robot

107

6.2. APPENDIX: THE BASELINE, CONFIGURATION FILES

50 Robot R = {
51 kind = "WebAxe-1-rbt";
52 origins = srv_ips;
53 // http_proxies = proxy_ip;
54

55 recurrence = 95%;
56 embed_recur = 100%;
57 interests = ["public": 90%, "private"];
58 pop_model = { pop_distr = popUnif(); };
59

60 req_rate = 1/sec;
61

62 req_types = ["Basic": 70%,"Ims200": 10%,"Ims304": 10%,"Reload"];
63 req_methods = ["POST","GET": 70%,"HEAD"];
64 post_contents = [contentims];
65

66 pipeline_depth = zipf(13%);
67 pconn_use_lmt = zipf(64);
68 open_conn_lmt = 4; // open connections limit
69

70 //launch_win = 2.5min; // avoid burst of requests at start
71 http_versions = ["1.1"]; // newer agents use HTTP/1.1 by default
72 };
73

74 // compute actual request rate
75 PeakRate = count(rbt_ips)*R.req_rate;
76

77

78 /* phases */
79

80 Phase phWarm = {
81 name = "warm";
82 goal.duration = 5min;
83 load_factor_beg = 0.1;
84 load_factor_end = FillRate/PeakRate;
85 log_stats = false;
86 };
87

88 Phase phFill = {
89 name = "fill";
90 goal.fill_size = 2*CacheSize;
91 recur_factor_beg = 5%/95%;
92 };
93

94 Phase phLink = {
95 name = "link";
96 goal.duration = 5min;
97 load_factor_end = 0.2;
98 recur_factor_end = 1.0;
99 };

100

101 Phase phTop1 = { name = "top1"; goal.duration = 60min; };
102 Phase phDec = { name = "dec"; goal.duration = 5min; load_factor_end = 0.1; };
103 Phase phIdle = { name = "idle"; goal.duration = 10min; };
104 Phase phInc = { name = "inc"; goal.duration = 100min; load_factor_end = 1.0; };
105 Phase phTop2 = { name = "top2";goal.duration = 10min; };
106

107 // build schedule using some well-known phases and phases defined above
108 schedule(phWarm, phFill, phLink,phTop1, phInc, phTop2,phCool);
109

110 // convert WSS in terms of "volume" to WSS in terms of units of "time"
111 working_set_length(WSS/(10KB*FillRate)/5%/80%);
112

113 // assign agents (servers and robots) to their hosts
114 S.addresses = srv_ips;
115 R.addresses = rbt_ips;

108

6.2. APPENDIX: THE BASELINE, CONFIGURATION FILES

116

117 // commit to using these servers and robots
118 use(S, R);

The content file- content.gp

1

2 ObjLifeCycle olcStatic = {
3 length = const(2year); // two year cycle
4 variance = 0%; // no variance
5 with_lmt = 100%; // all responses have LMT
6 expires = [nmt + const(0sec)]; // everything expires when modified
7 };
8

9 // object life cycle for "HTML" content
10 ObjLifeCycle olcHTML = {
11 length = logn(7day, 1day); // heavy tail, weekly updates
12 variance = 33%;
13 with_lmt = 100%; // all responses have LMT
14 expires = [nmt + const(0sec)]; // everything expires when modified
15 };
16

17 // object life cycle for "Image" content
18 ObjLifeCycle olcImage = {
19 length = logn(30day, 7day); // heavy tail, monthly updates
20 variance = 50%;
21 with_lmt = 100%; // all responses have LMT
22 expires = [nmt + const(0sec)]; // everything expires when modified
23 };
24

25 // object life cycle for "Download" content
26 ObjLifeCycle olcDownload = {
27 length = logn(0.5year, 30day); // almost no updates
28 variance = 33%;
29 with_lmt = 100%; // all responses have LMT
30 expires = [nmt + const(0sec)]; // everything expires when modified
31 };
32

33 // object life cycle for "Other" content
34 ObjLifeCycle olcOther = {
35 length = unif(1day, 1year);
36 variance = 50%;
37 with_lmt = 100%; // all responses have LMT
38 expires = [nmt + const(0sec)]; // everything expires when modified
39 };
40

41

42 // PolyMix-1 content
43 Content cntPolyMix_1 = {
44 kind = "polymix-1"; // just a label
45 mime = { type = undef(); extensions = []; };
46 size = exp(13KB);
47 obj_life_cycle = olcStatic;
48 cachable = 80%;
49 };
50

51 Content cntImage = {
52 kind = "image";
53 mime = { type = undef(); extensions = [".gif", ".jpeg", ".png"]; };
54 obj_life_cycle = olcImage;
55 size = exp(9KB);
56 cachable = 80%;
57 checksum = 1%;
58 };
59

60 Content cntHTML = {
61 kind = "HTML";

109

6.2. APPENDIX: THE BASELINE, CONFIGURATION FILES

62 mime = { type = undef(); extensions = [".html" : 60%, ".htm"]; };
63 obj_life_cycle = olcHTML;
64 size = exp(8.5KB);
65 cachable = 90%;
66 checksum = 1%;
67

68 may_contain = [cntImage];
69 embedded_obj_cnt = zipf(13);
70 };
71

72 Content cntDownload = {
73 kind = "download";
74 mime = { type = undef(); extensions = [".exe": 40%, ".zip", ".gz"]; };
75 obj_life_cycle = olcDownload;
76 size = logn(300KB, 300KB);
77 cachable = 95%;
78 checksum = 0.01%;
79 };
80

81 Content cntOther = {
82 kind = "other";
83 obj_life_cycle = olcOther;
84 size = logn(25KB, 10KB);
85 cachable = 72%;
86 checksum = 0.1%;
87 };
88

89 // Random content similar to request bodies generated before v3.3
90 Content cntSimpleRequest = {
91 size = unif(0KB, 8KB);
92 };

The phases file- phases.gp

1 /*
2 * Commonly used Phases
3 *
4 */
5

6 // wait for some positive activity, you may want to adjust load_factor_end
7 Phase phWait = { name = "wait"; goal.xactions = 1; log_stats = false; };
8

9 // cool down for one minute
10 Phase phCool = { name = "cool"; goal.duration = 1min; load_factor_end = 0; log_stats = false; };

110

	Introduction
	Why Cache?
	Motivation
	Problem statement
	Thesis Outline

	Background and Related Workj
	Web servers
	Static web resources
	Dynamic web resources

	Cache servers
	Client side proxy
	Organization and ISP proxy caches
	Server ISP or CDN reverse proxy caches
	Server side reverse proxy cache
	Distributed Caches and ICP

	Cache replacement algorithms
	Replacement strategies

	HTTP
	HTTP Message Structure

	Caching software
	Apache Traffic Server
	Varnish
	Others

	Challenges
	Realistic Workloads
	Lack of recent works
	Tools specifically designed for cache benchmarking

	Model and Methodology
	Approach
	Test environment
	Web Polygraph
	Polygraph testing phases
	Command line options
	Polygraph console output

	Surrogate tests
	Blktrace
	Seekwatcher

	 Varnish Configuration
	Traffic Server Configuration
	The custom scripts
	Polygraph Configuration
	IP Addresses
	Working Set Size
	Cache size
	Content types
	The phases
	Server configuration
	Client configuration

	Defining the Experimental Phases and Workloads
	The best effort method
	Baseline Workloads
	The increasing rate workload

	Results and Analysis
	Sample Polygraph results
	Best effort workload results
	Single content type workload results
	Results for image content type
	HTML content type results
	Download content type results
	Summary and Discussion

	Results for the mixed content, increasing rate experiments
	Results for the top1 phase
	Increasing traffic rate phase inc
	Summary and Discussion

	Surrogate data results

	Discussion
	Summary of the results
	Analysis of the ATS saturation point
	Pitfalls and Issues with the Server Software
	Difficulties with the Polygraph tool
	Open Issues and Future Work

	Conclusion
	Appendix: The automation and Surrogate scripts
	Appendix: The baseline, configuration files

