
UNIVERSITY OF OSLO
Department of Informatics

Comparison of
Virtualization
Performance: VMWare
and KVM

Master Thesis

Naveed Yaqub

Network and System Administration

Oslo University College

May 23, 2012

Comparison of Virtualization Performance: VMWare
and KVM

Master Thesis

Naveed Yaqub

Network and System Administration
Oslo University College

May 23, 2012

Abstract

The main purpose of this thesis is to compare the performance overhead of the virtu-
alization infrastructures KVM and VMWare. All the experiments are carried out by
using the Red Hat Enterprise Linux(RHEL) Operating System version 6.1. The study
focuses on the performance of disk I/O operations, memory operations and CPU oper-
ations. The benchmarking tools used are Iozone for disk I/O, Ram Speed for memory
and UnixBench for CPU.

First a set of benchmarking tests are carried out by using a Bare Metal installation of
RHEL 6.1 on a Dell Poweredge R710 server. Next the exact same set of benchmark
tests are run after installing RHEL 6.1 on a single virtual machine running on KVM
on the same server. Finally VMWare ESXi 5.0 is installed on the server and RHEL
6.1 is installed on a single virtual VMWare machine. In this way the performance
overhead of the two virtualization infrastructures KVM and VMWare is measured and
compared. Each benchmarking test is run in each of the three cases sufficiently many
times to produce statistically significant results.

The VMWare I/O disk performance is mostly from 20 to 30% better than KVM, with
a few exceptions. And generally the VMWare I/O performance is 10-15% less than
the Bare Metal performance. The memory performance overhead is relatively smaller.
KVM performs better than VMWare for block sizes of 4MB and less, while the re-
sults show the opposite for block sizes larger than 4MB. When testing pure ALU
usage, there is almost no virtualization overhead. There was some overhead for the
other UnixBench CPU tests and in all these cases VMWare was performing better than
KVM. Our general conclusion is that the virtualization overhead is less for VMWare
than for KVM.

Acknowledgements

First, I would like to be grateful to my supervisor Hårek Haugerud for the project
guidance and technical support. Thanks for him to make it possible for successful
completion of this project. Report writing was a difficult challenge but was finished
with his help. The arrangement of mid term presentation made me able to review my
progress.

Secondly, I would like to thanks to Jarle Bjørgeengen as project provider at University
Center for Information Technology at University of Oslo. I would like to appreciate
him for his time to time guidance about project directions and special thanks for pro-
viding me hardware resource for project.

Thirdly, I would like to say thanks to Æleen Frisch for her valuable guidance on project
report writing. I learned a lot from the lectures she delivered on report writing and it
enabled me to proceed in the right direction. Next my gratitude is paid to Martin Kot
for supplying me valid IP addresses and his technical support during the project. In
addition, I am extremely grateful to my wife who assisted me in examining the thesis
and corrected my English grammar mistakes.

Lastly I wish to take this opportunity to express my deepest thanks to my dearest
parents, brothers and sisters for their unconditional love, support and encouragement
throughout the study. I would also like to convey thanks to my lecturers, professors,
classmates and friends. Their academic enlightenment, made my achievements possi-
ble during the two years master study.

Naveed Yaqub
May, 2012
Oslo, Norway

Contents

1 Introduction 10
1.1 Problem Statement . 11
1.2 Objective and Methodology overview 13
1.3 Research structure . 13

2 Background and literature 15
2.1 Virtualization . 15

2.1.1 History of Virtualization . 16
2.1.2 Basic Concepts of virtualization 17

2.2 Classification of virtualization techniques 17
2.2.1 Full Virtualization . 18
2.2.2 OS-Layer or Para Virtualization 19
2.2.3 Hardware-Layer Virtualization 20

2.3 Virtualization Usage Benefits . 21
2.4 Server Virtualization Technology . 22
2.5 VMWare Virtualization Technology 23

2.5.1 VMWware ESXi . 24
2.6 Red Hat Virtualization Technology 25
2.7 Background Material and Previous Work 25

2.7.1 Virtualization Overhead . 26
2.7.2 CPU Overhead . 27
2.7.3 Memory Overhead . 27
2.7.4 Disk I/O Overhead . 27

3 Benchmarking over view and tools 30
3.1 Benchmarking . 30
3.2 I/O benchmark tools . 31

3.2.1 Flexible I/O . 31
3.2.2 Bonnie++ . 31
3.2.3 Postmark . 31
3.2.4 Iozone . 32

3.3 Memory benchmark tools . 33
3.3.1 bandwidth . 33
3.3.2 mbw (Memory Band Width) 33
3.3.3 RAMSpeed . 34

3.4 CPU benchmark tools . 35
3.4.1 CPU Free BenchMark (former CPUMark) 35

2

CONTENTS

3.4.2 SysBench . 35
3.4.3 UnixBench . 35

4 Approach 39
4.1 System Hardware Specification . 39
4.2 Method for conducting the tests . 40

4.2.1 Implementation of Iozone test 40
4.2.2 Implementation of Ram speed test 43
4.2.3 Implementation of UnixBench test 44

5 Results and Discussion 48
5.1 Iozone . 48

5.1.1 Write . 49
5.1.2 Re-Write . 49
5.1.3 Read . 50
5.1.4 Re-Read . 50
5.1.5 Random Read . 51
5.1.6 Random Write . 52
5.1.7 Backward Read . 52
5.1.8 Record Rewrite . 53
5.1.9 Stride Read . 53
5.1.10 Forward Write . 54
5.1.11 Re-Forward Write . 54
5.1.12 Forward Read . 55
5.1.13 Re-Forward Read . 55

5.2 Discussion of Iozone test results . 55
5.3 Consolidated Iozone results . 56

5.3.1 Consolidated write performance 56
5.3.2 Consolidated read performance 57

5.4 Ram speed . 59
5.4.1 Integer and Writing . 59
5.4.2 Integer and Reading . 59
5.4.3 Float and Writing . 60
5.4.4 Float and Reading . 60

5.5 Discussion of Ram Speed test results 60
5.6 Consolidated Ram speed results . 61

5.6.1 Consolidated performance of integer and float writing 61
5.6.2 Consolidated performance of integer and float reading 62

5.7 Discussion . 63
5.7.1 Data spread . 63
5.7.2 Confidence Interval . 67
5.7.3 P-value . 69

5.8 UnixBench . 72
5.8.1 CPU Throughput results . 72
5.8.2 Inter Process Communication results 73
5.8.3 File System Throughput results 74
5.8.4 Composite Throughput score 75

3

CONTENTS

5.9 Future work . 75

6 Conclusions 77

A Iozone Results 85
A.1 Bare Metal Iozone results . 85

A.1.1 Write . 86
A.1.2 Re-Write . 87
A.1.3 Read . 87
A.1.4 Re-Read . 88
A.1.5 Random Read . 88
A.1.6 Random Write . 89
A.1.7 Backward Read . 89
A.1.8 Record Re-write . 90
A.1.9 Stride Read . 90
A.1.10 Forward Write . 91
A.1.11 Re-Forward Write . 91
A.1.12 Forward Read . 92
A.1.13 Re-Forward Read . 92

A.2 KVM Virtual Machine Iozone results 93
A.2.1 Write . 93
A.2.2 Re-Write . 93
A.2.3 Read . 94
A.2.4 Re-Read . 94
A.2.5 Random Read . 95
A.2.6 Random Write . 95
A.2.7 Backward Read . 96
A.2.8 Record Re-write . 96
A.2.9 Stride Read . 97
A.2.10 Forward Write . 97
A.2.11 Re-Forward Write . 98
A.2.12 Forward Read . 98
A.2.13 Re-Forward Read . 99

A.3 VMWare Virtual Machine Iozone results 100
A.3.1 Write . 100
A.3.2 Re-Write . 100
A.3.3 Read . 101
A.3.4 Re-Read . 101
A.3.5 Random Read . 102
A.3.6 Random Write . 102
A.3.7 Backward Read . 103
A.3.8 Record Rewrite . 103
A.3.9 Stride Read . 104
A.3.10 Forward Write . 104
A.3.11 Re-Forward Write . 105
A.3.12 Forward Read . 105
A.3.13 Re-Forward Read . 106

4

CONTENTS

B Ram Speed Results 107
B.1 Bare Metal Ram speed results . 107

B.1.1 Integer and Writing . 107
B.1.2 Integer and Reading . 108
B.1.3 Float and Writing . 108
B.1.4 Float and Reading . 109

B.2 KVM Virtual Machine Ram speed results 110
B.2.1 Integer and Writing . 110
B.2.2 Integer and Reading . 111
B.2.3 Float and Writing . 111
B.2.4 Float and Reading . 112

B.3 VMWare Virtual Machine Ram speed results 113
B.3.1 Integer and Writing . 113
B.3.2 Integer and Reading . 114
B.3.3 Float and Writing . 114
B.3.4 Float and Reading . 115

C UnixBench Results 116
C.1 CPU performance results using UnixBench 116
C.2 CPU performance results using UnixBench for each run 118

D Script for Iozone 121
D.1 Appendix: Iozonetest.sh . 121
D.2 Appendix: Fileseprator.sh . 121
D.3 Appendix: R commands for Iozone 125

E Script for Ram Speed 127
E.1 Appendix: ramspeed.sh . 127
E.2 Appendix: datagenerator.sh . 127
E.3 Appendix: ramsinglefile.sh . 128
E.4 Appendix: R commands for Ramspeed 128

5

List of Figures

2.1 Full Virtualization [18] . 18
2.2 OS Layer Virtualization [18] . 19
2.3 Hardware Layer Virtualization [18] 20
2.4 Background and effects of server virtualization [6] 23

5.1 Iozone average write . 49
5.2 Iozone average re-write . 49
5.3 Iozone average read . 50
5.4 Iozone average re-read . 50
5.5 Iozone average random read . 51
5.6 Iozone average random write . 52
5.7 Iozone average backward read . 52
5.8 Iozone average record re-write . 53
5.9 Iozone average stride read . 53
5.10 Iozone average forward write . 54
5.11 Iozone average re-forward write . 54
5.12 Iozone average forward read . 55
5.13 Iozone average re-forward read . 55
5.14 Consolidated write performance . 57
5.15 Consolidated read performance . 58
5.16 Ram speed average integer and writing 59
5.17 Ram speed average integer and reading 59
5.18 Ram speed average float and writing 60
5.19 Ram speed average float and reading 60
5.20 Integer and Float writing . 62
5.21 Integer and Float reading . 63
5.22 Iozone forward write for Bare Metal 64
5.23 Iozone forward write for KVM . 64
5.24 Iozone forward write for VMWare 65
5.25 Ram speed float and writing for Bare Metal 66
5.26 Ram speed float and writing for KVM 66
5.27 Ram speed float and writing for VMWare 67
5.28 Confidence interval of iozone 1 MB file size of VMWare. 68
5.29 Confidence interval of ram speed 4 MB block size of KVM. 69
5.30 UnixBench CPU Throughput . 72
5.31 UnixBench Inter process Communication Throughput 73
5.32 UnixBench File System Throughput 74
5.33 UnixBench composite throughput score 75

6

LIST OF FIGURES

A.1 Bare Metal Iozone Write . 86
A.2 Bare Metal Iozone Re-write . 87
A.3 Bare Metal Iozone Read . 87
A.4 Bare Metal Iozone Re-read . 88
A.5 Bare Metal Iozone Random read . 88
A.6 Bare Metal Iozone Random write . 89
A.7 Bare Metal Iozone Backward read 89
A.8 Bare Metal Iozone Record re-write 90
A.9 Bare Metal Iozone Stride read . 90
A.10 Bare Metal Iozone Forward write . 91
A.11 Bare Metal Iozone Re-Forward write 91
A.12 Bare Metal Iozone Forward read . 92
A.13 Bare Metal Iozone Re-Forward read 92
A.14 KVM VM Iozone Write . 93
A.15 KVM VM Iozone Re-write . 93
A.16 KVM VM Iozone Read . 94
A.17 KVM VM Iozone Re-read . 94
A.18 KVM VM Iozone Random read . 95
A.19 KVM VM Iozone Random write . 95
A.20 KVM VM Iozone Backward read . 96
A.21 KVM VM Iozone Record Re-write 96
A.22 KVM VM Iozone Stride read . 97
A.23 KVM VM Iozone Forward write . 97
A.24 KVM VM Iozone Re-Forward write 98
A.25 KVM VM Iozone Forward read . 98
A.26 KVM VM Iozone Re-Forward read 99
A.27 VMWare VM Iozone Write . 100
A.28 VMWare VM Iozone Re-write . 100
A.29 VMWare VM Iozone Read . 101
A.30 VMWare VM Iozone Re-read . 101
A.31 VMWare VM Iozone Random read 102
A.32 VMWare VM Iozone Random write 102
A.33 VMWare VM Iozone Backward read 103
A.34 VMWare VM Iozone Record re-write 103
A.35 VMWare VM Iozone Stride read . 104
A.36 VMWare VM Iozone Forward write 104
A.37 VMWare VM Iozone Re-Forward write 105
A.38 VMWare VM Iozone Forward read 105
A.39 VMWare VM Iozone Re-Forward read 106

B.1 Bare Metal Ram speed Integer and writing 107
B.2 Bare Metal Ram speed Integer and reading 108
B.3 Bare Metal Ram speed Float and writing 108
B.4 Bare Metal Ram speed Float and reading 109
B.5 KVM VM Ram speed Integer and writing 110
B.6 KVM VM Ram speed Integer and reading 111
B.7 KVM VM Ram speed Float and writing 111

7

LIST OF FIGURES

B.8 KVM VM Ram speed Float and reading 112
B.9 VMWare VM Ram speed Integer and writing 113
B.10 VMWare VM Ram speed Integer and reading 114
B.11 VMWare VM Ram speed Float and writing 114
B.12 VMWare VM Ram speed Integer and reading 115

8

List of Tables

3.1 Iozone operations for benchmarking file system 32
3.1 (continued) . 33
3.2 UnixBench for CPU benchmarking 36
3.2 (continued) . 37

5.1 Consolidated Write performance of Iozone test 56
5.2 Consolidated Read performance of Iozone test 58
5.3 Consolidated performance of integer and float writing 61
5.4 Consolidated performance of integer and float reading 62
5.5 Data spread of iozone forward write with 1 MB file size 65
5.6 Data spread of ram speed for float and writing with 4 MB block size . 67
5.7 P-value of t-test for comparison . 70

A.1 Bare Metal Iozone Write . 86

C.1 CPU performance of UnixBench . 117
C.2 CPU performance of UnixBench each run 119

9

Chapter 1

Introduction

Virtualization technology is considered the most demanding topic in todays era. Vir-
tualization allows single computer to run multiples operating system simultaneously
on a single computer system [1]. Virtualization technology helps the companies to run
different services on a single server which enables to reduce the cost of managing more
hardwares and usage of resources in more efficient ways. Now a days cloud comput-
ing is one of the most hot topic in computer system and virtualization is the key to the
cloud computing [2].

At enterprise data center, virtualization technology makes it possible to minimize the
costs by combining the server applications in fewer numbers of servers with reliable
and secure way [17]. Different workload running on a single platform provides the bet-
ter manageability, provisioning and cost [13]. Computer hardware is rapidly increasing
its performance and thus tends to make some resources not to be fully utilized and vir-
tualization technology is brought to overcome this problem [10]. Maximum utilization
of computer system is become possible with the help of this technology.

There are many reasons to answer the question that why we need to use the virtualiza-
tion as it has number of financial as well as managerial advantages. There are many
challenges that can pop up while deploying the new applications and computer sys-
tem specially today when modern hardwares are available for commercial and large
scale enterprise use. The abstraction from the physical hardware is provided by the
virtualization technology [3], that also removes the limitation of running only single
operating system on a single hardware.

The concept of virtualization is not new and it started development as old as the begin-
ning of the computer system. The pioneer of the virtualization technology was IBM
when in 1960s and 1970s they introduced the technology in its System 360 and 370
mainframes. The PC based computer architectures invention during 1980s, the further
development of virtualization was almost stopped [4]. The need for this technology
was raised when ”people were waking up to the fact that the data center was full, the
power they required had gone through the roof, and that they could not afford to con-
tinue to grow and scale out infrastructure,” [3] . Virtualization is now also supported
by hardware manufacturer for example Intel and AMD, they extended the IA32 in-

10

1.1. PROBLEM STATEMENT

struction set of x86 processor to support virtualization [5].

Because of plenty of great facilities offered by the virtualization, the market of virtu-
alization technology is increasing rapidly and is creating interest for many companies.
So to become vendors of virtualization tools such as VMWare, Xen, Red Hat etc. Lot
of other system vendors such as IBM, Sun, and Microsoft are also now exploring vir-
tualization technology.

VMWare is considered the market leader in virtualization technology with its strong
product features. Some sources says that more then half of the virtualization market is
captured by the VMWare and remaining half is shared by other vendors that includes
Xen, Microsoft, Red Hat, IBM etc. Whereas the Red Hat claiming that after joining of
KVM with red hat, they have now more secured and robust services in virtualization
race. VMWare uses the virtual machine monitor VMM between operating system and
hardware for management of the resources.

Dr. Rosenblum with his students at Stanford University launched several projects of
virtualization technology. From this research group VMWare is created when Dr.
Rosenblum with his colleague Diane Greene and two of his students. They started
the company with the challenge to shape the product from this unproven research of
university research group [2]. In 1999, VMWare introduced virtualization to x86 sys-
tem for maximizing the system resources and transforms x86 system into a general
purpose, shared hardware infrastructure that offers full isolation, mobility and operat-
ing system choice for application environments.

VMWare starts its journey when they are successfully allowing the access to applica-
tions for different operating systems. That success enables to test the performance of
one application on different operating systems. After getting success in PC at commer-
cial market, VMWare researchers started to think on new challenges of server virtual-
ization. So that they could computing for storage and networking devices for building
the datacenters [2].

A small company Qumranet an Israel based has developed KVM but in september
2008 Red Hat acquired Qumranet. KVM was ready for production at the time of ac-
quisition by Red Hat. Red Hat realized that KVM virtualization technology is future
based virtualization and now KVM is default virtual machine monitor in Red Hat En-
terprise Linux (RHEL) since version 5.4 and the Red Hat Enterprise Virtualization for
Servers [5].

1.1 Problem Statement

Virtualization is nowadays very hot topic. Most of the big market service providers are
already enjoying the benefits of this technology. While the others are thinking to use it.
As there are number of vendors available in the market and therefore, it needs to make
detailed study about which technology is better than the other for a specific setting that

11

1.1. PROBLEM STATEMENT

suits to an organization. This research work in general will study the virtualization
technology with concentration of demanding market vendors that is VMWare and Red
Hat. In more specific way the study will try to conduct the comparative research of
virtual technology specifically overhead. That caused a little bit extra workload for
processing to access the physical resources of the system. So the problem statement
of this research work will be the:
Evaluate and compare the performance of VMWare and Red Hat KVM Virtualization.
It is more interesting to see the performance of Red Hat Enterprise Linux 6.1 as op-
erating system. The performance comparison of these technologies shall be tested to
use different benchmarking tools with respect to CPU, Disk I/O, and memory. This
research work is primarily focused on comparison of Red Hat and VMWare virtual-
ization technologies that needs to be addressed the following questions as well to be
considered the part of this study:

• Performance of Red Hat Enterprise Linux 6.1 OS on Bare Metal (non-virtualized
environment).

• Performance of Red Hat KVM virtualization with RHEL 6.1 OS installed on
virtual machine.

• Performance of VMWare ESXi virtualization with RHEL 6.1 OS installed on
virtual machine.

Detail review of the problem statement will further explain that there are three differ-
ent scenarios that will be tested with three different performance measurement aspects.
RHEL 6.1 operating system, Red Hat KVM, and VMWare. All these three different
cases will be tested with three kinds of aspects that include CPU, memory, and disk
I/O. To make the results comparable, identical environment will be provided by using
the same OS that is RHEL 6.1 in all three cases. Each of these three aspects of perfor-
mance will be repeatedly conducted for more reliable results that will be strong based
for analysis and confident conclusion. Besides the primary questions that will be tried
to search during this study, following secondary question will also be tried to answer
with subject to availability of sufficient time.

• The scalability of Red Hat and VMWare virtualization while testing different
components that is CPU, memory, and Disk I/O.

Detail study will be made to evaluate both the virtualization technologies with the help
of their architectures and the way of their working. A middle layer in between hard-
ware and operating system named hypervisor will be studied and discussed in detail
that how it works. Hypervisor is an additional layer that makes a little delay for ac-
cessing the resources for virtualized environment and thus suffers the performance as
compared with Bare Metal or non virtualized system.

Hence the study will address the performance comparison of two major cases that is
virtualized and non virtualized environment and then two virtualization technologies.
In first case where the comparison between RHEL 6.1 OS is made with Red Hat KVM
and VMWare virtualized system. It is obvious that non virtualized system will per-
form better than virtual system as there is an additional layer exists in between virtual

12

1.2. OBJECTIVE AND METHODOLOGY OVERVIEW

operating system and hardware. This additional layer (hypervisor) has its own time
delay that makes the performance of virtual operating system a little bit slower than
operating system that is directly working with hardware. In second case where Red
Hat KVM will be compared with VMWare, the results will be interested as both virtual
technologies use different kind of hypervisor having their own architecture and have
a different amount of overheads for system resources request of virtual operating sys-
tem. Red Hat KVM virtualization as compared to VMWare is not that much mature as
VMWare is considered as market leader for virtual technologies having biggest market
stakeholder. Whereas Red Hat KVM virtualization having support in RHEL OS kernel
is also part of red hat enterprise linux package.

A comprehensive analysis on the bases of data collection by using different bench-
marking tools will enable to give our review and will suggest the best among Red Hat
KVM and VMWare.

1.2 Objective and Methodology overview

This study is conducted to know the performance comparison of the virtual machine
monitor. As there are many virtualization technologies available and it also known as
that virtualization introduce some overhead that caused the performance suffering. As
different virtualization technologies use different kind of virtual machine monitor or
hypervisor so the performance is also varied [36]. The objective of this research work
is to figure out the following questions:

• The performance degradation of virtual machine against physical machine.

• How much difference between different virtualization technologies?

• What factors lead to the performance loss of virtualization systems?

1.3 Research structure

Goal of this research work is to measure the performance overhead of virtualization
technology with native system. In first chapter problem statement and objective are
discuss after introducing the virtualization technology. Second chapter presents the
history of virtualization and its different types. Benefits of virtualization and descrip-
tion of VMWare and KVM along with background material and different overhead is
also the part of the second chapter. The third chapter will introduce the benchmark-
ing and different available benchmarking tools. The specification of hardware and
implementation of benchmarking tool will be presented in fourth chapter. Result and
discussion chapter will show different graphs and analysis of few selective cases for
discussion. This report will be concluded in chapter six with final words and future
research question.

13

Chapter 2

Background and literature

2.1 Virtualization

There are many definitions of virtualization but the following are more general by [16]

Definition 1. "Virtualization is a technology that combines or divides computing re-
sources to present one or many operating environments using methodologies like hard-
ware and software partitioning or aggregation, partial or complete machine simula-
tion, emulation, timesharing, and many others."

By this definition virtualization provides isolated environment over the hardware for
application of operating system. As the users want to get maximum utilization of
the hardware, so this virtualization technique provides the opportunity for optimum
benefits from hardware resources that are closed to real machines. Another definition
of system virtualization is given below [17]

Definition 2. "A system VM provides a complete environment in which an operating
system and many processes, possibly belonging to multiple users, can coexist."

The system virtualization from above definition provides the usual hardware like eth-
ernet controllers, CPUs or hard disk drives to an operating system which runs inside
of it. Such a system that has attached physical hardware is capable of running many
virtual machines at a time that is known as virtualization host whereas the virtual ma-
chines running on it are called guest. The operating system running on each virtual
machine is known as guest operating system.

In virtualization systems, usage of hardware resources between parallel running of
virtual machines are managed by special software known as Virtual Machine Monitor
(VMM) or hypervisor that works between the hardware and operation system [14].
Hypervisor creates illusion of hardware resources to make it possible to run multiple
virtual machines at the same time [15]. A key for every virtual technology is called
hypervisor, that allows the system resources for each OS program[1]. The hypervisor
basically works in between different OS and system resources. Multiple OS’s are
competing for resources such as CPU, memory, data, network etc. and hypervisor is
responsible to manage all such requests.

15

2.1. VIRTUALIZATION

2.1.1 History of Virtualization

Before proceeding to know about server virtualization technology, it is need to under-
stand why and how this technology discovered. The first computing systems developed
were large in size and expensive to operate. As the computer system got popular its
demand was also increased and that firstly brought the idea of batch processing in 1950
which afterwards emerged into time sharing system in 1965. This time sharing system
then allows multiple applications from number of users to run at the same time. Time
sharing systems were working fine but the problem arose when error in one application
crash the entire system. To increase the reliability of the system, the applications need
to be isolated from each other.

In the beginning one system was used for one application for isolation purpose but
this was very expensive [18]. It was not only expensive solution but also wastage of
system resources as well as the system was utilized with their full capacity because
of non time sharing system. This problem became a reason for development of new
ideas and then software development introduced the instruction-by-instruction simu-
lation of one computer system differ from the other system. This isolated application
creates copies of hardware and software for each application that facilitates the user to
run their own application even operating systems of their own that evolved the idea of
virtual machine [19].

According to Marinescu [18] the isolation of the application by mean of virtual ma-
chine had the drawback of slowing down the computer system by 20 to 1 factor as
it shares the hardware resources among different operating systems. For monitoring
the performance of simulation softwares to improve the system efficiency, the idea of
virtual machine monitor was introduced in 1960s and IBM virtual monitor/370 was
considered one of the system at that time.

The virtualization technology was improved in 1970s and widely used by the organiza-
tions because of cost effectiveness. During the 1980s and 1990s the cost of computer
hardware was dropped and multitasking operating systems were also not that much
used. During that era virtualization technology was not given consideration for im-
provement. The one reason for not using the virtualization might be because of low
prices of system hardware, maximum utilization of system resources were also not that
much concern whereas before 1980s system architecture was developed for keeping in
mind of virtualization [20]. The new computer system architecture from mainframes to
minicomputers and then PCs did not have the support for virtual machine monitor [23].

VMWare was the first organization in 1990s, when virtual machine monitor was re-
searched by one of the research group of Stanford University in a research project.
VMWare became the pioneer of virtualization technology for commodity hardware.
After VMWare successful reshaped of the virtualization technology, lot of other ven-
dors has also shown their interest for making research and development in this field.
Unlike in the beginning of virtualization technology when it was introduced for mul-
titasking, nowadays it is used to decrease the management cost along with hardware
cost. Now lot of vendors with variety of different alternatives are available in the mar-

16

2.2. CLASSIFICATION OF VIRTUALIZATION TECHNIQUES

ket that include SWsoft and XenSource. The hardware system architecture is also now
virtualization supported for example Intel (VT) and AMD (SVM) to support virtual-
ization [18].

2.1.2 Basic Concepts of virtualization

The software abstraction between hardware and operating system is called virtualiza-
tion. All the applications are run in the operating system that is running over the ab-
straction layer also called virtual machine monitor or hypervisor [18]. The hypervisor
is used to hide the hardware system resources from operating system that allows to run
different operating systems at the same time as the hardware is not directly accessible
by the operating system. Further Marinescu [18] explains that available hardware is
logically divided into number of logical units that each called virtual machine.

Every virtual machines have a set of following requirements [20]:

• Equivalence: The application that is running in virtual machine is just like same
as it is running on the hardware without any additional plugin requirement. It
must be identical in behavior while running in two different case.

• Control: The abstraction layer in between hardware and virtual machines must
be controlled and synchronized access of virtual machines to hardware resources.

• Isolation: Virtualization technology was developed to ensure the isolation in
between virtual machines. The purpose is to ensure stability of crashing one
virtual machine should not affect others. Security from compromised virtual
machine should not grant access to other virtual machines and data consistency.

• Performance: The virtualization overhead that is due to abstraction layer should
be minimal, almost close to "Bare Metal" performance.

• Encapsulation: Cloning of the virtual machines are easy when they exist in the
form of directory of file that also allow easy migration of the virtual machines.

2.2 Classification of virtualization techniques

Virtualization can be classified into following three different categories for a particular
intel x86 architecture [18]:

• Full Virtualization

• OS-Layer or Para Virtualization

• Hardware-Layer Virtualization

All these types are further explained [18]:

17

2.2. CLASSIFICATION OF VIRTUALIZATION TECHNIQUES

2.2.1 Full Virtualization

In full virtualization, virtual machine monitor is also known as virtual machine man-
ager that runs over the host operating system just similar as user application. This type
of virtualization provides virtual hardware that allows the virtual machines and guest
operating system to run on top of virtual machine manager as shown in the figure 2.1.

Figure 2.1: Full Virtualization [18]

Many of the market vendors including VMWare Workstation, Parallels, and Virtual
PC are using full virtualization products, whereas VMWare workstation is the most
popular among them. VMWare renamed the virtual machine manager as hosted vir-
tual machine architecture that install VMWare workstation on top of the host operating
system.

This type of virtualization is easy to use for layman as it only needs to install a soft-
ware product like VMWare Workstation similar to any other software product on its
operating system of users own choice. Guest operating system can be installed on
VMWare workstation that will work as normal operating system using system hard-
ware resources. According to Marinescu [18] the performance of the guest operating
system can be decreased up to 30% because of additional host operating system and
virtual machine manager in between hardware and guest operating system. In desktop
market, users are more concerned with usability instead of performance, so the poor
performance even is not main hurdle in success of this type of virtualization. But on
the other hand in server technology, where performance is the main factor along with
others, that arises the need of separate virtualization solution.

18

2.2. CLASSIFICATION OF VIRTUALIZATION TECHNIQUES

2.2.2 OS-Layer or Para Virtualization

Unlike full virtualization where virtual hardware is created, in operating system layer
virtualization, it implements various instances of virtual guest operating system. The
virtual machines use the virtualized image of operating system. This kind of virtual-
ization is also known as Single Kernel Image (SKI) or container-based virtualization.
Virtual server operating system is virtualized in this approach, which allows the hyper-
visor and the guest OS to collaborate on achieving the fastest, most robust performance
possible [4]. The figure 2.2 explains the operating system layer virtualization architec-
ture.

Figure 2.2: OS Layer Virtualization [18]

Each guests can run complete operating system in paravirtualization approach whereas
the privileged instructions cannot be executed by a guest. Modification in guest operat-
ing system is required to implement an interface for running of privileged instructions
on guest virtual machines. Virtual machine monitor can run the restricted instructions
for virtual machine. This approach is closed to native performance but lacks in the
support for closed source operating system [12]. The source code of kernel of an op-
erating system is needed to be patched for mentioned modifications and this makes
impossible for Microsoft Windows to run in a VM using paravirtualization.

Operating system layer virtualization is mostly used in web hosting, high performance
computing (HPC) clusters and grid computing. This approach is used in different prod-
ucts that includes Virtuozzo and its open source variant OpenVZ, Solaris Container,
BSD Jails and Linux VServer. System can easily manage and administrate with this
approach, system resources can be assign to virtual machines at the time of creation
and run time as well that includes memory, CPU guarantees and disk space [18]. This
type of virtualization is more efficient as compared with other server virtualization

19

2.2. CLASSIFICATION OF VIRTUALIZATION TECHNIQUES

solutions and very few instances of failures to provide the isolation [22]. A big disad-
vantage of this type of virtualization is guest and host operating system must be same
because the virtual machines are using the same kernel as the host operating system
mean that means it is not possible to run e.g. Windows on top of Linux.

2.2.3 Hardware-Layer Virtualization

High performance and isolation is most commonly used by the hardware layer virtu-
alization for server technology. In this category the virtual machine monitor directly
runs on hardware that controls the access of the guest operating systems to the hard-
ware resources as shown in figure 2.3:

Figure 2.3: Hardware Layer Virtualization [18]

Market leaders in virtualization VMWare ESXi server and Xen are using this technol-
ogy. According to Marinescu [18] "Paravirtualization is the technique used by Xen
which provides a virtual machine interface representing a slightly different copy of the
underlying hardware, where the nonvirtualizable portions of the x86 original instruc-
tion set are replaced with their easily virtualized equivalents". Rosenblum [23] further
says that "guest operating systems running on top of this interface must be ported to
use the slightly modified instruction set". At the same time running application on
guest operating systems does not required any alteration. Porting an OS to Xen is
relatively low in cost [24], but still its a big disadvantage of the paravirtualization ap-
proach. Adams and Agesen agree that "the approach used by VMWare ESX avoids this
problem by performing on the fly binary translation of privileged code (kernel code)
which replaces the nonvirtualizable instructions with a code that can be run directly on
the CPU" [25].

20

2.3. VIRTUALIZATION USAGE BENEFITS

2.3 Virtualization Usage Benefits

Virtualization technology has plenty of benefits for using. Some main advantages are
listed below[7].

• Workload consolidation can be possible with the help of virtual machines to
use the fewer machines, even on single server can be used. Virtualization for
workload consolidation having a benefits of savings on hardware, environmental
costs, management, and administration of the server infrastructure.

• Untrusted applications that are vulnerable for the system can be isolated by using
separate virtual machines which are an important concept in building secure
computing platforms.

• Execution environments with resource limited operating system can be created
for a specific purpose. For example if an operating system that don’t needed
graphical environment or other resources like NIC etc can be created that might
be able to increase the quality of service enabled operating system.

• As there is only one physical machine for number of virtual machines but all the
virtual machines consider having their own hardware resources that are kind of
illusion of hardware. Independent networks can also be simulated with the help
of virtualization technologies.

• Simultaneously support for running multiple operating systems can also be pos-
sible by using he virtual machines. Even same operating system with different
version or different operating systems that are some time difficult to run on real
hardware is possible with virtualization environment.

• Virtual machine monitoring tool can be configured for debugging and perfor-
mance measurement of the virtual machine.

• Software migration is easy with virtual machines that adds system mobility fea-
tures.

• Research and academic experiments that might be risk for system crushing, vir-
tual machines environment can be a great tools for them. Since they provide
isolation, they are safer to work with.

• A test scenario can be created for an application that can be led towards imple-
mentation in real environment for effective quality assurance.

• A new feature of operating system can be tested on virtual machine before its
implementation at actual.

• System backup, recovery, or migration is quite easy and manageable by using
virtualization.

21

2.4. SERVER VIRTUALIZATION TECHNOLOGY

2.4 Server Virtualization Technology

When limited hardware resources are available for services or when optimum usage
of resources are required for a server then server virtualization technology is handy to
use, that allows to make multiple virtual servers on one physical server machine. An
operating system for each virtual machine can be ran that is just shadow of a phys-
ical server. According to Oguchi and Yamamoto [6] Virtual machines can be built
by dividing a physical server in terms of hardware and software. More they describe
the advantages to this division of hardware that error in one section is not affecting
the others. On the other hand software divide the system resources that include CPU,
memory, I/O devices, and other hardware resources to be assigned to virtual machines,
and the resource assignment status changed even during operation. Moreover, when
the physical server is divided by software (through server virtualization), the hardware
resources can be shared by and assigned among multiple virtual machines, as well as
being used exclusively by a specific virtual machine.

Server virtualization starts when Dr. Mendel Rosenblum, associate professor of Com-
puter Science at Stanford University, initiate his research group to focus on machine
virtualization as a technique for utilizing servers with various system services [2].

The server virtualization technology is expected to reduce the construction costs of
application servers that is nows largely used. Cost of expenses, required time, location
and others is expected to decrease by implementing the server virtualization technol-
ogy [6]. The maximum usage of hardware resources of the server is possible with
server virtualization technology. As the server is expected to perform significantly
well specially during peak rush hours, but possibly rest of the time the usage of hard-
ware might remain low. To make sure the services availability to client a backup server
is also usually maintained by the companies that caused to increase the system cost.
Server virtualization technology can help to reduce such cost.

On a single server, when having multiple virtual machines are installed as shown in
figure 2.4, the installation cost and time needed can be reduced as compared to a set-
ting up a multiple physical servers. Using the server virtualization technology, it only
required a single hardware server resources and decreases the expenses. Moreover,
building multiple systems on one physical machine enables to maximum utilization of
the resources e.g CPU, memory, I/O, and network interface will result in more effec-
tive use of server resources.

22

2.5. VMWARE VIRTUALIZATION TECHNOLOGY

Figure 2.4: Background and effects of server virtualization [6]

2.5 VMWare Virtualization Technology

Virtualization is a technology that is increasing by every passing day in IT industry
because of its number of benefits, higher utilization of expensive hardware, improved
security, ease of administration, and improved data integrity. World’s largest supplier
of virtualization software, platforms, and tools are provided by VMWare and their
products are widely used across many industries.

VMWare earlier worked on single virtual machine, but the datacenter required running

23

2.5. VMWARE VIRTUALIZATION TECHNOLOGY

a large number of virtual machines on limited physical machine. As a top focus on re-
source management VMWare research on server virtualization technology. VMWare
also claiming that they provide reliability to virtual machines even more than running
directly on hardware. The Design of a Practical System for Fault Tolerant Virtual Ma-
chines describes one such approach to this increased reliability [2]. VMWare is now
more concerned about datacenter virtualization and consistently focused on innova-
tions. VMWare new researches are developing day by day that includes the Virtual
Networking, high-speed I/O, Virtualizing Networking and Security in the Cloud, stor-
age, Virtual Machine File System, and Scalable Virtual Machine Storage using Local
Disks [2]. VMWare always focused on reducing the performance overheads.

Different kind of operating systems can be run simultaneously in virtualized architec-
tures. In most virtualization schemes, there is a host operating system (the one ma-
chine boots with), and there are one or more guest operating systems (the virtualized
machines). The virtualized operating systems permit applications written for that par-
ticular OS to run as through they were running on dedicated hardware. The VMWare
products (called hypervisors) are the software that creates these virtual machines on
the host OS. In some cases, the host OS is itself a VMWare product. This hypervisor
is the basis for the virtualization scheme, as it permits access to the hardware from not
only the host operating system but also from guest operating systems and applications
being used by those guests. In most user environments, Windows would only per-
mit one user at a time to be logged on to a machine, but in a virtualized environment
many applications can have access to the CPU and memory of that machine, putting
to economic use what would otherwise be sitting idle. IDC estimates that the typical
Intel server is utilizing only 10-15 percent of its capacity. With virtualization, a single
server could then reasonably be expected to do the works of six to ten servers, gener-
ating enormous cost savings in multi machine environments.

Although VMWare is market leader in virtualization yet still there is potential of
growth. As widespread as VMWare is at the moment, the potential for growth is
still there. Every new machine installation, whether it’s in a Windows, OSX or Linux
environment, is a potential VMWare seat. On top of that, there are many data centers
that are still running dedicated hardware, and these all represent potential sale waiting
to happen. The company’s finances is exceptionally strong, with $3.3 billion in cash,
zero short-term debt, and rock-solid net margins in the midteens [8].

Its more than a decade that VMWare is focusing on server virtualization, datacenters,
and cloud computing concepts and due to that long and mature enough research of
VMWare they have brought data center virtualization to more than 230,000 customers
around the world [2].

2.5.1 VMWware ESXi

The ESXi is the most advanced hypervisor architecture of VMWare. VMWare Inc.
provides the detail of VMWare ESXi [9]. ESXi is a Bare Metal hypervisor and directly
installed on top of the physical machine. ESXi was introduced in 2007 by VMWare
to deliver industry-leading performance and scalability while setting a new bar for

24

2.6. RED HAT VIRTUALIZATION TECHNOLOGY

reliability, security and hypervisor management efficiency.

2.6 Red Hat Virtualization Technology

The kernel-based Virtual Machine (KVM) [33] is a native virtualization solution for
Linux on x86 hardware supporting virtualization extensions (Intel VT or AMD-V). It
has been added to the mainline Linux kernel [34]. KVM is initially developed and
sponsored by Qumranet(formerly Comanet) in Israel [36]. After adding the kernel
module into Linux, all the Linux standard kernel and its hardware supported virtual-
ization is available for KVM support. Red Hat virtualization is clamming the high
performance and scalability [33]. Further they claim that Red Hat Enterprise Virtual-
ization for Servers gives near Bare Metal and even better than Bare Metal performance.

Che et al. [36] further describes the KVM architecture and added that "it implements
virtualization by augmenting the traditional kernel and user mode of Linux with a new
mode named guest. The guest mode has its own kernel and user mode and answers for
code execution of guest operating systems. The I/O devices cannot be accessed with
the guest mode and have to shift into user mode. The composition of KVM is based
on two components. Kernel module that controls virtualization of hardware resources
using /dev/kvm and kill command. With /dev/kvm, guest operating system may have
its own address space allocated by the Linux scheduler. The physical memory mapped
for each guest operating system is actually the virtual memory of its corresponding
process. A set of shadow page tables is maintained to support the translation from guest
physical address to host physical address. The second user space module takes charge
of the virtualization of I/O by employing a lightly modified QEMU to simulate the
behavior of I/O or sometimes necessarily triggering the real I/O. KVM also provides
a mechanism for user-space to inject interrupts into guest operating system. Any I/O
request of guest operating system is trapped into user-space and simulated by QEMU".

2.7 Background Material and Previous Work

Virtual machine monitors for the purpose of performance comparison is extensively
studied by different researchers [13] [24] [37] [38] [39] [40]. VMWare performance
is measured by Barham et al. [24] where they compare VMWare with Xen. KVM
and Xen performance comparison was made by Deshane et al [43]. He compares the
performance, isolation and scalability with CPU, kernel compile and Iozone tests.

Virtualization introduces an additional layer to access the lower layer resources by the
different multiple higher level simultaneously [35]. Although different virtualization
technology implementation is very effective but also yet they add significant manage-
ment overhead. Virtual machine monitor is the major component of the virtualization
system that caused the performance compromise for virtual machines. So its important
to measure and analyze the performance of this core component [36].

KVM is the most easiest to install as compare to other virtualization technologies but
VMWare is entirely different. KVM provides its own CLI interface which is not user

25

2.7. BACKGROUND MATERIAL AND PREVIOUS WORK

friendly and offer restricted advance features directly to users, such as power man-
agement or quick memory adjustment. VMWare is more user friendly as it provides
the GUI along with a Web-based ActiveX client interface that allows users to easily
operate the VMWare host remotely [44].

2.7.1 Virtualization Overhead

Virtualization technologies add up overhead because of additional abstraction layer
between hardware resources and OS. So that to be accessed by multiple instances of
operating systems (OS) to run simultaneously on a single physical host. Overhead
caused performance reduction and meant the amount of processing time used by sys-
tem software. According to Fuertes et al. [45] overhead is the cost difference of an
application running in virtualized environment and on Bare Metal.

Some of the major virtualization overhead issues discussed by Casazza et al., [46] are
listed below:

• The reported time by guest OS can be incorrect.

• Poor performance tolls can also be mislead.

• In-identical configuration can be caused incorrect information.

• Resource contention with other Virtual Machines.

• Consistency of results. Other approaches consider several factors that increase
the overhead.

I/O devices, hard drive, network interface, memory can also caused overhead [47]. Be-
sides the devices there are some other reasons that include number of virtual machines
and their individual configuration that is memory, number of processor etc. Virtualiza-
tion overhead also depends on the virtual machine profile as each virtual machine may
have different guest operating system. All the requests for resource acquisition gener-
ated by VM wait for their turn at hypervisor [45]. Fuertes and Vergara [48] consider
that particular virtualization technology may have different overhead as compared to
others because of their different architecture. Different hardware resources may also
caused to effect the virtualization performance. One VM overload can also be caused
to have extra overhead for other VMs in the system [45]. As the virtual technology is
developed to reduce the virtualization overhead as well and virtualized system perfor-
mance getting closer to Bare Metal system [24] [49].

Although virtualization provides lot of benefits for its better utilization physical re-
sources yet it also has little extra burden. In a normal system the resources of the
system is only utilized by the single operating system, whereas in virtualized setup
resources are competed by multiple operating systems.

The virtual machines are required a system hardware resources which cannot directly
be able to approach them, but hypervisor is the one who works for virtual machines

26

2.7. BACKGROUND MATERIAL AND PREVIOUS WORK

operating system and allows to access them [15]. The difference between single op-
erating system and virtualized multiple operating system is the process of accessing
system resources. In single operating system path of access resources is from operat-
ing system kernel to the hardware resources, whereas in virtualized environment the
request from operating system kernel is made to hypervisor. The hypervisor is working
some sort of agent between virtual machines and hardware [12] [27].

2.7.2 CPU Overhead

This additional layer between hardware and virtual machines added up some unavoided
CPU overhead. Although the virtualization technology provides the better utilization
of system resources yet this overhead reduces the amount of available physical com-
puting resources [10]. This new raised problem of virtualization system with CPU
overhead leads towards many questions for its solution and further description. Ac-
cording to [10] followings are the questions that need to be explored.

• First, how to define the overhead and divide it from the normal utilization of
CPU slice?

• The second is how about the relationship between the overhead and the count of
VMs.

• The third is how the different types of workload on the VMs would affect the
overhead.

2.7.3 Memory Overhead

Physical system memory is shared dynamically to the virtual machines. For optimize
usage of virtual memory performance memory management unit (MMU) and trans-
lation lookside buffer (TLB) is included in CUP. Memory management unit needs to
be virtualized for virtual machines. In this case guest OS don’t have any direct access
to the actual memory but virtual machine monitor takes charge for mapping physical
to actual machine memory. Mapping of guest OS physical memory to actual machine
memory by virtual machine monitor thus creates some overhead [50].

VMWare discusses [51] overhead of memory as ESX/ESXi memory virtualization
adds little time overhead to memory accesses. Further they listed following two types
of memory overhead:

• The additional time to access memory within a virtual machine.

• The extra space needed by the ESX/ESXi host for its own code and data struc-
tures, beyond the memory allocated to each virtual machine.

2.7.4 Disk I/O Overhead

Virtualization incurs greater stress on the physical resources of the system. Multiple
virtual machines having different kind of operating systems when competing for re-
sources, the hypervisor adds its overhead. In case of file I/O operation, it also have

27

2.7. BACKGROUND MATERIAL AND PREVIOUS WORK

virtualization overhead due to an abstraction layer between hardware and OS. The per-
formance of the whole system is depended upon the disk performance. It is fact that
generating disk I/O in one virtual machine slows I/O to the disk from other virtual
systems [58]. In advance hardware where the virtualization supports is integral part of
the system, the disk I/O overhead is also remained lower.

The diskeeper corporation [58] recommends the following suggestions for disk sub-
system and partitioning strategies for best disk performance.

• Minimize the virtual disks fragmentation, allocation of disk size to monitor
quota disk space.

• Host operating system on separate physical disk.

• Separate the host paging file on physical disk from the virtual disk.

• For each virtual system, creates separate logical partitions on host system spe-
cially for dynamically expanding virtual hard disks.

• High performance SCSI hard disk with either SAN or RAID back end.

28

Chapter 3

Benchmarking over view and tools

3.1 Benchmarking

A computerized test for measuring the properties of the particular technology is called
benchmarking. The properties might include speed, performance, transfer rate, etc.
Benchmarking is important before making decision to select an equipment. The equip-
ment that is going to buy, must be tested before in the same environment and workload
as in real working situation. Besides the working situation, it should also has to be
tested in worst case situation. It might not always be possible due to non availability
of replicated surrounding environment. This includes the actual data system that is
working with. Because of privacy issues of data or huge amount of data replication
of the systems data might not be possible. So the artificial workloads are needed for
execution and monitoring the benchmark program [26].

For testing the characteristics of the technology for academic or research purpose, it
is difficult to provide the real system configuration. In such cases benchmarks could
serve the purpose to provide with close to real application systems for better results.

While implementing a system should have to consider the potential performance and
cost of the system. Benchmarking provides the results that can help. Many factors are
considered when benchmarking for comparison of different vendors products. Results
from the benchmarking that are a reasonable match for the application and system
size that you are considering. It is fact that it might be possible a costly system or a
large database benchmark result may not hold a lot of relevance for deploying a small
application server. Benchmarks are categorized as follows:

• Performance focused These benchmarks aim for the highest performance re-
gardless of system cost.

• Price or performance focused These benchmarks aim for the lowest cost re-
gardless of the system performance.

While setting up a new system one should consider both prices and performance rea-
sonably. It might happen that good performance system can be very expensive or
low budget system can be bad performance. Following can also be considered while
benchmarking:

30

3.2. I/O BENCHMARK TOOLS

• System architecture 32-bit or 64-bit. x86, Itanium, POWER, etc

• System size The number of CPUs in the system under test

• System configuration Multiple clustered systems, or a single non-clustered sys-
tem. Benchmarks for multi-tier applications may use different architectures and
operating systems for different tiers.

• Database size Range from 100GB to many terabytes

• Services Some benchmark includes the cost of 24x7 support, others factors do
not support costs into the final result

3.2 I/O benchmark tools

In the following section we will discuss different I/O benchmarking tools in brief:

3.2.1 Flexible I/O

fio is a tool that will spawn a number of threads or processes doing a particular type of
I/O action as specified by the user. The typical use of fio is to write a job file matching
the I/O load one wants to simulate.

3.2.2 Bonnie++

Bonnie++ is a benchmark tool for testing hard disks and file system performances.
Bonnie [28] is a micro benchmark, written by Bray in 1988, 1989 and 1996, which
measures sequential input and output, creating and reading a file character for charac-
ter, and in 8 KB chunks and random seeks, in terms of number of bytes per second, on
a file [26].

The file size is the only that is configurable, whereas all the other values are hardcoded
in Bonnie. From 2000, Coker rewrite the Bonnie into Bonnie++ [29]. Bonnie also
added new features for creating and deleting files, direct I/O and benchmarking ZCAV
effects. Bonnie++ is made able to use several files, for datasets larger than 2 GB [26].

3.2.3 Postmark

Postmark [30] is a macrobenchmark which emulates e-mail, netnews and webbase
commerce software; workloads which consists of a large number of shortlived files. A
pool of a large number of text files are created when the Postmark runs for performance
measurement. Whereas different Postmark operations include create, delete, read and
write with random file selection. At the end the delete performance is measured while
deleting the remaining files.

Postmark configuration is quite easy and simple to run and has its own pseudo-random
number generator. This has an advantage when comparing results from different op-
erating systems as it provides identical conditions across platforms [26]. Whereas the

31

3.2. I/O BENCHMARK TOOLS

outdated default configuration file of Postmark does not fit for current hardware and
does not scale the workload. The result comparison is difficult because lack of standard
and scaling workload. Postmark is not updated and maintained so the disadvantages
are not likely to be corrected [31].

3.2.4 Iozone

Iozone is a file system benchmark tool. The benchmark generates and measures a
variety of file operations. Iozone has been ported to many machines and runs under
many operating systems. Iozone [32] is analyzed file systems, written by Norcott, with
enhancements by Capps. Iozone is quite a lot of different operations for testing and
can be used to many operating systems, including Sun Solaris and DragonFly. Iozone
operations are listed in detail by Oppegaard in table 3.1 [26]

Table 3.1: Iozone operations for benchmarking file system

Operation Description
Write Create and write to a file. When creating and writing to a file,

creating meta-data for mapping the location of the file and its as-
sociated data blocks on the storage medium, adds an overhead
which degrades performance. Because of this overhead, writing
to a pre-existing file is normally faster than creating it addition-
ally.

Re-write Write to an existing file. Re-writing a file is ordinarily better,
performance wise, than when it has to be created first, because
its meta-data already exists, and thus does not have to be created
again.

Read Read a file sequentially.
Re-read Read the file again. Reading a file is typically faster when it has

recently been read, because the data is stored in caches main-
tained by the operating system, file system and storage medium
itself.

Record re-write Write and re-write a section of a file. The characteristics of this
test depend upon the size of the section being tested. If it is small
and fit the CPU data cache, the test will show high performance.
Following are a few examples of caches which the results depend
upon, ordered with higher performance first: Fit in the CPU data
cache and the TLB, does not fit in neither the CPU data cache nor
the TLB but fit in the operating system’s cache, larger than the
operating system’s cache.

Random read Read a file from random locations. The size of the operating sys-
tem’s cache, the number of disks and seek latencies are examples
of factors which can impact the results from this test.

Random write Write to random locations in a file. The same factors affecting the
results of the random read test, apply here as well.

32

3.3. MEMORY BENCHMARK TOOLS

Table 3.1: (continued)

Operation Description
Backward read Read a file backwards. Many operating systems have optimiza-

tions for reading files forwards, but few have implemented en-
hancements to backward reading.

Stride read Read a file at a stride offset. The stride read test read chunks
the <stride parameter offset >apart, i.e., read x KB, seek <stride
parameter >, read x KB, read <stride parameter >and so on. This
test can be used to tell how well a RAID setup perform when the
stride is aligned and unaligned with the RAID’s stripe boundary.

fwrite(3) Write a file using fwrite(3). fwrite(3) is a standard C function
which performs buffered write operations. This function can re-
duce the number of system calls, and increase transfer size. Like
regular write, fwrite(3) creates a new file and has the overhead of
creating meta-data.

Re-fwrite(3) Write to an existing file with fwrite(3). Like re-write, but uses the
buffered fwrite(3) function.

fread(3) Read a file using fread(3). This test is similar to the read test, but
the buffered fread(3) function is used.

Re-fread(3) Read a recently read file using fread(3). Using fread(3), the file
which was recently read by the previous test is read again. Per-
formance should be higher than the first read, as the file is now
stored in caches.

Further can also help to determine the platform optimization for certain workloads, or
its more generic to provide the information for purchasing an equipment. Oppegaard
[26] quoted that computers are acquired for particular task but as the time past the
applications and task are changed which results an optimized system is not guaranteed
to perform adequately during its life span.

3.3 Memory benchmark tools

3.3.1 bandwidth

One way to analyze the memory is bandwidth. Bandwidth can test the memory in
different ways that includes sequential read and write for CPU level 1 and 2 cashes
besides the main memory and video memory. Bandwidth test the performance and
speed of memst, memcopy and bzero routines. Bandwidth is handy to figure out the
performance related problems of memory [52].

3.3.2 mbw (Memory Band Width)

MBW determines the "copy" memory bandwidth available to user space programs.
Mbw is another memory benchmarking tool that uses two arrays in memory. Theses
arrays are twice the size of physical memory that is under test. User can give the size

33

3.3. MEMORY BENCHMARK TOOLS

of the array through command line to create arrays. Then different methods includes
memory copy function memcpy(), dumb copy by element coping, and by block copy
of a defined block size can be used [53].

3.3.3 RAMSpeed

RAMSMP is tool written in C and used to benchmark cache and memory to deter-
mine the bandwidth of a system’s various memory components. RAMSMP can run 18
memory intensive tests at a time and each of them measure a different aspect of the
systems memory performance. These tests are focused on testing the reading, writing
and data manipulation bandwidth of memory operations on the system. Floating point
and integer operations are used by this benchmark as most of the scientific applications
used these data types [54].

Ramspeed and RamSMP work on testing the CPU processing for integers, floating
point numbers and on Intel based systems the extensions of MMX and SSE instruc-
tions. For each test group the tool executes three sub-tests: reading of the cache,
writing of the cache and the last tries to give a simulation of CPU and cache interac-
tion by testing the following copy, scale, add, and triad [55].

RAMSMP first FLOATmem and INTmem test first copy either floating point or integer
data from one to another memory location to test memory bandwidth with respect to
calculations using large blocks of data. Different numerical operations on both sets of
data including scaling, adding and a combination of these two operations, and store the
results in the memory. At the end of all these operations, obtained bandwidth shows
the rate at which the memory is able to manipulate different blocks of numerical data.

While testing the reading and writing bandwidth of the systems memory, FLOATmark
and INTmark test read and write blocks of exponential increasing data sizes to the
memory. Block size starts from 2 KB to the maximum size of block which is by de-
fault 32 MB but can be changed up to 2 GB. The bandwidth at which each block of
data was written or read from memory allows distinction between each cache level and
RAM presents on the system being benchmarked, as well as the bandwidth at which
integer and floating-point data is typically written to memory. Usually L1 cache is ob-
served with fastest bandwidth whereas the RAM reflects the slowest bandwidth while
reading and writing the data.

Care must also be taken while specifying the size of the data that is either manipulated
at different memory levels. The block of data that exceeds the size of the physical
memory of the machine can be caused overload its resources. The size of the block
should not be exceeded the memory and at the same time should be larger enough to
write the data to ram.

34

3.4. CPU BENCHMARK TOOLS

3.4 CPU benchmark tools

3.4.1 CPU Free BenchMark (former CPUMark)

CPU benchmark is required to know the performance of the CPU specially in vir-
tualized environment when more then one OS routines are competing for CPU. CUP
Free BenchMark is open source performance measurement tool that tests the registries,
ALU (Arithmetic Logic Unit) and FPU (Floating Point Unit). All the tests are based
on some equations and operations depending upon the test.

CPU Free BenchMark generate the reliable test results by conducting the 3 identical
tests for each CPU part. The data from each identical test is generated in seconds and
milliseconds and means of all the three tested is produced. The average of three tests
reduce the chance of wrong data collection. The final test results are composed on the
following equation.

The final score = 40% Score Test1 + 80% Score Test2 + 80% Score Test3

The CPU Free BenchMark application is opened for all kind of processors type to test
their performance and not a specific type [56].

3.4.2 SysBench

SysBench is an open source tool, that can be used for almost all kind of operating sys-
tem and multi threaded benchmark. SysBench is made to evaluate OS parameters that
are important for a system running a database under intensive load [60]. According to
Kopytov SysBench is quite fast and gives system performance without configuration
of database or even without database installation on the system.

SysBench is simple tool to use and it runs specified number of threads by default
that is one. Different test options are available that can be mentioned with test name.
SysBench runs until the defined prime number reached that is by default 20000 but can
be changed according to specific requirement.

3.4.3 UnixBench

UnixBench was first started in 1983 at Monash University is an open source tool
that provides performance of Unix systems in various aspects of system performance
specifically for CPU. UnixBench produces the results as an index values after com-
paring the test results with baseline system. George SPARCstation 20-61 with 128
MB RAM, a SPARC storage array, with Solaris 2.3 set rating as 10 is used as baseline
system since 1995. The system that score 600 is considered as 60 time faster than this
baseline system. The reason for producing the indexed results, because it makes easy
to discuss for analysis point of view. It also produces the overall index after combining
the entire set of index values. The first run of UnixBench generates the results for first
CPU and then it runs N copies for N number of CPUs. UnixBench [57] is enabled to
assess the following in table 3.2:

35

3.4. CPU BENCHMARK TOOLS

• the performance of the system when running a single task

• the performance of the system when running multiple tasks

• the gain from the systems implementation of parallel processing

The detail of UnixBench different tests are taken from project home page [59] and
given in the table 3.2:

Table 3.2: UnixBench for CPU benchmarking

Test Description

Dhrystone
Developed by Reinhold Weicker in 1984 and used to mea-
sure and compare the performance of computers. This test
focuses with string operations but no floating point opera-
tion. It is heavily influenced by hardware and software de-
sign, compiler and linker options, code optimization, cache
memory, wait states, and integer data types.

Whetstone Performance in terms of speed and efficiency of integer
and floating point operations is measured in this test. This
test based on different trigonometric functions including
sin, cos, sqrt, exp, and log are used as well as integer and
floating-point math operations, array accesses, conditional
branches, and procedure calls.

Execl Throughput Number of execl calls that can be performed per second is
measured using this test. Execl is part of the exec family
of functions that replaces the current process image with a
new process image.

File Copy File copy measures the rate at which data can be transferred
from one file to another using different buffer size. The file
read, write and copy tests captures the number of charac-
ters that can be written, read and copied in a specified time.

Pipe Throughput Communication between processes can be done while us-
ing pipe that is simplest form. Pipe throughput is the num-
ber of times (per second) a process can write 512 bytes to
a pipe and read them back.

Pipe-based Context
Switching

The exchange of integers through pipe between two pro-
cess is measured using this test. The pipe-based context
switching test is more like a real-world application.

Process Creation This test measures the number of times a process can fork
and reap a child that immediately exits. It is actually creat-
ing process control blocks and memory allocations for new
processes and directly applies to memory bandwidth. This
benchmark is used to compare various implementations of
operating system process creation calls.

Shell Scripts The shells scripts test measures the number of times per
minute a process can start and reap a set of one, two, four
and eight concurrent copies of a shell scripts where the
shell script applies a series of transformation to a data file.

36

3.4. CPU BENCHMARK TOOLS

Table 3.2: (continued)

Test Description
System Call Over-
head

This estimates the cost of entering and leaving the operat-
ing system kernel, i.e. the overhead for performing a sys-
tem call. It consists of a simple program repeatedly calling
the getpid (which returns the process id of the calling pro-
cess) system call. The time to execute such calls is used to
estimate the cost of entering and exiting the kernel.

37

Chapter 4

Approach

The first section of this chapter describes the overview of the hardware under test and
the OS of virtual machines used. The detail of operation of the test and how the data
collected using different benchmarking tools discussed in the end of this chapter.

4.1 System Hardware Specification

Dell Poweredge R710 server is used for benchmarking purpose is one of the require-
ment of this project. This server have following specifications:

CPU
Two 2.13 GHz Quad-Core Processors
Intel®Xeon®Processor L5630
Number of Cores: 4
Number of threads: 8
Clock speed: 2.13 GHz
Buss speed: 5.86 GT
L1: 256 KB, L2: 1 MB, L3: 12 MB
Instruction set: 64-bit

Memory
Size: 72 GB with speed of 1067 MHz

Hard disk
Two SCSi disk with 140 GB each.

Software
Red Hat Enterprise Linux 6.1
Kernel version: 2.6.32-220.7.1.el6.x86_64
KVM (Kernel based virtual machine)
VMWare ESXi 5.0

39

4.2. METHOD FOR CONDUCTING THE TESTS

4.2 Method for conducting the tests

Different benchmarks are used to test the different aspects of the system under test
that is Dell Poweredge R710. As the purpose of this research work is to test the Red
Hat Enterprise Linux 6.1 with respect of Disk I/O, memory, and CPU performance in
following three cases:

• Bare Metal

• KVM virtual machine

• VMWare virtual machine

The system under test have two SCSi hard disk of 140 GB, one for Bare Metal and
KVM and second for VMWare. Being a part of RHEL Kernel, KVM do not need
separate hard disk. First of all the RHEL 6.1 is installed on the server with standard
installation [41]. In next step install the Iozone 3.3 [32] for disk I/O, Ramspeed 2.13.1
[55] for memory and UnixBench 5.1.2 [59] for CPU benchmarking. Some additional
repositories are needed to install these packages. After collecting the data from Bare
Metal by using the benchmarking tolls, KVM is activated on RHEL 6.1 [42]. After
KVM installation, a virtual machine created and RHEL 6.1 OS installed. After instal-
lation of benchmarking tool data is collected from KVM virtual machine.

VMware vSphere Hypervisor (ESXi) 5.0 is installed on second hard disk. To access
the VMWare, VShpere client installed and virtual machine is created. RHEL 6.1 along
with benchmarking tool installed on VMWare virtual machine for data collection pur-
pose. The the configuration of KVM virtual machine and VMWare Virtual machine
was similar. The version of RHEL OS, Iozone, Ram Speed and UnixBench was same
on both the virtual machines. To make the test result more reliable and adding authen-
ticity in the data collected, the test was repeated several times. Iozone is repeated 70
time, Ramspeed is repeated 25 times, and UnixBench was repeated three times. Aver-
age of all the repetition was used for analysis purpose.

Process of conducting the performance test is long and time taking job, to make it eas-
ier an automatic procedure is adopted. Perl script is used for automation process, that
helped to repeat the test for number of desired time and store the data in separate text
file. As in all three cases the operating system will be the same, so once the script is
written for benchmarking tool, it can be used for all three types of cases that is Bare
Metal, KVM virtual machine and VMWare virtual machine. For Iozone and Ram-
speed script were written as it repeats for number of times. But in case of UnixBench
it repeats for three time that does not required a script.

Test environment for benchmarking is described in next section.

4.2.1 Implementation of Iozone test

Iozone will be used to test the I/O performance on Red Hat Enterprise Linux 6.1. Io-
zone is known tool for disk I/O operations benchmarking and provides the various
useful results to determine the I/O of the disk. For better results plan is to test the

40

4.2. METHOD FOR CONDUCTING THE TESTS

different file size and will use 1 MB, 64 MB, 128 MB, 256 MB, 512 MB and 1 GB.
Each file was created using a record size that is the amount of data written into a file
during a single IO operation is 4 KB. For each size the standard test was repeated ev-
ery 5 minutes several times by using a shell script. For more reliable results, test is
repeated 70 time and data is collected. Then average of these 70 repeated test was used
for graphical presentation and analysis purpose. The test results were directed to a file
which later on was parsed by another shell script to write the data to a new file on the
form that can be imported in R. Such files are easy to use when creating graphs with R.

Iozone have different options to use for changing the file size, record set, type of test
etc. Short description of available options are:

• -s option is the size of the file to be measured

• -r is the record size, in Kbytes

• -i is ued to specify the type of performance but in this particular case we did not
used -i that mean to measure all kind of performance

• -R option generates an Excel report

• -c includes close() in time calculation

Iozone tests the several types of properties for the I/O operation that includes: write,
rewrite, read, reread, random read, random write, backward read, record rewrite, stride
read, fwrite, frewrite, fread, freread. For this research work I/O performance is tested
against all the properties of the Iozone performance test. Iozone produces the test
results calculated in kilo bytes but for better readability the scale the data changed into
mega bytes. Single run of Iozone was:

iozone example

1 iozone -s 1024M -r 4k -Rac >> iozonetest.txt

The result of the above command is stored in text file and shown under:
The result of Iozone command

1 Iozone: Performance Test of File I/O
2 Version $Revision: 3.394 $
3 Compiled for 64 bit mode.
4 Build: linux
5

6 File size set to 1048576 KB
7 Record Size 4 KB
8 Excel chart generation enabled
9 Auto Mode

10 Include close in write timing
11 Command line used: iozone -s 1024M -r 4k -Rac
12 Output is in Kbytes/sec
13 Time Resolution = 0.000001 seconds.
14 Processor cache size set to 1024 Kbytes.
15 Processor cache line size set to 32 bytes.
16 File stride size set to 17 * record size.
17

18 KB reclen write rewrite read reread random read random write bkwd read
19 1048576 4 538044 835397 3616565 3622749 2348734 748127 3230143

41

4.2. METHOD FOR CONDUCTING THE TESTS

20

21 record rewrite stride read fwrite frewrite fread freread
22 1068210 2986758 828436 830210 3509842 3517329
23

24 iozone test complete.
25 Excel output is below:
26

27 "Writer report"
28 "4"
29 "1048576" 538044
30

31 "Re-writer report"
32 "4"
33 "1048576" 835397
34

35 "Reader report"
36 "4"
37 "1048576" 3616565
38

39 "Re-Reader report"
40 "4"
41 "1048576" 3622749
42

43 "Random read report"
44 "4"
45 "1048576" 2348734
46

47 "Random write report"
48 "4"
49 "1048576" 748127
50

51 "Backward read report"
52 "4"
53 "1048576" 3230143
54

55 "Record rewrite report"
56 "4"
57 "1048576" 1068210
58

59 "Stride read report"
60 "4"
61 "1048576" 2986758
62

63 "Fwrite report"
64 "4"
65 "1048576" 828436
66

67 "Re-Fwrite report"
68 "4"
69 "1048576" 830210
70

71 "Fread report"
72 "4"
73 "1048576" 3509842
74

75 "Re-Fread report"
76 "4"
77 "1048576" 3517329

This single run gives the detail output of the Iozone test. In the beginning of the file it
shows the command used, file size, record size, tike taken, and number of kilo bytes
per second. The second half of the result shows the performance of each 13 operations
that Iozone perform during disk I/O operation. The amount of data per second is shown

42

4.2. METHOD FOR CONDUCTING THE TESTS

in kilo bytes is quite larger and converted into mega bytes for better readability. Two
different files for Iozone test is used to collect the data. Ionozetest.sh will run the
Iozone test with 70 time repetition and transfer the results in iozonetest.txt file using
the following command.

iozonetest.sh

1 ./iozonetest.sh

The iozonetest.txt file contains the raw data of Iozone test with other unnecessary
information as well. For the purpose of generating the graph and data summary that
includes mean, median, maximum and minimum values, first and third quartiles in R,
iozonetest.txt file passed to fileseprator.sh using following command

fileseprator.sh

1 ./fileseprator.sh iozonetest.txt

4.2.2 Implementation of Ram speed test

RAMSMP provides different options to test the different memory level in the system.
In this case as the system under test have a larger physical memory, so large size of
the block is used that is 2 GB which is maximum available size in ram speed. The
maximum block size can be determined by using the -m option in ram speed. Option
-b is used to determines the type of test in particular test that can be variated with
integer. In this particular case four options are used to test the memory performance
that includes integer read and write and float read and write, hence used from 1 to 4
with -b option. Following is the ramsmp command that is used to test the memory with
-b1 that is integer writing with block size of maximum 2 GB.

Ramspeed example

1 [root@naveed ramsmp-3.5.0]# ./ramsmp -b1 -m 2048

The above command will benchmark the memory with Integer write operation by using
the block size starting from 2 KB to 2 GB with exponentially increment. After each
block size it calculate the bandwidth of memory of per second mega bytes that shown
in the last column.

The result of Ramspeed command

1 8GB per pass mode, 2 processes
2

3 INTEGER & WRITING 1 Kb block: 37841.87 MB/s
4 INTEGER & WRITING 2 Kb block: 38115.23 MB/s
5 INTEGER & WRITING 4 Kb block: 38123.18 MB/s
6 INTEGER & WRITING 8 Kb block: 38060.18 MB/s
7 INTEGER & WRITING 16 Kb block: 38113.54 MB/s
8 INTEGER & WRITING 32 Kb block: 37852.34 MB/s
9 INTEGER & WRITING 64 Kb block: 33881.47 MB/s

10 INTEGER & WRITING 128 Kb block: 33804.33 MB/s
11 INTEGER & WRITING 256 Kb block: 32621.90 MB/s
12 INTEGER & WRITING 512 Kb block: 26705.57 MB/s
13 INTEGER & WRITING 1024 Kb block: 26019.54 MB/s
14 INTEGER & WRITING 2048 Kb block: 25993.22 MB/s
15 INTEGER & WRITING 4096 Kb block: 26005.46 MB/s
16 INTEGER & WRITING 8192 Kb block: 25998.06 MB/s

43

4.2. METHOD FOR CONDUCTING THE TESTS

17 INTEGER & WRITING 16384 Kb block: 12981.12 MB/s
18 INTEGER & WRITING 32768 Kb block: 11676.65 MB/s
19 INTEGER & WRITING 65536 Kb block: 11558.14 MB/s
20 INTEGER & WRITING 131072 Kb block: 11498.66 MB/s
21 INTEGER & WRITING 262144 Kb block: 11372.35 MB/s
22 INTEGER & WRITING 524288 Kb block: 11195.43 MB/s
23 INTEGER & WRITING 1048576 Kb block: 10753.74 MB/s
24 INTEGER & WRITING 2097152 Kb block: 9966.57 MB/s

The first column in the above result is INTEGER & WRITING because of the -b1 op-
tion. In second column, block size is mentions with exponential increment and maxi-
mum of 2 GB because of -m 2048 option used in the ram speed command. Whereas
in last column, memory bandwidth in MB per second is generated after test.

As we observed while the block size increased the speed of writing decreased. For
block size 1 KB to 32 KB, the average writing speed is above 38000 MB per seconds.
That is probably L1 cache memory type which is fastest in the system. From 64 KB to
256 KB, average bandwidth is above 33000 MB and could be L2 cache of the system
that is second highest speed after L1. Further from block size 512 KB to 8 MB with
average bandwidth is above 26000 MB per second and could be L3. From 16 MB to
2 GB block size the average bandwidth is above 11000 MB per second and that could
be the ram with slowest rate. The test is repeated 25 time and average results is used to
make sure about the data perfection in each of the four cases that is Integer and Float
reading and writing.

To the process automated, a perl script was written in three files. The first file ram-
speed.sh run the ramsmp command for 25 time with different options of integer and
float with writing and readings and store the data in text file. The ramspeed.sh is run
using following command,

ramspeed.sh

1 [root@naveed ramsmp-3.5.0]# ./ramspeed.sh

After finishing the first test with 25 time iteration, the text file containing the data is
passed to an other scripting file called datagenerator.sh. This script will separate the
text file according to their different nature and block. An other script called ramsingle-
file.sh then take this separated file and convert the data in format that will be later used
in R for graphical presentation and analysis. Following command will be used for this
purpose,

ramsinglefile.sh

1 [root@naveed ramsmp-3.5.0]# ./ramsinglefile.sh ramdata.txt

4.2.3 Implementation of UnixBench test

UnixBench is quite straight forward to implement this test is not repeated that much
time as compared with Iozone and ram speed. Three run of UnixBench is done using
the following command,

44

4.2. METHOD FOR CONDUCTING THE TESTS

UnixBench command

1 [root@naveed unixbench]# ./Run

UnixBench just need to run from its folder by running the above command. It will
generate the results itself by doing nothing more. The results are shown as under,

UnixBench result

1 BYTE UNIX Benchmarks (Version 5.1.3)
2 System: KVMVM: GNU/Linux
3 OS: GNU/Linux -- 2.6.32-131.0.15.el6.x86_64 -- #1 SMP Tue May 10 15:42:40 EDT 2011
4 Machine: x86_64 (x86_64)
5 Language: en_US.utf8 (charmap="UTF-8", collate="UTF-8")
6 Benchmark Run: Fri Apr 13 2012 16:49:19 - 17:17:39
7 16 CPUs in system; running 16 parallel copies of tests
8

9 Dhrystone 2 using register variables 174454949.1 lps (10.0 s, 7 samples)
10 Double-Precision Whetstone 34426.3 MWIPS (9.7 s, 7 samples)
11 Execl Throughput 15058.4 lps (29.8 s, 2 samples)
12 File Copy 1024 bufsize 2000 maxblocks 324520.3 KBps (30.0 s, 2 samples)
13 File Copy 256 bufsize 500 maxblocks 86584.3 KBps (30.0 s, 2 samples)
14 File Copy 4096 bufsize 8000 maxblocks 978506.9 KBps (30.0 s, 2 samples)
15 Pipe Throughput 6397344.2 lps (10.0 s, 7 samples)
16 Pipe-based Context Switching 1269602.1 lps (10.0 s, 7 samples)
17 Process Creation 47100.3 lps (30.0 s, 2 samples)
18 Shell Scripts (1 concurrent) 27155.0 lpm (60.0 s, 2 samples)
19 Shell Scripts (8 concurrent) 3750.5 lpm (60.1 s, 2 samples)
20 System Call Overhead 6921005.5 lps (10.0 s, 7 samples)
21

22 System Benchmarks Index Values BASELINE RESULT INDEX
23 Dhrystone 2 using register variables 116700.0 174454949.1 14949.0
24 Double-Precision Whetstone 55.0 34426.3 6259.3
25 Execl Throughput 43.0 15058.4 3502.0
26 File Copy 1024 bufsize 2000 maxblocks 3960.0 324520.3 819.5
27 File Copy 256 bufsize 500 maxblocks 1655.0 86584.3 523.2
28 File Copy 4096 bufsize 8000 maxblocks 5800.0 978506.9 1687.1
29 Pipe Throughput 12440.0 6397344.2 5142.6
30 Pipe-based Context Switching 4000.0 1269602.1 3174.0
31 Process Creation 126.0 47100.3 3738.1
32 Shell Scripts (1 concurrent) 42.4 27155.0 6404.5
33 Shell Scripts (8 concurrent) 6.0 3750.5 6250.8
34 System Call Overhead 15000.0 6921005.5 4614.0
35 =======
36 System Benchmarks Index Score 3432.1

The developer of the UnixBench claims that analyzing the test results are depend on
the requirement of user that what they want to measure. UnixBench focus testing the
compiler performance and can be handy to know the CPU speed measurement and
compiler quality. As the system speed is major concern which depends on compiler,
then UnixBench results gives the answer to that question.

All the above three benchmarking tools are implemented in similar way to Bare Metal,
KVM virtual machine and VMWare virtual machine. After collecting the data by using
the benchmark tools with the help of scripting, analysis will be made using different
graphs.

Box plot is the best option to present that kind of data. Box plot is convenient way
of presenting the groups of numerical data. Data summary that includes minimum

45

4.2. METHOD FOR CONDUCTING THE TESTS

sample, maximum sample, lower (Q1) and upper (Q3) quartile and median of the data.
Outliers are also indicated in graph. Different part of the box spacings indicate the
spread and skewness in the data. A statistical program R is used to make a box plot.
R is a open source software for statistical computing and graphics. several options
are available to present the data using R. The data manipulation ins R is simple and
faster and used many research work analysis [61]. The code written in perl script was
designed that the generated text file can be used in R for obtaining the summary of
data and box plot for analysis and discussion purpose.

46

Chapter 5

Results and Discussion

This chapter presents the graphical review of the data with the analysis and discus-
sion. The first section of this chapter shows the results by using the graphs for each
benchmarking tool. In last section, the analysis of the data was made by using vari-
ous statistical methods. The data from Iozone and Ram Speed was collected after a
large number of runs because of variation in data. In case of UnixBench, the data was
collection after 3 runs because of small variation in data was observed. The data was
collected with the help of the perl scripts.

The gathered data was imported to R for analysis purpose. For presentation of data,
box plot was used. Box plot gave the more accurate information about the data. The
skewness of the data can easily be observed in the box plot. The reliability of the data
was achieved by several repetitions of the each benchmarking tool. For Iozone 70,
for Ram Speed 25 and for UnixBench 3 times data was collected. Box plot for all
the three systems of each benchmark presented in Appendix A, B and C. For analy-
sis purpose, few interesting cases were selected and discussed by using the different
statistical measurements.

5.1 Iozone

This section contains the average of the data obtained after 70 runs of Iozone. The
average value was used to generate the combined bar graphs of Bare Metal, KVM and
VMWare. The detail of the data for Iozone is presented in box plots as Appendix A.

Iozone was used to benchmark the I/O performance of the different guests. Different
file sizes of 1 MB, 64 MB, 128 MB, 256 MB, 512 MB and 1 GB were used to calculate
the performance with different workload. Following graphs shows the performance of
Bare Metal, KVM VM, and VMWare VM.

48

5.1. IOZONE

5.1.1 Write

Figure 5.1: Iozone average write

5.1.2 Re-Write

Figure 5.2: Iozone average re-write

The performance of Iozone with writing and re-writing was illustrated in graph 5.1 and
5.2. Performance of Bare Metal was remained on top while comparing with VMWare
and KVM. Whereas VMWare performance was observed closed to Bare Metal. It ob-
served that both the graphs show increased in performance while the file size increased

49

5.1. IOZONE

from 1 MB to 1 GB. As stated in Iozone properties 3.1, re-writing is usually faster than
writing. It was evident from graphs that re-writing was almost twice faster than writ-
ing. The file size of 64 MB, KVM shows 11% better performance than VMWare.

5.1.3 Read

Figure 5.3: Iozone average read

5.1.4 Re-Read

Figure 5.4: Iozone average re-read

50

5.1. IOZONE

As the properties of Iozone 3.1 said that re-read is quite faster than read, because the
file is stored in cache of the system. By observing both the graphs 5.3 and 5.4, it was
clear that performance of re-read was better than read. Bare Metal show increased
performance in case of read as compared from file size 1 MB to 1 GB. Whereas in
case of re-read it shows increment from 64 MB to 1 GB file size. KVM show roughly
constant increment in case of read and decrement in case of re-read when increasing
the file size from 1 MB to 1 GB. The performance of VMWare in case of read was
remained constant with increase of file size. VMWare in smaller file sizes in read gave
outstanding performance which was very close to Bare Metal system.

5.1.5 Random Read

Figure 5.5: Iozone average random read

Random read as illustrated from graph 5.5, KVM and VMWare had shown continuous
decrease in performance while increasing the size of the file. VMWare performed
better than KVM with the difference of 27%, 36%, 35%, 41% and 36% in case of 64
MB, 128 MB, 256 MB, 512 MB and 1 GB file sizes respectively.

51

5.1. IOZONE

5.1.6 Random Write

Figure 5.6: Iozone average random write

In graphs 5.6 VMWare out performed KVM in all the file sizes with average of 45%.
In case of 64 MB file size KVM perform better than Vware.

5.1.7 Backward Read

Figure 5.7: Iozone average backward read

52

5.1. IOZONE

In Backward read 5.7 Bare Metal, KVM and VMWare has shown continuous increase
in performance. In case of 64 MB and 128 MB, VMWare was on top with 3707 and
3767 as compared with Bare Metal 3409 and 3543. That was quite unusual results due
to some unknown reason.

5.1.8 Record Rewrite

Figure 5.8: Iozone average record re-write

5.1.9 Stride Read

Figure 5.9: Iozone average stride read

53

5.1. IOZONE

5.1.10 Forward Write

Figure 5.10: Iozone average forward write

5.1.11 Re-Forward Write

Figure 5.11: Iozone average re-forward write

54

5.2. DISCUSSION OF IOZONE TEST RESULTS

5.1.12 Forward Read

Figure 5.12: Iozone average forward read

5.1.13 Re-Forward Read

Figure 5.13: Iozone average re-forward read

5.2 Discussion of Iozone test results

Iozone measure the I/O with the help of 13 different kind of tests. The results from
Bare Metal has shown better results as compared with KVM and VMWare. Virtual-

55

5.3. CONSOLIDATED IOZONE RESULTS

ization add overhead due to which virtualization guest performance remains lower as
compared with Bare Metal. There is room for the improvement of virtualization tech-
nologies to reduce the overhead for better performance.

In most of the cases as illustrated from Iozone graphs, VMWare performed better than
KVM. In some cases VMWare were found very close to Bare Metal system such as
forward read 64 MB and 128 MB. Few instances was found interesting specially in
case of 64 MB with write, rewrite, random write, record rewrite, forward write and
forward re-write where KVM performed better than VMWare. It would be interesting
to know the performance of KVM with file size smaller than 64 MB.

The worst performance of the KVM was observed in case of large file sizes. In case
of 1 GB file size, in almost all the cases KVM performance was three time poorer than
VMWare. KVM performance is better in case of smaller file size, but VMWare was
close to Bare Metal guest. Better performance of the KVM was observed in case of all
kind of reading.

5.3 Consolidated Iozone results

All kind of test performed by Iozone is either write or read. The write tests in-
cludes write, re-write, random write, record rewrite, forward write and re-forward
write whereas read tests are composite of read, re-read, random read, backward read,
stride read, forward read, re-forward read. The results of all the write and read tests
are consolidated with regards to different file sizes.

5.3.1 Consolidated write performance

The write performance of Iozone test was consolidated and the percentage of KVM and
VMWare was calculated in terms of Bare Metal. Sum up of all the write tests of Iozone
was added and their percentage was calculated. The calculation of the percentage of
write for KVM and VMWare was obtained by considering the Bare Metal as a base.
All the figures given in the table 5.1 is in %.

Table 5.1: Consolidated Write performance of Iozone test

File size KVM VMWare
1 MB 61.0 91.7
64 MB 77.4 56.6
128 MB 74.0 96.3
256 MB 67.9 89.2
512 MB 65.5 86.1
1 GB 33.5 84.9

56

5.3. CONSOLIDATED IOZONE RESULTS

The consolidated graph for Iozone write test 5.14 presented in terms of percentage as
compared with Bare Metal.

Figure 5.14: Consolidated write performance

The consolidate write performance 5.14 for Iozone test has shown the comparison of
KVM and VMWare with Bare Metal. The optimum performance of Bare Metal has
shown in blue line which is always 100%. VMWare has shown better performance in
almost all the file size as compared with KVM. In case of 64 MB file size KVM has
shown 78% performance and VMware was at 57% when compared with Bare Metal
100%. The performance of VMWare in case of 1 GB file size was 85% which was
more than twice fast while compared with KVM. In case of 128 MB file size VMWare
shows best performance and just behind 2% when comparing with Bare Metal.

5.3.2 Consolidated read performance

The consolidated read performance of Iozone test for KVM and VMWare was cal-
culated in terms of Bare Metal. All the read tests of Iozone were added and their
percentage was calculated. The calculation of percentage for KVM and VMWare was
obtained by considering the Bare Metal as a base. The Bare Metal figures considered
100% for KVM and VMWare. All the figures given in the table 5.2 is in %.

57

5.3. CONSOLIDATED IOZONE RESULTS

Table 5.2: Consolidated Read performance of Iozone test

File size KVM VMWare
1 MB 65.5 91.1
64 MB 81.2 100
128 MB 79.2 100
256 MB 69.9 85.8
512 MB 67.8 85.3
1 GB 69.0 83.4

The graph of consolidated read test of Iozone 5.15 is self explanatory:

Figure 5.15: Consolidated read performance

The consolidate read performance of Iozone 5.15 has shown that VMWare out per-
formed the KVM in all file sizes. In file size 64 MB and 128 MB, VMWare perfor-
mance was identical to Bare Metal system. While rest of the cases VMWare perfor-
mance was better than KVM. In 1 MB file size KVM has shown 65% performance
while compared with Bare Metal.

58

5.4. RAM SPEED

5.4 Ram speed

In this section graphs for ram speed are presented. For data reliability the ram speed
was repeated 25 time with the help of script. Detail of data summary and Box plot
for Bare Metal, KVM and VMWare included as Appendix B. Ram speed was tested
with exponential of 2 KB block size with maximum of 2 GB. Average from all the test
results was calculated and presented in the following graphs.

5.4.1 Integer and Writing

Figure 5.16: Ram speed average integer and writing

5.4.2 Integer and Reading

Figure 5.17: Ram speed average integer and reading

59

5.5. DISCUSSION OF RAM SPEED TEST RESULTS

5.4.3 Float and Writing

Figure 5.18: Ram speed average float and writing

5.4.4 Float and Reading

Figure 5.19: Ram speed average float and reading

5.5 Discussion of Ram Speed test results

Ram speed measures the memory performance by using four different kind of tests
that include Integer reading and writing, Float reading and writing. Ram speed uses
the block size for performance measurement. In all the cases of ram speed test, Bare
Metal has shown the best possible results as compared with KVM and VMWare. The
abstraction layer used by the virtualization technologies caused the lower performance

60

5.6. CONSOLIDATED RAM SPEED RESULTS

of the KVM and VMWare when comparing with Bare Metal.

While compared the two virtualization systems, performance of both were different
with different memory block sizes. In case of block sizes smaller than 1 MB, KVM
perform better than VMWare. In case of block size larger than 1 MB, VMWare perfor-
mance observed better than KVM. In case of float and writing 5.18 with 4 MB block
size, KVM and VMWare performance was observed identical.

5.6 Consolidated Ram speed results

The four tests of the Ram speed are formatted with integer and float reading and writ-
ing. The consolidated percentage of writing and reading for KVM and VMWare was
calculated. The addition of all the reads and writes was performed separately. Bare
Metal considered as base for KVM and VMWare percentage calculation. The KVM
and VMWare compared with respect to Bare Metal.

5.6.1 Consolidated performance of integer and float writing

The table 5.3 shows the performance of KVM and VMWare for writing while compar-
ing with Bare Metal.

Table 5.3: Consolidated performance of integer and float writing

File size KVM VMWare
1 KB 94.0 88.5
16 KB 95.5 89.1
256 KB 91.9 88.4
1 MB 77.3 79.9
4 MB 75.4 78.7
16 MB 70.8 80.5
32 MB 70.7 84.5
64 MB 70.7 84.4
512 MB 70.2 85.2
1 GB 69.2 85.1
2 GB 66.4 84.8

The Bare Metal shows the optimum performance of 100% in blue on top of the graph
5.20

61

5.6. CONSOLIDATED RAM SPEED RESULTS

Figure 5.20: Integer and Float writing

The writing performance of KVM in smaller block sizes was observed better than
VMWare and remained more than 93% of Bare Metal. Whereas the block size larger
than 1 MB, the performance of the KVM remained roughly constant with average of
70% of Bare Metal. The performance of VMware was under 90% of Bare Metal in
block size smaller then 1 MB. A continuous rised in performance of VMWare was
observed from block size 1 MB and larger.

5.6.2 Consolidated performance of integer and float reading

The consolidated performance of memory with reading has shown in table 5.4. The
performance of KVM and VMWare was calculated as percentage compared with Bare
Metal.

Table 5.4: Consolidated performance of integer and float reading

File size KVM VMWare
1 KB 93.8 88.6
16 KB 95.8 89.1
256 KB 94.3 89.2
1 MB 93.6 90.4
4 MB 85.9 88.9
16 MB 67.1 84.7
32 MB 69.4 85.3
64 MB 71.6 85.7
512 MB 71.9 85.6
1 GB 72.3 85.7
2 GB 71.4 84.4

62

5.7. DISCUSSION

The performance of Bare Metal was maximum for KVM and VMWare and shown in
blue line in the graph 5.21

Figure 5.21: Integer and Float reading

In case of reading of the ram speed, the consolidated performance 5.21 of KVM was
better when compared with VMWare in smaller block size. While in larger block sizes,
the VMWare performance was remained 85% of the Bare Metal. KVM in larger block
size was remained 70% of the Bare Metal.

5.7 Discussion

This section has been divided into different parts that includes spread of data with
confidence interval and p-value.

5.7.1 Data spread

The data was collected after several test for each benchmark. With every run of the test
new data collected that was little bit different from the previous test run. The variation
in data was the reason for collecting the data for several runs. The box plot only gives
the information about the placement of the data that which part of box contains the
25% and 75% of the data. It also mentions the maximum and minimum values of
the data. Whereas the data spread shows the difference between the mean X and the
standard deviation σ of the data. It was interesting to see that how much data is spread.
The data spread range in terms of statistics can be calculate using standard deviation
plus and minus mean of the data and denoted by:

X + σ < X < X − σ

It was observed that data spread was larger in case of KVM and VMWare as compared

63

5.7. DISCUSSION

with Bare Metal guest. Followings box plot 5.22 is data spread example selected for
analysis.

1MB 64MB 128MB 256MB 512MB 1GB

14
00

16
00

18
00

20
00

22
00

24
00

Forward Write

Size of file

MB
yte
s/s

Figure 5.22: Iozone forward write for Bare Metal

Box plot of the Bare Metal forward write of Iozone 5.22 has shown that the data spread
was quite larger in case of 1 MB file size as compared with file sizes greater than 1
MB. In case of the bigger file size, spread of data observed quite smaller.

1MB 64MB 128MB 256MB 512MB 1GB

600
800

100
0

120
0

140
0

Forward Write

Size of file

MB
yte
s/s

Figure 5.23: Iozone forward write for KVM

In case of KVM forward write of the Iozone 5.23, spread of the data was larger in large
file size as compared with smaller file size.

64

5.7. DISCUSSION

1MB 64MB 128MB 256MB 512MB 1GB

10
00

12
00

14
00

16
00

18
00

20
00

22
00

Forward Write

Size of file

MB
yte
s/s

Figure 5.24: Iozone forward write for VMWare

The box plot 5.24 has shown that the data spread was also large in 1 MB file size as
compared with bigger file sizes. Smaller spread of the data was observed where the
file size was bigger than 1 MB in VMWare. In case of 1 MB file size Bare Metal data
was more spread as compared with KVM and VMWare. The table 5.5 has shown the
spread of data where the file size was 1 MB:

Table 5.5: Data spread of iozone forward write with 1 MB file size

Bare Metal KVM VMWare

Mean(X) 1947.7 1141.6 1738.0
SD (σ) 344.4 164.1 385.2
X - σ 1603.3 977.5 1352.8
X + σ 2292.1 1305.7 2123.2

The data spread of the Bare Metal was almost 688.8 which was quite larger than 328.2
of the KVM. In case of VMWare the data spread was 770.4 which was more than Bare
Metal and KVM. Another example of spread of data was included from the ram speed
when testing the float and writing. Box plot for Bare Metal, KVM and VMWare has
shown their data spread:

65

5.7. DISCUSSION

1KB 16KB 256KB 1MB 4MB 16MB 32MB 64MB 512MB 1GB 2GB

10
00
0

15
00
0

20
00
0

25
00
0

30
00
0

35
00
0

Float and writing

Block size

MB
yte
s/s

Figure 5.25: Ram speed float and writing for Bare Metal

1KB 16KB 256KB 1MB 4MB 16MB 32MB 64MB 512MB 1GB 2GB

50
00

10
00
0
15
00
0
20
00
0
25
00
0
30
00
0
35
00
0

Float and writing

Block size

M
By
te
s/s

Figure 5.26: Ram speed float and writing for KVM

66

5.7. DISCUSSION

1KB 16KB 256KB 1MB 4MB 16MB 32MB 64MB 512MB 1GB 2GB

10
00
0

15
00
0

20
00
0

25
00
0

30
00
0

Float and writing

Block size

M
By
te
s/
s

Figure 5.27: Ram speed float and writing for VMWare

As illustrated from the box plot, the data was less spread in case of the Bare Metal
5.25 as compared with the KVM 5.26 and VMWare 5.27. In case of VMWare most
of the data was found in lower part of the box. In KVM the data spread was observed
less where the block size was greater than 16 MB. The table 5.6 has shown the range
of spread of data along with standard deviation in case of 4 MB block size:

Table 5.6: Data spread of ram speed for float and writing with 4 MB block size

Bare Metal KVM VMWare

Mean(X) 25892.8 19503.0 19741.8
SD (σ) 94.1 4597.8 4252.2
X - σ 25798.7 14905.2 15489.6
X + σ 25986.9 24100.8 23994.0

From the table 5.6 , Bare Metal have only the spread of data 188.2. Whereas KVM and
VMWare has a larger spread with 9195.6 and 8504.4 respectively. From the selected
cases it was observed that the Bare Metal have a less data spread while compared with
KVM and VMWare. Extreme difference in Bare Metal was observed as compared
with KVM and VMWare in Ram Speed of data spread.

5.7.2 Confidence Interval

The data collected was aggregated after the number of runs of the benchmarks. To
check the reliability of the mean estimation of the data collected, confidence interval
was calculated for few selected cases. In first case where VMWare Read of Iozone
with 1 MB file size was selected for confidence interval test. In order to find out how

67

5.7. DISCUSSION

accurate the test results, t-test was implemented. Results from t-test for VMWare with
file size of 1 MB of Iozone are shown below:

T-test of 1 MB read of Iozone for VMWare

1 t.test(VMReader1mb)
2

3 One Sample t-test
4

5 data: VMReader1mb
6 t = 141.8315, df = 69, p-value < 2.2e-16
7 alternative hypothesis: true mean is not equal to 0
8 95 percent confidence interval:
9 4025.562 4140.422

10 sample estimates:
11 mean of x
12 4082.992
13 Standard deviation 240.8546.

The N in this case was 70. The 95% confidence interval was

4025.5 < X < 4140.4

The estimated X from this data was 4083.0. If the test repeated several time with N of
70, in 95% of the cases the mean will be within the range of the confidence interval.
The confidence interval was very narrow with only difference of 114.9 as mentioned
in figure 5.28.

Figure 5.28: Confidence interval of iozone 1 MB file size of VMWare.

One more example for the confidence interval was taken from the Ram speed. Integer
and reading with 4 MB of block size was selected from KVM to observe the confidence
interval. In case of ram speed N was 25. The 95% confidence interval was

21503.2 < X < 22313.5

68

5.7. DISCUSSION

The estimated X was remained 21908.4. In this case, 95% confidence that estimated
mean in between range of confidence interval. The range of the confidence interval in
this case was 810.3 as shown in figure 5.29.

Figure 5.29: Confidence interval of ram speed 4 MB block size of KVM.

The results are considered as more accurate when the difference between the confi-
dence interval remained very low. As in case of Iozone the difference of confidence
interval was 114.9 which was very low and has shown the accuracy of the test results.
The confidence interval was very narrow in most of the observations. That means, the
difference is large enough to conclude that there is a significant difference between the
estimated means. However, in a few cases the difference between the means is small
and one should investigate this in detail by using an appropriate statistical test. The
Welch T-test is implemented in the next section.

5.7.3 P-value

T-test was used to know the significant difference between the data samples. Few
selected cases was taken and analyzed for this purpose to generalize the results. There
are three different sample and t-test was used in following three ways.

• Bare Metal Vs KVM

• Bare Metal Vs VMWare

• KVM Vs VMWare

The p-value of the t-test between two samples has indicated the probability of being
wrong in concluding that there is a difference in the two sample group. The out put of
Welch two sample t-test generated from R is given below:

69

5.7. DISCUSSION

T-test of 4 MB Float and Writing of Ram speed for VMWare

1 > t.test(b44m,vmb44m)
2

3 Welch Two Sample t-test
4

5 data: b44m and vmb44m
6 t = 7.231, df = 24.023, p-value = 1.789e-07
7 alternative hypothesis: true difference in means is not equal to 0
8 95 percent confidence interval:
9 4395.484 7906.598

10 sample estimates:
11 mean of x mean of y
12 25892.83 19741.79

If the P value :

P − value < 0.05

It can be concluded that there is significant difference between two sample groups.
P value smaller than 0.05% indicates that 95% confidence about data occurrence be-
tween the interval.

Few cases were selected to know the p-value.

Table 5.7: P-value of t-test for comparison

Bare Metal Vs KVM Bare Metal Vs VMWare KVM Vs VMWare
Iozone: Forward write
with 64 MB file size

2.2−16 2.2−16 2.2−16

Iozone: Random write
with 64 MB file size

2.2−16 2.2−16 2.2−16

Iozone: Read with 1
MB file size

2.2−16 0.22 2.2−16

Iozone: Backward
Read 128 MB file size

2.2−16 1.15−14 2.2−16

Iozone: Re-write 128
MB file size

2.2−16 0.54 2.2−16

Ram speed: Integer
and reading with 1 KB
block size

1.27−08 2.2−16 2.15−05

Ram speed: Integer
and reading with 4 MB
block size

2.2−15 2.2−16 0.0015

Ram speed: Float and
writing with 4 MB
block size

3.47−07 1.79−07 0.85

In above table of the t-test, p-value between different sample groups were extremely
low. If the p-value is extremely low, as in most the cases, means that there is signif-
icant different between the two population and it is not by chance. In case of Iozone

70

5.7. DISCUSSION

backward read with 128 MB, VMWare has shown better performance then Bare Metal.
Bare Metal was on 3543 MB per second and VMWare was at 3767 MB per second.
While compared both using t-test, p value was 0.54 which is greater than 0.05. In case
of 1 MB read the p-value between Bare Metal and VMWare was 0.22 which is larger
than 0.05.

In case of ram speed with float and writing with 4 MB block size, p -value between
the KVM and VMWare was 0.85. This case was also shown that there was no signif-
icant difference between the two samples. In case of integer and reading with 4 MB
block size, the p-value between KVM and VMWare was 0.0015 and lower than 0.05.
It means that the difference is not statistically significant.

In most of the cases, p value has remained extremely low that indicated the accuracy
of the results. On the bases of the above sample taken form the population, the results
can be generalized for rest of the data collected. When the visual difference is not
very small as in the cases discussed in confidence interval, we may say that there is
significant difference between the two data. When the difference is very small, than
difference might not be statistically significant.

71

5.8. UNIXBENCH

5.8 UnixBench

UnixBench test system’s CPU performance through different kind of tests 3.2. All
these tests are categorized for performance calculation that includes CPU throughput,
inter process communication throughput and file system thourghput. Dhrystone 2,
Whetstone, and Excel throughput are CPU performance benchmarking. Pipe through-
put, process creation, Shell script (8 concurrent), System call overhead are perfor-
mance measurement of inter process communications. Whereas File copy 256, 1024
and 4096 are file system benchmarking tools. Detail table of calculation of Bare Metal,
KVM VM and VMWare VM is included in Appendix C . The performance of CPU
throughput, Interprocess communication throughput and file system throughput was
compared with the help of graphs.

5.8.1 CPU Throughput results

Figure 5.30: UnixBench CPU Throughput

The CPU throughput performance has shown in graph 5.30. Performance of Bare
Metal was remained on the top followed by VMWare that was near to Bare Metal
system. Whereas performance of KVM remained little behind than both Bare Metal
and VMWare. Throughput score remained lower for the following tests:

• Dhrystone 2 test, evaluates the manipulation of arrays, character strings, indirect
addressing, and other common non floating point instructions. Bare Metal just
over 16, KVM 15 and VMWare shows 16 iterations per seconds.

• Double-precision Whetstone is arithmetic test, and evalutes assignment, addi-
tion, subtraction and multiplication calculations. Bare Metal and KVM was
shown 6 whereas VMWare remained below 6 iterations per seconds.

72

5.8. UNIXBENCH

• Execl Throughput test the replacement of a currently running process with a new
process. In this test Bare Metal remains over 6 and VMWare remains under 6.
Whereas KVM was remains under 4.

In case of ALU , the performance of the KVM remained similar to Bare Metal, whereas
the VMWare remained 2% behind to the Bare Metal. The ALU performance of all the
three guests was remained Performance of the virtualization technologies remain lower
than that of Bare Metal in all the cases of CPU performance test. The abstraction layer
of virtualization caused of this performance decrement.

5.8.2 Inter Process Communication results

Figure 5.31: UnixBench Inter process Communication Throughput

In inter process communication 5.31 test both the virtualized systems produced the
following results as compared with Bare Metal:

• Pipe Throughput evaluates a single process which opens a pipe to itself and
communicates data in loop. Bare Metal shows 7.5 and KVM remains just under
5 iteration per second. Whereas VMWare shows 8.5, that was quite unusual.
The reason might be at the time of Bare Metal performance test CPU was busy
with other process or due to some unknown reasons.

• Process Creation evaluates the repeated creation of a child process which imme-
diately dies after its own fork(). Performance of Bare Metal was 6 as compared
with KVM just 4 and VMWare over 4 iterations per second.

• Shell Scripts evaluates a shell script that is run by 1, 2, 4, and 8 concurrent
processes. Iterations per second was remain at 9, 8 and 6.3 for Bare Metal,
VMWare and KVM respectably.

73

5.8. UNIXBENCH

• System Call Overhead evaluates the time required to do iterations of dup(),
close(), getpid(), getuid(), and umask() calls. A marginal difference was ob-
served in all the three cases and performance was around 4.5 iteration per sec-
ond.

In case of system call overhead, the performance of KVM and VMWare was re-
mained identical to the Bare Metal system. In case of pipe throughput, VMWare has
shown even better performance than Bare Metal that might be because of some errors.
VMWare produced better performance results as compared with KVM. However, both
the virtualization technologies yet behind the Bare Metal. Virtualization overhead was
very visible effect on performance and there was room for improvement for both ap-
proaches.

5.8.3 File System Throughput results

Figure 5.32: UnixBench File System Throughput

The file system 5.32 test measures the number of characters that can be copied within
10 second depending upon buffer sizes of 256 bytes, 1 KB and 4 KB. Bare Metal has
shown better performance than KVM and VMWare as reflected in following results.

• File copy 256 bytes In case of Bare Metal, it was 0.7. Whereas VMWare remains
at 0.06 and KVM at last with 0.05 iteration per second.

• File copy 1 KB Iteration per second was remain 1.100, 0.900 and 0.80 for Bare
Metal, VMWare and KVM respectably.

• File copy 4 KB Bare Metal has shown the highest performance of 2.3 followed by
VMWare with 2.1 iteration per second. Whereas KVM has shown 1.6 iteration
per second remained the lowest.

74

5.9. FUTURE WORK

Again VMWare performance better than KVM and very close to Bare Metal. KVM
added more overhead in file system throughput and is needed improvement in this area
for better results.

5.8.4 Composite Throughput score

Figure 5.33: UnixBench composite throughput score

CPU composite throughput performance 5.33 has shown that Bare Metal was at top
performance with highest score of 4.7. Whereas both the virtualized technologies re-
mained 4.4 and 3.7 in case of VMWare and KVM respectively.

The UnixBench tests focus on different system resources including CPU, file systems,
pipes and processes. These processes communicate with system kernel services and
activate kernel-level memory events. All the benchmark test in UnixBench uses aggre-
gate timing for performance measurement and for this purpose it uses shell command
time. The abstraction layer added by virtualization in different technology have differ-
ent effects, some are using hypervisor while other are using virtual machine monitor.
Difference in architecture effects the difference in performance. In system composite
performance VMWare far ahead than KVM and near to Bare Metal guest system.

5.9 Future work

Iozone have maximum of 1 GB file size for test. However, it would be interested
to benchmark the guests with larger file than 1 GB. Similar with Ram speed, that
have maximum of 2 GB block size to test the guest. By using the larger block size,
some interesting facts cab be unfold. The performance comparison of the KVM and
VMWare was made by using Iozone for I/O, ram speed for memory and UnixBench for

75

5.9. FUTURE WORK

cpu. It would also be interested to compare the performance for KVM and VMWare
with some other available benchmarking tools. This research was conducted by using
the RHEL 6.1. This would also be interesting to compare the performance of the
KVM and VMWare by using the different operating systems. The interesting facts can
also be unfolded to measure the performance of the KVM and VMWare hypervisors
by running several virtual machines. This can help to measures the scalability of the
KVM and VMWare.

76

Chapter 6

Conclusions

Virtualization nowadays is very popular technology, as it reduce the management cost,
expenses and many more benefits for the organizations. Many virtualization tech-
nologies are available in the market. The selection of the right technology for the
organization can produce better results. KVM virtualization is gaining popularity
whereas VMWare virtualization is the market leader. Most of the organizations are
using VMWare.

The primary purpose of this research work was to make the comparison between KVM
and VMWare. The secondary purpose was to compare the performance of virtualized
and non virtualized guests. In the case of a virtualized environment, the abstraction
layer between hardware resources and OS, is obviously affecting the performance of
the virtual guest. KVM and VMWare are both different technologies for virtualization
and using different architectures. KVM uses OS layer or para virtualization approach
whereas the VMWare uses the hardware layer virtualization. This different approaches
of virtualization might have created the difference in performance.

While comparing the non-virtualized and virtualized environment, it was observed that
the Bare Metal out perform the KVM and VMWare in almost every test. When com-
paring KVM and VMWare, some interesting results were observed. In case of Iozone,
when writing large files, VMWare was more than twice as fast as KVM. In the spe-
cial case of writing 64 MB files it was observed that KVM was more than 30% better
than VMWare. While in reading the VMWare perform better than KVM. In case of
smaller file sizes VMWare was 20 to 25% better than KVM. In special case of 1 MB
file, VMWare was 40% better than KVM.

While testing the memory performance with ram speed with block size smaller than
4 MB, KVM perform 4 to 7% better than VMWare. In case of block size larger
than 4 MB, VMWare perform 15 to 25% better than KVM. In case of other writ-
ing VMWare observed 30 to 50% better than KVM. CPU performance was measured
by using UnixBench. The performance of VMWare was quite close to the perfor-
mance of Bare Metal. In case of ALU bound processes, no overhead was observed
and performance KVM and VMWare was almost similar to Bare Metal. In UnixBench
composite throughput score, Bare Metal perform 9% better than VMWare and 29%

77

better an KVM. Whereas VMWare perform 20% better than KVM.

In overall performance, the VMWare perform better than KVM. In some cases VMWare
performs twice better than KVM. Whereas. In few cases KVM also gave better results
than VMWare.

78

Bibliography

[1] Steven J. Vaughan-Nichols, New Approach to Virtualization Is a Lightweight IEEE
Computer Society, pp. 12-14, November, 2006.

[2] Herrod, S. A., Systems Research and Development at VMware ACM SIGOPS Op-
erating Systems Review archive, Vol. 44(4), ACM New York, NY, USA, December
2010.

[3] Crosby, S. and Brown, D., The Virtualization Reality. ACM QUEUE Jr., pp.34-41,
December/January 2006-2007

[4] Goth, G., Virtualization: Old Technology Offers Huge New Potential. Published
by the IEEE Computer Society, Vol. 8(2), February 2007.

[5] Hirt, T., KVM - The kernel-based virtual machine. February 2010.

[6] Oguchi, Y. and Yamamoto, T. Server, Virtualization Technology and Its Latest
Trends FUJITSU Sci. Tech. J, Vol. 44(1), pp.46-52, January 2008.

[7] Singh, A. An Introduction to Virtualization.
http://www.kernelthread.com/publications/virtualization/ Accessed on, 17
January 2011 [20:00], 2004.

[8] Sander, P. and Bobo, S., The 100 Best Technology Stocks you can buy 2012.
Aadams Media Inc. USA, pp.337-339, January 2012.

[9] VMWare Inc, VMware ESXi and ESX Info Center.
http://www.vmware.com/products/vsphere/esxi-and-esx/overview.html?src=
WWW_ESXIInfoCenter_US_HPBanner_ESXIMigration#utm_source=
WWW_ESXIInfoCenter_US_HPBanner_ESXIMigration&utm_medium=src
&utm_campaign=src-tagged-url Accessed on, 15 February 2012.

[10] Guan, T., Hai, J., Xia, X., Wenzhi, C. and Pingpeng, Y., Measuring and Ana-
lyzing CPU Overhead of Virtualization System. Services Computing Conference
(APSCC), 2011 IEEE Asia-Pacific, pp.243-250, December 2011.

[11] Smith, J. E. and Nair, R., Virtual Machines: versatile platforms for systems and
processes. Morgan Kaufmann publishers, May 2005.

[12] Neiger, G., Amy, S., Leing, F., Rodgers, D., and Uhlig, R., Intel Virtualization
Technology: Hardware Support for Efficient Processor Virtualization. Intel Tech-
nology Journal, Vol. 10(03), 2006.

79

BIBLIOGRAPHY

[13] Apparao, P., Iyer, R., Zhang, X., Newell, D., and Adelmeyer, T., Charac-
terization and Analysis of a Server Consolidation Benchmark. In Proceedings
of ACM/USENIX International Conference on Virtual Execution Environments
(VEE), 2008.

[14] Lee, B. and Brooks, D., Accurate and efficient regression modeling for microar-
chitectural performance and power prediction. In Proceedings of the 12th interna-
tional conference on Architectural support for programming languages and oper-
ating systems, pp.185-194, New York, NY, USA, 2006.

[15] Hauswirth, M., Diwan, A., Sweeney, P., and Mozer, M., Automating vertical
profiling. In Proceedings of the 20th annual ACM SIGPLAN conference on Object
oriented programming, systems, languages, and applications, pp.281-296, New
York, NY,USA, 2005.

[16] Chiueh, S. N. T, and Brook, S., A Survey on Virtualization Technologies. RPE
Report, pp. 1-42, 2005.

[17] Smith, J. E., The architecture of virtual machines. Computer, Vol. 38(5), pp. 32-
38, May 2005.

[18] Marinescu, D. and Kroger, R., State of the art in autonomic computing and vir-
tualization. Distributed Systems Lab, Wiesbaden University of Applied Sciences,
Wiesbaden, Germany, September, 2007.

[19] Goldberg, Robert P., Survey of Virtual Machine Research. IEEE Computer Mag-
azine, Vol. 7, pp. 34-45, June, 1974.

[20] Popek, G. J. and Goldberg, R. P., Formal requirements for virtualizable third
generation architectures. Commun. ACM, Vol. 17, pp. 412-421, July, 1974.

[21] Sugerman, J., Venkitachalam, G., and Lim, B. H., Virtualizing I/O Devices on
VMware Workstations Hosted Virtual Machine Monitor. Proceedings of the Gen-
eral Track: 2002 USENIX Annual Technical Conference. USENIX Association,
pp. 1-14, 2002.

[22] Soltesz, S., Poetzl, H., Fiuczynski, M., E., Bavier, A., and Peterson, L.,
Container-based operating system virtualization: a scalable, high-performance
alternative to hypervisors. Proceedings of the 2007 conference on EuroSys. ACM
Press., pp. 275-287, 2007.

[23] Rosenblum, M. and Garfinkel, T., Virtual machine monitors: current technology
and future trends. Computer, Vol. 38(5), pp. 39-47, 2005.

[24] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer,
R., Pratt, I., Warfield, A., Xen and the art of virtualization. Proceedings of the
19th ACM symposium on Operating systems principles. ACM Press., pp. 164-
177, 2005.

80

BIBLIOGRAPHY

[25] Adams, K. and Agesen, O., A comparison of software and hardware techniques
for x86 virtualization. Proceedings of the 12th international conference on Archi-
tectural support for programming languages and operating systems. ACM Press.,
pp. 2-13, 2006.

[26] Oppegaard, M. C. A., Evaluation of Performance and Space Utilization When
Using Snapshots in the ZFS and Hammer File Systems. Master Thesis, Oslo Uni-
versity College, pp. 29-36, 2009.

[27] Cherkasova, L. and Gardner, R., Measuring CPU overhead for I/O processing in
the Xen virtual machine monitor. In Proceedings of the USENIX Annual Technical
Conference, p.24, Berkeley, CA, USA, 2005.

[28] Bray, T., Bonnie. http://www.textuality.com/bonnie/, 1996, Accessed 28 Feb,
2012.

[29] Coker, R., Bonnie++. http://www.coker.com.au/bonnie++/, 2001, Accessed 28
Feb, 2012.

[30] Katcher, J., Postmark, a new file system benchmark. Technical report, Network
Appliance, Oct 1997.

[31] Traeger, A., Zadok, E., Joukov, N., and Wright, C. P., A nine year study of file
system and storage benchmarking. Trans. Storage, Vol. 4(2), pp.1-56, 2008.

[32] Capps, D., A nine year study of file system and storage benchmarking.
http://www.iozone.org/docs/IOzone-msword-98.pdf, Accessed 28 of Feb, 2012.

[33] Qumranet, White Paper KVM Kernel based Virtualization Driver.
http://www.redhat.com/products/virtualization/, Accessed 09 of March, 2012.

[34] Walters, J. P., Chaudhary, V., Cha, M., Guercio Jr., S., and Gallo, S., A Com-
parison of Virtualization Technologies for HPC. 22nd International Conference
on Advanced Information Networking and Applications, IEEE Computer Society.
pp.861-868. 2008.

[35] Nanda, S., and Chiueh, T., A Survey on Virtualization Technologies. Stony
Brooks, New York. p.32, 2005.

[36] Che, J., Shi, C., Yu, Y., and Lin, W., A Synthetical Performance Evaluation
of OpenVZ, Xen and KVM. IEEE Asia-Pacific Services Computing Conference.
IEEE Computer Society. pp. 587-594, 2010.

[37] Menon, A., Santos, J. R., Turner, Y., Janakiraman, G. J., and Zwaenepoel, W.,
Diagnosing performance overheads in the xen virtual machine environment. In
Proceedings of the 1st ACM/USENIX International Conference on Virtual Execu-
tion Environments (VEE 05), USA: ACM New York, pp. 13-23, 2005.

[38] Whitaker, A, Shaw, M., and Gribble, S., Scale and Performance in the Denali
Isolation Kernel. In Proceedings of Symposium on Operating Systems Design and
Implementation(OSDI 02), pp. 195-209, 2002.

81

BIBLIOGRAPHY

[39] Clark, B., Deshane, T., Dow, E., Evanchik, S., Finlayson, M., Herne, J., and
Matthews, J., Xen and the Art of Repeated Research. In Proceedings of the 2004
USENIX Annual Technical Conference, pp. 135-144, 2004.

[40] Ongaro, D., Cox, A. L., and Rixner, S., Scheduling I/O in Virtual Machine Mon-
itor. In ACM/USENIX International Conference on Virtual Execution Environ-
ments(VEE 08), pp. 1-10, 2008.

[41] Landmann, R., Cantrell, D., De Goede, D. and Masters, J., Red
Hat Enterprise Linux 6, Installation Guide. http://docs.redhat.com/docs/en-
US/Red_Hat_Enterprise_Linux/6/html/Installation_Guide/index.html, Accessed
February 10, 2012.

[42] Landmann, R., Cantrell, D., De Goede, D. and Masters, J., Red Hat
Enterprise Linux 6, Installation Guide. http://docs.redhat.com/docs/en-
US/Red_Hat_Enterprise_Linux/5/html/Virtualization/sect-
Virtualization-Installing_the_virtualization_packages-
Installing_KVM_packages_on_an_existing_Red_Hat_Enterprise_Linux_system.html,
Accessed March 10, 2012.

[43] Deshane, T., Shepherd, Z., Matthews, J., Ben-Yehuda, M., Shah, A., and Rao, B.,
Quantitative Comparison of Xen and KVM. Xen Summit., June 23-24, 2008.

[44] Younge, A. J., Henschel, R., Brown, J. T., Laszewski, G. V., Qiu, J., and Geof-
frey, C., Analysis of Virtualization Technologies for High Performance Comput-
ing Environments. IEEE 4th International Conference on Cloud Computing, IEEE
Computer Society, Indiana University, U.S.A. pp.9-16, 2011.

[45] Fuertes, W., Vergara, J. E. L., Pincha, J., Aules, H., Jacome, L., and Grijalva,
M., Analytical Expression to Predict the Overhead Produced by the VMware and
Xen Virtualization Tools. High Performance Computing and Networking research
group, Escuela Politecnica Superior, Universidad Autonoma de Madrid, Spain.
2012.

[46] Casazza, J., Greenfield, M., and Shi, K., Redefining Server Performance Charac-
terization for Virtualization Benchmarking. Intel®Technology Journal. Vol 10(03),
August 10, 2006.

[47] Intel Software Network, Measuring Performance of Applications on Virtualized
Systems Under Test (SUTs). Technical Report. October 2008.

[48] Fuertes, W., Vergara, J. E. L., A quantitative comparison of virtual network en-
vironments based on performance measurements. In Proc. 14th HP Software Uni-
versity Association Workshop, Munich, Germany, pp. 8-11, July 2007.

[49] Waldspurger, C., Memory resource management in VMware ESX server. In Pro-
ceedings of the Fifth Symposium on Operating Systems Design and Implementa-
tion, 2002.

[50] VMware Inc., Understanding Full Virtualization, Paravirtu-
alization, and Hardware Assist. VMware Inc., white paper,

82

BIBLIOGRAPHY

http://www.vmware.com/files/pdf/VMware_paravirtualization.pdf Accessed
March 15, 2012.

[51] VMware Inc., Understanding Memory Overhead. VMware
ESXi 4.0 Installable and vCenter Server 4.0 Edition,
http://pubs.vmware.com/vsp40_i/wwhelp/wwhimpl/js/html/wwhelp.htm#
href=resmgmt/c_understanding_memory_overhead.html, Accessed March
15, 2012.

[52] Smith, Z., Bandwidth: a memory bandwidth benchmark.
http://zsmith.co/bandwidth.html, Accessed on March 17, 2012.

[53] Horvath, A., MBW memory bandwidth benchmark.
http://ahorvath.home.cern.ch/ahorvath/mbw/, July 2004, Accessed on March
17, 2012.

[54] Coffey, P., Beliveau, J., Mogre, N., and Harner, A., Benchmarking the Amazon
Elastic Compute Cloud (EC2). Worcester Polytechnic Institute, March 9, 2011.

[55] Hollander, R. M., and Bolotoff P. V., RAMspeed, a cache and memory bench-
marking tool. http://alasir.com/software/ramspeed/, November 2002, Accessed on
March 17, 2012.

[56] Stefan-Radu, M., CPU Free BenchMark (former CPUMark) 2.2.
http://www.softpedia.com/get/System/Benchmarks/CPUMark.shtml, April
2008, Accessed on March 19, 2012.

[57] UnixBench, UnixBench : Know Your VPS Computation Power.
http://www.hostingformula.net/unixbench-know-your-vps-computation-power/,
Accessed on March 19, 2012.

[58] Diskeeper, Virtualization and Disk Performance. Diskeeper corporation, 2006.

[59] UnixBench, byte-unixbench: A Unix Benchmark Suite
http://code.google.com/p/byte-unixbench/, Accessed on April 10, 2012.

[60] Kopytov, A., SysBench Manual. http://sysbench.sourceforge.net/docs/, Accessed
on April 12, 2012.

[61] Chambers, J., The R Project for Statistical Computing. http://www.r-project.org/,
Accessed on May 16, 2012.

83

Appendix A

Iozone Results

A.1 Bare Metal Iozone results

The data summary that includes the minimum, lower and upper quartiles, median,
mean and maximum was generated by using R software. The data summary was gen-
erated for all the data of Iozone and Ram speed. Table for data summary for Bare
Metal write A.1 is presented as sample.

85

A.1. BARE METAL IOZONE RESULTS

A.1.1 Write

Table A.1: Bare Metal Iozone Write

File size Minimum 1st Quartile Median Mean 3rd Quartile Maximum
1 MB 602.4 750.3 766.5 867.6 1025 1079
64 MB 890.1 970.6 992.4 990.8 1016 1050
128 MB 943.1 994.8 1010 1009 1027 1049
256 MB 1088 1114 1122 1121 1128 1140
512 MB 1075 1124 1130 1129 1135 1144
1 GB 1108 1133 1137 1136 1140 1150

1MB 64MB 128MB 256MB 512MB 1GB

60
0

70
0

80
0

90
0

10
00

11
00

Writer

Size of file

M
By
te
s/
s

Figure A.1: Bare Metal Iozone Write

86

A.1. BARE METAL IOZONE RESULTS

A.1.2 Re-Write

1MB 64MB 128MB 256MB 512MB 1GB

12
00

14
00

16
00

18
00

Re-Writer

Size of file

MB
yte
s/s

Figure A.2: Bare Metal Iozone Re-write

A.1.3 Read

1MB 64MB 128MB 256MB 512MB 1GB

30
00

35
00

40
00

45
00

50
00

Reader

Size of file

MB
yte
s/s

Figure A.3: Bare Metal Iozone Read

87

A.1. BARE METAL IOZONE RESULTS

A.1.4 Re-Read

1MB 64MB 128MB 256MB 512MB 1GB

30
00

40
00

50
00

60
00

70
00

Re-Reader

Size of file

MB
yte
s/s

Figure A.4: Bare Metal Iozone Re-read

A.1.5 Random Read

1MB 64MB 128MB 256MB 512MB 1GB

30
00

35
00

40
00

45
00

50
00

55
00

Random Read

Size of file

MB
yte
s/s

Figure A.5: Bare Metal Iozone Random read

88

A.1. BARE METAL IOZONE RESULTS

A.1.6 Random Write

1MB 64MB 128MB 256MB 512MB 1GB

14
00

16
00

18
00

20
00

22
00

24
00

26
00

Random Write

Size of file

MB
yte
s/s

Figure A.6: Bare Metal Iozone Random write

A.1.7 Backward Read

1MB 64MB 128MB 256MB 512MB 1GB

20
00

25
00

30
00

35
00

40
00

45
00

Backward Read

Size of file

MB
yte
s/s

Figure A.7: Bare Metal Iozone Backward read

89

A.1. BARE METAL IOZONE RESULTS

A.1.8 Record Re-write

1MB 64MB 128MB 256MB 512MB 1GB

15
00

20
00

25
00

30
00

Record Re-write

Size of file

MB
yte
s/s

Figure A.8: Bare Metal Iozone Record re-write

A.1.9 Stride Read

1MB 64MB 128MB 256MB 512MB 1GB

30
00

35
00

40
00

45
00

50
00

55
00

Stride Read

Size of file

MB
yte
s/s

Figure A.9: Bare Metal Iozone Stride read

90

A.1. BARE METAL IOZONE RESULTS

A.1.10 Forward Write

1MB 64MB 128MB 256MB 512MB 1GB

14
00

16
00

18
00

20
00

22
00

24
00

Forward Write

Size of file

MB
yte
s/s

Figure A.10: Bare Metal Iozone Forward write

A.1.11 Re-Forward Write

1MB 64MB 128MB 256MB 512MB 1GB

14
00

15
00

16
00

17
00

18
00

19
00

Re-Forward Write

Size of file

M
By
te
s/s

Figure A.11: Bare Metal Iozone Re-Forward write

91

A.1. BARE METAL IOZONE RESULTS

A.1.12 Forward Read

1MB 64MB 128MB 256MB 512MB 1GB

25
00

30
00

35
00

40
00

45
00

50
00

Forward Read

Size of file

MB
yte
s/s

Figure A.12: Bare Metal Iozone Forward read

A.1.13 Re-Forward Read

1MB 64MB 128MB 256MB 512MB 1GB

30
00

40
00

50
00

60
00

70
00

Re-Forward Read

Size of file

MB
yte
s/s

Figure A.13: Bare Metal Iozone Re-Forward read

92

A.2. KVM VIRTUAL MACHINE IOZONE RESULTS

A.2 KVM Virtual Machine Iozone results

A.2.1 Write

1MB 64MB 128MB 256MB 512MB 1GB

300
400

500
600

700
800

Writer

Size of file

MB
yte
s/s

Figure A.14: KVM VM Iozone Write

A.2.2 Re-Write

1MB 64MB 128MB 256MB 512MB 1GB

600
800

100
0

120
0

Re-Writer

Size of file

MB
yte
s/s

Figure A.15: KVM VM Iozone Re-write

93

A.2. KVM VIRTUAL MACHINE IOZONE RESULTS

A.2.3 Read

1MB 64MB 128MB 256MB 512MB 1GB

20
00

25
00

30
00

35
00

40
00

Reader

Size of file

MB
yte
s/s

Figure A.16: KVM VM Iozone Read

A.2.4 Re-Read

1MB 64MB 128MB 256MB 512MB 1GB

25
00

30
00

35
00

40
00

45
00

50
00

55
00

Re-Reader

Size of file

MB
yte
s/s

Figure A.17: KVM VM Iozone Re-read

94

A.2. KVM VIRTUAL MACHINE IOZONE RESULTS

A.2.5 Random Read

1MB 64MB 128MB 256MB 512MB 1GB

20
00

25
00

30
00

35
00

Random Read

Size of file

MB
yte
s/s

Figure A.18: KVM VM Iozone Random read

A.2.6 Random Write

1MB 64MB 128MB 256MB 512MB 1GB

40
0

60
0

80
0

10
00

12
00

14
00

Random Write

Size of file

MB
yte
s/s

Figure A.19: KVM VM Iozone Random write

95

A.2. KVM VIRTUAL MACHINE IOZONE RESULTS

A.2.7 Backward Read

1MB 64MB 128MB 256MB 512MB 1GB

20
00

22
00

24
00

26
00

28
00

30
00

32
00

34
00

Backward Read

Size of file

MB
yte
s/s

Figure A.20: KVM VM Iozone Backward read

A.2.8 Record Re-write

1MB 64MB 128MB 256MB 512MB 1GB

10
00

15
00

20
00

25
00

Record Re-write

Size of file

MB
yte
s/s

Figure A.21: KVM VM Iozone Record Re-write

96

A.2. KVM VIRTUAL MACHINE IOZONE RESULTS

A.2.9 Stride Read

1MB 64MB 128MB 256MB 512MB 1GB

22
00

24
00

26
00

28
00

30
00

32
00

Stride Read

Size of file

MB
yte
s/s

Figure A.22: KVM VM Iozone Stride read

A.2.10 Forward Write

1MB 64MB 128MB 256MB 512MB 1GB

60
0

80
0

10
00

12
00

14
00

Forward Write

Size of file

MB
yte
s/s

Figure A.23: KVM VM Iozone Forward write

97

A.2. KVM VIRTUAL MACHINE IOZONE RESULTS

A.2.11 Re-Forward Write

1MB 64MB 128MB 256MB 512MB 1GB

60
0

80
0

10
00

12
00

14
00

Re-Forward Write

Size of file

MB
yte
s/s

Figure A.24: KVM VM Iozone Re-Forward write

A.2.12 Forward Read

1MB 64MB 128MB 256MB 512MB 1GB

25
00

30
00

35
00

40
00

Forward Read

Size of file

MB
yte
s/s

Figure A.25: KVM VM Iozone Forward read

98

A.2. KVM VIRTUAL MACHINE IOZONE RESULTS

A.2.13 Re-Forward Read

1MB 64MB 128MB 256MB 512MB 1GB

30
00

35
00

40
00

Re-Forward Read

Size of file

MB
yte
s/s

Figure A.26: KVM VM Iozone Re-Forward read

99

A.3. VMWARE VIRTUAL MACHINE IOZONE RESULTS

A.3 VMWare Virtual Machine Iozone results

A.3.1 Write

1MB 64MB 128MB 256MB 512MB 1GB

60
0

70
0

80
0

90
0

10
00

Writer

Size of file

MB
yte
s/s

Figure A.27: VMWare VM Iozone Write

A.3.2 Re-Write

1MB 64MB 128MB 256MB 512MB 1GB

10
00

12
00

14
00

16
00

18
00

Re-Writer

Size of file

MB
yte
s/s

Figure A.28: VMWare VM Iozone Re-write

100

A.3. VMWARE VIRTUAL MACHINE IOZONE RESULTS

A.3.3 Read

1MB 64MB 128MB 256MB 512MB 1GB

38
00

40
00

42
00

44
00

Reader

Size of file

MB
yte
s/s

Figure A.29: VMWare VM Iozone Read

A.3.4 Re-Read

1MB 64MB 128MB 256MB 512MB 1GB

40
00

45
00

50
00

Re-Reader

Size of file

MB
yte
s/s

Figure A.30: VMWare VM Iozone Re-read

101

A.3. VMWARE VIRTUAL MACHINE IOZONE RESULTS

A.3.5 Random Read

1MB 64MB 128MB 256MB 512MB 1GB

25
00

30
00

35
00

40
00

45
00

Random Read

Size of file

MB
yte
s/s

Figure A.31: VMWare VM Iozone Random read

A.3.6 Random Write

1MB 64MB 128MB 256MB 512MB 1GB

10
00

12
00

14
00

16
00

18
00

20
00

22
00

Random Write

Size of file

MB
yte
s/s

Figure A.32: VMWare VM Iozone Random write

102

A.3. VMWARE VIRTUAL MACHINE IOZONE RESULTS

A.3.7 Backward Read

1MB 64MB 128MB 256MB 512MB 1GB

30
00

32
00

34
00

36
00

38
00

40
00

Backward Read

Size of file

MB
yte
s/s

Figure A.33: VMWare VM Iozone Backward read

A.3.8 Record Rewrite

1MB 64MB 128MB 256MB 512MB 1GB

15
00

20
00

25
00

Record Re-write

Size of file

MB
yte
s/s

Figure A.34: VMWare VM Iozone Record re-write

103

A.3. VMWARE VIRTUAL MACHINE IOZONE RESULTS

A.3.9 Stride Read

1MB 64MB 128MB 256MB 512MB 1GB

32
00

34
00

36
00

38
00

40
00

42
00

Stride Read

Size of file

MB
yte
s/s

Figure A.35: VMWare VM Iozone Stride read

A.3.10 Forward Write

1MB 64MB 128MB 256MB 512MB 1GB

10
00

12
00

14
00

16
00

18
00

20
00

22
00

Forward Write

Size of file

MB
yte
s/s

Figure A.36: VMWare VM Iozone Forward write

104

A.3. VMWARE VIRTUAL MACHINE IOZONE RESULTS

A.3.11 Re-Forward Write

1MB 64MB 128MB 256MB 512MB 1GB

10
00

12
00

14
00

16
00

18
00

Re-Forward Write

Size of file

MB
yte
s/s

Figure A.37: VMWare VM Iozone Re-Forward write

A.3.12 Forward Read

1MB 64MB 128MB 256MB 512MB 1GB

34
00

36
00

38
00

40
00

42
00

Forward Read

Size of file

MB
yte
s/s

Figure A.38: VMWare VM Iozone Forward read

105

A.3. VMWARE VIRTUAL MACHINE IOZONE RESULTS

A.3.13 Re-Forward Read

1MB 64MB 128MB 256MB 512MB 1GB

36
00

40
00

44
00

48
00

Re-Forward Read

Size of file

M
By
te
s/s

Figure A.39: VMWare VM Iozone Re-Forward read

106

Appendix B

Ram Speed Results

B.1 Bare Metal Ram speed results

B.1.1 Integer and Writing

1KB 16KB 256KB 1MB 4MB 16MB 32MB 64MB 512MB 1GB 2GB

10
00
0

15
00
0

20
00
0

25
00
0

30
00
0

35
00
0

Integer and writing

Block size

M
B
yt
es
/s

Figure B.1: Bare Metal Ram speed Integer and writing

107

B.1. BARE METAL RAM SPEED RESULTS

B.1.2 Integer and Reading

1KB 16KB 256KB 1MB 4MB 16MB 32MB 64MB 512MB 1GB 2GB

15
00
0

20
00
0

25
00
0

30
00
0

35
00
0

Integer and reading

Block size

M
By
te
s/
s

Figure B.2: Bare Metal Ram speed Integer and reading

B.1.3 Float and Writing

1KB 16KB 256KB 1MB 4MB 16MB 32MB 64MB 512MB 1GB 2GB

10
00
0

15
00
0

20
00
0

25
00
0

30
00
0

35
00
0

Float and writing

Block size

M
By
te
s/
s

Figure B.3: Bare Metal Ram speed Float and writing

108

B.1. BARE METAL RAM SPEED RESULTS

B.1.4 Float and Reading

1KB 16KB 256KB 1MB 4MB 16MB 32MB 64MB 512MB 1GB 2GB

15
00
0

20
00
0

25
00
0

30
00
0

35
00
0

Float and reading

Block size

M
By
te
s/
s

Figure B.4: Bare Metal Ram speed Float and reading

109

B.2. KVM VIRTUAL MACHINE RAM SPEED RESULTS

B.2 KVM Virtual Machine Ram speed results

B.2.1 Integer and Writing

1KB 16KB 256KB 1MB 4MB 16MB 32MB 64MB 512MB 1GB 2GB

50
00

10
00
0

15
00
0

20
00
0

25
00
0

30
00
0

35
00
0

Integer and writing

Block size

M
B
yt
es
/s

Figure B.5: KVM VM Ram speed Integer and writing

110

B.2. KVM VIRTUAL MACHINE RAM SPEED RESULTS

B.2.2 Integer and Reading

1KB 16KB 256KB 1MB 4MB 16MB 32MB 64MB 512MB 1GB 2GB

10
00
0
15
00
0
20
00
0
25
00
0
30
00
0
35
00
0

Integer and reading

Block size

M
B
yt
es
/s

Figure B.6: KVM VM Ram speed Integer and reading

B.2.3 Float and Writing

1KB 16KB 256KB 1MB 4MB 16MB 32MB 64MB 512MB 1GB 2GB

50
00

10
00
0
15
00
0
20
00
0
25
00
0
30
00
0
35
00
0

Float and writing

Block size

M
By
te
s/
s

Figure B.7: KVM VM Ram speed Float and writing

111

B.2. KVM VIRTUAL MACHINE RAM SPEED RESULTS

B.2.4 Float and Reading

1KB 16KB 256KB 1MB 4MB 16MB 32MB 64MB 512MB 1GB 2GB

10
00
0

15
00
0

20
00
0

25
00
0

30
00
0

35
00
0

Float and reading

Block size

M
By
te
s/
s

Figure B.8: KVM VM Ram speed Float and reading

112

B.3. VMWARE VIRTUAL MACHINE RAM SPEED RESULTS

B.3 VMWare Virtual Machine Ram speed results

B.3.1 Integer and Writing

1KB 16KB 256KB 1MB 4MB 16MB 32MB 64MB 512MB 1GB 2GB

10
00
0

15
00
0

20
00
0

25
00
0

30
00
0

Integer and writing

Block size

M
B
yt
es
/s

Figure B.9: VMWare VM Ram speed Integer and writing

113

B.3. VMWARE VIRTUAL MACHINE RAM SPEED RESULTS

B.3.2 Integer and Reading

1KB 16KB 256KB 1MB 4MB 16MB 32MB 64MB 512MB 1GB 2GB

10
00
0

15
00
0

20
00
0

25
00
0

30
00
0

Integer and reading

Block size

M
B
yt
es
/s

Figure B.10: VMWare VM Ram speed Integer and reading

B.3.3 Float and Writing

1KB 16KB 256KB 1MB 4MB 16MB 32MB 64MB 512MB 1GB 2GB

10
00
0

15
00
0

20
00
0

25
00
0

30
00
0

Float and writing

Block size

M
B
yt
es
/s

Figure B.11: VMWare VM Ram speed Float and writing

114

B.3. VMWARE VIRTUAL MACHINE RAM SPEED RESULTS

B.3.4 Float and Reading

1KB 16KB 256KB 1MB 4MB 16MB 32MB 64MB 512MB 1GB 2GB

10
00
0

15
00
0

20
00
0

25
00
0

30
00
0

Float and reading

Block size

M
B
yt
es
/s

Figure B.12: VMWare VM Ram speed Integer and reading

115

Appendix C

UnixBench Results

C.1 CPU performance results using UnixBench

116

C.1. CPU PERFORMANCE RESULTS USING UNIXBENCH

Ta
bl

e
C

.1
:C

PU
pe

rf
or

m
an

ce
of

U
ni

xB
en

ch
Sy

st
em

B
en

ch
m

ar
ks

In
de

x
V

al
ue

s
B

as
el

in
e

R
es

ul
ts

In
de

x
B

ar
e

M
et

al
K

V
M

V
M

W
ar

e
B

ar
e

M
et

al
K

V
M

V
M

W
ar

e
D

hr
ys

to
ne

2
us

in
g

re
gi

st
er

va
ri

ab
le

s
1.

16
7

18
99

.7
69

17
82

.7
62

18
78

.8
11

0.
16

3
0.

15
3

0.
16

1
D

ou
bl

e-
Pr

ec
is

io
n

W
he

ts
to

ne
0.

00
05

5
0.

34
5

0.
34

3
0.

33
8

0.
06

3
0.

06
2

0.
06

1
E

xe
cl

T
hr

ou
gh

pu
t

0.
00

04
3

0.
28

1
0.

15
3

0.
23

5
0.

06
5

0.
03

6
0.

05
5

Fi
le

C
op

y
10

24
bu

fs
iz

e
20

00
m

ax
bl

oc
ks

0.
03

96
4.

24
7

3.
15

2
3.

84
4

0.
01

1
0.

00
8

0.
01

0
Fi

le
C

op
y

25
6

bu
fs

iz
e

50
0

m
ax

bl
oc

ks
0.

01
65

5
1.

15
5

0.
85

5
1.

03
6

0.
00

7
0.

00
5

0.
00

6
Fi

le
C

op
y

40
96

bu
fs

iz
e

80
00

m
ax

bl
oc

ks
0.

05
8

13
.1

00
9.

74
6

12
.2

62
0.

02
3

0.
01

7
0.

02
1

Pi
pe

T
hr

ou
gh

pu
t

0.
12

44
94

.0
15

61
.2

30
10

6.
42

3
0.

07
6

0.
01

7
0.

08
6

Pi
pe

-b
as

ed
C

on
te

xt
Sw

itc
hi

ng
0.

04
0

24
.7

93
12

.5
25

20
.6

22
0.

06
2

0.
03

1
0.

05
2

Pr
oc

es
s

C
re

at
io

n
0.

00
12

6
0.

76
2

0.
47

2
0.

58
1

0.
06

0
0.

03
7

0.
04

6
Sh

el
lS

cr
ip

ts
(1

co
nc

ur
re

nt
)

0.
00

04
24

0.
39

5
0.

27
2

0.
35

1
0.

09
3

0.
06

4
0.

08
3

Sh
el

lS
cr

ip
ts

(8
co

nc
ur

re
nt

)
0.

00
00

6
0.

05
4

0.
03

8
0.

04
9

0.
09

0
0.

06
4

0.
08

2
Sy

st
em

C
al

lO
ve

rh
ea

d
0.

15
00

0
69

.2
29

68
.3

37
68

.6
82

0.
04

6
0.

04
6

0.
04

6
Sy

st
em

B
en

ch
m

ar
ks

In
de

x
Sc

or
e

0.
04

7
0.

03
4

0.
04

3

117

C.2 CPU performance results using UnixBench for each run

C.2. CPU PERFORMANCE RESULTS USING UNIXBENCH FOR EACH RUN

Ta
bl

e
C

.2
:C

PU
pe

rf
or

m
an

ce
of

U
ni

xB
en

ch
ea

ch
ru

n
Sy

st
em

B
en

ch
m

ar
ks

In
de

x
V

al
ue

s
B

ar
e

M
et

al
K

V
M

V
M

W
ar

e
1s

t
2n

d
3r

d
1s

t
2n

d
3r

d
1s

t
2n

d
3r

d
D

hr
ys

to
ne

2
us

in
g

re
gi

st
er

va
ri

ab
le

s
18

99
40

.5
19

00
27

.3
18

99
62

.9
17

44
54

.9
17

41
32

.8
18

62
40

.9
18

77
07

.0
18

79
35

.1
18

80
01

.2
D

ou
bl

e-
Pr

ec
is

io
n

W
he

ts
to

ne
34

.5
34

.5
34

.4
34

.4
34

.4
34

.2
33

.9
33

.8
33

.8
E

xe
cl

T
hr

ou
gh

pu
t

28
.0

28
.3

28
.1

15
.1

15
.3

15
.6

23
.5

23
.5

23
.5

Fi
le

C
op

y
10

24
bu

fs
iz

e
20

00
42

9.
6

42
5.

6
41

8.
8

32
4.

5
30

7.
6

31
3.

3
38

5.
8

38
6.

2
38

1.
4

Fi
le

C
op

y
25

6
bu

fs
iz

e
50

0
11

7.
2

11
7.

9
11

1.
4

86
.6

82
.2

87
.8

10
3.

3
10

4.
2

10
3.

4
Fi

le
C

op
y

40
96

bu
fs

iz
e

80
00

13
00

.7
13

17
.7

13
11

.6
97

8.
5

93
6.

1
10

09
.1

12
26

.5
12

26
.7

12
25

.4
Pi

pe
T

hr
ou

gh
pu

t
94

35
.1

94
60

.2
93

09
.4

63
97

.3
61

47
.2

58
24

.4
10

57
8.

0
10

35
4.

7
10

99
4.

1
Pi

pe
-b

as
ed

C
on

te
xt

Sw
itc

hi
ng

24
87

.1
24

92
.4

24
58

.5
12

69
.6

12
57

.9
12

30
.0

20
79

.6
20

03
.8

21
03

.3
Pr

oc
es

s
C

re
at

io
n

76
.3

76
.5

75
.8

47
.1

48
.0

46
.4

58
.2

57
.7

58
.2

Sh
el

lS
cr

ip
ts

(1
co

nc
ur

re
nt

)
39

.6
39

.6
39

.5
27

.2
26

.5
28

.1
35

.2
35

.0
35

.2
Sh

el
lS

cr
ip

ts
(8

co
nc

ur
re

nt
)

5.
4

5.
4

5.
4

3.
8

3.
8

3.
9

4.
9

4.
9

4.
9

Sy
st

em
C

al
lO

ve
rh

ea
d

66
57

.0
73

80
.3

67
31

.4
69

21
.0

68
24

.5
67

55
.6

67
83

.0
68

42
.6

69
79

.2

119

Appendix D

Script for Iozone

D.1 Appendix: Iozonetest.sh
The Iozonetest.sh script

1 #! /bin/bash
2 COUNTER=0
3 while [$COUNTER -lt 70]; do
4 iozone -s 1024M -r 4k -Rac >> iozonetest.txt
5 let COUNTER=COUNTER+1
6 sleep 5
7 echo $COUNTER
8 done

D.2 Appendix: Fileseprator.sh
The Fileseprator.sh script

1 #! /usr/bin/perl
2 $teller = 0;
3 open (FIL, "./iozonetest.txt") or
4 die "cant open file /iozonetest.txt\n";
5

6 open (WRITER, ">>iozoneWriter.txt") or die \\
7 "cant open file iozoneWriter.txt\n";
8

9 open (WRITER1, ">>iozoneWriterExcel.txt") or die \\
10 "cant open file iozoneWriterExcel.txt\n";
11

12 open (REWRITER, ">>iozoneRe-writer.txt") or die \\
13 "cant open file iozoneRewriter.txt\n";
14

15 open (REWRITER1, ">>iozoneRe-writerExcel.txt") or die \\
16 "cant open file iozoneRe-writerExcel.txt\n";
17

18 open (READER, ">>iozoneReader.txt") or die \\
19 "cant open file iozoneReader.txt\n";
20

21 open (READER1, ">>iozoneReaderExcel.txt") or die \\
22 "cant open file iozoneReaderExcel.txt\n";
23

24 open (REREADER, ">>iozoneRe-Reader.txt") or die \\
25 "cant open file iozoneRe-Reader.txt\n";
26

27 open (REREADER1, ">>iozoneRe-ReaderExcel.txt") or die \\
28 "cant open file iozoneRe-ReaderExcel.txt\n";
29

121

D.2. APPENDIX: FILESEPRATOR.SH

30 open (RANDOMREAD, ">>iozoneRandomRead.txt") or die \\
31 "cant open file iozoneRandomRead.txt\n";
32

33 open (RANDOMREAD1, ">>iozoneRandomReadExcel.txt") or die \\
34 "cant open file iozoneRandomReadExcel.txt\n";
35

36 open (RANDOMWRITE, ">>iozoneRandomwrite.txt") or die \\
37 "cant open file iozoneRandomwrite.txt\n";
38

39 open (RANDOMWRITE1, ">>iozoneRandomwriteExcel.txt") or die \\
40 "cant open file iozoneRandomwriteExcel.txt\n";
41

42 open (BACKWARDREAD, ">>iozoneBackwardread.txt") or die \\
43 "cant open file iozoneBackwardread.txt\n";
44

45 open (BACKWARDREAD1, ">>iozoneBackwardreadExcel.txt") or die \\
46 "cant open file iozoneBackwardreadExcel.txt\n";
47

48 open (RECORDREWRITE, ">>iozoneRecordrewrite.txt") or die \\
49 "cant open file iozoneRecordrewrite.txt\n";
50

51 open (RECORDREWRITE1, ">>iozoneRecordrewriteExcel.txt") or die \\
52 "cant open file iozoneRecordrewriteExcel.txt\n";
53

54 open (STRIDEREAD, ">>iozoneStridread.txt") or die \\
55 "cant open file iozoneStridread.txt\n";
56

57 open (STRIDEREAD1, ">>iozoneStridreadExcel.txt") or die \\
58 "cant open file iozoneStridreadExcel.txt\n";
59

60 open (FWRITE, ">>iozoneFwrite.txt") or die \\
61 "cant open file iozoneFwrite.txt\n";
62

63 open (FWRITE1, ">>iozoneFwriteExcel.txt") or die \\
64 "cant open file iozoneFwriteExcel.txt\n";
65

66 open (REFWRITE, ">>iozoneRe-Fwrite.txt") or die \\
67 "cant open file iozoneRe-Fwrite.txt\n";
68

69 open (REFWRITE1, ">>iozoneRe-FwriteExcel.txt") or die \\
70 "cant open file iozoneRe-FwriteExcel.txt\n";
71

72 open (FREAD, ">>iozoneFread.txt") or die \\
73 "cant open file iozoneFread.txt\n";
74

75 open (FREAD1, ">>iozoneFreadExcel.txt") or die \\
76 "cant open file iozoneFreadExcel.txt\n";
77

78 open (REFREAD, ">>iozoneRe-Fread.txt") or die \\
79 "cant open file iozoneRe-Fread.txt\n";
80

81 open (REFREAD1, ">>iozoneRe-FreadExcel.txt") or die \\
82 "cant open file iozoneRe-FreadExcel.txt\n";
83

84 while($line = <FIL>)
85 {
86

87 if($line =~ /^"Writer report"/)
88 {
89 $line1 = <FIL>; #reads a line of no interrest
90 #line containing the files size and Mbps value
91 $line1 = <FIL>;
92 @array = split(" ",$line1); #splits the line
93 #writes the Mbps value to the file
94 print WRITER1 "$array[1]\n";
95 print WRITER "{$teller,";

122

D.2. APPENDIX: FILESEPRATOR.SH

96 print WRITER "$array[1]},";
97 $teller += 1;
98 }
99

100 if($line =~ /^"Re-writer report"/)
101 {
102 $line1 = <FIL>;
103 $line1 = <FIL>;
104 @array = split(" ",$line1);
105 print REWRITER1 "$array[1]\n";
106 print REWRITER "{$teller,";
107 print REWRITER "$array[1]},";
108 $teller += 1;
109 }
110

111 if($line =~ /^"Reader report"/)
112 {
113 $line1 = <FIL>;
114 $line1 = <FIL>;
115 @array = split(" ",$line1);
116 print READER1 $array[1];
117 print READER1 "\n";
118 print READER "{$teller,";
119 print READER "$array[1]},";
120 $teller +=1;
121 }
122

123 if($line =~ /^"Re-Reader report"/)
124 {
125 $line1 = <FIL>;
126 $line1 = <FIL>;
127 @array = split(" ",$line1);
128 print REREADER1 "$array[1]\n";
129 print REREADER "{$teller,";
130 print REREADER "$array[1]},";
131 $teller += 1;
132 }
133

134 if($line =~ /^"Random read report"/)
135 {
136 $line1 = <FIL>;
137 $line1 = <FIL>;
138 @array = split(" ",$line1);
139 print RANDOMREAD1 "$array[1]\n";
140 print RANDOMREAD "{$teller,";
141 print RANDOMREAD "$array[1]},";
142 $teller += 1;
143 }
144

145 if($line =~ /^"Random write report"/)
146 {
147 $line1 = <FIL>;
148 $line1 = <FIL>;
149 @array = split(" ",$line1);
150 print RANDOMWRITE1 "$array[1]\n";
151 print RANDOMWRITE "{$teller,";
152 print RANDOMWRITE "$array[1]},";
153 $teller += 1;
154 }
155

156 if($line =~ /^"Backward read report"/)
157 {
158 $line1 = <FIL>;
159 $line1 = <FIL>;
160 @array = split(" ",$line1);
161 print BACKWARDREAD1 "$array[1]\n";

123

D.2. APPENDIX: FILESEPRATOR.SH

162 print BACKWARDREAD "{$teller,";
163 print BACKWARDREAD "$array[1]},";
164 $teller += 1;
165 }
166

167 if($line =~ /^"Record rewrite report"/)
168 {
169 $line1 = <FIL>;
170 $line1 = <FIL>;
171 @array = split(" ",$line1);
172 print RECORDREWRITE1 "$array[1]\n";
173 print RECORDREWRITE "{$teller,";
174 print RECORDREWRITE "$array[1]},";
175 $teller += 1;
176 }
177

178 if($line =~ /^"Stride read report"/)
179 {
180 $line1 = <FIL>;
181 $line1 = <FIL>;
182 @array = split(" ",$line1);
183 print STRIDEREAD1 "$array[1]\n";
184 print STRIDEREAD "{$teller,";
185 print STRIDEREAD "$array[1]},";
186 $teller += 1;
187 }
188

189 if($line =~ /^"Fwrite report"/)
190 {
191 $line1 = <FIL>;
192 $line1 = <FIL>;
193 @array = split(" ",$line1);
194 print FWRITE1 "$array[1]\n";
195 print FWRITE "{$teller,";
196 print FWRITE "$array[1]},";
197 $teller += 1;
198 }
199

200 if($line =~ /^"Re-Fwrite report"/)
201 {
202 $line1 = <FIL>;
203 $line1 = <FIL>;
204 @array = split(" ",$line1);
205 print REFWRITE1 "$array[1]\n";
206 print REFWRITE "{$teller,";
207 print REFWRITE "$array[1]},";
208 $teller += 1;
209 }
210

211 if($line =~ /^"Fread report"/)
212 {
213 $line1 = <FIL>;
214 $line1 = <FIL>;
215 @array = split(" ",$line1);
216 print FREAD1 "$array[1]\n";
217 print FREAD "{$teller,";
218 print FREAD "$array[1]},";
219 $teller += 1;
220 }
221

222 if($line =~ /^"Re-Fread report"/)
223 {
224 $line1 = <FIL>;
225 $line1 = <FIL>;
226 @array = split(" ",$line1);
227 print REFREAD1 "$array[1]\n";

124

D.3. APPENDIX: R COMMANDS FOR IOZONE

228 print REFREAD "{$teller,";
229 print REFREAD "$array[1]},";
230 $teller += 1;
231 }
232 }
233 close FIL;
234 close WRITER;
235 close WRITER1;
236 close REWRITER;
237 close REWRITER1;
238 close READER;
239 close READER1;
240 close REREADER;
241 close REREADER1;
242 close RANDOMREAD;
243 close RANDOMREAD1;
244 close RANDOMWRITE;
245 close RANDOMWRITE1;
246 close BACKWARDREAD;
247 close BACKWARDREAD1;
248 close RECORDREWRITE;
249 close RECORDREWRITE1;
250 close STRIDEREAD;
251 close STRIDEREAD1;
252 close FWRITE;
253 close FWRITE1;
254 close REFWRITE;
255 close REFWRITE1;
256 close FREAD;
257 close FREAD1;
258 close REFREAD;
259 close REFREAD1;

D.3 Appendix: R commands for Iozone
The R commands for iozone

1 > values = read.table("/Users/naveedy/Desktop/IOZone RHEL/iozone with all optns/1 MB/
2 iozoneRe-writerExcel.txt")
3 > Rewriter1mb = values$V1
4 > Rewriter1mb = Rewriter1mb/1024
5 > values = read.table("/Users/naveedy/Desktop/IOZone RHEL/iozone with all optns/64 MB/
6 iozoneRe-writerExcel.txt")
7 > Rewriter64mb = values$V1
8 > Rewriter64mb = Rewriter64mb/1024
9 > values = read.table("/Users/naveedy/Desktop/IOZone RHEL/iozone with all optns/128 MB/

10 iozoneRe-writerExcel.txt")
11 > Rewriter128mb = values$V1
12 > Rewriter128mb = Rewriter128mb/1024
13

14 > values = read.table("/Users/naveedy/Desktop/IOZone RHEL/iozone with all optns/256 MB/
15 iozoneRe-writerExcel.txt")
16 > Rewriter256mb = values$V1
17 > Rewriter256mb = Rewriter256mb/1024
18 > values = read.table("/Users/naveedy/Desktop/IOZone RHEL/iozone with all optns/512 MB/
19 iozoneRe-writerExcel.txt")
20 > Rewriter512mb = values$V1
21 > Rewriter512mb = Rewriter512mb/1024
22 > values = read.table("/Users/naveedy/Desktop/IOZone RHEL/iozone with all optns/1 GB/
23 iozoneRe-writerExcel.txt")
24 > Rewriter1gb = values$V1
25 > Rewriter1gb = Rewriter1gb/1024
26 > summary(Rewriter1mb)
27 Min. 1st Qu. Median Mean 3rd Qu. Max.

125

D.3. APPENDIX: R COMMANDS FOR IOZONE

28 1091 1374 1430 1582 1818 1930
29 > summary(Rewriter64mb)
30 Min. 1st Qu. Median Mean 3rd Qu. Max.
31 1455 1642 1679 1674 1715 1787
32 > summary(Rewriter128mb)
33 Min. 1st Qu. Median Mean 3rd Qu. Max.
34 1481 1669 1704 1698 1737 1788
35 > summary(Rewriter256mb)
36 Min. 1st Qu. Median Mean 3rd Qu. Max.
37 1707 1844 1865 1859 1876 1907
38 > summary(Rewriter512mb)
39 Min. 1st Qu. Median Mean 3rd Qu. Max.
40 1723 1854 1866 1867 1884 1912
41 > summary(Rewriter1gb)
42 Min. 1st Qu. Median Mean 3rd Qu. Max.
43 1835 1871 1881 1881 1892 1921
44 > boxplot(Rewriter1mb,Rewriter64mb,Rewriter128mb,Rewriter256mb,Rewriter512mb,Rewriter1gb,
45 outline=FALSE, ylab="MBytes/s", xlab="Size of file", names=c("1MB","64MB,"128MB,"256MB",
46 "512MB","1GB"), main="Re writer")
47 > jpeg("/Users/naveedy/Rewriter.jpeg")
48 > boxplot(Rewriter1mb,Rewriter256mb,Rewriter512mb,Rewriter1gb, outline=FALSE, ylab="MBytes/s",
49 xlab="Size of file", names=c("1MB","64MB",128MB",256MB","512MB","1GB"), main="Re writer")
50 > dev.off()
51 quartz
52 2
53 >

126

Appendix E

Script for Ram Speed

E.1 Appendix: ramspeed.sh
The ramspeed.sh script

1 #! /bin/bash
2 timestamp=$(date +%s)
3 for i in 1 2 4 5 7 8 10 11
4 do
5 COUNTER=1
6 while [$COUNTER -le 25]; do
7 echo $i-$COUNTER | tee -a b$i-$timestamp.txt
8 ./ramsmp -b$i -g 16 -m 2048 | awk ’{if ($7 ~ /^[0-9]*(\.[0-9]*)?$/) print $7}’ |
9 awk ’{ if ($0 !~ (/^$/)) print $0 }’ | tee -a b$i-$timestamp.txt

10 let COUNTER=COUNTER+1
11 done
12 echo b$i-$timestamp.txt is completed
13 ./datagenerator.sh b$i-$timestamp.txt;
14 done
15 echo RAM Speed test is finished

E.2 Appendix: datagenerator.sh
The datagenerator.sh script

1 datagenerator.sh
2 #! /usr/bin/perl -w
3 # $block = 1;
4 my $filename = $ARGV[0];
5 open (FIL, $filename) or
6 die "cant open file $filename\n";
7

8 my ($dev, $ino, $mode, $nlink, $uid, $gid, $rdev, $size, $atime, $mtime, $ctime, $blksize,
9 $blocks) = stat($filename);

10 my $newname = "ram$filename";
11 open (INTWRITING, ">>$newname") or die \\
12 "cant open file $newname\n";
13

14 $startline=1;
15 $skiplines=23;
16 $currentline=1;
17 while(<FIL>) {
18

19 chomp($_);
20 my $mod = $currentline % $skiplines;
21 $mod = $skiplines if ($mod == 0);
22

127

E.3. APPENDIX: RAMSINGLEFILE.SH

23 print INTWRITING $_ . "," if ($mod == $startline);
24

25 if (tell(FIL) == $size && $startline < $skiplines) {
26 print INTWRITING "\n";
27 seek(FIL, 0, 0);
28 $currentline = 0;
29 $startline++;
30 }
31 ++$currentline;
32 }
33 close FIL;
34 close INTWRITING;

E.3 Appendix: ramsinglefile.sh
The ramsinglefile.sh script

1 #! /usr/bin/perl
2 $i = 0;
3 $block = 1;
4 my $filename = $ARGV[0];
5 open (FIL, "$filename") or
6 die "cant open file $filename\n";
7 while(<FIL>)
8 {
9 $j = 0;

10 my($line) = $_;
11 if ($i == 0)
12 {
13 $i++;
14 }else
15 {
16 open (SEP, ">>$block-$filename") or die \\
17 "cant open file $block$filename\n";
18 chomp($line);
19 @array = split(",",$line);
20 foreach(@array)
21 {
22 print SEP "$array[$j]\n";
23 $j++;
24 }
25 $block = $block * 2;
26 }
27 }
28 close FIL;
29 close SEP;

E.4 Appendix: R commands for Ramspeed
The R commads for Ramspeed

1 R version 2.13.1 (2011-07-08)
2 Copyright (C) 2011 The R Foundation for Statistical Computing
3 ISBN 3-900051-07-0
4 Platform: i386-apple-darwin9.8.0/i386 (32-bit)
5

6 R is free software and comes with ABSOLUTELY NO WARRANTY.
7 You are welcome to redistribute it under certain conditions.
8 Type ’license()’ or ’licence()’ for distribution details.
9

10 Natural language support but running in an English locale
11

128

E.4. APPENDIX: R COMMANDS FOR RAMSPEED

12 R is a collaborative project with many contributors.
13 Type ’contributors()’ for more information and
14 ’citation()’ on how to cite R or R packages in publications.
15

16 Type ’demo()’ for some demos, ’help()’ for on-line help, or
17 ’help.start()’ for an HTML browser interface to help.
18 Type ’q()’ to quit R.
19

20 [R.app GUI 1.41 (5874) i386-apple-darwin9.8.0]
21

22 [Workspace restored from /Users/naveedy/.RData]
23 [History restored from /Users/naveedy/.Rapp.history]
24

25 > values=read.table("/Users/naveedy/Desktop/(b2) Integer and reading/1-ramb2-1333028518.txt")
26 > b21k=values$V1
27 > values=read.table("/Users/naveedy/Desktop/(b2) Integer and reading/16-ramb2-1333028518.txt")
28 > b216k=values$V1
29 > values=read.table("/Users/naveedy/Desktop/(b2) Integer and reading/256-ramb2-1333028518.txt")
30 > b2256k=values$V1
31 > values=read.table("/Users/naveedy/Desktop/(b2) Integer and reading/1024-ramb2-1333028518.txt")
32 > b21m=values$V1
33 > values=read.table("/Users/naveedy/Desktop/(b2) Integer and reading/4096-ramb2-1333028518.txt")
34 > b24m=values$V1
35 > values=read.table("/Users/naveedy/Desktop/(b2) Integer and reading/16384-ramb2-1333028518.txt")
36 > b216m=values$V1
37 > values=read.table("/Users/naveedy/Desktop/(b2) Integer and reading/32768-ramb2-1333028518.txt")
38 > b232m=values$V1
39 > values=read.table("/Users/naveedy/Desktop/(b2) Integer and reading/65536-ramb2-1333028518.txt")
40 > b264m=values$V1
41 > values=read.table("/Users/naveedy/Desktop/(b2) Integer and reading/524288-ramb2-1333028518.txt")
42 > b2512m=values$V1
43 > values=read.table("/Users/naveedy/Desktop/(b2) Integer and reading/1048576-ramb2-1333028518.txt")
44 > b21g=values$V1
45 > values=read.table("/Users/naveedy/Desktop/(b2) Integer and reading/2097152-ramb2-1333028518.txt")
46 > b22g=values$V1
47 > summary(b21k)
48 Min. 1st Qu. Median Mean 3rd Qu. Max.
49 37380 37660 37750 37770 37870 38100
50 > summary(b216k)
51 Min. 1st Qu. Median Mean 3rd Qu. Max.
52 37640 37840 38020 37980 38120 38160
53 > summary(b2256k)
54 Min. 1st Qu. Median Mean 3rd Qu. Max.
55 26440 26640 26910 26900 27150 27420
56 > summary(b21m)
57 Min. 1st Qu. Median Mean 3rd Qu. Max.
58 25270 25390 25440 25450 25560 25600
59 > summary(b24m)
60 Min. 1st Qu. Median Mean 3rd Qu. Max.
61 25240 25310 25340 25380 25460 25520
62 > summary(b216m)
63 Min. 1st Qu. Median Mean 3rd Qu. Max.
64 16090 16250 16300 16330 16410 16630
65 > summary(b232m)
66 Min. 1st Qu. Median Mean 3rd Qu. Max.
67 15510 15610 15690 15670 15730 15780
68 > summary(b264m)
69 Min. 1st Qu. Median Mean 3rd Qu. Max.
70 15480 15580 15660 15660 15730 15800
71 > summary(b2512m)
72 Min. 1st Qu. Median Mean 3rd Qu. Max.
73 15460 15630 15660 15650 15710 15740
74 > summary(b21g)
75 Min. 1st Qu. Median Mean 3rd Qu. Max.
76 15530 15620 15650 15660 15720 15760
77 > summary(b22g)

129

E.4. APPENDIX: R COMMANDS FOR RAMSPEED

78 Min. 1st Qu. Median Mean 3rd Qu. Max.
79 15510 15630 15650 15670 15720 15760
80 > boxplot(b21k,b216k,b2256k,b21m,b24m,b216m,b232m,b264m,b2512m,b21g,b22g, outline=FALSE,
81 ylab="MBytes/s", xlab="Block size", names=c("1KB","16KB","256KB","1MB","4MB","16MB","32MB",
82 "64MB","512MB","1GB","2GB"), main="Integer and reading")
83 > jpeg("/Users/naveedy/Desktop/IntR.jpeg")
84 > boxplot(b21k,b216k,b2256k,b21m,b24m,b216m,b232m,b264m,b2512m,b21g,b22g, outline=FALSE,
85 ylab="MBytes/s", xlab="Block size", names=c("1KB","16KB","256KB","1MB","4MB","16MB","32MB",
86 "64MB","512MB","1GB","2GB"), main="Integer and reading")
87 > dev.off()
88 null device
89 1
90 >

130

	Introduction
	Problem Statement
	Objective and Methodology overview
	Research structure

	Background and literature
	Virtualization
	History of Virtualization
	Basic Concepts of virtualization

	Classification of virtualization techniques
	Full Virtualization
	OS-Layer or Para Virtualization
	Hardware-Layer Virtualization

	Virtualization Usage Benefits
	Server Virtualization Technology
	VMWare Virtualization Technology
	VMWware ESXi

	Red Hat Virtualization Technology
	Background Material and Previous Work
	Virtualization Overhead
	CPU Overhead
	Memory Overhead
	Disk I/O Overhead

	Benchmarking over view and tools
	Benchmarking
	I/O benchmark tools
	Flexible I/O
	Bonnie++
	Postmark
	Iozone

	Memory benchmark tools
	bandwidth
	mbw (Memory Band Width)
	RAMSpeed

	CPU benchmark tools
	CPU Free BenchMark (former CPUMark)
	SysBench
	UnixBench

	Approach
	System Hardware Specification
	Method for conducting the tests
	Implementation of Iozone test
	Implementation of Ram speed test
	Implementation of UnixBench test

	Results and Discussion
	Iozone
	Write
	Re-Write
	Read
	Re-Read
	Random Read
	Random Write
	Backward Read
	Record Rewrite
	Stride Read
	Forward Write
	Re-Forward Write
	Forward Read
	Re-Forward Read

	Discussion of Iozone test results
	Consolidated Iozone results
	Consolidated write performance
	Consolidated read performance

	Ram speed
	Integer and Writing
	Integer and Reading
	Float and Writing
	Float and Reading

	Discussion of Ram Speed test results
	Consolidated Ram speed results
	Consolidated performance of integer and float writing
	Consolidated performance of integer and float reading

	Discussion
	Data spread
	Confidence Interval
	P-value

	UnixBench
	CPU Throughput results
	Inter Process Communication results
	File System Throughput results
	Composite Throughput score

	Future work

	Conclusions
	Iozone Results
	Bare Metal Iozone results
	Write
	Re-Write
	Read
	Re-Read
	Random Read
	Random Write
	Backward Read
	Record Re-write
	Stride Read
	Forward Write
	Re-Forward Write
	Forward Read
	Re-Forward Read

	KVM Virtual Machine Iozone results
	Write
	Re-Write
	Read
	Re-Read
	Random Read
	Random Write
	Backward Read
	Record Re-write
	Stride Read
	Forward Write
	Re-Forward Write
	Forward Read
	Re-Forward Read

	VMWare Virtual Machine Iozone results
	Write
	Re-Write
	Read
	Re-Read
	Random Read
	Random Write
	Backward Read
	Record Rewrite
	Stride Read
	Forward Write
	Re-Forward Write
	Forward Read
	Re-Forward Read

	Ram Speed Results
	Bare Metal Ram speed results
	Integer and Writing
	Integer and Reading
	Float and Writing
	Float and Reading

	KVM Virtual Machine Ram speed results
	Integer and Writing
	Integer and Reading
	Float and Writing
	Float and Reading

	VMWare Virtual Machine Ram speed results
	Integer and Writing
	Integer and Reading
	Float and Writing
	Float and Reading

	UnixBench Results
	CPU performance results using UnixBench
	CPU performance results using UnixBench for each run

	Script for Iozone
	Appendix: Iozonetest.sh
	Appendix: Fileseprator.sh
	Appendix: R commands for Iozone

	Script for Ram Speed
	Appendix: ramspeed.sh
	Appendix: datagenerator.sh
	Appendix: ramsinglefile.sh
	Appendix: R commands for Ramspeed

