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Abstract   

This study investigates cross-linguistic influence (‘transfer’) in Norwegian interlanguage 

using predictive data mining technology with a focus on lexical transfer. The impetus for the 

present work came from the publication of a series of studies (Jarvis & Crossley 2012) that 

explore the ‘detection-based approach’ to language transfer. 

The following research questions are addressed: 

1. Can data mining techniques be used to identify the L1 background of 

Norwegian language learners on the basis of their use of lexical features 

of the target language? 

2. If so, what are the best predictors of L1 background? 

3. And can those predictors be traced to cross-linguistic influence? 

The study utilizes data from Norsk andrespråkskorpus (ASK), the Norwegian Second 

Language Corpus housed at the University of Bergen, and draws on resources from the 

ASKeladden project. The source data consists of texts written by 1,736 second language 

learners of Norwegian from ten different L1 backgrounds, and a control corpus of 200 texts 

written by native speakers. Word frequencies computed from this data are analysed using 

multivariate statistical methods that include analysis of variance and linear discriminant 

analysis, and the results are subjected to contrastive analysis. 

The combination of discriminant analysis and contrastive analysis produces all three types of 

evidence called for by Jarvis (2000) in his methodological requirements for language transfer 

research: intragroup homogeneity, intergroup heterogeneity and cross-language congruity. 

Well-known transfer effects, such as the tendency for Russian learners to omit indefinite 

articles, are confirmed, and other, more subtle patterns of learner language are revealed, such 

as the tendency amongst Dutch learners to overuse the modal verb skal to a far greater extent 

than other learners. In addition to confirming the reality of lexical transfer, these results 

provide abundant material for further research, while the methodology employed can be 

harnessed in many areas of linguistic research. 
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An Sylvia 

meine Muse und Studienobjekt 

Was ist Sylvia, saget an, 

Daß sie die weite Flur preist? 

Schön und zart seh ich sie nahn, 

Auf Himmelsgunst und Spur weist, 

Daß ihr alles untertan. 

Ist sie schön und gut dazu? 

Reiz labt wie milde Kindheit; 

Ihrem Aug’ eilt Amor zu, 

Dort heilt er seine Blindheit 

Und verweilt in süßer Ruh. 

Darum Sylvia, tön, o Sang, 

Der holden Sylvia Ehren; 

Jeden Reiz besiegt sie lang, 

Den Erde kann gewähren: 

Kränze ihr und Saitenklang! 
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Abbreviations 

See also Language codes (p. xi) and  Appendix A. Glossary of terms (p.118). 

1-gram unigram (e.g. an individual 
word, see gram) 

2-gram bigram, sequence of two grams 
3-gram trigram, sequence of three grams
4-gram sequence of four grams 
ART article 
ANOVA analysis of variance 
ASK Norsk andrespråkskorpus 

(Norwegian Second Language 
Corpus) 

CA contrastive analysis 
CAH contrastive analysis hypothesis 
CV cross-validation 
def definite 
DFA discriminant function analysis 
EFL English as a Foreign Language 
f feminine 
FL foreign language 
gram a contiguous sequence of n 

items from a given sequence of 
text or speech; the items in 
question can be phonemes, 
syllables, letters, words etc. 
according to the application 

ICLE International Corpus of Learner 
English 

ind indefinite 
L1 first language 
L2 second language 
LDA linear discriminant analysis 
LDDA linear diagonal discriminant 

analysis 
LDF linear discriminant function 

LOOCV leave-one-out cross-validation 
m masculine 
M statistical mean 
MANOVA multivariate analysis of variance
n neuter 
n-gram (specific) sequence of n words 
NL native language 
NOA Norsk som andrespråk 

(Norwegian as a Second 
Language) 

NP noun phrase 
PCA Principal Components Analysis 
pl plural 
POS part of speech, word class; a POS

n-gram is a sequence of n words 
expressed in terms of word 
classes, e.g. on the road as an 
instance of the POS 3-gram ‘PRP 

ART SB’ 

PP prepositional phrase 
PRP preposition 

s standard deviation 
SB noun 

SD standard deviation 
SDDA stepwise diagonal discriminant 

analysis 
sg singular 

SL source language 
SLA second language acquisition 

SVM Support Vector Machine 
TL target language 

vb verb 
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Language codes 

For reasons of space, L1s represented in the Norwegian Second Language Corpus (ASK) 

and the International Corpus of Learner English (ICLE) or used in related studies, are 

usually referred to by their (two-letter) ISO 639 codes. Most of these are well-known and 

fairly transparent, but the reader should take special note of SH, SQ and ZH. 

AR Arabic 

BU Bulgarian 

CS Czech 

DA Danish 

DE German1 

EN English 

FI Finnish 

FR French 

HU Hungarian 

IT Italian 

JA Japanese 

LA Latin 

NL Dutch 

NO Norwegian 

PL Polish 

PO Portuguese 

RU Russian 

SH2 Serbo-Croat

SO Somali 

SP Spanish 

SQ Albanian 

SW Swedish 

TR Turkish 

TS Tswana 

VI Vietnamese 

WO Wolof 

ZH Mandarin 

 

Table 1: Language codes 

Note 1: L1s represented in ASK are shown in boldface. 

Note 2: The code SH is now deprecated by ISO. The language formerly known as Serbo-Croat (or Serbo-Croatian) 

has been assigned the three-letter code HBS in ISO 639-2 and is now regarded by Ethnologue (Lewis 2009) as a 

“macro language” whose member languages are Croatian (HR), Bosnian (BS) and Serbian (SR). However, ASK 

labels the relevant texts as ‘serbokroatisk’ and makes no distinction between the different varieties. The same 

practice is followed here and the code SH is used accordingly. 

Typographical conventions 

Norwegian words are italicised and glosses are occasionally supplied in parentheses, e.g. 

barn (‘child’). A complete, glossed list of Norwegian words used in the analysis of word 

frequencies is provided in  Appendix B. The names of files, worksheets and scripts are shown 

in boldface. Function names and extracts of program code are shown in a monospace font. 
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1. Introduction 

1.1 Background 

As a foreigner who has lived abroad for over 35 years, language has never ceased to intrigue 

me. As a father whose first language (L1) is his children’s second, and whose second 

language (L2) is his children’s first, the acquisition of foreign languages concerns me at a 

personal level. As a husband whose wife speaks his first language as her third, and with 

whom he often communicates in his second (her fourth) language, the delights of 

multilingualism and the tricks it plays on our use of language are a source of continual 

fascination. 

As a traveller who had the good fortune to be brought up a native speaker of British English, 

I was always intrigued by the way you could pinpoint someone’s nationality by the accent 

they have when speaking English. As a linguist, I now know that this phenomenon has 

nothing to do with nationality per se, but is rather due to the cross-linguistic influence of the 

mother tongue (which may or may not bear some relationship to nationality). 

As a teacher of English as a foreign language to adults, I discovered that the influence of the 

mother tongue extends not only to pronunciation, but also to vocabulary, grammar and every 

other aspect of language. And as a dilettante polyglot who has learned at least bits of a dozen 

and more languages, I derive great pleasure from being able to trace specific influences back 

to what I know about the source language. 

While the extent and nature of cross-linguistic influence has been (and to a certain extent, 

still is) hotly disputed by linguists, the fact of it seems to me indisputable. Given enough 

experience, a foreign language teacher can say a lot about the language backgrounds of 

learners from the ways in which they use the target language. Pronunciation is invariably the 
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biggest giveaway, but also written language can be “mined” for clues about the language 

background of its user. As an example, take the following text, written by an advanced 

learner of English: 

(1) We thought we would move our stay in Klekotki to an earler (sic) weekend so that 

you could come. What about period Friday 26 to Monday 29 October, with some 

flexibility? 

Apart from the typo, the only deviation from native speaker English here is the omission of 

the definite article in the second sentence. This tiny irregularity gives the text an unmistake-

ably foreign flavour: it is an error no native speaker would be likely to make – and a good 

example of how the first language (L1) can influence the second (L2). In this case it is not 

unlikely that influence from a source language that lacks the definite article is leading the 

user to omit it in the target language. To an experienced language teacher this might suggest 

an Eastern European, South Asian or Japanese provenance. 

A more extensive text could provide further clues: 

(2) I am still looking for Ryokans in Kyoto. You can search Ryokans at the following 

site: […] I found two english web site of Ryokans. Please enjoy them! I can make 

Ryokan reservation for you if you want. 

Among the particular characteristics in (2) we again note the missing article in the final 

sentence, and also the absence of plural marking on the noun ‘web site’, the idiosyncratic 

capitalization, and the quaintly polite exhortative Please enjoy them! Now, the number of 

languages in the world that lack both articles and plural marking is relatively small: the 

largest by far are Mandarin Chinese and Japanese, both of which have writing systems that 

make no distinction between upper and lower case (which could account for the distinctive 

capitalization). Of the two, Japanese is the one most associated with a culture in which 

politeness plays a key role.1 

                                                 
1 A more detailed contrastive analysis of the constructions ‘you can search Ryokans’ and ‘web site of Ryokans’, 

and comparison with 以下のサイトで旅館を探すことができます (ika no saito de ryokan wo sagasu koto ga 

dekimasu) and 旅館について二つの英語のサイトを見つけました (ryokan ni tsuite futatsu no saito wo 

mitsukemashita), might reveal additional clues pointing to Japanese. 
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Of course, the origins of (1) and (2) in Polish and Japanese, respectively, are given away by 

the references to place names, but the point is that even if that were not the case, it is fully 

possible to pinpoint the source language on the basis of particular features of the learner’s 

‘interlanguage’. Knowledge of the language(s) concerned can help explain the ‘interference’ 

but it is not necessary: all that is required is sufficiently frequent exposure to “errors” of a 

particular type from speakers with a particular background. This explains why not only 

polyglot linguists with an interest in language typology, but also monoglot language teachers 

can correctly identify a learner’s L1 – provided they have sufficient experience and enough 

data to go on. 

It is possible, then, for humans to predict the L1 of learners on the basis of their written 

language. As a knowledge engineer, this leads me to wonder whether computers – given 

enough data – might be able to do the same. 

That question was addressed in a recently published book (Jarvis & Crossley 2012) in which 

Scott Jarvis and his colleagues use “text classification” techniques associated with data 

mining to explore what he terms the “detection-based approach” to investigating language 

transfer. Those exploratory studies suggest that the predictive methods of advanced statistics 

(in particular, linear discriminant analysis) can indeed be used to classify learner texts by 

source language and also to identify which linguistic features are the best L1 predictors. This 

type of analysis represents a valuable new impetus for future directions in transfer research: 

Traditional studies dealing with second language acquisition, including transfer, have 

often investigated “bits and pieces of learners’ language chosen for analysis because 

they caught the researcher’s eye…” (Lightbrown 1984: 245). The detection-based, 

corpus-driven approach … expands the scope of transfer inquiry to include items that 

might otherwise never have attracted the researcher’s eye. This is the nature of 

discovery, and … the detection-based approach is well suited to a program of 

discovery” (Jarvis & Paquot 2012: 100-101). 

The Jarvis & Crossley studies are all exploratory in nature, and they are all based on texts 

whose target language is English. As far as is known, no other studies have to date applied 

the same techniques to texts with a different target language. The purpose of the present 

study is to remedy this situation using Norwegian as the target language, with the primary 

goal of either confirming or disconfirming the generalizability of the results obtained by 
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Jarvis et al. to other languages. A second goal is to pave the way for a more in-depth and 

theoretically grounded investigation to be conducted later – and perhaps reveal some “bits 

and pieces” of Norwegian interlanguage that have hitherto escaped notice. 

The present work is loosely modelled on the first of the Jarvis & Crossley studies (Jarvis et al. 

2012), which uses frequency data for 53 highly frequent words in texts written by learners of 

English as a foreign language from five different L1 backgrounds. The same detection-based 

approach is applied here to six sets of lexical data, each from texts written by learners from 

five different L1 backgrounds. However, the present work also differs from the study by 

Jarvis et al. in a number of ways, the most important of which are: 

1. the target language is Norwegian rather than English; 

2. the data comes from second language learners rather than foreign language learners;1 

3. ten source languages are involved in the study rather than five; 

4. the source texts are thematically heterogeneous; 

5. open source tools have been employed in preference to proprietary software; 

6. all data and scripts are publicly available. 

1.2 Research questions 

The general research question addressed in this study is the same as that pursued in Jarvis & 

Crossley (2012) – “is it possible to identify the L1 background of a language learner on the 

basis of his or her use of certain specific features of the target language?” – and the focus, as 

for Jarvis and his colleagues, is on the machine-learning capabilities of computer classifiers 

rather than the “psycholinguistic ability of human judges” (Jarvis 2012: 1). 

The linguistic phenomena investigated by Jarvis et al. are of various kinds – lexical, 

grammatical and stylistic – as described in § 2.3.2. For reasons of scope, the present study is 

restricted to lexical features, more specifically the frequency of occurrence of individual 

                                                 
1 For the present purpose the most important distinction between the two is “the amount of exposure that 

learners have to the target language outside of the classroom” (Loewen & Reinders 2011: 68). The learners in 

the study by Jarvis et al. had all learned English as a foreign language (EFL) in their home countries, whereas 

those in the present study have (almost) all learned Norwegian as a second language (NOA) while living in 

Norway. 
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words. The principal research question can therefore be formulated more precisely as 

follows: 

Q1 Can data mining techniques be used to identify the L1 background of Norwegian 

language learners based on their use of lexical features of the target language? 

Assuming an affirmative answer to this question, subsidiary research questions are: 

Q2 What are the best (lexical) source language predictors? 

Q3 Can those predictors be traced to cross-linguistic influence? 

1.3 Theoretical framework 

This study is empirical and exploratory in nature and therefore to some degree theory-neutral. 

A central assumption, however, is the reality (and importance) of cross-linguistic influence 

and, by implication, the importance of frequency effects in language learning. The latter is a 

major tenet of cognitive linguistics, which holds that language learning is based on general 

cognitive abilities rather than a specialized language organ. Thus, theories of construction 

grammar (Croft 2007), the usage-based perspective (Tomasello 2003), the role of frequency 

effects (Bybee 2010), and the constructionist view of language acquisition (Ellis 2003) will 

provide the theoretical foundation for the present investigation and work that will follow 

from it. 

An important lodestone is Jarvis’ (2000, 2010) framework for methodological rigour in 

transfer research (see § 2.1.3). The first two types of evidence that Jarvis calls for turn out to 

have their parallel in the underlying goal of linear discriminant analysis, which forms an 

important part of the theoretical foundation for this project. 

In order to address the question of whether lexical behaviour found to be distinctive of 

particular L1 groups can be traced to cross-linguistic influence (and thus provide the third 

type of evidence called for by Jarvis), contrastive analysis will be employed – in its ‘weak’ 

or ‘diagnostic’ form (Gast to appear) – using the approach first developed by Fries (1945) 

and Lado (1957), and exemplified for Norwegian by Lie (2005), Golden et al. (2008), Næss 

(2011a), and other works cited therein. 
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1.4 Hypothesis and contribution to knowledge 

The basic hypotheses of this study are as follows: 

H1 That data mining techniques can be used (up to a point) to identify the L1 

background of a Norwegian language learner on the basis of his or her use of 

lexical features of the target language. 

H2 That such techniques can also reveal subtle patterns of learner language that 

might otherwise not be detected. 

H3 That many (but not all) of the L1 predictors thus revealed will be traceable to 

cross-linguistic influence. 

The study contributes to knowledge in a number of ways. First of all, it serves to validate the 

techniques developed by Jarvis et al. to a target language other than English. Secondly, it 

reveals some very interesting and subtle aspects of Norwegian interlanguage that have not 

been recognized earlier, as well as confirming certain other observations that are rather well-

known. Thirdly, it goes considerably beyond Jarvis et al. in demonstrating how contrastive 

analysis can be applied to provide more compelling cross-linguistic explanations for the 

patterns revealed by the statistical analysis. Fourthly, the carefully documented methods and 

the publication of both source data and source code will mean that the techniques used here 

will be more readily available to other researchers. Finally, it is to be hoped that some of the 

lexical features that turn out to be the best predictors of L1 background in Norwegian 

interlanguage will lead to new insights into language transfer and provide material for future 

research. 

1.5 Structure of this dissertation 

Following this introductory chapter, Chapter 2 presents the theoretical background for the 

project, including a review of previous work on the application of discriminant analysis in 

linguistics and, in particular, transfer research. Chapter 3 provides an overview of the data 

sources and Chapter 4 describes both the methodology employed in the study and various 

methodological issues that arose. The findings are presented in Chapter 5 and these are 

discussed in the light of contrastive analysis in Chapter 6. Finally, Chapter 7 lays out 

answers to the research questions, evaluates the hypotheses, and suggests ideas for further 

work. The appendices contain additional material, in particular intermediate results and 
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examples of the methodologies used. A companion web site is planned and will be initially 

hosted at http://folk.uio.no/stevepe. 

1.6 Terminology 

The terms ‘first language’ (L1), ‘mother tongue’ and ‘source language’ (SL) are used inter-

changeably in this dissertation. The term ‘second language’ (L2) is used in two senses. Usually 

it refers to any language learned after the first language(s), irrespective of where or how it is 

acquired; in this sense it is usually synonymous with ‘target language’ (TL). However, 

occasionally ‘second language’ is used in contrast to ‘foreign language’ (as in footnote 1 on 

page 4) to denote a language acquired in the community in which it is spoken, as opposed to 

one acquired outside such a community. 

Following Larson-Hall (2010: 402) I have adopted Kline’s (2004) recommendation to return 

the word “significant” to its common meaning of “important” and instead of talking about 

“significant results” and “significant differences” to simply use the adjective “statistical”. 

Since the primary audience for this thesis is linguists and not statisticians or mathematicians, 

a glossary of statistical and mathematical terms is included in  Appendix A. Mathematically 

and/or statistically challenged readers should be aware that they do not need to understand 

all the technical details of § 2.2 and § 4.4 in order to grasp the basic ideas underlying the 

methodology used in this study, nor to appreciate the results produced by that methodology – 

nor even to apply the same methodology in their own work. 

Finally, a note (for the benefit of prescriptivists) on the word ‘data’, which is currently 

undergoing a transition in Modern English from count noun to mass noun. Originally the 

plural form of the Latin loanword ‘datum’, ‘data’ is still often used as a plural word within 

Academia. Without, on the other hand, and especially in IT, ‘data’ is far more frequently 

used as a mass noun. With one foot in each camp, the present writer reflects this 

indeterminacy and vacillates in his used of the word. No attempt has been made in this thesis 

to achieve consistency and the reader will therefore encounter both the plural form (the data 

are) and the singular (the data is). 
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2. Theoretical background 

This chapter discusses the theoretical background for the present study and reviews relevant 

literature. It starts with a brief discussion of the field of study in which the project is located: 

language transfer. This is followed by an introduction to the technology employed: that is, 

the method of linear discriminant analysis (LDA). The chapter concludes with a review of 

previous work using LDA in the field of linguistics and a fairly detailed account of 

applications of LDA in transfer research. 

2.1 Language transfer 

2.1.1 Background 

The term ‘language transfer’ is used in Second Language Acquisition research to refer to 

“the influence resulting from similarities and differences between the target language and 

any other language that has been previously (and perhaps imperfectly) acquired” (Odlin 

1989: 27). It is generally used synonymously with ‘cross-linguistic influence’ (CLI), which 

Jarvis & Pavlenko (2008: 1) define as “the influence of a person’s knowledge of one 

language on that person’s knowledge or use of another.” 

Historically, the study of transfer has been through several “swings of the pendulum” (Gass 

1996, quoted in Mitchell & Myles 2004: 19). Its origins can be traced to the work of Fries, 

Lado, Haugen and Weinreich in the post-war period (when the phenomenon was referred to 

as ‘interference’) and to the practice of contrastive analysis. In the 1970s the latter concept 

became tarred with the brush of behaviourism – undeservedly, according to Swan (2007). 

However, today most theorists accept that cross-linguistic influence plays an important role 

in second language learning and that it “can occur in all linguistic subsystems, including 

morphology and syntax” (Odlin 1989: 23). The earlier focus on “interference” and “errors” 
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(negative transfer) has been balanced by the recognition of positive transfer, described by 

(Odlin 1989: 26) as “the facilitating influence of cognate vocabulary or any other similarities 

between the native and target languages”, and of other manifestations of cross-linguistic 

influence such as avoidance and over-use. The view of learner language as a ‘deficient’ form 

of the TL has similarly been replaced by the concept of ‘interlanguage’ as a linguistic system 

in its own right (Selinker 1972). 

More recent developments in transfer research include “new findings and refinements in 

already established areas, such as lexis and phonology; new areas and directions of transfer 

research, such as reverse transfer, sociolinguistic transfer, and the study of the multilingual 

lexicon; and new theoretical accounts of CLI, such as conceptual transfer” (Jarvis & 

Pavlenko 2008: 212). 

2.1.2 Lexical transfer 

The focus of the current study is cross-linguistic influence in the lexicon, or lexical transfer. 

Whereas most previous work on lexical transfer (Ringbom 1987, 2001, 2007; Arabski 2006; 

Jarvis & Pavlenko 2008; Jarvis 2009; Llach 2010; etc.) deals primarily with content words, 

the methods and data used in this study bring function words to the fore. Nevertheless, the 

framework established previously is relevant here. 

Lexical transfer can involve both form and meaning. Citing examples from Ringbom (1987, 

2001) and Poulisse (1999), Jarvis & Pavlenko (2008: 75) present five kinds of lexical 

transfer, grouped according to whether they involve “morphophonological” (form-related) 

errors or “semantic” (meaning-related) errors, as follows: 

Form-related transfer  

(a) False friends:1 many offers of violence have not enough courage to speak about 

it (SW offer ‘victim’) 

(b) Unintended code-switching: and then nog one (NL nog ‘another’) 

(c) Cross-linguistic blends: we have the same clothers (EN clothes + SW kläder 

‘clothes’) 
                                                 
1 Jarvis (2009) rightly prefers this term to “false cognates”, since it covers loanwords and accidental resemblances 

as well as cognates. It also meets the justified objection of historical linguists that “false” cognates like ‘offer’ 

are in fact true cognates in their understanding of the term. 
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Meaning-related transfer 

(d) Semantic extension, i.e. authentic TL words used in senses that reflect SL 

semantic ranges: he bit himself in the language (FI kieli ‘language, tongue’) 

(e) Calques: he remained a youngman all his life (SW ungkarl ‘bachelor’ < ung 

‘young’ + karl ‘man’) 

Jarvis (2009: 100) reformulates this taxonomy in terms of a proposed distinction between 

‘lemma’ and ‘lexeme’ (which are said to specify a word’s semantic-syntactic and morpho-

phonological properties, respectively). Lexemic transfer is essentially the same as form-

related transfer and is divided into the same three subtypes; lemmatic transfer, on the other 

hand, includes the two types of meaning-related transfer (d) and (e), and two further types: 

(f) Collocational transfer: there is also people who wants to get married, do 

children and build a nice house (FI tehdä lapsia ‘have children, lit. do children’) 

(g) Subcategorization transfer, i.e. selection of the wrong type of complement to a 

headword: she kissed with him (PP instead of NP); he thinking his mother (NP 

instead of PP); late from an appointment (incorrect PRP) 

Jarvis makes the point that lemmatic transfer, in contrast to lexemic transfer, does not appear 

to be constrained by language distance Jarvis (2009: 118). 

2.1.3 Methodological framework 

A methodological framework for achieving empirical rigour in the identification of instances 

of transfer was proposed by Jarvis (2000). It consists of three components: 

(a) a theory-neutral definition that defines CLI as the relationship between source-

language group membership and target-language behaviour, 

(b) a specification of the types of evidence for CLI that the definition implies, and 

(c) a list of the various types of factors that need to be taken into account in an 

investigation of CLI because of their potential to produce effects resembling CLI 

and, conversely, because of their potential to obscure the effects that CLI itself 

produces (Jarvis 2010: 170). 
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The three types of evidence originally adduced and reaffirmed in Jarvis & Pavlenko (2008: 

35, 41ff) are shown in Table 2. (Note that the term ‘group’ stands here for ‘L1 group’, i.e. a 

group of learners with the same L1 background.) 

Original terms Heuristic terms Definition 

intragroup 
homogeneity 

within-group 
similarities 

Evidence that the behaviour in question is not an isolated 
incident, but is instead a common tendency of individuals 
who know the same combination of languages. 

intergroup 
heterogeneity 

between-group 
differences 

Evidence that the behaviour in question is not something 
that all language users do regardless of the combination of 
L1s and L2s that they know. 

cross-language 
congruity 

between-
language 
similarities 

Evidence that a language user’s behaviour in one language 
really is motivated by her use (i.e. the way she demonstra-
tes her knowledge) of another language. 

Table 2: Three types of evidence for transfer 

All three types of evidence involve an interplay of quantitative and qualitative considerations. 

However, the first two tend to be used with a quantitative emphasis, e.g. by showing how 

common a particular pattern of TL use is among learners from a particular L1 background 

(intragroup homogeneity), and establishing whether learners from different L1 backgrounds 

use that pattern with statistically different rates of occurrence (intergroup heterogeneity). The 

third type of evidence, on the other hand, is “often used with a qualitative emphasis by 

showing that learners’ … patterns of performance in the source and target language are 

qualitatively similar” (Jarvis 2010: 173). 

The present study invokes all three types of evidence: the first two through the application of 

discriminant analysis (see § 2.2) and the third through the use of contrastive analysis (see 

below).1 

                                                 
1 Recognizing that these three types of evidence are based on the dichotomy of similarity vs. difference within 

and between two types of entity: languages and L1 groups, Jarvis (2010: 175) introduces a fourth type of 

evidence, ‘intralingual contrasts’, in order to complete the taxonomic model. For reasons of scope, it has not 

been possible to incorporate this type of evidence into the current project. 
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2.1.4 Contrastive analysis 

Contrastive analysis (CA) investigates the differences between pairs of languages against the 

background of similarities, in order to provide input to disciplines such as foreign language 

teaching and translation studies (James 1980; Gast to appear). The contrastive methodology 

formulated by Fries (1945) and Lado (1957) was based on the ‘contrastive analysis 

hypothesis’ (CAH) which in its strong form suggested that “L2 acquisition consists of a 

transfer of L1 habits to the L2” (Loewen & Reinders 2011: 42). The CA methodology was 

applied extensively in the 1960s but fell into disfavour in the US in the 1970s, partly because 

of its links with behaviourism and partly because of the failure of the CAH to explain all the 

facts of second language acquisition. 

In Europe, however, many CA projects were initiated, “most of them comparing English to 

the native language of the investigators” (Fisiak 1981; Gast to appear). Works such as Swan 

& Smith (2001) and König & Gast (2009) are evidence that this tradition is still strong. In 

Norway the period 1980-2005 saw the publication of many contrastive grammars in which 

Norwegian is compared with the languages of immigrants (Golden et al. 2007: 20), e.g. 

Andenæs (1984), Bruland et al. (1979), Husby (1989, 1991, 1999, 2000, 2001), Hvenekilde 

(1980) and Rosén (1999), and similar work has been carried out more recently by Wiull 

(2006a, 2006b, 2007, 2008, 2009, 2010). 

A ‘weak’ or ‘diagnostic’ form of the CAH was formulated by Wardhaugh (1970): 

The weak version [of the contrastive analysis hypothesis] requires of the linguist only 

that he use the best linguistic knowledge available to him in order to account for 

observed difficulties in second language learning… [T]he starting point…is provided 

by actual evidence from such phenomenon as faulty translation, learning difficulties, 

residual foreign accents, and so on, and reference is made to the two systems only in 

order to explain actually observed phenomena. 

Wardhaugh talks only in terms of negative transfer, but contrastive analysis in its diagnostic 

form is equally applicable to positive transfer, and it plays an important role in the present 

study (see § 6.4). 
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2.1.5 Learner corpus research 

Over the last decade an increasingly important role in SLA research has been played by 

computer learner corpora. These are a special kind of language corpus, defined by Granger 

(2008: 338) as “electronic collections of (near-) natural foreign or second language learner 

texts assembled according to explicit design criteria.” One of the most influential foreign 

language corpora is the International Corpus of Learner English (ICLE), based at the 

University of Louvain in Belgium (Granger et al. 2009). The current project is based on 

ICLE’s Norwegian counterpart, Norsk andrespråkskorpus (ASK), which is described in § 3.1. 

2.1.6 The detection-based approach 

One of the most recent developments in the study of transfer has been the use of statistical 

methods to detect cross-linguistic influence. Inspired by techniques used in stylistics and 

data mining, Scott Jarvis of Ohio University and his collaborators have shown that 

classificatory methods such as discriminant analysis can be used to detect “subtle, complex, 

and unpredicted instances of L1 influence that can easily be overlooked – and may not even 

be anticipated – in the comparison-based approach” (Jarvis 2012). The present study 

represents the first attempt to apply such techniques to Norwegian data. Before discussing 

these studies in more detail, a general introduction to the concepts and goals of discriminant 

analysis is provided, along with some earlier examples of its application in the field of 

linguistics. 

2.2 Discriminant analysis 

2.2.1 Fundamentals of discriminant analysis 

Discriminant analysis in its various flavours, along with other classification and clustering 

methods, is an important technique in the field of data mining, in which the goal is to attempt 

to discover patterns in large data sets. In the subfield of data mining known as text mining, 

the source data (as the name suggests) is textual. When the source data is textual and the goal 

is predictive or classificatory, the term ‘text classification’ is used – as it is in the subtitle of 

Jarvis & Crossley (2012). 

Klecka (1980: 7) defines discriminant analysis as “a statistical technique which allows the 

researcher to study the differences between two or more groups of objects with respect to 
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several variables simultaneously.”1 Multivariate methods that deal with groups of objects are 

subdivided into clustering (‘unsupervised learning’) and classification (‘supervised learning’), 

depending on whether or not the method has access to prior knowledge about how the objects 

are grouped. In cluster analysis the goal is to discover structure in the data (in the form of 

groupings of observations); in classification, which includes LDA and with a number of 

other techniques, prior knowledge about groupings is utilized towards goals that are either 

predictive or descriptive (or both). 

The predictive goal of classification is to ascertain the group membership of objects on the 

basis of certain properties that they exhibit. In the classic example (reported in Everitt 

2005: 137ff), the data are based on two groups of skulls found in Tibet. On each of the 32 

skulls, five measurements were recorded, for length, breadth, height, face height and face 

breadth, respectively. Thus there were 32 objects (or ‘cases’) whose groupings were known, 

each of which was described by five variables. The problem to be solved was how to classify 

further skulls whose measurements were known but whose groupings were not. The method 

of discriminant analysis, developed by Fisher (1936), provided a means of predicting group 

membership (i.e., skull type) based on discriminating variables (i.e., the five measurements). 

The same method can also be used with the (explanatory) goal of describing how groups 

differ, and which variables (or ‘features’) constitute the best discriminators (or ‘predictors’) 

of group membership. In an example given by Hand (2005) the aim is to use variables such 

as gender, responsiveness, gestational age, birth weight, etc. to explain how infants at high 

risk of dying from Respiratory Distress Syndrome differ from those at low risk. Using LDA 

it is possible to determine which of the variables correlate most closely with the risk of death. 

In both kinds of application – predictive and descriptive – there is a set of cases which can 

be divided into two or more groups, and a set of discriminating variables or features. In the 

present project, cases are learner texts from the ASK corpus; these are grouped according to 

                                                 
1 In fact it is a family of such techniques, with names such as linear discriminant analysis (LDA), discriminant 

function analysis (DFA), quadratic discriminant analysis (QDA), diagonal discriminant analysis (DDA), etc. 

The current study will not be overly concerned with the distinction between these different variants and will 

talk for the most part in general terms about discriminant analysis, referring to it as LDA; in practice, however, 

it will mostly be using linear discriminant analysis. 
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the learner’s L1, and the features used in the analysis are word frequencies.1 On the basis of 

this data, statistical models are constructed using LDA in order to discriminate between the 

L1 groups. The predictive approach is then used to test the accuracy of the models, and the 

descriptive approach to identify which features (i.e. lexical choices) are the best predictors of 

group membership (i.e. L1 background). 

LDA is similar to the statistical method of multiple regression, with the important difference 

that whereas the outcome in regression is quantitative (i.e., a numeric value), in LDA it is a 

categorical variable – such as L1. 

2.2.1.1 How discriminant analysis works 

LDA can handle an arbitrary number of groups (provided there is a sufficient number of 

cases and variables), but the principles are best explained using a simple example in which 

there are only two groups (or classes), each with just two cases. In the following, a subset of 

the Tibetan skull data mentioned above is used for this purpose (see Table 3). 

Case 
Length 
(mm) 

Breadth 
(mm) Type LDF 

A 162.5 139.0 I -2.27265 

B 174.5 143.5 II 2.324759 

C 178.5 135.0 I -0.91175 

D 182.5 137.0 II 0.859172 

Table 3: Simple LDA example (Tibetan skulls data) 

Ignoring the column labelled LDF for the moment, we observe four cases (A, B, C and D) that 

each belong to one of two groups (Type I and Type II). For each case there are two numeric 

variables: the measurements for Length and Breadth. A scatter plot of the data is shown in 

Figure 1. 

                                                 
1 Note that there is a one-to-one correspondence in the present project between ‘feature’ (as used in its technical, 

LDA-related sense) and ‘word’, since each feature is a data variable consisting of the relative frequency of a 

particular word. 
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Figure 1: Simple LDA example – scatter plot 

On their own, neither of the two variables Length or Breadth suffice to discriminate between 

the two groups. This is demonstrated for Length in Figure 2, in which the four data points are 

projected onto the Length axis; there is no point along this axis at which a line can be drawn 

to separate the two groups. 
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Figure 2: Cases projected onto the Length axis 

Figure 3 shows the same four data points projected onto the Breadth axis. Again there is no 

point where a line can be drawn to separate the two groups. 
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Figure 3: Cases projected onto the Breadth axis 

However, by combining the two variables in a simple linear function a new axis can be 

produced (shown as a dotted line in Figure 4). 
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Figure 4: Scatter plot with LDF axis 

This new axis does allow the two groups of cases to be separated. This is demonstrated in 

Figure 5, in which the four data points are projected onto the new axis. It may be observed 

that values less than zero are type I, while those greater than zero are type II. 

LDF
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A BC D

Discriminant function

 
Figure 5: Cases projected against LDF axis 

The values that have been plotted along this new LDF axis are those shown in the column 

headed LDF in Table 3. They were calculated using the simple formula shown in  (1). 

(1) z = 0.204 * L + 0.477 * B − 101.8 

where L = Length and B = Breadth. The values 0.204 and 0.477 in this formula are called 

‘discriminant coefficients’ (or ‘discriminant loadings’). They were arrived at through a 

calculation in which the goal was to produce a linear function z for each of the four cases, 

such that the variance within each group was minimized, and the variance between the two 

groups was maximized. (The value −101.8 is simply a constant whose purpose is to position 

the zero point midway between the groups.) 

When there are only two classes to be discriminated (as here), only one linear function is 

calculated. With two discriminating (or ‘predictor’) variables (as here), it has the general 
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form shown in  (2). Comparing this to the actual function shown in  (1), it may be observed 

that x1 and x2 are the variables (corresponding to Length and Breadth); a1 and a2 are the 

coefficients (corresponding to 0.204 and 0.477), which constitute weightings (or loadings) of 

the variables; and a0 is a constant (corresponding to −101.8). 

(2) z = a0 + a1x1 + a2x2 

Neither the number of groups nor the number of discriminating variables need be restricted 

to two, as they are in the simple example used here. Given n variables (instead of two) and 

two groups, the general form of the discriminant function z is as shown in  (3), which now 

contains n+1 terms instead of the 2+1 (i.e. three) terms, a0, a1x1 and a2x2, found in (2). 

(3) z = a0 + a1x1 + a2x2 + a3x3 + a4x4 + … + anxn 

If the number of groups (G) is greater than two, additional discriminant functions are 

calculated up to a maximum of G−1. For example, with five groups (say, five L1s), there 

could be up to four functions, as in  (4). 

(4) z1 = a1,0 + a1,1x1,1 + a1,2x1,2 + a1,3x1,3 + a1,4x1,4 + … + a1,nx1,n 

 z2 = a2,0 + a2,1x2,1 + a2,2x2,2 + a2,3x2,3 + a2,4x2,4 + … + a2,nx2,n 

 z3 = a3,0 + a3,1x3,1 + a3,2x3,2 + a3,3x3,3 + a3,4x3,4 + … + a3,nx3,n 

 z4 = a4,0 + a4,1x4,1 + a4,2x4,2 + a4,3x4,3 + a4,4x4,4 + … + a4,nx4,n 

To sum up, the basic task of discriminant analysis is to calculate discriminant functions 

which together constitute a model (in n-dimensional space) that minimizes the variance 

within groups and maximizes the variance between groups. 

2.2.1.2 LDA and the methodological framework 

At this point it is worth noting the parallel between the method of discriminant analysis and 

the first two types of evidence called for by Jarvis (see § 2.1.3): 

• minimized within-group variance equates to Jarvis’ intragroup homogeneity 

• maximized between-group variance equates to Jarvis’ intergroup heterogeneity 

In other words, the method of discriminant analysis automatically provides two of the three 

kinds of evidence called for by Jarvis. This point will be discussed further in Chapter  6. 
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2.2.1.3 Cross-validation 

In order to assess the accuracy of models constructed through LDA, they must be validated 

using data for which the correct classification is known. This should not be the same data 

that was used to construct the model, otherwise an overoptimistic estimate of the model’s 

accuracy will result. The usual approach is therefore to partition the data into a ‘training set’, 

which is used to construct the model (or ‘train’ the classifier), and a ‘test set’, which is used 

to test it. Such ‘cross-validation’ (CV) is often performed ten times (so-called 10-fold CV) 

by dividing the data into ten test sets, each containing one-tenth of the cases. A model is 

constructed using the remaining nine-tenths and this is used to classify the cases in the test 

set. The process is repeated ten times, once for each test set, and the results are then collated. 

An alternative to 10-fold CV is leave-one-out cross-validation (LOOCV), in which the data 

is divided into the same number of partitions (n) as there are cases, with one case in each test 

set (and n−1 cases in each training set). 

Either way, the grouping information for the training set is used to build the model which is 

then applied to the test set in order to ‘predict’ the grouping of the ‘unknown’ cases. The 

predictions are then compared to the known groupings in order to determine the accuracy of 

the model. The usual way to present the results is in the form of a ‘confusion matrix’. In the 

study of Tibetan skulls the model was tested using LOOCV and the results were combined 

into the confusion matrix shown in Table 4. 

 Predicted type 

Actual type Type I Type II 

Type I 14 33 

Type II 13 12 

Table 4: Confusion matrix (Tibetan skulls data) 

This shows that 14 of the 17 type I skulls were predicted correctly, and that 12 of the 15 type 

II skulls were predicted correctly. All in all, 26 of the 32 skulls were correctly identified, 

which gives a success rate of 26/32 = 0.81 (81%), and a corresponding error rate of 1 − 0.81 

= 0.19 (19%). To determine whether this result is statistical, a null hypothesis is formulated 

stating that the type of skull bears no relation to its measurements. Since there are two 

possible choices, the probability of correctly predicting the type of any individual skull is 0.5 
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(50%). Using a simple binomial test in R (see § 4.2.3) the null hypothesis can be tested as 

follows: 

> binom.test( x=26, n=32, p=0.5 ) 
 
        Exact binomial test 
 
data:  26 and 32  
number of successes = 26, number of trials = 32, p-value = 0.0005351 
alternative hypothesis: true probability of success is not equal to 0.5  
95 percent confidence interval: 
 0.6356077 0.9279238  
sample estimates: 
probability of success  
                0.8125 

The low p-value (< 0.01) allows the null hypothesis to be rejected and it may be concluded 

that the classification result is indeed statistical. 

2.2.1.4 Feature selection 

It is not always the case that every variable contributes to discriminating between groups, 

especially when the number of variables is very large. For this reason it is often desirable to 

identify an appropriate subset to use in the analysis. When the goal of the LDA is descriptive, 

irrelevant variables represent noise that confuses the interpretation of the results. When the 

goal is prediction, variables that play no useful role in the classification are a source of 

additional expense, in terms of cost, speed, etc. In both cases, such variables are best 

removed before constructing the model, through a process called ‘feature selection’. 

A number of approaches to feature selection are possible, the most popular being stepwise 

methods. These can operate in either a forward or a backward manner, or in a combination of 

the two. In a forward stepwise procedure, features are added to the model one step at a time. 

At each step the feature that contributes the most discriminatory power to the model (above a 

specified threshold for entry) is added, and the procedure continues until a cut-off point is 

reached, defined in terms of a certain number of features or the threshold for entry. A 

backward stepwise procedure starts off with all the features and removes them one by one 

depending on which one contributes the least discriminatory power to the model at each step. 

Again there is a cut-off point at which the procedure is halted. 

Feature selection can be combined with cross-validation in one of two ways: either it can be 

‘embedded’ within each fold of the CV – which typically results in different (but overlapping) 
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sets of features in each fold; or it can be performed ‘up-front’ and the same set of features 

used in each fold of the CV. Both methods are used in the present study. 

2.2.1.5 Underlying assumptions of LDA 

Figure 6 depicts the process flow of a typical discriminant analysis, showing the partitioning 

of the source data into a training set and a test set, the construction of a model with optional 

feature selection, the application of the model to predict the classes of cases in the test set, 

and the summary of the output in the form of a confusion matrix. When feature selection is 

performed the output includes a feature set which can be analysed in order to gain insight 

into which features contribute the highest degree of discriminating power to the model. 

source
data

training set
(features + classes)

test set
(features)

feature
selection

model
construction

feature
set

model

cross-
validation

confusion
matrix

class(es)prediction

 

Figure 6: Discriminant analysis flowchart 

Like all statistical methods, discriminant analysis is based on certain underlying assumptions 

about the data which must be satisfied in order for the method to work correctly. Klecka 

(1980) summarizes those assumptions as follows: 

1. two or more groups: G ≥ 2 

2. at least two cases per group: ni ≥ 2; 

3. any number of discriminating variables, provided that it is less than the total number 

of cases minus two: 0 < p < (N – 2); 

4. discriminating variables are measured at the interval level; 

5. no discriminating variable may be a linear combination of other discriminating 

variables;  
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6. the covariance matrices for each group must be (approximately) equal, unless special 

formulas are used; 

7. each group has been drawn from a population with a multivariate normal distribution 

on the discriminating variables. 

There is a lack of consensus in the literature regarding the ratio of cases to features. Jarvis 

(2012: 16) refers to a convention of having “at least 10 texts [i.e. cases] for every feature” 

but provides no references. Burns & Burns (2008: 591) state that group sizes should be “at 

least five times the number of independent variables.” On the other hand, Venables & Ripley 

(2002: 331ff),1 Everitt (2005: 142ff), Baayen (2008: 154ff) and Field et al. (2012: 738ff) all 

introduce LDA without stating requirements that go beyond those articulated by Klecka. 

According to Lachenbruch (1975: 17), “in general, the discriminant function performs fairly 

well with samples of moderate size” and no more than 3.5 cases are required per feature in 

order to be “within 0.05 of the optimum error rate.” The extent to which the data used in the 

present study follows these assumptions is discussed in § 4.5.1. 

2.2.2 Applications of discriminant analysis in linguistics 

Until now discriminant analysis does not appear to have been very widely used in linguistics, 

except in stylistics, and hardly at all in SLA. Larson-Hall (2010) makes no mention of LDA 

(nor of any other classification technique), despite covering equally sophisticated methods, 

such as multiple regression, and despite the fact that SPSS, the tool she uses, has excellent 

support for LDA (see § 4.2.2). However there are some examples. The earliest (Mustonen 

1965) makes an excellent introductory case study and is therefore described here in some 

detail, after which a number of later applications of LDA are listed, along with brief 

descriptions and bibliographic references. 

2.2.2.1 Mustonen (1965) 

One of the earliest applications of discriminant analysis in the field of linguistics was Seppo 

Mustonen’s 1965 paper Multiple discriminant analysis in linguistic problems. The paper’s 

purpose was to “indicate the possibilities of applying statistical multivariate analysis to some 

linguistic problems” and it did so by “teaching the computer to decide to which language a 

                                                 
1 The R package MASS that is used in this project (see § 4.2.3 and § 4.5.4) is based on this book. 
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given word most probably belongs” (Mustonen 1965: 37). The author cautions that the 

example was planned “only for fun” and was therefore not to be taken too seriously, except 

as an example that can be extended “to have practical linguistic applications.” 

The source data in this experiment was a sample of 900 words – 300 each from English, 

Swedish and Finnish – chosen at random from dictionaries. For each word, 43 quantitative 

variables were computed, one for each of the properties shown in Table 5. The numbers in 

the right-hand column headed ‘Ex.’ give the value of each variable for the example word 

‘always’. This word consists of five different letters, including two different vowels, and has 

two syllables (according to the rules of Finnish), one of which has a length of two letters; 

there are two letters in the first syllable and four in the last, one syllable of type VC, etc. 

# Variable Ex.        # Variable Ex. 

1 different letters 5  23 letter F 0 

2 different vowels 2  24 letter G 0 

3 syllables 2  25 letter H 0 

4 1-letter syllables 0  26 letter I 0 

5 2-letter syllables 1  27 letter J 0 

6 3-letter syllables 0  28 letter K 0 

7 letters in first syllable 2  29 letter L 1 

8 letters in last syllable 4  30 letter M 0 

9 syllables of type VC 1  31 letter N 0 

10 syllables of type CV 0  32 letter O 0 

11 syllables of type VCC 0  33 letter P 0 

12 syllables of type CVV 0  34 letter R 0 

13 syllables of type CVC 0  35 letter S 1 

14 twin (double) letters 0  36 letter T 0 

15 diphthongs 1  37 letter U 0 

16 first letter (V=0, C=1) 0  38 letter V 0 

17 last letter (V=0, C=1) 1  39 letter W 1 

18 letter A 2  40 letter Y 1 

19 letter B 0  41 letter Å 0 

20 letter C 0  42 letter Ä 0 

21 letter D 0  43 letter Ö 0 

22 letter E 0     

Table 5: Set of features in Mustonen (1965) 
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These variables constitute the 43 features (or predictor variables) used in the discriminant 

analysis. There were 900 cases (i.e., the words), and three groups (EN, SW and FI). Other than 

that, as Mustonen points out, “the computer was not given any other special information to 

improve accuracy of discrimination (sic)”: 

For instance, no deterministic rules for identifying the language were given, i.e., 

nobody told the machine that a Finnish word never ends with two consonants, that 

the English alphabet does not contain Å, Ä, Ö, etc. Thus all the information the 

computer could use was restricted to 900 words described by 43 quantitative 

variables (Mustonen 1965: 39). 

The input data may be envisaged as a matrix of 900 rows (one per word) and 43 + 1 = 44 

columns (one per quantitative variable, plus the grouping variable, Language). The data was 

fed into a computer program which then computed two discriminant functions of the form 

shown in (1) (cf. equation  (3) on page 18): 

(1) z = a1x1 + a2x2 + a3x3 + a4x4 + … + a43x43 

The values of the coefficients are shown in Table 6: column I contains the coefficients for 

the first function and column II contains the coefficients for the second. A portion of the first 

function is shown in (2) and the value of this function for the example word ‘always’ is 

shown in (3). 

(2) z1  = 0.021x1 + 0.028x2 + 0.414x3 – 0.467x4 + … – 0.043x43 

(3) zalways = (0.021 · 5) + (0.028 · 2) + (0.414 · 2) – (0.467 · 0) + … – (0.043 · 0) 

Mustonen points out how the first (and stronger) discriminant function serves to separate 

Finnish from English and Swedish: high negative loadings indicate a tendency towards 

Finnish, as for syllables of one or two letters (–.467 and –.232, respectively), and the letters 

H, J, K, L, M, N, P, S, T, U, V and Ä. The second function serves to discriminate between 

English and Swedish: here, high positive loadings indicate a tendency towards Swedish, and 

thus, on the basis of this data, we may observe that letters such as F, J, K and Å are more 

frequent in Swedish, while C and W are more typical of English. 
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# Variable   I   II        # Variable  I   II 

1 different letters .021 –.024  23 letter F –.078 .283 

2 different vowels .028 .067  24 letter G –.011 .184 

3 syllables .414 –.209  25 letter H –.215 .032 

4 1-letter syllables –.467 .176  26 letter I –.089 –.090 

5 2-letter syllables –.232 .073  27 letter J –.224 .208 

6 3-letter syllables –.011 .058  28 letter K –.261 .230 

7 letters in first syllable .056 –.020  29 letter L –.142 .126 

8 letters in last syllable .078 –.049  30 letter M –.127 .191 

9 syllables of type VC .076 –.073  31 letter N –.167 .143 

10 syllables of type CV –.038 .017  32 letter O –.071 –.093 

11 syllables of type VCC –.084 .167  33 letter P –.146 .132 

12 syllables of type CVV –.160 .137  34 letter R –.099 .127 

13 syllables of type CVC –.161 –.009  35 letter S –.164 .149 

14 twin (double) letters –.033 –.004  36 letter T –.132 .171 

15 diphthongs –.247 –.134  37 letter U –.107 –.121 

16 first letter (V=0, C=1) –.043 –.120  38 letter V –.175 .155 

17 last letter (V=0, C=1) .071 .054  39 letter W .060 –.299 

18 letter A –.055 –.033  40 letter Y –.095 –.074 

19 letter B .009 .187  41 letter Å –.025 .408 

20 letter C .076 –.163  42 letter Ä –.126 –.002 

21 letter D –.073 .173  43 letter Ö –.043 .166 

22 letter E –.001 –.122      

Table 6: Discriminant loadings in Mustonen (1965) 

In order to test the accuracy of the statistical model described by the discriminant functions, 

Mustonen took a new random sample of 300 words, 100 from each language, and had the 

computer “predict” which language each one belonged to. Discriminant function values were 

calculated for each new word, which was then classified according to its “distance” from the 

means of each of the three languages. In Figure 7 the x and y axes correspond to the two 

discriminant functions, z1 and z2, and the small circles represent the positions on the “map” 

of (some of) the cases in the test set. Finnish words are shown in green, Swedish in red and 

English in blue. Words that belong to two or more languages (e.g. anemone) are in black. 

The large circles represent the means of the three language groups and they divide the 

coordinate space into three sectors. It may be observed that words located to the West are 

typically Finnish, while those in the North-East are typically Swedish and those in the South-

East are typically English. 
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Figure 7: Scatter plot of test cases in Mustonen (1965) 

The classification is not perfect (e.g. FI tyttö is classified as SW, and SW ära as FI), but neither 

is this to be expected. As Mustonen writes: 

One must remember that complete accuracy of classification is hardly achieved in 

applications like this where the different groups (as languages here) are not disjoint 

but have a great many members (words) which are, or at least could be, common to 

several of those groups (Mustonen 1965: 42). 

The overall success rate for the classification is shown in Table 7. This indicates a high 

success rate for Finnish (91%) and somewhat lower rates for English (59%) and Swedish 

(79%). The overall success rate is 76.3% (alternatively, the error rate is 33.7%). 

  Predicted language  

 EN SW FI Total 

EN 59 28 13 100 

SW 11 79 10 100 A
ct

ua
l 

la
ng

ua
ge

 

FI 1 8 91 100 

Table 7: Confusion matrix (Mustonen 1965) 
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Using R to perform a binomial test (with a chance probability of 0.333, since there are three 

groups) leads to rejection of the null hypothesis that there is no difference between EN, SW 

and FI. The results are therefore statistical (p < 2.2e-16), which means that the discriminant 

analysis has found significant structure in the data. 

> binom.test( 59+79+91, 300, 0.333 ) 
 

        Exact binomial test 
 
data:  59 + 79 + 91 and 300  
number of successes = 229, number of trials = 300, p-value < 2.2e-16 
alternative hypothesis: true probability of success is not equal to 0.333  
95 percent confidence interval: 
 0.7110981 0.8102844  
sample estimates: 
probability of success  
             0.7633333 

Of course, this kind of classification cannot compete with deterministic methods based on a 

strict set of rules (assuming it is possible to formulate such a strict set of rules, which in the 

present case it is not) but, as Mustonen points out: 

deterministic classification is not very interesting, since it hardly can reveal anything 

new about the subject. All the information about the rules of classification must be 

given by the investigator. In the method based on Discriminant Analysis no rules for 

classification are given in advance (Mustonen 1965: 44). 

This comment underlines the importance of LDA as tool for discovering new facts. 

2.2.2.2 Other case studies 

While Mustonen’s pioneering paper did not lead to a major breakthrough in the use of LDA 

in linguistics, there have been some applications, including: 

• Bellinger (1979) – an analysis of the pattern of change in mothers’ speech. 

• Marckworth & Baker (1980) – a discriminant function analysis of co-variation of 36 

syntactic devices (sentence type, focus phenomena, verb structure, conjoining and 

embedding, etc.) in five prose genres. 

• Fletcher & Peters (1984) – an exploratory study of language impairment in children. 

• Fox (1991) – a discriminant analysis of yes-no questions in Quebec French. 

• Nicoladis (1994) – a PhD thesis on code-mixing in French-English bilingual children. 
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• Ganschow & Sparks (1996) – a psychological study of anxiety about language 

learning among high school women, which examines the relationship between three 

levels of anxiety (high, average, low) and nine measures of NL skill and FL aptitude. 

• Peng & Hengartner (2002) – a quantitative analysis of the literary styles of nine 

authors, including Shakespeare, Dickens, Kipling and London. 

2.3 The detection-based approach 

The impetus for the current project came with the publication in March 2012 of the book 

Approaching Language Transfer through Text Classification (Jarvis & Crossley 2012). 

Subtitled “explorations in the detection-based approach”, this collection of five closely 

related studies reports on the first systematic attempt to apply discriminant analysis to 

transfer research. The cases in each of these studies are learner texts, the features are various 

frequency data and other metrics, the groups are the learners’ L1s, and the goal is to ‘predict’ 

the L1 background of the learners on the basis of the lexical features exhibited in their texts. 

The Jarvis & Crossley studies were informed by earlier work on text mining and in particular 

by seven studies that focus on L1 detection. This section gives a brief overview of those 

“pioneer” studies and then presents the Jarvis & Crossley studies in more detail, in particular 

the one on which the present study is modelled. 

2.3.1 Pioneer studies 

A fairly detailed overview of previous studies on L1 detection is given by Jarvis in his 

introductory chapter (Jarvis 2012: 20–27). This section therefore contains only a brief 

summary of each study in chronological order. 

2.3.1.1 Mayfield Tomokiyo & Jones (2001) 

The primary goal of the first study to use text classification techniques in SLA was to test the 

ability of a Naïve Bayes classifier (an alternative to LDA) to distinguish between native and 

non-native speakers of English using transcripts of spontaneous speech. A related goal was 

to test whether such a classifier could distinguish between two groups of six Chinese- and 31 

Japanese-speaking learners of English. The features used in the study were frequencies of 
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(1) individual words (1-grams),1 (2) word sequences (2- and 3-grams), (3) word classes (POS 

1-grams), (4) sequences of word classes (POS 2- and 3-grams), and (5) word sequences in 

which nouns were replaced by their word class (as in on the SB). Cross-validation was 

performed by selecting 70% of the texts at random as the training set and using them to 

classify the remaining 30%. This procedure was performed 20 times and the results averaged. 

The accuracy obtained varied from 74% to 100% depending on the combination of L1s (ZH, 

JA, EN) and the kinds of features used. Greater accuracy was achieved using word tokens 

than with POS tokens, and when distinguishing between ZH and native speakers. As Jarvis 

points out, the level of accuracy is “quite phenomenal, but the fact that there were only two 

L1 groups to distinguish between, and the fact that the two L1 groups were so small and 

unevenly balanced, casts some doubt on the generalizability of the results” (p. 21).2 

2.3.1.2 Jarvis et al. (2004) 

This study is the direct precursor of the first Jarvis & Crossley study (see § 2.3.2.1). Its 

purpose was to determine how well an LDA classifier could predict the L1 backgrounds of 

446 adolescent EFL learners from five different L1 backgrounds: DA, FI, PO, SP and SW. The 

source data consisted of written narrative descriptions of a segment of the Charlie Chaplin 

film Modern Times, and the features fed into the classifier were the 30 most frequent words 

used by each L1 group, for a total of 53 words. No automatic feature selection was 

performed and validation was by 10-fold CV. The overall accuracy rate achieved in the 

classification was 81%. However, Jarvis, Castañeda-Jiménez & Nielsen subsequently 

concluded that their CV procedures were “overly simplistic and somewhat positively biased” 

(p. 22), which is why they chose to re-implement the study, as discussed in § 2.3.2.1, below. 

                                                 
1 The term ‘gram’ is widely used in the fields of computational and corpus linguistics to denote a contiguous 

sequence of n items from a portion of text or speech; the items in question can be phonemes, syllables, letters, 

words, etc. depending on the application. A word unigram (1-gram) is a single word; a word bigram (2-gram) is 

a sequence of two words, etc. A POS n-gram is a sequence of n words expressed in terms of their word class (or 

part of speech), e.g. on the road is an instance of the POS 3-gram [PRP ART SB]. 
2 Bare page references such as (p. 21) are references to Jarvis & Crossley (2012). 
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2.3.1.3 Koppel et al. (2005) 

Koppel et al.’s study used 1,290 texts from the International Corpus of Learner English 

(ICLE) written by learners from five L1 groups: BU, CS, FR, RU and SP. They used a Support 

Vector Machines classifier (another alternative to LDA) and a total of 1,035 different 

features: 400 function words, 200 frequent letter sequences (or letter n-grams), 185 error 

types and 250 rare POS 2-grams. A 10-fold CV was performed, but without feature selection 

and classification rates of up to 80% were achieved. 

2.3.1.4 Estival et al. (2007) 

The goal of this study was to test many different classifiers on a number of tasks, including 

the prediction of L1, age, gender, level of education, country of origin, etc. Using the WEKA 

toolkit (Witten & Frank 2005), several machine learning algorithms were tested. The data 

consisted of 9,836 emails written by 1,033 people from three L1 backgrounds (EN, AR and 

SP), and the features fed into each classifier included word-length indices, and the relative 

frequencies of punctuation, function words, POS categories, paragraph breaks and HTML tags. 

A number of feature selection methods were tested and the best results (84% accuracy) were 

obtained using the Random Forest classifier using an unspecified number of features that 

passed an information-gain criterion “after features that were used by speakers of only one 

L1 background were removed” (p. 23). 

2.3.1.5 Tsur & Rappoport (2007) 

This study replicates Koppel et al. (2005) in many respects, not least its selection of L1s and 

use of SVM with 10-fold CV. However it was based on a different sample of 1,190 texts 

from ICLE and a slightly different set of features. For purposes of comparison a baseline 

classifier was implemented in which each document was represented by the normalized 

frequencies of the (de-capitalized) letters it contains, and this resulted in an accuracy rate of 

46.8%. Classification based on the 200 most frequent 2-grams in each sub-corpus had a 

65.6% success rate, while a corresponding experiment using 3-grams achieved 59.7%, and 

one based on 460 function words achieved 66.7%. In a further test, the 84 2-grams with the 

greatest “separating power” produced a result of 61.4%, a drop of just 4% compared to the 

full 200 2-gram test. As Jarvis points out, Tsur & Rappoport’s results are statistically lower 

than those achieved by Koppel et al., although still far higher than chance. As possible 
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explanations, Jarvis suggests the smaller sample in the later study, differently composed sets 

of features, and the possibility that different classifier settings were used. 

2.3.1.6 Wong & Dras (2009) 

This is another follow-up study to Koppel et al. (2005), using the same classifier and the 

same five L1s, but with the addition of ZH and JA and a smaller sample of texts (95 per L1, 

665 in total). A simple split CV was used, with 490 texts in the training set and 175 texts for 

testing. The study was in two parts. The first part investigated whether syntactic errors 

correlate with L1. Three types of error were explored: subject-verb disagreement, noun-

number disagreement and the misuse of determiners. The last of these turned out to be highly 

statistical, whereas subject-verb disagreement was only marginally so, and noun-number 

disagreement not at all. After tuning, these errors yield a small but statistical improvement in 

accuracy (24.6%) compared to the baseline of 14.3% (i.e. 1/7). The second part of the study 

used various lexical features (function words, letter n-grams and POS n-grams). Four types of 

classification were performed for each set of features, both individually and also in 

combination with each other and the previously mentioned syntactic error values. The best 

results (of 73.7%) were obtained by combining function words with POS n-grams and were 

not affected either by tuning or the inclusion of syntactic errors. 

2.3.1.7 Jarvis (2011) 

The primary purpose of this study was to test a number of different classifiers in order to 

find out which one offered the best performance when attempting to detect a learner’s L1 

background. The data used in the study were identical to those used in the study by Jarvis 

and Paquot, discussed in § 2.3.2.2 below, i.e. frequency data for 722 n-grams extracted from 

2,033 ICLE texts representing 12 L1s. A total of 20 classifiers were tested using 10-fold CV. 

The best results (53.6% accuracy) were obtained using LDA with stepwise feature selection. 

Three other methodologies performed almost as well using the full set of features. 

2.3.2 Jarvis & Crossley (2012) 

Notwithstanding the ground-breaking work presented in the preceding section, the five case 

studies published in Jarvis & Crossley (2012) represent the first systematic application of the 

detection-based approach to transfer research. All of these studies use discriminant analysis 
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to analyze texts written by intermediate to advanced level learners of English, and most of 

them use data from ICLE. They each attempt to detect the authors’ L1s on the basis of 

characteristic linguistic features and, in the process, identify those features that are the best 

L1 predictors. Three types of feature are employed in these studies – lexical choices, stylistic 

metrics and error types, and the success rates achieved – despite varying according to the 

number of languages and the combination of features – consistently exceed chance probability 

(p < 0.01). 

The first two studies investigate lexical style. In Chapter 2, Jarvis, Castañeda-Jiménez & 

Nielsen (hereafter Jarvis et al.) replicate in a more rigorous fashion their 2004 study (see 

§ 2.3.1.2). This is the study that provides the model for the present work. Then, in Chapter 3, 

Jarvis & Paquot broaden the investigation from five L1s to 12, and to larger numbers of both 

1-, 2-, 3- and 4-grams, using data from ICLE. Since the present study also focuses on lexical 

style, both of these studies are presented in some detail below, followed by brief descriptions 

of the three remaining studies. 

2.3.2.1 Jarvis et al. (53 1-grams) 

Jarvis et al. (2012) set out to determine “whether feature vectors (i.e. lexical styles) made up 

of roughly 50 of the most frequent words in a learner corpus serve as successful indicators of 

learners’ L1s” (p. 35). The same source data was used as in the 2004 study: i.e. descriptions 

of a Chaplin movie written by 446 learners whose L1 backgrounds (and home countries) 

were DA (Denmark), FI (Finland), PO (Brazil), SP (Mexico) and SW (Finland). Two pairs of 

closely related languages (North Germanic DA and SW, and West Iberian PO and SP) were 

chosen deliberately in order to make the classification task more challenging and test “the 

sensitivity of the classifier and the uniqueness of L1-related lexical styles” (p. 45). 

The texts varied in length from 15 to 608 words (x̄ = 218; s = 106). The learners’ ages 

ranged from 11 to 18 and they had been exposed to from 2-13 years of English tuition. Their 

proficiency levels were assumed to range from A2 to C1 on the CEFR scale “with very few 

cases that qualify as A1 or C2” (p. 46). Jarvis et al. state that they “deliberately recruited 

learners representing a wide range of L2 proficiency in order to test the sensitivity of our 
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classifier, and more importantly to test whether clearly measurable L1-related characteristics 

of learners’ lexical styles remain consistent across proficiency levels” (p. 47). 

The investigation was thus based on 446 cases, distributed (somewhat unevenly) across 5 

groups, and the features used were frequencies for the 53 1-grams shown in Figure 8. This 

list was arrived at by pooling the 30 most frequent words from each L1 group. A series of 

one-way ANOVAs showed that 45 of the 53 variables differed statistically across groups 

(those that did not are shown in parentheses). 

a, and, away, be, bread, bus, (but), car, Chaplin, Charlie, come, do, down, 

(eat), (for), get, girl, go, have, he, (house), imagine, in, into, it, lady, (live), 

man, of, one, out, police, policeman, run, say, see, she, sit, so, steal, take, tell, 

that, the, then, there, (they), to, (up), when, (who), with, woman 

Figure 8: The 53 features used by Jarvis et al. 

LDA was performed using SPSS (see § 4.2.2) version 17.0 with L1 as the grouping variable, 

a setting of equal prior probabilities, 10-fold CV with embedded stepwise feature selection, 

and default values for feature entry (p < 0.05) and removal (p > 0.10).1 Following this, SNK 

post-hoc tests were run to reveal homogeneity subsets, as described below. 

Jarvis et al. exploited both the predictive and the descriptive aspects of discriminant analysis 

and their results can be discussed accordingly. As far as prediction is concerned, accuracy 

rates ranged from 63.6% to 89.7% with an overall rate of 76.9%. This is “considerably and 

significantly higher than the chance level of 20% ... It is also significantly and substantially 

higher than the baseline accuracy of 31.4% … which is the accuracy that would be attained 

if all texts were classified as belonging to the largest L1 group” (p. 53). 

The confusion matrix shown in Table 8 reveals rates of around 65% for DA and FI and well 

over 80% for the other L1s. Misclassification occurs mostly between related languages, i.e. 

SW for DA (21.7%) and vice versa (8.6%), and SP for PO (15%) and vice versa (5.2%). The 

surprising number of DA texts that are misclassified as FI (11.7%) is explained by the fact 

                                                 
1 Since SPSS does not support the embedding of feature selection in the folds of the cross-validation procedure, 

Jarvis et al. implemented the functionality using Perl scripts (p. 51). See  Appendix E for more information 

about SPSS settings. 
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that several DA participants “either did not understand the task correctly or did not have the 

required L2 proficiency to complete it successfully” (p. 64). The even higher proportion of FI 

misclassified as SW (20%) is shown to be due to the influence of L2 Swedish learned at 

school by L1 Finnish speakers. These results are commensurable with those obtained in 

previous studies that used five groups (Koppel et al. 2005; Tsur & Rappoport 2007), despite 

(or perhaps because of) using far fewer features. 

  Predicted L1  

 DA FI PO SP SW total 

DA 63.3 11.7 1.7 1.7 21.7 100.0 

FI 5.7 66.4 0.7 7.1 20.0 100.0 

PO 0.0 0.0 83.3 15.0 1.7 100.0 

SP 0.9 0.9 5.2 89.7 3.4 100.0 

A
ct

ua
l L

1 

SW 8.6 4.3 0.0 4.3 82.9 100.0 

Table 8: Confusion matrix (Jarvis et al.) 

As far as the descriptive function of LDA is concerned, the use of feature selection enabled 

Jarvis et al. to identify 36 features that contributed statistically to the discriminating model. 

These were the 34 that were selected in all 10 folds of the cross-validation, plus go and she, 

which were selected in a majority of the five models whose accuracies were higher than 

80%. Student-Newman-Keuls (SNK) post-hoc tests were run on these variables in order to 

reveal what are known as “homogeneity subsets”. These are subsets of the set of five L1 

groups in which the values of a given variable show no statistical difference. 18 of the 36 

features resulted in subsets that overlapped one another (and are therefore somewhat harder 

to interpret); the remaining 18 are shown in Table 9. 

Each entry in this table shows how the five L1s group themselves with respect to each 

feature. For example, FI is clearly separated from the other groups by a relatively infrequent 

use of the words a, be and the, and a relatively frequent use of the words Chaplin and go. 

The word a also helps separate PO, but the other words that separate PO (bread, girl, then and 

woman) are different from the ones that isolate FI (p. 59-60). 

These 18 words are thus the best predictors of L1 group membership. The crucial question 

from the perspective of transfer research is “whether these L1-specific word choice patterns 

are due to direct L1 influence, or do they simply reflect differences in the L1 groups’ cultural 
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Feature Homogeneity subsets Feature Homogeneity subsets 

a FI < PO < (SW, SP, DA) go (PO, SW, DA, SP) < FI 

away (SP, PO) < (DA, SW, FI) imagine (DA, FI, SW) < (PO, SP) 

be FI < (SP, SW, DA, PO) into (PO, FI, SP) < SW < DA 

bread PO < (DA, SW) < (SP, FI) police (SW, DA, FI) < (PO, SP) 

bus (DA, FI, SW) < (PO, SP) policeman SP < (SW, PO, DA, FI) 

Chaplin (SP, DA, PO, SW) < FI the FI < (SW, DA) < (PO, SP) 

come (PO, SP) < (FI, SW, DA) then PO < (DA, SW) < (SP, FI) 

do (DA, SW) < (PO, SP, FI) there (PO, SP) < (FI, SW) < DA 

girl PO < SP < (SW, DA, FI) woman (DA, SW, FI, SP) < PO 

Table 9: Homogeneity subsets (Jarvis et al.) 

and education backgrounds” (p. 60). Answering that question requires evidence of the third 

kind called for by Jarvis (2000), i.e. cross-language congruity, and this entails contrastive 

analysis. Jarvis et al. reserve such analysis for future research, but offer a few interesting 

observations (p. 60-62), such as: 

• FI low use of a and the probably reflects the lack of articles in Finnish (Karlsson 

2008: 7). Jarvis et al. suggest furthermore (p. 61) that the “much wider distribution” 

of definite articles in PO and SP than in DA and SW can account for the pattern 

exhibited by the. 

• FI high use of Chaplin and girl has its complement in low use of he and she by the 

same group (not shown in Table 9). A likely contrastive explanation is that the 

absence of pronominal gender in FI (Karlsson 2008: 203) leads to underuse of 

pronouns and greater use of (referential) nouns in order to distinguish between the 

two main characters – Chaplin and the woman. 

• PO and SP low use of away and come can be explained by the verb-framed nature of 

Romance languages compared to the satellite-framed nature of the others (Talmy 

1985, 2000; Slobin 2004).1 

                                                 
1 Jarvis et al. note the existence of direct counterparts to the phrasal verb ‘run away’ in DA and SW but do not 

explain their observation in terms of verb-framing. 
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2.3.2.2 Jarvis & Paquot (722 n-grams) 

Jarvis & Paquot (2012) represents a broadening of the investigation into lexical transfer 

carried out by Jarvis et al. Their study has two parts, referred to here as Parts 1 and 2, both of 

which deal with n-grams of varying sizes, from individual words (1-grams) to multiword 

sequences (2-, 3- and 4-grams). Those portions of Parts 1 and 2 that deal with 1-grams are 

most pertinent to the present work and are therefore discussed in some detail. This is 

followed by a summary of the ‘polygram’ portions of the study. 

Jarvis & Paquot aimed to find out whether 1-grams remain effective discriminators of 

learners’ L1 backgrounds “even when (a) the number of L1 groups is increased substantially 

beyond five, (b) the texts are longer and reflect somewhat higher levels of proficiency and 

(c) the texts represent a range of open-ended argumentative topics rather than involving 

controlled narratives” (p. 72). Their investigation used texts from ICLE written by 2,033 

learners from 12 L1 backgrounds (BU, CS, NL, FI, FR, DE, IT, NO, PO, RU, SP and SW) and 

representing a range of topics and task conditions.1 The learners were mostly university 

undergraduates in their twenties (Granger et al. 2009: 7) and their proficiency levels were 

expected to range B1 to C2 (p. 78).2 Their texts ranged from 500 to 1,000 words in length. 

The features used in the discriminant analysis were the 200 most frequent 1-grams in the 

data that were not “prompt-induced” (see § 4.4.3). Once again SPSS 17.0 was used with L1 

as the grouping variable and equal prior probabilities. Part 1 of the analysis used 10-fold CV 

with all 200 features submitted using the ‘Enter’ method in SPSS – i.e., with no feature 

selection; Part 2 used 10-fold CV with embedded feature selection and strict values for 

feature entry (p < 0.01) and removal (p > 0.05). 

Prediction accuracy rates of 53.0% and 49.9% were achieved for 1-grams in Parts 1 and 2 

respectively, thereby confirming Jarvis et al.’s contention that embedded feature selection is 

to be preferred “in order to avoid positive bias (i.e. overly optimistic results)” (p. 51). This is 

                                                 
1 Four other L1 groups found in ICLE (Japanese, Turkish, Tswana and Mandarin) were not included as these 

consist of “a high proportion of lower proficiency texts” (p. 78). 
2 Note, however, the unevenness reported by Granger et al. (2009: 11) based on a random sample of 20 essays 

from each of the 16 sub-corpora in ICLE. For example, all 20 SW were rated ‘advanced’ (C1 or C2), whereas 

only 40% of the SP were in this category, the rest were rated ‘intermediate’ (B1 or B2). 
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“significantly and substantially higher than the chance level of 8.3% … and also significantly 

and substantially higher than the baseline accuracy of 14.2% … which is the accuracy that 

would be attained if all texts were classified as belonging to the largest L1 group” (p. 84). As 

in the study by Jarvis et al., some L1s were identified more accurately than others and 

misclassification patterns again pointed to genetic affiliation and L2 influence as the main 

factors (e.g. NO for SW and SW for FI, respectively). No feature selection was performed in 

Part 1 and Jarvis & Paquot only report the number of features selected in Part 2 without 

stating what they were or performing any form of contrastive analysis. 

The remaining portions of the Jarvis & Paquot study show that ‘polygrams’ (i.e. n-grams 

where n > 1) function less well as L1 predictors than 1-grams, with statistically lower 

prediction rates being achieved in Part 1 for 2-grams (39.5%), 3-grams (31.2%) and 4-grams 

(22.0%). However, these results were still statistically higher than chance or baseline rates. 

Best results (53.6%) were obtained in Part 2 using a combination of 722 1-, 2-, 3- and 

4-grams. 

2.3.2.3 Crossley & McNamara (Coh-Metrix indices) 

In Chapter 4 (Crossley & McNamara 2012) the focus is on stylistic rather than lexical 

characteristics of the learner texts. They restrict themselves to four L1s (CS, SP, DE and FI) 

and use 10-fold CV with embedded feature selection. Their feature set consists of 19 indices 

of textual cohesion, lexical sophistication, syntactic complexity and conceptual knowledge 

generated by the computational tool Coh-Metrix (McNamara & Graesser 2011). 

The study shows that such indices “can significantly predict group membership” (p. 120). 

Their overall classification rate is 67.6% and the best results are achieved for DE, with 88% 

precision and 75% recall.1 The corresponding figures for the other L1s are CS 62%–74%; 

FI 52%–59% and SP 58%–52%. The most significant differences concerned (1) word concrete-

ness, with DE writers tending to use the most concrete words and SP writers the least concrete 

                                                 
1 Recall is the number of correctly predicted L1s as a proportion of actual L1s and thus the value that 

corresponds to the accuracy rates reported elsewhere; precision is the number of correctly predicted L1s as a 

proportion of all predictions for this L1, including false positives. 



38    Lexical transfer in Norwegian interlanguage 

 

words, i.e. (SP, FI) < CS < DE; (2) “word imagability”,1 which exhibited the same pattern; and 

(3) motion verbs, where the pattern was (SP, CS) < FI < DE. A brief discussion of linguistic 

features in relation to the manner in which they help characterize writers from different 

language backgrounds makes interesting reading, but has the limitation, acknowledged by 

the authors, that it does not include any form of contrastive analysis and therefore does not 

provide the third kind of evidence called for by Jarvis in his methodological framework. 

2.3.2.4 Bestgen et al. (Error types) 

The focus in Chapter 5, by Bestgen, Granger and Thewissen (Bestgen et al. 2012), shifts to 

error patterns. The data was a sub-corpus of ICLE that had been exhaustively error-tagged 

and comprised 223 texts from three L1 groups: FR, DE and SP. The features submitted to the 

classifier were the relative frequencies of 46 error types spread across seven broad categories: 

formal errors, grammatical errors, lexical errors, lexico-grammatical errors, punctuation 

errors, style errors and errors involving redundant, missing or incorrectly ordered words.2 

The analysis was performed using LOOCV with embedded stepwise feature selection and 

the model was able to correctly predict the L1 of 65% of the texts. 

Of the 46 features submitted to the classifier, only 12 exhibited statistical differences across 

L1 groups. Seven of these served to discriminate SP from the others, three were closely 

associated with DE and two with FR. The authors conclude that it is possible to successfully 

discriminate the learners’ L1 backgrounds on the basis of error types. However, they also 

acknowledge that different levels of proficiency may have played a part in the discriminant 

analysis. A closer examination of the facts, based on CEFR level ratings (see § 3.4 below), 

showed statistical differences. After conversion to numeric values, SP exhibited a mean 

proficiency score of 1.44, statistically lower than FR 2.64, which in turn was statistically 

lower than DE 3.03. 

This prompted a repeat investigation using a sample that was controlled for proficiency level. 

30 FR and 30 DE texts that were all assessed as C1 were subjected to the same analysis using 

the same set of features. 75% were correctly classified, statistically more than chance, and 

                                                 
1 This concept is not defined by the authors, but Graesser et al. (2004) define imageability as “how easy it is to 

construct a mental image of the word in one’s mind, according to human ratings.” 
2 For a complete description of the error tags used in this study see the authors’ appendix (p. 150–153). 
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three types of error1 were found to be particularly good discriminators. The authors caution 

against assuming that these necessarily result from language transfer; other factors (and not 

just proficiency) could be at work, such as different English teaching methods (p. 139–140). 

2.3.2.5 Jarvis, Bestgen et al. (Combined features) 

The final study (Jarvis, Bestgen et al. 2012), co-authored with Crossley, Granger, Paquot, 

Thewissen and McNamara, investigates the comparative and combined contributions of 

n-grams, Coh-Metrix indices, and error types. The same texts were used as in the study by 

Bestgen et al., along with features from all three of the ICLE-based studies (i.e. Jarvis & 

Paquot’s 722 n-grams, Crossley & McNamara’s 19 Coh-Metrix indices, and Bestgen et al.’s 

46 error categories). The analysis was run with LOOCV and embedded stepwise feature 

selection. 

When the three groups of features were used separately, the best results (65.5%) were 

achieved with error categories, followed by Coh-Metrix indices (64.1%) and n-grams 

(63.2%). However, combining the three kinds of feature produced an even better result of 

79.4%. Particularly remarkable, as Jarvis notes (p. 29), is the fact that this result was 

achieved after feature selection had chosen just 22 features; of these, seven were error types, 

six were Coh-Metrix indices, and nine were n-grams (p. 167). 

To find out how important error types were to the analysis, a final test was performed using 

just n-grams and Coh-Metrix indices. This resulted in an L1 classification accuracy of 67.7%, 

which is statistically lower than the 79.4% achieved when error types were included. This 

leads the authors to conclude that error categories have an important role to play in this kind 

of research and that more work should therefore be done on the automatic identification and 

tagging of errors in learner texts. 

 

 

 

                                                 
1 QL (Punctuation, Lexical), GNN (Grammar, Noun Number) and FS (Form, Spelling) (Bestgen et al.:139). 
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3. Data sources 

Every application of the detection-based approach to transfer research to date has been based 

on English interlanguage texts. A central purpose of the present study was to try out the 

same approach using texts written in Norwegian interlanguage. This is the major point of 

difference between the present work and earlier work, and it could potentially lead to quite 

different results. This chapter therefore provides a detailed description of the data on which 

the present study was based. 

3.1 The ASK corpus 

The data comes from Norsk andrespråkskorpus (ASK), a learner corpus compiled under the 

direction of Kari Tenfjord at Bergen University (Tenfjord 2007; Tenfjord et al. 2009). ASK 

consists of Norwegian interlanguage texts written by adult learners of Norwegian L2 as 

responses to two officially recognized language tests. The tests were designed to measure 

language proficiency at two different levels: intermediate, corresponding to what is needed 

“to cope in most situations encountered at the workplace and in everyday life”, and 

advanced, a pre-academic university entrance test (Carlsen 2012: 169). Following Carlsen’s 

usage, the two tests will be hereafter referred to as follows: 

• IL test (Intermediate) Språkprøven i norsk for voksne innvandrere 

• AL test (Advanced) Test i norsk – høyere nivå1 

The main corpus consists of 1,736 texts written by learners from ten different language 

backgrounds and a rich set of metadata, covering factors such as proficiency level, age, 

                                                 
1 ‘Language test for adult immigrants’ and ‘Test of Norwegian – advanced level’, respectively. 
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length of residence in Norway, hours of tuition, English skills, etc. All 1,736 texts are error 

coded using XML markup and annotated with corrections in such a way that a parallel 

‘correct’ corpus can be automatically generated. In addition to the learner texts there is a 

control corpus of 200 texts written by native speakers. The 1,936 texts vary in length from 

66 to 1,068 words [66, 242, 327, 442, 1068; M = 355; SD = 138.6].1 ASK provided the data 

for ASKeladden, a research project whose focus has been transfer effects in Norwegian 

interlanguage (see the project web site http://www.uib.no/fg/askeladden and Johansen et al. 

(2010) for an overview of outcomes from this project). Aspects of the corpus that are 

particularly salient to the present study are covered in the following sections. The include the 

L1 groups that are represented, the number of texts (and their distribution across L1 groups), 

proficiency levels, and thematic variation. 

3.2 L1 groups 

The data covers ten different L1 groups: German (DE), English (EN), Dutch (NL), Polish (PL), 

Russian (RU), Serbo-Croat (SH), Spanish (SP), Albanian (SQ), Somali (SO) and Vietnamese 

(VI). In addition there is a control corpus of texts in Norwegian (NO). Eight of the ten source 

languages belong to the Indo-European phylum, but they are distributed across four families. 

DE, EN and NL are West Germanic and thus closely related to NO, which is North Germanic; 

SP, as a Romance language, and PL, RU and SH, as Slavic languages, are more distantly 

related; while SQ is (probably) the most distantly related of the Indo-European languages.2 

The remaining two languages, SO and VI, are completely unrelated to NO (Table 10). 

Their close genetic relationship mean that a lot of vocabulary items in DE, EN and NL have 

clearly recognizable cognates in NO. For example, EN ‘house’, DE ‘haus’ and NL ‘huis’ are 

cognate with – and have more or less the same meaning as – NO hus. In contrast, PL ‘dom’, 

RU ‘дом’ and SH ‘кућа / kuća’, SP ‘casa’, SQ ‘shtëpi’, SO ‘daar, guri’; and VI ‘nhà’, are all 

quite different in form. 

                                                 
1 The figures in square brackets give the five-number summary (minimum, lower quartile, median, upper 

quartile and maximum), plus the mean (M) and the standard deviation (SD). 
2 The Indo-European family tree supplied by Campbell & Poser (2007: 84–85) has the SQ subfamily branching 

off first from Proto-Indo-European, followed by Italo-Celtic (which includes the Romance group), after which 

come Germanic and Balto-Slavic. As Campbell & Poser point out, this tree is representative but far from 

universally agreed upon, and the position of SQ in particular is still unclear. 
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Phylum Family Language 

Germanic NO, DE, EN, NL 

Slavic PL, RU, SH 

Romance SP 

Indo-European 

Albanian SQ 

Afro-Asiatic Cushitic SO 

Austro-Asiatic Mon-Khmer VI 

Table 10: Genetic affiliations of the ASK source languages 

Cross-linguistic similarity in the lexicon can also take the form of loanwords. Many words 

were borrowed from Old Norse (the ancestor of NO) into Old English (the ancestor of EN) in 

the Viking period. Later, extensive trade contact with the Hanseatic League led to massive 

borrowing from Middle Low German (MLG) into the (mainland) Scandinavian languages. 

According to Haugen (1976: 316), estimates of the proportion of MLG words in those 

languages run from one half to three-fourths of the vocabulary, and today, as Seip (1934b: 25) 

pointed out, “two Norwegians cannot … carry on a conversation of 2-3 minutes without 

using [MLG] loanwords.” In more recent times NO, like many other languages, has absorbed 

a great number of words from EN, but relatively few from any of the other ASK languages. 

The sum result of these two factors is that DE, EN and NL learners have a great advantage 

over other L1 groups when it comes to acquiring NO vocabulary. This can be expected to 

have a facilitative effect (positive transfer), but may also lead to negative transfer, especially 

in the form of false friends and semantic extension. 

3.3 Number of texts 

The original goal in compiling the ASK corpus was to include 100 texts for each L1 group at 

each of the two levels of proficiency represented by the IL test and the AL test. However, 

this turned out not to be possible in the case of SO, SQ and VI because of the small numbers of 

learners from these language backgrounds who had taken (and passed) the AL test. The 

corpus is thus somewhat unbalanced, as emphasized in Table 11, which shows the breakdown 

of texts by L1 and test type. (Note that it is precisely the most distantly related of the 10 

languages that are most underrepresented.) The 200 texts in the control corpus written by 

native speakers were composed under conditions approximating those of the two Norwegian 

language tests and are based on the same kinds of essay prompts. 
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 DE EN NL PL RU SH SP SQ SO VI Total 

AL test 100 100 100 100 100 100 100 24 7 5 736 

IL test 100 100 100 100 100 100 100 100 100 100 1000 

Both tests 200 200 200 200 200 200 200 124 107 105 1736 

Table 11: Number of texts in ASK at each test level (by L1 group) 

3.4 Proficiency levels 

The most widely accepted scale for measuring language proficiency in Europe is the 

Common European Framework of Reference, or CEFR (CoE 2001), which describes 

proficiency in terms of language functions (what learners can do) using six different levels, 

A1, A2, B1, B2, C1 and C2, that represent increasing levels of proficiency (Figure 9). 

 

Figure 9: CEFR proficiency levels 

Of the two Norwegian tests, the IL test is intended to correspond roughly to B1 on the CEFR 

scale (Carlsen 2012: 180), while the AL test corresponds to B2/C1 (Carlsen 2012: 180), that 

is, a level mid-way between B2 and C1.1 However, it cannot be assumed that all texts that 

have passed the IL test represent the same level of proficiency (B1), nor that all those that 

have passed the AL test exhibit a uniform level of B2/C1. This is because B1 and B2/C1 

only represent the minimum levels necessary in order to pass the tests. As Carlsen (2012: 

170) says, “some texts would have passed with a small margin and others with excellence,” 

so some variability of proficiency is inevitable. In order to obtain a more finely tuned and 

reliable categorization of proficiency, texts from seven of the ten L1 groups were 

independently re-assessed under strictly controlled conditions according to the CEFR scale. 

(For the details of this re-assessment, see Carlsen 2012.) The resulting categorization (across 

both tests) for those seven L1 groups is shown in Table 12 and illustrated graphically in 

Figure 10 (note that CEFR-based scores are not available for NL, SH and SQ). 
                                                 
1 Descriptors for these three levels are given in  Appendix C. 

A 
Basic User 

A1 A2 

B 
Independent User 

B1 B2 

C 
Proficient User 

C1 C2 

increasing proficiency
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 DE EN PL RU SP SO VI sum 

C1 5 7 5 3 3 0 0 23 

B2/C1 23 13 16 14 14 1 0 81 

B2 70 69 58 46 47 2 2 294 

B1/B2 46 30 52 60 37 4 3 232 

B1 45 61 42 51 60 31 45 335 

A2/B1 8 18 25 23 36 55 52 217 

A2 3 2 2 3 3 14 3 30 

Total 200 200 200 200 200 107 105 1012 

Table 12: CEFR ratings across both tests 

In addition to reflecting the imbalance in terms of the number of texts per L1 group (see 

§ 3.3), these figures also bring out a marked difference in proficiency levels. Again, it is the 

most distantly related L1 groups (SO and VI) that stand out the most, and there appears to be 

a clear correlation between proficiency levels and linguistic and cultural distance. 

 

Figure 10: CEFR ratings across both tests 

3.5 Thematic variation 

Another factor that can influence lexical choice is thematic bias: the vocabulary used in a 

text is clearly related to the topic of the text. While this is especially obvious in the case of 

content words, the topic can also influence the choice of function words. For example, a text 

about a topic which is largely concerned with future events is likely to contain more words 

that convey future meaning, such as the auxiliary skal (‘shall’), which is (often) used to form 

the future tense in Norwegian (especially by learners, see § 6.4.2). 
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 DE EN NL NO PL RU SH SO SP SQ VI sum
Alkohol og alkoholvaner  

‘Alcohol and drinking habits’ 2  1  1 3 4 1  1  13 

Barneoppdragelse 
‘Bringing up children’   3  23  9 1 4 9 4 53 

Bilbruk 
‘Motoring’        3   2 5 

Boformer 
‘Living arrangements’ 6    1   2    9 

Bolig og bosted  
‘Home and dwelling place’   9     4   6 19 

Bomiljø  
‘Residential environment’  38 16    9  23  3 89 

Den norske naturen  
‘Norwegian nature’ 1     27  4 12 8 4 56 

En bok du har lest  
‘A book you have read’        5  6 5 16 

En forfatter og om en bok 
‘An author and a book’      16  1 5 4 3 29 

En hyggelig opplevelse 
‘A pleasant experience’        3  12 6 21 

En interesse du har 
‘An interest you have’        2  3 1 6 

En kjent person 
‘A famous person’        2   1 3 

En person som har betydd mye for deg 
‘Someone who meant a lot to you’         1   1 

En religion du kjenner 
‘A religion you are familiar with’      6  5 1 1 1 14 

En sport du liker 
‘A sport you like’ 1  2  1   2   9 15 

Et yrke 
‘A profession’       7   6 4 17 

Fjernsynsprogram for barn 
‘TV programmes for children’ 10  2  5 5 8     30 

Flytting 
‘Moving’       12 1  5 1 19 

Folk reiser så mye i våre dager 
‘People travel so much in our times’   2     11   1 14 

Før og nå 
‘Then and now’   1  4  2 2  4  13 

Framtida 
‘The future’   8     22 10 10 13 63 

Fremmedspråkslæring 
‘Learning a foreign language’     11   2 9 7 2 31 

Frihet og ansvar 
‘Freedom and responsibility’    22       1 23 

Frivillig hjelp i organisasjoner  
‘Voluntary organisations’ 5  2  2  5     14 

Gjenbruk 
‘Recycling’   4  2     1  7 

Glede 
‘Joy’ 2    1      2 5 

Konkurranse 
‘Competition’  1 3    1  2  2 9 
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Kultur og idrett 
‘Culture and sport’     2  1  2 1  6 

Likestilling 
‘Equal opportunity’ 1          5 6 

Min første jobb 
‘My first job’        10   2 12 

Mobiltelefoner 
‘Mobile phone’ 23 24 3  13  5 2 1  1 72 

Møte med norsk kultur 
‘Encountering Norwegian culture’ 8 6 1  3 16 2 1  3  40 

Nordmenn 
‘Norwegians’   1         1 

Nyheter 
‘The News’ 10 9 7  8  4  4 3  45 

Penger og andre verdier 
‘Money and other values’    35       2 37 

Reise 
‘Travel’   14         14 

Røyking 
‘Smoking’   4     2   1 7 

Spillemaskiner 
‘Gambling machines’    1        1 

Sunnhet og helse 
‘Good health’    42       6 48 

Tanker om det å bli gammel 
‘Thoughts on old age’   2     1    3 

Trafikk og boligområder 
‘Traffic and residential areas’ 10  2  5 10 4     31 

Vaner og tradisjoner å ta vare på 
‘Important traditions to take care of’  15 6    5  18  5 48 

Vennskap 
‘Friendship’ 15 1 2  5 17 13 3  8 4 1 

Viktige verdier i livet 
‘Important values in life’ 6 6 2  13  9 3  4 2 68 

Å treffe andre mennesker 
‘Meeting other people’   3     4 9 4 1 45 

Table 13: Essay topics in ASK (Språkprøven) 

Table 13 lists the essay topics for the texts used in the present study together with their 

distribution across L1 groups.1 Topics that constitute more than 10% of the texts for any one 

L1 group are highlighted (for example, 23% of the texts written by PL learners are on the 

topic of barneoppdragelse ‘bringing up children’). Two things are apparent: (1) the number 

of topics is quite large, and (2) their overall distribution across L1 groups is very uneven. It 

will be necessary to bear this issue in mind when reviewing the findings of the analysis. 

 

                                                 
1 Note that ‘topics’ here equates to essay titles and should not be confused with the metadata field tema ‘theme’. 
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4. Methodology 

4.1 Study design 

The aim of this study is to replicate as closely as possible the study described in Jarvis et al. 

(2012) using Norwegian data from the ASK corpus. The investigation should therefore 

involve five L1s and approximately 53 features that represent the word frequencies. The 

focus was restricted to 1-grams in order to limit the scope of the project, leaving n-grams, 

stylistic metrics and error types for future work. 

The main difference between the present study and the one on which it is based is the use of 

Norwegian interlanguage data instead of English.1 A second difference is due to the use of 

different software, which was motivated by the desire to use familiar and/or open source 

tools where possible, and which affects the methodology to a certain degree. This chapter 

starts by describing the tools that were employed. It then goes on to discuss a number of 

design issues and describe how the data was processed, before presenting details of the 

statistical analysis. 

4.2 Software tools 

This section describes the software tools used in the project: Omnimark, R and SPSS. Since 

an important goal was to make it as easy as possible for other investigators to replicate the 

results and use the same kinds of techniques in their own work, the source data, scripts and 

intermediate forms of the data are being made available at http://folk.uio.no/stevepe. 

                                                 
1 Some of the consequences of these differences are discussed in § 0. 
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4.2.1 Omnimark 

The software platform for the ASK corpus, Corpuscle (Meurer 2012), offers a range of 

features for querying, collating and calculating distributions, and for exporting the results, 

but sometimes it is necessary to perform additional processing on the data. This is especially 

the case when there is a need to run a lot of different analyses with varying parameters on 

different subsets of the data – a task that is best performed in batch mode rather than 

manually, for reasons of efficiency and repeatability. 

Jarvis et al. used Perl for this purpose, but for the present project Omnimark was preferred. 

The researcher’s familiarity with the tool played a part in this decision, but Omnimark is also 

ideally suited to the task, being custom-designed for processing structured text in highly 

sophisticated ways, using its own, rather idiosyncratic but very powerful language. Originally 

developed for use with SGML, it can handle both SGML-encoded and plain text. The sample 

script in  Appendix C gives a flavour of the language, and documentation is available online 

at http://florin.bjdean.id.au/docs/omnimark/omni55/docs/html/index.htm. In this project, 

Omnimark’s cross-translation mode was used both to extract information directly from the 

source files, to process tab-delimited data files downloaded from ASK, and to post-process 

the output from the statistical analyses. 

4.2.2 SPSS 

The statistical software package used by Jarvis et al. was SPSS, described by Wikipedia as 

“a computer program used for survey authoring and deployment, data mining, text analytics, 

statistical analysis, and collaboration and deployment.” It is among the most widely used 

programs for statistical analysis in social science, and it is also used by market researchers, 

health researchers, survey companies, government, education researchers, marketing 

organizations and others. Originally released in 1968, SPSS is now owned by IBM and as of 

the time of writing the product has reached version 21.0. Details of its many components and 

their enormous range of functionality can be found at the product web site.1 Some trial 

downloads are available, and student editions may be purchased in the US, but otherwise the 

software is beyond the reach of many researchers. For that reason SPSS was only used in 

this project in order to enable a proper comparison with the results obtained by Jarvis et al. 

and preference was otherwise given to the open source package R wherever possible. 
                                                 
1 http://www-01.ibm.com/software/analytics/spss/ 
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4.2.3 R 

Wikipedia describes R as “an open source programming language and software environment 

for statistical computing and graphics[, which] is widely used among statisticians for 

developing statistical software and data analysis.” R provides a wide variety of statistical 

techniques (linear and nonlinear modelling, classical statistical tests, time-series analysis, 

classification, clustering, etc.) and graphical techniques, and is highly extensible (RDCT 

2012). As an open source tool, R has major advantages over SPSS: it can be used for free, 

the way it operates is completely transparent to anyone who is able to read the source code, it 

can be easily extended, and it is supported by an active community of developers. However, 

it has a steep learning curve and usually requires a certain amount of programming. For the 

present project a number of add-on packages were used, including MASS, SDDA and klaR. 

An example R script can be found in  Appendix G; in addition, all scripts used in the project 

are available at the project web site. 

4.3 Design issues 

The basic methodology used in this project was similar to that used by Jarvis et al. and 

consisted of the following steps: 

1. Choose which texts to use in the study. 

2. Determine the set of linguistic features to be used in the study. 

3. Extract frequency data from the corpus for this set of features. 

4. Massage that data into a shape suitable for statistical analysis. 

5. Perform the discriminant analysis. 

6. Interpret the results using contrastive analysis. 

This section describes the main design issues that were faced in choosing the texts on which 

to base the study. Following that, the practical details involved in extracting and preparing 

the data are discussed in § 4.4, after which the statistical analyses are described in § 4.5. The 

results of the latter are presented in Chapter  5 and these are subjected to contrastive analysis 

in Chapter  6. 

4.3.1 Choice of L1s 

Jarvis et al. (2012: 26-27) report that the five L1s in their study were deliberately chosen in 

order to test the effects of genetic proximity. They were DA and SW (two closely related 
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Germanic languages), PO and SP (two closely related Romance languages) and FI, a non-

Indo-European language that is unrelated to the other languages but spoken in the same 

general area as DA and especially SW. In order to approximate these conditions as closely as 

possible, it was decided for the present project to choose two closely related Germanic 

languages and two closely related Slavic languages and to supplement these with a fifth, 

unrelated language. In case it should prove necessary to investigate the role of proficiency, 

the initial intention was to select all five languages from the seven L1s for which ASK 

includes information on CEFR levels (see § 3.4). This meant choosing DE and EN as the two 

Germanic languages, and PL and RU as the two Slavic languages. 

Choosing a fifth language to supplement DE, EN, PL and RU was more problematic. The 

options were limited to SP, SO and VI, since CEFR data does not exist for NL, SH and SQ. Of 

these, SO and VI are completely unrelated to (and typologically very different from) both the 

target language (NO) and the four L1s already selected. Either of them could therefore play 

the role of unrelated L1 that FI played in the model study. However, Jarvis et al. (2012: 47) 

make an explicit point of the fact that speakers of their unrelated L1 “share a culture and 

educational system” with another of the L1 groups being tested, the implication being that 

cultural and educational differences might interfere with the ability to detect L1 influence 

and should therefore be controlled. The problem here is that the cultural distance between 

(speakers of) SO and VI on the one hand, and DE, EN, PL and RU on the other, is much greater 

than that between FI and DA, SW, PO and SP. For one thing, all of the latter share a common 

European culture, which is very different from the SO and VI cultures. Moreover, the SO and 

VI in Norway are refugee communities: immigration from Vietnam dates back to the time of 

the boat refugees who fled their country after the fall of Saigon in 1975, while Somalis have 

been arriving in Norway as refugees since the breakdown of law and order following the fall 

of Siad Barre in 1991. This is not the case for speakers of DE, EN, PL and RU, who tend to 

come to Norway seeking work – or in order to study – as Figure 11 shows. 

This raises the question of which factor to accord greater weight in choosing the fifth L1 

group for this study: genetic (and typological) distance, which would favour SO or VI, or 

cultural homogeneity, which would favour SP? Rather than having to make a choice here, it 

was decided to conduct a series of parallel investigations, combining the four base L1s with 

each of the other L1s in turn. This approach was facilitated using scripts to automate the 

processing and in the event it proved possible to run the analyses on a total of six different 
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groups of five L1s. Each of these “pentagroups” consisted of the four base L1s (DE, EN, PL 

and RU) plus one of the other six L1s (NL, SH, SO, SP, SQ and VI). The pentagroups will 

hereafter be denoted the “NL-group”, the “SH-group”, etc.1 

0%

20%

40%

60%

80%

100%

DE EN NL PL RU SH SO SQ VI

Work Refugee Education Other Unknown
 

Figure 11: Reasons for immigrating to Norway, by nationality2 

4.3.2 Sample size 

The next question to be addressed was how many texts to use. Jarvis et al.’s set of 446 was 

somewhat unevenly distributed across their five L1s: DA (n = 60), SW (n = 70), PO (n = 60), 

SP (n = 116) and FI (n = 140) (p. 46). As mentioned in § 3.3, ASK contains 200 texts for each 

of the L1 groups DE, EN, NL, PL, RU, SH and SP, but only slightly over 100 for each of SO, SQ 

and VI. This is quite a large difference which it was feared might compromise the results of 

the analysis, especially as it is compounded by uneven proficiency levels (see § 3.4). It was 

therefore decided to use just 100 texts from each L1 group rather than all the available texts 

(which also had the nice side-effect that figures in confusion matrices can be read as either 

absolute numbers or percentages). 

                                                 
1 The term pentagroup, meaning a group of five L1 groups, was coined for the purpose of this thesis in order to 

avoid confusion with ‘group’ used in the sense of ‘L1 group’, i.e. all learners from a particular L1 background. 
2 The EN figures represent immigration from USA and the UK; those for SH, Serbia and Montenegro; and those 

for SQ, Kosovo and Bosnia-Hercegovinia; the others represent Germany, Netherlands, Poland, Russia, Somalia 

and Vietnam. Figures for immigration from Spanish-speaking countries were not available. Source: Statistics 

Norway: Innvandringer etter innvandringsgrunn og statsborgerskap. 1990-2010. 
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4.3.3 Proficiency level 

The purpose of this study is to investigate the extent to which Norwegian L2 learners’ lexical 

choices are influenced by their L1 background. However, lexical choices can be influenced 

by a number of other factors, one of which is proficiency level. The imbalance that we see in 

the sample of interlanguage texts available in ASK is therefore a major challenge. In order to 

address this it was decided to restrict the study to texts written for the IL test.1 

 DE EN PL RU SP SO VI sum 

C1 0 0 0 0 0 0 0 0 

B2/C1 1 1 0 0 0 0 0 2 

B2 19 5 8 4 0 1 0 37 

B1/B2 27 15 24 24 7 3 1 101 

B1 42 59 41 46 54 27 44 313 

A2/B1 8 18 25 23 36 55 52 217 

A2 3 2 2 3 3 14 3 30 

Total 100 100 100 100 100 100 100 700 

Table 14: CEFR ratings for the IL test data 

The distribution of proficiency levels in this reduced sample is much more even, as shown in 

Table 14 and Figure 12 (cf. Table 12 and Figure 10). Furthermore, the variation in text 

length is also reduced [66, 216, 253, 305, 619; M = 265; SD = 71.6]. And since there are 100 

IL texts for each L1, this accords nicely with the solution to the problem of sample sizes. 

 

Figure 12: CEFR ratings for the IL test data 

                                                 
1 Jarvis et al. (2012: 47) explicitly recruited learners representing a wide range of L2 proficiency “in order to 

test the sensitivity of [their] classifier.” However, that was not a goal of the present project. 
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4.4 Data processing 

The practical procedure that was followed is described here in some detail in order that other 

researchers might follow the same steps. 

4.4.1 Querying ASK for word frequency lists 

Once it had been decided which texts to base the analysis on, it was necessary to arrive at a 

set of features comparable to the 53 1-grams used by Jarvis et al. This involved extracting 

word lists from ASK using the Corpuscle query interface. In order to replicate the study by 

Jarvis et al., separate word lists were required for each L1 group. In addition, word lists were 

generated for the corpus as a whole, both with and without the texts of the control corpus. 

The resulting word lists were downloaded as 13 text files, each of which contained a header 

followed by several thousand lines of frequency data 

4.4.2 Fixing case sensitivity in the word lists 

The word lists thus obtained were case-sensitive. Words written in different combinations of 

upper and lower case were treated as different words: for example, Jeg and jeg were treated 

as two different words, which of course they are not – they are merely orthographic variants 

of the same word. For the purpose of the current investigation, such differences were not 

relevant and case-insensitive data was required. However, while it was possible to produce 

and display case-insensitive word lists on-screen in the version of ASK available at the time 

of the study, it was not possible to download them in this form. To remedy this, the word list 

files were processed using Omnimark and at the same time tidied (by removing headers and 

relative frequencies) and trimmed to 500 lines. The resulting data was collected in an Excel 

spreadsheet. 

4.4.3 Prompt-induced words 

The next step was to remove words whose variations in frequency might be due to the topic 

of the essay, which varies considerably in ASK. Such thematic bias could skew the analysis 

if (for whatever reason) the distribution of topics were to vary across different L1 groups. 

This issue did not arise for Jarvis et al. because their texts were thematically homogeneous, 

but it was faced by Jarvis & Paquot (2012) in their study based on (the equally heterogeneous) 

texts from ICLE. They operationalized the concept of “prompt-induced words” as “all content 

words (and their families) that appeared in any of the essay prompts and were used by more 
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than 35 learners…” (p. 83) and on this basis they disqualified from their list of 200 1-grams 

words such as society, prison, science, technology, television, religion, imagination and 

dream. However, Jarvis & Paquot were using 200 features whereas the present study was to 

use approximately 53, as Jarvis et al. had done. As it turned out, these included relatively 

few prompt-induced words, and it was therefore decided not to attempt to identify and 

remove such words at this stage, but rather to bear in mind the possibility of thematic bias 

when analysing the results (see § 3.5 and § 6.4.9). 

4.4.4 Preparing word frequency data 

Frequency data was extracted for the 200 most frequent words across the learner corpus as a 

whole for each of the 1,936 texts using the ASK query interface. Once again it was necessary 

to post-process the data using Omnimark in order to merge frequency counts for different 

orthographic variants of the same word and to remove percentage values. Two further 

operations remained to be performed before this data could be used in the statistical analyses. 

First, to compensate for the fact that the texts varied quite substantially in length, the 

absolute values had to be converted to relative frequencies per 1,000 words. Second, 

columns needed to be added for the grouping variable, L1, and for CEFR level (where 

available), the latter in order to enable filtering based on proficiency should this prove 

necessary. Both of these operations were performed using Excel functions. 

4.4.5 Choosing the feature set 

The feature set used by Jarvis et al. was arrived at by pooling the 30 most frequent words in 

each of their five L1 groups. Because of overlap between groups, this resulted in a set of 53 

words. The initial intention in the present study was to do exactly the same. However, the 

ASK data turned out to be more homogeneous in terms of word choice across the various L1 

groups than the data used by Jarvis et al. Pooling the 30 most frequent words from the four 

base L1s (EN, DE, PL and RU) resulted in a set of just 40 words. Adding the 30 most frequent 

words from SP and VI made no difference: the result was the same 40 words. Including the 30 

most frequent SO words merely increased the total to 43, which was still considerably fewer 

than Jarvis et al.’s 53. Table 15 shows how increasing the number of words from each L1 

group affected the total number of features in each pentagroup. In order to arrive at numbers 

close to those used in the model study, it was decided to use the 40 most frequent words in 

each L1 group (highlighted). 
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 EN,  DE,  PL,  RU  + 

Word count NL SH SO SP SQ VI 

30 40 41 43 40 41 40 

35 50 49 52 48 51 49 

40 57 56 58 55 58 58 

42 62 60 60 58 61 60 

45 64 63 63 61 64 63 

Table 15: Number of features in each pentagroup 

The final set of data thus consisted of six sets of word frequencies, one for each pentagroup 

of L1s. Each pentagroup consisted of data from the four base L1s (EN, DE, PL and RU) plus 

one of the six additional L1s (NL, SH, SO, SP, SQ and VI). In LDA terms, there were six data 

sets, each consisting of 500 cases (i.e. texts), with 100 from each group (i.e. L1), and the 

number of features in each data set varied (as shown in the highlighted row of Table 15) 

from 55 (for the SP-group) to 58 (for the SO-, SQ- and VI-groups). By way of illustration, the 

set of features actually used in the analysis of the SP-group is shown in Figure 13. 

alle, andre, at, av, bare, barn, barna, bo, da, de, den, det, du, eller, en, er, et, 

for, fordi, fra, ha, han, har, hvis, i, ikke, jeg, kan, liker, må, man, mange, med, 

meg, men, mye, når, norge, norsk, og, også, om, på, så, seg, som, sted, til, 

være, var, veldig, venner, vi, viktig, å 

Figure 13: The 55 features used for the SP-group 

4.5 Statistical analysis 

Jarvis et al. performed three kinds of statistical analysis on their data: analysis of variance 

(ANOVA), discriminant analysis (LDA), and a post-hoc test called Student-Newman-Keuls 

(SNK). In addition, Baayen (2008: 155), in discussing the application of LDA to linguistic 

data, includes an “unsupervised exploration” of his data using principal component analysis 

(PCA). This section describes all those methods as they were performed on the data from 

ASK. It starts by discussing the assumptions that these methods make about the data and the 

extent to which the data conforms to those assumptions. This is followed by sections on 

ANOVA and PCA, four sections on LDA, and a brief concluding mention of SNK. 
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A secondary aim of this project, as previously mentioned, was to use more freely available 

tools, which meant opting for R in place of SPSS. As it turned out, the most widely used R 

package for performing discriminant analysis (MASS) does not support feature selection. 

Two other R packages (SDDA and klaR) were therefore tested in addition to MASS, and the 

three sets of results were compared with those obtained using the same tool as Jarvis et al., 

i.e. SPSS. For this reason, the LDA methods and results are reported in four parts (in this and 

the following chapter), under the headings LDA using R + MASS, LDA using R + SDDA, 

LDA using R + klaR and LDA using SPSS. 

4.5.1 Statistical assumptions 

Before subjecting the data to statistical analysis it was necessary to check that it adhered to 

the assumptions made by the relevant methods. LDA’s assumptions are discussed in § 2.2.1.5 

on page 21. Of these, the first four are clearly met by the present data: 

(1) there are more than two groups (G = 5); 

(2) there are at least two cases per group (ni = 100); 

(3) the number of discriminating variables (from 55 to 58) is less than 498, i.e. the total 

number of cases minus two (500 − 2); 

(4) the discriminating variables are measured at the interval level (the word frequencies 

range from 0 to 118.8 per 1,000 words). 

Given the nature of the data it is highly unlikely that any discriminating variable will be a 

linear combination of other variables (5), but in any case, this will be automatically checked 

by the software (see § 4.5.4, below). That leaves two assumptions: equal covariance matrices 

(6) and normally distributed data (7). These are the same assumptions that ANOVA makes, 

along with the (usual) further assumption of independence of observations. 

The assumption of approximately equal covariance matrices for each group could unfortun-

ately not be tested within the scope of the present study. According to Kabacoff (2011), this 

assumption is usually tested with Box’s M, “but that test is very sensitive to violations of 

normality, leading to rejection in most typical cases.” Following Larson-Hall (2010: 273) the 

assumption of normal distribution was tested for a selection of features by inspecting box 

plots, density curves and Q-Q plots. Figure 14 shows the results for the overall most frequent 

word, det, and for two words that are discussed in Chapter  6, en and skal. 
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Figure 14: Overall distribution of $det, $en and $skal 

These plots show the distribution to be at best only approximately normal and at worst 

considerably non-normal, and this is confirmed by Shapiro-Wilk tests:1 

$det:  W = 0.9836, p = 2.006e-05 
$en:   W = 0.9234, p = 2.832e-15 
$skal: W = 0.6341, p < 2.2e-16) 

                                                 
1 In order to avoid confusion with the words on which they are based, features are hereafter referred to by 

prefixing the relevant word with the $ symbol. 
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Field et al. (2012: 183) point out that when the analysis involves comparing groups, “what’s 

important is not the overall distribution but the distribution in each group.” Unfortunately it 

was not possible to test group-wise distribution within the scope of the present project; in 

any case, it was unlikely to be completely normal for every variable. Fortunately, though, the 

deviations from normality tend to be of the same kind (i.e. positively skewed). This – and the 

fact that the samples are all of the same size – serve to counterbalance somewhat the lack of 

normality (Bård Uri Jensen, pc 2012-11-05). 

Some statisticians (Pallant 2001; Weinberg & Abramovitz 2002) assert that if group sizes are 

30 or more there is no reason to worry about meeting normality requirements. Larson-Hall & 

Herrington (2009: 376-377) are sceptical to this claim, but point out that “small deviations 

from normality in the distribution are fairly robust to Type I errors (rejecting the null 

hypothesis when in reality it is true, and there actually is no difference between groups).” 

The real danger is Type 2 errors, in which the null hypothesis is accepted when in reality it is 

not true and there actually is a difference between groups. This is reassuring for the present 

study, since it means that observed group differences can be trusted, but for in future work it 

would be wise to heed Larson-Hall and Herrington’s advice to make use of the more modern 

method of robust statistics (Wilcox 2010) and the techniques of bootstrapping and trimmed 

means. This would provide even more power to detect group differences. 

The question of statistical assumptions was discussed with Jarvis, who commented: 

The question of whether your data are normally distributed would be a big one for me 

if the purpose of your study were to analyze whether different groups are significantly 

different from one another. However, your purpose in using ANOVA and DA is simply 

to construct an optimal model of the similarities within and differences across groups 

in terms of their word choices. Your “real” results are the classification accuracies 

arrived at through applying the model to the test cases. The application of the model 

to the test cases does not involve any inferential statistical tests at all... At worst, a 

statistician might argue that your violation of assumptions has resulted in a less than 

optimal model (which would mean that your classification accuracies are lower than 

they have the potential to be), but there are no Type I errors here to worry about as 

long as your cross-validation with test cases was sufficiently rigorous (Jarvis, pc 

2012-11-07). 
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4.5.2 Analysis of variance 

Following Jarvis et al. a series of one-way ANOVAs was performed for each pentagroup 

prior to performing the multivariate analysis. The purpose of an ANOVA is to determine 

whether or not the means of several groups are equal, based on the observed variance within 

each group. The tests were performed using R with the relative frequencies of each feature in 

turn as one variable and the learners’ L1 as the other. Figure 15 shows the output summary 

for the word skal for the NL-group: 

> summary(aov(skal ~ L1)) 
             Df Sum Sq Mean Sq F value  Pr(>F) 
myData$L1     4   1008  251.95   8.667 9.1e-07 *** 
Residuals   495  14389   29.07 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Figure 15: R code and output for a one-way ANOVA 

The important things to note here are the high value of the F statistic (8.667), and the low 

probability (9.1e-07) of such a value occurring by chance. This means that the frequency of 

occurrence of the word skal varies statistically across the five L1 groups DE, EN, PL, RU and 

NL, and could potentially be used to distinguish one or more of these groups from the others. 

The full ANOVA results are presented in the next chapter (see p.65ff) and the ability of 

individual features such as the word skal to discriminate between L1 groups is discussed in 

§ 6.3. 

4.5.3 Principal components analysis 

Following Baayen (2008: 154ff) the multivariate analysis commenced with an unsupervised 

exploration of the data was performed using a clustering technique known as principal 

component analysis (PCA). Unsupervised explorations are so-called because they make no a 

priori assumptions about the structure of the data, i.e. they do not start out from a known set 

of groupings (such as L1 membership); instead, they attempt to find structure in the data 

unaided. A pca object was created using the R function prcomp() as shown in Figure 16. For 

the data set that included the Spanish data (the SP-group), this resulted in 58 principal 

components, one for each of the 55 features in the data set. In contrast to Baayen’s data, in 

which the first eight principal components capture almost 80% of the variance, the SP-group 

data required as many as 32 PCs to capture the same amount. What this shows is that most of 

the features in the ASK data contribute only a small amount of discriminatory power. 
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    # generate pca object 
    numFeatures = ncol(myData) -1 
    myData.pca = prcomp(myData[, 1:numFeatures], center=T, scale=T) 

summary(myData.pca) 
# 
# create 3x3 scatter plot matrix 

    library(lattice) 
    super.sym = trellis.par.get("superpose.symbol") 
    splom(~myData.x[ ,1:3], groups = myData$L1, 
      panel = panel.superpose, 
      key=list( 
        title=paste(c(numCases, "texts,", numClasses," L1s,",  
                      numFeatures, "1-grams"), collapse=" "), 
        text=list(levels(myData$L1)), 
        points = list(pch = super.sym$pch[1:numClasses], 
                      col = super.sym$col[1:numClasses]) 
        ) 

  ) 

Figure 16: R code for the principal components analysis 

To explore the structure found in the data, a scatter plot matrix was generated using the 

function splom (Figure 17). Because of the large number of data points (500), the matrix for 

the first 3 principal components (PCs) is not very easy to interpret, but some group separation 

is discernible, e.g. of EN, with s tending toward the South-West in row 2, which indicates 

negative values for PC2 and positive values for PC1 and PC3, and of RU, with s tending 

towards the West in column 1 (negative values for PC1). The tendency for certain L1 groups 

to cluster in certain areas strongly suggested that there was some kind of structure in this data 
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Figure 17: PCA scatter plot matrix for EN, DE, PL, RU + Spanish 
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which could help distinguish between different L1s. To discover what this structure was, the 

next step was to harness the predictive and descriptive power of LDA. 

4.5.4 LDA using R + MASS 

The first attempt to perform LDA follows Baayen in using the lda() function from the R 

package MASS, but with a slightly different approach. In Baayen’s example there was too 

much correlation in the data for lda() to work properly. He therefore performed his analysis 

using principal components, which are uncorrelated by definition. In the case of the ASK 

data, there is no such problem: creating an lda object using the code shown below did not 

result in any warnings about collinearity, so it was possible to base the analysis directly on 

the features themselves rather than the principal components, and then to plot the results: 

    myData.lda = lda(myData[ ,1:numFeatures], myData$L1) 
plot(myData.lda) 

Because there are five groupings in the data, one for each of the five L1s (G = 5), a total of 

four (G − 1) discriminant functions are created; referred to here as LD1, LD2, LD3 and LD4. 

In Figure 18 LD1 is plotted against LD2, producing a clear, albeit partial, separation of DE 

(to the North), RU (West), EN (East) and PL (South), but less separation for SP.1 
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Figure 18: LDA scatter plot for the SP-group (LD1 and LD2) 

                                                 
1 A matrix plot of all four LDs is given in  Appendix D. 
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Using the function predict() this model can be queried for the probability with which it 

assigns texts to L1s (the results are rounded to two decimals for convenience): 

    round(predict(myData.lda, myData[ , 1:numFeatures])$posterior, 2) 

Partial results are shown in Table 16, in which an extra column has been inserted to show the 

actual L1. Shaded cells highlight the L1 that is assigned the highest probability for each text. 

The L1 is correctly predicted for many texts, with probabilities that range from 36% (s1005, 

PL) to 100% (s0011, EN). However several L1s are incorrectly predicted, some of them with a 

very high degree of (misplaced) confidence, e.g. s0009 (VI), predicted EN with 87% certainty. 

Probabilities Actual 
L1 Text DE EN PL RU VI 

VI s0005 0.00 0.01 0.01 0.00 0.97 

VI s0007 0.01 0.02 0.68 0.02 0.26 

VI s0008 0.00 0.06 0.13 0.00 0.80 

VI s0009 0.01 0.87 0.11 0.00 0.01 

EN s0010 0.20 0.73 0.03 0.01 0.03 

EN s0011 0.00 1.00 0.00 0.00 0.00 

 ...      

DE s1000 0.82 0.07 0.07 0.01 0.04 

DE s1001 0.30 0.01 0.02 0.47 0.19 

DE s1002 0.96 0.04 0.00 0.00 0.00 

PL s1005 0.11 0.20 0.36 0.07 0.27 

DE s1006 0.89 0.01 0.04 0.05 0.02 

DE s1007 0.92 0.08 0.00 0.00 0.00 

Table 16: Probability table generated by lda() 

These results may not seem very impressive, but it should be remembered that the purpose of 

the exercise is not to develop a system for classifying learner texts automatically, but rather 

to discover L1-related grouping effects and, from them, to identify good L1 predictors that 

can be subjected to contrastive analysis. Provided the results are statistical, that goal will have 

been achieved. However, even these results seriously overfit the data, as Baayen points out: 

[The analysis] has done its utmost to find a representation of the data that separates 

the groups as best as possible. This is fine as a solution for this particular sample of 

texts, but it does not guarantee that prediction will be accurate for unseen [texts] as 

well (Baayen 2008: 157). 
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Following Baayen’s example, a multivariate analysis of variance (MANOVA) was performed: 

    myData.manova = manova( as.matrix(myData[,1:numFeatures]) ~ L1, myData ) 
    summary.manova(myData.manova) 

The summary of the MANOVA results using the default Pillai-Bartlett statistic (Table 17) 

provides very strong evidence that the mean vectors for the five L1s do indeed differ, which 

means that the discriminant analysis is finding statistical differences between them. 

 Df Pillai approx F num Df den Df Pr(>F)  

L1 4 1.4301 4.231 232 1764 < 2.2e-16 *** 

Residuals 495       

Table 17: Summary of MANOVA test 

To gain a more precise impression of the extent to which these results might generalize, a 

LOOCV was performed using the option built in to the lda() function. The results of this 

analysis are presented in the next chapter (see p.68 ff). A shortcoming of the lda() function 

in the MASS package is that it does not support feature selection, which leads to a risk that 

the resulting statistical model will overfit the data and give an overly optimistic view of the 

model’s accuracy. To circumvent this problem, two R packages that do offer feature 

selection were tested, as described in the following sections. 

4.5.5 LDA using R + SDDA 

SDDA is an R package that offers a “fast algorithm for building multivariate classifiers” 

using stepwise diagonal discriminant analysis (Clifford 2010). It was chosen for inclusion in 

this project because of its support for stepwise feature selection, despite the fact that it 

employs a variant of discriminant analysis called (linear) diagonal discriminant analysis. 

Stepwise feature selection is performed by adding the variable “that most decreases the 

(leave-one-out) cross-validated error rate at each step.” The addition of features stops “when 

the cross-validated error rate cannot be decreased” – a parameter over which the user has no 

control. Feature selection cannot be embedded in the folds of the cross-validation. 

SDDA was run on the 40-word data sets for the six pentagroups using the sdda() function 

for feature selection and the xvalidate() function for LOOCV. (SDDA has the option of 

doing 10-fold CV but tests showed that the results of such validation varied quite widely.) 

The results of the analysis are presented in the next chapter (see p.69 ff). 
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4.5.6 LDA using R + klaR 

klaR is an R package that provides “miscellaneous functions for classification and 

visualization” (Ligges 2012), including stepwise classification. Although klaR does not 

support embedded feature selection “out of the box”, the feature selection functionality is 

available in a form that permits embedding to be implemented relatively easily in an R 

script. klaR’s stepclass() function allows the user to set a threshold for the “improvement 

of performance measure desired to include or exclude any variable.” The default value is 

0.05. However it was found that this value resulted in the selection of very few features, so it 

was set to the much lower value of 0.001. stepclass() was then used in conjunction with 

lda() on the six data sets using 10-fold CV. Interleaved partitioning was performed on data 

sets that had been sorted by L1, in order to ensure an even distribution of L1 groups in all the 

training sets and test sets. The results of the analysis are presented in the next chapter (see 

p.71 ff). 

4.5.7 LDA using SPSS 

In order for the results of this study to be maximally comparable with those of Jarvis et al., a 

further analysis of the six data sets was performed using SPSS (version 20). In the time 

available, it was not possible to implement cross-validation with embedded feature selection, 

so ‘up-front’ feature selection was used instead (that is, the same set of features was used in 

each fold of the cross-validation). Also, LOOCV was used instead of 10-fold CV. Otherwise, 

the same parameters were used as in the model study, i.e. stepwise method using Wilks’ 

lambda, F to enter p < 0.05, F to remove p > 0.10, and all available statistics were output. 

(Screenshots showing the exact settings are given in  Appendix E and the results of the 

analysis are presented in the next chapter, see p.74 ff). 

4.5.8 Post-hoc tests 

Following their discriminant analysis, Jarvis et al. subjected the features chosen during 

feature selection to post-hoc analysis using the Student-Newman-Keul test with the goal of 

pinpointing exactly how the selected features served to separate different groups. However, 

doubt has been cast on the reliability of this test (Hsu 1966; Seaman et al. 1991), and for that 

reason it has not been implemented in R. In the present project Tukey HSD tests were 

therefore used instead. The details of how this was done and how to interpret the results are 

presented in § 6.3. 
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5. Findings 

The purpose of the tests and analyses described in the preceding chapter was to discover 

whether the lexical choices of language learners could be used to distinguish between 

learners from different L1 backgrounds and, if so, which of those choices provided the most 

discriminating power. This chapter presents the findings of those investigations and sets the 

scene for the theoretical discussion in the next chapter. 

5.1 Analysis of variance 

The analysis of variance (§ 4.5.2) produced F statistics showing whether the mean frequency 

of each feature differed statistically across L1 groups. Table 18 and Table 19 show the 

results of the six sets of analyses in order of decreasing value of F for each group of learners. 

Only words whose mean frequencies differ statistically at the level of p < 0.001 across the 

five L1s are included. For the SO-group, 35 words were statistical at this level. The figures 

for the other pentagroups are SP 28, VI 31, NL 35, SH 32 and SQ 33. (For a complete list of F 

values for all six sets of features, see the file anova.xls). The words sted ‘place’ and bo ‘live’ 

exhibit the greatest degree of variability in every one of the six pentagroups. Other words 

that are among the ten most variable in all six pentagroups are eller ‘or’, er ‘is/are’, en and et 

‘a’ and viktig ‘important’. In all, 29 words exhibited a degree of variability that was statistical 

at p < 0.001 in at least five of the six pentagroups. They are listed in Figure 19, glossed in 

 Appendix B, and discussed further in Chapter  6. 

sted, bo, et, viktig, en, eller, er, og, man, norge, jeg, å, den, var, barna, også, 

liker, bare, i, norsk, ikke, veldig, må, da, barn, ha, andre, skal, hvis 

Figure 19: L1 predictor candidates (ANOVA) 
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DE EN PL RU + Somali DE EN PL RU + Spanish DE EN PL RU + Vietnamese 

Feature F value p Feature F value p Feature F value p 

sted 33.460 < 2e-16 sted 26.760 < 2e-16 sted 31.040 < 2e-16

bo 23.080 < 2e-16 bo 19.360 8.21E-15 bo 20.090 2.39E-15

et 18.320 4.73E-14 å 15.750 3.82E-12 viktig 16.390 1.29E-12

jeg 16.520 1.03E-12 et 15.690 4.27E-12 en 15.360 7.48E-12

viktig 16.510 1.04E-12 viktig 13.020 4.34E-10 et 14.870 1.75E-11

er 15.050 1.27E-11 en 12.810 6.21E-10 eller 13.600 1.59E-10

eller 14.480 3.46E-11 eller 11.760 3.90E-09 er 13.590 1.62E-10

en 13.540 1.75E-10 er 10.590 3.09E-08 og 11.810 3.61E-09

fordi 12.370 1.36E-09 og 9.811 1.21E-07 også 9.475 2.18E-07

man 11.430 6.96E-09 man 9.506 2.07E-07 norge 9.226 3.39E-07

skal 10.950 1.62E-08 norge 9.154 3.85E-07 jeg 8.94 5.62E-07

bare 10.600 2.99E-08 var 8.351 1.59E-06 den 8.786 7.38E-07

var 9.699 1.47E-07 liker 8.221 2.00E-06 man 8.506 1.21E-06

barna 9.177 3.70E-07 barna 7.535 6.74E-06 skal 7.772 4.43E-06

og 8.866 6.40E-07 barn 7.507 7.09E-06 det 7.504 7.13E-06

norge 8.270 1.84E-06 den 6.674 3.09E-05 bare 7.252 1.11E-05

den 7.786 4.32E-06 da 6.555 3.81E-05 i 7.153 1.32E-05

om 7.147 1.34E-05 ikke 6.165 7.57E-05 barna 7.045 1.60E-05

også 6.923 1.99E-05 bare 6.157 7.69E-05 var 6.998 1.74E-05

å 6.855 2.24E-05 også 6.109 8.37E-05 å 6.840 2.30E-05

det 6.717 2.86E-05 i 5.900 0.000121 ikke 6.642 3.27E-05

barn 6.583 3.62E-05 veldig 5.864 0.000129 liker 6.571 3.70E-05

veldig 6.186 7.30E-05 jeg 5.720 0.000166 må 6.341 5.55E-05

som 6.119 8.22E-05 norsk 5.711 0.000169 veldig 6.276 6.23E-05

være 6.076 8.86E-05 må 5.663 0.000184 norsk 5.943 0.000112

norsk 6.048 9.31E-05 ha 5.306 0.000343 at 5.866 0.000128

liker 5.940 0.000113 andre 5.213 0.000404 ha 5.571 0.000215

ikke 5.823 0.000138 hvis 4.820 0.000803 da 5.518 0.000237

ha 5.681 0.000178    barn 5.506 0.000242

i 5.570 0.000216    hvis 5.207 0.000408

mye 5.565 0.000218    andre 4.792 0.000843

må 5.506 0.000242      

da 5.456 0.000264      

på 5.366 0.000309      

andre 5.361 0.000312       

Table 18: One-way ANOVAs of features (SO, SP, VI) 
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DE EN PL RU + Dutch DE EN PL RU + Serbo-Croat DE EN PL RU + Albanian 

Feature F value p Feature F value p Feature F value p 

sted 27.74 < 2e-16 sted 32.01 < 2e-16 sted 29.75 < 2e-16

bo 16.02 2.4E-12 bo 18.42 4.02E-14 bo 25.14 < 2e-16

en 15.82 3.42E-12 et 18.14 6.45E-14 et 16.11 2.05E-12

et 15.43 6.67E-12 en 15.65 4.58E-12 viktig 15.43 6.67E-12

viktig 13.18 3.29E-10 viktig 12.4 1.28E-09 en 12.94 4.97E-10

er 12.38 1.32E-09 eller 12.31 1.50E-09 eller 12.79 6.45E-10

eller 12.3 1.53E-09 den 12.17 1.92E-09 skal 11.25 9.64E-09

og 9.899 1.03E-07 er 11.61 5.11E-09 man 11.14 1.17E-08

man 9.428 2.37E-07 skal 10 8.63E-08 jeg 10.94 1.66E-08

norsk 9.27 3.14E-07 og 9.633 1.65E-07 er 10.9 1.76E-08

norge 8.928 5.74E-07 man 9.56 1.88E-07 var 10.7 2.51E-08

skal 8.667 9.10E-07 å 9.316 2.89E-07 norge 10.54 3.34E-08

den 7.821 4.06E-06 norge 9.026 4.83E-07 og 10.32 4.93E-08

i 7.395 8.64E-06 barna 8.599 1.03E-06 kan 8.881 6.24E-07

liker 7.273 1.07E-05 ikke 7.678 5.24E-06 men 8.326 1.67E-06

å 7.257 1.10E-05 veldig 7.601 5.99E-06 liker 8.325 1.67E-06

også 7.102 1.45E-05 vi 7.546 6.61E-06 i 8.111 2.43E-06

barna 6.52 4.05E-05 også 7.363 9.14E-06 også 6.864 2.21E-05

var 6.475 4.39E-05 må 7.19 1.24E-05 ha 6.661 3.16E-05

ikke 6.314 5.83E-05 var 7.022 1.67E-05 barna 6.481 4.34E-05

må 6.162 7.62E-05 liker 6.746 2.72E-05 å 6.443 4.64E-05

bare 6.141 7.91E-05 da 6.502 4.18E-05 da 6.268 6.32E-05

som 5.93 1.15E-04 norsk 6.458 4.52E-05 ikke 6.118 8.23E-05

jeg 5.707 1.70E-04 om 6.346 5.51E-05 den 6.064 9.06E-05

da 5.536 2.29E-04 jeg 6.089 8.66E-05 bare 5.965 0.000108

om 5.483 2.52E-04 i 5.893 0.000122 fordi 5.904 0.00012

mer 5.479 0.000253 andre 5.876 0.000126 barn 5.867 0.000128

ha 5.459 0.000262 ha 5.676 0.000179 veldig 5.8 0.000144

barn 5.304 0.000344 hvis 5.317 0.000337 må 5.672 0.00018

veldig 5.267 0.000368 bare 5.311 0.00034 hvis 5.658 0.000185

mange 5.223 0.000397 barn 4.845 0.000769 norsk 5.401 0.000291

hvis 5.181 0.000427 at 4.755 0.0009 at 4.955 0.000635

venner 4.775 0.000868      andre 4.796 0.000838

kan 4.706 0.000980           

andre 4.7 0.000990      

Table 19: One-way ANOVAs of features (NL, SH, SQ) 
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5.2 Discriminant analysis 

Discriminant analysis was performed using four different approaches: R + MASS (with 

LOOCV and no feature selection), R + SDDA (with up-front feature selection and 10-fold 

CV), R + klaR (10-fold CV and embedded feature selection) and SPSS (up-front feature 

selection and LOOCV). The results of these analyses are presented in the following sections. 

5.2.1 LDA using R + MASS 

Table 20 shows confusion matrices generated by the lda() function in R’s MASS package. 

There is one confusion matrix per pentagroup and the number of correctly predicted L1s for 

each set of actual L1 texts is shown in bold. In the SO-group, for example, 56 of the 100 DE 

texts were correctly predicted. 10 were mistakenly identified as EN, 10 as PL, 15 as RU and 9 

as SO. Since there were exactly 100 texts from each L1 group, these numbers translate 

directly into percentages. Thus, DE was correctly predicted 56% of the time in the SO-group, 

49% in the SP-group, 55% in the VI-group, etc. 

   Predicted L1   Predicted L1   Predicted L1 

   DE EN PL RU SO   DE EN PL RU SP   DE EN PL RU VI 

DE 56 10 10 15 9 DE 49 11 15 16 9 DE 55 9 15 16 5 

EN 17 56 15 6 6 EN 17 47 11 7 18 EN 18 53 13 6 10 

PL 13 10 53 12 12 PL 12 8 58 11 11 PL 14 6 50 11 19 

RU 18 4 10 62 6 RU 14 5 14 60 7 RU 13 3 11 60 13 A
ct

ua
l L

1 

SO 6 10 13 15 56 SP 12 19 16 14 39 VI 12 9 19 12 48 

 Accuracy 56.6 %   p = 2.67e-72 Accuracy 50.6 %   p = 2.48e-52 Accuracy 53.2 %   p = 1.34e-60 

 A.  DE EN PL RU + Somali B.  DE EN PL RU + Spanish C.  DE EN PL RU + Vietnamese 

   Predicted L1   Predicted L1   Predicted L1 

   DE EN PL RU NL   DE EN PL RU SH   DE EN PL RU SQ 

DE 41 10 14 15 20 DE 56 8 13 16 7 DE 56 9 14 14 7 

EN 15 51 14 9 11 EN 19 53 14 8 6 EN 18 50 16 7 9 

PL 13 5 63 10 9 PL 17 6 47 11 19 PL 15 8 57 6 14 

RU 12 4 15 65 4 RU 15 4 9 61 11 RU 8 4 12 62 14 A
ct

ua
l L

1 

NL 18 13 10 4 55 SH 8 8 22 13 49 SQ 9 10 11 14 56 

 Accuracy 55.0 %   p = 1.14e-66 Accuracy 53.2 %   p = 1.34e-60 Accuracy 56.2 %   p = 7.18e-71 

 D.  DE EN PL RU + Dutch E.  DE EN PL RU + Serbo-Croat F.  DE EN PL RU + Albanian 

Table 20: Confusion matrices (MASS) 
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Figure 20: Overall accuracy rates (MASS) 

The overall prediction accuracy in these six analyses, plotted in Figure 20, ranged from a 

low of 50.6% in the SP-group to highs of 56.2 in the SQ-group and 56.6% in the SO-group. 

These success rates might seem low, but as the p-values in Table 20 indicate, they are all 

statistical: the probability of attaining such results by chance is tantamount to zero. 

5.2.2 LDDA using R + SDDA 

Table 21 shows confusion matrices generated using the R package SDDA with stepwise 

feature selection. Comparison with the results from MASS (see Table 20 on page 68) shows 

a substantially lower degree of accuracy. Whereas the average accuracy across all six 

pentagroups using MASS was 54.1%, the average accuracy using SDDA is just 42.3%. 

Since the data were identical, there are two possible explanations. The first is that the 

algorithm used by SDDA is less well-suited to this set of data than the plain discriminant 

analysis algorithm implemented in MASS. A more likely explanation, however, is the tiny 

number of features selected by SDDA’s feature selection algorithm. Table 22 shows which 

features (bare, den, eller, etc.) were selected in each of the six analyses. In the case of the 

NL-group, a total of nine features was selected (eller, en, i, liker, mer, og, også, skal and sted). 

For the SP-group, a different set of nine features was selected (with some overlap), while 

eight features were selected for the SH-, SO- and SQ-groups, and a mere seven for the VI-group. 

It is unclear why SDDA should select so few features. According to the documentation, 

variables are added to the model until “the cross-validated error rate cannot be decreased” 
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   Predicted L1   Predicted L1   Predicted L1 

   DE EN PL RU SO   DE EN PL RU SP   DE EN PL RU VI 

DE 53 2 11 24 10 DE 46 5 21 20 8 DE 52 2 18 14 14 

EN 23 47 7 13 10 EN 23 28 13 15 21 EN 23 46 9 10 12 

PL 20 7 32 23 18 PL 17 3 51 20 9 PL 14 5 32 20 29 

RU 16 2 16 44 22 RU 14 4 19 53 10 RU 12 2 14 51 21 A
ct

ua
l L

1 

SO 11 10 17 20 42 SP 14 23 18 17 28 VI 15 10 25 24 26 

 Accuracy 43.6 %   p = 5.63e-33 Accuracy 41.2 %   p = 2.53e-27 Accuracy 41.4 %   p = 8.94e-28 

 A.  DE EN PL RU + Somali B.  DE EN PL RU + Spanish C.  DE EN PL RU + Vietnamese 

   Predicted L1   Predicted L1   Predicted L1 

   DE EN PL RU NL   DE EN PL RU SH   DE EN PL RU SQ 

DE 53 2 19 15 11 DE 53 2 17 21 7 DE 49 4 15 17 15 

EN 23 32 18 14 13 EN 26 38 8 14 14 EN 23 44 13 13 7 

PL 15 1 48 26 10 PL 13 3 36 22 26 PL 14 6 33 33 14 

RU 15 3 22 57 3 RU 14 4 18 49 15 RU 19 4 18 46 13 A
ct

ua
l L

1 

NL 19 16 18 14 33 SH 15 11 27 14 33 SQ 20 9 11 25 35 

 Accuracy 44.6 %  p = 1.76e-35 Accuracy 41.8 %  p = 1.09e-28 Accuracy 41.4 %  p = 8.94e-28 

 D.  DE EN PL RU + Dutch E.  DE EN PL RU + Serbo-Croat F.  DE EN PL RU + Albanian 

Table 21: Confusion matrices (SDDA) 

– in other words, as long as the model’s accuracy continues to improve. Exactly how this 

works can only be gleaned from the source code which is written in C and not easily 

accessible to the present researcher. Understanding why SDDA contents itself with so few 

variables is therefore a task that must be left to future research. 

  bare den eller en er fra i jeg liker men mer norge og også om skal som sted viktig å #

NL     ● ●     ●   ●   ●   ● ●   ●   ●    9

SH   ● ● ●               ● ● ●   ●   ●    8

SO ●   ● ●       ●             ●   ● ● ●  8

SP     ● ● ● ●     ●       ● ●       ●   ● 9

SQ     ● ●     ●     ●     ●     ●   ● ●  8

VI     ● ●         ●       ● ●       ● ●  7

totals: 1 1 6 6 1 1 2 1 3 1 1 1 5 4 1 3 1 6 3 1   

Table 22: Features selected by SDDA 
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While SDDA is of less interest than MASS in terms of its predictive powers, its ability to 

identify features as being good L1 predictors is useful. From Table 22 we observe that three 

features were picked out in each of the six analyses: eller, en and sted. In addition, og was 

picked in five passes, også in four, and liker, skal and viktig in three passes. The total of 20 

features, listed in Figure 21, will be revisited in the next chapter. 

eller, en, sted; og; også; liker, skal, viktig; i; bare, den, er, fra, jeg, men, 

mer, norge, om, som, å 

Figure 21: L1 predictor candidates (SDDA) 

5.2.3 LDA using R + klaR 

Table 23 shows confusion matrices resulting from the analysis in which the R package klaR 

was used to perform stepwise feature selection which was embedded within the folds of a 

10-fold cross-validation. The overall predictive accuracy was on a par with SDDA and is 

further discussed in § 6.1.1. 

   Predicted L1   Predicted L1   Predicted L1 

   DE EN PL RU SO   DE EN PL RU SP   DE EN PL RU VI 

DE 42 5 20 22 11 DE 40 5 21 24 10 DE 47 6 19 16 12 

EN 20 46 13 10 11 EN 22 36 9 14 19 EN 23 44 9 11 13 

PL 17 4 37 29 13 PL 23 3 41 22 11 PL 13 5 45 23 14 

RU 20 4 13 52 11 RU 19 4 13 54 10 RU 15 2 20 49 14 A
ct

ua
l L

1 

SO 11 8 14 20 47 SP 14 25 18 20 23 VI 17 9 15 20 39 

 Accuracy 44.8 %   p = 5.43e-36 Accuracy 38.8 %   p = 3.50e-22 Accuracy 44.8 %   p = 5.43e-36 

 A.  DE EN PL RU + Somali B.  DE EN PL RU + Spanish C.  DE EN PL RU + Vietnamese 

   Predicted L1   Predicted L1   Predicted L1 

   DE EN PL RU NL   DE EN PL RU SH   DE EN PL RU SQ 

DE 36 9 28 15 12 DE 50 9 18 12 11 DE 48 4 22 17 9 

EN 21 42 13 12 12 EN 22 43 17 9 9 EN 16 47 19 10 8 

PL 16 6 43 27 8 PL 20 3 29 23 25 PL 15 6 36 29 14 

RU 10 0 16 61 13 RU 19 6 12 51 12 RU 13 2 21 48 16 A
ct

ua
l L

1 

NL 19 14 18 15 34 SH 16 11 22 16 35 SQ 12 8 13 27 40 

 Accuracy 43.2 %   p = 5.35e-32 Accuracy 41.6 %   p = 3.14e-28 Accuracy 43.8 %   p = 1.81e-33 

 D.  DE EN PL RU + Dutch E.  DE EN PL RU + Serbo-Croat F.  DE EN PL RU + Albanian 

Table 23: Confusion matrices (klaR) 
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Folds Word NL SH SO SP SQ VI 5grps    Folds Word NL SH SO SP SQ VI 5grps

57 viktig 10 10 10 9 10 8 6x  9 mange 4 2 – 1 – 2 4x 

48 sted 6 8 9 5 10 10 6x  8 er 1 1 3 2 – 1 5x 

43 eller 6 8 7 5 8 9 6x  8 norge 1 2 3 1 – 1 5x 

30 en 5 4 4 5 6 6 6x  8 du – 2 1 – 2 3 4x 

29 skal 6 5 4 – 9 5 5x  8 så – 2 2 1 – 3 4x 

28 og 6 2 4 1 6 9 6x  7 for. 2 – – 1 3 1 4x 

24 et 7 2 4 5 3 3 6x  6 når – 2 – 2 1 1 4x 

22 barna 6 4 4 2 4 2 6x  6 også 1 2 – 1 – 2 4x 

21 man 7 4 – 3 4 3 5x  6 være 2 – 2 – 1 1 4x 

19 bo 3 3 2 6 2 3 6x  6 at 1 – – 3 – 2 3x 

19 kan 3 2 3 4 5 2 6x  6 seg 3 – 1 – 2 – 3x 

17 andre 2 1 6 3 4 1 6x  6 som 3 – 2 – 1 – 3x 

17 vi 4 7 1 1 1 3 6x  6 var 1 1 – – 4 – 3x 

17 norsk 6 4 1 3 – 3 5x  6 det – – – 1 – 5 2x 

16 må 3 5 1 3 1 3 6x  6 mer 6 – – – – – 1x 

16 i 4 2 1 – 4 5 5x  5 alle 2 1 1 – – 1 4x 

15 fordi – – 8 1 5 1 4x  5 de – 2 1 1 1 – 4x 

14 å – 3 3 8 – – 3x  5 han 1 1 – 1 2 – 4x 

13 på 3 1 3 2 3 1 6x  5 til 1 2 – 1 1 – 4x 

13 fra – 2 2 3 2 4 5x  5 venner 1 – – 1 1 2 4x 

12 jeg 1 1 3 – 2 5 5x  5 veldig – 1 – – – 4 2x 

12 men 1 – 3 1 4 3 5x  4 hvis – – – 1 2 1 3x 

12 mye 2 2 7 – 1 – 4x  3 med – 1 – 2 – – 2x 

11 ikke 3 – 2 1 4 1 5x  3 min – – 1 – – 2 2x 

11 barn 1 – 2 5 3 – 4x  3 hadde – – – – 3 – 1x 

11 om – 2 3 – 2 4 4x  2 da – – 1 1 – – 2x 

10 ha 1 2 4 1 1 1 6x  2 noen – – – – – 2 1x 

10 den 1 1 4 2 – 2 5x  1 har – 1 – – – – 1x 

9 av 2 – 2 2 1 2 5x  1 hun – – – – 1 – 1x 

9 bare 1 2 2 – 3 1 5x  1 meg – – – 1 – – 1x 

9 liker 1 1 2 – 3 2 5x  1 mennesker 1 – – – – – 1x 

            43 41 41 41 42 45  

Table 24: Features selected by klaR 
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Of more interest is the set of features selected, both overall and for each group of five L1s, 

which is summarized in Table 24. The first column in this table gives the total number of 

folds in which each feature was selected. There was a total of 60 folds altogether (10 per 

pentagroup). As the table shows, the feature most often selected was the word viktig, which 

was included in the model in 57 of the 60 folds. It was followed by sted, which was included 

48 times: 6 times in the NL-group (i.e. DE, EN, PL, RU + NL), 8 times in the SH-group, 9 times 

in the SO-group, etc. Both of these features were chosen in all 6 pentagroups, as shown in the 

right-hand column (6x). The 28 features selected in ten or more folds (Figure 22) will be 

further discussed in the next chapter. 

viktig, sted, eller, en, skal, og, et, barna, man, bo, kan, andre, vi, norsk, må, 

i, fordi, å, på, fra, jeg, men, mye, ikke, barn, om, ha, den 

Figure 22: L1 predictor candidates (klaR) 

   Predicted L1   Predicted L1   Predicted L1 

   DE EN PL RU SO   DE EN PL RU SP   DE EN PL RU VI 

DE 55 8 10 18 9 DE 51 8 13 15 13 DE 54 7 11 19 9 

EN 17 53 18 5 7 EN 14 43 16 10 17 EN 18 50 16 8 8 

PL 17 6 58 8 11 PL 8 8 62 10 12 PL 13 5 51 14 17 

RU 10 6 11 63 10 RU 15 4 10 64 7 RU 10 4 12 60 14 A
ct

ua
l L

1 

SO 7 8 11 15 59 SP 13 21 16 14 36 VI 12 8 15 11 54 

 Accuracy 57.6 %   p = 5.08E-76 Accuracy 51.2 %   p = 2.65E-54 Accuracy 53.8 %   p = 1.08E-62 

 A.  DE EN PL RU + Somali B.  DE EN PL RU + Spanish C.  DE EN PL RU + Vietnamese 

   Predicted L1   Predicted L1   Predicted L1 

   DE EN PL RU NL   DE EN PL RU SH   DE EN PL RU SQ 

DE 43 11 15 13 18 DE 55 8 15 18 4 DE 61 5 14 13 7 

EN 16 51 14 9 10 EN 19 53 17 8 3 EN 15 51 19 8 7 

PL 11 6 57 14 12 PL 14 7 52 12 15 PL 16 7 51 12 14 

RU 10 2 18 66 4 RU 15 5 11 63 6 RU 9 4 14 63 10 A
ct

ua
l L

1 

NL 17 13 11 3 56 SH 9 8 19 12 52 SQ 7 7 12 13 61 

 Accuracy 54.6 %   p = 2.14E-65 Accuracy 55.0 %   p = 9.13E-67 Accuracy 57.4 %   p = 2.75E-75 

 D.  DE EN PL RU + Dutch E.  DE EN PL RU + Serbo-Croat F.  DE EN PL RU + Albanian 

Table 25: Confusion matrices (SPSS) 
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5.2.4 LDA using SPSS 

Table 25 shows confusion matrices resulting from the analysis using SPSS with up-front 

feature selection and LOOCV. The overall predictive accuracy was on a par with MASS and 

is further discussed in § 6.1.1. Table 26 shows that the number of features selected for each 

pentagroup ranged from 25 for the SP-group to 34 for the SO-group. 

 Features entered (and removed) 
 NL SH SO SP SQ VI 
1 sted sted sted sted sted sted 

2 en en jeg en en en 
3 eller eller en å eller og 
4 mer den viktig eller viktig eller 
5 skal skal eller og skal viktig 
6 viktig og som norge og den 
7 og norge bare da kan norge 

8 i da fordi den liker (det) 
9 mange barna barna barn men barna 
10 liker mange og et i skal 
11 barna vi om viktig bo også 
12 den ikke skal fordi barna bare 
13 venner er veldig ikke da at 

14 norsk til meg veldig fordi veldig 
15 av også på vi bare venner 
16 kan andre den man som er 
17 ikke fra er fra veldig på 
18 vi være min også man av 
19 da med andre kan også til 

20 han et han på du norsk 
21 veldig så vi er jeg som 
22 om om mange han hun kan 
23 men liker barn til andre du 
24 har når venner du å fra 
25 er de også venner til med 

26 bare min bo  på man 
27 du på de  fra jeg 
28 man  til  den de 
29 for  kan  når (det) 
30 mennesker  du  vi andre 
31   man   bo 

32   mye    
33   norge    
34   norsk    

Table 26: Features selected by SPSS 
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A total of 53 features were selected altogether and these constitute the L1 predictor 

candidates for SPSS listed in Figure 23, which are analyzed in the next chapter. 

andre, at, av, bare, barn, barna, bo, da, de, den, det, du, eller, en, enn, er, et, 

for, fordi, fra, han, har, hun, i, ikke, jeg, kan, liker, man, mange, med, meg, 

men, mennesker, mer, min, mye, norge, norsk, når, og, også, om, på, skal, 

som, sted, så, til, veldig, venner, vi, viktig, være, å 

Figure 23: L1 predictor candidates (SPSS) 

This concludes the summary of statistical findings from the two kinds of analysis performed 

on the data: ANOVA and the LDA. The next chapter discusses these findings, comparing 

them with those of Jarvis et al., providing further statistical analysis of the L1 predictors, and 

subjecting the latter to contrastive analysis in order to ascertain whether or not they can be 

ascribed to language transfer. 
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6. Discussion 

The statistical models that are constructed using discriminant analysis can be used for two 

distinct purposes: 

1) predictive, i.e. using classification to “detect” the class membership of a particular 

individual based on the features that it exhibits; and 

2) descriptive, i.e. using feature selection to identify the features that constitute the best 

predictors of class membership. 

In terms of the data used in the present study, these purposes translate to: 

1′) detecting the L1 of a Norwegian L2 learner based on his or her lexical choices; and 

2′) revealing which lexical features are most typical for different L1 groups. 

In this chapter the results of the study are discussed in the light of these two purposes. First, 

L1 detection rates are compared across the four classifiers used in the study and contrasted 

with the rates achieved by Jarvis et al. (§ 6.1). This allows the first research question to be 

addressed: Can automated text-based classification be used to identify the L1 background of 

Norwegian language learners based on their use of lexical features of the target language? 

Sometimes misclassification can be as revealing as successful classification. Some of the 

findings in this respect are therefore discussed in § 6.2. Following this the various sets of L1 

predictors are compared and subjected to a post-hoc analysis in § 6.3 in order to answer the 

second research question: What are the best source language (L1) predictors? 

LDA, the statistical method that led to the discovery of those L1 predictors, operates in a 

way that is conceptually very simple: Given a set of individuals that can be divided into a 
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number of discrete groups and that exhibit certain features, the method creates a model, 

defined in terms of a set of linear functions that minimizes the within-group variance and 

maximizes the between-group variance. As was pointed out in § 2.2.1.2 on page 18, this 

naturally provides the first two types of evidence called for by Jarvis in his methodological 

requirements: 

• Minimized within-group variance equates to Jarvis’ intragroup homogeneity 

• Maximized between-group variance equates to Jarvis’ intergroup heterogeneity 

However, LDA alone cannot provide the third type of evidence, cross-language congruity. 

To do so requires a linguistically analysis of the patterns of lexical usage revealed by LDA, 

in order to determine whether they can be traced back to features of the users’ L1 usage. 

Such contrastive analysis is the topic of § 6.4. The closing section of this chapter (§ 6.5), in 

summarizing the contrastive analysis, considers certain issues regarding the role of linguistic 

distance and the kind of lexical transfer that has been detected. 

6.1 L1 detection 

6.1.1 Comparing classifiers 

As a side-effect of the attempt to replicate the study by Jarvis et al. using open source 

software, this project was obliged to test multiple classifiers. However, unlike Jarvis (2011), 

who compared classifiers that used radically different algorithms (§ 2.3.1.7), the four 

classifiers tested here (MASS, SDDA, klaR and SPSS) were all implementations of LDA. 

Three of these classifiers (MASS, SDDA and klaR) are packages built on the open source 

environment R. The fourth, SPSS, was included for reasons of comparability (since it was 

used by Jarvis et al.). The lda() function in the MASS package is the most widely used R-

based implementation of LDA and it is also used in klaR. SDDA, on the other hand, 

implements a different “flavour” of LDA, diagonal linear discriminant analysis, which 

makes slightly different assumptions about the data, viz. that “the class densities have the 

same diagonal covariance matrix” (Dudoit et al. 2002: 79). 

The major shortcoming of the MASS implementation of LDA is that it does not support 

feature selection, and this was the reason for testing SDDA and klaR in addition. Both of 

these provide up-front feature selection (in which a set of features is selected once and then 

used in all folds of the cross-validation), but neither of them offer embedded feature 



78    Lexical transfer in Norwegian interlanguage 

 

selection. However, it proved possible to implement this fairly easily with klaR. SPSS also 

provides feature selection but only ‘up-front’ and not embedded. In contrast to Jarvis et al. 

(and for reasons of scope), no attempt was made to implement the latter in SPSS using 

scripts. 

35%

40%

45%

50%

55%

60%

MASS 55.0% 53.2% 56.6% 50.6% 56.2% 53.2%

SDDA 44.6% 41.8% 43.6% 41.2% 41.4% 41.4%

klaR 43.2% 41.6% 44.8% 38.8% 43.8% 44.8%

SPSS 54.6% 55.0% 57.6% 51.2% 57.4% 53.8%

NL SH SO SP SQ VI

 

Figure 24: Comparison of prediction accuracy across classifiers 

Figure 24 compares the accuracy rates achieved by the four classifiers across the six penta-

groups. The percentages are overall accuracies for each pentagroup as a whole, not for the 

individual languages. MASS (  without feature selection) and SPSS (  with up-front 

feature selection) performed almost identically, their results averaging 54.1% and 54.9%, 

respectively, and considerably better than SDDA (■ with up-front feature selection) and 

klaR (□ with embedded feature selection), whose results averaged 42.3% and 42.8%. 

As suggested in § 5.2.2, the performance of SDDA can probably be attributed to the tiny 

number of features selected (from seven to nine depending on the pentagroup), but the poor 

showing of klaR requires further investigation. Table 24 on page 72 shows that klaR selected 

between 41 and 45 features for each pentagroup. However, selection took place within the 

folds of a 10-fold CV and a closer examination of the output from the script klar.R reveals 
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considerable variation in the number of features selected per fold, ranging from six in fold 8 

of the SP-group to 21 in fold 1 of the NL-group (Table 27). The average per pentagroup 

ranges from 10.3 to 13.6, for an overall average of 12.45. This means that the number of 

features contributing to the model was (on average) little more than with SDDA and much 

lower than either MASS (the full set of 56-58 features, see p. 55) or SPSS (from 25 to 34 

using up-front feature selection, see p. 74). 

 fold number  

 1 2 3 4 5 6 7 8 9 10 (average) 

NL 21 8 10 11 20 8 14 10 19 11 13.2 

SH 7 17 11 8 12 8 13 15 10 10 11.1 

SO 13 9 20 6 18 17 13 8 13 12 12.9 

SP 7 10 8 8 15 6 10 12 14 13 10.3 

SQ 11 16 9 12 18 9 16 19 10 16 13.6 

VI 10 8 13 14 13 17 16 13 14 18 13.6 

Table 27: Features selected per fold (klaR) 

To sum up, then, the greatest predictive accuracy was achieved with MASS and SPSS using 

from 25 to 58 features. SDDA and klaR, using from 7 to 21 (average 12.45), achieved much 

lower accuracy. So is this simply a matter of accuracy correlating positively with the number 

of features? The more features, the greater the accuracy? In order to answer this question, a 

further investigation was performed using MASS with feature sets of variable sizes based on 

word lists that varied from 3 to 200.1 The results are shown in Table 28 and Figure 25. 

 Number of words 

 3 5 10 15 20 25 30 35 40 42 45 100 200 

NL 30.8 34.4 38.2 40.4 44.2 46.0 47.6 52.4 55.0 56.2 55.2 55.4 56.0 

SH 28.2 34.0 40.0 42.6 43.6 48.6 50.0 51.4 53.2 53.4 54.6 54.2 51.4 

SO 32.8 36.4 41.8 43.0 46.6 50.6 53.2 55.6 56.6 56.6 59.2 55.4 50.8 

SP 29.6 35.6 38.6 40.2 43.4 46.6 47.4 47.6 50.6 51.6 50.4 49.4 51.0 

SQ 31.0 36.2 38.4 41.8 44.4 48.6 51.8 55.2 56.2 55.0 55.6 56.4 53.2 

VI 35.0 37.0 43.4 43.6 44.8 48.8 51.0 52.6 53.2 53.8 55.2 59.0 53.2 

Table 28: Accuracy by number of features 

                                                 
1 The size of the feature sets themselves varied from 4 to 198 since Jarvis et al.’s pooling method (§ 2.3.2.1) 

was used and only features for which data points actually existed in the top 200 frequency list were allowed. 
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Figure 25: Accuracy by number of features 

What this table shows is that improvements in accuracy level off when the number of 

features reaches that achieved by pooling the 40 or so most frequent words from each L1 

group – which happens to be exactly the number used in this study. Further increases in the 

number of features have no major effect, either positive or negative. Reducing the size of the 

feature set, on the other hand, leads to a degradation in accuracy, but one that is surprisingly 

gradual: even pooling just the three most common words in each L1 group still results in 

statistical levels of predictive accuracy, which is quite remarkable. With the ASK data this 

produced the same set of four features in all six pentagroups: the words og, det, er and jeg 

(‘and, it, is, I’), and produced accuracy rates ranging from 28.2% to 35.0%, which are still 

statistical (p = 6.95e-06 and p = 4.12e-15, respectively). There is simply no way such results 

could be achieved by chance, and the evidence for grouping effects based on the L1 is thus 

overwhelming. 

6.1.2 Comparing with Jarvis et al. 

As far as the predictive part of this study is concerned, the accuracy rates achieved, although 

statistical, are somewhat lower than those of Jarvis et al. The latter achieved an overall rate 

of 76.9%, with accuracies ranging from 63.6% for DA to 89.7% for SP (see Table 8 on page 

34), whereas the results achieved using MASS and SPSS in the present study ranged from 

50.6% to 57.6%. There are a number of factors, both data-related and methodological, that 

could explain this discrepancy. 
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6.1.2.1 Thematic homogeneity 

The ASK data is far less homogeneous in terms of subject matter than the texts used by 

Jarvis et al. Whereas the latter consisted of narrative descriptions of a short (8-minute) 

segment of the film Modern Times, the essays written for the IL test range over a total of 45 

different topics, as shown in Table 13 on page 46. As a natural consequence of this, the ASK 

data is also less homogeneous in terms of vocabulary. This is especially the case for content 

words, but it is also true of some function words: for example, one can expect few if any 

future auxiliaries, such as ‘will’, in a text describing a scene from a film. 

The difference in thematic homogeneity is reflected in the set of features used in each study. 

Compare for instance the list of 53 words used as features in the Jarvis et al. study (Figure 8 

on page 33) with the list of 55 words used for the SP-group in the present study (Figure 13 on 

page 55): almost 50% of Jarvis et al.’s features are content words, whereas less than 10% of 

those used in the present study fall into that category. Although there appear to be no studies 

to date that have compared the degree to which lexical transfer occurs with content words as 

opposed to function words, it is at the very least safe to say that certain kinds of lexical 

transfer are less likely to be observed in the ASK data. An example of a likely cross-linguistic 

effect that would probably go unnoticed in more heterogeneous data is the tendency reported 

by Jarvis et al. (p. 60) for PO speakers to use the word ‘woman’ in preference to ‘girl’ – in 

stark contrast to the other L1 groups. It is therefore reasonable to hypothesize that greater 

predictive accuracy is can be achieved with data that is thematically homogeneous. In other 

words, the discrepancy in results obtained here and by Jarvis et al. could be due to this 

factor.1 

6.1.2.2 Proficiency levels 

The IL test data used in this study ranges from A2/B1 to B1/B2 on the CEFR scale, with just 

a few outliers at A2 and B2 levels (see Figure 12 on page 52); the Chaplin movie data is 

assumed to cover a wider range, from A2 to C1 (§ 2.3.2.1). If these assessments are correct, 

                                                 
1 This could be tested using 10 ASK L1s with 200 features and comparing the results with the Jarvis & Paquot 

study, which involved 12 L1s and thematically heterogeneous data from ICLE (see § 2.3.2.2). However the lack 

of information regarding possible correlations between topic and L1 group in the Jarvis et al. study would mean 

that the result would be inconclusive. 
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then the average proficiency levels are similar. Proficiency will then only be an explanatory 

factor for Jarvis et al.’s higher accuracy if there is a higher correlation between proficiency 

and L1 in the Chaplin movie data than there is in the ASK data. This may be the case, but no 

information is available on this issue. 

6.1.2.3 Sample size 

Jarvis et al. used 446 texts distributed somewhat unevenly across their five L1s: DA (n = 60), 

SW (n = 70), PO (n = 60), SP (n = 116) and FI (n = 140). The present study was based on 100 

texts from each L1. The difference is not large and any effect it might have would probably 

tend to favour the study with the more even distribution. Thus it seems unlikely that the 

sample size can have played a role. 

6.1.2.4 Choice of L1s 

The same number of L1s was used in both studies, but the L1s themselves were different. In 

selecting L1s for the present study, DE, EN, PL and RU were chosen in order to mirror the two 

pairs of genetically related L1s in model study: DA, SW, PO and SP (see § 4.3.1). Since there 

was no obvious candidate to play the role of FI as culturally-close-but-genetically-distant 

fifth L1, each of the other six L1s has been allowed to play this role in turn. Some of these 

(NL, SH and SP) are both culturally and genetically close to the base L1s, the others (SO, SQ 

and VI) are both culturally and genetically distant, and yet none of the six pentagroups, 

whatever their composition, yield accuracy rates anywhere close to those of Jarvis et al. The 

only conclusion to be drawn is that the choice of L1s did not play a role. 

6.1.2.5 Type of language acquisition 

The authors of the texts used by Jarvis et al. were FL students of EN living in their respective 

homelands: Brazil (PO), Mexico (SP), Denmark (DA) and Finland (FI and SW). The authors of 

the ASK texts, by contrast, were all SL learners of NO residing in Norway. It seems likely 

that the latter fact may have had a homogenising effect on the interlanguage of the NO 

learners: They will have been subjected to far less variation in educational style (which can 

cause L1 grouping effects), and the fact that they will have been exposed to the TL on a 

daily basis may also have had a levelling effect. The contrast between EFL and NOA may 

thus be an explanatory factor for the difference in results between the two studies. 
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6.1.2.6 Target language 

Another factor that may have influenced the results is the use of different target languages. 

Because of its genetic affiliation, EN is close to DA and SW in terms of grammar and function 

word vocabulary, whereas it may be closer to PO and SP as regards content word vocabulary, 

due to the influence from SP’s close relatives, FR and LA. NO, on the other hand, is close to DE, 

EN (and NL) in terms of grammar and both kinds of lexis, and more distant from PL, RU (and 

SH) in these respects. How this might affect the ability to detect L1 group membership 

remains a topic for future research, although it is worth recalling Jarvis’ comment (see 

§ 2.1.2) that lemmatic transfer (in contrast to lexemic transfer) does not appear to be 

constrained  by language distance. 

To summarize: As far as data-related reasons are concerned, it is possible to hypothesize that 

the discrepancy between the accuracy rates achieved in the two studies can be traced to two 

main factors: (1) greater thematic heterogeneity in the ASK data, and (2) the fact that this 

data stems from second language rather than foreign language learners. Testing such a 

hypothesis is a topic for future research. 

6.1.2.7 Methodological factors 

In theory, differences in methodology could also account for the disparity between the 

results achieved by Jarvis et al. and those achieved in the present study; they might include 

the number of features and cases used, the use of different software, or the failure to use 

embedded stepwise feature selection. In practice, however, none of these seem likely to be 

the cause. In the first place, the present study had a slightly higher number of features per 

case (approx. 8.9 compared to Jarvis et al.’s 8.4). Secondly, the results achieved using R + 

MASS in the present study were comparable to those achieved using SPSS, the tool used by 

Jarvis et al. Thirdly, the use of ‘up-front’ rather than embedded feature selection should, if 

anything, lead to “overly optimistic results classification accuracy rates” (Jarvis & Paquot 

2012: 81), not lower rates, as here. 

In short, none of the methodological differences between the two studies can account for the 

discrepancy in the accuracy rates achieved. 
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6.2 Misclassification 

The degree to which L1s are correctly predicted is the primary indicator of DA’s ability to 

detect L1-related structure in the data. In addition, certain insights can also be attained by 

examining the pattern of misclassification, as Jarvis et al. do (see p. 34). In the following 

discussion the focus is on how misclassification varies across pentagroup and across 

classifiers. 

40

45

50

55

60

65

DE 41 49 56 56 56 55

EN 51 47 53 50 56 53

PL 63 58 47 57 53 50

RU 65 60 61 62 62 60

NL SP SH SQ SO VI

 

Figure 26: Base L1 prediction accuracy as a function of 5th L1 

Figure 26 plots the prediction accuracy achieved using R + MASS (see Table 20 on page 68) 

for each of the four base L1s in each pentagroup as a function of the fifth L1. The purpose of 

this chart is to see whether prediction accuracy for the four L1s used in all six analyses 

varies depending on which other L1 is included in the analysis and, if so, how: what might 

be termed the “5th L1 effect”. It may be observed, first of all, that RU is consistently the most 

accurately predicted L1, with accuracies varying over a range of just 5% (60–65%). The 

corresponding figures for the other languages are EN 9% (47-56%), DE 15% (41–56%), and 

PL 16% (47–63%). 

Some degree of correlation between changes in prediction accuracy and relatedness may be 

noted. In the case of DE, the inclusion of NL leads to a drop in DE’s success rate to 41% (from 

an average of 52.2%). DE and NL are, of course, closely related, so one might hypothesize 

that similar kinds of transfer effects from the two L1s are causing difficulty in disentangling 

them from one another. Such a hypothesis is backed up by the observation (see Table 20D) 
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that the L1 most often mistaken for DE is NL, and that the L1 most often mistaken for NL is 

DE. A similar situation exists between PL and SH. With SH in the analysis, PL’s success rate 

drops to 47% (from an average of 54.7%). The L1 most often mistaken for PL is SH, and vice 

versa. This would appear to be another instance of misclassification due to relatedness, like 

that observed by Jarvis et al. between DA and SW and between PO and SP (§ 2.3.2.1). 

The same does not hold between EN and NL, which are also closely related. In fact, the 

success rate for EN is most affected by the inclusion of SP, dropping to 47% (from an average 

of 51.7%). Moreover, the L1 most often mistaken for EN is SP, while the L1 most often 

mistaken for SP is EN (see Table 20B). If transfer effects are at work here, a possible 

explanation for the high degree of confusion between EN and SP – despite their more distant 

genetic affiliation – is the high degree of language contact between EN and the Romance 

languages (primarily FR) and the influence of LA, and the consequently greater similarities in 

the lexicon of EN and SP. However, testing such a hypothesis requires a more detailed 

examination of the particular features underlying the EN-SP confusion. 

The case of RU throws doubt on whether language transfer can explain the 5th L1 effect 

revealed in the analysis so far. As a Slavic language one would expect it to be affected in the 

same way as PL by the inclusion of SH, but it is not. A possible explanation for this is that 

one of the best L1 predictors (discussed below in § 6.4.6) is the word er ‘is’, i.e. the present 

tense form of the copula, one of the most frequent forms in NO (and in all the learner texts), 

for which there are counterparts in PL and SH, but not in RU. This one typological difference 

could explain why the inclusion of SH does not lead to lower accuracy for RU as it does for PL. 

In summary, the results from R + MASS suggests that misclassification can often be traced 

to a combination of genetic relatedness and/or typological similarity. 

Comparisons may also be made across the different classifiers. In Table 29, each quadrant 

contains a sub-table based on results from one of the four classifiers. Each sub-table contains 

six columns, representing the six pentagroups, and five rows – one for each of the four base 

L1s, and one for the 5th L1 (labelled #5). Each cell specifies an L1 and should be read as 

follows: 

• First four rows – for example, RU in column SO of row DE in sub-table MASS: 

In the SO-group MASS most often misclassifies DE as RU 
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• Fifth row – for example, RU in column SO of row #5 in sub-table MASS: 

MASS most often misclassifies SO as RU   [SO is of course only classified once per 

classifier] 

 MASS  klaR 

 SO SP VI NL SH SQ  SO SP VI NL SH SQ 

DE RU RU RU NL RU RU/PL  RU RU PL PL PL PL 

EN DE SP DE DE DE DE  DE DE DE DE DE PL 

PL DE DE VI DE SH DE  RU DE RU RU SH RU 

RU DE DE/PL DE/VI PL DE SQ  DE DE PL PL DE PL 

#5 RU EN PL DE PL RU  RU EN RU DE PL RU 

 SDDA  SPSS 

 SO SP VI NL SH SQ  SO SP VI NL SH SQ 

DE RU PL PL PL RU RU  RU RU RU NL RU PL 

EN DE DE DE DE DE DE  PL SP DE DE DE PL 

PL RU RU VI RU SH RU  DE SP VI RU SH DE 

RU SO PL VI PL PL DE  PL DE VI PL DE PL 

#5 RU EN PL DE PL RU  RU EN PL DE PL RU 

Table 29: Misclassification rates 

The MASS results show that DE tends to be confused with RU, except when NL is included, 

and this is confirmed by the SPSS results. All the classifiers show a strong tendency for EN 

to be confused with DE – except when SP is part of the mix. For PL the picture is less clear: 

MASS has it most often misclassified as DE (not RU, as one might expect based on genetic 

affiliation), unless VI or SH are included. The SPSS results, on the other hand, show it being 

variously misclassified as DE, SP, VI, RU or SH, depending on the pentagroup. RU, for its part, 

tends generally to be confused with either DE or PL. 

The pattern concerning 5th L1s is quite consistent: (1) SO is most often confused with RU, 

(2) SP with EN, (3) VI with PL, (4) NL with DE, (5) SH with PL, and (6) SQ with RU. Three of 

these (2, 4 and 5) clearly implicate relatedness; the remainder (1, 3 and 6), on the other hand, 

involve the most distantly related language (SQ) and the two completely unrelated languages 

(SO and VI). Why SO and SQ should be most often confused with RU, and why VI should be 

most often misclassified as PL are questions for future work, but the roles of the copula and 

the indefinite article would be a good place to start. 
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6.3 L1 predictors 

Four of the analyses in this study resulted in sets of “good” L1 predictors. None of these sets 

were identical, nor even of the same size: 

(1) the ANOVA tests identified from 28 to 35 features, depending on pentagroup, whose 

means differed statistically across L1s; 29 (listed in Figure 19 on page 65) occurred in at 

least five of the six pentagroups; 

(2) SDDA selected from seven to nine features, again depending on the pentagroup, and 

pooling those that were selected in three or more groups resulted in a list of 20 features 

(see Figure 21 on page 71); 

(3) the tally using klaR and embedded feature selection varied from 41 to 45, with 28 

features occurring in ten or more folds of the six 10-fold cross-validations (see Figure 

22 on page 73); finally, 

(4) SPSS selected from 25 to 34 features, with 23 being chosen for four or more groups of 

five L1s (see Figure 23 on page 75). 

Despite all this variation there was a good deal of overlap in the sets of features that were 

chosen. Table 30 provides a consolidated list of features that were L1 predictor candidates in 

at least one of the four above-mentioned analyses, listed according to the number of analyses 

in which they were selected. 

4 den, eller, en, og, skal, sted, viktig 

3 andre, bare, barna, er, fra, i, jeg, man, norge, også, å 

2 barn, bo, da, et, ha, ikke, kan, liker, må, men, norsk, om, på, veldig, vi 

1 du, fordi, hvis, mer, mye, som, til, var, venner 

Table 30: Consolidated set of L1 predictors 

All but four of the words in this table (ha, hvis, må and var) are also to be found in the list of 

53 features selected by SPSS (see Figure 23 on page 75). Since it contains the largest 

number of words, it is the latter set of features that was chosen for the remainder of the 

analysis in this project, with the addition of the two words det and enn (which were included 

in order to permit comparisons with the other definite article den and another conjunction, 

som). 
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andre, at, av, bare, barn, barna, bo, da, de, den, det, du, eller, en, enn, er, 

et, for, fordi, fra, han, har, hun, i, ikke, jeg, kan, liker, man, mange, med, meg, 

men, mennesker, mer, min, mye, norge, norsk, når, og, også, om, på, skal, 

som, sted, så, til, veldig, venner, vi, viktig, være, å 

Figure 27: Final set of 55 L1 predictors 

The complete set of L1 predictors is shown in Figure 27 with content words shown in bold in 

order to distinguish them from function words. These, then, are the words whose usage 

among learners of Norwegian varies the most across groups with different L1 backgrounds. 

It may be observed that over 80% (45/55) of them are function words. The significance of 

this fact will be discussed in § 6.5.2. 

Having arrived at these results, the final question to be answered is which, if any, of these 

predictors can be traced to language transfer. To approach this question it helps to know not 

only which features are good predictors of L1 group membership, but also which particular 

L1 groups each of them serves to discriminate. Jarvis et al. obtained that information via 

SNK tests (Jarvis et al. 2012: 59). As noted above, this test is not implemented in R, so for 

the present study Tukey HSD tests were used instead. A series of such tests, one for each 

feature, was applied to the set of 55 features using the R code shown in Figure 28. 

for (X in myFeatures) { 
  cat("Feature: ", X, "\n") 
  print(summary(a1 <- aov(myData[,X] ~ myData$L1))) 
  print(TukeyHSD(a1)) 
  print(sort(tapply(myData[,X], myData$L1, mean))) 
} 

Figure 28: R code for the Tukey HSD tests 

Tukey’s HSD is a single-step multiple comparison procedure and statistical test that is used 

in conjunction with an ANOVA to find means that are differ statistically from each other. 

The output that it generates can be interpreted to discover which groups show statistical 

separation on which feature. As an example, Figure 29 shows the output from R for the 

NL-group with the feature skal. The figures for adjusted probability in the column headed 

p adj show that the difference in frequency of use of skal between EN and DE learners 

(en-de) is not statistical (p = 0.9979029), while that between NL and DE learners (nl-de) very 

clearly is (p = 0.0000570 << 0.001). 
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Feature:  skal 
             Df Sum Sq Mean Sq F value  Pr(>F) 
myData$L1     4   1008  251.95   8.667 9.1e-07 *** 
Residuals   495  14389   29.07 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = myData[, X] ~ myData$L1) 
 
$`myData$L1` 
        diff       lwr        upr     p adj 
en-de  0.239 -1.848562  2.3265618 0.9979029 
nl-de  3.494  1.406438  5.5815618 0.0000570 
pl-de  0.663 -1.424562  2.7505618 0.9079474 
ru-de -0.561 -2.648562  1.5265618 0.9480543 
nl-en  3.255  1.167438  5.3425618 0.0002276 
pl-en  0.424 -1.663562  2.5115618 0.9811612 
ru-en -0.800 -2.887562  1.2875618 0.8321757 
pl-nl -2.831 -4.918562 -0.7434382 0.0021187 
ru-nl -4.055 -6.142562 -1.9674382 0.0000016 
ru-pl -1.224 -3.311562  0.8635618 0.4946648 
 
   ru    de    en    pl    nl 
1.562 2.123 2.362 2.786 5.617 

Figure 29: Sample output from Tukey HSD test 

The last two lines of the output list the five L1s and their means (for the feature skal) in 

ascending order of mean values. The mean for the RU-group is 1.562 occurrences per 1,000 

words, that for the DE-group is 2.123, etc. In other words, RU learners of Norwegian use the 

word skal less often than DE learners, who themselves use it less often than EN and PL 

learners, etc., and the word is most often used by learners with an NL background: 

RU < DE < EN < PL < NL 

A more convenient way to view this information is in the form of a ‘homogeneity table’, 

such as that in Figure 30. This shows the five L1s in (ascending) order of mean value and 

displays a bar for each group of L1s whose means do not differ statistically from one another. 

It shows that learners whose L1 is RU, DE, EN or PL do not differ statistically in their 

frequency of use of the word skal; they thus constitute what is termed a ‘homogeneity group’ 

(shown as a bar connecting those four groups). In contrast, NL learners stand out as 

constituting a ‘homogeneity group’ of their own, since they use the word statistically more 

often than even the next most frequent group of users, PL. (The probability of the difference 

between PL and NL being due to chance, p = 0.0021187, can be read off from the pl-nl line 

in Figure 29.) 
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Feature Languages  
RU DE EN PL NL  

X X X X  (1) 
skal 

        Y (2) 

Figure 30: 5 L1 homogeneity table for $skal 

Discovering that learners from NL backgrounds use the word skal statistically more often 

than users from RU, DE, EN and PL backgrounds, prompts the question, can this fact be traced 

to cross-linguistic influence from the learners’ L1s? Similar questions may be posed regard-

ing the patterns revealed for all the features selected as good L1 predictors. Approaching 

these questions using contrastive analysis (§ 2.1.4) has the potential to provide the third type 

of evidence called for by Jarvis: that of cross-language congruity. If it can be shown that the 

more frequent use of skal by NL speakers mirrors some aspect of the Dutch language, the 

case for cross-linguistic influence will be strengthened.1 

6.4 Contrastive analysis 

This section considers in more detail some of the L1 predictors and patterns uncovered so 

far. The aim is not to provide a complete analysis or a definitive answer to the question of 

whether or not they are instances of lexical transfer: that would require a separate study for 

each featural pattern. The purpose is rather to demonstrate how the results obtained through 

discriminant analysis can provide further analyzed and how they might offer new insights 

into lexical transfer. Before embarking on the contrastive analysis, however, it is important 

to consider mediating variables that might provide alternative explanations for the patterns in 

question and thus confound the analysis. 

6.4.1 Mediating variables 

When evaluating evidence for transfer it is important to bear in mind that there are many 

other factors that might potentially contribute to L1 grouping effects and lead to Type I 

errors, i.e. false positives. This section provides a brief overview of alternative explanatory 

factors that need to be controlled for (i.e. eliminated, held constant or stratified) in the case 
                                                 
1 Jarvis himself considers CA that compares two languages in the abstract to produce only secondary evidence 

relevant to transfer. Primary evidence requires the analysis of actual language performance, since transfer is 

ultimately a phenomenon that occurs at the level of individuals. “That doesn’t mean that we always need to 

examine individuals’ L1 tendencies, but … we should always acknowledge their importance” (pc 2012-11-22). 
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of the ASK data. Jarvis (2000), elaborating Ringbom (1987), Biskup (1992), Ellis (1994) and 

Sjöholm (1995), provides a list of nine factors that can influence L2 acquisition: (1) age; (2) 

personality, motivation, and language aptitude; (3) social, educational, and cultural 

background; (4) language background (all previous L1s and L2s); (5) type and amount of 

target language exposure; (6) target language proficiency; (7) language distance between the 

L1 and target language; (8) task type and area of language use; and (9) prototypicality and 

markedness of the linguistic feature. 

Personality, motivation, and language aptitude (2) cannot be assessed on the basis of the 

ASK data. Some aspects of the learners’ social, educational, and cultural background (3) has 

been touched earlier in relation to the choice of L1s (§ 4.3.1) and proficiency level (§ 4.3.3), 

and gender is discussed below. Language background (4), at least as regards the L1, was the 

topic of § 3.2 and § 4.3.1 and is the variable under investigation in this study. Language 

distance (7) has also been discussed, both in connection with L1 background and elsewhere. 
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20
30

40
50

60
70

80

Age

 de en pl ru so sp vi

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

Proficiency

 

Gender

0

20

40

60

80

100

DE EN NL PL RU SH SO SP SQ VI

Women Men (unknown)  

Regularity of L2 exposure

0

20

40

60

80

100

DE EN NL PL RU SH SO SP SQ VI

Daily Seldom Never (unknown)  

Figure 31: Mediating variables 
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In this section, age (1), gender (3) and type and amount of target language exposure (5) are 

covered, along with some further comments on proficiency (6). Figure 31 shows box plots 

for age and proficiency, and bar charts for gender and regularity of L2 exposure, all based on 

the extensive metadata available in ASK. The diagrams reveal a number of differences 

between L1 groups. 

The learner’s ages vary relatively little with the median age in the range 28-33 and there are 

relatively few outliers (with the honourable exception of an 82-year old RU woman); it thus 

seems to be unlikely to play a major role in predicting L1 group membership. 

The box plot of proficiency provides an alternative presentation of the facts, this time in 

terms of a numeric scale arrived at by numbering the CEFR levels, as in Carlsen (2010b: 

142).1 It shows how five of the seven L1 groups for which CEFR data is available (see § 3.4 

on page 43), DE, EN, PL, RU and SP, all have median values of 3.0 (i.e. level B1), whereas the 

median value for SO and VI is lower at 2.5 (level A2/B1). Of the L1 groups whose median is 

3.0, EN, PL and RU are evenly distributed (with EN speakers heavily concentrated around the 

median), while SP is weighted below the median and DE above it. Thus proficiency may play 

a role in separating SO and VI from the rest, but is unlikely to do so otherwise. 

As for gender, the figures show a predominance of women in all L1 groups, with the 

exception of SO and SQ, both of which are overwhelmingly Muslim communities.2 Men are 

particularly underrepresented in the PL, RU and VI groups. Whether or not these facts can 

have influenced the results is beyond the scope of this study. 

Finally, regularity of exposure to the L1 shows a good deal of variation with the SH, SO and 

VI groups professing a lower level of interaction with native speakers than others. This 

clearly relates to cultural distance and also correlates with proficiency level, however the 

implications of these observation must be left to future research. 

Mediating variables such as these will be taken into consideration as appropriate in the 

analyses to follow, in which selected features (those that seem to provide most separation 

between L1 groups) are discussed in terms of contrastive analysis. 

                                                 
1 2=A2, 2.5=A2/B1, 3=B1, 3.5=B1/B2, etc. 
2 The SH L1 group consist in large part of Kosovo Albanian refugees. 
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6.4.2 Future tense: $skal 

As observed in § 6.3 and confirmed by the homogeneity table 

to the right,1 the NL-group uses skal statistically more often 

than RU, DE, EN or PL. So too do speakers of SH, SO, SQ and VI. 

While there is a recognized general tendency for learners of 

Norwegian to overuse skal when forming the future tense 

(Mac Donald 1990: 27),2 this does not explain the large 

discrepancy between RU, DE, EN or PL, on the one hand, and 

five of the other six L1 groups on the other. 

One might hypothesize a correlation between proficiency 

level and overuse of skal, which would account for the pattern exhibited by SO and VI, two 

L1 groups that score below average in terms of CEFR ratings (see § 3.4). Furthermore, since 

proficiency level tends to correlate negatively with linguistic and cultural distance, the same 

hypothesis could be extended to SH and SQ (two L1 groups for which CEFR data is not 

available). But that explanation seems unlikely to hold for NL speakers, who share many 

linguistic, cultural and socio-economic traits with EN and DE speakers, and can be assumed to 

be on a par with them in terms of proficiency. 

One possible explanation is thematic bias. Certain topics are more concerned with future 

events than others. If there should be a preponderance of essays on such topics by NL 

speakers, this could explain the higher frequency of skal, a word that is mainly used to talk 

about future events. The word skal occurs 1,096 times in the data and is distributed very 

unevenly across texts that cover 44 of the 46 topics shown in Table 13 (see page 44 ff): 

a mere six topics account for more than 50% of the occurrences of skal. The topic with by 

far the most occurrences (269, or 24.5%) is – not surprisingly – the one entitled Framtida 

(‘The future’). There are 63 essays on this topic, but only 8 of them are by NL speakers, as 

compared to 22, 10, 10 and 13 by speakers of SO, SP, SQ and VI, respectively. 
                                                 
1 Extracts of the homogeneity tables given in the appendices (p. 131ff) are shown here for ease of reference. 
2 One reason for this may be the oversimplified account found in many Norwegian learner grammars. For 

example, Greftegreff (1985: 27) states categorically and without reservation: “Futurum lager vi av skal + 

infinitiv” (‘The future is formed using skal + infinitive’). In actual fact the main temporal opposition in 

Norwegian is between past and non-past; the future is very often unmarked and the present tense is often used 

with future meaning, as in Han reiser neste uke lit. ‘He travels next week’ (Næss 2011a: 157). 

$skal 
RU DE EN NO PL NL 
X X X X X  
     Y 

RU DE EN NO PL SH 
X X X X X  
     Y 

RU DE EN NO PL SO 
X X X X X  
     Y 

RU DE EN NO PL SP 
X X X X X X 

RU DE EN NO PL SQ 
X X X X X  
     Y 

RU DE EN NO PL VI 
X X X X X  
     Y 
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Table 31 compares the number of occurrences per topic for DE, EN, NL and SP speakers for 

the six topics that have the most occurrences of skal amongst NL speakers. The word count 

(wc), number of texts (tc) and the ratio between them is shown for each L1 group. Thus, NL 

speakers produced 39 occurrences of skal in the 8 texts entitled Framtida, a ratio of 4.9 

occurrences per text. This figure can be compared with that for SP speakers writing on the 

same topic, i.e. 2.9 – a considerable difference. Comparisons can also be made between EN 

and SP speakers for the topic Bomiljø (‘Residential environment’), and between DE and EN 

speakers for the topic Nyheter (‘News’). In each case the ratio of occurrences of skal per text 

is consistently higher for NL speakers. In other words, even when choice of topic is held 

constant, the predilection of NL speakers for the word skal is still very clear. 

 DE EN NL SP 

 wc tc ratio wc tc ratio wc tc ratio wc tc ratio 

Framtida - - -  - - -  39 8 4.9 29 10 2.9 

Bomiljø - - -  20 38 0.5 21 16 1.3 14 23 0.6 

Bolig og bosted - - -  - - -  13 9 1.4 - - -   

Frivillig hjelp i organisasjoner 2 5 0.4 - - -  9 2 4.5 - - -   

Nyheter 7 10 0.7 4 9 0.4 8 7 1.1 2  -   

Reise - - -  - - -  8 14 0.6 - - -   

Table 31: Number of occurrences of ‘skal’ (by topic) 

While neither proficiency level nor thematic bias can fully explain the pattern exhibited by 

NL speakers, there is an alternative explanation: In Dutch, the future tenses “are formed with 

the auxiliary zullen, shall, in all persons” (Koolhoven 1961: 44). This verb is cognate with 

NO skulle (the infinitive form of skal) and its present tense form zal closely resembles NO 

skal – in contrast to the various forms of the DE future tense marker, werden (i.e. werde, 

wirst, wird, werden and werdet). The EN form ‘shall’ is also cognate with skal and bears a 

strong formal resemblance to it, but it is much less frequent in EN than the alternatives, i.e. 

the enclitic ‘’ll’ ‘will’ and the ‘going to’ construction,1 which may explain why it does not 

trigger transfer to the same extent as NL zal. In conclusion, the strong tendency for NL 

speakers to overuse skal would appear to be a rather clear-cut case of formal lexical transfer. 

                                                 
1 E.g. Wiktionary’s TV/movie frequency lists give the following rankings: ‘I’ll’ 82, ‘you’ll’ 248, ‘he’ll’ 540, 

‘she’ll’ 673, ‘it’ll’ 543, ‘we’ll’ 221, ‘they’ll’ 700, ‘will’ 76, ‘gonna’ 108, ‘shall’ 849. 
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6.4.3 Indefinite articles: $en and $et 

Speakers of the Slavic languages use the indefinite articles en 

and et much less frequently than learners from other L1 

backgrounds. The relatively uncontroversial cross-linguistic 

explanation for this well-known fact is the lack of articles in 

the Slavic languages. The analysis of the ASK data confirms 

this fact (PL, RU and SH are all at the lower, left-hand end of 

the scale) and reveals the same tendency among speakers of 

VI and SO, which also lack articles. More interestingly, the 

analysis reveals the fact that DE speakers use the masculine 

form en statistically more often than all other L1 groups 

except NL. On the other hand, EN speakers use the neuter 

form et statistically more than every other L1 group. 

The DE forms ein (m., n.) and eine (f.) bear a close formal 

resemblance to NO en (and even more to the form ein found 

in many varieties of NO), and the NL form en is identical. In 

the absence of alternative explanations, it seems rather likely 

that formal lexical transfer is responsible for the observed 

pattern. 

The greater formal similarity between EN ‘a’ (pronounced 

[ə]) and NO et (with its short vowel and relatively unobtrusive 

unvoiced plosive) than between [ə] and NO en may also 

suggest formal lexical transfer. Of course, the similarity is 

greater between NO en and EN ‘an’, but ‘an’ is much less 

frequent in EN than ‘a’.1 so the fact that the latter doesn’t 

trigger transfer could be taken as evidence that frequency in 

the L1 plays a constraining role in lexical transfer. 

Thus, L1 transfer appears to be at work in both the tendency for some speakers to underuse 

the indefinite article, for DE speakers to overuse en, and for EN speakers to overuse et. 

                                                 
1 The Wiktionary rankings are 102 and 5 respectively, with ‘a’ used more than 11 times more often than ‘an’. 

$en 
PL RU EN NO NL DE 
X X     
 Y Y    
  X X X  
   Y Y Y 

PL SH RU EN NO DE 
X X X    
  Y Y   
   X X  
    Y Y 

PL RU SO EN NO DE 
X X X    
 Y Y Y   
  X X X  
    Y Y 

PL RU SP EN NO DE 
X X     
 Y Y Y   
  X X X  
    Y Y 

PL RU SQ EN NO DE 
X X     
 Y Y Y   
  X X X  
    Y Y 

PL VI RU EN NO DE 
X X X    
 Y Y Y   
   X X  
    Y Y 

$et 
RU PL DE NL NO EN 
X X X    
  Y Y Y  
    X X 

RU PL SH DE NO EN 
X X X X   
    Y Y 

SO RU PL DE NO EN 
X X X X   
   Y Y  
    X X 

RU PL DE SP NO EN 
X X X X   
  Y Y Y  
    X X 

RU PL SQ DE NO EN 
X X X X   
   Y Y  
    X X 

RU PL DE VI NO EN 
X X X X   
  Y Y Y  
    X X 
,  ,  ,  ,  ,  ,  
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6.4.4 Personal and demonstrative pronouns: $den and $det 

The words den (m.) and det (n.) have a number of functions 

in Norwegian, as 3sg pronouns for non-human referents (‘it’), 

as demonstrative pronouns (‘that’) and as preposed definite 

articles (‘the’) . Det is also used as the formal subject, as in 

det regner ‘it’s raining’ (Golden et al. 2008: 133; Næss 2011a). 

The analysis shows that the form den is used statistically 

more often by RU speakers than by all the other L1 groups, 

with the exception of SQ and SP, and furthermore that SH 

speakers use it statistically less often than those three L1 

groups. The form det, on the other hand, is used most 

frequently by PL speakers, and the difference compared to VI 

and SO speakers is again statistical.1 

The most striking thing about this pattern is the difference 

between RU and PL: the absolute usage figures for den are PL 

122, RU 166 (almost a 40:60 ratio), whereas the figures for 

det are PL 668, RU 496 (almost a 60:40 ratio). Why the RU 

and PL groups should differ so radically in their preferences 

is something of a mystery, since the 3sg personal pronouns 

are the same in PL (on, ona, ono) and RU (он, она, оно), so 

there is no phonological reason for one L1 group to prefer 

den and the other to prefer det. As regards the demonstrative 

pronouns (PL ten, ta, to, RU этот, это, эта), if the formal 

difference were to have any cross-linguistic effect, one would 

expect PL ten to be identified with NO den, which would 

produce the exact opposite effect to the one which is in fact found. 

An explanation for this particular pattern must be sought in a detailed examination of how 

the particular usages break down across different functions, constructions and (perhaps) error 

types. However, such an analysis is beyond the scope of the present work. 

                                                 
1 Could VI speakers underuse of det also be a sign of avoidance, since they otherwise tend to overgeneralize the 

use of the formal subject (Næss 2011b)? 

$den 
EN NL PL DE NO RU 
X X X X X  
     Y 

SH EN PL DE NO RU 
X X X    
 Y Y Y Y  
     X 

EN SO PL DE NO RU 
X X X X X  
     Y 

EN PL DE NO SP RU 
X X X X X  
    Y Y 

EN PL DE NO SQ RU 
X X X X X  
    Y Y 

VI EN PL DE NO RU 
X X X X X  
     Y 
      

$det 
NO RU NL EN DE PL 

      
      
      

NO RU SH EN DE PL 
      
      
      

SO NO RU EN DE PL 
      
      
      
      

NO RU EN SP DE PL 
      
      
      

NO RU SQ EN DE PL 
      
      
      

VI NO RU EN DE PL 
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6.4.5 Pronouns: $jeg and $vi 

The usage pattern for the 1sg pronoun jeg separates DE and 

EN from RU, SH, SO, SQ, VI. The latter use jeg statistically 

more often than the former, with other L1 groups in-between. 

Interestingly, all the learner groups, including DE and EN, use 

the word statistically more often than native speakers.1 The 

differences are less marked when it comes to the 1pl pronoun 

vi, but some of them are still statistical. The word is more 

frequent in native speaker texts than in those of the four base 

L1s, DE, EN, PL and RU. The EN speakers use it least of all, 

closely followed by RU speakers, and only NL and SH 

speakers use it more often than native speakers. 

It is tempting to see an inverse correlation between overuse 

of jeg and proficiency level, since it is least used by native 

speakers and those L1 groups that exhibit the highest CEFR 

scores. However, Golden & Kulbrandstad (to appear), in an 

in-depth examination of SP and VI speakers’ use of jeg and vi 

find no such correlation. They analyse their data in terms of 

two proficiency levels and find that both L1 groups use jeg 

more often at the upper level and vi more often at the lower 

level, a pattern which is generally upheld across different 

essay topics. Discussing cross-linguistic influence, Golden 

and Kulbrandstad observe that the only widely used personal 

pronoun in Vietnamese is in fact tôi ‘I’ (Rosén 2001: 31), 

which they believe might explain why VI speakers have a 

tendency to use jeg rather more than other L1 groups. Such a hypothesis would be confirmed 

by the fact that VI speakers use 2sg du ‘you’ far less frequently than other L1 groups (see 

 Appendix H). 

                                                 
1 Could this be a manifestation of the ’Law of Jante’? Used to describe an attitude towards individuality and 

success common in Scandinavia, the term refers to a mentality which de-emphasizes individual effort and 

places all emphasis on the collective, while discouraging those who stand out as achievers (Wikipedia). 

$jeg 
NO DE EN PL NL RU 
X      
 Y Y Y Y  
   X X X 

NO DE EN PL SH RU 
X      
 Y Y Y   
  X X X  
    Y Y 

NO DE EN PL RU SO 
X      
 Y Y Y   
   X X  
     Y 

NO DE EN PL SP RU 
X      
 Y Y Y Y  
   X X X 

NO DE EN PL RU SQ 
X      
 Y Y Y   
   X X  
    Y Y 

NO DE EN PL RU VI 
X      
 Y Y Y   
   X X  
    Y Y 
,  ,  ,  ,  ,  ,  

$vi 
EN RU DE PL NO NL 
X X X X   
 Y Y Y Y  
  X X X X 

EN RU DE PL NO SH 
X X X X X  
   Y Y Y 

EN RU DE SO PL NO 
X X X X X X 

EN RU DE PL SP NO 
X X X X X  
 Y Y Y Y Y 

EN RU DE SQ PL NO 
X X X X X X 

EN RU DE VI PL NO 
X X X X X  
 Y Y Y Y Y 
,  ,  ,  ,  ,  ,  
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6.4.6 Copula: $er, $være and $å 

Speakers of EN use er ‘is, are’ more than all the other L1 

groups (including native speakers), and statistically more so 

than every group with the exception of PL and SH. It is unlikely 

that such a pattern can be due to any of the mediating 

variables discussed in § 6.4.1. A more likely explanation may 

be lexical transfer due to the strong formal resemblance 

between NO er and EN ‘are’ and the relatively high frequency 

of the verb ‘to be’ in EN (e.g. in the present continuous 

construction). Also of note is that PL and SH differ from 

fellow Slavs RU in their more frequent use of er. This most 

likely reflects the fact that PL and SH have a copula in the 

present tense (być and бити / biti, respectively) whereas RU 

no longer does (cf. RU дом там vs. PL dom jest tam, SH кућа 

је тамо / kuća je tamo ‘the house is there’). 

EN speakers also use være ‘to be’ more than any other group: 

statistically more so than RU, SH, SO, SQ and VI. In this case 

there is no formal resemblance, so the explanation must lie 

elsewhere, perhaps frequency in the L1. The contrast with RU 

is again explained by the absence of a copula in the present 

tense. The other L1s do have copulas, but some at least of 

them are used less often than EN ‘to be’. For example, the VI 

copula là is not used with adjectives, since the latter are 

verbal, hence tôi sợ chó ‘I am afraid of dogs’, lit. ‘I fear dog’ 

(Wiull 2007: 46). In SO the verb yahay ‘to be’ contracts with adjectives, losing its root (-ah-) 

in the process (Saeed 1993: 185ff; Husby 2001: 51). There is no infinitive at all in SQ, so 

while there is an equivalent of NO er (është), there is no equivalent of være (Husby 1999: 23), 

and while SH does have a copula, it tends to be little used as a result of influence from other 

Balkan languages (Mønnesland 1990: 45; Lie 2005: 87). 

A final, related observation is that the infinitive marker å is also used most frequently by EN 

speakers and least frequently by speakers of RU and SH, both of which lack an equivalent 

infinitive marker (see  Appendix I). 

$er 
RU NO NL DE PL EN 
X X X X   
  Y Y Y  
    X X 

RU NO DE PL SH EN 
X X X    
  Y Y Y  
   X X X 

SO RU NO DE PL EN 
X X X X   
   Y Y  
    X X 

RU NO DE SP PL EN 
X X X    
 Y Y Y   
  X X X  
    Y Y 

RU NO SQ DE PL EN 
X X X X   
  Y Y Y  
    X X 

RU VI NO DE PL EN 
X X X X   
   Y Y  
    X X 

$være 
RU NL DE PL NO EN 
X X X X X  
 Y Y Y Y Y 

SH RU DE PL NO EN 
X X X X X  
  Y Y Y Y 

SO RU DE PL NO EN 
X X X X   
 Y Y Y Y  
  X X X X 

RU DE PL NO SP EN 
X X X X   
 Y Y Y Y Y 

SQ RU DE PL NO EN 
X X X X X  
  Y Y Y Y 

VI RU DE PL NO EN 
X X X X X  
  Y Y Y Y 
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6.4.7 Prepositions: $i and $på, $fra and $til, $av and $for 

Prepositions, especially spatial prepositions, are renowned 

for being “among the hardest expressions to acquire when 

learning a second language” (Coventry & Garrod 2004: 4) 

and they have already been the subject of some interesting 

work based on ASK (Szymanska 2010; Malcher 2011). 

The homogeneity tables to the right show some of the 

patterns uncovered by the analysis, which can be briefly 

summarized as follows: 

• i ‘in’ is used substantially more by RU speakers than 

by all other L1 groups; 

• på ‘on’ is used the most by EN speakers and the least 

by DE speakers; 

• fra ‘from’ is used statistically more often by EN 

speakers than by PL or native speakers 

• til ‘to’ is underused by all L1 groups, especially DE, 

SH and SQ; 

• av ‘of’ is used statistically more by native speakers 

than by all L1 groups, with the exception of RU. 

• for ‘for’ is used statistically less by speakers of RU 

(and SO) than by speakers of PL (and VI). 

Explaining these patterns would require a detailed 

examination the individual usages, which is beyond the scope of the current work. For 

example, to understand the discrepancy between EN and DE use of på it would be necessary 

to check the token frequency of constructions in which the corresponding (prototypical) L1 

forms (on and auf) are congruent in one of the L1s but not in the other, e.g.: 

NO på søndag = EN ‘on Sunday’ but ≠ DE ‘am Sonntag’, whereas 

NO på engelsk = DE ‘auf Englisch’ but ≠ EN ‘in English’. 

If shown to have a cross-linguistic basis, the patterns revealed here would be regarded as 

instances of what Jarvis calls collocational and subcategorization transfer (see § 2.1.2). 

$i 
PL EN SP DE NO RU 
X X X X X  
    Y Y 

$på 
DE RU NO NL PL EN 
X X X X X  
 Y Y Y Y Y 
,  ,  ,  ,  ,  ,  

$fra 
NO PL DE NL RU EN 
X X X    
 Y Y Y Y  
  X X X X 

NO PL DE SP RU EN 
X X X    
 Y Y Y Y  
  X X X X 

$til 
DE RU PL NL EN NO 
X X X X X  
 Y Y Y Y Y 

SH DE RU PL EN NO 
X X X X X  
  Y Y Y Y 

SQ DE RU PL EN NO 
X X X X X  
  Y Y Y Y 

$av 
SP PL DE EN RU NO 
X X X X X  
    Y Y 

$for 
RU EN DE NL PL NO 
X X X X   
 Y Y Y Y Y 

SO RU EN DE PL NO 
X X X X   
  Y Y Y Y 

RU EN DE PL NO VI 
X X X    
 Y Y Y Y Y 
,  ,  ,  ,  ,  ,  
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6.4.8 Conjunctions: $og and $eller 

Interesting patterns also emerge for some of the conjunctions: 

Og ‘and’ is used statistically more often by RU speakers than 

any other L1 group (but not native speakers), whereas eller 

‘or’ is used less often by RU speakers than anyone else, and 

statistically more than EN and DE speakers, who use it most. 

Why EN and DE speakers should overuse eller is unclear, as is 

the statistical difference between DE and NL in this regard. 

None of these patterns seem likely to be due to any of the 

mediating variables, so a contrastive explanation should 

probably be sought. 

As for og, the striking contrast between PL and RU cannot be 

related to formal transfer, since PL i and RU и are phonolog-

ically identical. Furthermore, RU или ‘or’ closely resembles 

the NO form and yet is underused rather than overused, as 

might have been predicted. Since it has nothing to do with 

formal resemblance, a possible explanation for this pattern 

could be different token frequencies for the corresponding 

forms in the L1s. However, an initial attempt to investigate 

this route using the Wiktionary frequency lists1 proved 

inconclusive: RU и is ranked as 1, whereas PL i is ranked as 2 

(after w ‘in’), and RU или is ranked as 54 whereas PL lub ‘or’ 

is ranked as 49. The differences, in other words, appear to be 

minimal. 

Connectives are thus something of a mystery and there is 

clearly scope for research on their use across different L1 groups to complement that of 

Carlsen (2010a) on connectives across proficiency levels.2 

                                                 
1 http://en.wiktionary.org/wiki/Wiktionary:FREQ 
2 Such research would also need to investigate why men ‘but’ is used significantly less often by EN speakers 

than by speakers of DE and NL (see  Appendix I). 

$og 
PL DE NL EN NO RU 
X X X X   
    Y Y 

PL DE SH EN NO RU 
X X X X   
   Y Y  
    X X 

PL DE EN SO NO RU 
X X X X   
  Y Y Y  
    X X 

PL SP DE EN NO RU 
X X X X   
   Y Y  
    X X 

PL SQ DE EN NO RU 
X X X X   
   Y Y  
    X X 

VI PL DE EN NO RU 
X X X X   
   Y Y  
    X X 
,  ,  ,  ,  ,  ,  

$eller 
RU NO NL PL EN DE 
X X X X   
 Y Y Y Y  
    X X 

RU SH NO PL EN DE 
X X X X   
  Y Y Y  
    X X 

RU SO NO PL EN DE 
X X X X   
  Y Y Y  
    X X 

RU NO PL SP EN DE 
X X X    
 Y Y Y Y  
    X X 

RU SQ NO PL EN DE 
X X X X   
  Y Y Y  
    X X 

RU VI NO PL EN DE 
X X X X   
  Y Y Y  
    X X 
,  ,  ,  ,  ,  ,  
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6.4.9 Content words: $viktig 

Only 10 of the 53 words selected as L1 predictors by SPSS 

are content words, viz. barn, barna, bo, liker, mennesker, 

norge, norsk, sted, venner, viktig. Some of these are very 

likely to be prompt-induced, as discussed in § 4.4.3 on page 

53. For example, barn and barna ‘child, children’ (ind. sg/pl 

and def. pl, respectively) would be expected to occur 

particularly frequently in essays entitled Barneoppdragelse 

‘Parenting’. There are 53 essays on this particular topic and 

23 of them (43%) were written by PL speakers. This clearly 

explains why the latter use these words statistically more 

often than most other L1 group (excepting only SH and SQ, 

which account for a further 34% of essays on this topic). 

Similar considerations probably apply to bo ‘live’, norge 

‘Norway’, norsk  ‘Norwegian’ and venner  ‘friends’; this 

could be easily checked by querying ASK for the distribution 

of these words (or their lemmas) by L1 relative to essay title. 

Two content words that are not obviously prompt-related are 

sted ‘place’ and viktig ‘important’. The former is generally 

evenly distributed across essay titles, except that 30% of the 

occurrences are found in essays entitled Bomiljø ‘Residential 

environment’. Most of the essays on this topic (87%) were 

written by EN, SP and NL speakers, which explains the pattern 

shown in the homogeneity table (above). However, in ASK 

the word sted is used to replace specific place names in order to meet the requirements of the 

Norwegian Data Protection Act. It is thus overrepresented by definition and any observed 

differences across L1s are almost certainly topic-related. 

The case of viktig ‘important’ is less clear. It is used statistically more by EN speakers than 

any other L1 group (except SP) and least of all by RU speakers. The explanation may again 

lie in token frequencies in the L1 (consider, for example, the frequency of Important! vs. 

Achtung!), but more work is needed to verify this. 

$sted 
NO PL DE RU NL EN 
X X X X   
    Y  
     X 

NO PL DE RU SH EN 
X X X X X  
     Y 

NO PL DE RU SO EN 
X X X X X  
     Y 

NO PL DE RU SP EN 
X X X X   
    Y Y 

NO PL DE RU SQ EN 
X X X X X  
     Y 

NO PL DE RU VI EN 
X X X X X  
     Y 
,  ,  ,  ,  ,  ,  

$viktig 
RU NO DE NL PL EN 
X X     
 Y Y Y Y  
     X 

RU NO DE SH PL EN 
X X     
 Y Y Y Y  
     X 

RU SO NO DE PL EN 
X X X    
 Y Y Y Y  
     X 

RU NO DE PL SP EN 
X X     
 Y Y Y Y  
    X X 

RU SQ NO DE PL EN 
X X X    
 Y Y Y Y  
     X 

RU VI NO DE PL EN 
X X X    
 Y Y Y Y  
     X 
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6.5 Concluding remarks 

6.5.1 Linguistic distance 

The L1 predictors discussed in the preceding section are those that provide the highest 

degree of separation between one (or more) L1s and the others. What is apparent is that it 

tends to be the L1s that are most closely related to the target language that are easiest to 

separate. Thus, skal serves to separate NL from the rest; en and et separate DE and EN from 

each other, as does på, while eller separates the two of them from the rest; er and være 

separate EN, and so too does viktig. 

There are some counterexamples to this tendency, for example the ability of the indefinite 

articles en and et to separate Slavic languages (but also SO and VI) from other Indo-European 

languages. However, it is rather striking that no good L1 predictors have emerged for the 

more distantly related languages SQ, SO and VI. This would appear to confirm the suggestion 

made by Ringbom that cross-linguistic similarity is an important factor in second language 

acquisition: “If you learn a language closely related to your L1, prior knowledge will be 

consistently useful, but if the languages are very distant, not much prior knowledge is 

relevant” (Ringbom 2007: 1). If the TL is perceived as being very different from the L1, 

there will be less reason to draw on the L1 in making hypotheses about the TL. 

Ringbom cites the example of L3 EN learners who exhibit more transfer effects from their L2 

SW than from their L1 FI. A corresponding example from the data in the present study may 

be the text s0009, written by a VI speaker but confidently predicted as EN in the LDA analysis 

using R + MASS (see Table 16 on page 62). The metadata in ASK shows this learner to have 

stated her homeland to be the UK and her level of English as “intermediate” (only four of the 

105 VI speakers are more proficient in English than this). It appears that this learner’s 

knowledge of L2 EN is causing transfer effects in her L3 production, thus confirming that 

language distance plays a role in transfer. This is also confirmed by misclassification rates in 

general, as discussed in § 2.3.2.1 and § 6.2.1 

                                                 
1 Since the more distantly related L1s are also those which exhibit the lowest proficiency levels in the ASK 

corpus (see § 3.4), an alternative hypothesis might be that good L1 predictors tend to emerge once a certain 

level of proficiency has been attained. However, this is a topic for future research. 
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6.5.2 Types of transfer 

The cursory discussion of 20 or so L1 predictors in § 6.4 showed fairly conclusive evidence 

of transfer in a few cases (in particular, skal, en, et and er) and tentative evidence in several 

more (den, det, jeg, vi, være, å, i, på, fra, til, og, eller, viktig). Assuming for the sake of 

argument that all of these really are examples of cross-linguistic influence on the learner’s 

lexicon, it is instructive to try to classify them according to the taxonomy given in § 2.1.2. 

That taxonomy defines three types of form-related transfer (false friends, code-switching and 

cross-linguistic blends) and four types of meaning-related transfer (semantic extension, 

calquing, collocational transfer and subcategorization transfer). The L1 predictors revealed 

in the present study seem to represent instances of four of these. 

The false friends exhibit a formal resemblance to the corresponding word in the source 

language and are easy to identify: skal ↔ zal; en ↔ ein / eine / en; et ↔ ‘a’; and er ↔ ‘are’. 

It is important to recognize that these friends’ are only “false” in the sense that their semantic 

or pragmatic ranges do not overlap exactly with those of the SL word. Thus it is not always 

an error to use skal in situations where NL would require zal, nor of course is it by any means 

always wrong for a DE speaker to use the indefinite article en. In other words, such cognates 

can occasion both positive and negative transfer. They are not always “false friends”, as is 

the case with SW offer ‘victim’, the example given in § 2.1.2. 

Most of the other examples of transfer listed above (if such they be) could be classified as 

instances of semantic (or pragmatic) extension, although none of them as obviously as the 

“slips of the kieli” used to exemplify the category (see page 10). For example, the overuse of 

jeg by VI speakers may well result from the (correct) interlingual identification of jeg with 

tôi and the inappropriate use of the former in contexts that would be appropriate for the latter. 

The prepositions, on the other hand, could be classed as examples of what Jarvis terms 

collocational and subcategorization transfer, both of which would be regarded from a 

cognitive linguistic perspective as the transfer of “constructions” (Ellis 2003). And how 

might one classify PL, RU, SH, SO and VI speakers’ low use of articles? Is this lexical transfer 

(from nowhere to nowhere) or grammatical transfer? Or is there in reality no meaningful 

distinction between lexicon and grammar, since “lexicon, morphology and syntax form a 

continuum of symbolic structures” (Langacker 1987: 3) – otherwise known as constructions 

(Croft 2007: 489)? That, indeed, is a topic for future research. 
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7. Conclusion 

7.1 Research questions 

This thesis represents the first attempt to apply data mining methods to the investigation of 

cross-linguistic influence on a language other than English, the first to be based on open 

source software, and the first to fully demonstrate the importance of contrastive analysis in 

complementing the statistical technique of discriminant analysis. It has raised more questions 

than it has answered, but the research questions themselves have been addressed. 

Q1 Can data mining techniques be used to identify the L1 background of Norwegian 

language learners based on their use of lexical features of the target language? 

The study confirmed the hypothesis that data mining techniques can indeed be used (up to a 

point) to identify the L1 background of a Norwegian language learner on the basis of his or 

her use of lexical features of the target language. The models constructed using the method 

of discriminant analysis were able to achieve prediction rates of up to 57.6% accuracy in 

when using 500 texts from five different L1 backgrounds. The probability of achieving such 

success rates by chance is infinitesimally small (p < 2.2e-16) and this alone proves that the 

lexical choices made by learners can be related to their L1 backgrounds. 

Q2 What are the best (lexical) source language predictors? 

The best source language predictors uncovered by the analysis are mostly function words, 

such as auxiliaries, articles, pronouns and prepositions. Some of them, such as the ability of 

indefinite articles to predict a Slavic L1 background, come as no surprise. Others, such as the 

tendency for Dutch speakers in particular to overuse skal, for German speakers to display a 

predilection for en rather than et, and for English speakers to do the opposite, were not at all 



 Conclusion    105 

 

expected, which serves to confirm hypothesis H2, that data mining techniques are capable of 

revealing subtle patterns of learner language that might otherwise go undetected. 

Q3 Can those predictors be traced to cross-linguistic influence? 

The study also showed fairly conclusively that some predictors at least (e.g. skal, en, et, er) 

most likely are the result of language transfer, and it thus provided partial confirmation of 

hypothesis H3, that many (but not all) of the L1 predictors are traceable to cross-linguistic 

influence. Others are due to thematic bias and some have yet to be explained. 

7.2 Methodology 

The methods applied in this study provide three of the four types of evidence called for by 

Jarvis in his methodological requirements for transfer research. Two of these are provided 

“out of the box” when using discriminant analysis, because of its very design. When the rate 

of predictive accuracy it achieves is statistical – as it has been throughout this study – then 

the fact that it constructs its model by attempting to minimize within-group variance and 

maximize between-group variance automatically provides evidence of intragroup homogeneity 

and intergroup heterogeneity. The third type of evidence, cross-language congruity, is then 

provided through the application of contrastive analysis. 

7.3 Contribution to knowledge 

The study has therefore contributed to our knowledge of lexical transfer in a number of 

ways: It has validated the techniques developed by Jarvis & Crossley (2012) with a target 

language other than English, it has revealed some very interesting and subtle aspects of 

Norwegian interlanguage that have not been recognized earlier, and it has gone considerably 

beyond Jarvis & Crossley (2012) in applying contrastive analysis to provide more compelling 

cross-linguistic explanations of the patterns revealed by the statistical analysis. 

The aspects of Norwegian interlanguage that have been uncovered provide confirmatory 

evidence, some of it more nuanced, for various types of lexical transfer and supply abundant 

material for further research based on ASK. In addition, the comparison with the results 

obtained by Jarvis et al. has raised interesting questions about the possible differences 

between second language acquisition and foreign language learning when it comes to cross-

linguistic influence. 
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More importantly, perhaps, the techniques used here have the potential to open up whole 

new avenues of exploration within Norwegian SLA research using the wonderful data 

available in ASK, and also more broadly within Norwegian corpus linguistics. I also hope 

that the careful presentation of how discriminant analysis works (and its many areas of 

application) can convince even the most statistically challenged linguists that it is actually 

quite easy to harness its power in every area of empirical language research, and I will be 

more than happy to support any of my colleagues who wish to try it out. 

7.4 Future directions 

As for the future, this study has raised a lot of questions that could be followed up in new 

projects at the master’s and doctoral level, and well beyond. An obvious starting point is to 

delve deeper into those aspects of L2 usage uncovered so far: testing the hypothesis in § 6.4 

experimentally, studying the unexplained predictor patterns, investigating specific errors 

connected with the individual lexical items, and following up areas of research ruled out of 

scope in this study. Some examples: 

• Why did SDDA and klaR perform so badly (pp. 70 and 78) and how  should 

embedded stepwise feature selection be implemented in R? 

• Why are SO and SQ most often confused with RU, and why is VI most often 

misclassified as PL (p. 86)? 

• How often (if at all) do DE speakers use en incorrectly and in what circumstances – 

and ditto with EN speakers’ use of et (p. 95)? 

• Why do PL and RU speakers differ so radically in their use of den and det (p. 96)? 

• What are the precise forms of cross-language congruity that underlie the widely 

varying use of prepositions (p. 99)? 

• What accounts for the different ways connectives are used across L1 groups (p. 100)? 

• Do good L1 predictors tend to emerge once a certain level of proficiency has been 

attained (page 102)? 

• Why have no good L1 predictors emerged for the more distantly related languages SQ, 

SO and VI (p. 102)? 



 Conclusion    107 

 

Much work also remains to be done in terms of investigating possible correlations with 

proficiency level and cultural influence, and finding ways to eliminate, hold constant or 

stratify the many complex factors that influence L1 acquisition and that so easily can 

confound the study of transfer. If a common platform for handling such matters could be 

established within the framework of ASK, it would save each researcher from having to 

reinvent the wheel and lead to even more fruitful ways of exploiting this rich seam of data. 

As for myself, I am drawn to the ideas of cognitive linguistics and I hope to be able to 

continue my work with data mining by investigating language transfer within that framework. 

The notions of constructions, chunking and frequency effects are central to cognitive 

linguists’ view of language (Bybee 2010) and they therefore also play a major role in second 

language acquisition (Ellis 2003, 2012). It makes sense for me to regard the various kinds of 

‘gram’ investigated by Jarvis and his colleagues as points along a continuum of constructions, 

from simple, contentful and fully specified 1-grams and n-grams, through the partly specified 

(and thus also partly schematic), such as those subjected to fleeting investigation by Mayfield 

Tomokiyo & Jones, through to fully schematic POS n-grams and beyond. That, at least, is the 

direction in which I would like to direct my energy in the coming years. 
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Appendices 
Appendix A. Glossary of terms 
This appendix contains a short glossary of statistical and mathematical terms used in this 

dissertation. For those that describe objects in the model of discriminant analysis, their 

meaning in the context of the present study is  also given. 

10-fold CV   cross-validation (q.v.) that is performed ten times, each time using one-tenth of 

the data as the test set and the remaining cases as the training set 

ANOVA   (analysis of variance) a statistical test of whether or not the means of several 

groups are all equal, see § 4.5.2 

case   an individual or unit that belongs to a particular group (or class) and that exhibits 

certain features for which numeric values are available  learner texts from the 

Norwegian Second Language Corpus (ASK) 

coefficient   a number or symbol multiplied with a variable (or unknown quantity) in an 

algebraic term, as 4 in the term 4x, or a1 in the term a1x1 

cross-validation (CV)   test method in which the the data is partioned into a training set and 

a test set, see § 2.2.1.3 

data set   the set of data for the features and group membership of the cases that are used in 

an analysis  word frequencies per 1,000 words and learner text metadata extracted 

from ASK 

discriminating variable   a variable that helps discriminate one group from another  L1 

predictors 

F statistic   the statistic that is calculated during an ANOVA (q.v.) and expresses the ratio of 

the between-groups variance and the within-groups variance 

feature   a numerical independent (or predictor) variable from which discriminant functions 

are constructed  the words for which frequencies are used in the analysis 

feature selection   the process of selecting those features (q.v.) which contribute the most 

discriminating power to the statistical model 

group   a class into which cases are divided, expressed as a dependent, categorical variable 

 the L1s of the learners who wrote the texts used in the analysis 
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homogeneity group   a grouping of two or more groups (as defined above), each of whose 

mean value for some feature does not differ statistically from any of the others’ mean 

values for the same feature, see § 6.3 

LOOCV   (leave-one-out cross-validation) cross-validation (q.v.) that is performed N times 

(N = number of cases in the data set), each time using one case as the test set and the 

remaining cases as the training set 

multivariate analysis   the analysis of data which is ‘multivariate’ (i.e. in which each case 

exhibits multiple variables); includes classification, discriminant analysis, canonical 

correlation, factor analysis, component analysis, and various generalizations of 

homogeneity tests (Dodge 2003: 276) 

MANOVA   (multivariate analysis of variance) statistical test procedure for comparing 

multivariate (population) means of several groups 

pentagroup   (term invented for disambiguation purposes in the present study)  a 

grouping of five L1 groups, consisting of data from the four base L1s (DE, EN, PL and 

RU) and one of the other six L1s (NL, SH, SO, SP, SQ and VI) 

predictor   see discriminating variable 

variance   a measure of how far a set of numbers is spread out 
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Appendix B. Word list with glosses 
The following table contains the 200-word list of most frequently occurring words across 

both tests for the ten source languages of ASK, along with ranking, overall frequency counts, 

word class and English gloss. 

word (10) rank count pos English 
alle 39 2152 pron all 

alltid 162 520 adv always 

alt 80 1005 adj all 

andre 38 2168 adj other/second 

annet 196 414 adj other/second 

at 8 9787 pron that 

av 19 5909 prep of 

bare 45 1911 adv only 

barn 43 1941 noun child/children 

barna 58 1476 noun children 

bedre 101 812 adj better 

betyr 165 512 verb mean 

ble 128 698 aux became 

bli 64 1321 aux become 

blir 51 1766 aux become 

blitt 181 456 aux become 

bo 131 679 verb live 

bor 116 775 verb live 

bra 111 787 adj good 

bruke 151 542 verb use 

bruker 166 511 verb use 

bør 133 652 aux should 

både 110 788 conj both 

da 57 1492 adv when 

dag 81 983 noun day 

de 10 9529 pron the/they 

del 173 471 noun part 

dem 60 1411 pron them 

den 26 3353 det the 

denne 105 799 det this/that 

der 90 913 adv there 

deres 177 462 pron their 

derfor 100 818 adv therefore 

det 3 19971 det the 

dette 49 1781 det this/that 

disse 145 584 det these/those 

du 50 1778 pron you 

word (10) rank count pos English 
eksempel 137 629 noun example 

eller 28 3176 conj or 

en 9 9612 det a/an/one 

enn 71 1091 prep than 

er 2 20322 aux is/are 

et 23 3881 det a/an/one 

etter 68 1192 prep after 

familie 178 459 noun family 

familien 153 538 noun family 

finne 134 648 verb find 

finnes 108 791 verb exist 

flere 73 1078 adj more 

fleste 180 457 adj most 

folk 53 1718 noun people 

for 11 9525 prep for 

fordi 55 1529 conj because 

foreldrene 158 526 noun parents 

forskjellige 109 788 adj different 

fra 36 2417 prep from 

før 112 786 prep before 

først 164 514 adv first 

første 172 472 adj first 

få 59 1451 verb get 

får 78 1017 verb get 

gang 192 417 noun time 

gjelder 170 494 verb concern 

gjør 99 818 verb do 

gjøre 76 1044 verb do 

god 98 832 adj good 

gode 187 447 adj good 

godt 123 736 adj good 

grunn 148 559 noun reason 

gå 89 913 verb go 

går 130 682 verb go 

ha 48 1782 aux have 

hadde 77 1036 aux had 

han 56 1528 pron he 
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word (10) rank count pos English 
har 15 7588 aux has/have 

hele 122 750 adj whole 

helt 156 529 adj whole 

her 115 777 adv here 

hjelpe 193 415 verb help 

hjemme 179 458 adv home 

hun 113 783 pron she 

hva 63 1377 pron what 

hver 142 612 det each 

hverandre 127 710 pron each other 

hvis 44 1930 conj if 

hvor 66 1255 pron where 

hvordan 119 763 adv how 

i 5 15130 prep in 

ikke 14 8062 adv not 

ingen 146 570 pron none 

jeg 6 13077 pron I 

jobb 104 800 noun job 

jobbe 185 452 verb work 

jobber 191 423 verb work 

kan 17 6247 aux can 

kanskje 117 774 adv perhaps 

kom 194 415 verb come 

kommer 74 1072 verb come 

kultur 200 399 noun culture 

kunne 87 921 aux could 

kvinner 95 857 noun women 

land 69 1146 noun country 

landet 157 526 noun country 

lese 171 484 verb read 

lett 174 466 adj easy/light 

liker 106 793 verb like 

litt 93 883 adv little 

liv 136 638 noun life 

livet 85 955 noun life 

lære 97 836 verb learn 

man 20 4465 pron one 

mange 25 3371 adj many 

mat 182 455 noun food 

med 16 6297 prep with 

meg 52 1763 pron me 

mellom 139 617 prep between 

men 21 4353 conj but 

mener 188 433 verb think 

word (10) rank count pos English 
menn 149 551 noun men 

mennesker 47 1797 noun person 

mer 40 2009 adj more 

min 61 1399 pron my 

mindre 169 495 adj less 

mine 198 401 pron my 

mitt 138 621 pron my 

mulig 190 427 adj possible 

mye 32 2725 adj much 

må 27 3324 aux must 

måte 168 499 noun way 

nesten 161 522 adv almost 

noe 62 1395 pron some/any 

noen 42 1948 pron some 

nok 152 541 adv enough 

nordmenn 184 453 noun Norwegians 

norge 37 2372 noun Norway 

norsk 107 792 adj Norwegian 

norske 120 754 adj Norwegian 

nye 154 533 adj new 

nå 72 1086 adv now 

når 35 2638 adv when 

ofte 92 892 adv often 

og 1 20406 conj and 

også 31 2875 adv also 

om 22 4011 prep whether 

opp 160 523 adv up 

oss 70 1136 pron us 

over 175 464 prep over 

penger 132 669 noun money 

problemer 189 431 noun problems 

på 12 9226 prep on 

samfunnet 126 713 noun society 

samme 143 607 adj same 

sammen 102 810 adv together 

se 103 810 verb see 

seg 29 3079 pron self 

selv 67 1218 pron self 

ser 135 641 verb see 

si 121 752 verb say 

siden 118 771 prep since 

sin 125 718 pron his/hers/its/their 

sine 91 906 pron their 

sitt 176 462 pron his/hers/its/their 
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word (10) rank count pos English 
skal 41 1967 aux shall 

skolen 167 501 noun school 

skulle 155 530 aux should 

slik 140 617 adv such 

snakke 159 525 verb talk 

som 7 10821 pron who/which/that 

sted 144 600 noun place 

stor 79 1009 adj big 

store 141 612 adj big 

synes 65 1294 verb think 

så 24 3560 adv so 

ta 94 865 verb take 

tenke 197 408 verb think 

tid 83 972 noun time 

tiden 183 455 noun time 

til 13 8609 prep to 

ting 84 965 noun thing 

to 147 563 det two 

trenger 88 921 verb need 

word (10) rank count pos English 
tror 82 977 verb believe 

ut 96 848 prep out 

uten 129 688 prep without 

vanskelig 114 779 adj difficult 

var 30 2936 aux was/were 

ved 150 544 prep by 

veldig 34 2704 adj very 

venner 86 944 noun friends 

verden 124 732 noun world 

vet 163 515 verb know 

vi 18 6028 pron we 

viktig 54 1641 adj important 

vil 46 1892 aux will/want 

ville 195 415 aux wanted 

være 33 2717 aux be 

vært 199 399 aux been 

ønsker 186 449 verb wish 

å 4 15857 inf to 

år 75 1064 noun year 
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Appendix C. CEFR proficiency level descriptors 
The two Norwegian language tests, the IL test and the AL test, correspond roughly to levels 

B1 and B2/C1 on the CEFR scale (see § 3.4). For ease of reference, this appendix contains 

the descriptors for those three levels (CoE 2001: 24ff). 

B1: Can understand the main points of clear standard input on familiar matters regularly 

encountered in work, school, leisure, etc. Can deal with most situations likely to arise whilst 

travelling in an area where the language is spoken. Can produce simple connected text on 

topics which are familiar or of personal interest. Can describe experiences and events, 

dreams, hopes & ambitions and briefly give reasons and explanations for opinions and plans. 

B2: Can understand the main ideas of complex text on both concrete and abstract topics, 

including technical discussions in his/her field of specialisation. Can interact with a degree 

of fluency and spontaneity that makes regular interaction with native speakers quite possible 

without strain for either party. Can produce clear, detailed text on a wide range of subjects 

and explain a viewpoint on a topical issue giving the advantages and disadvantages of 

various options. 

C1: Can understand a wide range of demanding, longer texts, and recognise implicit 

meaning. Can express him/herself fluently and spontaneously without much obvious 

searching for expressions. Can use language flexibly and effectively for social, academic and 

professional purposes. Can produce clear, well-structured, detailed text on complex subjects, 

showing controlled use of organisational patterns, connectors and cohesive devices. 
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Appendix D. Linear discriminant plots 
The figure below shows an LDA scatter plot matrix of all four discriminant functions for the 

SP-group. The LD1:LD2 plot in the first cell of row 2 (R2C1) is identical to Figure 18 on 

page 61 and shows substantial separation of DE (North), RU (West), EN (East) and PL (South), 

but little separation of SP (note that R1C2 is an inverted and rotated version of this plot). More 

separation (to the South-East) is found for SP in the LD3:LD4 plot (R3C4). RU has negative 

values for LD1 and thus tends to the South in all cells of row 1, whereas pl has negative 

values for LD2 (South in row 2), etc. 
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Figure 32: LDA scatter plot matrix for the SP-group (LD1, LD2, LD3 and LD4) 
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Appendix E. SPSS settings 
This appendix contains screen shots showing the settings used for the discriminant analysis 

performed using SPSS, as discussed in § 4.5.7 (page 64). 

 

 

Figure 33: SPSS Discriminant Analysis settings 
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Figure 33: SPSS Discriminant Analysis settings (cont.) 
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Appendix F. Sample Omnimark script 
This is the mktop200 script that was used to modify the word frequency (distribution) files 

generated by ASK by removing the case sensitivity. Certain extensive comments have been 

removed. For the complete script, see the project web site. 

cross-translate 
 
macro /* arg comment */ is macro-end 
 
/* 
  NAME: mktop200.xom 
  ------------------ 
 
  PURPOSE: Fix case-sensitivity in frequency (distribution) files 
  --------------------------------------------------------------- 
 
  Input:   1. List of words (e.g. 200 most frequent words) in LC only 
           2. List of input file names (given on command line) 
           3. Set of case-sensitive files containing frequency counts 
 
  Output:  Consolidated file containing case-insensitive data (top200-data.txt) 
 
*/ 
 
declare data-letters "Ã¥¦¸" "Ã…†˜"  ; for lower-casing of ÆØÅ in UTF-8 
 
global counter wordfreqs variable initial-size 0 
global counter row-ctr 
global counter col-ctr 
 
; At the start of processing, read the file "/data/Study 2/top200.txt"... 
; Set up a shelf of counters (wordfreqs) for accumulating frequencies. 
 
find-start 
  local counter row-ctr initial {0} 
  ; scan top200.txt row by row 
  repeat scan file "t:\data\Study 2\top200.txt" 
    match [any-text except "%t"]* => x.rank  "%t" 
          [any-text except "%t"]* => x.word  "%t" 
          [any-text except "%t"]* => x.count "%t" 
          [any-text except "%t"]* => x.pos "%n" 
      do when row-ctr = 0 
        ; ignore header 
      else 
        ; create new counter item on wordfreqs shelf 
        new wordfreqs key x.word 
      done 
      increment row-ctr 
    match any+ 
      put error 'Error scanning file t:\data\Study 2\top200.txt%n' 
      halt with 1 
  again 
  ; output header row immediately 
  output "#" 
  repeat over wordfreqs 
    output "%t" || key of wordfreqs 
  again 
  output "%n" 
  next group is start 
 
; output statistics to screen 
find-end 
  local counter i 
  set i to number of wordfreqs 
  put #error "Size of shelf: %d(i)%n" 
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GROUP START ; ================================================================== 
 
; Read list of files line by line, extract the name of the file and submit 
; the contents of that file for further processing. 
 
global stream column-headers variable initial-size 0 
 
find any-text+ => x.infile '%n'* 
  put #error x.infile || '%n' 
  set row-ctr to 0 
  clear column-headers 
using group main 
 submit file "T:\data\Study 2\distribution\case-insensitive\%x(x.infile)" 

 
GROUP MAIN ; =================================================================== 
 
; Ignore summary lines at end of input file 
find ('(Unweighted means)'|'(Total)') any-text+ '%n'* 
  ; ignore 
 
; Read the data file one line at a time 
find any-text+ => x.line '%n'* 
  local stream text-id 
  ; reset values of word frequency counters 
  repeat over wordfreqs 
    set wordfreqs to 0 
  again 
  increment row-ctr 
  set col-ctr to 1 
  ; process each line 
  repeat scan x.line 
    ; first column 
    match [any-text except "%t"]* =>x.cell "%t" when col-ctr = 1 
      ; first column of first row 
      do when row-ctr = 1 
        ; value should be '#' 
        put #error 'Expected "#" in R1C1, got [%x(x.cell)]...%n' 
          unless x.cell = "#" 
      else 
        ; first column in rows other than the first contains the text ID 
        set text-id to x.cell 
      done 
      increment col-ctr 
    ; pairs of columns (excluding first column) 
    match [any-text except "%t"]* =>x.cell "%t" [any-text except "%t"]* "%t"? 
      ; any pair of subsequent columns (we're not interested in the second 
      ; of these columns because it represents the percentage value) 
      do when row-ctr = 1 
        ; record which words are in which column 
        set new column-headers key "%d(col-ctr)" to "%lx(x.cell)" 
      else 
        ; increment the wordfreqs item whose key is the col header for this col 
        do unless column-headers key "%d(col-ctr)" = "(sum)" 
         using wordfreqs key column-headers key "%d(col-ctr)" 
          set wordfreqs to wordfreqs + x.cell 
        done 
      done 
      increment col-ctr by 2 
  again 
  do unless row-ctr = 1 
    ; output consolidated frequency counts for this line (text) 
    output "%g(text-id)" 
    repeat over wordfreqs 
      output "%t%d(wordfreqs)" 
    again 
    output "%n" 
  done 
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Appendix G. Sample R script 
This is the tukey.r script that was used to run Tukey HSD tests producing output that was 

post-processed by Omnimark and prepared for import to Excel (where conditional 

formatting was used to create the bar effects in the homogeneity tables). 

# tukey.r: post-hoc Tukey HSD tests 
# ------------------------------------------------------ 
# 
# This script runs one-way ANOVA tests followed by Tukey HSD tests 
# The output is written to file in a format designed to be post-processed 
# by the Omnimark script tukey.xom in order to generate tab-delimited 
# tables of homogeneity groups, which in turn is input to the Excel sheet 
# tukey.xls where some clever conditional formatting is applied to create 
# the barred homogeneity tables. 
 
# This script has been extended over time and now offers four variants of 
# the analysis. The one used in the appendices is from #4 and includes 
# Norwegian data in the pentagroups. It should really be rewritten, but it 
# ain't broke, so why bother to fix it? 
# 
 
start_time <- Sys.time() 
setwd("T:/data/Study 1/tukey") 
 
# Which analysis to perform? 
# 
# First:  42 features across 10 languages (WS Predictor candidates in Study 1.xls) 
# Second: 6x 10 features across 5 languages (< spss-features2.txt) 
# Third:  6x 53 features across 5 languages (< spss-features3.txt) 
# Fourth: -ditto- plus NO in each pentagroup 
analysis <- 1 
analysis <- 2 
analysis <- 2 
analysis <- 3 
analysis <- 4 
 
# Set up some common variables 
base_langs <- c("de", "en", "pl","ru")  # set of base L1s 
add_langs <- c("sp", "so", "vi", "nl", "sh", "sq") 
 
if ( analysis == 1 ) { 
 
  # Analysis #1 
  # Uses consolidated list of 42 features from four analysis methods 
  # (see WS Predictor candidates in Study 1.xls) 
  # 
  data_set = read.table("T:/data/Study 2/Study 2 data.txt", header=TRUE) 
  extraCols = 3   # non-numeric columns (currently L1, Language & CEFR) 
  # These are the original 42 features (Table 30) 
  myFeatures <- c("den", "eller", "en", "og", "skal", "sted", "viktig", "å", 
"andre", 
                  "bare", "barna", "er", "fra", "i", "jeg", "man", "norge", "også", 
                  "barn", "bo", "da", "et", "ha", "ikke", "kan", "liker", "må", 
"men", 
                  "norsk", "om", "på", "veldig", "vi", "du", "fordi", "hvis", 
"mer", 
                  "mye", "som", "til", "var", "venner") 
  myLangs <- c(base_langs, add_langs) 
  # Strip rows where L1 not in myLangs (e.g. Norwegian) 
  myData = droplevels(subset( data_set, L1 %in% myLangs)) 
  cols = ncol(myData) - extraCols 
 
  # Redirect output to a file 
  sink("10L1.txt") 
 
  # Output list of column names (just for reference) 
  print(myFeatures) 
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  # Output results of one-way ANOVA, Tukey HSD and (sorted) means 
  for (X in myFeatures) { 
    cat("\n===========\n\nFeature: ", X, "\n") 
    print(summary(a1 <- aov(myData[,X] ~ myData$L1))) 
    print(TukeyHSD(a1)) 
    print(sort(tapply(myData[,X], myData$L1, mean))) 
  } 
 
  # Stop redirecting output 
  sink() 
} else { 
 
  # 2. Analysis #2, #3 and #4, which are essentially the same except for using 
different 
  # sets of features and, in the case of #4, including NO data in the homogeneity 
tables. 
  # 
  # Get the list of features from a text file 
  allFeatures = read.table("T:/data/Study 1/spss/spss-features2.txt", header=T) 
  if ( analysis >= 3 ) 
    allFeatures = read.table("T:/data/Study 1/spss/spss-features3.txt", header=T) 
 
  # Redirect output to a file 
  if ( analysis == 3 ) { 
    sink("6x5L1.txt") } else { 
    sink("6x6L1.txt") 
    base_langs <- c("no", base_langs)  # add Norwegian to base L1s 
  } 
 
  # Get complete data set 
  data_set = read.table("/data/Study 2/Study 2 data.txt", header=TRUE) 
 
  # Iterate over each of the six additional languages 
  for (add_lang in names(allFeatures)) { 
 
    cat("Languages: de en pl ru ", add_lang, "\n", sep="") 
    myLangs <- c(base_langs, add_lang) 
    myFeatures <- as.character(allFeatures[add_lang][,1]) 
    # Create subset of data for these L1s and features (Språkprøven only) 
    myData = subset( data_set, 
        L1 %in% myLangs & grepl('^s',rownames(data_set)), select = 
c(myFeatures,"L1")) 
 
    # Output list of column names (just for reference) 
    print(myFeatures) 
    # Output results of one-way ANOVA, Tukey HSD and (sorted) means 
    for (X in myFeatures) { 
      if ( X %in% names(myData) ) { 
        cat("\n===========\n\nFeature: ", X, "\n") 
        print(summary(a1 <- aov(myData[,X] ~ myData$L1))) 
        print(TukeyHSD(a1)) 
        print(sort(tapply(myData[,X], myData$L1, mean))) 
      } #end if 
    } #end for(X in myFeatures) 
  } #end for(add_lang in names(allFeatures)) 
 
  # Stop redirecting output 
  sink() 
 
} #end if(analysis == 1) 
 
elapsed_time <- round(Sys.time() - start_time, 1) 
print(elapsed_time) 
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Appendix H. Homogeneity tables (by pentagroup) 
This appendix contains the results of the Tukey HSD tests described in § 6.4 6.3, ordered by 

pentagroup.

DE EN PL RU + Dutch 

$andre 
RU DE NL EN PL NO 

X X X    

 Y Y Y Y  

  X X X X 

Ø Ø Ø Ø Ø Ø 

$at 
RU EN NO DE NL PL 

X X X X X  

 Y Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$av 
NL PL DE EN RU NO 

X X X X   

 Y Y Y Y  

    X X 

Ø Ø Ø Ø Ø Ø 

$bare 
NO EN NL RU PL DE 

X X X X   

 Y Y Y Y  

    X X 

Ø Ø Ø Ø Ø Ø 

$barn 
NO EN RU NL DE PL 

X X X X X  

     Y 

Ø Ø Ø Ø Ø Ø 

$barna 
NO EN RU DE NL PL 

X X X X X  

     Y 

Ø Ø Ø Ø Ø Ø 

$bo 
NO PL RU DE NL EN 

X X X X   

    Y  

     X 

Ø Ø Ø Ø Ø Ø 

$da 
EN PL NO NL DE RU 

X X X X   

 Y Y Y Y  

  X X X X 

Ø Ø Ø Ø Ø Ø 

$de 
RU NO NL EN DE PL 

X X X X X  

  Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$den 
EN NL PL DE NO RU 

X X X X X  

     Y 

Ø Ø Ø Ø Ø Ø 

$det 
NO RU NL EN DE PL 

X X X X   

 Y Y Y Y  

      

      

$du 
PL NO RU EN DE NL 

X X X X X  

  Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$eller 
RU NO NL PL EN DE 

X X X X   

 Y Y Y Y  

    X X 

Ø Ø Ø Ø Ø Ø 

$en 
PL RU EN NO NL DE 

X X     

 Y Y    

  X X X  

   Y Y Y 

Ø Ø Ø Ø Ø Ø 

$er 
RU NO NL DE PL EN 

X X X X   

  Y Y Y  

    X X 

Ø Ø Ø Ø Ø Ø 

$et 
RU PL DE NL NO EN 

X X X    

  Y Y Y  

    X X 

Ø Ø Ø Ø Ø Ø 

$for 
RU EN DE NL PL NO 

X X X X   

 Y Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$fordi 
NO RU EN DE PL NL 

X X     

 Y Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$fra 
NO PL DE NL RU EN 

X X X    

 Y Y Y Y  

  X X X X 

Ø Ø Ø Ø Ø Ø 

$han 
NL DE NO EN RU PL 

X X X X X X 

Ø Ø Ø Ø Ø Ø 

$har 
RU PL NO EN DE NL 

X X X X X  

  Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$hun 
NL DE NO EN PL RU 

X X X X X X 

Ø Ø Ø Ø Ø Ø 

$i 
PL EN DE NO NL RU 

X X X X   

 Y Y Y Y  

   X X X 

Ø Ø Ø Ø Ø Ø 

$ikke 
EN RU NO NL PL DE 

X X X    

 Y Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$jeg 
NO DE EN PL NL RU 

X      

 Y Y Y Y  

   X X X 

Ø Ø Ø Ø Ø Ø 
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$kan 
NL NO RU DE PL EN 

X X X X   

  Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$liker 
NO DE PL EN NL RU 

X X X    

 Y Y Y   

   X X X 

Ø Ø Ø Ø Ø Ø 

$man 
RU PL NL NO EN DE 

X X X    

 Y Y Y Y  

   X X X 

Ø Ø Ø Ø Ø Ø 

$mange 
NO NL DE PL EN RU 

X X X X   

  Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$med 
NO PL RU NL EN DE 

X X X X X X 

Ø Ø Ø Ø Ø Ø 

$meg 
NO NL EN RU PL DE 

X X X X X X 

Ø Ø Ø Ø Ø Ø 

$men 
EN NO PL RU DE NL 

X X X X   

 Y Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$mennesker 
NO DE RU EN PL NL 

X X X X   

 Y Y Y Y  

  X X X X 

Ø Ø Ø Ø Ø Ø 

$mer 
RU PL EN DE NL NO 

X X X X   

  Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$min 
NO DE RU PL NL EN 

X X X    

 Y Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$mye 
DE EN NO RU NL PL 

X X X X X  

  Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$når 
NO RU PL EN DE NL 

X X X X   

 Y Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$norge 
NO PL DE EN NL RU 

X X X X   

 Y Y Y Y  

     X 

Ø Ø Ø Ø Ø Ø 

$norsk 
NO NL DE EN PL RU 

X X X X   

 Y Y Y Y  

     X 

Ø Ø Ø Ø Ø Ø 

$og 
PL DE NL EN NO RU 

X X X X   

    Y Y 

Ø Ø Ø Ø Ø Ø 

$også 
RU NO DE EN PL NL 

X X     

 Y Y    

  X X X X 

Ø Ø Ø Ø Ø Ø 

$om 
NL EN NO PL DE RU 

X X X X X  

    Y Y 

Ø Ø Ø Ø Ø Ø 

$på 
DE RU NO NL PL EN 

X X X X X  

 Y Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$så 
PL NO EN DE RU NL 

X X X X X  

 Y Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$skal 
RU DE EN NO PL NL 

X X X X X  

     Y 

Ø Ø Ø Ø Ø Ø 

$som 
NL DE RU EN NO PL 

X X     

 Y Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$sted 
NO PL DE RU NL EN 

X X X X   

    Y  

     X 

Ø Ø Ø Ø Ø Ø 

$til 
DE RU PL NL EN NO 

X X X X X  

 Y Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$være 
RU NL DE PL NO EN 

X X X X X  

 Y Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$veldig 
NO EN DE NL PL RU 

X      

 Y Y Y   

  X X X  

   Y Y Y 

Ø Ø Ø Ø Ø Ø 

$venner 
NL NO PL EN DE RU 

X X X X   

 Y Y Y Y  

   X X X 

Ø Ø Ø Ø Ø Ø 

$vi 
EN RU DE PL NO NL 

X X X X   

 Y Y Y Y  

  X X X X 

Ø Ø Ø Ø Ø Ø 

$viktig 
RU NO DE NL PL EN 

X X     

 Y Y Y Y  

     X 

Ø Ø Ø Ø Ø Ø 

$å 
RU DE NL NO PL EN 

X X X X   

 Y Y Y Y  

   X X X 

Ø Ø Ø Ø Ø Ø 
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DE EN PL RU + Serbo-Croat 

$andre 
RU DE EN PL SH NO 

X X     

 Y Y Y Y  

  X X X X 

Ø Ø Ø Ø Ø Ø 

$at 
RU EN NO SH DE PL 

X X X X X  

  Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$av 
PL SH DE EN RU NO 

X X X X X  

    Y Y 

Ø Ø Ø Ø Ø Ø 

$bare 
NO EN RU SH PL DE 

X X X X   

 Y Y Y Y  

    X X 

Ø Ø Ø Ø Ø Ø 

$barn 
NO EN RU DE SH PL 

X X X X   

 Y Y Y Y  

    X X 

Ø Ø Ø Ø Ø Ø 

$barna 
NO EN RU DE PL SH 

X X X X   

    Y Y 

Ø Ø Ø Ø Ø Ø 

$bo 
NO PL RU DE SH EN 

X X X X X  

     Y 

Ø Ø Ø Ø Ø Ø 

$da 
EN PL NO DE RU SH 

X X X    

 Y Y Y Y  

  X X X X 

Ø Ø Ø Ø Ø Ø 

$de 
RU NO EN DE PL SH 

X X X X   

 Y Y Y Y  

  X X X X 

Ø Ø Ø Ø Ø Ø 

$den 
SH EN PL DE NO RU 

X X X    

 Y Y Y Y  

     X 

Ø Ø Ø Ø Ø Ø 

$det 
NO RU SH EN DE PL 

      

      

      

      

$du 
PL SH NO RU EN DE 

X X X X X  

  Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$eller 
RU SH NO PL EN DE 

X X X X   

  Y Y Y  

    X X 

Ø Ø Ø Ø Ø Ø 

$en 
PL SH RU EN NO DE 

X X X    

  Y Y   

   X X  

    Y Y 

Ø Ø Ø Ø Ø Ø 

$er 
RU NO DE PL SH EN 

X X X    

  Y Y Y  

   X X X 

Ø Ø Ø Ø Ø Ø 

$et 
RU PL SH DE NO EN 

X X X X   

    Y Y 

Ø Ø Ø Ø Ø Ø 

$for 
RU EN SH DE PL NO 

X X X X   

 Y Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$fordi 
NO RU EN DE PL SH 

X X     

 Y Y Y Y  

  X X X X 

Ø Ø Ø Ø Ø Ø 

$fra 
NO PL SH DE RU EN 

X X X X   

  Y Y Y  

    X X 

Ø Ø Ø Ø Ø Ø 

$han 
DE NO EN SH RU PL 

X X X X X X 

Ø Ø Ø Ø Ø Ø 

$har 
RU PL NO EN DE SH 

X X X X X X 

Ø Ø Ø Ø Ø Ø 

$hun 
DE NO EN SH PL RU 

X X X X X X 

Ø Ø Ø Ø Ø Ø 

$i 
PL EN DE SH NO RU 

X X X X X  

    Y Y 

Ø Ø Ø Ø Ø Ø 

$ikke 
EN RU NO PL DE SH 

X X X    

 Y Y Y Y  

  X X X X 

Ø Ø Ø Ø Ø Ø 

$jeg 
NO DE EN PL SH RU 

X      

 Y Y Y   

  X X X  

    Y Y 

Ø Ø Ø Ø Ø Ø 

$kan 
NO RU SH DE PL EN 

X X X X   

 Y Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$liker 
NO DE PL EN SH RU 

X X X    

 Y Y Y Y  

    X X 

Ø Ø Ø Ø Ø Ø 

$man 
RU PL SH NO EN DE 

X X X    

 Y Y Y Y  

   X X X 

Ø Ø Ø Ø Ø Ø 

$mange 
NO DE PL EN RU SH 

X X X    

 Y Y Y Y  

  X X X X 

Ø Ø Ø Ø Ø Ø 

$med 
SH NO PL RU EN DE 

X X X X X X 

Ø Ø Ø Ø Ø Ø 

$meg 
NO EN RU SH PL DE 

X X X X X X 

Ø Ø Ø Ø Ø Ø 



134    Lexical transfer in Norwegian interlanguage 

 

$men 
EN NO PL RU DE SH 

X X X X   

 Y Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$mennesker 
NO DE RU EN SH PL 

X X X    

 Y Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$mer 
RU PL SH EN DE NO 

X X X X X  

   Y Y Y 

Ø Ø Ø Ø Ø Ø 

$min 
NO DE RU PL EN SH 

X X X    

 Y Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$mye 
DE EN NO RU SH PL 

X X X X X  

  Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$når 
NO RU PL EN DE SH 

X X X X   

 Y Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$norge 
NO PL DE EN SH RU 

X X X X   

 Y Y Y Y  

    X X 

Ø Ø Ø Ø Ø Ø 

$norsk 
NO DE SH EN PL RU 

X X X X   

 Y Y Y Y  

     X 

Ø Ø Ø Ø Ø Ø 

$og 
PL DE SH EN NO RU 

X X X X   

   Y Y  

    X X 

Ø Ø Ø Ø Ø Ø 

$også 
RU NO SH DE EN PL 

X X X    

 Y Y Y   

  X X X X 

Ø Ø Ø Ø Ø Ø 

$om 
SH EN NO PL DE RU 

X X X X X  

    Y Y 

Ø Ø Ø Ø Ø Ø 

$på 
DE RU NO SH PL EN 

X X X X X  

 Y Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$så 
SH PL NO EN DE RU 

X X X X   

 Y Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$skal 
RU DE EN NO PL SH 

X X X X X  

     Y 

Ø Ø Ø Ø Ø Ø 

$som 
DE RU EN NO PL SH 

X X X X X X 

Ø Ø Ø Ø Ø Ø 

$sted 
NO PL DE RU SH EN 

X X X X X  

     Y 

Ø Ø Ø Ø Ø Ø 

$til 
SH DE RU PL EN NO 

X X X X X  

  Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$være 
SH RU DE PL NO EN 

X X X X X  

  Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$veldig 
NO EN DE PL RU SH 

X      

 Y Y Y   

   X X X 

Ø Ø Ø Ø Ø Ø 

$venner 
NO PL EN DE RU SH 

X X X X   

 Y Y Y Y  

  X X X X 

Ø Ø Ø Ø Ø Ø 

$vi 
EN RU DE PL NO SH 

X X X X X  

   Y Y Y 

Ø Ø Ø Ø Ø Ø 

$viktig 
RU NO DE SH PL EN 

X X     

 Y Y Y Y  

     X 

Ø Ø Ø Ø Ø Ø 

$å 
SH RU DE NO PL EN 

X X X    

 Y Y Y   

  X X X  

   Y Y Y 

Ø Ø Ø Ø Ø Ø 
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DE EN PL RU + Somali 

$andre 
RU DE SO EN PL NO 

X X     

 Y Y Y Y  

  X X X X 

Ø Ø Ø Ø Ø Ø 

$at 
RU EN NO SO DE PL 

X X X X X  

 Y Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$av 
SO PL DE EN RU NO 

X X X X X  

    Y Y 

Ø Ø Ø Ø Ø Ø 

$bare 
SO NO EN RU PL DE 

X X X X   

  Y Y Y  

    X X 

Ø Ø Ø Ø Ø Ø 

$barn 
NO SO EN RU DE PL 

X X X X X  

     Y 

Ø Ø Ø Ø Ø Ø 

$barna 
NO EN SO RU DE PL 

X X X X X  

     Y 

Ø Ø Ø Ø Ø Ø 

$bo 
NO PL SO RU DE EN 

X X X X X  

     Y 

Ø Ø Ø Ø Ø Ø 

$da 
EN PL SO NO DE RU 

X X X X   

 Y Y Y Y  

  X X X X 

Ø Ø Ø Ø Ø Ø 

$de 
RU NO EN SO DE PL 

X X X X X  

 Y Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$den 
EN SO PL DE NO RU 

X X X X X  

     Y 

Ø Ø Ø Ø Ø Ø 

$det 
SO NO RU EN DE PL 

      

      

      

      

      

$du 
PL NO RU EN SO DE 

X X X X X X 

Ø Ø Ø Ø Ø Ø 

$eller 
RU SO NO PL EN DE 

X X X X   

  Y Y Y  

    X X 

Ø Ø Ø Ø Ø Ø 

$en 
PL RU SO EN NO DE 

X X X    

 Y Y Y   

  X X X  

    Y Y 

Ø Ø Ø Ø Ø Ø 

$er 
SO RU NO DE PL EN 

X X X X   

   Y Y  

    X X 

Ø Ø Ø Ø Ø Ø 

$et 
SO RU PL DE NO EN 

X X X X   

   Y Y  

    X X 

Ø Ø Ø Ø Ø Ø 

$for 
SO RU EN DE PL NO 

X X X X   

  Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$fordi 
NO RU EN DE PL SO 

X X     

 Y Y Y Y  

     X 

Ø Ø Ø Ø Ø Ø 

$fra 
NO PL DE SO RU EN 

X X X    

 Y Y Y Y  

  X X X X 

Ø Ø Ø Ø Ø Ø 

$han 
DE NO EN RU PL SO 

X X X X X X 

Ø Ø Ø Ø Ø Ø 

$har 
RU PL SO NO EN DE 

X X X X X X 

Ø Ø Ø Ø Ø Ø 

$hun 
DE NO EN PL RU SO 

X X X X X X 

Ø Ø Ø Ø Ø Ø 

$i 
PL EN DE SO NO RU 

X X X X X  

   Y Y Y 

Ø Ø Ø Ø Ø Ø 

$ikke 
EN RU NO SO PL DE 

X X X X   

 Y Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$jeg 
NO DE EN PL RU SO 

X      

 Y Y Y   

   X X  

     Y 

Ø Ø Ø Ø Ø Ø 

$kan 
NO SO RU DE PL EN 

X X X X   

 Y Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$liker 
NO DE PL EN SO RU 

X X X    

 Y Y Y Y  

   X X X 

Ø Ø Ø Ø Ø Ø 

$man 
RU SO PL NO EN DE 

X X X    

  Y Y   

   X X X 

Ø Ø Ø Ø Ø Ø 

$mange 
NO DE PL EN RU SO 

X X X    

 Y Y Y Y  

  X X X X 

Ø Ø Ø Ø Ø Ø 

$med 
SO NO PL RU EN DE 

X X X X X  

 Y Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$meg 
NO EN SO RU PL DE 

X X X X X X 

Ø Ø Ø Ø Ø Ø 
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$men 
EN NO PL RU SO DE 

X X X X X  

 Y Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$mennesker 
NO DE RU EN SO PL 

X X X X   

 Y Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$mer 
RU SO PL EN DE NO 

X X X X X  

   Y Y Y 

Ø Ø Ø Ø Ø Ø 

$min 
NO DE RU PL EN SO 

X X X X   

 Y Y Y Y  

   X X X 

Ø Ø Ø Ø Ø Ø 

$mye 
SO DE EN NO RU PL 

X X X X X  

   Y Y Y 

Ø Ø Ø Ø Ø Ø 

$når 
NO SO RU PL EN DE 

X X X X X  

 Y Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$norge 
NO PL DE EN SO RU 

X X X X   

  Y Y Y  

    X X 

Ø Ø Ø Ø Ø Ø 

$norsk 
NO DE EN SO PL RU 

X X X X   

 Y Y Y Y  

     X 

Ø Ø Ø Ø Ø Ø 

$og 
PL DE EN SO NO RU 

X X X X   

  Y Y Y  

    X X 

Ø Ø Ø Ø Ø Ø 

$også 
RU NO SO DE EN PL 

X X X    

 Y Y Y   

  X X X X 

Ø Ø Ø Ø Ø Ø 

$om 
SO EN NO PL DE RU 

X X X X X  

    Y Y 

Ø Ø Ø Ø Ø Ø 

$på 
SO DE RU NO PL EN 

X X X X   

 Y Y Y Y  

  X X X X 

Ø Ø Ø Ø Ø Ø 

$så 
PL NO SO EN DE RU 

X X X X X X 

Ø Ø Ø Ø Ø Ø 

$skal 
RU DE EN NO PL SO 

X X X X X  

     Y 

Ø Ø Ø Ø Ø Ø 

$som 
DE RU EN NO PL SO 

X X X X X  

    Y Y 

Ø Ø Ø Ø Ø Ø 

$sted 
NO PL DE RU SO EN 

X X X X X  

     Y 

Ø Ø Ø Ø Ø Ø 

$til 
DE RU SO PL EN NO 

X X X X X  

 Y Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$være 
SO RU DE PL NO EN 

X X X X   

 Y Y Y Y  

  X X X X 

Ø Ø Ø Ø Ø Ø 

$veldig 
NO EN SO DE PL RU 

X      

 Y Y Y   

  X X X  

    Y Y 

Ø Ø Ø Ø Ø Ø 

$venner 
NO PL SO EN DE RU 

X X X X X  

 Y Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$vi 
EN RU DE SO PL NO 

X X X X X X 

Ø Ø Ø Ø Ø Ø 

$viktig 
RU SO NO DE PL EN 

X X X    

 Y Y Y Y  

     X 

Ø Ø Ø Ø Ø Ø 

$å 
RU DE SO NO PL EN 

X X X X   

 Y Y Y Y  

  X X X X 

Ø Ø Ø Ø Ø Ø 
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DE EN PL RU + Spanish 

$andre 
RU DE EN PL SP NO 

X X     

 Y Y Y Y  

  X X X X 

Ø Ø Ø Ø Ø Ø 

$at 
RU EN NO SP DE PL 

X X X X X  

 Y Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$av 
SP PL DE EN RU NO 

X X X X X  

    Y Y 

Ø Ø Ø Ø Ø Ø 

$bare 
NO EN SP RU PL DE 

X X X X   

 Y Y Y Y  

    X X 

Ø Ø Ø Ø Ø Ø 

$barn 
NO SP EN RU DE PL 

X X X X X  

     Y 

Ø Ø Ø Ø Ø Ø 

$barna 
NO EN SP RU DE PL 

X X X X X  

     Y 

Ø Ø Ø Ø Ø Ø 

$bo 
NO PL RU DE SP EN 

X X X X   

    Y Y 

Ø Ø Ø Ø Ø Ø 

$da 
EN PL SP NO DE RU 

X X X X   

 Y Y Y Y  

   X X X 

Ø Ø Ø Ø Ø Ø 

$de 
RU NO SP EN DE PL 

X X X X X  

  Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$den 
EN PL DE NO SP RU 

X X X X X  

    Y Y 

Ø Ø Ø Ø Ø Ø 

$det 
NO RU EN SP DE PL 

      

      

      

      

$du 
PL NO RU SP EN DE 

X X X X X X 

Ø Ø Ø Ø Ø Ø 

$eller 
RU NO PL SP EN DE 

X X X    

 Y Y Y Y  

    X X 

Ø Ø Ø Ø Ø Ø 

$en 
PL RU SP EN NO DE 

X X     

 Y Y Y   

  X X X  

    Y Y 

Ø Ø Ø Ø Ø Ø 

$er 
RU NO DE SP PL EN 

X X X    

 Y Y Y   

  X X X  

    Y Y 

Ø Ø Ø Ø Ø Ø 

$et 
RU PL DE SP NO EN 

X X X X   

  Y Y Y  

    X X 

Ø Ø Ø Ø Ø Ø 

$for 
RU EN SP DE PL NO 

X X X X   

 Y Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$fordi 
NO RU EN DE PL SP 

X X     

 Y Y Y Y  

     X 

Ø Ø Ø Ø Ø Ø 

$fra 
NO PL DE SP RU EN 

X X X    

 Y Y Y Y  

  X X X X 

Ø Ø Ø Ø Ø Ø 

$han 
DE NO EN SP RU PL 

X X X X X X 

Ø Ø Ø Ø Ø Ø 

$har 
RU SP PL NO EN DE 

X X X X X X 

Ø Ø Ø Ø Ø Ø 

$hun 
DE NO EN PL SP RU 

X X X X X X 

Ø Ø Ø Ø Ø Ø 

$i 
PL EN SP DE NO RU 

X X X X X  

    Y Y 

Ø Ø Ø Ø Ø Ø 

$ikke 
EN RU NO SP PL DE 

X X X X   

  Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$jeg 
NO DE EN PL SP RU 

X      

 Y Y Y Y  

   X X X 

Ø Ø Ø Ø Ø Ø 

$kan 
NO RU DE SP PL EN 

X X X X   

 Y Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$liker 
NO DE PL EN SP RU 

X X X    

 Y Y Y   

   X X X 

Ø Ø Ø Ø Ø Ø 

$man 
RU PL NO EN SP DE 

X X     

 Y Y Y Y  

  X X X X 

Ø Ø Ø Ø Ø Ø 

$mange 
NO DE SP PL EN RU 

X X X X   

 Y Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$med 
NO PL RU EN SP DE 

X X X X X X 

Ø Ø Ø Ø Ø Ø 

$meg 
NO EN SP RU PL DE 

X X X X X X 

Ø Ø Ø Ø Ø Ø 

$men 
EN NO PL RU SP DE 

X X X X   

 Y Y Y Y Y 

Ø Ø Ø Ø Ø Ø 
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$mennesker 
NO DE RU EN SP PL 

X X X X   

 Y Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$mer 
RU SP PL EN DE NO 

X X X X X  

   Y Y Y 

Ø Ø Ø Ø Ø Ø 

$min 
NO DE RU SP PL EN 

X X X    

 Y Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$mye 
DE EN NO RU SP PL 

X X X X X  

  Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$når 
NO RU PL EN SP DE 

X X X X   

 Y Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$norge 
NO PL DE EN SP RU 

X X X X   

 Y Y Y Y  

     X 

Ø Ø Ø Ø Ø Ø 

$norsk 
NO DE EN PL SP RU 

X X X    

 Y Y Y Y  

   X X X 

Ø Ø Ø Ø Ø Ø 

$og 
PL SP DE EN NO RU 

X X X X   

   Y Y  

    X X 

Ø Ø Ø Ø Ø Ø 

$også 
RU NO SP DE EN PL 

X X     

 Y Y Y   

  X X X X 

Ø Ø Ø Ø Ø Ø 

$om 
EN NO PL SP DE RU 

X X X X X  

    Y Y 

Ø Ø Ø Ø Ø Ø 

$på 
DE RU NO SP PL EN 

X X X X X  

 Y Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$så 
PL NO EN SP DE RU 

X X X X X X 

Ø Ø Ø Ø Ø Ø 

$skal 
RU DE EN NO PL SP 

X X X X X X 

Ø Ø Ø Ø Ø Ø 

$som 
DE RU SP EN NO PL 

X X X X X X 

Ø Ø Ø Ø Ø Ø 

$sted 
NO PL DE RU SP EN 

X X X X   

    Y Y 

Ø Ø Ø Ø Ø Ø 

$til 
DE RU SP PL EN NO 

X X X X X  

 Y Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$være 
RU DE PL NO SP EN 

X X X X   

 Y Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$veldig 
NO EN DE PL SP RU 

X      

 Y Y Y   

  X X X  

   Y Y Y 

Ø Ø Ø Ø Ø Ø 

$venner 
NO PL EN SP DE RU 

X X X X X  

  Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$vi 
EN RU DE PL SP NO 

X X X X X  

 Y Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$viktig 
RU NO DE PL SP EN 

X X     

 Y Y Y Y  

    X X 

Ø Ø Ø Ø Ø Ø 

$å 
RU DE NO PL EN SP 

X X X    

 Y Y Y   

  X X X  

    Y Y 

Ø Ø Ø Ø Ø Ø 
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DE EN PL RU + Albanian 

$andre 
RU DE SQ EN PL NO 

X X     

 Y Y Y Y  

  X X X X 

Ø Ø Ø Ø Ø Ø 

$at 
RU EN NO DE SQ PL 

X X X X   

 Y Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$av 
SQ PL DE EN RU NO 

X X X X X  

    Y Y 

Ø Ø Ø Ø Ø Ø 

$bare 
NO EN SQ RU PL DE 

X X X X   

 Y Y Y Y  

    X X 

Ø Ø Ø Ø Ø Ø 

$barn 
NO EN SQ RU DE PL 

X X X X X  

     Y 

Ø Ø Ø Ø Ø Ø 

$barna 
NO EN RU DE SQ PL 

X X X X   

  Y Y Y  

    X X 

Ø Ø Ø Ø Ø Ø 

$bo 
NO SQ PL RU DE EN 

X X X X X  

     Y 

Ø Ø Ø Ø Ø Ø 

$da 
EN PL NO DE RU SQ 

X X X    

 Y Y Y Y  

  X X X X 

Ø Ø Ø Ø Ø Ø 

$de 
RU NO EN DE SQ PL 

X X X X X  

 Y Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$den 
EN PL DE NO SQ RU 

X X X X X  

    Y Y 

Ø Ø Ø Ø Ø Ø 

$det 
NO RU SQ EN DE PL 

      

      

      

      

$du 
SQ PL NO RU EN DE 

X X X X X  

  Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$eller 
RU SQ NO PL EN DE 

X X X X   

  Y Y Y  

    X X 

Ø Ø Ø Ø Ø Ø 

$en 
PL RU SQ EN NO DE 

X X     

 Y Y Y   

  X X X  

    Y Y 

Ø Ø Ø Ø Ø Ø 

$er 
RU NO SQ DE PL EN 

X X X X   

  Y Y Y  

    X X 

Ø Ø Ø Ø Ø Ø 

$et 
RU PL SQ DE NO EN 

X X X X   

   Y Y  

    X X 

Ø Ø Ø Ø Ø Ø 

$for 
RU SQ EN DE PL NO 

X X X X X  

 Y Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$fordi 
NO RU EN DE PL SQ 

X X     

 Y Y Y Y  

     X 

Ø Ø Ø Ø Ø Ø 

$fra 
NO PL DE SQ RU EN 

X X X    

 Y Y Y Y  

  X X X X 

Ø Ø Ø Ø Ø Ø 

$han 
DE NO EN SQ RU PL 

X X X X X X 

Ø Ø Ø Ø Ø Ø 

$har 
RU PL NO EN DE SQ 

X X X X X X 

Ø Ø Ø Ø Ø Ø 

$hun 
DE NO EN PL RU SQ 

X X X X X  

    Y Y 

Ø Ø Ø Ø Ø Ø 

$i 
PL EN DE NO SQ RU 

X X X X   

  Y Y Y  

   X X X 

Ø Ø Ø Ø Ø Ø 

$ikke 
EN RU NO SQ PL DE 

X X X X   

 Y Y Y Y  

  X X X X 

Ø Ø Ø Ø Ø Ø 

$jeg 
NO DE EN PL RU SQ 

X      

 Y Y Y   

   X X  

    Y Y 

Ø Ø Ø Ø Ø Ø 

$kan 
SQ NO RU DE PL EN 

X X     

 Y Y Y   

  X X X X 

Ø Ø Ø Ø Ø Ø 

$liker 
NO DE PL SQ EN RU 

X X X X   

 Y Y Y Y  

     X 

Ø Ø Ø Ø Ø Ø 

$man 
RU SQ PL NO EN DE 

X X X    

  Y Y   

   X X X 

Ø Ø Ø Ø Ø Ø 

$mange 
NO DE PL SQ EN RU 

X X X X   

 Y Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$med 
NO PL RU EN SQ DE 

X X X X X X 

Ø Ø Ø Ø Ø Ø 
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$meg 
NO EN RU PL DE SQ 

X X X X X  

 Y Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$men 
EN NO PL RU DE SQ 

X X X X   

 Y Y Y Y  

    X X 

Ø Ø Ø Ø Ø Ø 

$mennesker 
NO DE RU EN SQ PL 

X X X X X  

 Y Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$mer 
RU SQ PL EN DE NO 

X X X X X  

   Y Y Y 

Ø Ø Ø Ø Ø Ø 

$min 
NO DE RU PL SQ EN 

X X X    

 Y Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$mye 
DE EN SQ NO RU PL 

X X X X X  

   Y Y Y 

Ø Ø Ø Ø Ø Ø 

$når 
NO RU PL EN SQ DE 

X X X X   

 Y Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$norge 
NO PL DE EN SQ RU 

X X X X   

    Y Y 

Ø Ø Ø Ø Ø Ø 

$norsk 
NO DE EN PL SQ RU 

X X X X   

 Y Y Y Y  

   X X X 

Ø Ø Ø Ø Ø Ø 

$og 
PL SQ DE EN NO RU 

X X X X   

   Y Y  

    X X 

Ø Ø Ø Ø Ø Ø 

$også 
RU NO SQ DE EN PL 

X X X    

 Y Y Y   

  X X X X 

Ø Ø Ø Ø Ø Ø 

$om 
EN NO PL SQ DE RU 

X X X X X  

    Y Y 

Ø Ø Ø Ø Ø Ø 

$på 
DE SQ RU NO PL EN 

X X X X X  

 Y Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$så 
PL NO EN DE RU SQ 

X X X X X X 

Ø Ø Ø Ø Ø Ø 

$skal 
RU DE EN NO PL SQ 

X X X X X  

     Y 

Ø Ø Ø Ø Ø Ø 

$som 
DE RU EN NO PL SQ 

X X X X X X 

Ø Ø Ø Ø Ø Ø 

$sted 
NO PL DE RU SQ EN 

X X X X X  

     Y 

Ø Ø Ø Ø Ø Ø 

$til 
SQ DE RU PL EN NO 

X X X X X  

  Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$være 
SQ RU DE PL NO EN 

X X X X X  

  Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$veldig 
NO EN DE PL SQ RU 

X      

 Y Y Y   

   X X X 

Ø Ø Ø Ø Ø Ø 

$venner 
NO PL EN SQ DE RU 

X X X X X  

  Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$vi 
EN RU DE SQ PL NO 

X X X X X X 

Ø Ø Ø Ø Ø Ø 

$viktig 
RU SQ NO DE PL EN 

X X X    

 Y Y Y Y  

     X 

Ø Ø Ø Ø Ø Ø 

$å 
RU DE SQ NO PL EN 

X X X X   

 Y Y Y Y  

  X X X X 
 

Ø 
Ø Ø Ø Ø Ø 
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DE EN PL RU + Vietnamese 

$andre 
RU DE VI EN PL NO 

X X X    

 Y Y Y Y  

  X X X X 

Ø Ø Ø Ø Ø Ø 

$at 
RU VI EN NO DE PL 

X X X X X  

   Y Y Y 

Ø Ø Ø Ø Ø Ø 

$av 
VI PL DE EN RU NO 

X X X X   

 Y Y Y Y  

    X X 

Ø Ø Ø Ø Ø Ø 

$bare 
NO VI EN RU PL DE 

X X X X   

 Y Y Y Y  

    X X 

Ø Ø Ø Ø Ø Ø 

$barn 
NO EN RU VI DE PL 

X X X X X  

     Y 

Ø Ø Ø Ø Ø Ø 

$barna 
NO EN RU VI DE PL 

X X X X X  

     Y 

Ø Ø Ø Ø Ø Ø 

$bo 
NO PL RU DE VI EN 

X X X X X  

     Y 

Ø Ø Ø Ø Ø Ø 

$da 
EN PL NO VI DE RU 

X X X    

 Y Y Y Y  

  X X X X 

Ø Ø Ø Ø Ø Ø 

$de 
RU NO EN DE VI PL 

X X X X   

 Y Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$den 
VI EN PL DE NO RU 

X X X X X  

     Y 

Ø Ø Ø Ø Ø Ø 

$det 
VI NO RU EN DE PL 

      

      

      

      

      

$du 
VI PL NO RU EN DE 

X X X X X  

  Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$eller 
RU VI NO PL EN DE 

X X X X   

  Y Y Y  

    X X 

Ø Ø Ø Ø Ø Ø 

$en 
PL VI RU EN NO DE 

X X X    

 Y Y Y   

   X X  

    Y Y 

Ø Ø Ø Ø Ø Ø 

$er 
RU VI NO DE PL EN 

X X X X   

   Y Y  

    X X 

Ø Ø Ø Ø Ø Ø 

$et 
RU PL DE VI NO EN 

X X X X   

  Y Y Y  

    X X 

Ø Ø Ø Ø Ø Ø 

$for 
RU EN DE PL NO VI 

X X X    

 Y Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$fordi 
NO RU EN DE PL VI 

X X     

 Y Y Y Y  

  X X X X 

Ø Ø Ø Ø Ø Ø 

$fra 
NO PL DE VI RU EN 

X X X X   

 Y Y Y Y  

  X X X X 

Ø Ø Ø Ø Ø Ø 

$han 
DE NO EN RU VI PL 

X X X X X X 

Ø Ø Ø Ø Ø Ø 

$har 
RU PL VI NO EN DE 

X X X X X X 

Ø Ø Ø Ø Ø Ø 

$hun 
DE NO EN PL RU VI 

X X X X X X 

Ø Ø Ø Ø Ø Ø 

$i 
PL EN DE NO VI RU 

X X X X   

 Y Y Y Y  

   X X X 

Ø Ø Ø Ø Ø Ø 

$ikke 
EN RU VI NO PL DE 

X X X X   

  Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$jeg 
NO DE EN PL RU VI 

X      

 Y Y Y   

   X X  

    Y Y 

Ø Ø Ø Ø Ø Ø 

$kan 
NO RU DE VI PL EN 

X X X X   

 Y Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$liker 
NO DE PL EN VI RU 

X X X    

 Y Y Y Y  

   X X X 

Ø Ø Ø Ø Ø Ø 

$man 
RU PL VI NO EN DE 

X X     

 Y Y Y Y  

  X X X X 

Ø Ø Ø Ø Ø Ø 

$mange 
NO DE PL EN VI RU 

X X X    

 Y Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$med 
VI NO PL RU EN DE 

X X X X X X 

Ø Ø Ø Ø Ø Ø 

$meg 
NO EN RU PL DE VI 

X X X X X  

 Y Y Y Y Y 

Ø Ø Ø Ø Ø Ø 
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$men 
EN NO PL VI RU DE 

X X X X X  

 Y Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$mennesker 
NO VI DE RU EN PL 

X X X X   

 Y Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$mer 
RU VI PL EN DE NO 

X X X X X  

   Y Y Y 

Ø Ø Ø Ø Ø Ø 

$min 
NO DE RU PL EN VI 

X X X    

 Y Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$mye 
DE EN NO RU VI PL 

X X X X X  

  Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$når 
NO RU PL EN VI DE 

X X X X   

 Y Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$norge 
NO PL DE EN VI RU 

X X X X   

   Y Y  

    X X 

Ø Ø Ø Ø Ø Ø 

$norsk 
NO DE EN VI PL RU 

X X X X   

 Y Y Y Y  

     X 

Ø Ø Ø Ø Ø Ø 

$og 
VI PL DE EN NO RU 

X X X X   

   Y Y  

    X X 

Ø Ø Ø Ø Ø Ø 

$også 
RU VI NO DE EN PL 

X X X    

  Y Y   

   X X X 

Ø Ø Ø Ø Ø Ø 

$om 
EN NO PL DE VI RU 

X X X X X  

   Y Y Y 

Ø Ø Ø Ø Ø Ø 

$på 
DE RU NO VI PL EN 

X X X X X  

 Y Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$så 
PL NO EN VI DE RU 

X X X X X X 

Ø Ø Ø Ø Ø Ø 

$skal 
RU DE EN NO PL VI 

X X X X X  

     Y 

Ø Ø Ø Ø Ø Ø 

$som 
VI DE RU EN NO PL 

X X X X X  

 Y Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$sted 
NO PL DE RU VI EN 

X X X X X  

     Y 

Ø Ø Ø Ø Ø Ø 

$til 
DE RU PL VI EN NO 

X X X X X  

 Y Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$være 
VI RU DE PL NO EN 

X X X X X  

  Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$veldig 
NO EN VI DE PL RU 

X      

 Y Y Y   

  X X X  

    Y Y 

Ø Ø Ø Ø Ø Ø 

$venner 
NO PL VI EN DE RU 

X X X X X  

 Y Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$vi 
EN RU DE VI PL NO 

X X X X X  

 Y Y Y Y Y 

Ø Ø Ø Ø Ø Ø 

$viktig 
RU VI NO DE PL EN 

X X X    

 Y Y Y Y  

     X 

Ø Ø Ø Ø Ø Ø 

$å 
RU DE VI NO PL EN 

X X X X   

 Y Y Y Y  

  X X X X 

Ø Ø Ø Ø Ø Ø 
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Appendix I. Homogeneity tables (by feature) 
This appendix contains the results of the Tukey HSD tests described in § 6.3, ordered here by 

feature.

$andre 
RU DE NL EN PL NO 
X X X    
 Y Y Y Y  
  X X X X 

RU DE EN PL SH NO 
X X     
 Y Y Y Y  
  X X X X 

RU DE SO EN PL NO 
X X     
 Y Y Y Y  
  X X X X 

RU DE EN PL SP NO 
X X     
 Y Y Y Y  
  X X X X 

RU DE SQ EN PL NO 
X X     
 Y Y Y Y  
  X X X X 

RU DE VI EN PL NO 
X X X    
 Y Y Y Y  
  X X X X 
,  ,  ,  ,  ,  ,  

$at 
RU EN NO DE NL PL 
X X X X X  
 Y Y Y Y Y 

RU EN NO SH DE PL 
X X X X X  
  Y Y Y Y 

RU EN NO SO DE PL 
X X X X X  
 Y Y Y Y Y 

RU EN NO SP DE PL 
X X X X X  
 Y Y Y Y Y 

RU EN NO DE SQ PL 
X X X X   
 Y Y Y Y Y 

RU VI EN NO DE PL 
X X X X X  
   Y Y Y 
,  ,  ,  ,  ,  ,  

$av 
NL PL DE EN RU NO 
X X X X   
 Y Y Y Y  
    X X 

PL SH DE EN RU NO 
X X X X X  
    Y Y 

SO PL DE EN RU NO 
X X X X X  
    Y Y 

SP PL DE EN RU NO 
X X X X X  
    Y Y 

SQ PL DE EN RU NO 
X X X X X  
    Y Y 

VI PL DE EN RU NO 
X X X X   
 Y Y Y Y  
    X X 
,  ,  ,  ,  ,  ,  

$bare 
NO EN NL RU PL DE 
X X X X   
 Y Y Y Y  
    X X 

NO EN RU SH PL DE 
X X X X   
 Y Y Y Y  
    X X 

SO NO EN RU PL DE 
X X X X   
  Y Y Y  
    X X 

NO EN SP RU PL DE 
X X X X   
 Y Y Y Y  
    X X 

NO EN SQ RU PL DE 
X X X X   
 Y Y Y Y  
    X X 

NO VI EN RU PL DE 
X X X X   
 Y Y Y Y  
    X X 
,  ,  ,  ,  ,  ,  

$barn 
NO EN RU NL DE PL 
X X X X X  
     Y 

NO EN RU DE SH PL 
X X X X   
 Y Y Y Y  
    X X 

NO SO EN RU DE PL 
X X X X X  
     Y 

NO SP EN RU DE PL 
X X X X X  
     Y 

NO EN SQ RU DE PL 
X X X X X  
     Y 

NO EN RU VI DE PL 
X X X X X  
     Y 
,  ,  ,  ,  ,  ,  

$barna 
NO EN RU DE NL PL 
X X X X X  
     Y 

NO EN RU DE PL SH 
X X X X   
    Y Y 

NO EN SO RU DE PL 
X X X X X  
     Y 

NO EN SP RU DE PL 
X X X X X  
     Y 

NO EN RU DE SQ PL 
X X X X   
  Y Y Y  
    X X 

NO EN RU VI DE PL 
X X X X X  
     Y 
,  ,  ,  ,  ,  ,  
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$bo 
NO PL RU DE NL EN 
X X X X   
    Y  
     X 

NO PL RU DE SH EN 
X X X X X  
     Y 

NO PL SO RU DE EN 
X X X X X  
     Y 

NO PL RU DE SP EN 
X X X X   
    Y Y 

NO SQ PL RU DE EN 
X X X X X  
     Y 

NO PL RU DE VI EN 
X X X X X  
     Y 
,  ,  ,  ,  ,  ,  

$da 
EN PL NO NL DE RU 
X X X X   
 Y Y Y Y  
  X X X X 

EN PL NO DE RU SH 
X X X    
 Y Y Y Y  
  X X X X 

EN PL SO NO DE RU 
X X X X   
 Y Y Y Y  
  X X X X 

EN PL SP NO DE RU 
X X X X   
 Y Y Y Y  
   X X X 

EN PL NO DE RU SQ 
X X X    
 Y Y Y Y  
  X X X X 

EN PL NO VI DE RU 
X X X    
 Y Y Y Y  
  X X X X 
,  ,  ,  ,  ,  ,  

$de 
RU NO NL EN DE PL 
X X X X X  
  Y Y Y Y 

RU NO EN DE PL SH 
X X X X   
 Y Y Y Y  
  X X X X 

RU NO EN SO DE PL 
X X X X X  
 Y Y Y Y Y 

RU NO SP EN DE PL 
X X X X X  
  Y Y Y Y 

RU NO EN DE SQ PL 
X X X X X  
 Y Y Y Y Y 

RU NO EN DE VI PL 
X X X X   
 Y Y Y Y Y 
,  ,  ,  ,  ,  ,  

$den 
EN NL PL DE NO RU 
X X X X X  
     Y 

SH EN PL DE NO RU 
X X X    
 Y Y Y Y  
     X 

EN SO PL DE NO RU 
X X X X X  
     Y 

EN PL DE NO SP RU 
X X X X X  
    Y Y 

EN PL DE NO SQ RU 
X X X X X  
    Y Y 

VI EN PL DE NO RU 
X X X X X  
     Y 
,  ,  ,  ,  ,  ,  

$det 
NO RU NL EN DE PL 

      
      
      

NO RU SH EN DE PL 
      
      
      

SO NO RU EN DE PL 
      
      
      
      

NO RU EN SP DE PL 
      
      
      

NO RU SQ EN DE PL 
      
      
      

VI NO RU EN DE PL 
      
      
      
      
      

$du 
PL NO RU EN DE NL 
X X X X X  
  Y Y Y Y 

PL SH NO RU EN DE 
X X X X X  
  Y Y Y Y 

PL NO RU EN SO DE 
X X X X X X 

PL NO RU SP EN DE 
X X X X X X 

SQ PL NO RU EN DE 
X X X X X  
  Y Y Y Y 

VI PL NO RU EN DE 
X X X X X  
  Y Y Y Y 
,  ,  ,  ,  ,  ,  

$eller 
RU NO NL PL EN DE 
X X X X   
 Y Y Y Y  
    X X 

RU SH NO PL EN DE 
X X X X   
  Y Y Y  
    X X 

RU SO NO PL EN DE 
X X X X   
  Y Y Y  
    X X 

RU NO PL SP EN DE 
X X X    
 Y Y Y Y  
    X X 

RU SQ NO PL EN DE 
X X X X   
  Y Y Y  
    X X 

RU VI NO PL EN DE 
X X X X   
  Y Y Y  
    X X 
,  ,  ,  ,  ,  ,  

$en 
PL RU EN NO NL DE 
X X     
 Y Y    
  X X X  
   Y Y Y 

PL SH RU EN NO DE 
X X X    
  Y Y   
   X X  
    Y Y 

PL RU SO EN NO DE 
X X X    
 Y Y Y   
  X X X  
    Y Y 

PL RU SP EN NO DE 
X X     
 Y Y Y   
  X X X  
    Y Y 

PL RU SQ EN NO DE 
X X     
 Y Y Y   
  X X X  
    Y Y 

PL VI RU EN NO DE 
X X X    
 Y Y Y   
   X X  
    Y Y 
,  ,  ,  ,  ,  ,  
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$er 
RU NO NL DE PL EN 
X X X X   
  Y Y Y  
    X X 

RU NO DE PL SH EN 
X X X    
  Y Y Y  
   X X X 

SO RU NO DE PL EN 
X X X X   
   Y Y  
    X X 

RU NO DE SP PL EN 
X X X    
 Y Y Y   
  X X X  
    Y Y 

RU NO SQ DE PL EN 
X X X X   
  Y Y Y  
    X X 

RU VI NO DE PL EN 
X X X X   
   Y Y  
    X X 
,  ,  ,  ,  ,  ,  

$et 
RU PL DE NL NO EN 
X X X    
  Y Y Y  
    X X 

RU PL SH DE NO EN 
X X X X   
    Y Y 

SO RU PL DE NO EN 
X X X X   
   Y Y  
    X X 

RU PL DE SP NO EN 
X X X X   
  Y Y Y  
    X X 

RU PL SQ DE NO EN 
X X X X   
   Y Y  
    X X 

RU PL DE VI NO EN 
X X X X   
  Y Y Y  
    X X 
,  ,  ,  ,  ,  ,  

$for 
RU EN DE NL PL NO 
X X X X   
 Y Y Y Y Y 

RU EN SH DE PL NO 
X X X X   
 Y Y Y Y Y 

SO RU EN DE PL NO 
X X X X   
  Y Y Y Y 

RU EN SP DE PL NO 
X X X X   
 Y Y Y Y Y 

RU SQ EN DE PL NO 
X X X X X  
 Y Y Y Y Y 

RU EN DE PL NO VI 
X X X    
 Y Y Y Y Y 
,  ,  ,  ,  ,  ,  

$fordi 
NO RU EN DE PL NL 
X X     
 Y Y Y Y Y 

NO RU EN DE PL SH 
X X     
 Y Y Y Y  
  X X X X 

NO RU EN DE PL SO 
X X     
 Y Y Y Y  
     X 

NO RU EN DE PL SP 
X X     
 Y Y Y Y  
     X 

NO RU EN DE PL SQ 
X X     
 Y Y Y Y  
     X 

NO RU EN DE PL VI 
X X     
 Y Y Y Y  
  X X X X 
,  ,  ,  ,  ,  ,  

$fra 
NO PL DE NL RU EN 
X X X    
 Y Y Y Y  
  X X X X 

NO PL SH DE RU EN 
X X X X   
  Y Y Y  
    X X 

NO PL DE SO RU EN 
X X X    
 Y Y Y Y  
  X X X X 

NO PL DE SP RU EN 
X X X    
 Y Y Y Y  
  X X X X 

NO PL DE SQ RU EN 
X X X    
 Y Y Y Y  
  X X X X 

NO PL DE VI RU EN 
X X X X   
 Y Y Y Y  
  X X X X 
,  ,  ,  ,  ,  ,  

$han 
NL DE NO EN RU PL 
X X X X X X 

DE NO EN SH RU PL 
X X X X X X 

DE NO EN RU PL SO 
X X X X X X 

DE NO EN SP RU PL 
X X X X X X 

DE NO EN SQ RU PL 
X X X X X X 

DE NO EN RU VI PL 
X X X X X X 
,  ,  ,  ,  ,  ,  

$har 
RU PL NO EN DE NL 
X X X X X  
  Y Y Y Y 

RU PL NO EN DE SH 
X X X X X X 

RU PL SO NO EN DE 
X X X X X X 

RU SP PL NO EN DE 
X X X X X X 

RU PL NO EN DE SQ 
X X X X X X 

RU PL VI NO EN DE 
X X X X X X 
,  ,  ,  ,  ,  ,  
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$hun 
NL DE NO EN PL RU 
X X X X X X 

DE NO EN SH PL RU 
X X X X X X 

DE NO EN PL RU SO 
X X X X X X 

DE NO EN PL SP RU 
X X X X X X 

DE NO EN PL RU SQ 
X X X X X  
    Y Y 

DE NO EN PL RU VI 
X X X X X X 
,  ,  ,  ,  ,  ,  

$i 
PL EN DE NO NL RU 
X X X X   
 Y Y Y Y  
   X X X 

PL EN DE SH NO RU 
X X X X X  
    Y Y 

PL EN DE SO NO RU 
X X X X X  
   Y Y Y 

PL EN SP DE NO RU 
X X X X X  
    Y Y 

PL EN DE NO SQ RU 
X X X X   
  Y Y Y  
   X X X 

PL EN DE NO VI RU 
X X X X   
 Y Y Y Y  
   X X X 
,  ,  ,  ,  ,  ,  

$ikke 
EN RU NO NL PL DE 
X X X    
 Y Y Y Y Y 

EN RU NO PL DE SH 
X X X    
 Y Y Y Y  
  X X X X 

EN RU NO SO PL DE 
X X X X   
 Y Y Y Y Y 

EN RU NO SP PL DE 
X X X X   
  Y Y Y Y 

EN RU NO SQ PL DE 
X X X X   
 Y Y Y Y  
  X X X X 

EN RU VI NO PL DE 
X X X X   
  Y Y Y Y 
,  ,  ,  ,  ,  ,  

$jeg 
NO DE EN PL NL RU 
X      
 Y Y Y Y  
   X X X 

NO DE EN PL SH RU 
X      
 Y Y Y   
  X X X  
    Y Y 

NO DE EN PL RU SO 
X      
 Y Y Y   
   X X  
     Y 

NO DE EN PL SP RU 
X      
 Y Y Y Y  
   X X X 

NO DE EN PL RU SQ 
X      
 Y Y Y   
   X X  
    Y Y 

NO DE EN PL RU VI 
X      
 Y Y Y   
   X X  
    Y Y 
,  ,  ,  ,  ,  ,  

$kan 
NL NO RU DE PL EN 
X X X X   
  Y Y Y Y 

NO RU SH DE PL EN 
X X X X   
 Y Y Y Y Y 

NO SO RU DE PL EN 
X X X X   
 Y Y Y Y Y 

NO RU DE SP PL EN 
X X X X   
 Y Y Y Y Y 

SQ NO RU DE PL EN 
X X     
 Y Y Y   
  X X X X 

NO RU DE VI PL EN 
X X X X   
 Y Y Y Y Y 
,  ,  ,  ,  ,  ,  

$liker 
NO DE PL EN NL RU 
X X X    
 Y Y Y   
   X X X 

NO DE PL EN SH RU 
X X X    
 Y Y Y Y  
    X X 

NO DE PL EN SO RU 
X X X    
 Y Y Y Y  
   X X X 

NO DE PL EN SP RU 
X X X    
 Y Y Y   
   X X X 

NO DE PL SQ EN RU 
X X X X   
 Y Y Y Y  
     X 

NO DE PL EN VI RU 
X X X    
 Y Y Y Y  
   X X X 
,  ,  ,  ,  ,  ,  

$man 
RU PL NL NO EN DE 
X X X    
 Y Y Y Y  
   X X X 

RU PL SH NO EN DE 
X X X    
 Y Y Y Y  
   X X X 

RU SO PL NO EN DE 
X X X    
  Y Y   
   X X X 

RU PL NO EN SP DE 
X X     
 Y Y Y Y  
  X X X X 

RU SQ PL NO EN DE 
X X X    
  Y Y   
   X X X 

RU PL VI NO EN DE 
X X     
 Y Y Y Y  
  X X X X 
,  ,  ,  ,  ,  ,  
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$mange 
NO NL DE PL EN RU 
X X X X   
  Y Y Y Y 

NO DE PL EN RU SH 
X X X    
 Y Y Y Y  
  X X X X 

NO DE PL EN RU SO 
X X X    
 Y Y Y Y  
  X X X X 

NO DE SP PL EN RU 
X X X X   
 Y Y Y Y Y 

NO DE PL SQ EN RU 
X X X X   
 Y Y Y Y Y 

NO DE PL EN VI RU 
X X X    
 Y Y Y Y Y 
,  ,  ,  ,  ,  ,  

$med 
NO PL RU NL EN DE 
X X X X X X 

SH NO PL RU EN DE 
X X X X X X 

SO NO PL RU EN DE 
X X X X X  
 Y Y Y Y Y 

NO PL RU EN SP DE 
X X X X X X 

NO PL RU EN SQ DE 
X X X X X X 
VI NO PL RU EN DE 
X X X X X X 
,  ,  ,  ,  ,  ,  

$meg 
NO NL EN RU PL DE 
X X X X X X 

NO EN RU SH PL DE 
X X X X X X 

NO EN SO RU PL DE 
X X X X X X 

NO EN SP RU PL DE 
X X X X X X 

NO EN RU PL DE SQ 
X X X X X  
 Y Y Y Y Y 

NO EN RU PL DE VI 
X X X X X  
 Y Y Y Y Y 
,  ,  ,  ,  ,  ,  

$men 
EN NO PL RU DE NL 
X X X X   
 Y Y Y Y Y 

EN NO PL RU DE SH 
X X X X   
 Y Y Y Y Y 

EN NO PL RU SO DE 
X X X X X  
 Y Y Y Y Y 

EN NO PL RU SP DE 
X X X X   
 Y Y Y Y Y 

EN NO PL RU DE SQ 
X X X X   
 Y Y Y Y  
    X X 

EN NO PL VI RU DE 
X X X X X  
 Y Y Y Y Y 
,  ,  ,  ,  ,  ,  

$mennesker 
NO DE RU EN PL NL 
X X X X   
 Y Y Y Y  
  X X X X 

NO DE RU EN SH PL 
X X X    
 Y Y Y Y Y 

NO DE RU EN SO PL 
X X X X   
 Y Y Y Y Y 

NO DE RU EN SP PL 
X X X X   
 Y Y Y Y Y 

NO DE RU EN SQ PL 
X X X X X  
 Y Y Y Y Y 

NO VI DE RU EN PL 
X X X X   
 Y Y Y Y Y 
,  ,  ,  ,  ,  ,  

$mer 
RU PL EN DE NL NO 
X X X X   
  Y Y Y Y 

RU PL SH EN DE NO 
X X X X X  
   Y Y Y 

RU SO PL EN DE NO 
X X X X X  
   Y Y Y 

RU SP PL EN DE NO 
X X X X X  
   Y Y Y 

RU SQ PL EN DE NO 
X X X X X  
   Y Y Y 

RU VI PL EN DE NO 
X X X X X  
   Y Y Y 
,  ,  ,  ,  ,  ,  

$min 
NO DE RU PL NL EN 
X X X    
 Y Y Y Y Y 

NO DE RU PL EN SH 
X X X    
 Y Y Y Y Y 

NO DE RU PL EN SO 
X X X X   
 Y Y Y Y  
   X X X 

NO DE RU SP PL EN 
X X X    
 Y Y Y Y Y 

NO DE RU PL SQ EN 
X X X    
 Y Y Y Y Y 

NO DE RU PL EN VI 
X X X    
 Y Y Y Y Y 
,  ,  ,  ,  ,  ,  

$mye 
DE EN NO RU NL PL 
X X X X X  
  Y Y Y Y 

DE EN NO RU SH PL 
X X X X X  
  Y Y Y Y 

SO DE EN NO RU PL 
X X X X X  
   Y Y Y 

DE EN NO RU SP PL 
X X X X X  
  Y Y Y Y 

DE EN SQ NO RU PL 
X X X X X  
   Y Y Y 

DE EN NO RU VI PL 
X X X X X  
  Y Y Y Y 
,  ,  ,  ,  ,  ,  

$når 
NO RU PL EN DE NL 
X X X X   
 Y Y Y Y Y 

NO RU PL EN DE SH 
X X X X   
 Y Y Y Y Y 

NO SO RU PL EN DE 
X X X X X  
 Y Y Y Y Y 

NO RU PL EN SP DE 
X X X X   
 Y Y Y Y Y 

NO RU PL EN SQ DE 
X X X X   
 Y Y Y Y Y 

NO RU PL EN VI DE 
X X X X   
 Y Y Y Y Y 
,  ,  ,  ,  ,  ,  
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$norge 
NO PL DE EN NL RU 
X X X X   
 Y Y Y Y  
     X 

NO PL DE EN SH RU 
X X X X   
 Y Y Y Y  
    X X 

NO PL DE EN SO RU 
X X X X   
  Y Y Y  
    X X 

NO PL DE EN SP RU 
X X X X   
 Y Y Y Y  
     X 

NO PL DE EN SQ RU 
X X X X   
    Y Y 

NO PL DE EN VI RU 
X X X X   
   Y Y  
    X X 
,  ,  ,  ,  ,  ,  

$norsk 
NO NL DE EN PL RU 
X X X X   
 Y Y Y Y  
     X 

NO DE SH EN PL RU 
X X X X   
 Y Y Y Y  
     X 

NO DE EN SO PL RU 
X X X X   
 Y Y Y Y  
     X 

NO DE EN PL SP RU 
X X X    
 Y Y Y Y  
   X X X 

NO DE EN PL SQ RU 
X X X X   
 Y Y Y Y  
   X X X 

NO DE EN VI PL RU 
X X X X   
 Y Y Y Y  
     X 
,  ,  ,  ,  ,  ,  

$og 
PL DE NL EN NO RU 
X X X X   
    Y Y 

PL DE SH EN NO RU 
X X X X   
   Y Y  
    X X 

PL DE EN SO NO RU 
X X X X   
  Y Y Y  
    X X 

PL SP DE EN NO RU 
X X X X   
   Y Y  
    X X 

PL SQ DE EN NO RU 
X X X X   
   Y Y  
    X X 

VI PL DE EN NO RU 
X X X X   
   Y Y  
    X X 
,  ,  ,  ,  ,  ,  

$også 
RU NO DE EN PL NL 
X X     
 Y Y    
  X X X X 

RU NO SH DE EN PL 
X X X    
 Y Y Y   
  X X X X 

RU NO SO DE EN PL 
X X X    
 Y Y Y   
  X X X X 

RU NO SP DE EN PL 
X X     
 Y Y Y   
  X X X X 

RU NO SQ DE EN PL 
X X X    
 Y Y Y   
  X X X X 

RU VI NO DE EN PL 
X X X    
  Y Y   
   X X X 
,  ,  ,  ,  ,  ,  

$om 
NL EN NO PL DE RU 
X X X X X  
    Y Y 

SH EN NO PL DE RU 
X X X X X  
    Y Y 

SO EN NO PL DE RU 
X X X X X  
    Y Y 

EN NO PL SP DE RU 
X X X X X  
    Y Y 

EN NO PL SQ DE RU 
X X X X X  
    Y Y 

EN NO PL DE VI RU 
X X X X X  
   Y Y Y 
,  ,  ,  ,  ,  ,  

$på 
DE RU NO NL PL EN 
X X X X X  
 Y Y Y Y Y 

DE RU NO SH PL EN 
X X X X X  
 Y Y Y Y Y 

SO DE RU NO PL EN 
X X X X   
 Y Y Y Y  
  X X X X 

DE RU NO SP PL EN 
X X X X X  
 Y Y Y Y Y 

DE SQ RU NO PL EN 
X X X X X  
 Y Y Y Y Y 

DE RU NO VI PL EN 
X X X X X  
 Y Y Y Y Y 
,  ,  ,  ,  ,  ,  

$så 
PL NO EN DE RU NL 
X X X X X  
 Y Y Y Y Y 

SH PL NO EN DE RU 
X X X X   
 Y Y Y Y Y 

PL NO SO EN DE RU 
X X X X X X 

PL NO EN SP DE RU 
X X X X X X 

PL NO EN DE RU SQ 
X X X X X X 

PL NO EN VI DE RU 
X X X X X X 
,  ,  ,  ,  ,  ,  
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$skal 
RU DE EN NO PL NL 
X X X X X  
     Y 

RU DE EN NO PL SH 
X X X X X  
     Y 

RU DE EN NO PL SO 
X X X X X  
     Y 

RU DE EN NO PL SP 
X X X X X X 

RU DE EN NO PL SQ 
X X X X X  
     Y 

RU DE EN NO PL VI 
X X X X X  
     Y 
,  ,  ,  ,  ,  ,  

$som 
NL DE RU EN NO PL 
X X     
 Y Y Y Y Y 

DE RU EN NO PL SH 
X X X X X X 

DE RU EN NO PL SO 
X X X X X  
    Y Y 

DE RU SP EN NO PL 
X X X X X X 

DE RU EN NO PL SQ 
X X X X X X 
VI DE RU EN NO PL 
X X X X X  
 Y Y Y Y Y 
,  ,  ,  ,  ,  ,  

$sted 
NO PL DE RU NL EN 
X X X X   
    Y  
     X 

NO PL DE RU SH EN 
X X X X X  
     Y 

NO PL DE RU SO EN 
X X X X X  
     Y 

NO PL DE RU SP EN 
X X X X   
    Y Y 

NO PL DE RU SQ EN 
X X X X X  
     Y 

NO PL DE RU VI EN 
X X X X X  
     Y 
,  ,  ,  ,  ,  ,  

$til 
DE RU PL NL EN NO 
X X X X X  
 Y Y Y Y Y 

SH DE RU PL EN NO 
X X X X X  
  Y Y Y Y 

DE RU SO PL EN NO 
X X X X X  
 Y Y Y Y Y 

DE RU SP PL EN NO 
X X X X X  
 Y Y Y Y Y 

SQ DE RU PL EN NO 
X X X X X  
  Y Y Y Y 

DE RU PL VI EN NO 
X X X X X  
 Y Y Y Y Y 
,  ,  ,  ,  ,  ,  

$være 
RU NL DE PL NO EN 
X X X X X  
 Y Y Y Y Y 

SH RU DE PL NO EN 
X X X X X  
  Y Y Y Y 

SO RU DE PL NO EN 
X X X X   
 Y Y Y Y  
  X X X X 

RU DE PL NO SP EN 
X X X X   
 Y Y Y Y Y 

SQ RU DE PL NO EN 
X X X X X  
  Y Y Y Y 

VI RU DE PL NO EN 
X X X X X  
  Y Y Y Y 
,  ,  ,  ,  ,  ,  

$veldig 
NO EN DE NL PL RU 
X      
 Y Y Y   
  X X X  
   Y Y Y 

NO EN DE PL RU SH 
X      
 Y Y Y   
   X X X 

NO EN SO DE PL RU 
X      
 Y Y Y   
  X X X  
    Y Y 

NO EN DE PL SP RU 
X      
 Y Y Y   
  X X X  
   Y Y Y 

NO EN DE PL SQ RU 
X      
 Y Y Y   
   X X X 

NO EN VI DE PL RU 
X      
 Y Y Y   
  X X X  
    Y Y 
,  ,  ,  ,  ,  ,  

$venner 
NL NO PL EN DE RU 
X X X X   
 Y Y Y Y  
   X X X 

NO PL EN DE RU SH 
X X X X   
 Y Y Y Y  
  X X X X 

NO PL SO EN DE RU 
X X X X X  
 Y Y Y Y Y 

NO PL EN SP DE RU 
X X X X X  
  Y Y Y Y 

NO PL EN SQ DE RU 
X X X X X  
  Y Y Y Y 

NO PL VI EN DE RU 
X X X X X  
 Y Y Y Y Y 
,  ,  ,  ,  ,  ,  
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$vi 
EN RU DE PL NO NL 
X X X X   
 Y Y Y Y  
  X X X X 

EN RU DE PL NO SH 
X X X X X  
   Y Y Y 

EN RU DE SO PL NO 
X X X X X X 

EN RU DE PL SP NO 
X X X X X  
 Y Y Y Y Y 

EN RU DE SQ PL NO 
X X X X X X 

EN RU DE VI PL NO 
X X X X X  
 Y Y Y Y Y 
,  ,  ,  ,  ,  ,  

$viktig 
RU NO DE NL PL EN 
X X     
 Y Y Y Y  
     X 

RU NO DE SH PL EN 
X X     
 Y Y Y Y  
     X 

RU SO NO DE PL EN 
X X X    
 Y Y Y Y  
     X 

RU NO DE PL SP EN 
X X     
 Y Y Y Y  
    X X 

RU SQ NO DE PL EN 
X X X    
 Y Y Y Y  
     X 

RU VI NO DE PL EN 
X X X    
 Y Y Y Y  
     X 
,  ,  ,  ,  ,  ,  

$å 
RU DE NL NO PL EN 
X X X X   
 Y Y Y Y  
   X X X 

SH RU DE NO PL EN 
X X X    
 Y Y Y   
  X X X  
   Y Y Y 

RU DE SO NO PL EN 
X X X X   
 Y Y Y Y  
  X X X X 

RU DE NO PL EN SP 
X X X    
 Y Y Y   
  X X X  
    Y Y 

RU DE SQ NO PL EN 
X X X X   
 Y Y Y Y  
  X X X X 

RU DE VI NO PL EN 
X X X X   
 Y Y Y Y  
  X X X X 
,  ,  ,  ,  ,  ,  

 

 

 

 

 



 

 

 

 

 



 

 

This study investigates cross-linguistic influence in Norwegian 
interlanguage using predictive data mining technology and with a 
focus on lexical transfer. The following research questions are 
addressed: 

• Can data mining techniques be used to identify the L1 
background of Norwegian language learners on the basis of 
their use of lexical features of the target language? 

• If so, what are the best predictors of L1 background? 
• Can those predictors be traced to cross-linguistic influence? 

Lexical transfer in Norwegian interlanguage 
– A detection-based approach 
Steve Pepper, University of Oslo 

The study is based on L2 data from ASK, the Norwegian Second 
Language Corpus, and draws on resources from the ASKeladden 
project. The source data consists of essays written by 1,736 
second language learners of Norwegian from ten different L1 
backgrounds, and a control corpus of 200 texts written by native 
speakers. Word frequencies computed from this data are 
analysed using the multivariate statistical method of Discriminant 
Analysis, and the results are subjected to Contrastive Analysis. 

This combination of quantitative and qualitative analysis yields 
all three types of evidence called for by Scott Jarvis in his 
requirements for rigour in transfer research. Well-known effects, 
such as the tendency for Russian learners to omit the indefinite 
article, are confirmed, but also other, more subtle patterns of 
learner language are revealed, such as the marked tendency for 
Dutch learners to overuse the modal verb skal. These results 
provide abundant material for future research, and the statistical 
methods can be applied in many areas of quantitative language 
research. 
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