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Abstract. 
 

This work summarises the outcome of research performed at the Universities of Liverpool and 

Oslo during the course of an EU-Marie Curie EST fellowship and funded through the 

NOVELOX program under the 6th framework (FP6) of the European Union. It focuses on 

perovskite related materials that possess the Ruddlesden-Popper structure and are composed 

of Pr-Sr-Co-Fe-O atoms.  

After an introduction chapter that aims at presenting a general overview of perovskites and 

related materials through their structures and technological applications, a brief description of 

the experimental methods used throughout this work is given in Chapter 2. The third chapter 

summarises non published but relevant results as well as summaries of published, submitted 

or under review manuscripts. It begins by describing the attempts at lanthanide substitution 

within the LnSr3Co1.5Fe1.5O10-  system and the subsequent choice of Ln=Pr. It is then 

followed by an account of the effect of oxygen deficiencies in PrSr3Co1.5Fe1.5O10-  on the 

oxidation state of the transition metals and their local magnetic environment and behaviour as 

examined respectively by XANES and Mössbauer spectroscopy. These confirm the reduced 

state of the transition metal cations as well as the presence of magnetic ordering. Thereafter 

results summarising the structural evolution of the compound upon heating under inert 

conditions (Paper I) and the subsequent hydration of the thus obtained phases (Paper II) are 

given. It is shown that the onset of oxygen mobility occurs at relatively low temperatures (c.a. 

200°C) and a conduction mechanism is proposed. For the reduced phases, hydration as well as 

carbonation is shown to occur as a function of the hydration mechanism used. In addition, the 

topotactic de-hydration through a hydroxide phase, as studied by in-situ synchrotron radiation 

experiments, is also discussed. The chapter terminates by summarizing the impact of Co for 

Fe substitution on the magnetic properties and structure of PrSr3Co(Fe1-x Cox)3O10-  (x=0.0 to 

0.6, Paper III). As the Co content increases, the transition from a complex anti-ferromagnetic 

structure, to one where ferromagnetic interactions are dominant is observed.  

Finally, a discussion on the possibilities that this work offers followed by the list of 

publications and references terminate this thesis. Complete reproductions of the publications 

are to be found in the Annexe of this work.  
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Glossary 
 

Structures: 
ap: The reduced dimension of a primitive perovskite cubic cell. (used to compare and 

represent derived super cells) 

cp: The reduced dimension of an anisotropic primitive perovskite cubic cell. (used to 

compare and represent derived super cells) 

RPn: Ruddlesden Popper phase with “n” perovskite blocks alternating with on AO layer.  

MIEC.: Mixed ionic and electronic conductor.  

HTSC: High Temperature Super Conductor. 
 

Properties: 
JT:  Jahn-Teller. 

CD:  Charge Disproportionation. 

CO: Charge Ordering. 

MI: Metal insulator transition. 

PM:  Paramagnetic. 

(A)FM: (Anti-) Ferromagnetic. 

FiM: Ferrimagnetic. 

SG: Spin glass. 

(A)FE.: (Anti-)Ferroelectric. 

PE: Paraelectric. 

MR (G-, T-or C-):  Magneto resistance (Giant-, Tunnelling- or Colossal-) 
 

Methods: 
RT: Room temperature 

ED: Electron diffraction 

XRD (HR-, SR-): X-ray Powder diffraction (High Resolution-, Synchrotron Radiation-) 

NPD: Neutron Powder Diffraction 

EDS: Energy Dispersive X-ray Spectroscopy 

EXAFS: Extended X-Ray absorption Fine Structure 

XANES: X-ray Absorption Near Edge Spectroscopy 
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1 Introduction 
Amongst the plethora of inorganic structures, there is one that stands out through its 

versatility in derived structures and physical properties: the perovskite structure. 

 “Perovskite” is a naturally occurring mineral with composition CaTiO3 (with regional 

variations) that was named in honour of the Russian mineralogist Count Lev Alekseevich 

Perovskii by G. Rose in 1839.1 Since then, other minerals and synthetic compounds of general 

composition ABX3 that adopt a structure akin to CaTiO3 have been referred to as perovskites. 

Generally, A and B are cations from group I through group XV elements and X is a counter 

anion from Group XV, Group XVI or Group XVII.  

Along with their related structures, perovskites have been widely studied for their interesting 

properties since the mid 1940’s2 and have found many applications within an abundance of 

fields. These range from the “high-k” dielectrics (eg. Ba-SrTiO3
3-5), multiferroïcs (eg, 

BiFeO3
6), superconductors (YBa2Cu3O7, La2CuO4), metallic conductors ((La1-x,Srx)CoO3), 

magnetoresitors (MR) as exemplified by LaMnO3, complex ferro- (FM) and antiferro- (AFM) 

magnetic structures all the way to high temperature catalysts and membrane materials.  

This first chapter aims at presenting a general overview of perovskites and related materials 

through their structures and technological applications thereby setting the stage for the scope 

of this work. For the interested reader, a more in depth review on the relations between the 

perovskite structure and those of its related materials has been written by Mitchell.7 

1.1 The ABX3 Perovskites. 

The wide range of applications where perovskites (and related) materials are to be found, is 

largely due to the compositional versatility of the structure. This allows for tuning of 

properties and stability by (co-) substitution and creation of ordered super-, defect- and 

intercalated structures.  

The ideal perovskite structure is cubic and can be exemplified by that of SrFeO3. In this 

structure, Sr is located on the A-site situated in the centre of the unit cell (i.e. x, y, z = ½, ½, 

½), Fe is located on the B-site at one of the corners (i.e. x, y, z = 0, 0, 0) and the anion X-site 

is located halfway between two B-sites on a unit cell edge (i.e. x,y,z = ½, 0, 0) (Fig 1a lower 

sructure). It is a closed packed structure formed by the AX sublattice with the B cation 

occupying ¼ of the octahedral sites. The upper structure in Fig 1 (a) gives an alternative 

representation through a translation of the original unit cell by a vector (½, ½, ½).  
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However, only a few compounds possess an ideal cubic structure. Already in 1946, Megaw 

and co-workers published a comprehensive review of the then known perovskite structures2 

comprising cubic and distorted compounds. Using the available crystallographic data for the 

known perovskite structures, Goldschmidt proposed a tool for assessing and predicting the 

likely distortions. Based on geometric considerations of the ionic radii alone, he introduced 

the tolerance factor “t”8.  

 

 (1)

 

Where RA, RB and RX are respectively the ionic radii of cations on the A, B and X sites. 

 

Fig 1. The different perovskite structures obtained when t  1, t < 1 or t > 1. (a) 2 possible representations 
for the cubic SrFeO3

9 with the BO6 octahedra in the centre of the unit cell (top) or on the corners of the unit 
cell (bottom). (b) The orthorhombic CaFeO3.

10, 11 (c) The hexagonal structure of BaFeO3- .
12 

 

The case of the AFeO3 perovskites (A= Ca, Sr, Ba) provides an ideal illustration of these size 

effects. When “t” is much smaller than 1 as in CaFeO3-  (Fig 1b), the B-X bonds are put 

under a compressive strain causing the octahedral to tilt, thereby adopting an orthorhombic 

structure type. Glazer13 has determined a series of notations to characterise these rotations and 

linked them to various crystallographic space groups.  
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When “t” is much greater than 1, as seen with BaFeO3-  (Fig 1c), the B-X bonds are put under 

tension resulting in hexagonal/rhombohedral structures with alternating sequences of 

hexagonal- and cubic- closed packing (hcp and ccp respectively) of the AX lattice. 

Such deformations have a major effect on the properties of perovskites. As an example one 

might consider the AFeO3 compounds (A= Ca, Sr, Ba). For these, the “s” atomic orbitals of 

the A cations lie too far from the Fermi level to have a major influence on the electronic 

properties of the compounds. These are therefore mainly governed by the cation on the B site 

(i.e.: Fe) and the B-O interactions. The orbital overlap between the 3d shell of Fe4+ and the 2p 

shell of the O2- shells changes significantly when considering A=Sr2+ or A=Ca2+. In the cubic 

SrFeO3, the Fe4+ and O2- are collinear allowing for maximum overlap of the Fe eg orbitals and 

the O2-p orbital thus creating a delocalised band. The width W  of this band can be related to 

the departure of the bond angle Fe-O-Fe from 180° i.e. “180°- ” according to (2).14 

 

 (2) 

 

Where, C is a collection of terms reflecting the inter- and intra- atomic spin-spin interactions.  

Upon substitution of Sr2+ by Ca2+, the structure is distorted, the Fe-O-Fe angle is no longer 

180° and the band width of the delocalised electrons diminishes. The compound goes from 

being a metallic compound to a semiconductor. When substituted by Ba2+, the hexagonal form 

leads to strong deviations of the M-O-M angles from the ideal 180° resulting in a smaller 

bandwidth W . However, the hexagonal distortion also leads to face sharing octahedra thus to 

smaller B-B distances. The electronic interactions between the B sites can therefore no longer 

be excluded and a more complex description is needed to explain the electronic properties of 

the compound.  

In addition to the structural deformations caused by A-B size effects, magnetic interactions 

through super exchange and double exchange, Jahn-Teller (JT) deformations and charge 

disproportionation (CD) with charge ordering (CO), all of which may have an effect on the 

spin alignments of magnetic cations as well as cation ordering in substituted compounds, can 

lead to the emergence of super cells that enlarge the basic unit cell of the compound. 

Fig 2 shows two examples of A site cationic ordering schemes. Both types are driven by the 

size differences between the A and A’ cations. In the first case (Fig 2a), AA’3TM3O12 (A is a 

La15,Ca16, A’ is Mn17 or Cu15, 16 and TM a transition metal15-17) there is a 1:3 ordering 

between the A and A’ cations accompanied by a cooperative tilting of the octahedra so as to 
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allow a square planar coordination between the A’ and the oxygens. This has the effect of  

 

 

 

Fig 2. Perovskite structures with A site ordering. (a) A perovskite with a cationic 1:3 ordering ratio 
between two different cations (A’ in purple and A grey) present on the A site.15 (b) A perovskite with a 1:1 
ordering ratio between the two cationic species present on the A site (green and grey atoms18, 19). 

 

 

Fig 3. Perovskite structures with B site ordering. (a) A perovskite with a cationic 1:1 ordering ratio 
between two different cations present.20 (b) Model for a perovskite with CO.21 
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Fig 4. Ordered anion defect perovskite structures from the AnBnX3n-1 system. (a) n=  The cubic 
perovskite.9 (b) The n=1 member with its extended magnetic unit cell.22 (c) The n=2 brownmillerite-type 
structure.23 (d) The structure of NdBaFe2O5 at low temperatures, an alternative structure model for n=224-26 
and structures for the n=4 (e) and n=8 (f) members.23 
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doubling the unit cell in all directions (a x b x c =2ap x 2ap x 2ap). In the second scheme (Fig 

2 b), the A’ and A order in separate planes18, 19, 27 resulting in a doubling of the unit cell along 

the c-axis (a x b x c =ap x ap x 2ap).  

Similarly to what happens for the A site, B site order following substitution is encountered 

frequently in the ABX3 systems. Though, in this case rather than being driven by size 

mismatches, it is rather charge mismatches or CD effects that drive such ordering. Figure 3 

depicts these two situations. In part (a), an A2BB’O6 double perovskite structure is 

represented. Such ordering is typical of structures where 3d and 4d transition metals are 

mixed in a 1:1 ratio. Amongst the B cations that undergo charge CD/CO, those containing 

Mn3+/Mn4+ or Fe3+/Fe4+/Fe5+ compose one of the more commonly encountered groups. Fig 

3(b) shows the case of a CO structure proposed for La0.5Ca0.5MnO3 where the Mn3+ and Mn4+ 

are ordered in separate layers.  

Other ordering schemes can be found for oxidation sates of the transition metals as in 

Sr2LaFe3O9
28, where there is a 2:1 charge ordering of the Fe3+ and Fe5+. These are often 

accompanied by orbital ordering and/or electron holes ordering that add to the variety of the 

superstructures found in these compounds.  

1.2 Anion defective perovskite structures. 

Many of the cations that can be accommodated by the perovskite structure have multiple 

stable valences. Therefore, the occurrence of anion vacancies in structures with cations in 

their lower oxidation states should not be unexpected. On the contrary, since the AX lattice 

forms a closed packed structure, the occurrence of interstitial anions is not likely, and it has 

been shown for hypostoichiometric LaMnO3+ , that the structure comprises cationic 

vacancies and is more accurately described when written as La1-x�xMn1-y�yO3
29. Such cation 

deficient phases are treated in section 1.3. 

Most probably one of the more obvious anion defective structures is that of the perovskite 

itself ABX3- . The vacancies are then distributed randomly over the available sites and the 

retained structure is often the same as the oxidised parent compound (Fig 4 a).  

There are however some structure types that are more stable for specific values of . A large 

group of these has been regrouped under the generic formula AnBnX3n-1. In this formula, “n” 

takes integer values, and for n= , the original oxidised perovskite is found. The cations on the 

A and B sites have a big influence on the values that n can take due to preferred coordination 
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environments and/or valences. This can be seen notably through the difference in structures 

adopted for the defective manganates and ferrates. 

The AnFenO3n-1 series where n=1, 2, 4, 8 and  is represented in Fig. 4 and correspond to “ ” 

values of 1, 0.5, 0.25, 0.125 and 0 respectively. The n=1 compound was synthesised by 

Tsujimoto and co-workers22 in 2007 through the reaction of SrFeO3 with CaH2. As can be 

seen from Fig 4b, it consists of infinite planes of square planar [FeO2]2- sheets separated by 

Sr2+ cations. This leads to a structural anisotropy reflected by the unit cell dimensions where a 

= b  c. The compound has an AFM alignment of the Fe(II) spins within the sheets and 

aligned parallel to one of the crystallographic axis that leads to a magnetic super-cell doubled 

in all directions (2ap x 2ap x 2cp). The transformation from the n=  to the n=1 phase is 

reversible and occurs through a n = 2 Brownmillerite-type intermediate.22 This phase is shown 

in Fig 4c where A=Ca2+ and consists of corner sharing octahedraly (i.e. six-) coordinated Fe3+ 

sheets. The sheets of octahedra are separated by chains of corner shared Fe3+ tetrahedra. Fig 

4d represents an alternate configuration for the n=2 member where the Fe is now five 

coordinated in a square pyramidal configuration.24-26 In this case, such a configuration might 

be preferred due to the simultaneous ordering of Ba2+ and Nd3+ on the A-site. As can be seen 

from Fig 4e and Fig 4f, the higher order members consist of various ordering schemes of the 

octahedral and square pyramidal environments. For n=4, the five coordinated iron cations 

form sheets that are separated by sheets of octahedra whereas the n=8 consist of corner 

sharing Fe bi-pyramids that are stacked along one crystallographic axis. The stacks are 

surrounded by six chains of corner sharing octahedra. Furthermore, by co substitutions on the 

A and/or B site, ordered structures for n=3 have been found in a ccp derived AX arrays.30 

Compositions corresponding to n=3, 5, 6, 7, 10, 12 are also reported for various Fe-based 

rhombohedral and hexagonal perovskite systems resulting in various stacking sequences 

within the hcp - AX array12, 31, 32 and are usually classified amongst hexagonal perovskite 

polytypes.  

A final comment on the anion deficient compounds, the presence of ordered anion defects and 

cation ordering can occur simultaneously. Such phases typically occur with the cuprates and 

have as its most notorious example the “123” compound YBa2Cu3O7 system (see Fig 8 (c)). 

1.3 Perovskite related phases. 

In addition to the compositional versatility of the perovskite ABX3-  (super-) structures, there 

exists a smorgasbord of structures that are related to it. That range from intergrowth of 
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perovskite and (un-) related phases through to anti-perovskites and hybrid Organic/Inorganic 

perovskites. An attempt to systematically classify all of them is out of the scope of this work 

and thus, some examples have been sorted into groups of similar dimensionality.  

1.3.1 3D Perovskite related phases 

The group of 3D perovskites comprises amongst others: the inverse perovskites,33, 34 the 

ReO3
35 and WO3

36 (that can be considered as A site deficient perovskites �BX3), as well as 

the hybrid organic/inorganic phases (see Fig 5).  

Anti-perovskites are compounds of general composition A3BX where the anion becomes the 

centre of the octahedra and can form either the cubic or the hexagonal perovskite derivates. 

Regarding the hybrid perovskites, changing or combining different (organic) molecules has 

been used to reduce the dimensionalities down to 2 or 1 (see 1.3.1 and 1.3.2).37, 38  

 

Fig 5. 3D Perovskite related phases. (a) Structure of the anti-perovskite Ca3GeO adopting an anti-GdFeO3 
structure. (Ca in grey, Ge in Turquoise, O in red).34 (b) Structure of ReO3 (Re6+ in Grey, O2- in red).35 (c) 
Cubic hybrid structure C4N2H12.NH4Cl3.H2O (C4N2H12

2-
 on A site, NH4

+ on B site, Cl- on X site. C in Black, 
H in white, N in blue, O in red and Cl in green).38 

1.3.2 2D Perovskite related phases 

Two dimensional phases are very frequent in the perovskite related phases, and occur upon 

ordering of anion vacancies as in Fig 4(d) or when off-stoichiometry induces ordered planar 

defects. This dimensionality can have interesting effects on the conduction of ions or 
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electrons and magnetic anisotropy caused by the alternation of planes with different types of 

atomic and electronic structures. Additionally, the interlayer is well suited for intercalation 

reactions of water, CO2 and other ions.39-44 

As mentioned above, the dimensionality can be induced when there is an off stoichiometry 

either on the anion site or on the cationic site of a perovskite layer. When this happens, 

intergrowth structures between perovskite blocks and a second structure type or between two 

perovskite (-related) structures can be observed. In the former case, three widely studied 

structure families are found :  

 The Aurivillius phases45-47 (A’2X2)(An-1BnX3n+1). 

 The Dion-Jacobsen phases48, 49 A’(An-1BnX3n+1). 

 The Ruddlesden-Popper phases50, 51 (A’X)(ABX3)n.  

Fig 6 shows the structure for each of them. 

 

 

Fig 6. 2D Perovskite related structures: Aurivillius, Dion-Jacobsen and Ruddlesden-Popper 
intergrowth structures where n=3. a) The structure of the Aurivillius phase Bi2O2Bi2Ti3O10 (Bi, Ti and O 
atoms respectively coloured in grey, turquoise and red).46 b) The structure of a Dion-Jacobsen phase 
CsCa2Nb3O10(Cs, Ca, Nb and O atoms respectively coloured in dark grey (large spheres), lighter grey 
(small spheres), pale blue and red).52 c) The Ruddlesden-Popper phases Sr4Ti3O10 (Sr, Ti and O atoms 
respectively coloured in grey, turquoise and red).53 
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In the Aurivillius phases, an excess of a heavy cations on the A site forms layers of A’2X2 that 

alternate with layers of perovskite blocks causing these to shift relative to each other by a 

vector [½, 0, 0]p. The first reporting of the Aurivillius phases with n=3, 4 and 5 contained 

exclusively Bi3+ cations on both the A’ and A sites. Since, phases with n values up to 854, 55 

have been synthesised. Furthermore, in order to tune their properties, numerous substitutions 

have been performed within the perovskite blocks by elements from the alkali metals, alkaline 

earth, rare earths, and later metals from group XIV such as Pb and Sn on the A sites. Whereas 

on the B site, many 3d and 4d transition metals have successfully been co-substituted or even 

entirely replaced Ti54, 56. Additionally evidence of substitution of Bi3+ by Pb2+ within the 

[Bi2O2]2+ sheets upon doping has also been shown57, 58. 

The Dion-Jacobson phases were first described by Dion48 for n=3 and contained a monovalent 

alkali cation or NH4
+ on the A’ site. Jacobson49 further extended this family of compounds by 

increasing the number “n” of stacked perovskite unite cells in the An-1BnX3n+1 slabs from three 

to seven. The A site is usually occupied by an alkaline earth metal but can also accommodate 

rare earth cations.59 The B site is usually occupied by Ti, Nb or Ta.60 The compound is very 

versatile and has been used for intercalation of organic compounds and ion exchange.61-64 

Lichtenberg distinguishes three types of Dion Jacobson structures according to the 

displacement between the perovskite slabs. The first, has a direct sacking of the blocks (i.e. 

the octahedra are stacked directly over each other). In the second, the slabs are displaced with 

respect to each other by a [½00]p vector and finally, in the third type of stacking, two 

successive perovskite slabs are shifted by a vector [½½0]p with respect to each other.60 

Ruddlesden-Popper phases can be synthesised with relative ease for the first three members of 

the series (see Fig 7) as bulk compounds and encompass a wide variety of compositions60. On 

the A site, elements from group I, group II, rare earths, Y, Bi, etc..., can be present alone or as 

solid solutions. Whereas on the B site, most elements from the 3d and 4d transition metals, 

some group XIII and XIV elements and even carbonate groups65, 66 can be incorporated. 

When RP phases contain group I elements, these are often ion exchanged with other mono 

and divalent metals. This has led to structures where the A site were ion exchanged with much 

smaller transition metals but yet, retained high stability67. When reduced, they can also 

accommodate (OH)- , H2O and CO3
2-/CO2 within the interlayer. However for these 

intercalated compounds, the exact location and ordering of the molecules within the AX layer 

is still subject to some debate.40  
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Recently, through thin film techniques, higher order members (n=4, 5 and 6) were 

successfully synthesised68, 69 and has allowed the synthesis of RP phases where the perovskite 

slabs are A site ordered.69  

Similar to the Dion-Jacobson phases where the A:B ratio is 1:1, a second class of 2D 

compounds exists with A:B ratio of 1:1. However in these compounds, while the unity A:B 

ratio is preserved within the perovskite slabs, the total cation to anion ratio is smaller and its 

generic chemical formula is written as AnBnX3n+2.70-73 They also differ in the structure of the 

slabs themselves. Whereas in the 3 aforementioned cases, the “n” ABX3 perovskite units are 

contained in a slab stack parallel to ap (i.e. long crystallographic axis c // to [100]p), in the case 

of the “3n+2” compounds, the slabs are formed of “n” ABX3 units that are stacked along their 

face diagonal (i.e. long crystallographic axis “c” // to [110]p). 

 

Fig7. 2D Perovskite related structures: RPn, the Ruddlesden-Popper series. (a) The RP , the ideal 
perovskite SrTiO3. (b) Sr2TiO4, an ideal RP1 with alternating ABX3 and RS layers. (c) Sr3Ti2O7, an ideal 
RP2 where RS layers alternate with ABX3 slabs 2 unit cells thick. (d) Sr4Ti3O10, an ideal RP3 structure 
with alternating RS and triple ABX3 layers.50, 51  

 

Additionally, the ordering of the A and B defects in planes causes the ABX3 slabs to shift 

with respect to each other by half a primitive unit cell in both “a” and “b” directions. (See Fig 

8 (a)). From a compositional point of view, these phases have been reported for “Ti”, “Nb” or 

“Ta” occupying 67% or more of the B sites. The remaining 33% support substitutions of these 
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three metals by various transition and other metals. On the A site, they are reported to 

accommodate alkali metals, alkaline earths, rare earths and Pb. Remarkably, these structures 

can present alternations of two members over long distances leading to average non integer 

values of “n”60, 74.  

A family of 2D perovskite related materials that has proved to be of fundamental importance 

is that of the layered cuprates. To date they are still the materials reported to have the highest 

critical temperature for superconductivity. Though some such as La2CuO4+
75 adopt the RP1 

structure, others such as the “YBCO-123”76, 77 compound YBa2Cu3O7 are directly perovskitie 

related. Nevertheless a common feature amongst all the superconducting cuprates is the 

presence of conducting blocks that are separated from each other by insulating layers. The 

entire structure can thus be represented by up to four different structural components: a 

conducting CuO2 sheet, a separating layer and a spacing layer form the conducting blocks that 

are separated from each other by an insulating layer (respectively the turquoise, green, black 

and red arrows in Fig 9 (b)). These features were used as a basis for the four digit 

classification scheme of these compounds.78 In this scheme, the first digit represents the 

number of insulating sheets containing heavy metal atoms (such as Bi, Hg, Pb, Tl, or Re) 

between two adjacent conducting blocks. The number of spacing layers that occur between 

identical CuO2 containing blocks is given by the second digit and must be equal to twice the 

amount of conducting blocks. The third digit gives the number of layers that separate the 

CuO2 sheets within a conducting block (i.e. the “separating” layers). Both the spacing and the 

separating layers typically contain lanthanide or alkaline-earth elements. In the case of the 

former, they form “AO” layers that take the rock salt structure when no insulating layer is 

present, thereby linking the RP1 superconducting cuprates to the other compounds.7 

Using this classification scheme, the RP1 La2CuO4+  is classified as a 0201T structure where 

the added suffix “T” is used to describe the oxygen environment in a given family and 

corresponds in this case to an octahedral environment. Similarly the well known YBa2Cu3O7 

compound traditionally referred to as the YBCO-123 is classified as a 1212C compound. In 

this case the suffix reflects the presence of insulating “Cu-O” chains. 

Within all of these structures, additional variability due to the ordering schemes of cations (as 

exemplified in the high temperature superconducting cuprates) or anion vacancies, the tilting 

of coordination octahedra79-81 should be kept in mind when investigating them. Thus, the 

family of 2D-layered perovskites is still in constant growth with novel ones still being 

synthesised. Examples of such phases are represented in Fig 9, where, in (a), an intergrowth  
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Fig8. 2D Perovskite related structures: “3n+2” perovskites, The high Tc superconductors. (a) From 
left to right: a projection of Nd4Ca2Ti6O20 an AnBnO3n+2 phase where n=6,82 the planar projection of the 
“front” ac plane of the structure, a schematic representation showing the stacking sequence along the 
perovskite face diagonals in the ac plane, a planar projection of the “side” bc plane and a schematic 
representation showing the linking of the individual perovskite units along a [001]p axis within the blocks 
(b) Superconducting cuprates: left a “12(n-1)n” compound with n=4, Tl1Ba2Ca3Cu4O11 (Tl, Ba, Ca, Cu and 
O respectively in grey (big), green, grey (small), turquoise and red) centre the La2CuO4+  a 0201T structure 
(La, Cu and O respectively in grey, turquoise and red) and right the structure of YBa2Cu3O7 (Y, Ba, Cu and 
O respectively in grey , green, turquoise and red) part of the 1212T compounds.83-85 
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of two defect perovskite related phases with Ca2Fe2O5 and YBaFeO5 structures was first 

synthesised by Tenailleau et al.86 then further investigated by Demont et al.87 In Fig 9 (b) and 

(c), the possibilities for synthesising diverse structures offered by novel hybrid materials is 

shown. In such structures organic linkers may separate stacks of perovskite layers oriented 

according to the [100]p, [110]p or [111]p directions37, 88. These can be represented respectively 

by the “(RNH3)2 An-1 MnX3n+1” (with e.g. R=C4H9, A=CH3NH3
+, M=Sn and X=I), the 

“A’2AnMnX3m+2” (with e.g. A’=NH2C(I)NH2
+, A=CH3NH3

+, M=Sn and X=I) and the “A’2An-

1MnX3n-3” formulae. Whereas in Fig 9 (d), the presence of a 2D anti-perovskite phase 

adopting an anti-K2NiF4 structure shows that 2D ordering is possible in such compounds as 

well.89, 90 

 

 

Fig9. 2D Perovskite related structures: Perovskite related intergrowths, hybrid systems and layered 
anti-perovskites (a) Intergrowth between a “Ca2Fe2O5” -type phase and a “NdBa2Fe2O5” -type phase.86 (b) 
and (c) Hybrid organic-inorganic layered structures with [100]p (i.e. ((CH3)NH3)2((C4H9)NH3)2(Sn3I10)) and 
[110]p (i.e. ((CH3)NH3)2(C(I)N2H4)2(Sn2I8)) stacking of the ABO3 units.91, 92 (d) The layered anti-perovskite 
(Ba0.78Sr0.22)4Bi2O with inverse K2NiF4 structure (O atoms in red, Bi atoms in Grey and Sr and Ba atoms in 
green).89 

 

1.3.3 1D Perovskite related phases 

Perovskite related materials with a 1D structure are formed when the coordinating octahedra 

of the “B” cation form chains. This happens in hexagonal perovskites that typically contain a 



1 Introduction 
 

15 
 

large A cation and small B cation. Such cases are characterised by a tolerance factor greater 

than 1. The AX3 closed packed layers can then organise themselves according to an “hcp” 

stacking where the BX6 octahedra are found in a face sharing configuration. As a consequence, 

the B-B distances become shorter and cationic repulsion start to occur. In compounds such as 

BaFeO3 (fig 1c) the hcp stacked AX3 layers alternate with ccp layers in order to diminish this 

repulsion. In others, the B-B inter-atomic repulsion can be alleviated by the formation of a B-

B bond (eg. BaRuO3). When only hcp packing of AX3 layers subsist then one gets the 2H 

polytype (eg. BaNiO3) where the face sharing [NiO3]2- octahedra form chains (see Fig 10 (a)). 

Such chains of face sharing polyhedra are also found in the A1+x(A’xB1-x)O3 compounds (eg. 

Sr4Ru2O9). These form a wider series of materials of general formula A3n+3mA’nB3m+nX9m+6n.93 

The two end members correspond to the 2H ABX3 (n=0 m=1) structure and the Sr4PtO6 

structure (n=1, m=0) (Fig 10 (b)).  

Another way of achieving chains is to dilute the octahedra within an organic environment (Fig 

10(c)). This was shown to happen notably for the first members (i.e. n=1)37, 88 of the systems 

that form the aforementioned 2D structures with stacking of ABX3 units along the [110]p and 

[111]p directions. 

 

 

Fig 10. 1D Perovskite related structures. (a) The 2H hexagonal perovskite BaNiO3, an example of a 
columnar perovskite structure (Ni atoms in light blue, Ba atoms in green and O atoms in red).94 (b) The 
Sr4PtO6 structure with Sr cations in prismatic environment linking 2 PtO6 octahedra.95 (c) 1D hybrid 
structure from the A [110]p stacked series. 96  
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As a final note to this section, more complex phases can readily be obtained by direct 

synthesis or post treatment leading to combination of e.g. RP3 phases with brownmillerite 

structures97. It should therefore not be unexpected to see in the future specific A, B and X 

ordering schemes permitted by non conventional synthesis methods and by the spreading of 

thin film techniques and other “bottom-up” synthesis methods. This holds the promise for a 

greater understanding of fundamental properties of materials as well as their tailoring through 

a near infinite combination of the structures presented above.  

1.4 Perovskites and their applications. 

As illustrated earlier by the case of the AFeO3 compounds (see 1.1), the properties of 

perovskites can vary widely not only due to compositions but also due to their structure. This 

leads to many possible applications in many domains. Throughout the following section of the 

chapter, a selection of these will be described with a particular focus on the application of 

perovskite oxides. The application areas have been divided into two subgroups based on the 

temperatures at which technological interesting phenomena occur.  

1.4.1 From high- to room- temperature. 

1.4.1.1 Catalysts. 

Perovskites with B3+ transition metals have been widely studied as catalysts from room to 

elevated temperatures for which several books and review articles can be found.98-101 They 

have in particular been suggested for the elimination of un-burnt pollutants from exhaust 

gases (CO, NOx,...), for oxidative coupling reactions and for partial oxidation of hydrocarbons 

in systems that have separate reaction and catalyst regeneration steps.98, 99, 102-106 The 

adsorption of these pollutants gases have been shown to occur via surface defects on the 

perovskite and more specifically through the oxygen vacancies 107 (Fig 11 (a)) though once 

adsorbed, they may diffuse towards the bulk of the material through structural vacancies108, 109. 

The structural and compositional versatility of the perovskite and related structures allow for 

the tuning of the acidity/basicity as well as the redox properties of the catalysts. The former is 

widely affected by the composition and can be evaluated using the concept of “optical 

basicity as has been defined by Duffy et al.110-112 The latter is essentially dependant of the B 

site composition and its interaction with the anion as this determines the electronic structure at 

and around the Fermi level. This fine tuning allows the targeting of the specific surface and 

bulk conditions to ensure selectivity with respect to the desired products.113, 114 They are 

particularly well suited with the use of (semi-)noble metals such as Rh and Pd that can be 
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incorporated in the structure upon an oxidation step then regenerated as nanoparticles in a 

reduction step. This has the advantage over the classical metal supported catalysts (e.g. Pt-

Rh/Al2O3,...) of preventing the metal nanoparticles from sintering (see Fig 11(b)). Such 

“intelligent catalysts” consequently lead to more and smaller nanoparticles when in use. Put in 

other terms, this leads to a higher number of active surface sites and extended catalyst life 

upon cycling.99  

As examples, one may site systems such as La0.6Sr0.4Co0.8Fe0.2O3 (LSCF) that have been 

studied for the oxidative coupling of CH4 to C2H6 and C2H4.115 This system provided decent 

selectivities towards C2 molecules (up to 67%). For this, the reactor was configured as a 

catalytic membrane reactor, where the CH4 is separated by the perovskite membrane from the 

stream of oxygen/air. A possible configuration of such a reactor is shown in Fig 12 (a)).  

Other perovskite systems have been studied for the partial oxidation of CH4. Recently, by 

testing the Rh-LSCF and Rh-LSCFA (i.e. Rh/Rh2O3 on La1-mSrmCo1-x-yFexAlyO3- )116 

perovskites catalysts supported by Al2O3 it was shown that, after initial activation of the 

catalyst, the CH4 molecules activated by the Rh nanoparticles consumed bulk oxygen from 

the perovskite for the partial reduction to syngas. Such systems offer innovative solutions 

notably for the offshore conversion of methane.  

 
Fig 11. Perovskite as (co-) catalysts. (a) Surface reaction scheme of NO with the surface of a perovskite 

catalyst. (b) Schematic representation of the nanoparticles creation of metal nanoparticles from an ABB’O3 

perovskite (eg. B’= Pt, Rh or Pd) supported particle upon cycling between oxidising and reducing 

conditions (upper cartoon) and irreversible sintering of the noble metal nanoparticles with successive 

cycling (lower cartoon). 
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Furthermore perovskite related materials have been suggested as photocatalysts for water 

splitting reactions. Most notably the Aurivillius and Dion-Jacobsen phases have been 

extensively studied for such applications.117, 118 

As a final example, it has been suggested that perovskite catalysts could also be integrated to 

sensors for in-situ process monitoring.119 

1.4.1.2 Membranes 

The Oxford English Dictionary defines the word “membrane” as: “Any thin, often pliable, 

sheet or layer, especially one forming a barrier or lining.” As such perovskites and their 

related materials have been widely studied as barriers that may selectively conduct a targeted 

ionic species. Most of the studies to date have focused on oxide-ion and proton conducting 

membranes as evidenced by the wide amount of reviews on the subject.54, 120-124 Since the 

early 1990’s however, attention has been focussing on the perovskite Li3xLa(2/3)-x�(1/3)-2xTiO3 

(LLT) which to date has one of the highest Li-ion conductivities for solid electrolytes.125-127 

From an application perspective, mixed ionic and electronic conductors (MIEC) are 

distinguished from the purely ionic conductors. MIEC’s have been studied for uses in 

catalytic membrane reactors (e.g. LSCF 115), gas separation membranes128 or as electrodes for 

fuel cells129-131 whereas ionic conductors have been proposed as solid electrolytes for batteries 

and fuel cells132, 133. Synthesis of new materials need to meet the required conditions of long 

term stability (both mechanical and chemical) and catalytic activity and conductivities over a 

wide range of temperatures specific for each of these applications. 

As an example, Fig 12 (b) shows the two types of fuel cells where perovskite and related 

materials can be found. In the upper part representing the functioning of a solid oxide fuel cell, 

a MIEC is used as cathode to convert the oxygen from the air into lattice oxygen. Typically 

the LSCF, BSCF (Ba1-xSrxCo1-yFeyO3), RP phases, some Co doped lanthanum nickelate 

perovskites and others have been studied. From the cathode, the oxide ions travel through the 

electrolyte towards the anode material. Traditionally, oxides such as Y stabilised ZrO2 or Gd 

doped CeO2 have been used as electrolytes. However perovskites from the La-Sr-Ga-Mg-O 

system have also been studied as for this purpose. Finally at the anode, the O2- reacts with the 

hydrogen to form water.134, 135  

In the lower part of the scheme, a proton exchange membrane fuel cell is depicted. In this case, 

rather than having the oxide ion move through the cell, protons are generated at the anode and 

migrate through a proton conducting electrolyte towards the cathode where it reacts with 
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oxygen to form water. Perovskite materials studied for such fuel cells comprise mainly of the 

proton conductors (SrZr1-xYxO3-  and BaCe1-xYxO3- ) used as electrolytes.136, 137 Some of the 

studied cells used the aforementioned perovskites as cathodes and cermets (i.e. Ni/ABX3) as 

anodes.134 

For both functioning modes, the electrons flow through an external circuit from the anode to 

the cathode. This current can then be used as automotive or stationary power sources. 

1.4.1.3 Thermo-electrics 

When two dissimilar materials are joined together and subjected to temperature difference 

between the junction and the ends, then a potential difference can be observed between two 

sides that is proportional to the temperature difference. This effect, was first observed by TJ 

Seebeck138 and has been named after him. It can readily be observed in metals (couple of 

V/K) and semi conductors (couple of 100 V/K).139 Thermo electric materials are 

characterised by their Seebeck coefficient “ TP” and by a figure of merit “ZT” (see eq(3)). 

 

  (3) 

 

Where “T” is the temperature in Kelvins, “ TP” the Seebeck coefficient, “ ” the thermal 

conductivity (electronic and lattice contributions) and  the materials resistivity.  

Therefore, in their continuous quest for new sources of energy, researchers have started to 

look at semi conducting oxide materials as candidates for thermo power generation. It derives 

from (3) that the ideal thermo electric material should have low resistivity, low thermal 

conductivity and a high Seebeck coefficient. As such perovskites 140-142  and their related 

phases (RP phases140, 143, ...) have started to draw interest as novel thermoelectric materials 

due to the possibilities that they offer with respect to “engineering” of their band gap and 

thermal conductivities. State of the art figures of merit are in the range of 0.1-0.5 for these 

materials.139 Fig 12 (c) shows the 2 possible modes for using thermoelectric materials: on the 

upper part, the thermoelectric couple is used for power generation between two temperature 

sources. The lower part shows the thermoelectric system used for active cooling of a hot 

component (i.e. refrigeration mode).  

1.4.1.4 Other applications 

Upon substitution of the oxide anion by a nitride anion, the band gap of the semiconducting 

perovskites is increased and the materials are characterised by bright and deep colours (e.g. 

yellow for CaTaO2N and red for LaTaON2). Therefore, some have suggested the use of 
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perovskite oxi-nitrides as new pigments where toxic heavy metal cations could be replaced by 

cheaper and less toxic transition metals.144 

 

 
Fig 12. Application of perovskites from high to room temperatures. (a) As a catalystic membrane 

reactor. (b) As a fuel cell. (c) In a thermoelectric system. 
 

1.4.2 From room- to low- temperature. 

At elevated temperatures, energetic processes such as ionic conduction and, to some extent 

metallic conduction of electrons in large band gap semi conductors are activated by the 

thermal energy. As the temperatures are lowered, these processes start having a minority 

contribution to the properties. Therefore at lower temperatures, the properties of the materials 

start to be dominated by their electronic structures. In perovskite compounds, various theories 

have been developed a.o. by Mott145, Goodenough and Kanamori,146-149 Efros and Shkloskii150 

as well as Zaanen, Sawatzky and Allen151 in order to rationalise the relations between the 

properties and the structures in Oxides. These theories permit the explanation of phenomena 

such as metal to insulator (MI) transitions, coupling of spins in AFM or FM alignments, 

variable range hopping (VRH), electronic structure of cations in high oxidation states etc... 

The applications of in the following section have been divided into subsections that focus on 

the electronic structure, magnetic structure and the combination of both of these aspects. 
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1.4.2.1 Perovskites for their electronic properties. 

Around World War II, the rapid development of electronics for uses in communication 

technologies and consumer electronics led to the development of a wide array of materials. 

Notably, BaTiO3 was widely used as a dielectric in capacitors and since, it has found 

applications in numerous other domains.152 Structurally, the Ti4+ cations in BaTiO3 are not 

centred within the [TiO6]2- octahedron. This causes an electric dipole within the compound 

thereby lowering the structure’s symmetry. More specifically, due to long range ordering of 

the dipole, the compound is more correctly classified as a ferroelectric (FE) material. As with 

their magnetic counterparts, these order parallel to each other within domains below a 

transition temperature and present a hysteresis when subjected to a varying electric field. In 

the case of BaTiO3 this temperature is c.a. 390K. Other FE perovskites or related structures 

(mainly RP and Aurivillius type compounds) have been successfully applied as piezoelectric 

materials in transducers and actuators (PbZrO3-PbTiO3 solid solutions), high-  dielectrics 

(BaTiO3-SrTiO3, CaCu3Ti4O12) and as candidates for Fe-RAM technology.153-158 Once more, 

all these properties can be tuned by the structural and chemical flexibility of perovskites to fit 

the requirements for specific applications. One may site the tuning of the FE transition 

temperature by co doping leading to “low loss” paraelectric materials (PE). More recent 

developments also include the search of lead free piezoelectric materials for sensors and 

actuators in micro electronics.159 

Though many perovskites of technological interest are insulating, there are equally as many if 

not more that are either semiconducting or metallic. Much research has gone into 

understanding these compounds as they offer an insight into the underlying physics and the 

link between a material’s structure and its properties. Additionally, through structural 

modifications, it is possible to observe gradual effects such as MI transitions that occur upon 

charge ordering (CO) or transitions from 3D to 2D VRH upon going from a perovskite to a 

layered structure.14, 160, 161 As these effects occur simultaneously with many interesting 

magnetic phenomena, they shall be treated in more detail later (c.f. section 1.4.2.3) 

1.4.2.2 Perovskites for their magnetic properties. 

When inserted in a magnetic field H, the circulation of electrons within a material will create 

a field opposed to H. This is known as diamagnetism and is present in all materials. However, 

when there are unpaired electrons present in the valence band other phenomena may occur. At 

sufficiently high temperatures, the thermal energy supplants that of the inter electron spin 

interactions. The material is in its paramagnetic (PM) state. Upon sufficient cooling, the 
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electrons start to interact with each other aligning their spins parallel or anti parallel. These 

are respectively the ferromagnetic and anti-ferromagnetic interactions. When in a material 

they occur over large domains they are classified as ferromagnetic (FM), or anti-

ferromagnetic materials (AFM). In addition to these basic long range magnetic configurations, 

two others are readily encountered in perovskites. Ferrimagnetism (FiM), or when two FM 

sublattices of different net moments interact antiferromagnetically with each other, and 

frustrated magnetism (also called spin glass - S.G.) when the electronic spins are only locally 

ordered (FM or AFM).162 When perovskites incorporate magnetic transition metals, they may 

exhibit any of these four interaction schemes. The additional influence of internal or external 

stimuli such as substitutions, cation or anion deficiencies, temperature or pressure allow to 

switch between any of the five aforementioned magnetic states (i.e. PM, FM, AFM, FiM or 

SG). Such crossovers between magnetic states can be found in the Sr(Fe1-xCox)O3-  or the 

RE0.5AE0.5MnO3-  (with RE and AE denoting rare- and alkaline- earth atoms) solid solutions. 

For these compounds, the progressive substitutions on the A or B site lead to a crossover from 

AFM to FM type interactions.163, 164 

The magnetic interactions in perovskites were rationalised by Goodenough and formalized by 

Kanamori in the late 1950’s and have since become known as the Goodenough-Kanamori 

rules.146-149 These rules may be used for predicting the dominating interactions within 

perovskites under certain conditions. Firstly the electrons are assumed to be localised. 

Secondly, a virtual electron transfer should be possible directly between transition metal 

atoms (superexchange) or via a certain amount of covalence between the cation and anion 

bonds. If these conditions are met, then the rules can be summarised as: AFM interactions will 

occur between two half-filled orbitals whereas FM interactions will occur between an empty 

and a half filled orbital. REFeO3 compounds provide a typical example of AFM ordering.165 

More complex AFM ordering schemes are found for example in the Manganites (La1-

xAxMnO3) where Jahn-Teller distortions of the Mn3+ cations balanced by certain amounts of 

Mn4+ cations lead to simultaneous Spin, Charge and Orbital ordering schemes.147  

If the localisation criterion is not met, then the electrons in the conduction band will tend to 

align with each other leading to FM interactions. This effect was used to explain the crossover 

between the AFM to FM interactions as well as the change in conductivities observed upon 

Co doping in certain Fe3+-Fe4+ perovskite systems (e.g. in CaFe1-xCoxO3).14, 166 For FiM 

interactions to take place, two magnetic lattices are required and this interaction can be found 
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in several double perovskite systems (e.g. La2CrFeO6), or systems where oxygen vacancies 

create two dissimilar sub-lattices (e.g.Sr3YCo4O10+ ).167, 168 

S.G. phases have been reported for compounds where FM and AFM interactions compete. 

This may happen with e.g. doped manganates and cobaltates.169-171 

Fig 13 shows cartoons illustrating the 5 magnetic interactions that may occur in perovskites 

simplified to a 1D case (a) and another representing the Goodenough-Kanamori rules for a 

180° superexchange interaction (b). 

 

 
Fig 13. Magnetic interactions in perovskites. (a) The various possible magnetic interactions in a 1D 

chain of moments. Note the AFM interaction between two FM sublattices (blue and red)). For the SG 

interactions in a 1D chain, the areas of short range order are highlighted by boxes. (b) Superexchange 

interactions between spins on two 3d5 cations (upper) and between a 3d5 and a 3d4 cation (lower) mediated 

by the electrons on the 2p orbital of an oxygen due to bond covalency/overlap (grey circle).  

 

1.4.2.3 Perovskites: combining magnetic and electric properties. 

As exemplified in the two previous sections, both the electronic and magnetic properties of 

perovskites are closely correlated to their basic electronic structure. Therefore, any external 

stimuli that affect the basic electronic structure of the material will also influence either, or 

both, the electronic and magnetic properties. This has led to the discoveries of effects such as 

magneto resistance (MR), multiferroicity, half metalicity or superconductivity in perovskites, 
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their superstructures and perovskite related heterostructures.172-175 In turn, these effects have 

led to candidate materials for applications within spintronics176, 177 (for the reading and storing 

of data in magnetic form) and as high temperature superconductors. 

MR was first observed by William Kelvin who experimented with currents flowing through 

ferromagnetic metals when placed in a magnetic field. He noted that resistance was at its peak 

when current and field were parallel to each other and at its minimum when they 

perpendicular. Around a century later three other MR effects were to be observed. The works 

by Grünberg and Fert178, 179 led to discovery of an increased MR in multi layer films 

composed of ferromagnetic metal films separated by a non magnetic metal (Fig 14 (a)). This 

became known as “Giant Magneto Resistance” (GMR). Similarly, M Jullière discovered 

another MR effect, “Tunneling Magneto Resistance” (TMR), in heterostructures composed of 

ferromagnetic metals separated by semiconductors or insulators (Fig 14 (b)).180 Both of these 

phenomena are based on the partial spin polarisation of the conducting electrons in 

ferromagnetic structures. This leads to an increased carrier transport (GMR) or increased 

tunnelling (TMR) when the FM domains are aligned parallel to each other. 

 

 
Fig 14 The MR effect and its applications. (a) A GMR heterostructure with AFM coupling of the FM 

layers. (b) A TMR. heterostructures with AFM coupling of the FM layers. (c) CMR: spin polarised band 

structure in the double perovskite Sr2CrWO6 after reference [181]. (d) Working principle behind GMR or 

TMR read heads: the spin valve. 
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The works of Jonker and van Santen on perovskite manganites182, 183 led to the discovery of 

“Colossal Magneto Resistance” (CMR). It has been shown that for these and certain double 

perovskites a half metal structure may be created.181, 184 In such compounds, the charge 

carriers are totally polarised due to a gap around the Fermi level for one of the spin 

orientations (Fig 14 (c)). Though magnetic interactions for the ground states of these 

manganites can be rationalised by M-O-M exchange interactions, these do not suffice for 

explaining the CMR effect. For this one needs to take into account the strong spin-phonon 

interactions that will affect the electronic structure of these materials.172 

Both GMR and TMR structures, have found applications as “spin valves” notably in 

MRAM’s and read heads in commercial hard disk drives. For example, in a G- or T-MR read 

head, one of the FM layers is pinned by depositing it on an AFM layer. The other FM layer, 

separated by a non magnetic metal or an insulator respectively, is free to align itself with the 

magnetic field generated by the domains on the media thereby affecting the resistance of the 

sandwich structure (Fig 14 (d)). Though CMR perovskites have not yet been used in these 

applications, the CMR effect is very sensitive for even small magnetic fields and offers 

promising prospects for spintronics.176, 177, 184, 185 

 

 
Fig 15. Status of the High Tc cuprate superconductors. Adapted from data in ref [186] 
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In point 1.3.2, mention was made of the High Tc superconducting oxides (H.T.S.C.). In Fig 

15, one can see that critical temperatures of up to 135K have been obtained in these cuprates 

(the Hg-1223 compound) and that those with the highest Tc’s are part of the “m2(n-1)n” 

family. All of these phases can be considered as charge carrier doped Mott insulators (i.e. 

compounds where the Coulomb interactions between charged particles open a gap at the 

Fermi-level). A significant development to H.T.S.C:’s was further made in 1994 by Maeno et 

al. who were the first to report superconductivity in a non Cu containing oxide: un-doped 

Sr2RuO4.187 Despite having a very low Tc of c.a. 1K, this led to further developments in 

search of alternative H.T.S.C. phases. Since then superconductivity has been found in various 

other classes of layered compounds such as Fe- chalcogenides and pnictides.188, 189 These have 

been the main focus of the research in H.T.S.C. for the last years. 

1.5 Scope of this work. 

This project “Novel oxides with interesting ionic, electronic and/or magnetic properties” was 

set up as a collaborative effort between the universities of Caen (Crismat), Liverpool (UoL) 

and Oslo (UiO) under the EU FP6 framework as a Marie Curie Early stage training network 

(MC-EST). Therefore the scope of this doctoral training was twofold: 

Firstly, as suggested by its title, it aimed at studying new inorganic oxide materials for 

applications within energy (i.e. ionic and electronic properties) and data (i.e. electronic and 

magnetic) using both classical and new methods of synthesis and characterisation.  

Secondly, as a MC-EST, it aimed at promoting the mobility of young researchers so that they 

may extend their knowledge, skill base and provide them with an international network. 

For this thesis, the choice to work with perovskite related structures over the vast extent of 

available oxide structures arouse from their flexibility as well as from their current and 

potential technological importance. Indeed, they are already present in critical applications for 

modern day life that range from areas within energy technologies through transport and 

catalysis all the way to microelectronics. More importantly, they still offer exciting prospects 

both for our fundamental understanding of certain physical phenomena as well as for new 

applications as exemplified throughout the introduction. Furthermore, focusing this work on 

“layered” or complex intergrowth structures has the benefit of adding an additional spatial 

parameter to the compositional variables available for study. This additional parameter has 

been shown to have drastic effects on the electronic and ionic properties of the materials. To 

stay in line with the project description, it was decided to base this work on substituted 
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layered ferrates. The Fe- based perovskites are renowned for their stability in reducing 

atmospheres, their structural flexibility and interesting magnetic properties (Fe is a magnetic 

cation in all of its common oxidation states). Tailoring these structures and their properties by 

substitution of the Fe with other transition metals, co substitution of the “A” site and 

intercalation of guest molecules all create novel oxides with interesting ionic, electronic and 

magnetic properties. 

Nevertheless, even with these criteria fulfilled, the variables to study remain plentiful. 

Therefore, the Ruddlesden Popper intergrowths with triple perovskite layers were chosen for 

their novelty and the potential for making a significant contribution on these oxides. The 

remaining of this dissertation focuses on the study of substituted RP3 ferrates through a 

detailed investigation of their structural behaviour and properties upon doping and insertion of 

chemical species at high-, room- and low- temperatures. 
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2 Materials and methods. 
The following chapter constitutes a brief review of the methods used during this work for 

synthesising and characterising RP3 materials. These methods will be described and their use 

in this work explained. 

2.1 Synthesis Methods. 

All the synthesis methods used were aimed at producing crystalline solids in form of powders 

or pellets (depending on the methods used for further characterisation). 

Classically three methods of choice exist for the synthesis of polycrystaline samples of 

perovskites and related compounds in bulk: 

 The “solid precursor route” (a.k.a. “Shake and Bake”). 

 The “co-precipitation” route. 

 The “Sol-Gel” route. 

The first is based on the thermal diffusion of cations and anions at elevated temperatures. It 

requires fine grinding (by hand or mechanically) of solid binary oxides or carbonates of the 

cations of interest, peletising the mixed powders and subsequent annealing(s). In order to 

achieve “X-ray” homogenous samples, high temperatures and multiple grindings are required. 

Nevertheless, in the case of (metal-) oxide mixtures, the method presents the advantage of 

being able to directly perform reactions in sealed or inert environments without needing to 

burn-off any volatile ligands. 

The last two techniques are solution based and result in fine powders that present a better 

initial mixing than that which may be achieved by manual grinding. This presents, at the cost 

of an extra calcination step of precursor powders, the advantage of shorter diffusion lengths 

for the cations. Thus these methods require lower temperatures and present better sintering 

characteristics. 

Over the course of this work, samples were prepared using the first as well as two different 

sol gel methods: the EDTA method and the citric acid method. Kakihana has written a 

comprehensive review of the various “Sol-Gel” methods that might be considered for the 

synthesis of perovskite related phases.190 

Both the EDTA and the Citric acid methods are based on the formation of cation complexes 

in the solution (Sol-) before the onset of jellification (Gel). They differ mainly by the 
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chelating agent used (i.e. respectively ethylene diamine tetra-acetic acid and citric acid). 

When using either method, the cations are mixed on an atomic level prior to jellification. The 

obtained gels are then calcined between 400°C and 500°C in an oxidative environment. This 

last step is required to burn off the excess chelating and jellification adjuvants, after which 

amorphous powders are usually obtained.  

The specifics of the final annealing steps and synthesis methods used can be found in the 

experimental section of the publications or will be specified when required for unpublished 

results.  

In the second paper, hydration experiments on reduced RP3 phases were performed in a semi-

closed system (see Fig. 16).The sample was place over a water bath and then covered to 

ensure a constant vapour pressure in the sample area. A small venting pipe permitted 

expansion of the gasses thereby maintaining a constant pressure while heating the water bath.  

 

 
Fig 16. Hydration setup. Picture of the experimental setup used for hydration of samples at room and 

moderate temperatures. 
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2.2 Characterisation methods. 

2.2.1 Chemical methods. 

Cerimetric titration was used to determine the oxygen content of fully oxidised RP3. samples 

at room temperature (RT). This method is highly suitable for the redox titration of high valent 

Fe and Co cations. It is based on the reactivity of Fe2+ cations coming from an external salt 

(Fe2+
Salt), with high valent Fe4+, Co3+ and Co4+ cations from the sample to form Co2+ and Fe3+. 

(equations (4) to (9)). 

 

 (4) 

 (5) 

 (6) 

 (7) 

 (8) 

 (9) 

 

Firstly, a flask with an acidic solution of HCl (preferably < 2M but adaptable to the 

solvability of the sample) is degassed under a flow of inert gas (Ar or N2, at least 5.0 purity). 

Then a known amount of Fe2+ is added (in excess to the amount of high valent cations in the 

sample) in the form of a stable aqueous Fe2+ cation such as can be obtained from for example 

(NH4)2Fe(SO4)2.6H2O (i.e. “Mohr’s salt”). This is allowed to dissolve before a fixed amount 

of sample is added to the solution. The solution with the salt and sample is kept under inert 

atmosphere until complete dissolution. Finally, before titration of the solution by a 

standardised solution of Ce(SO4)2, the redox indicator (Ferroin) and a few drops of 

concentrated phosphoric acid are added to the solution. The latter is added to prevent the 

unwanted precipitation of sulfates. During titration, the Ce4+ will react with the remaining M2+ 

cations (Co and Fe) in solutions to form Ce3+, Co3+ and Fe3+. At the equivalent point, the 

oxidation state of the B cations in the sample is given by (10).  

 

 (10) 
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In (10), MM(2+,3+) is a hypothetical molar mass of the compound where the Co and Fe would 

all be Co2+ and Fe3+ respectively, Mms is the measured mass of the Fe2+ salt, MMms is the 

molecular mass of the Fe2+ salt, CCe4+ and VCe4+ are the concentration and volume of titrating 

solution used, nB,sample are the number of B sites in the hypothetical compound, ms the weight 

of dissolved sample and MMO the molar mass of the anion (note that when studying 

compounds with other anions, the coefficient ½ at the denominator might need to be corrected 

according to the anionic charge).  

To exemplify this equation, on may consider the compound of anticipated formula Sr2CoFeO6. 

If the material were fully oxidised then the average oxidation state of the cations on the B site 

would be 4+. However, the molar mass MM(2+,3+) to be used in (10) would be that of the 

“hypothetical” composition “Sr2CoFeO4.5”. The parameter “nB,sample” would be 2. The value 

“x” obtained from (10) then needs to be added to the average oxidation state of the 

hypothetical compound Sr2CoFeO4.5. In this case the average oxidation state of the B site in 

the sample would then be B2.5+x.  

At this point several remarks should be made. If the sample dissolution in “dilute acid” is not 

feasible due to the speed of the reaction, Karen191 suggested the use of concentrated acid in a 

sealed digestion cell. As an alternative to the use of a standardised solution of Ce(SO4)2.one 

might also consider the use of a standardized KMnO4 solution. The advantage of the KMnO4 

route is the absence of the external indicator and the errors that this might bring if too 

concentrated. However, this is balanced by a loss of precision for a given titrating equipment 

set (each Mn will give five electrons instead of a single electron per reaction for which (10) 

needs additionally to be corrected).  

For presentation in publications, cerimetric titration on certain RP3 samples were performed 

by Prof P. Karen using a procedure described in detail elsewhere.192 

2.2.2 Physical methods. 

2.2.2.1 Thermal methods. 

Out of the available thermal methods, thermo-gravimetric analysis (T.G.A) was the method of 

choice for analysing the volatile content in precursors as well as the behaviour upon heating 

and subsequent cooling of the samples. 

Measurements were performed either on Seiko SII TG/DTA thermal analyser and a Perkin 

Elmer TGA7 instruments in oxidising atmospheres (O2), inert atmospheres (N2) or reducing 

(5%-10% H2 in Ar) atmospheres.  
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2.2.2.2 Diffraction techniques. 

As the synthesised compounds were crystalline materials, diffraction techniques were 

essential to this work, both for basic as well as advanced characterisations. These are all based 

on the interaction between radiation and a periodic structure (See Fig. 17 (a)) that create 

constructive or destructive interferences according to “Bragg’s Law” (11). 

 

 (11) 

 

 being the radiation wavelength, d the inter-plane distance and  the incidence angle with 

respect to the diffraction plane (cfr Fig. 17(a)).  

For X-ray powder diffraction (XRD) and neutron powder diffraction (NPD), the intensity Ihkl 

of a reflection produced by a plane of miller indices hkl in a powder pattern depends on the 

structure factor Fhkl of the material. This is influenced by the nature of the atomic scatterers 

through their scattering factor fj and their position (x,y,z) in the unit cell. (12) and (13) 

 

 (12) 

 (13) 

 

The combination of equations (12) and (13) with equation (11) mean that diffraction patterns 

are unique for a given crystal structure and composition. 

Factors affecting the diffracted intensities are the nature of the scatterers, their location as well 

as the symmetry of the studied materials. Therefore the information given by the techniques 

described hereafter each give their own complementary fingerprint allowing for a better 

understanding of a materials structure when pieced together.  

2.2.2.3 XRD. 

The fact that the wavelength of X-rays matches that of inter-atomic distances makes it an 

ideal tool to study its scattering, and ensuing diffraction pattern, that are created by crystalline 

materials. Consequently, XRD has become the “workhorse” for the investigation of 

crystalline materials. The technique can be used as a screening tool with conventional 

laboratory equipment (see hereunder 2.2.2.3.1) or as a more advanced tool for structure 

analysis and combined experiments at synchrotron sources (2.2.2.3.2). Experimental setups 

have been adapted for the study of powders, thin films and single crystals. However, only the 

first shall be described here.   
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2.2.2.3.1 Conventional. 

The conventional laboratory powder X-ray diffractometers come in varying geometries and 

modes. Samples can be mounted on plates for use in reflection mode or, for transmission 

mode, on films or capillaries. Typically they use monochromatised K 1 radiation from a Cu 

( =1.54060Å), Co ( =1.78901Å), Cr ( =2.28976Å) or Mo ( =0.70932Å) X-ray source. The 

conventional X-ray diffractometers used for this study were equipped with either a Cu (for the 

Siemens D5000, Bruker D8 and Huber G670 diffractometers at UiO) or Co (for the 

Panalytical Xpert diffractometer at UoL). Cu tubes offer higher radiation flux though samples 

containing Fe or Co will have a higher background due to fluorescence. This can be 

somewhat diminished by using sources of different wavelengths (such as Co) or using modern 

detectors and software with built in energy filters. Of the four instruments used, three had the 

Bragg-Brentano configuration (Fig. 17(b)) mounted with a position sensitive detector. 

Patterns measured covered the 3°<2 <90° range and were used in reflection mode. The Huber 

G670 had the Guinier geometry (Fig 17 (c)) with a CCD camera detector that covered the 

0°< <100° range and was used in transmission mode. 

XRD was the primary method for checking phase purity and completeness of the reactions on 

all samples. 

2.2.2.3.2 (In-Situ) SRXRD. 

When charged particles are accelerated in a magnetic field, they emit electromagnetic 

radiation. This property is used in synchrotron light sources where electrons are accelerated to 

great speeds. The wide spectrum of electromagnetic radiation obtained can then be used, 

either as a “white light source” or monochromated to desired wavelengths for the experiments. 

This flexibility as well as the high intensity has made synchrotron sources highly valued 

research tools for “Synchrotron Radiation X-ray Diffraction” (SRXRD) experiments. Their 

high intensity is synonymous with faster data collection permitting in-situ experiments. 

Whereas the wide spectrum of available wavelengths means that experiments can be 

performed in optimal conditions (i.e. with a reduction of parasitic effects such as absorption 

and fluorescence).  

For this work, high resolution data from SRXRD experiments were collected at station 9.1 of 

the SRS (Daresbury – now decommissioned) and station ID31 of the ESRF (Grenoble). In-

situ experiments were carried out at station BM01A of the Swiss-Norwegian beam line 

(ESRF) using a flat plate, 2D detector. The setup of the in situ experiments is shown in Fig 18. 
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Fig 17. X-ray diffraction: principle and instrument geometries. (a) Diffraction of a monochromatic 

beam by a periodic structure. (b) The Bragg-Brentano instrument geometry in -2  Reflection mode with 

coupled sample stage and detector. (c) The Guinier geometry (Transmission). 

 
Fig 18. SNBL: Station BM01A: In-Situ powder diffraction. (a) Instrumental setup for in-situ 

experiments. (b) The powder Cell. (Photos courtesy of Dr R. Johnsen) 
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2.2.2.4 NPD. 

As indicated by its name, Neutron Powder Diffraction (NPD) is the study of diffracted 

neutrons. Two methods can be used to obtain these neutrons: spallation and fission. In the first 

a target made from a heavy element is bombarded by a beam of high energy particles, usually 

protons, thus liberating a pulsed stream of neutrons. In the second, the neutrons are produced 

by the nuclear fission taking place in a reactor.  

NPD offers some advantages over XRD. For example, the scattering factors depend neither on 

the incident angle of the beam, nor on the number of electrons surrounding the atom, also they 

are isotope specific. Hence, they offer good contrast between neighbouring elements and light 

elements are not outweighed by the heavier ones in the structure. Furthermore, neutrons 

posses a spin and can therefore interact with the magnetic moments of a material. However, 

like synchrotron radiation, it is a specialised technique requiring considerable resources for it 

to be functional. In addition to the aforementioned disadvantages and on the contrary to 

(SR)XRD, the samples need to “cool” after the experiment since upon exposure to neutrons 

they may become radioactive. 

The NPD data collected over the course in this work were obtained from the PUS instrument 

at the JEEPII research reactor located at Kjeller (Norway). For more details on the instrument 

refer to Hauback et al.193. 

2.2.2.5 Phase identification and Structural analysis. 

The collection of (SR)XRD, NPD and electron diffraction (ED) can all be used for 

(quantitative) phase identification in a multiphase sample and/or structural analysis of new 

phases. 

Furthermore, given the possibility to calculate the intensity of diffraction peaks, it is possible 

to determine weight concentrations for each of the phases within a multiphase material.  

The calculation of these intensities also forms the basis for the structural analysis of 

compounds through direct methods or refinement methods such as the Rietveld refinement.  

In this latter method, a least squares technique is used to minimise the difference between the 

observed and calculated patterns for a crystal model by varying atomic parameters such as: 

site composition (i.e. the fj’s) and atomic coordinates (i.e. x, y and z)). Some other parameters 

that affect the calculated intensities and that are taken into account in modern refinement 

software are the crystallographic domain size, anisotropies within the sample due to strain and 

stacking faults, displacement of the atoms around their average position (i.e. thermal 
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parameter) as well as the intrinsic broadening and asymmetries due to the diffractometer 

configuration used for collecting the data.  

2.2.3 Spectroscopic techniques. 

Complementary to diffraction techniques which give long range structural information, 

spectroscopic techniques allow the experimentalist to probe local effects such as 

compositional variations and nearest and next nearest neighbour interactions 

2.2.3.1 EXAFS. 

EXAFS or Extended X-ray Absorption Fine Structure is a spectroscopic technique similar to 

Electron Diffraction Spectroscopy (EDS), which is found on many modern electron 

microscopes, in so far as it probes the discrete energy levels of the inner shells of atoms. 

However instead of looking at the emission from these levels it looks at the absorption of the 

incoming radiation. During this process the electrons are excited from a low lying energy 

level to free state thus creating a photoelectron. Therefore not only is the energy absorption 

characteristic of an element, it is also influenced by the configuration of the electrons on the 

outer shells of the atom. This implies that the spectrum is influenced directly by the valence 

and coordination environment of the atom.  

EXAFS experiments are usually performed at synchrotron facilities. The wavelength of the 

incident beam is varied so as to cover a range of energy levels around the absorption edge of 

the element of interest. The spectrum collected can then be treated in two different ways. The 

first looks at the position of the absorption edge relative to the metal and other standard 

materials. It makes up the XANES spectrum (X-ray Absorption Near Edge Structure) that is 

characteristic of the charge state of the cation. The second examines the spectrum after the 

absorption edge and constitutes the actual EXAFS spectrum. It is caused by interference 

between the ejected photo electron and the atoms surrounding the probed element. It therefore 

gives information on the nature, number and distance of these coordinating atoms. 

Just as for diffraction techniques, EXAFS and XANES give information about the bulk of the 

material. However, they give only information on the local structure of the probed element 

thereby permitting studies on non- or poorly- crystalline materials. They also offer the 

possibility to look at the coordinating environment of selected elements.  

For this work, Xanes plots were collected at station 7.1 of the SRS (Daresbury) and used to 

confirm the high oxidation states of Fe and Co in a selected RP3 compound. 

 

2.2.3.2 Mössbauer spectroscopy. 
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Mössbauer spectroscopy is a technique that probes the energetic states of an atoms nucleus. 

This is done by using high energy monochromatic  radiation emitted by certain nuclei, such 

as 57Fe. This is then absorbed by atoms possessing nuclear transition levels close to the 

emitted wavelength (e.g. in this case, Fe atoms). These energy levels are modified by the 

extra-nuclear electron density distribution mainly through the interaction with s electrons 

from the outer shells.  

 

 
Fig 19. Mössbauer spectroscopy. (a) Experimental setup. (b) From left to right: “S” spectrum of the 

source, spectrum from the absorber “A”, spectrum from the absorber with an internal electric field and 

spectrum from the absorber with a magnetic fields. 
 

To probe the variation of these levels, modulation of the  radiation is required. This can be 

achieved by moving the source or the target thereby creating a Doppler effect. The obtained 

spectra can then be characterised by (c.f. Fig 18.):162, 194, 195  

 A chemical shift “ ” that gives the information on the charge state of the atom and its 

coordination environment. 

 An electronic quadrupole splitting “ ”, that gives information on the presence (double 

peak) or absence (single peak) of an electric field surrounding the atom as well as its 

oxidation state. This is caused by the interaction of a non uniform electronic density at 
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the nucleus (i.e. spin number l > ½) with an anisotropic electronic environment 

surrounding the atom. 

 A magnetic hyperfine splitting “H”, when the nucleus is placed in a magnetic field. 

Thus giving information on the presence of a magnetic environment that is 

characterised by a sextuplet peak in the spectrum. 

It should be noted that Mössbauer spectroscopy is dependent on the availability of appropriate 

-sources. Thereby meaning that only a limited number of elements can readily be measured, 
57Fe being one of the more common.  

The Mössbauer data from this study was collected at the UoL by Dr M Thomas using a 
57Co/Rh source (25mCi). Therefore, only the environment of the Fe atoms in the examined 

RP3 structures have been probed.  

2.2.3.3 Mass Spectroscopy. 

Mass spectrometry was used in to analyse the gases (H2, O2 or CO2) that might evolve from 

samples during the dissolution process of hydrated RP3 compounds by HCl (see section 3.4 

of the following chapter). The mass spectrometer (MS) was connected to the exhaust of the 

reactor vessel and a constant flow of Ar was used as a carrier gas. Prior to the dissolution of 

the sample the method was validated by injection through a rubber septum of the acid in an 

empty chamber to check for dissolved gaseous species. Then by the injection of HCl over Zn 

chips to check the detection of evolving H2. 

The MS used was an “Omnistar GSD 301 O2” manufactured by Pfeiffer Vacuum mounted 

with an electron ionisation unit and a quadrupole analyser. 

2.2.4 Magnetic properties. 

2.2.4.1 Physical Property Measurement System. 

The low temperature (4°K<T<350°K) magnetic properties of the RP3 compounds were 

measured using a “Physical Property Measuring System” (PPMS) from Quantum design. This 

instrument is based on a “Superconducting Quantum Interference Device” (SQUID) and 

measures minute changes in magnetic field. SQUIDs are coiled superconductors with one or 

two Josephson junctions (See Fig 20 (a)). The sample is moved through a coil of 

superconducting wire (pickup coil). These minute changes in field created by the samples 

displacements induce a current in the pickup coil. This current is then detected by the SQUID.  

Such systems allow to measure the dependencies of a sample’s magnetisation, resistivity, heat 

capacity, thermal conductivities... as a function of temperature and/or magnetic field (fixed or 

varying). With these, one may calculate the susceptibilities, MR effects, Seebeck coefficients, 
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etc. Measurements performed for this work were: Magnetisation Vs Temperature (both in 

fixed and alternating fields), Magnetisation Vs Field and resistivities Vs Temperature.  

 

 
Fig 20. Schematic diagrams of a SQUID and a Faraday balance. (a) sample in a SQUID. (b) The 

Faraday- Balance. 
 

2.2.4.2 Faraday Balance. 

A Faraday balance at the University of Oslo was used for the high temperature magnetic 

susceptibility measurements of the RP3 ferrates (cfr Paper III). A cartoon of the experimental 

setup is represented in Fig. 20(b). It is comprised of a spring made from a diamagnetic 

material (a precision microbalance can also be used as an alternative) and an electromagnet 

with iron cores shaped as Faraday pole caps. Such cores create a field that obey (14) over 

sufficiently large heights.  

 

 (14) 

 

During a measurement, the sample is lowered between the iron cores in a quartz sample 

holder attached to the spring. A magnetic force is applied to the sample by the field created 

between the Faraday pole caps. The displacement along the vertical axis corresponding to a 
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new equilibrium between the spring’s recoil and the magnetic force is then used to infer the 

susceptibility from equation (15). This has two unknowns: the sample’s susceptibility and the 

product H.dH/dz. In order to determine the Field and its variation, the Faraday Balance was 

calibrated prior to use with HgCo(SCN)4, a molecular paramagnet of known susceptibility. 

For High temperature measurements, a furnace was mounted between the iron cores and 

calibrated once more.  

 

 (15) 

 

Where: k is the spring constant, m is the sample mass, z the vertical displacement, H the 

field generated by the electromagnet and dH/dz the Field gradient along the vertical axis. 
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3 Summary of results. 
The work presented hereafter constitutes the summary of the results published, submitted or 

under review before their submission. Additional non published, but relevant results for the 

RP3 phases have also been included in this chapter. It focuses on the substitution and 

intercalation reactions that take place within the Ln-Sr-Fe-Co-O solid solutions and the effects 

of they have on the properties of the materials. 

While many research groups have focused on perovskites, RP1, and RP2 phases, a much 

smaller community focused on the RP3 compounds. Amongst these a very small number have 

studied co-substituted RP3 ferrates. The most relevant published work for this study being 

LaSr3Fe3O10 (Kuzushita et al.196, 197), NdSr3Fe3O9 (Barrier et al.97 and Pelloquin et al.44) and 

the LaSr3Fe1-xMxO10-d system (M is one or more of Co, Al or Ga, studied by Armstrong et 

al.198, Prado et al. 199 and Lee et al.200, 201). These studies independently treated certain aspects 

of the compounds such as magnetism, structure, hydration and ionic and electronic 

conduction properties either at high or low temperatures. The interest in this study lies within 

the fact that all these aspects are examined within one composition range. 

3.1 Substituted RP3 structures: The LnSr3Fe1.5Co1.5O10 systems.  

As the pure LnSr3Fe3O10-  compounds can be synthesised with Ln=La and Nd, the first part of 

the study looked into the substitution of La by other lanthanides in a high Co containing 

compounds using standard synthesis techniques. The aim being to test the effect the 

substitution of a smaller A3+ metal might have on the stability of LaSr3Co1.5Fe1.5O10 at room 

and elevated temperatures. The tested lanthanides were La, Pr,Gd, Yb, additionally, Y was 

also used. Many of the reported Ln4B3O10 RP3 phases (B=Co or Ni)202, 203 have used 

lanthanides from La through to Nd, suggesting that the structure tolerates substitution of at 

least the first four lanthanide elements. Furthermore the substitution of a smaller Fe cation 

should permit the insertion of smaller lanthanides in such compositions. This however could 

be compensated by the insertion of a bigger Sr cation in the case of the LnSr3M3O10 

compositions. For these compounds, assuming an ideal I 4/m m m structure and ionic radii 

provided by Shanon,204 the tolerance factor would go down from c.a. 1 for Ln=La down to c.a. 

0.9 for Ln=Ho. 

Fig 21 shows the XRD diffraction patterns for Ln=La, Pr, Nd and Gd obtained through a solid 

state synthesis using oxides and carbonates as starting materials. Firing temperatures were 
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1000°C (12h) and 1350°C (three firings of 12h periods each with intermediate grindings). It 

also shows the identified phase types. Since the t factors involved are smaller than 1, 

orthorhombic distortions (with cell type 2.ap, 2.ap, 2.ap for the RP  and 2.ap, 2.ap, c for 

higher order RP’s) might occur for smaller lanthanides leading to new or split peaks that 

could possibly explain the unidentified peaks for Ln=Gd.  

 

 
Fig. 21 XRD patterns of LnSr3Co1.5Fe1.5O10 compounds. Ln=La, Pr, Gd, Yb. Patterns were collected 

using monochromated Co K 1 radiation. Phase attribution is as follows: =RP3; =RP1; =RP /ABX3; 

=Yb2O3; ? = unknown phase.  

 

As can be seen from these patterns, using the conditions of air synthesis, the smaller 

lanthanides tend to favour mixes of lower RP phases. This was confirmed by TEM and EDS 

done on the Ln=Gd samples where a mixture between an ideal RP3 having the “I” symmetry 

and perovskite impurities were found. The presence of such phase mixture of RP phases is not 

unexpected as higher order RP phases have shown considerable amount of stacking faults 

with alternating lower members randomly packed.205 Neither successive firings nor higher or 

lower firing temperatures improved the phase distribution. From these results, it would appear 



3 Summary of results.
 

45 
 

that substitutions lanthanides should be bigger than Gd with the most promising new target 

material deemed to be Ln=Pr.  

3.2 Oxygen vacancies in the PrSr3Fe1.5Co1.5O10 system. 

The presence of the multivalent cations Fe and Co allow for the structural study of the 

compound as a function of annealing atmospheres. Indeed, cerimetric titrations and 

thermogravimetric analysis showed that the compound is stable from an average B2.5+ 

oxidation state to a B3.65+ (see Fig 22). These oxidation states were achieved by annealing in 

10%H2 in Ar (at 500°C) and O2 (c.a. 300°C) respectively whereas the B3+ state is readily 

obtained by annealing at temperatures above 900°C in “inert” gases such as Ar or N2 (purity > 

5N). The high oxidation states of O2 annealed samples have further been confirmed by 

XANES experiments (Fig 23) and Mössbauer spectra (See Table 1). As for LaSr3Fe1.5Co1.5O10 

previously studied by Armstrong et al.198, the structure adopts the ideal I 4/m m m structure of 

the RP3 compounds. The behaviour upon heating is stable and reversible for annealing in N2 

and O2 at least up to 1200°. Above 500°C in H2, the Fe3+ and Co2+ cations are reduced to 

metals thereby destroying the structure. 

Table 1 Mössbauer parameters at 27°C and -196°C for samples treated in Oxygen at 300°C, 
Nitrogen at 1000°C and Hydrogen at 500°C. (Values relative to -Fe) 

Temperature 
Annealing (Oxygen 
non stoichiometry – 

content.) 

Chemical shift 
(mm.s-1) 

Quadrupole 
splitting (mm.s-1) 

Hyperfine Field 
(kOe) 

27°C / 300K 
O2 ( 0.00 – O10) 0.10 0.24 0 

N2 ( 1.00 – O9) 0.33/0.31 -0.46/1.06 432/0 

H2 ( 1.75 – O8.25) 0.30 -0.043 220 

-196°C / 
77K 

O2 ( 0.00 – O10) 0.16/0.17/0.19 0.09/0-0.33/0.1 300/288/0 

N2 ( 1.00 – O9) 0.43/0.45 -0.49/0.78 516/0 

H2 ( 1.75 – O8.25) 0.43/0.25 -0.50/-0.27 511/466 

 

From the Chemical shift column in Table 1 two observations can be made. Firstly, the 

Chemical Shift for the oxidised sample is smaller than that for the two reduced ones. 

Secondly, for both of the reduced phases, similar shifts are seen. Combined with the large 

Hyperfine Fields, one may deduce the presence of Fe4+ in the oxidised compound and Fe3+ in 

the reduced ones195. The presence of a Hyperfine Field further indicates the presence of an 

internal Magnetic field around the iron cations at 77K (i.e. -196°C), suggesting at least some 

short range magnetic order. More strikingly, the magnetic order is apparent even at high 
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temperatures for the N2 annealed sample. Similarly, a broad feature in the H2 annealed sample 

could be indicative of an emerging magnetic order. (See Fig 24). 

 

 
Fig. 22 Thermo gravimetric behaviour of PrSr3Co1.5Fe1.5O10-  and stability upon cycling. In O2, N2 and 

H2, Above 500°C in H2 cycling is not stable. 

 
Fig. 23 Xanes plots of transition metal edges of PrSr3Co1.5Fe1.5O10- . (a) Fe edge and (b) Co edge  
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Fig. 24 Mössbauer spectra of oxygen deficient samples. (a) + (b) O2 annealed - PrSr3Fe1.5Co1.5O~10. (c) + 

(d) N2 annealed – PrSr3Fe1.5Co1.5O~9. (e) + (f) H2 annealed PrSr3Fe1.5Co1.5O~8.25.  



3.2 Oxygen vacancies in the PrSr3Fe1.5Co1.5O10 system.

 

48 
 

 

Both the N2 and H2 annealed sample show a quadrupole splitting (doublet peak) at 300K that 

disappears at lower temperatures. Barrier et al. have studied the structure of the related 

Sr3NdFe3O9.97 The central perovskite blocks in this compound adopt a Brownmillerite like 

structure at room temperature where the tetrahedra constantly shift between two extreme 

configurations. Such shifting creates an uneven electronic distribution of the electronic 

density around the central Fe3+ cations.  

 

 

Fig 25. The magnetic susceptibility and its inverse vs temperature for PrSr3Fe1.5Co1.5O9  

 

Susceptibility vs Temperature measurements were performed on the N2 annealed sample with 

c.a. O9 stoichiometry (Fig 25). This shows an AFM type ordering at low temperatures. A 

linear fit of the inverse susceptibility is possible and yields a positive value for w and a Curie 

constant corresponding to a magnetic moment of c.a. 3.6 b per B site. However, ascribing 

importance to these values would be erroneous as Mössbauer spectroscopy shows that 

magnetic order is still present at ambient pressures. Additional measurements at higher 

temperatures would therefore be needed to determine the transition temperature to the 

paramagnetic state. Furthermore, as the experiments were performed on two separately 

synthesised specimens, sample variability may also be a complicating factor. 
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Structural data at elevated temperatures was obtained from in situ variable temperature 

SRXRD studies (300K<T<1100K) of a fully oxidised sample (structure see Fig 26(a)).206 

These show a strong anisotropy in the character of the unit cell expansion with two successive 

regimes. The first characterised by a pure thermal expansion below 600 K and the second by a 

chemical expansion above 600 K (Fig 26 (b)). This effect is most noticeable on the evolution 

of the long axis of the structure (i.e. the c parameter). It was ascribed to the oxygen loss and 

creation of vacancies in the rock salt part of structure that then, through migration of oxygen 

atoms, lead to the concentration of the vacancies in the central perovskite layer.  

 

 
Fig 26. Structure and variation of the unit cell parameters of PrSr3Fe1.5Co1.5O10-d. (a) Structure and 

reference positions (b) Unit cell evolution vs temperature. 

 

This process can be seen as the succession of the following steps: 

 Vacancies are initially created in the more labile oxygen atoms of the rock salt layer 

(O4).  

 These are then filled by the equatorial oxygen atoms (O3) bonded to the B2 site (outer 

perovskite blocks).  

 In turn, apical oxygen atoms between the B1 and B2 sites fill these. (O2) 

 Finally, the oxygen atoms that occupy the equatorial plane of the central perovskite 

block (O1) fill the vacancies present on the O2 site.  
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Though the structure retains the high symmetric structure at elevated temperatures, such a 

mechanism explains the formation of Brownmillerite/RP1 intergrowths, exemplified by 

Sr3NdFe3O9, as well as the preferred occupation of the B site that is observed at room 

temperature. A distorted orthorhombic structure was also found for the PrSr3Fe1.5Co1.5O9 

composition and it is expected to adopt the intergrowth structure though a full structure 

analysis has not been performed. Finally the onset of oxygen mobility at c.a. 600K 

corresponds also to the decline in electronic conductivity as observed by Armstrong et al. in 

LaSr3Co1.5Fe1.5O10-d. Given the similar behaviour of the LnSr3Co1.5Fe1.5O10-d compounds such 

an effect is not unexpected since the creation of oxygen vacancies reduces the amount of 

conducting holes. 

3.3 Hydration and Carbonatization in the PrSr3Fe1.5Co1.5O10-d system. 

Due to its similarity with Sr3NdFe3O9 and other RP compounds, the title phase is prone to 

hydration. Several mechanisms were put forward such as reductive hydration in the case of 

Sr2.5La0.5Co1.3Ni0.7(O,OH)7-y.41 This conclusion was based on the change of the RP phase’s ap 

parameter that diminished upon hydration.  

Several mechanisms can be used to explain the hydration of layered compounds for which a 

review article has been published.39 In the specific case of the RP compounds, the subject is 

still open to debate as the hydration mechanism will affect the species present in the interlayer 

as well as dictate the evolution (or absence thereof) of gaseous species. For hydration 

experiments performed on PrSr3Fe1.5Co1.5O9 no significant changes in unit cell parameters 

were observed after topotactic insertion of water. However, there seem to be several 

prerequisites in order for topotactic insertions of gaseous species such as H2O or CO2 to take 

place40. Probably the most essential of these is the presence of oxygen vacancies (see See Fig 

27(a)). This allows us to explain several current observations related to RP phases with 

similar compositions. Firstly, when the compound is fully oxidised, no spontaneous reaction 

with water is observed due to the absence of vacant sites. Secondly, depending on the ratio of 

lanthanide to alkaline earth present on the A-site, samples may be more or less prone to 

reaction as their acidities are tailored. Such observations can be explained if the reaction is 

partly driven by Acid-Base interactions in the compound. The reaction that fills oxygen 

vacancies with hydroxyl groups being accompanied by the insertion of stabilising water 

molecules within the rock-salt layers of the RP compounds. This reaction scheme is in real 

atmosphere subject to perturbations induced by the presence of carbon dioxide.  
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Indeed these oxides with their layered structure exhibit high basicity in certain structural 

segments, consequently showing a pronounced tendency to incorporate carbonate rather than 

hydroxyl anions. In particular at higher temperatures where hydroxyl forms are less stable and 

upon prolonged exposure to CO2 containing atmospheres. This suggests that by selecting their 

oxygen stoichiometries, cationic composition and reaction conditions, RP-type oxides may be 

tuned to preferentially incorporate certain guest species. 

 

 
Fig 27. Characterisation of the topotactically hydrated PrSr3Fe1.5Co1.5O9. (a) Ability for hydration with 

respect to oxygen content. (b) Evolution of phase fractions upon heating as determined by SRXRD. 
 

For the selective incorporation of hydroxide anions and molecular water, ambient 

temperatures and short reaction times were determined to be optimal. Upon heating a 

hydrated compound, loss of water and the conversion to an oxide hydroxide is established 

(Fig 27(b)) and was confirmed by thermogravimetric analyses. Given the weakness of metal-

H2O interactions, the decomposition of the hydrate into oxide hydroxide is more rapid than 

the opposite (acid - base) reaction. Additionally the intercalated water molecules distort the 

original tetragonal structure to form a monoclinic cell. Upon heating the monoclinic hydrate 

structure transforms to a primitive tetragonal oxide hydroxide structure, that finally reverse to 

the I-centered RP3 structure at high temperatures.44  As shown in Fig. 28, the conversion from 

I (hydrate) to P (hydroxide) to I (HT phase) imposes repetitive shifting of the perovskite 
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layers from an eclipsed to a direct stacking of layers. The central perovskite block of the 

original RP phase can be seen as shifting to and fro by a vector (a, b, c) = (½, ½, 0). “c” being 

the long axis of the structure, i.e. parallel to the stacking direction of the ABX3 layers. 

 

Fig 28 Topotactic deintercalation reactions of PrSr3Fe1.5Co1.5O9 system. (a) The reduced oxide “I” is 

exposed to “A” to form “II”. (b) Upon heating of “II”, “III” is formed via partial deintercallation of “A” 

located in the interlayer. (c) Further heating eliminates the remaining “A” from the apical/R.S. oxygen (i.e. 

the O4 site from Fig 25) from “III” to form “IV”. Cooling of IV leads to “I”.  

 

Though many authors suppose at least a partial occupation by water of the (0, 0, ¼- ) and (½, 

½, ¼+ ) sites. 40, 44, 207-209 The matter is still debatable as other sites such as the tetrahedral (¼, 

¼, z) could also accommodate water molecules. In an attempt to solve this issue, a reduced 

sample of composition PrSr3Fe1.5Co1.5O9 was prepared and hydrated over a water bath kept at 

room temperature. The sample was subsequently sent to station ID31 of the ESRF for High 

resolution X-ray powder diffraction. The wavelength used was 0.351450Å. The data was 

collected from 2 =0.0005° to 35° using a step size of 0.0005°. The collected pattern (limited 

to 2 <20°) is reproduced in Fig 29 (a). Attempts to fit it using the I12/m1 space group used 

previously proved unsuccessful. Upon careful examination of the data several additional 

features can be seen. Firstly in the region of corresponding to the ±1 0 9, 0 ±1 9 and 1, 1, 0 

peaks of the “I 12/m1” space group, a broad background feature possibly due to triclinic 
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distortions can be seen (blue circle in Fig 29 (b)). Secondly, a clear splitting of certain 

(0,0,l)hydrate peaks can also be seen (Figs 29 (c)-(e), l=6, 10 and 18 respectively).  

 

 
Fig 29. High resolution X-ray powder diffraction pattern of PrSr3Fe1.5Co1.5O8(OH)2.H2O. (a) Global 

pattern and (b) to (e) respectively enlargements of the ranges between 7.15°<2 <7.7°, 3.35°<2 <3.45° 

(0,0,6), 5.625°<2 <5.725° (0, 0, 10) and 10.175°<2 <10.275° (0, 0, 18). Pattern collected with  = 

0.351450Å  
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Plausible explanations for this are the presence of two phases or alternatively a change in cell 

dimension and/or symmetry caused by the intercalated water. Profile fitting was attempted 

both for a multiphase system and for larger cells/lower symmetry. However none of these 

proved satisfactory. To conclude the discussion of this HR-SRXRD study one also has to 

consider possible decomposition of the compound (either due to carbonation or due to the 

energetic beam) thereby adding to the complexity of analysing such a pattern. 

3.4 The PrSr3(Fe1-xCox)3O10 solid solution (0.0 x 0.6). 

It has already been mentioned in the introduction that Fe based perovskite compounds show 

interesting phenomenæ in the low temperature regimes. SrFeO3 is a cubic AFM perovskite 

exhibiting metallic conduction down to low temperatures with a helical spin structure that has 

its axis along the [111]p. The AFM order arises from the competition between local AFM 

interactions occurring through the M-O-M exchange and longer range FM interactions 

originating from the conducting electrons. CaFeO3 on the other hand is an orthorhombic 

insulating perovskite with AFM. that exhibits CD. When studying the RP1 and RP2 strontium 

ferrates Dann et al. showed that both phases present AFM ordering.210 The major difference 

between the two being that the RP2 is subject to CD whereas Mössbauer studies on the RP1 

do not indicate any CD.211  

In SrFeO3, the A-site substitution of Sr by La induces CD. For x = 1/3, the disproportionated 

cations order within planes perpendicular to the [1,1,1]p direction. Their spins of the Fe3+and 

Fe5+ align anti parallel to each other within these planes.28, 212 Doping of the B-site by cobalt 

in the RP related ferrates induce FM interactions leading to competing interactions and the 

emergence of MR effects.171, 213, 214 

The ideal I4/mmm tetragonal structure was determined by XRD. for the studied RP3 phases 

throughout the studied substitution range. 192 For the highest Co substitution, samples could 

only be synthesised at elevated temperatures (Tmax: 1200°C) under flowing O2. Fig 29 shows 

the evolution of the unit cell parameters as a function of Co substitution obtained from profile 

fitting of the powder XRD. data. Also represented in Fig. 30 are the oxygen contents as 

determined by cerimetric titration. Though the evolution of the basal plane (“a” parameter) is 

well described by a linear relation, the long axis (“c” parameter) and consequently the unit 

cell’s volume expands non-linearly. This can be rationalised by two effects: Firstly the 

increase in oxygen vacancies as Co substitution increases the proportion of larger cations (i.e. 

with lower oxidation states). Secondly, for values of x greater than 1/3, there is a tendency to  
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Fig 30. Unit cell parameters and oxygen content of the PrSr3(Fe1-xCox)3O10-  solid solution under 
ambient conditions. 

 

 

Fig 31. Low angle difference N.P.D. patterns. Room Temperature pattern (black), 9°K pattern (red) and 

difference pattern (green) for (a) x=0.00 and (b) x=0.50 with reflection indices. 
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replace the Fe4+ cation by Co4+ cations instead of the larger Co3+ as is suggested for 

substitution levels lower than 33%. Furthermore, deformation of the coordination polyhedra 

that lead to stabilisation of certain electronic configurations may also contribute to such 

effects. Neutron powder diffraction experiments performed on the x = 0.00 and x = 0.50 

samples confirmed the high symmetry structure and high oxygen contents. In order to 

investigate the presence of long range magnetic ordering, data was also collected at 9K. 

Refining this data with the high symmetric structural model from room temperature gave 

reasonable fit statistics for the x=0.50 composition. In the case of the x=0.00 composition, 

using a similar refinement model resulted in bad refinement statistics. When comparing the 

room temperature and low temperature data for both compositions, only a small additional 

contribution to the “101” peak was found for x=0.50 (Fig 31 (b)). In the case of the parent 

compound, additional intensities can be seen for the “002”, “006” and possibly even for the 

“105” peaks (Fig 31 (a)). The origin of this additional intensity can be explained either by 

small magnetic domain size or by a large magnetic supercell. 

 

 
Fig 32 Low temperature Mössbauer spectra for PrSr3(Fe1-xCox)3O10- . (a) x=0.00. (b) x=0.50  

 

Mössbauer experiments performed on both compositions confirm the presence of a magnetic 

field in the vicinity of the iron cations for both compositions at 77K (Fig 32). The spectrum of 

the x=0.0 compound could be fitted by a partially charge disproportionated model 

(Fe3+:Fe4+:Fe5+ in a 2:1:1 ratio, see Table 2). For the LaSr3Fe3O10 compound, Kuzushita et al. 

found similar results of a fully charge disproportionated state at low temperatures. Based on 
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their Mössbauer spectra, they suggested that the compound adopts a structure similar to 

LaSr2Fe3O9 compound where the Fe3+ and Fe5+ order in planes perpendicular to the [111]p.196, 

197 At 300K, both spectra show a single peak corresponding to an Fe4+ state. 

Table 2. Mössbauer parameters of the low temperature spectra for x=0.0 and x=0.5 compositions. 

x=0.0 - 77K x=0.5 - 77K 

 IS 
(mm/s) 

Q 
(mm/s) 

BHF 
(kOe) Rel. Area  IS 

(mm/s)
Q 

(mm/s) 
BHF 

(kOe) Rel. Area

1 Fe3+ 0.377 0.060 414 1.06(6) 1 Fe4+ 0.171 -0.33(6) 300(5) 0.3 

2 Fe3+ 0.344 0.175 377(2) 0.98(8) 2 Fe4+ 0.16(1) 0.09(4) 287(1) 1.0(5) 

3 Fe5+ -0.025 0.084 244.0 1 3 Fe4+ 0.19(3) 0.1 0 0.06(3) 

4 Fe4+ 0.127 0.276 189(5) 1.0(1)  

 

For both compositions, the low temperature measurements are lower than the magnetic 

transition temperatures as evidenced by the low temperature magnetic susceptibility 

measurements (Fig 33). It should be noted that for x=0.0, the transition seems incomplete at 

77K. This supports the hypotheses of incomplete disproportionation of the Fe4+ that was made 

previously in the text. Both low and high temperature magnetic susceptibility measurements 

were performed on all samples. The low temperature data shows the transition from an AFM 

behaviour to a FM dominated behaviour. Due to the high transition point for samples with 

higher Co content, “high temperature” measurements were carried out on a Faraday Balance. 

The data collected between 300K and 600K were used to perform a Curie-Weiss fit. The 

extracted Curie constant (C) and Weiss temperatures ( W) are given in Fig 34 (a) and the 

effective magnetic moments extracted from the Curie constant are represented in Fig 34 (b). 

The effective magnetic moments ( eff) are given per transition metal in the compound and 

have been corrected for the unpaired electrons of Pr3+. As a small perovskite impurity was 

found in in the NPD data for the x=0.50 sample, a perovskite sample with similar cationic 

composition was synthesised and its susceptibility measured. Its susceptibility curve shows 

AFM type ordering and its C, W and eff parameters are represented by open symbols in Fig 

34. The calculated values for eff are consistent with a 3d4 configuration of Fe4+ (i.e. =4.9 b) 

for the parent compound. The lowering of the average eff may be explained as follows: For 

Co contents smaller than 33%, the Co cations are inserted in the form of Co3+ low spin (i.e. 

3d6, S=0 configuration). Once the doping exceeds 33%, the additional cobalt needs to be 

inserted in the form of Co4+. For the x=0.50 sample a eff value of 4 b consistent with that 
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extracted from C can be achieved when considering spin only moments of Co3+
LS (33.3%, 

S=0, Co3+=0 b), Co4+
HS (66.7%, S=2, Co4+=4.9 b) and Fe4+

HS (50%, S=2, Fe4+=4.9 b). For 

the RP3 samples the deviations from the Curie – Weiss fit above 600K were attributed to the 

onset of oxygen mobility. However the Co3+
LS Co3+

HS transition could also cause such 

deviations. The W values are all positive and increase with Co substitution. This would 

indicate the presence of FM type interactions and, as aforementioned, is consistent with other 

reports of cobalt substituted ferrates.171, 213, 214  

 

 
Fig 33. Magnetic susceptibility and its inverse at low and high temperatures. (a) For the unsubstituted 

compound. (b) For the 50% Co substituted compounds. Data was collected under fields of 20kOe (due to a 

weak signal) and 100Oe for x=0.00 and x=0.50 respectively. 

 

The interaction between the AFM super exchange that occurs between two Fe4+ cations is 

therefore competing with FM interactions that occur through Co substitution leading to 

magnetic frustration within the structure. This has been verified by A.C. magnetisation 

measurements on samples with x=0.00, x=0.20 and x=0.50 compositions (Fig 35 (a), (b) and 

(c) respectively). While for the parent compound, the real and imaginary parts of the 

magnetisation are frequency independent, for the Co substituted samples they both show a 

frequency dependency. Of the three samples, the x=0.20 exhibits the strongest frequency 

dependency whereas the x=0.50 sample exhibits two features, the one occurring at lower  
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Fig 34. Curie-Weiss parameters and effective moment as a function of Co substitution levels. (a) C 

and W values for RP3 phases (closed symbols) and the Pr0.25Sr0.75Co0.5Fe0.5O3-  perovskite (open symbols). 

(b) The effective magnetic moment extracted from the Curie constant for the RP3 (closed symbols) and the 

Pr0.25Sr0.75Co0.5Fe0.5O3- perovskite (open symbols). 

 

 
Fig 35. Real and Imaginary parts of frequency dependent magnetisation measurements vs 

temperature. (a) x=0.00, (b) x=0.20 and (c) x=0.50 
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temperatures being clearly frequency dependent. The presence of FM interactions is 

confirmed by the hystereses of the field dependent magnetisation at 5K for samples 

containing cobalt whereas for the parent compound none can be observed (See Fig 36.).  

For the high Co containing samples, the M vs H curves collected at 5K present in addition a 

sudden increase in magnetisation at higher fields. This is characteristic either of clustered 

materials or of so-called meta-magnetic materials. The latter exhibit crossovers between 

different magnetic states of similar, but different, energies upon application of a critical field. 

For perovskite related phases, metamagnetism has been observed in RP2 ruthenates with 

itinerant electrons215, 216 or insulators such as DyBaCo2O5.5+x and LaMn1-xMxO3 (M=Ga, Sc). 
217, 218 Characteristic of these examples is the presence of a maximum in the temperature 

dependencies of the magnetic susceptibilities. 

 

 
Fig 36. Field dependency of the magnetisation at 5K 

 

In these samples, it is tempting to attribute the metamagnetic behaviour to the disruption of 

the AFM order by the insertion of the diamagnetic Co3+
LS as occurs in the case of the LaMn1-

xMxO3 perovskite and may be one explanation. However the sudden increase of magnetisation 

is more visible for the higher Co contents where the electrons are more itinerant as is 

characterised by their decrease in resistivity observed upon Co doping (Fig 37). This 
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reduction of resistivity supports interaction models where increased FM interactions occur 

either through itinerant electrons (so called double exchange mechanism) or a 3d5-3d4 (i.e. 

Co4+
HS - Fe4+

HS) superexchange mechanisms.  

In effect it is hard to distinguish between a PM-FM metamagnetic model or a magnetic cluster 

model. As previously suggested,192, 219 the cluster model supposes the presence of randomly 

oriented weak magnetic clusters. At low Co substitution levels, the non magnetic Co3+
LS 

disrupt the AFM Fe4+-O-Fe4+ interactions thereby creating AFM clusters. At higher 

substitution levels, the Co3+ would disrupt the Co4+-O-Fe4+ magnetic interactions creating 

clusters of FM domains. At a critical value, these would then align with the excitation field, 

thus explaining the sudden jump in magnetisation observed for greater values of x. 

Though the resistivities decrease monotonously with temperature for all samples, no model 

(i.e. polaron, VRH, Coulomb gap or Arrhenius) could successfully fit the low temperature 

resistivities. From a qualitative point of view, there seems to be an onset of a MI transition for 

the x=0.0 compound around 200K due to (partial) CO. This would be consistent both with the 

susceptibility data and with the Mössbauer data for the parent compound. 

 

 
Fig 37 Resistivity as a function of composition and temperature in PrSr3(Fe1-xCox)3O10- . 

 

However, as shown by Akahoshi et al. the electric and magnetic properties of RP phases are 

highly anisotropic. 220 Indeed, upon Co substitution of Fe in Sr3Fe2O7, magnetisation and 
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resistivities vary widely between in plane (i.e. with field or current flow parallel to the rock 

salt layers) and out of plane (i.e. field and current flow parallel to the long axis “c”) 

measurements. For high Co content a near metallic conductivity is even observed in plane 

whereas a semi conductive like resistivity is observed for the out of plane resistivity. The 

mixing of these anisotropic properties in polycrystalline samples with, in addition, effects 

such as non negligible tunnelling between adjacent perovskite blocks or grain effects, renders 

the attribution of a dominating conducting mechanism difficult at best. 
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4 Perspectives 
In the introduction, much focus was set on the versatility of the ABX3 compounds both from a 

structural as well as from the application point of view. The current work, revolved around the 

RP3 compounds within the PrSr3(Fe1-xCox)3O10-  and the behaviour of the x=0.5 compound in 

different atmospheres. This led to various interesting results such as amongst other things the 

insertion of water in mixed B-site RP3 compounds, rationalising intergrowths between 

Brownmillerite and RP1 and their derivation from RP3 compounds as well as the low 

temperature properties of the aforementioned solid solution. These are all aspects that are of 

interest in technological applications such as catalysis or micro-electronics. Based on this 

work and the scarceness of available publications on mixed RPn systems in general and RP3’s 

in particular, further extension of this work opens an exponential amount of possibilities. 

These may be divided into three heavily interconnected categories: Composition, Properties 

and Superstructures.  

From the compositional point of view, several aspects might be studied. Firstly tuning the 

synthesis conditions in order to obtain other members of the (Pr ¼ Sr ¾)n+1(Fe1-xCox)nO(3n+1)-  

system. Thereafter one might consider, within each RPn system, investigating various 

synthesis conditions and methods for studying the A site substitution. Aiming either at 

inserting smaller lanthanides, using different elements (e.g. Ca, Ba, Y,...) or changing the ratio 

between the two. Such a parametric study on the A site composition would allow examining 

properties such as proton and oxide ion conduction, catalytic properties or host-guest 

substitutions and intercalations. All of which could be obtained by tuning the acidity/basicity 

and redox properties of the compound. 

Similarly, one might consider studying the effect of the B site composition on the structure of 

the compounds. In particular, studying the electronic transitions upon doping and substitutions 

of the Fe sublattice would be of particular interest. Indeed, for the AFeO3 system, substituting 

the B site with 10% or less has shown drastic effects for the conductivities of the samples. 

Understanding the effects of small substitution levels on the electronic and magnetic 

transitions that take place in various RP ferrate systems would provide a general 

understanding of such 2D systems and the tuning of their electronic structure (“band gap 

engineering”). Again, one might also consider changing Co for another magnetic element 

such as Mn that might induce J-T type distortions or other CD/CO effects. Other magnetic 

atoms of interest for Fe (co-)substitution might be V, Cr or Ni. Of equal importance to the 

electronic and magnetic properties would involve substitution of Fe by non magnetic cations, 



3.4 The PrSr3(Fe1-xCox)3O10 solid solution (0.0 x 0.6).
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either multi-valent such as Ti or Cu or single valent atoms for example Al. The latter was 

shown to favour the formation of oxygen vacancies in the central perovskite block that force 

the electron holes to localise in the outer perovskite block.221 In conjunction with A site 

doping, one may also consider targeting specific compositions where one might obtain atomic, 

charge and/or orbital ordering phenomena. The last compositional variable that can be 

considered would be the anion. Examining either the effects of deficiencies (both at high and 

low temperatures), or even substitution of the lattice oxygen by other chalcogenides, pnictides 

or halogenides. Such substitutions would heavily influence the overlap between the anionic 

and cationic orbitals and hence the materials properties. 

As an alternative to classical wet and dry chemical synthesis methods, using thin film 

techniques to investigate specific superstructures would prove valuable from the chemical and 

application point of view. For example, such methods would be ideally suited for creating 

superstructures with alternating Co and Fe perovskite blocks or even creating ordered 

structures with alternating Fe and other transition metals within a given perovskite layer. 

These could be interesting for the creation of spintronic components. Thin film techniques 

would also be well suited to create epitaxial films for studying the anisotropy of the magnetic, 

electronic and ionic properties. Such studies have already shown that alternation of two 

different perovskite layers can cause interesting phenomena in their own right (e.g 2D 

electron gases in SrTiO3/LaAlO3 superstructures222). Ideally the studies on thin films would 

need to be conducted in conjunction with the growth of macroscopic single crystals so as to 

minimise/investigate the effects of nanoscale versus bulk. Using low temperature thin film 

techniques such as atomic layer deposition would in addition permit the study of crystallinity 

on the compound’s properties. 

Finally studying the intercalation chemistry of the RPn phases opens up a whole field of 

research possibilities for creating novel catalysts and hybrid materials for electronic 

applications. Understanding the precise driving force of the hydration and carbonation 

mechanisms through in situ studies with collection of high resolution X-ray and Neutron 

powder data (i.e. diffraction and absorption) in perfectly controlled atmospheres (pO2, pH2O 

and pCO2) would provide a significant stepping stone for the creation of novel intercalated 

materials. Furthermore, creating novel intercalated hybrid materials would permit the creation 

of highly dimensional electronic structures through variations of the intercalated ligand. 
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