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Abstract

Iron (Fe) is an important impurity in solar-grade silicon which contributes

substantially in degrading the efficiency of solar cells. The degradation is

mainly caused by the Fe atoms situating at an unperturbed tetrahedral in-

terstitial sites (Fei) in the silicon crystal, consequently acting as a recombi-

nation center. By altering the position and the neighbouring environment at

which the Fe atoms reside, there are opportunities in minimizing or neutral-

izing the electrical activity of Fe. Furthermore, utilizing the high mobility

of Fe, one can increase the performance of a device by accumulating the Fe

atoms from critical regions into regions where Fe can be tolerated. These

approaches can help in realizing high efficient solar cells based on cheap

and highly Fe-contaminated silicon. In this work, we have investigated the

interaction between Fe and defects relevant to solar cells, using mainly elec-

trical characterization methods such as capacitance-voltage measurement,

deep level transient spectroscopy and admittance spectroscopy.

From the study of potential hydrogen passivation of Fe, hydrogen

was introduced through wet chemical etching and further driven to a de-

fined region. Using depth profiles, it is found that incorporation of hydrogen

stimulates the dissociation of the iron-boron (Fe-B) pair, releasing and re-

sulting in the unwanted Fei. At the same time, no passivation of Fe by

hydrogen has been observed.

On the investigation of the mechanism of phosphorus gettering of

metal impurities, vacancies have been generated through proton-irradiation.

The resulting irradiation-induced defects were examined for reactions with

Fe after heat treatments. Based on the evolution of defect concentrations by

isochronal annealings, it is found that Fe interacts with the divacancy and



the vacancy-oxygen complexes, forming deep levels of 0.28 eV and 0.34 eV

above the valence band edge (EV ), respectively.

In the search for substitutional Fe to investigate its electrical activ-

ity and thermal stability, measurements were performed around the pro-

jected range of Fe-implantations after rapid thermal annealing. A shallow

acceptor is uncovered with an energy level position of EV +0.06 eV and a

defect concentration closely following the calculated concentration of the

Fe-implantation dose. However, chemical analysis with secondary ion-mass

spectrometry shows out-diffusion of Fe from the region around the projected

range after annealing. This suggests that the formation of the shallow ac-

ceptor is only assisted/promoted by Fe without Fe being a part of the final

complex.
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Chapter 1

Introduction

Silicon has been the dominant semiconductor material for more than half a century

and intensively studied. This has given silicon an advantage as a material for solar

cells where more than 80% of the market is based on crystalline silicon (1). Single

crystalline and multicrystalline silicon are the main ones used and they differ generally

by quality and cost. Multicrystalline silicon contains higher impurity concentration due

to in-diffused metal during growth, and the impurities can easily form precipitates at

grain boundaries (2, 3). These precipitates can degrade a solar cell by increasing the

leakage current and increasing the probability of shunting. Moreover, the precipitates

can also be dissolved during high temperature processing of a solar cell, producing point

defects with strongly degrading effects, even at low concentrations (4, 5). Among the

metal impurities, transition metals such as iron (Fe), are particularly detrimental for

the solar cell and integrated circuit performance. Solar cells based on single crystalline

silicon will degrade similarly when contaminated with the metals.

The study of Fe in Si began already in 1956 (6) and is one of the most studied

transition metals in silicon (7, 8). More than 30 Fe-related defects have been uncovered

using electron paramagnetic resonance (EPR) and around 12 electrically active defects

are firmly reported using electrical characterization methods. However, only 4 of the

electrically active defects are relevant for boron-doped silicon which is mainly used for

solar cells. Two of the defects are well-known for their degradation characteristics in

commercial silicon-based solar cells, and they are the interstitial Fe (Fei) and the Fe-B

pair (consisting of an interstitial Fe next to a substitutional boron (B)) (9). These
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1. INTRODUCTION

two defects are reversibly interchangeable and the dissociation of the Fe-B pair into

the Fei leads to a degradation of the solar cell. Such dissociation can be initiated

by heat treatment, minority carrier injection or illumination(10, 11), where the latter

one is the so-called light-induced degradation (LID). Interestingly, having 5×1022cm−3

of silicon atoms in a crystal, a significant degradation can already be observed with a

concentration of Fei of 1×1012cm−3 (12). Large amount of research has been focused on

reducing the concentration of electrically active Fe, by, for instance, accumulating Fe in

a non-affecting region (gettering) or forming Fe-related complexes which are electrically

in-active (passivation).

The principle of gettering is to create a spatial region capable of capturing a large

amount of Fe by forming stable complexes. The gettering process can occur with, for

instance, oxygen precipitates (13), structural damage (14), electrically charged regions

(15) or phosphorus in-diffusion (16). The latter method is essentially one of the steps

in forming standard solar cells and, therefore, provide rinsing of the material “for

free”. However, the phosphorus gettering process is not well understood in terms of the

underlying defect reactions which sets limitations on the optimization of the gettering

process. Thus, it is important to gain further understanding in the defects reactions

with Fe.

Passivation of defects is commonly performed with hydrogen, as illustrated by the

many reports showing its capability on vacancies (17), dangling bonds (18), grain

boundaries (19, 20) and dopants (21). For that reason, introduction of hydrogen is

often an integrated process in the production of solar cells and efficiency improvements

have been observed. However, reports have also shown that reactions between H and

transition metals can form electrically active defects such as Au-H (22), Pt-H (23) and

Ag-H (24). In the case of Fe, experimental reports on the effect of H on Fe are scarce

and contradicting (25, 26, 27) which demands further examinations. Fortunately, theo-

retical estimates have been performed recently to predict the stability and the electrical

activity of possible Fe-H complexes (28, 29), but the predictions still require experi-

mental verifications.

In the work of this thesis, Fe has been introduced in silicon under various conditions

and investigated for Fe-related complexes using electrical characterization techniques.

The origin, formation and stability of Fe-related complexes are discussed.

2



This thesis is organized into four chapters. Chapter 2 introduces the basic semicon-

ductor concepts and physics which assist in the understanding of the electrical charac-

terization techniques used and the purposes of the experiments. Chapter 3 describes

the electrical characterization techniques, and Chapter 4 summarizes the work in the

manuscripts and published articles.
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Chapter 2

Basic semiconductor concepts

and physics

This chapter introduces the basic concepts of semiconductor physics and will aid in the

understanding of this thesis. Detailed concepts which are closely related to a subject,

however, will only be briefly mentioned and references are given for those interested.

2.1 Schottky barrier contact

The Schottky barrier contact (SBC) is an important diode structure, formed between

a semiconductor and an appropriate metal (30). A diode exhibits a non-linear current-

voltage characteristics, and it can be understood by considering the energy potentials

and the charge carrier distribution of the system, based on the Schottky-Mott limit (31).

Figure 2.1a shows schematically a system consisting of a metal, for instance aluminium,

and a semiconductor, for instance p-type silicon, in a non-interacting distance where

energy potentials are situated relative to the vacuum level (Evac). In the Si, electrons

and holes (quasi-particle with opposite charge state of the electron) occupy energy levels

in the conduction band and the valence band, respectively. These bands are seperated

by a band gap (EG) which is intrinsically free of energy levels, and the gap distance

is controlled by the conduction band edge (EC) and the valence band edge (EV ). The

amount of electrons and holes in the respective bands are expressed by the Fermi-level

5
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Figure 2.1: Schematics of energy potentials for a system of Al and p-type Si at a) non-
interacting distance and b) in direct contact.

(EF ) and are exponentially dependent on the position of the EF . In a semiconductor

where the current is dominated by electrons, that is an n-type material, the Fermi-level

is found close to the EC , while the opposite is true for a p-type semiconductor.

Figure 2.1b shows a simplified schematic of the Al and the Si in direct contact. The

Fermi-levels in Fig.2.1a is aligned due to diffusion of free charge carriers (holes, in this

case) across the junction, leaving ionized dopants and giving rise to an electrical field

which opposes the diffusion. This results in a region depleted of free charge carrier,

called the depletion region (W ), and the electrical field results in a built-in potential

(Vbi). The Vbi multiplied by the elementary charge1, q, describes the energy barrier the

free charge carriers must surmount in order to reach the metal from the semiconductor

when no external voltage is applied. This energy barrier can be manipulated by simply

applying a voltage (Va) across the system. In a forward bias voltage, the energy barrier

is decreased and the amount of charge carriers moving from the semiconductor to

the metal increases exponentially, resulting in an exponential increase in the current

density. While in a reverse bias voltage, the current density is affected by ΦB , which

is determined by the choice of metal, and the amount of minority carriers (electrons,

in the case of Fig.2.1b) in the semiconductor. Another direct consequence of applying

a voltage over a diode is that the width of the depletion region changes, where W can

1q � 1.602 × 10
−19 C

6



2.2 Point defects and charge carrier emission

be expressed as

WSchottky =

√
2ε0εr

qNa/d

(
Vbi + Va −

kT

q

)
, (2.1)

where ε0 is the permittivity of free space1, εr is the relative permittivity of the semi-

conductor, Na/d is the doping concentration of acceptors/donors, k is the Boltzmann

constant2 and T is the absolute temperature.

Another important diode structure is the pn-junction where one material is doped

p-type in one region and n-type in the neighbouring region, creating a difference in the

Fermi-levels between the n-type and the p-type region (30). This difference results,

again, in the diffusion of free charge carrier across the junction, producing the energy

barrier and the depletion region that can be expressed as

Wpn =

√
2ε0εr

q

(
1

Na
+

1

Nd

)
(Vbi + Va) . (2.2)

Although the general physics in the formation of the pn-junction is similar to a SBC,

many phenomena and applicational differences exist which include the image force,

minority carrier injection, switching speed and so on. The depletion region can be

expressed as

2.2 Point defects and charge carrier emission

Impurities and defects are important in order to provide a semiconductor with desirable

electrical properties but may also be hightly unwanted and detrimental to the device

performance, as shown in the previous section with the dopants. This section will

discuss properties of defects and their roles with charge carriers.

2.2.1 Formation and stability of defects

In bulk materials, impurities and defects are introduced during growth and/or in the

later processing steps. This can occur unintentionally by contamination from the envi-

ronment or intentionally by various routes, such as ion-implantation and in-diffusion.

1ε0 � 8.854 × 10
−14 F/cm

2k = 1.381 × 10
−23J/K

7



2. BASIC SEMICONDUCTOR CONCEPTS AND PHYSICS

Among the many lattice positions where a defect can be situated, Fig.2.2 shows a) an

interstitial configuration and b) the substitutional configuration of a single impurity

atom in a unit cell of silicon. Other defect configurations can, for instance, be bond-

center, anti-bonding and hexagonal (32). More complicated configurations exist when

Figure 2.2: Unit cells of silicon crystal with a) a tetrahedral interstitial and b) a substi-
tutional defect. The drawing is made using Accelrys DS Vizualizer 3.1.(33)

combining multiple defects. This generates the possibility of higher dimensional defect,

such as the one-dimension (1D) line defect, plane defect (2D) and clusters (3D) (34).

The stability of a defect configuration is determined upon the energy barrier required

to interchange between defect configurations (35). The probability of surmounting an

energy barrier increases exponentially with increasing temperature. For that reason,

heat treatments (annealings) is commonly performed to investigate the evolution of and

the interactions between defects present in a crystal. Furthermore, a heat treatment is

terminated by cooling the crystal back to room temperature (RT) with a certain cooling

rate. When a crystal is slowly cooled, a defect finds the most stable configuration.

However, when the crystal is rapidly cooled (quenched), defects can be frozen into

configurations differing from the most stable one. Quenching is, therefore, widely used

in the study of Fe in silicon to freeze the in-diffused Fe to the interstitial lattice position

which may otherwise form other Fe-related defect complexes at room temperature. (7).

A defect can also change its stability by altering the energy barrier for interchanging

to other configurations. This can be performed by a change in the charge state of a

defect(36). When a defect is introduced in the crystal, it can generate one or more

energy levels within the band gap, which defines the charge state transitions. Thus,

moving the Fermi-level will result in filling or emptying a defect for charge carriers,

8



2.2 Point defects and charge carrier emission

changing its charge state and, hence, its stability. As indicated in Sec.2.1 about SBC,

the Fermi-level can easily be moved within the depletion region by applying a bias

voltage in reverse. This enables a method of annealing in reverse bias voltage on a

diode. The technique, not only allows a change in the defect annealing temperature, it

also allows for defect reactions which would otherwise be hindered due to repulsion of

same charge state (Coloumb repulsion).

2.2.2 Electron and hole occupancy of a defect

As electrically active defects and impurities form energy levels within the band gap,

charge carriers can interact with the defects via the energy levels which results in filling

or emptying of a defect of electrons and holes. Figure 2.3 shows the four possible

charge carrier transitions between the energy bands and a defect, which changes the

concentration of hole-filled (pT ) and electron-filled (nT ) defect from the total defect

concentration (NT = pT + nT ). When a charge carrier is captured from and re-emitted

a) b) c) d)
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Figure 2.3: Schematics of capture and emission of charge carriers by a deep level, showing
a) emission of an electron, b) capture of an electron, c) capture of a hole and d) emission
of a hole.

to the same band, the transition is called trapping. While, if a charge carrier re-emits

to the other band, it is called recombination. Such transitions are associated with the

rates of capture and emission of holes (cpp and ep, respectively) and electrons (cnn

and en, respectively), where the capture rates are dependent on the concentration of

electrons in the conduction band (n) and holes in the valence band (p). For a given

n and p, electron occupancy of a defect can be deduced from the following partial

9



2. BASIC SEMICONDUCTOR CONCEPTS AND PHYSICS

differential equation

dnT

dt
= cnnpT + eppT − cppnT − ennT = (cnn + ep)(NT − nT ) − (cpp + en)nT . (2.3)

The equation can be solved for nT (t) to be

nT (t) = nT (0)e−t/τ +
ep + cpn

en + cnn + ep + cpp
NT (1 − e−t/τ ) , (2.4)

where nT (0) is the electron occupancy of the defect at t = 0 and τ = 1/(en + cnn +

ep +cpp). Similar equation for holes can be achieved by changing electron-related terms

into hole-related terms.

Equation 2.4 can be reduced significantly when considering a defect in the deple-

tion region which is initially filled with electrons (nT = NT ) and in the process of

being emptied. In such consideration, no free charge carriers are found in the bands

(n = p = 0) and the electron emission is dominating (en � ep), which results in an

important equation for various characterization techniques, such as deep level transient

spectroscopy,

nT (t) � nT (0)e−t/τ = NT e−ent. (2.5)

2.2.3 Capture and emission rate

The capture rate of electrons for a defect is defined as (37)

cnn = vth,nσnn , (2.6)

where σn is the capture cross-section of the defect and vth,n is the average thermal

velocity of the electrons. The thermal velocity is defined as vth,n =
√

3kT/m∗

n, where

m∗

n is the effective mass of electron1. Similar equation can be deduced for holes by

exchanging the electron-related indexes with p.

The emission rate of electrons can be deduced by considering the principle of de-

tailed balance, which states that (Ref.(37) p.307) “under equilibrium conditions each

fundamental process and its inverse must balance independent of any other process that

1m∗

n = 1.08mn

10



2.2 Point defects and charge carrier emission

may be occurring inside the material” . This means that electron capture and emission

by a defect with the conduction band has to balance each other at equilibrium, leading

to

en0nT = cn0n0(NT − nT ), (2.7)

where the index 0 denotes equilibrium. Inserting for NT and nT using the Fermi-Dirac

distribution, the equilibrium emission rate becomes

en0 = cn0NC
g0

g1
exp

(
−

EC − ET

kT

)
, (2.8)

where g0 is the degeneracy of an unoccupied state, g1 is the degeneracy of an occupied

state and NC is the effective density of states in the conduction band. Under the

assumption that the emission and the capture rates change insignificantly under non-

equilibrium conditions, the 0-index for en0 and cn0 can be removed. Non-equilibrium

conditions can, for instance, involve contributions from electric field, which can affect

the emission rate.

2.2.4 Poole-Frenkel effect

The Poole-Frenkel effect is one of the effects which alter the energy barrier for emission

of charge carriers by an electrical field (38), for instance in a depletion region. This

effect exists only if an emitted charge carrier experiences a Coloumb attraction to the

same defect. Figure 2.4 shows schematically an energy potential of a defect where the

energy barrier is reduced by an applied electrical field. The reduction in the energy

EC-ET

ΔE
ξ=0

ξ≠0

Figure 2.4: Schematic of Poole-Frenkel effect, showing energy barrier lowering for an
electron emission from a defect due to an electrial field.

11



2. BASIC SEMICONDUCTOR CONCEPTS AND PHYSICS

barrier can, in a one-dimensional approximation, be expressed as

ΔE = 2q

√
ξq

ε0εr
, (2.9)

where ξ is the absolute value of the electrical field.

The Poole-Frenkel effect can be utilized to identify acceptors in p-type material or

donors in n-type material by observing a dependence of emission properties as a function

of electrical field. However, the lack of Poole-Frenkel in p-type (n-type) material does

not necessarily prove the nature of donor (acceptor) (39).

12



Chapter 3

Methods

In this chapter, three of the most essential electrical characterization techniques and

a simulation tool used in the thesis will be described. The Capacitance-voltage (CV)

measurement is mainly used in determining the charge carrier concentration as a func-

tion of depth in order to control the doping concentration of a wafer and to investigate

changes in samples after treatments. Both deep level transient spectroscopy (DLTS)

and admittance spectroscopy (ADSPEC) are used to investigate defects including their

energy level position and concentrations.

3.1 Capacitance-voltage measurement (CV)

One of the most important quantities in characterizing a diode is the capacitance, and

defined as (40)

C =
Δq

ΔV
, (3.1)

where Δq is the change in the charge and ΔV is the change in the voltage. Normally,

the capacitance is extracted by use of an AC voltage signal (for instance 1MHz) with a

small probing amplitude (typically between 30 to 100 mV) and measuring the current

response. In a capacitance-voltage measurement, the AC-signal is superpositioned with

a stepwise-changing DC-signal. For an ideal diode, the capacitance follows a voltage-

13



3. METHODS

dependence given as

C = A

√
qε0εr

2

(
1

Na
+

1

Nd

)
−1 1

Vbi + Va
, (3.2)

where A is the area of the junction. This equation can be simplified by introducing the

depletion width (Eq.2.2) to

C =
ε0εrA

W
, (3.3)

which is an important equation in providing the depth-information under investigation.

From a capacitance-voltage measurement, information about the effective charge

carrier concentration as a function of depth can be extracted by, for instance, the

following relation (40)

N(W ) = −
2

qε0εrA2

(
ΔC−2

ΔVa

)
−1

. (3.4)

As an example, Fig.3.1 shows charge carrier concentration versus depth profiles for

SBC before and after a heat treatment. It is known that formation of a SBC can unin-

tentionally introduce hydrogen to the surface of the semiconductor (from, for instance,

the metal), and that hydrogen passivates boron acceptors (32, 41, 42), forming the

B-H complex, which reduces the charge carrier concentration. Thus, the amount of

reduction in the charge carrier concentration can indirectly give information about the

concentration of hydrogen. From Fig.3.1, it can also be seen that heat treatment can

dissociate the B-H complex and distribute the hydrogen further into the semiconductor.

Equation 3.4 assumes a negligible or uniform concentration of deep-level defects.

However, for a non-uniform concentration of deep acceptors (in n-type) in a sufficient

amount to influence the overal carrier concentration, an artificial peak can occur (43).

3.2 Deep level transient spectroscopy (DLTS)

Deep level transient spectroscopy is a powerful electrical characterization technique ca-

pable of determining the majority capture cross-section, energy level position, concen-

tration and depth profile of defects(44). This technique utilizes the transient response
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Figure 3.1: Charge carrier concentration versus depth profile before and after heat treat-
ment on a aluminium SBC. It reveals the passivated region, which results from the forma-
tion of B-H, and can be related to the concentration of hydrogen.

of either capacitance, current or voltage due to emission of charge carriers from a defect

level at different temperatures. Each charge carrier emission is initialized after a filling

procedure of the defect. The principle of DLTS will be presented in the case of a p-type

semicondutor and for capacitance transients.

Figure 3.2a shows schematically a SBC under reverse bias voltage with a depletion

width of W0. Two energy levels are drawn above and below the midgap in the p-
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Figure 3.2: Schematics showing the principle of DLTS through filling and emptying of a
defect in a SBC by a voltage pulse.
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type semiconductor. The occupancy of the deep levels can be reasoned by considering

the emission and capture rates of charge carriers described in Sec.2.2.2. For the deep

level close to the EC , the emission rate of electrons dominates over the emission rate

of holes and the capture rate of electrons. Thus, this deep level remains emptied of

electrons (filled with holes). For the deep level close to the EV , the emission rate

of holes dominates over the emission rate of electrons, but the emission rate of holes

competes with the capture rate of holes which varies spatially. At the depth W0 − λ,

where λ is the distance from the edge of the depletion region to the crossing depth

between the deep level and the Fermi-level, a transition in the dominance of capture

and emission rate of hole occurs. Thus, it is convenient to adress the position of the

Fermi-level relative to defect levels to discuss the occupancy of defect levels.

In Fig.3.2b, the reverse bias voltage of the SBC is removed. As a consequence, the

depletion width is shorter than in Fig.3.2a and the Fermi-level moves below the region

depleted of holes of the deep level between (W0 − λ) and (Wf − λ). This leads to a

capture process of holes, filling the defects.

When returning the SBC to its initial reverse bias voltage, shown in Fig.3.2c, the

instantaneous depletion width differs from W0 due to the change in occupancy of the

defects within the depletion region. However, the defects in the region between (W0−λ)

and (Wf − λ) are again under the Fermi-level which favours the emission of holes to

the valence band. The process of emisson of holes creates a capacitive change as a

function of time, yielding a capacitance transient, as simulated in Fig.3.3a for different

temperatures. When NT � Na, the capacitance transient can be expressed as

ΔC(t) =
CrNT

2Na
e−ept , (3.5)

where Cr is the capacitance under reverse bias voltage immediately before the voltage

pulse. From fitting of the measured capacitance transients to this equation, defect

properties, like defect concentration, energy level position and capture cross-section,

can be extracted. However, a more practical and visual method is available which

involves weigthing functions.
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3.2 Deep level transient spectroscopy (DLTS)

3.2.1 Weighting functions

A typical DLTS measurement is performed by repeatedly acquiring the capacitance

transient after a filling pulse while heating or cooling of the sample. The capacitance

transients are averaged within a temperature interval and the raw data of a DLTS mea-

surement may appear, for example, as simulated in Fig.3.3a. Such data representation

are diffucult to work with, especially in comparing between different DLTS measure-

ments. Thus, mathematical treatments are used in order to convert the data into a

C
ap

ac
ita

nc
e 

[a
rb

. u
ni

t.]

−1
0
1

Time [ms]

−1
0
1

Time [ms]

0 50 100 150 200 250 300
−1

0
1

Time [ms]
170 180 190 200 210 220 230 240 250
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

D
LT

S
 s

ig
na

l b
y 

Lo
ck
−i

n 
[a

rb
. u

ni
t.]

Temperature [K]

TW 1
TW 2
TW 3

Decreasing
temperature

a)

b)

c)

Lock−in weighting function

Time window 1

Time window 2

Time window 3

Figure 3.3: Principle of DLTS, simulated by Matlab, showing a) capacitance transients
at different temperature, b) lock-in weighting function for the first three time-windows and
c) DLTS spectra of the transients in a), extracted using lock-in weighting function in b).

spectrum with peaks as a function of temperature. Many weigthing functions exist

which differ by their capability of seperating close-lying peaks and their tolerance of

noise (45), for instance lock-in and GS4 weighting function, where a lock-in weighting

function is widely used.

The lock-in weighting function provides a simple mathematical conversion with

high tolerance of noise which is ideal for characterizing defects that are significantly

different in charge carrier emission properties. This function converts the transient by

simply subtracting the first half of the transient with the second half. Thus, the lock-in

weighting function can be expressed as

wLock−in(tj) =

{
−1 , for 1 ≤ j ≤ 2i−1

1 , for 2i−1 < j ≤ 2i (3.6)
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where tj is a discretized time (10 ms in Fig.3.3a) and i is the time-window (TW) which

represents the length of time to be considered. Figure 3.3b shows the lock-in weighting

function for the first three time-windows which involves the first 2, 4 and 8 data points

of the transients. This leads to time-window dependent DLTS signals, Si, which are

expressed as

Si =
1

2i

2i∑
j=1

wlock−in(tj)ΔC(tj) . (3.7)

Figure 3.3c shows three DLTS spectra deduced from the transients in Fig.3.3a according

to Eq.3.7 for the first three time-windows. A peak from each DLTS spectrum is visible

due to a deep level and the peak position is shifted depending on the time-window.

This shift is essential when extracting defect parameters.

In contrast to the lock-in weighting function, the GS4 weighting function has a

lower tolerance to noise but higher capability (energy resolution) of seperating peaks.

The function which is given as (46)

wGS4(tj) =

⎧⎪⎪⎨
⎪⎪⎩

−1 , for 1 ≤ j ≤ 2i−2

25 , for 2i−2 < j ≤ 2i−1

−48 , for 2i−1 < j ≤ 3/2 × 2i−1

24 , for 3/2 × 2i−1 < j ≤ 2i

, (3.8)

requires four data points of a transient for the first time-window (i = 2), and the

DLTS signals are calculated with Eq.3.7 after replacing wlock−in with wGS4. A detailed

description of this weighting function can also be found in Ref.(47).

3.2.2 Extraction of defect parameters

Weighting functions have enabled the visualization of deep levels as peaks at given

temperature depending on the parameters chosen for the time-windows. In addition,

the temperature of a peak maximum represents an emission rate of a deep level at

that temperature. Thus, using several time windows, a collection of emission rates

at different temperatures are found. By rearranging Eq.2.8, a relation between the
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3.2 Deep level transient spectroscopy (DLTS)

emission rate and temperature can be expressed as

ln
( en

T 2

)
= ln

([
8π3/2m∗

nk2

h3

]
g0

g1
σn

)
−

(
EC − ET

k

)
1

T
, (3.9)

and visualized in an Arrhenius plot of ln(en/T 2) versus 1/T . Here, the slope of the

Arrhenius plot uncovers the energy level position, while the extrapolated intersection

to the ordinate gives the apparent capture cross-section. However, the above interpre-

tations assume negligible change in the entropy when a charge carrier is emitted, which

is explained more thoroughly in Appendix A.

The concentration of a deep level can be extracted by acquiring the ΔC at t = 0 and

using Eq.3.5. This concentration represents an average value over the investigated depth

which is, in many cases, appropiate for uniformly distributed defects (44). However, in

the case of a non-uniform defect distribution, a depth profile over the region of interest

is necessary to quantify the defect concentration.

3.2.3 Deep level depth profiling

DLTS can reveal the depth distribution of a deep level. Various measurement proce-

dures allow to acquire the necessary information for extracting the depth profile of a

deep level. However, the essence remains in varying the filling pulse in order to fill and

empty deep levels at defined depths.

One method involves gradually changing the filling pulse from a fixed reverse bias

voltage at a fixed temperature. Thus, for every increment of the amplitude of the filling

pulse, the investigated depth expands and gives the depth information needed. With

this method, the deep level concentration can be expressed as (40)

NT (Wf − λ) = −
qW 2

0

ε0εr

(
Wf

Wf − λ

)
N+

a (Wd)N
+
a (Wf )

δ(ΔCf /C0)

δVf
, (3.10)

where the conventions of the symbols are those in Fig.3.2. More specifically, C0 is the

capacitance at the fixed reverse bias voltage, Cf is the capacitance at the filling pulse

voltage and

λ =

√
2ε0εr

qNa
(EF − ET ) (3.11)
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which is similar to Eq.2.2 on the depletion width.

As an example, from Paper III, Fig.3.4 shows the depth profiling of the FeB pair

and the Fei before and after reverse bias annealing (RBA). This information is useful
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Figure 3.4: Defect concentration versus depth profiles for Fe-B and Fei measured before
and after RBA.

in determining the region where the FeB pair has dissociated to form Fei. The mea-

surements were acquired at 52 and 224K for the FeB pair and the Fei, respectively, and

the fixed reverse bias voltage was 8V.

3.3 Admittance spectroscopy (ADSPEC)

Admittance spectroscopy has the similar capability as DLTS in the sense that this is

also an electrical characterization technique to extract information about the energy

level position, capture cross-section and concentration of defects (and dopants). The

difference between ADSPEC and DLTS lies in the detection limits. While DLTS has

better detection limit of the defect concentration than ADSPEC, ADSPEC has the

capability of investigating shallow levels, including dopants.

Admittance spectroscopy can be performed by measuring the capacitance and/or

conductance as a function of temperature in a diode structure (40, 48, 49). Since

these quantities are measured by use of a small AC signal with a certain frequency,

energy levels are affected by the constantly changing Fermi-level which results in an

alternatively filling and emptying process of the energy levels by charge carriers. At
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3.3 Admittance spectroscopy (ADSPEC)

high temperatures, the emission of charge carriers is fast and the occupation of the

energy levels respond to the AC frequency nearly instantaneously. On the other hand,

at low temperatures, the emission rate of the charge carriers is low and they do not

respond to the AC frequency. As a consequence, the capacitance will be reduced, while

the conductance increases and reaches a peak value. Figure 3.5 shows ADSPEC data,

where two peaks in the conductance spectra can be observed for each probing frequency.

Each peak represent an energy level, which can be extracted using an Arrhenius plot
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Figure 3.5: Admittance spectroscopy measurement, showing the a) the capacitance and b)
the conductance versus the temperature. Two energy levels are present in the measurement.

with the following relation of

ln

(
2πf

T 2

)
∝

1

T

ET − EV

k
, (3.12)

where f is the probing frequency and T is the absolute temperature where the peak

occurs.

The capacitance in an ADSPEC signal can be expressed as(50)

ΔC =
ε0εr

W

NT

ND

1 − W−λ
W

1 + W−λ
W

NT

ND

, (3.13)

where ND is the doping concentration. From the Eq.3.13, it can be seen that the

amplitude is significantly reduced when (W −λ) � W . This condition occurs when the
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energy level of defects is close to that of the dopants.

3.4 Simulation software (Synopsys TCAD)

Synopsys TCAD is a package of simulation softwares which can be used to simulate

electrical properties of devices, such as diodes and transistors (51). When a structure is

created using a Sentaurus Structure Editor (SentaurusSE), various electrical quantities

can be solved using Sentaurus Device (SentaurusD), such as capacitance and conduc-

tance. This is performed by achieving a self-consistent solution between the Poisson’s

equation and the continuity equations for electrons and holes, respectively, expressed

as:

∇ε∇φ = −q(p − n + Nd − Na) − ρ (3.14)

and

∇ · �Jn = qRnet + q
δn

δt
−∇ · �Jp = qRnet + q

δp

δt
, (3.15)

where φ is the electrical potential, ρ is the concentration of traps and fixed charges

(dopants excluded), �Jn,(p) is the electron (hole) current density, Rnet is the recombina-

tion rate and t is the time. From these equations, the electrical field and the flow of

charge carrier can be described for a diode junction (Sec.2.1).

SentarausD allows for simulation with an applied AC signal for the purpose of

calculating capacitance and conductance. When such a calculation is performed on a

diode structure at different temperature, ADSPEC spectrum can easily be simulated.

Furthermore, transient signals are also possible to acquire. With the proper simulation

of trap conditions, a DLTS spectrum can be simulated whether it is a standard DLTS

measurement, depth profiling, optical DLTS, capture cross-section measurement or

other. Examples of command files for simulating ADSPEC and standard DLTS can be

found in Appendix B.

Figure 3.6 shows a program which has the purpose of organizing the many different

programs in the Synopsys software package. The left part lists all the available projects

where a project “ADSPEC ALSi FrontImp 5e15 60Hz.tmp” is opened and shown in the

right part. Two simulations tools (SentaurusSE and SentaurusD) are loaded and 30

simulations are performed with the temperature being the variable. This project is for
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3.4 Simulation software (Synopsys TCAD)

Figure 3.6: A graphical user interface program (Sentaurus Workbench) which allows for
easy control over the different programs in the Synopsys software package.

an ADSPEC simulation in the temperature range between 21 to 50K (steps of 1) with

a reverse bias voltage between 0 to -10.5 (with 20 steps, not visible in the Fig.3.6). One

acceptor defect of interest is implemented with energy level position, concentration and

hole capture cross-section of EV +0.057 eV (not visible in Fig.3.6), 5×1015 cm−3 and

5×10−14 cm2, respectively.
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Chapter 4

Present work and suggestions for

future work

This chapter gives an insight into the work reported in this thesis. The main results of

each paper are hightlighted and suggestions for future work are presented.

4.1 Material

The work in this thesis targets applications for solar cells with the main focus on Fe

in silicon. Although multicrystalline silicon is the material which contains considerable

amount of Fe, most of the studies are conducted using single crystalline silicon grown

by Czochralski or float-zone method.

The single crystalline material is chosen in order to avoid contribution from other

unintended impurities and defects that are common in multi-cyrstalline material. In

addition to Fe impurities, the grain boundaries in multicrystalline silicon host many

metal impurities such as copper, nickel and titanium (2). After high temperature

treatments, these metals can dissolve into the grains, undergo various reactions and

cause electrical signatures which can interfere with the signatures of Fe-related defects.

This complicates the interpretation of data and provides a less reliable picture of the

underlying reactions and mechanisms than in a material containing mainly Fe impurity.

In as-grown single crystal silicon, the concentration of electrically active defects is

25



4. PRESENT WORK AND SUGGESTIONS FOR FUTURE WORK

typically below the detection limit of DLTS, and, thus, provides a suitable model system

for investigating reactions of intentionally introduced defects and impurities, such as

Fe.

Furthermore, the non-uniformity of multicrystalline silicon can give rise to impurity

distribution that varies laterally. Since DLTS, which can offer a high detection limit of

four orders of magnitude below the doping concentration, does not enable easy mapping

of a sample, spatial uniformity is preferable.

4.2 Preparation

With the underlining topic of Fe defects in silicon, a reliable and reproducible method

to introduce a controllable amount of Fe is necessary. At the begining, following the

literature (27), an easy method for introduction of Fe was tested where FeCl3 was

dissolved and applied to the samples. Thereafter, the samples were heat treated in

a sealed vacuumed quartz ampoule to avoid cross contamination. However, DLTS

measurements of the samples did not show any resemblence of previously reported

results. In addition, no reversible reaction from the detected defects, which could

indicate the presence of Fe, were observed. The reasons may possibly be the purity of

the chemical, the cleanliness of the ampoule and/or the preparation environment, since

the samples had to be transfered out of the clean room for sealing of the ampoule.

The latter method was therefore abandoned at an early stage and replaced by ion-

implantation. This method provides reproducible and controlled introduction of Fe

in silicon and with negligable contamination from other elements. In addition, it also

allows for placement of Fe in different depths of the samples which is crucial in Paper

VI.

To minimize cross contaminations during heat treatments while distributing Fe

uniformly in the sample, a dedicated tube furnace was mainly used. The quartz tube

was cleaned thoroughly by immersing the whole tube, along with any quartz boats and

quartz tools, into a chemical solution (aqua regia, 3:1, HCl:HNO3) overnight. Then, the

tube and the tools were rinsed in de-ionized water for several minutes. The cleaniness

of the tube furnace was usually tested before heat treating the experiment samples by

exposing cleaned as-received samples under the same experimental conditions. There-

after, these control samples were measured with DLTS to check for electrically active
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defects introduced from the furnace. In some cases, the DLTS measurement on the

control samples detected Fei in a concentration on the order of 1010cm−3. This con-

centration was a factor of around 10−4 of the doping concentration and considered as

acceptable.

4.3 Detected defects in this work

This section provides an overview of the electrically active defects discussed in the

appended papers, with the purpose of easing the literature search for reader, and they

are listed in Table 4.1. The apparent capture cross-sections are mainly extracted from

Table 4.1: Electrically active defects detected in the papers.

Label EV +XX [eV]
Apparent capture

Reference
cross-section [cm2]

Fe-B 0.10 4×10−15 Paper II-V, (7)
Fei 0.40 3×10−16 Paper II-V, (7)
H(0.3) 0.27 ±0.03 5×10−15 Paper I
H(0.4) 0.38 ±0.03 1×10−15 Paper I
H(0.17) 0.17 4×10−16 Paper IV
H(0.28) 0.28 6×10−15 Paper IV
H(0.34) 0.34 4×10−14 Paper IV
H(0.25) 0.24 1×10−14 Paper V
H(0.29) 0.29 9×10−15 Paper V
H(0.34) 0.34 2×10−14 Paper V
V2 0.18 1×10−16 Paper IV, V, (52, 53, 54)
Ci 0.30 3×10−14 Paper V, (55)
CiOi 0.35 2×10−15 Paper IV, V, (53, 55)
VOH 0.25 3×10−15 Paper IV, (53, 56)
BiCs 0.29 2×10−14 Paper V, (57)
V2O 0.22 1×10−15 Paper V, (58, 59)
Not labelled 0.06 (fitted: 0.057) 5×10−14 (fitted) Paper VI

extrapolation of the Arrhenius plots which can give an uncertainty of 1-2 orders of

magnitude. In addition, Arrhenius plot of the defect levels discussed in Paper IV and

V are shown in Fig.4.1.
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Figure 4.1: Arrhenius plots of the defect levels observed in Paper IV and V with corre-
sponding defect properties shown in Table 4.1.

4.4 Paper I: Rapid thermal annealing-induced defects

In collaboration with the solar group at the Institutt for Energy Technology (IFE),

multicrystalline silicon samples were rapid thermally annealed at 1000◦C for 2 min.

When the samples were investigated using DLTS, two significant electrically active deep

levels were observed. The experiment was repeated using the same furnace with single

crystalline wafers which had a lower doping concentration than the multicrystalline

ones. By lowering the doping concentration, the detection limit for DLTS increases

proportionally. In addition, the change in doping concentration might change the defect

concentration which would suggest a defect involving the dopant (boron, in this case).

The two defects found in the multicrystalline sample appeared in the single crys-

talline ones as well, and various treatments and measurements were conducted to gather

more information about their properties. It is found that the defects exhibit acceptor-

like nature, are stable above 650◦C and are most likely indiffused from the environment

with high diffusivity. Comparing with the theoretical results, it is suggested that the
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deep levels arise from two defects involving Fe and vacancies/boron.

In a later stage, the same experiment was conducted on n-type samples to investigate

the upper part of the midgap. However, difficulties were experienced in producing a

reliable Schottky barrier contact with gold on heat treated samples where the gold

contacts could easily be wiped off even with a clean room wiper. It was suspected

that the surface could be the reason for the problem, but they remained even when the

samples were etched by several microns.

A future work could be to try to investigate these defects using DLTS with optical

excitation on p-type samples. This can be performed with illumination at the rearside

with light above the band gap energy.

4.5 Paper II & III: Interaction between H and Fe

Hydrogen interaction with Fe has been a topic of great interest in solar cells, since

hydrogen is easily introduced during the processing steps and because hydrogen has a

reputation of passivating defects, such as dangling bonds and vacancies (17, 60). From

the literature, it has been suggested that hydrogen passivates Fe (25). However, it is

also suggested that hydrogen dissociates the Fe-B pair (27, 61), forming Fei which is a

detrimental defect in solar cells. Furthermore, theory predicts a reaction of hydrogen

with Fe0
i (neutral), but not with Fe+

i (positively charged), and that the resulting Fe-

H pair has energy levels in the band gap (28). This led to the interest of a further

investigation, where concentration versus depth profiles were carefully considered for

both the Fe-B pair, Fei and hydrogen, since both the Fe+
i and Fe0

i exists within a

depletion region of a diode.

Thus, hydrogen was incorporated into Fe-contaminated boron-doped silicon samples

and driven to regions of Fei with different charge states. The hydrogen incorporation

was attempted on the samples through boiling in water (62), heated HF (63) and wet

chemical etching (WCE) (with HF:HNO3:CH3COOH) (27, 64). The latter method was

observed to be the most efficient one in terms of the amount of hydrogen introduced, as

deduced from CV-measurements. However, the etching process occasionally produced

rough surfaces and these samples were discarded.

After the etching, the samples were further cleaned and were Al deposited for

SBC and stored for 1-2 weeks before commencing the measurements to allow the Fei,
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which were dissociated from Fe-B during the etching, to reassociate with B. There-

after, a continiuous process of measurements and treatments were performed for the

CV-measurements, DLTS spectra, reverse bias annealing (RBA) and depth profiles.

During the RBA, the temperature and the capacitance were constantly monitored.

The main results are shown in Fig.4.2 which shows the defect concentration versus

depth profiles of the Fe-B pair and Fei for the WCE and non-WCE samples, both before

and after RBA. Firstly, it can be noticed that the Fe-B pair dissociates due to the RBA
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Figure 4.2: Defect concentration vs depth profile for Fe-B and Fei measured on (a)samples
with WCE and (b)HT samples without WCE.

treatment and that the amount of released Fei is larger for WCE samples than the

ones without WCE. Secondly, the concentration of Fei is significant only for the WCE

samples in the region within the added vertical lines, which marks the depletion region

containing Fe+
i . This increase can not be explained by a diffusion of Fei due to the

similarity in the reduction and increase in defect concentrations, nor can it be explained

by a dissociation of the Fe-B pair due to the lack of Coulombic attraction between Fe
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and B. Hence, the observations strongly point towards a reaction between hydrogen

and the Fe-B pair which results in formation of B-H, releasing Fe+
i . Furthermore, from

the DLTS spectra after RBA, which shows no new signals and from the depth profiles,

it is concluded that passivation of Fe by H has not been observed.

For future work, although no formation of Fe-H complexes is observed electrically in

this work with reactants as Fe-B or Fei, it may be interesting to investigate interaction

between hydrogen and other complexes of Fe. In the work by Wünstel and Wagner

(65), several electrically active Fe-related defects were observed by different cooling

rates. Although unidentified, electrical neutralizaion by hydrogen of these defects can

be of technological interest, for instance, in solar cells.

4.6 Paper IV & V: Irradiation-induced defects and Fe

A recent theoretical study made an extensive investigation into defect reactions between

Fe and irradiation-induced defects in silicon (66). The calculations predicted several

stable electrically active defects which were not firmly established or observed. This

opened up for experimental investigations with the ambition that the results could be

utilized in the optimization of gettering of Fe.

The sample preparation involved irradiation of an Fe-contaminated sample and,

thereafter, performing DLTS measurements. The Fe-contaminated samples were shipped

to Sweden for electron irradiation at 6 MeV. However, a failure in the accelerator arised

and the irradiation was put on hold. Several months of waiting turned into about one

year, and the final message was that the accelerator will never be put up to meet the

specified parameters again. Fortunately, the electron irradiation was eventually per-

formed when Vladimir Markevich travelled to Minsk, but the energy had to be reduced

to 4 MeV. The samples were then measured with DLTS and defects were investigated

after different isochronal annealings for 30 min.

However, as one may have noticed, the study involving irradiation-induced defects

with Fe was first reported on proton-irradiated samples from this Ph.D. work and not

electron-irradiated samples. While waiting for electron irradiation, proton irradiation

was performed with the ion-implanter at MiNa-lab. The energy of the protons was set

to the highest capability such that the projected range would be located a factor of

2-3 deeper than the region probed using DLTS. This was to minimize the contribution
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of hydrogen on the investigated defects. Still, indications that hydrogen had been

incorporated in the probing region was observed through the detection of a defect with

the characteristics of the vacancy-oxygen-hydrogen (VOH) in the reference samples.

This introduction of hydrogen, however, could also have occured during the preparation

of the samples, for instance from the deposited metal contact.

A number of different defects have been detected through the experiments with

electron or proton irradiation on Fe-contaminated and boron-doped samples, as shown

in Figs.4.3 and 4.4. These defect levels are labelled according to their energy level

position, where H(0.17) has an energy level position at EV +0.17 eV. The investigation

50 100 150 200 250
−1

0

1

2

3

4

Temperature [K]

N
d*Δ

C
/C

rb
 [c

m
−3

]

−1

0

1

2

3

4

5
x 1012

as−implanted
125C 30min
150C 30min
175C 30min
200C 30min

FeB

Fe
i

x0.25x0.25 a)
Fe

b)
Reference

V2 VOH

CiOi

H(0.48)

H(0.28)

H(0.34)H(0.17)

Figure 4.3: Spectra of DLTS measurements, with GS4 weighting function, on proton-
irradiated Fe-contaminated and reference samples after different subsequent annealing tem-
perature for 30min. It shows three distinctive peaks (H(0.17), H(0.28) and H(0.34)) which
are only found in the Fe-contaminated samples. These spectra are extracted from rate-
window of (320ms)−1.

of the defects through isochronal annealing has aided in the understanding of the re-

lation between the different defects. In proton-irradiated samples, the concentration
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of H(0.34) is observed to follow the concentration of VOH in the reference samples.

In addition, no signal indicating VOH in the Fe-contaminated samples is found. This

indicates that H(0.34) and VOH are related either by a common precursor or that the

VOH is a precursor for H(0.34) and, thus, indicating a reaction between Fe and VO.
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Figure 4.4: Spectra of DLTS measurements, with GS4 weighting function, on electron-
irradiated Fe-contaminated and reference samples at as-implanted state and annealed at
150, 200 and 250K for 30min. It shows three distinctive peaks (H(0.25), H(0.29) and
H(0.34)) which are only found in the Fe-contaminated samples. These spectra are extracted
from rate-window of (640ms)−1

Furthermore, the proton-irradiated Fe-contaminated samples contain a defect (H(0.28))

which evolves in its concentration towards the as-irradiated concentration of V2, sug-

gesting a relation between Fe and V2. The same suggestion is made when Fe-contaminated

samples are investigated after electron-irradiation. In these samples, the concentration

of H(0.29) is observed to increase according to the loss of V2 for annealing tempera-

tures below 225◦C when assuming that the DLTS signal of H(0.29) is overlapping with

BiCs. For annealing at 225 and 250◦C, this relation deviates significantly, however, a
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peak (H(0.34)) is observed to emerge at those temperatures which compensate for the

difference reasonably well. From these observations, it is further suggested that H(0.34)

is another configuration of a complex between Fe and V2.

Future work would be to repeat the experiments with epitaxially grown silicon that

has a low content of oxygen and carbon. In addition, annealing at higher temperature

should also be performed to investigate for further formation of Fe-related defects. Hy-

drogenation of electron-irradiated samples can be performed to investigate the H(0.34)

defect in the proton-irradiated samples.

4.7 Paper VI: Fe-assisted formation of a shallow acceptor

Further motivated by the calculations performed in Ref.(66), a search for the substitu-

tional Fe was initiated. The configuration, 0Fe0 (neutral and no spin), is predicted to

be highly stable with a gain in energy of 2.92 eV when compared with isolated 1Fe0
i and

the monovacancy, 0V0. This shows that Fe can react with the monovacancy and that

this reaction can potentially be utilized for gettering and/or removal of the harmful ef-

fect of Fei. However, the existence of substitutional Fe is only evidenced by Mössbauer

spectroscopy(67) and β− emission channeling measurements(68).

Based on the similar method of preparation of samples as in Ref.(68), p-type silicon

was implanted with Fe and heat treated at different temperatures. Thereafter, the sam-

ples were characterized electrically using CV, DLTS and ADSPEC. The temperatures

for heat treatment were first investigated at 400◦C with the idea that the majority

of the prominent irradiation-induced defects would be annealed out. However, charge

carrier concentration versus depth profiles, deduced from CV measurements, showed

compensation at the projected range and towards the surface which was too large to

extract reliable data from DLTS. Still, DLTS and optical DLTS measurements were

performed with the aim to detect distinctive differences between the Fe-implanted and

Si-implanted samples. However, no significant difference could be drawn for that an-

nealing temperature and up to 650◦C. After annealing at 800◦C, a full recovery of the

doping profiling was achieved for the reference samples (silicon-implanted). It was then

clear that an enhancement of the acceptor concentration at the projected range exists

only in the Fe-implanted samples and not in the Si-implanted samples.
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This peak was further investigated on samples with different implantation doses

of Fe and Si, spanning from 5 to 625% of the doping concentration at the calculated

implantation peak. Still, the peaks are only found in the Fe-implanted samples, and it is

observed that the enhancement in the acceptor concentration has a close to one-to-one

relation with the implanted dose. Different ADSPEC measurements were performed

on the samples to reveal the electrical properties of the defect. Figure 4.5 shows the

ADSPEC measurements on the samples with different implantation doses of Fe and

the corresponding fitted curves from Sentaurus TCAD. The inset shows an enlarged
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Figure 4.5: Admittance spectroscopy on Fe20, Fe40, Fe100, Fe250 and Fe650 samples,
showing an increase in the amplitude of a peak with increasing Fe implantation dose.
In addition, simulated curves using Sentaurus TCAD are shown for the corresponding
experimental curves.

picture of the marked area, where a signal can be observed to increase with increasing

dose of the Fe implantation. Furthermore, a shift in the peak position towards low

temperature occurs for increasing dose. The latter observation shows that the defect

obeys the Poole-Frenkel effect and, thus, acts as an acceptor. This shows that the

enhanced acceptor concentration observed with CV measurements is caused by this

defect.

At that point, it was believed that the defect configuration could be substitutional

Fe. However, chemical identification of the presence of Fe was necessary in order to
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support the assignment. Thus, secondary ion-mass spectrometry (SIMS) was performed

both using the SIMS in our lab and externally. Figure 4.6 shows the SIMS depth profiles

of samples implanted with different doses of 54Fe. Unexpectingly, SIMS measurements
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Figure 4.6: SIMS results for the on 54Fe40, 54Fe100 and 54Fe250 samples, showing the
concentration of 54Fe as a function of depth for as-implanted and annealed samples..

show that Fe diffuses out of the projected range region during the heat treatment and

that the final defect, thus, does not contain Fe. Hence, the presence of Fe only assists

the formation of a shallow defect.

Suggestions for future works are extensive, due to the interesting and challenging

behaviour observed for the first time. Firstly, experiments should be performed to

investigate the chemical composition of the defect by, for instance, varying the con-

centration of dopant, oxygen and carbon. Furthermore, the type of dopant can also

be varied. Secondly, the assisted formation of this shallow defect can be investigated

through implantation of elements with similar chemical behaviour as Fe. Thirdly, dif-

fusion and stability of this shallow acceptor can be investigated through isochronal and

isothermal annealings.
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Appendix A

Emission rate and capture
cross-section

The emission rate of electron can be, deduced from Eq.2.8, written as

en = vth,nσnNC
g0

g1
exp

(
−

EC − ET

kT

)
. (A.1)

This equation is often used to extract the ET and the capture cross-section, σ, of defect

levels in the band gap. The capture cross-section is commonly deduced through the

intercept of the ordinate in a ln(en/T 2) versus 1/T plot. However, this pratice can give

errors by a factor of 10-100, as shall be discussed.

Thermodynamically, the emission of electron is a change in the Gibbs energy, ΔG,

given as

ΔG = EC − ET = ΔH − TΔS, (A.2)

where H is the entalphy and S is the entropy of the defect. Inserted in Eq.A.1, the

emission rate of electron can be expressed as

en = vth,nσnNC
g0

g1
exp

(
ΔS

k

)
exp

(
−

ΔH

kT

)
. (A.3)

Thus, comparing with Eq.A.1, the extraction of the capture cross-section from an

Arrhenius plot has an additional factor of exp(ΔS/k), which can produce an error of a

few orders of magnitude when assuming that ΔS is negligable (37).

One method to determine the capture cross-section more accurately is by an alter-

native method of DLTS. In contrast to the standard DLTS measurement, the voltage

pulse duration is varied at a constant temperature at the occurance of a DLTS peak.

With a short pulse duration, the filling of the defect level is close to 0, while with a

long pulse width, the defect level becomes saturated. The transition can be fitted, for
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capture of electrons, with (69)

nT (tp) = nT (∞)(1 − exp(−cnntp)), (A.4)

where tp is the voltage pulse duration. It should be noted that the saturation time of the

defect is exponentially dependent on the doping concentration. For silicon with doping

concentration of 1016cm−3 and a defect level with capture cross-section of 10−14cm2,

the saturation time is in the order of 10 ns. This puts a high requirement on the

performance of the instruments. To avoid this problem, the doping concentration of

the material can be reduced to meet the capability of instruments.
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Appendix B

Software command files

Command files for SentaurusSE and SentaurusD are shown for an example of ADSPEC

and DLTS simulation.

B.1 ADSPEC simulation

In this simulation. the important output files which contains the information about the

voltages, conductances and capacitances are the “ADSPEC 60e3 n<node> ac des.plt”,

where <node> is a number assigned for the different simulations. From Fig.3.6, the

<node> is any real number between 7 to 38.

Variables need to be specified in Sentaurus Workbench are: PDoping for the doping

concentration, A1c for a defect concentration, A1hXsection for capture cross-section of

the defect, V oltage for the different simulation voltages (20 steps from 0V to V oltage)

and Temp for the temperature. These inputs are also shown in Fig.3.6.

Structure file (for SentaurusSE)

(sdegeo:set-default-boolean "ABA")

(define width 50)
(define height 25)
(define Pdoping @PDoping@)

;---------Structure------------
(sdegeo:create-rectangle (position 0 0 0) (position width height 0)

"Silicon" "region1")
(sdegeo:create-rectangle (position 0 0.8 0) (position width 2.2 0)

"Silicon" "ProjRange")

;---------Doping---------------
(sdedr:define-constant-profile "Const.P1" "BoronActiveConcentration" Pdoping)
(sdedr:define-constant-profile-region "PlaceC.P1" "Const.P1" "region1")

(sdedr:define-constant-profile "Const.P2" "BoronActiveConcentration" Pdoping)
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(sdedr:define-constant-profile-region "PlaceC.P2" "Const.P2" "ProjRange")

;---------Contact--------------
(sdegeo:define-contact-set "SchottkyC" 4 (color:rgb 0 0 1) "##")
(sdegeo:define-2d-contact (find-edge-id (position (/ width 2) 0 0)) "SchottkyC")

(sdegeo:define-contact-set "OhmicC" 4 (color:rgb 0 1 0) "##")
(sdegeo:define-2d-contact (find-edge-id (position (/ width 2) height 0)) "OhmicC")

(render:rebuild)

;--------Refinement------------
(sdedr:define-refinement-window "RefWinContact1" "Rectangle" (position 0 0 0)

(position width 3 0) )
(sdedr:define-refinement-window "RefWinRest" "Rectangle" (position 0 0 0)

(position width height 0))
#(sdedr:define-refinement-window "RefWinBoundary" "Rectangle" (position 0.75 0 0)

(position 3 height 0) )

(sdedr:define-refinement-size "RefDefContact1" width (/ 1 100) width (/ 1 150) )
(sdedr:define-refinement-placement "PlaceRFContact1" "RefDefContact1" "RefWinContact1")

(sdedr:define-refinement-size "RefDefRest" width (/ 1 1) width (/ 1 25) )
(sdedr:define-refinement-placement "PlaceRFRest" "RefDefRest" "RefWinRest")

#(sdedr:define-multibox-size "MB.Channel" (/ 1 1) (/ 1 500) 100 100 1 1.35)
#(sdedr:define-multibox-placement "PlaceMB.Channel" "MB.Channel" "RefWinBoundary")

;-----------save and build--------------------
(sdeio:save-tdr-bnd (get-body-list) "@tdrboundary/o@")
(sdedr:write-cmd-file "@commands/o@")
(system:command "mesh -f tdr n@node@_msh")

Calculation file (for SentaurusD)

#################### Devive A ################################
Device AlSiSchottkyA {

File {
Grid = "@tdr@"
Param = "@parameter@"
Current = "@plot@"
Plot = "@tdrdat@"

}

################ Define contact type ####################
Electrode {

{Name="SchottkyC" Voltage=0 Material="Aluminum" Schottky}
{Name="OhmicC" Voltage=0 }

}
############# End define contact type ####################

Physics {
Mobility (DopingDep HighFieldsat Enormal)
EffectiveIntrinsicDensity( OldSlotboom )
Temperature=@Temp@

}

Physics (Material = "Silicon") {
Traps(
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(Acceptor Level EnergyMid=0.044 fromValBand
Conc=2e15 hXsection=7e-14 eXsection=2000e-13
Add2TotalDoping PooleFrenkel)

)
}

Physics (Region = "ProjRange") {
Traps(

(Acceptor Level EnergyMid=0.057 fromValBand
SpatialShape=Gaussian SpaceMid=(25 1.5 0) SpaceSig=(100 0.2 0)

Conc=@A1c@ hXsection=@A1hXsection@ eXsection=1e-1
Add2TotalDoping PooleFrenkel )

(Acceptor Level EnergyMid=0.044 fromValBand
Conc=2e15 hXsection=7e-14 eXsection=1e-20
Add2TotalDoping PooleFrenkel)

)
}

}
################ End devive A ################################

File{
Output = "@log@"
ACExtract = "@acplot@"

}

Plot {
eDensity hDensity eCurrent hCurrent
eQuasiFermi hQuasiFermi eVelocity hVelocity
eMobility hMobility eLifeTime hLifeTime
eTrappedCharge hTrappedCharge
eGapStatesRecombination hGapStatesRecombination
"hRelativeEffectiveMass" "eRelativeEffectiveMass"
"hEffectiveStateDensity" "eEffectiveStateDensity"
hGradQuasiFermi eGradQuasiFermie Eparallel hEparallel

Potential SpaceCharge ElectricField
Doping DonorConcentration AcceptorConcentration
BandGapNarrowing EffectiveBandGap

AugerRecombination SRHRecombination TotalRecombination
Band2Band "BuiltinPotential" TotalTrapConcentration

EffectiveBandGap EffectiveIntrinsicDensity
ConductionBandEnergy ValenceBandEnergy
Bandgap RefractiveIndex ElectronAffinit
Temperature Band2Band EquilibriumPotential

}

Math {
Extrapolate
RelErrControl
Digits=8
Error=1e-10
NotDamped=30
Iterations=5

ErrRef(Electron)=1.0e10
ErrRef(Hole)=1.0e10
ExtendedPrecision

}
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System {
AlSiSchottkyA diode1 (SchottkyC=s OhmicC=b)
Vsource_pset vs (s 0) {dc=0}
Vsource_pset vb (b 0) {dc=0}

}

Solve {
Coupled (iterations=500){Poisson}
Coupled (iterations=100) {Poisson hole}
Coupled (iterations=100) {Poisson hole electron}

NewCurrentPrefix="ADSPEC_60e3_"
Quasistationary (
InitialStep=1e-5 MaxStep=1 MinStep=1.e-20
Goal { Parameter=vb.dc Voltage=@Voltage@ }

){ ACCoupled (StartFrequency=60e3 EndFrequency=60e3 NumberOfPoints=1
Decade Node(b s) ACCompute (Time = (Range = (0 1) Intervals = 20))
){Poisson hole electron}

}

System("rm ADSPEC*diode*.plt")
}

B.2 DLTS simulation

In this simulation. the important output files which contains the information about the

capacitance in a transient are the “Cap<point> n<node> ac des.plt”, where <point>

is a number for the different simulated point in a transient. Only two points from a

capacitance transient are simulated in the program file for SentaurusD, which allows

for simulating the first time-window of a lock-in weighting function. However, more

transient points can easily be added and simulated with the cost of an increase in the

computation time.

Three parameters are needed in the Sentaurus Workbench: PDoping for acceptor

doping concentration, V oltage for the reverse bias voltage (the pulse voltage is 0 V)

and Temp for the different temperatures.

Structure file (for SentaurusSE)

(sdegeo:set-default-boolean "ABA")

(define width 100)
(define height -500)
(define Pdoping @PDoping@)

;---------Structure------------
(sdegeo:create-rectangle (position 0 0 0) (position width height 0)

"Silicon" "base")
(sdegeo:create-rectangle (position 0 (+ height 0.8) 0) (position width
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(+ height 1.3) 0) "Silicon" "defect")

;---------Doping---------------
(sdedr:define-constant-profile "Const.P1" "BoronActiveConcentration" Pdoping)
(sdedr:define-constant-profile-region "PlaceC.P1" "Const.P1" "base")
(sdedr:define-constant-profile-region "PlaceC.P2" "Const.P1" "defect")

;---------Contact--------------
(sdegeo:define-contact-set "BC" 4 (color:rgb 0 0 1) "##")
(sdegeo:define-2d-contact (find-edge-id (position (/ width 2) 0 0)) "BC")

(sdegeo:define-contact-set "FC" 4 (color:rgb 0 1 0) "##")
(sdegeo:define-2d-contact (find-edge-id (position (/ width 2) height 0)) "FC")

(render:rebuild)

;--------Refinement------------
(sdedr:define-refinement-window "RefWinJC" "Rectangle" (position 0 height 0)

(position width (+ 3.0 height) 0) )
(sdedr:define-refinement-window "RefWinRest" "Rectangle" (position 0

(+ height 3.5) 0) (position width 0 0) )

(sdedr:define-refinement-size "RefDefJC" (/ width 1) (/ 1 200) (/ width 1)
(/ 1 250) )

(sdedr:define-refinement-placement "PlaceRFJC" "RefDefJC" "RefWinJC")

(sdedr:define-refinement-size "RefDefRest" (/ width 1) (/ 1 1.1 ) (/ width 1)
(/ 1 10) )

(sdedr:define-refinement-placement "PlaceRFRest" "RefDefRest" "RefWinRest")

;-----------save and build--------------------
(sdeio:save-tdr-bnd (get-body-list) "@tdrboundary/o@")
(sdedr:write-cmd-file "@commands/o@")
(system:command "mesh -f tdr n@node@_msh")

Calculation file (for SentaurusD)

Device AlSiSchottky {
File {

Grid = "@tdr@"
Param = "@parameter@"
Current = "@plot@"
Plot = "@tdrdat@"

}

###################### Define contact type #########################
Electrode {

{Name="FC" Voltage=0 Workfunction=4.0 Schottky}
{Name="BC" Voltage=0}

}
################### End define contact type #######################

################### Physics #######################################
Physics {

Mobility (DopingDep HighFieldsat Enormal)
EffectiveIntrinsicDensity( OldSlotboom )
Temperature=@Temp@

}
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Physics (Region = "defect") {
Traps(

(Donor Level EnergyMid=0.25 fromCondBand
Conc=1e13 hXsection=1e-15 eXsection=1e-15
ElectricField Add2TotalDoping )

(Acceptor Level EnergyMid=0.4 fromValBand
Conc=2e13 hXsection=1e-15 eXsection=1e-15
ElectricField Add2TotalDoping )

)
}

}
################### End physics ####################################

File{
Output = "@log@"
ACExtract = "@acplot@"

}

Plot {
eDensity hDensity eCurrent hCurrent
eQuasiFermi hQuasiFermi eVelocity hVelocity
eMobility hMobility eLifeTime hLifeTime
eTrappedCharge hTrappedCharge
eGapStatesRecombination hGapStatesRecombination
"hRelativeEffectiveMass" "eRelativeEffectiveMass"
"hEffectiveStateDensity" "eEffectiveStateDensity"
hGradQuasiFermi eGradQuasiFermi
eEparallel hEparallel eDirectTunneling hDirectTunneling
eBarrierTunneling hBarrierTunneling
Potential SpaceCharge ElectricField
Doping DonorConcentration AcceptorConcentration
BandGapNarrowing EffectiveBandGap
AugerRecombination SRHRecombination TotalRecombination
Band2Band "BuiltinPotential" TotalTrapConcentration
EffectiveBandGap EffectiveIntrinsicDensity
ConductionBandEnergy ValenceBandEnergy
Bandgap ElectronAffinity
RefractiveIndex EquilibriumPotential

}

Math {
#Extrapolate
RelErrControl
Rhsmin=1e-10
Digits=8
Error=1e-10
NotDamped=100
Iterations=80

Method=ParDiSo #(NonsymmetricPermutation IterativeRefinement=15)
Transient=BE
Number_of_Threads=2
WallClock

ExtendedPrecision
}

System {
AlSiSchottky diode1 (FC=b BC=s)
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Vsource_pset vs (s 0) {dc=0}
Vsource_pset vb (b 0) {dc=0}

}

Solve {
Poisson
Coupled (Iterations=100){Poisson Electron}
Coupled (Iterations=100){Poisson Hole}
Coupled (Iterations=100){Poisson Electron}
Coupled (Iterations=100 Method=Blocked LineSearchDamping=0.1

NotDamped=3) {Poisson Electron Hole}

set(TrapFilling=Frozen)
Save(FilePrefix="InitSave00")
#### Ramp to reverse bias ####
Quasistationary (
InitialStep=1e-1 MaxStep=1 MinStep=1.e-15
Goal { Parameter=vs.dc Voltage=@Voltage@ }
){ACCoupled (StartFrequency=1e6 EndFrequency=1e6

NumberOfPoints=1 Decade Iterations=10 Node(s b)
ACCompute (Time = (Range = (0 1) Intervals = 2))

){ Poisson Electron Hole }
}
Save(FilePrefix="InitSave0")

#### Calculate the capacitance at @Voltage@ ####
NewCurrentPrefix="CapInit_"
Quasistationary (
InitialStep=1e-1 MaxStep=1 MinStep=1.e-6
Goal { Parameter=vs.dc Voltage=@Voltage@ }
){ACCoupled (StartFrequency=1e6 EndFrequency=1e6

NumberOfPoints=1 Decade Node(s b)
ACCompute (Time = (Range = (0 1) Intervals = 2))

){ Poisson Electron Hole }
}
Save(FilePrefix="InitSave")

#### Release the traps and start the transient sim. ####
Unset(TrapFilling)
Transient (

InitialTime = 0 # [s]
FinalTime = 0.015 # [s]
# ----- Control the time step size -----
InitialStep = 1e-4
MinStep = 1e-15
MaxStep = 5.e-1
) {Coupled(Iterations=10){ Poisson Electron Hole }

}
Set(TrapFilling=Frozen)
Save(FilePrefix="Save1_")

############ Transient point 1 ##############

NewCurrentPrefix="Cap1_"
Quasistationary (
InitialStep=1e-2 MaxStep=0.3 MinStep=1.e-6
Goal { Parameter=vs.dc Voltage=@Voltage@ }

){ ACCoupled (StartFrequency=1e6 EndFrequency=1e6
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NumberOfPoints=1 Decade Node(s b)
ACompute (Time = (Range = (0 1) Intervals = 4))

){ Poisson Electron Hole }
}

Unset(TrapFilling)
Transient (

InitialTime = 0 # [s]
FinalTime = 0.01 # [s]
# ----- Control the time step size -----
InitialStep = 1e-4
MinStep = 1e-10
MaxStep = 5.e-1
) {Coupled(Iterations=25){ Poisson Electron Hole }

}
Set(TrapFilling=Frozen)
Save(FilePrefix="Save2_")

############ Transient point 2 ##############

NewCurrentPrefix="Cap2_"
Quasistationary (
InitialStep=1e-2 MaxStep=0.3 MinStep=1.e-6
Goal { Parameter=vs.dc Voltage=@Voltage@ }
){ACCoupled (StartFrequency=1e6 EndFrequency=1e6

NumberOfPoints=1 Decade Node(s b)
ACCompute (Time = (Range = (0 1) Intervals = 4))

){ Poisson Electron Hole }
}

System("rm Save_*")
System("rm Cap?_diode1*")

}
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[23] J.-U. Sachse, E. Ö. Sveinbjörnsson, W. Jost, and J. Weber. Electrical proper-
ties of platinum-hydrogen complexes in silicon. Phys. Rev. B, 55(24):16176, 1997.
2

[24] N. Yarykin, J.-U. Sachse, J. Weber, and H. Lemke. Electrically active silver-
hydrogen complexes in silicon. Mater. Sci. Forum, 258-263:301–306, 1997. 2

[25] A. Azzizi, L. J. Geerligs, and D. Macdonald. Hydrogen passivation of iron in
crystalline silicon. Proc. 19th Europ. PVSEC, Paris, pages 1021–1024, 2004. 2, 29

[26] M. Kouketsu and S. Isomae. Hydrogen passivation of iron-related hole traps
in silicon. J. Appl. Phys., 80(3):1485–1487, 1996. 2

[27] OV Feklisova, AL Parakhonsky, EB Yakimov, and J Weber. Dissociation of
iron-related centers in Si stimulated by hydrogen. Mat. Sci. Eng. B, 71:268–271,
2000. 2, 26, 29

[28] M. Sanati, N. Gonzalez Szwacki, and S. K. Estreicher. Intersitial Fe in Si
and its interactions with hydrogen and shallow dopants. Phys. Rev. B, 76:125204,
2007. 2, 29

[29] N. Gonzalez Szwacki and S. K. Estreicher. First-principles investigations of
Fe-H interactions in silicon. Physica B, 401-402:171–174, 2007. 2

48



REFERENCES

[30] Ben G. Streetman and Sanjay Kumar Banerjee. Solid state electronic devices, 6th
ed. Pearson Prentice Hall, 2000. 5, 7

[31] L. H. Rhoderick and R. H. Williams. Metal-Semiconductor contacts. Clarendon
Press, 1988. 5

[32] J. Chevallier and B. Pajot. Interaction of hydrogen with impurities and de-
fects in semiconductors. Solid State Phenom., 85-86:203–284, 2002. 8, 14

[33] Please visit: http://accelrys.com/products/discovery-studio/visualization-download.php.
8

[34] Richard Tilley. Understanding solids. Wiley, 2006. 8

[35] Charles Kittel. Introduction to solid state physics. Wiley, 2005. 8

[36] L. C. Kimerling and J. L. Benton. Electronically controlled reactions of inter-
stitial iron in silicon. Physica B&C, 116:297–300, 1983. 8

[37] Dieter K. Schroder. Semiconductor material and device characterization. Wiley, 1990.
10, 37

[38] J. Frenkel. On pre-breakdown phenomena in insulators and electronic semi-
conductors. Phys. Rev., 54:647–648, 1938. 11

[39] W. R. Buchwald and N. M. Johnson. Revised role for the Poole-Frenkel effect
in deep-level characterization. J. Appl. Phys., 64:958, 1988. 12

[40] P. Blood and J. W. Orton. The electrical charaterization of semiconductors: Majority
carriers and electron states. Academic Press, 1992. 13, 14, 19, 20

[41] S. J. Pearton, J. W. Corbett, and M. Stavola. Hydrogen in crystalline semicon-
ductors. Springer-Verlag, 1992. 14

[42] M. W. Horn, J. M. Heddleson, and S. J. Fonash. Permeation of hydrogen into
silicon during low-energy hydrogen ion beam bombardment. Appl. Phys. Lett.,
51:490, 1987. 14

[43] L. C. Kimerling. Influence of deep traps on the measurement of free-carrier
distributions in semiconductors by junction capacitance techniques. J. Appl.
Phys., 45(4):1839, 1974. 14

[44] D. V. Lang. Deep level transient spectroscopy: A new method to characterize
traps in semiconductors. J. Appl. Phys., 45:3023, 1974. 14, 19

[45] A. A. Istratov. Critical analysis of weighting functions for the deep level
transient spectroscopy of semiconductors. Meas. Sci. Technol., 9:477, 1998. 17

[46] A. A. Istratov. New correlation procedure for the improvement of resolution
of deep level transient spectroscopy of semiconductors. J. Appl. Phys., 82(6):2965,
1997. 18
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The effect of hydrogen incorporation into iron-contaminated boron-doped Cz-Si has been

investigated using deep level transient spectroscopy. In-diffusion of hydrogen by wet chemical

etching followed by reverse bias annealing of Al, Schottky diodes result in the appearance of the

defect level characteristic to interstitial iron (Fei), and the concentration of iron-boron pairs (Fe-B)

decreases correspondingly. Quantitative observations from various defect concentration versus

depth profiles imply strongly that H promotes dissociation of Fe-B releasing Fei whereas no

detectable passivation of Fe-B or Fei by H occurs. VC 2011 American Institute of Physics.
[doi:10.1063/1.3619848]

Iron in silicon is well known for its effect in degrading

the performance of devices, such as in integrated circuits and

solar cells.1 Significant reduction in minority carrier lifetime,

even at low iron concentration, is one of the main issues in

solar cells based on p-type multicrystalline silicon. The effi-

ciency of lifetime recovery by reducing the concentration of

electrically active iron-related defects through gettering or

passivation has frequently been investigated.2–5 For the pas-

sivation, especially hydrogen has been studied. However, ex-

perimental reports on the effects of hydrogen on the iron

behavior have shown various results. On one hand, passiva-

tion of iron by hydrogen was concluded through lifetime

measurement.4 On the other hand, deep level transient spec-

troscopy (DLTS) studies have observed an increase in the

lifetime killing interstitial Fe (Fei) as possibly due to stimu-

lated dissociation of the Fe-B pair by hydrogen.6,7 In the lat-

ter reports, wet chemical etching (WCE) was performed to

introduce H at the surface which resulted in an increase of

Fei in the region where B-H was formed. Annealing under

reverse bias led to an increase in the Fei signal in the deple-

tion region and an indication of a small peak at the depletion

edge where B-H reached its maximum concentration. Two

mechanisms for release of Fei were discussed in Refs. 6 and

7. The first one involves a change in the Fermi-level position

and changing the charge state of Fei from positive to neutral,

which reduces the binding energy between Fe and B� and

quenches the formation of Fe-B.8 The second one involves

hydrogen in a reaction with Fe-B forming Fei and B-H but

no decrease in Fe-B equivalent to the increase of Fei as a

function of depth has been verified yet.

The interaction between Fei, Fe-B, and H has recently

been predicted through ab-initio calculations using Vienna

Ab-initio Simulation Package (VASP) and Spanish Initiative

for Electronic Simulations with Thousands of Atoms

(SIESTA) by Sanati et al.9 The stability of various a priori
configurations was estimated in different charge and spin

states. In the case of Fe-B and H, it was predicted that the

most stable configuration consists of an isolated 3/2Feþi and
0B-H0 with 3/2 and 0 spin state, respectively. The gain in

energy was 0.25 eV compared to 3/2Fe-B0 and 0Hþ
BC (H in

bond centered configuration). In addition, a stable configura-

tion was also predicted between Fei and H, in the case of
1Fe0i . The gain in energy varied with the H reactant in 1/2H0

BC

and 0Hþ
BC states to be 0.82 and 0.40 eV, respectively. The

resulting Fe-H pair exhibits a deep donor level at 0.36 eV

(SIESTA: 0.42 eV) above the valence band edge (EV) and a

deep acceptor level at 0.26 eV (SIESTA: 0.30 eV) below the

conduction band (EC). However, an additional H could

release the Fe from Fe-H by forming Fei and H2.

The charge state of Fei can easily be modified in a diode

structure by applying an external bias which moves the

Fermi-level and interchange Feþi to Fe0i . Such an experiment

provides the opportunity for examining possible reaction

between Fe0i with Hþ which should appear in a specific

region and give rise to new energy level positions, as pre-

dicted theoretically.

In this study, we have incorporated hydrogen in iron-

contaminated p-type silicon through wet chemical etching

and investigated its effects on iron. The results of different

defect concentration versus depth profiles strongly favour

dissociation of Fe-B in the presence of H, where the absolute

loss in the concentration of Fe-B is accompanied by a corre-

sponding gain in the concentration of Fei. In addition, our

results show no detectable passivation of Fei and Fe-B by H.

Samples were cut from as-grown Czochralski Si wafers

of p-type with a boron doping concentration of �1.3� 1014

cm�3. Iron was introduced by ion implantation on the back-

side of the samples with energy and dose of 700 keV and

7� 1011 cm�2, respectively. Heat treatment was thereafter

performed at 900 �C under nitrogen flow for 1 h in a tube fur-

nace to distribute the Fe homogeneously in the samples. Af-

ter the heat treatment, the samples were quenched rapidly in

water to room temperature (RT).

WCE was performed for 30 s (7:5:2, HNO3:HF:CH3

COOH) on one set of samples in order to introduce hydrogen

at the surface.7 Reference samples, which did not undergo

WCE, were dipped in HF. All samples were, thereafter, fur-

ther cleaned in RCA3 (H2O, HCl, H2O2, 5:1:1, at 80
�C).

Schottky barrier (SB) contacts were realized by thermal

evaporation of Al through a metal mask on the front-surfacea)Electronic mail: c.k.tang@smn.uio.no.
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and Ohmic contacts were achieved by applying silver-paste

on the back-side. Since the sample processing steps may

introduce unintentional hydrogen at the surface, one set of

the reference samples were heat treated (HT) at 180 �C for

30 min to distribute any accumulated hydrogen into the sam-

ple. Reverse bias annealing (RBA) was performed at 350 K

for 30 min with a reverse bias voltage (Vrb) of 4 V.

DLTS measurements were performed with a Vrb of 8 V,

pulse bias of �8 V, and pulse width of 50 ms in the tempera-

ture range of 40 to 300 K. The DLTS signal was extracted

using a lock-in weighting function, and six rate-windows

ranging from (5 ms)�1 to (160 ms)�1. The first DLTS meas-

urements were performed after two weeks of storage at room

temperature after the sample preparation.

Figure 1 shows DLTS spectra before and after RBA on

samples with and without WCE treatment. Before RBA, one

dominant peak can be observed at 55 K in all samples, with

a defect concentration of 1.2� 1013 cm�3. From the result

from the different rate windows, the energy level position

and apparent capture cross-section were deduced to be EV þ
0.10 eV and 4� 10�15 cm2, respectively. The obtained val-

ues are in good agreement with the identification of the peak

as Fe-B.1 After RBA, a second peak appeared at 242 K with

energy level position at EV þ 0.40 eV and apparent capture

cross-section 3� 10�16 cm2, in good agreement with previ-

ous identification of Fei.
1 During storage at RT, the Fei peak

decreased in all samples while the Fe-B peak increased cor-

respondingly. The evolution of the peaks is due to the (re)as-

sociation of Fei with B forming the Fe-B pair. This

behaviour is a well known characteristic of Fe in boron-

doped silicon, where the stable Fe-B pair can dissociate in a

reversible reaction into Fei by thermal treatment, illumina-

tion or minority carrier injection.10 Although all samples

experienced the RBA, the samples treated in WCE showed a

higher DLTS signal of Fei than the samples without WCE. In

particular, it can be noticed that the HT sample exhibits a

weak Fei signal. However, from the Fig. 1, it can be mislead-

ing to conclude on a direct interaction between hydrogen and

Fe, since changes in the charge carrier concentration (from

RBA) can affect the DLTS signal.

Figure 2 shows the charge carrier concentration versus

depth measured by capacitance-voltage measurement for the

corresponding samples in Fig. 1. The charge carrier concen-

tration can be related to the hydrogen concentration due to

the formation of the B-H pair which is electrically inactive.11

Accordingly, Fig. 2 unveils a considerable concentration of

hydrogen in the near-surface region in the reference and the

WCE-treated samples, while no change in carrier concentra-

tion is observed in the HT samples. Interestingly, a small

concentration of hydrogen in the WCE samples has pene-

trated beyond 12 lm, seen as a reduced carrier concentration

in the WCE samples compared to samples without WCE.

The effect is also observed in other methods for hydrogen

incorporation12 and shows a large migration length of H de-

spite efficient trapping by B. After RBA, a larger degree of

passivation of B by H can be observed, causing a carrier

concentration minimum, except for the HT sample which

remains only slightly affected. The minimum in carrier con-

centration occurs at the depletion edge and is due to the elec-

tric field in the depletion region forcing/drifting the Hþ to

the depletion edge, resulting in an accumulation of hydro-

gen.13 It should also be mentioned that the debonding pro-

cess of B-H has been reported to occur at a much higher rate

within the depletion region compared to the quasi-neutral

region.14

Figure 3 shows the concentrations of FeB and Fei versus

depth profiles for WCE samples and HT samples. The

appearance of Fei and the correlated loss in Fe-B, observed

in Fig. 1, originates from a distinct layer, defined by RBA,

within the DLTS depletion region.

As mentioned previously, one possibility for the release

of Fei is a change in the charge state of Fei from positive to

neutral which has been shown, by Kimerling and Benton,8 to

extinguish the pairing of Fei and B�. Since the applied

reverse bias during RBA raises the Fermi-level above the

level of Fei (transferring it to the neutral state), the resulting

defect profiles may be caused by the Fermi-level effect

within the depletion region. It should be emphasized that the

region where Fe changes the charge state is not located at the

depletion edge but a distance closer to the surface, due to the

so-called lambda-length.15 Thus, release of Fei should not

occur at the depletion edge.

The depletion edge and the significance of the lambda-

length are highlighted in Fig. 3 with added lines. The depth of

the depletion region is determined from the capacitance that

FIG. 1. (Color online) DLTS spectra before and after RBA on iron-contami-

nated samples with/without WCE treatment. The curves are taken with a

rate window of (40 ms)�1. An offset in DC/Crb has been applied to the data

for samples without WCE for clarity.

FIG. 2. (Color online) Charge carrier concentration vs depth profile before

and after RBA on samples with/without WCE treatment. It reveals the passi-

vated region, which results from the formation of B-H, and can be related to

the concentration of hydrogen.
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was recorded continuously during the RBA at 350 K. Due to

the H re-distribution, a change in the capacitance takes place

during RBA; it amounts, however, to only 0.3%, i.e., �20 nm

in the depletion edge depth and can be neglected.

The characteristics of a release of Fei by the Fermi-level

effect are fulfilled in the HT samples where the influence of

H is small. The depth profile in Fig. 3(b) shows that the

increase of Fei occurs close to the charge state transition

region (as highlighted by the vertical lines). However, in the

WCE samples, a significant release of Fei can be observed

not only in the region with Fe0i but also in the part of the

depletion region where Feþi exists. Moreover, the concentra-

tion of released Fei in the depletion region is higher by a fac-

tor of 1.5-2 in the WCE sample as compared to the HT

sample. This demonstrates the significance of the mecha-

nism, where Fei is released due to a direct dissociation of Fe-

B promoted by H: Fe-B þ H ! B-H þ Fei.

It may be argued that Fei released close to the surface

has in-diffused to such an extent that it could account for the

measured defect profiles. However, the gain in concentration

of Fei as a function of depth agrees closely with the loss of in

concentration of Fe-B, implying that no significant net diffu-

sion has occurred in the measured region.

As mentioned in the introduction, an interaction of H

with Fe0,9 may be expected in the depletion region. How-

ever, based on our quantitative observations, we can not con-

firm formation of Fe-H complexes under the present

experimental conditions; indeed, if hydrogen is to passivate

Fei or Fe-B, a dissimilar concentration change between the

two defects should occur. In addition, no new level in the vi-

cinity of 0.3–0.4 eV above EV, predicted for a donor state of

the Fe-H pair, is observed. Thus, no evidence for passivation

of Fei or Fe-B by H is obtained.

In conclusion, hydrogen has been incorporated into iron-

contaminated boron-doped Cz-Si and demonstrated to interact

with the Fe-B pair. By monitoring the absolute concentration

of Fe-B and Fei versus depth before and after RBA, strong

evidence of hydrogen-induced dissociation of the Fe-B pair

into Fei and B-H are found confirming previous tentative

experimental findings and recent theoretical predictions. In

addition, no detectable passivation of Fei by hydrogen is

observed.
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Iron and irradiation-induced defects have been investigated in p-type float-zone sili-

con after MeV electron-irradiation using deep level transient spectroscopy. Isochronal

annealing (30 min) was performed up to 250◦C, and three distinctive energy levels

are observed in the Fe-contaminated samples with positions of 0.25, 0.29 and 0.34 eV

above the valence band edge, respectively. The two latter ones are found to accom-

pany the change in concentration of the divacancy center (V2) during the isochronal

annealing which suggests an interaction between Fe and V2.
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I. INTRODUCTION

Iron is well-known for its detrimental effects on the performance of silicon solar cells

and integrated circuits.1 Solar cells based on p-type silicon can be significantly improved by

gettering during a phosphorus in-diffusion step which accumulates Fe close to the surface

and reducing its concentration in the bulk. Although this process is commonly employed,

the underlying mechanism of the gettering of Fe is not fully understood. Furthermore, solar

cells receiving the phosphorus gettering may still exhibit light-induced degradation with

degradation characteristics of Fe contamination2.

To further improve the gettering efficiency of Fe, it is important to understand the un-

derlying mechanism and the defects formed during the gettering. Recently, it is shown that

the major contribution of Fe gettering does not occur by the formation of a phosphorus-iron

complex, where intentionally introduced Fe is gettered with a similar concentration versus

depth profile regardless of the phosphorus depth profile.3 In Ref.3, propose a mechanism

involving oxygen and vacancies, injected during the phosphorus in-diffusion, was proposed.

Indeed, a reaction between the vacancy-oxygen complex and Fe have been reported in

n-type silicon by You4, using deep level transient spectroscopy (DLTS), and the defect was

shown to be stable up to 300◦C. The disappearance of the DLTS signal was suggested

to be caused by the formation of a more stable complex, presumably substitutional Fe and

interstitial oxygen. Furthermore, although not discussed in Ref.[4], the divacancy center (V2)

decreases in concentration after annealing at 80◦C for 2.5h, suggesting a reaction between V2

and Fe. This is also addressed by Komarov,5 who investigated reactions between irradiation-

induced defects with residual impurities in n-type silicon. Komarov observed the appearance

of a hole trap at 0.184 eV above the valence band edge (EV ) after annealing at 150◦C which
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remained stable at 400◦C. Tentatively, this defect was assigned to FeV2, with the basic

argumentation that Fe was present in the samples.

Theoretical calculations have recently been reported on the interaction between irradiation-

induced defect and Fe.6 The calculations predict two stable complexes between V2 and Fei.

The one with the lowest total energy is labelled as VFeV, where the Fe is situated half way

between two vacancies. This configuration has a single acceptor level at EV +0.38 eV (EC-

0.73 eV, where EC is the conduction band edge) and a double acceptor level at EC-0.55 eV.

The other configuration is FeV2 which has one donor level at EV +0.25 eV and one acceptor

level at EV +0.36 eV (EC-0.75 eV).

Recently, we have investigated the interaction between Fe and proton-irradiation-induced

defects in p-type silicon using DLTS after isochronal annealing.7 Several Fe-related defects

were observed, and one appeared after 150◦C with an energy level position of EV +0.28 eV,

labelled as H(0.28). Based on the evolution of the concentrations of H(0.28) and V2, H(0.28)

was tentatively assigned as a divacancy-Fe complex, although, the involvement of hydrogen

(arising from proton-implantation) could not be ruled out.

In this study, Fe-contaminated and Fe-lean float-zone (Fz) p-type silicon samples have

been irradiated by electrons and investigated for possible reactions of Fe with irradiation-

induced defects. Several deep level defects are observed exclusively in the Fe-contaminated

samples after annealing above 125◦C, and two of these involve possibly V2.

II. EXPERIMENT

Samples were cut from Fz boron-doped silicon with doping concentration of 2×1014cm−3,

as confirmed by capacitance-voltage (CV) measurements. Dry oxidation was performed

at 1000◦C for 8h after an HF-dip, and circular holes of 2 mm in diameter were opened at
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the frontside using photolitography for the preparation of a pn-junction. Phosphorus was

implanted at the frontside with an energy and dose of 36 keV and 1×1014cm−2, respec-

tively. Thereafter, Fe was implanted at the rearside with energy and dose of 700 keV and

1×1014cm−2, respectively. After the implantation, the samples were heat treated at 875◦C

for 1h to activate the n+-layer and to diffuse Fe to the frontside of the sample.8

Aluminium contacts of 1 mm in diameter were deposited onto the n+-layer of the pn-

junction, and Ohmic contacts were formed at the rearside by applying silver-paste. The

samples were electrically characterized using CV-measurement and DLTS. For DLTS, six

rate-windows were used ranging from (20ms)−1 to (640ms)−1 and the signals were typically

extracted by the GS4 weighting function9. The reverse and pulse bias voltages were 4.5 and

-4.5V, respectively.

After initial DLTS measurements, which confirmed that only the Fe-contaminated sam-

ples (and not the control ones) contained the Fe-B pair and/or interstitial Fe (Fei) while

other centers were below the detection limit, electron-irradiation was performed with an

energy of 4 MeV and a dose of 2×1014cm−2. The reference samples, which were based on

Al Schottky barrier contact and not intentionally contaminated with Fe, received the same

electron-irradiation. The electron-irradiated samples were stored for three weeks at room

temperature before commencing characterization and isochronal annealing (30 min) from

125 to 250◦C with an interval of 25◦C.

III. RESULTS AND DISCUSSION

Figure 1 shows the DLTS spectra of Fe-contaminated (Fig.1a) and reference (Fig.1b)

samples in the as-implanted state and after annealing at 150, 200 and 250◦C. The ordinate

in the temperature interval of 90 to 160K has been enhanced by a factor 8 for clarity. Fo-
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FIG. 1. Spectra of DLTS measurements, with GS4 weighting function, on electron-irradiated Fe-

contaminated and reference samples before and after annealing at 150, 200 and 250◦C for 30 min.

Three distinctive peaks, H(0.25), H(0.29) and H(0.34), are only found in the Fe-contaminated

samples. These spectra are extracted from rate-window of (640ms)−1.

cusing on the as-implanted samples, prominent irradiation-induced defects can be observed

both in the reference and the Fe-contaminated samples, such as the V2
10–12 and the inter-

stitial carbon-interstitial oxygen pair (CiOi)
11,13 with the respective energy level positions

of 0.18 eV and 0.35 eV above EV . Small amount of interstitial carbon (Ci)
13 can also be

observed at 139K (∼EV +0.30 eV), but it becomes negligible after annealing above room

temperature.

In the Fe-contaminated samples (Fig.1a), the Fe-B pair is observed at 47K (∼EV +0.10 eV)

and concentration of 1.7×1013cm−3. Fe-B can dissociate into Fei in a reversible reaction by

heat treatment, illumination or by minority carrier injection.8,14 Fei occurs at EV +0.40 eV
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FIG. 2. Evolution of the defect concentrations in Fe-contaminated (open symbol) and reference

samples (filled symbol) to subsequent annealings of 30 min. Data from as-irradiated samples are

plotted at annealing temperature of 25◦C. “V2+H(0.29)+H(0.34)-BiCs” is a result from adding the

concentration of V2, H(0.29) and H(0.34) in the Fe-contaminated samples and subtracting BiCs

from the reference samples.

and can be readily observed in Fig.1 at 218K after annealing at 150◦C. It should be mentioned

that the sum of the concentration of the Fe-B pair and the Fei decreases by subsequent

annealing. Fei is highly mobile and the decrease may be explained by migration to the

surface, or reactions with other defects such as the irradiation-induced ones.

Figure 2 summarises the concentration of the observed defects levels after subsequent

annealings (30 min). The data for CiOi have been subtracted with 2×1012 and 5×1012cm−3

for the Fe-contaminated and the reference samples, respectively, to increase the clarity of

the figure. In the reference samples, the concentration of CiOi is stable above 250◦C, in

accordance with the dissociation energy of ∼2.0 eV of the complex.15 For the V2, a slight

decrease takes place after 250◦C, which can be associated with the formation of V2O
16;

indeed, a peak appears at 116K in Fig.1, with a position of EV +0.22 eV and an apparent

capture cross-section of 1×10−15cm2, in accordance with previous observations.16,17 For the
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FIG. 3. Arrhenius plot of the three distinctive deep levels in Fe-contaminated samples and two

additional set of data for comparison. The data points for H(0.29) are extracted from the simulated

DLTS spectra, partially shown in Fig.4, and compared with those of BiCs in the reference samples

and from Ref.[7].

Fe-contaminated samples, however, a different trend occurs for V2 and CiOi. Both defects

exhibit a reduction in concentration already after 150◦C, with the exception of a sudden

increase of CiOi at 225◦C. Hence, a different and more complex annealing behavior of the

irradiation-induced defects is unveiled due to the presence of Feas will be discussed in more

detail later.

Three distinctive peaks are exclusively observed in the Fe-contaminated samples at 130,

136 and 153K with the corresponding labels of H(0.25), H(0.29) and H(0.34). The Arrhenius

plots of these levels are shown in Fig.3, and the extracted energy level positions are 0.25,

0.29 and 0.34 eV above EV with apparent capture cross-sections of 1×10−14, 9×10−15 and

2×10−14cm2, respectively. The data points for H(0.25) and H(0.29) are extracted after

simulating the DLTS spectra, as displayed in Fig.4 (only two rate windows are displayed for

clarity.)
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FIG. 4. Simulated (Sim.) DLTS spectra for the H(0.25) and H(0.29) peaks between 120 to 150K

for rate window 1 (RW1) of (640ms)−1 and rate window 2 (RW2) of (320ms)−1.

Figure 3 contains two additional set of data; one set is extracted from the peak at 135K

in the reference samples after annealing above 150◦C. The Arrhenius plot for the reference

sample reveals an energy level position and an apparent capture cross-section of EV +0.29 eV

and 2×1014cm2, respectively, and the level is identified as the interstitial boron-substitutional

carbon (BiCs).
18 Based on the similar properties of BiCs and H(0.29), it may be tempting

to attribute H(0.29) solely as BiCs. However, in addition to the larger concentration in the

Fe-contaminated samples than in the reference samples (Fig.2), the concentration versus

depth profiles differ significantly, as shown in Fig.5. BiCs remains close to constant as a

function of depth in the reference sample, as expected in MeV electron-irradiated samples,

while H(0.29) exhibits a significant increase in concentration towards the bulk. This implies

that H(0.29) is not primarily due to BiCs, but forms when an impurity diffuses from the

back towards the surface. Since Fe is highly mobile at elevated temperatures, it is one main

candidate to be involved in H(0.29). The second set added in Fig.3 is taken from Ref.[7] and

is the data for the tentatively assigned divacancy-Fe complex, H(0.28). A close agreement

is found between the H(0.29) and H(0.28) data sets
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FIG. 5. Concentration versus depth profiles of H(0.29) in the Fe-contaminated samples and the

BiCs in the reference samples.

If H(0.29) is assumed to be the donor state of FeV2, as predicted in Ref.[6], a second signal

at EV +0.36 eV with similar amplitude is expected in the DLTS-measurement. However, a

peak with the suggested energy level position has a strong overlap with the dominating CiOi

and can not be readily resolved.

H(0.34) in this work has a position close to that calculated for the single acceptor of

VFeV, in Ref.[6]. Furthermore, H(0.34) is formed after annealing at 225◦C and increases

further at 250◦C which indicates a rather stable defect, consistent with that predicted VFeV.

If H(0.34) and H(0.29) are due to Fe-related complexes invoking V2, a correlation in the

defect concentration versus annealing temperature is a necessary condition. Assuming that

BiCs in the Fe-contaminated samples has the same concentration as in the reference sam-

ples, the sum of V2, H(0.29) and H(0.34) (Fe-contaminated samples) minus BiCs (reference

samples) is depicted in Fig.2 (labelled as “V2+H(0.29)+H(0.34)-BiCs”). This curve follows

closely the concentration of V2 in the reference samples below 250◦C. Above 250◦C, other

reactions start to dominate the annealing of V2, like formation of V2O.16,17 From these

considerations, it is suggested that H(0.29) and H(0.34) are caused by complexes formed
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through reactions between mobile Fe and V2.

H(0.25) appears at 125◦C and remains essentially stable at temperatures above 175◦C

(Fig.2). Although its concentration correlates with the loss of CiOi below 175◦C, suggesting

a relation to CiOi, the pattern is not unambiguous above 175◦C. One may speculate that a

further (higher order) reaction between Fe and CiOi passivates the H(0.25) complex which

will account for the decrease in the concentration of CiOi and possibly also the saturation

of H(0.25). However, the literature on interaction between Fe and CiOi is scarce and further

investigations should be persued; for instance with isothermal annealing including reverse

biasing.

IV. CONCLUSION

Boron-doped and Fe-contaminated Fz silicon samples have been electron-irradiated and

investigated for Fe-related defects using DLTS after isochronal annealings up to 250◦C. Three

distinct deep levels are exclusively revealed in the Fe-contaminated samples after annealing.

The concentration of two ones, H(0.29) and H(0.34), accompany the loss in concentration

of V2, suggesting an interaction between mobile Fe and V2, in full accordance with previous

theoretical predictions in the literature.
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