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1. Abstract of thesis

Birth asphyxia is worldwide, still an important cause of child morbidity and mortality. Early 

detection of cerebral hypoxic ischemic (HI) injury is important in order to start 

neuroprotective treatment. Neuroimaging methods play an important role in the diagnosis 

and prognosis, and magnetic resonance imaging (MRI) is considered the most specific and 

sensitive method. However, MRI is expensive and difficult to perform during the short 

therapeutic time window after the insult. In asphyctic newborn infants, resuscitation with 

high-level oxygen ventilation has proven harmful to the organs and consequently 

resuscitation with air is now recommended.

This thesis introduces and evaluates radiological and nuclear medicine methods for use in 

newborn piglets, to detect early effects and mechanisms of perinatal cerebral HI and 

resuscitation related to injury. Using a piglet model, cerebral perfusion, diffusion and 

glucose metabolism were studied. Changes during and after hypoxia/hypoxia-ischemia were 

correlated to the resuscitation mode and histopathologic findings.

In 3 different studies, contrast enhanced ultrasonography (CEUS) and dynamic 

susceptibility contrast (DSC) enhanced-, diffusion weighted- (DWI) MR imaging, MR 

spectroscopy (MRS) and Positron emission tomography with fluorodeoxyglucose (FDG-

PET), were used.

Our findings confirmed that HI injury in the piglet could reveal diffusion and MRS changes 

correlated to injury, and this is in accordance with other clinical studies. After global 

hypoxia, CEUS revealed changes in cerebral perfusion, with decreased values during 

resuscitation with 100% O2, not found when using air. The changes in MRI /CEUS 

perfusion were transient, with poor correlation to diffusion and histopathologic findings.

Dynamic FDG-PET detected an immediate decrease of cerebral glucose metabolism after 

perinatal hypoxia. This may indicate early changes of mild cerebral HI injury. No 

significant influence of resuscitation with 100% O2 versus air was found.

We conclude that the piglet model is suitable for assessing early changes of cerebral 

diffusion, metabolism and microvascular perfusion after HI injury. MRI, CEUS or FDG-

PET cannot be used alone in the early detection of cerebral HI injury. These adapted 

techniques can provide further insights into the mechanisms of perinatal hypoxia-ischemia,

where early detection plays an important role for instituting therapy.



6

2. Acknowledgements

The thesis was initiated and carried out at the Dept.of Paediatric Research, Oslo University 
Hospital, Rikshospitalet from 2008 to 2012 in collaboration with the Institute of Surgical 
Research, the Interventional Centre and the Centre for Molecular Biology and 
Neuroscience, Dept. of Anatomy, Institute of Basic Medical Sciences, University of Oslo.
It was in part financially supported by grants from the Child foundation and Medinova 
foundation at Oslo University Hospital and the Norwegian SIDS and Stillbirth Society.

Experimental animal studies are very complex, necessarily involving many collaborators. 
This work is the result of the contribution from many skilled persons and scientists I had the 
privilege to collaborate with and that I would like to express my sincere gratitude to;

My principal supervisor Berit H Munkeby, MD, PhD. You are an enthusiastic person and
inspired me to begin, go through, and finally complete this work. I am deeply grateful to 
you for introducing me to experimental research in piglets and perinatal hypoxic ischemic 
injury. These studies could not have been carried out without your help, knowledge about 
the piglet model and skills as anesthesiologist. I thank you for your optimism,inspiration and 
encouragement throughout this work. 

I am deeply grateful to my co-supervisor Professor Ola Didrik Saugstad for giving me the 
opportunity to work within the field of perinatal hypoxic ischemic injury and resuscitation 
and for letting me perform radiological and nuclear medicine studies on the piglet model 
developed at your department. I would like to thank you for your encouragement, ideas and 
valuable scientific advice in completing this work

My co-authors at the Dept. of Radiology; Knut Brabrand, MD without your help, 
enthusiasm, inspiration and knowledge of contrast enhanced ultrasonography, this work 
would not have been possible. I am also very grateful to, John Hald, MD, PhD for your 
valuable help and neuroradiological advice.

I would like to express my special appreciation and thank you to my physicist co-authors
contributing to this work, for their scientific knowledge, spirit, and answers to all my
questions - always with a sense of humor. Professor Atle Bjørnerud and Kyrre Eeg Emblem,
PhD. Your knowledge and skills in MR perfusion and statistics have been invaluable for this 
work. Professor Eirik Malinen, contributing with your invaluable knowledge and expertise 
in PET physics and chief engineer Hong Qu at the department of Anatomy for your 
important and valuable help during the performance of the study.

I am very grateful to Professor Else Marit Løberg, for your contribution with the 
histopathology. Professor Arne Skretting, and Kjersti Johnsrud, MD for their expertise, help 
and advice during the planning and performance of the FDG-PET study. Eirik Stokke 
MD,PhD for his help during the performance of one the studies.

Colleagues, collaborators and friends at the department of Paediatric Research, especially



7

Jannicke Andresen, MD, PhD and Grete B Kro, MD for their support, encouragement and 
contribution to first MRI study and to Rønnaug Solberg, MD, PhD for your nice support and 
fruitful discussions about the piglet model. I would also like to thank chief administrative 
officier Elisabeth Mathiassen for your kind assistance.

I would like to sincerely thank Professor Ansgar Aasen , head of Institute of Surgical 
Research, Professor Håvard Attramadal, and their staff for providing me excellent help and 
expertise during the animal experiments; Roger Ødegaard, Vivi Bull Stubberud, Sera T 
Sebastian, Aurora M Pamplona. At the Dept. of Comparative Medicine, I would like to 
thank the late chief veterinarian Dag Sørensen and especially engineer Kjersti Janette Kjos 
Wamstad, as well as the farmer, for their assistance and delivery of the piglets.

I am also very grateful for the invaluable help and expertise during performance of the 
experiments by many radiographers, bioengineers, nurses, physists at the Dept. of 
Radiology and Nuclear Medicine and the Interventional Centre. I thank especially, Eldrid 
Winther Larsen, Terje Tillung, Hilde Sofie Korslund, June-Cathrine Berge, Karl Øyri, 
Carmen Louwerens, Kersti Wendt, Frederic Courivaud, Oliver Geier, Ann-Eli Spiten and
Ellen Gunnerud Kristoffersen for your contribution. 

I would like to express my gratitude to my chief and head of the of Pediatric Radiology unit, 
Bjarne Smevik,, MD for your support and assistance in the performance of my thesis. I also 
thank the head of the section of Neuroradiology, Musculoskeletal- and Pediatric Radiology, 
Paulina Due-Tønnesen, MD and the head of the department Radiology and Nuclear 
Medicine, Professor Hans Jørgen Smith for their sincere support in this thesis.

Special thanks go to dear friends and colleagues at the department of Pediatric Radiology 
and Radiology for their encouragement and moral support throughout this work.

We are also very grateful to Siemens, Norway for your valuable contribution providing us 
with an ultrasound machine during the performance of one study and Bracco, Milan, Italy 
for providing of the ultrasound contrast agent. The Norwegian Medical Cyclotron Centre
provided the radioactive tracer to the PET study, for which we are sincerely grateful.

My parents, Ulli and Per, thank you for your never-failing loving support and trust in me. 
Your long scientific experience has provided me valuable scientific advice and lots of 
encouragement during this work.
I would also like to especially thank my closest family Katarina, Jørg, Emil , Niklas and 
Harald, Margareth Jannicke and Cathrine also including all our dear friends, for your 
presence, support and important distraction (keeping me from working to much).

My lovely grown up sons, Christian and Jonas for your warm love, support and 
encouragement.

Finally, my special love and outmost thank you to my husband Thomas, for your support 
and patience. Your continuous encouragement and enthusiasm have been invaluable and 
truly necessary for this work to be completed.



8

3. List of publications

This thesis is based on the following papers, which will be referred to by their Roman 

numerals:

I. Munkeby BH, de Lange C, Emblem KE, Bjørnerud A, Kro GA, Andresen J, 

Winther-Larssen EH, Løberg EM, Hald JK.

A piglet model for detection of hypoxic-ischemic brain injury with magnetic 

resonance imaging, Acta Radiol. 2008 Nov;49(9):1049-57

II. de Lange C, Brabrand K, Emblem KE, Bjørnerud A, Løberg EM, Saugstad OD,

Munkeby BH.

Cerebral perfusion in perinatal hypoxia and resuscitation assessed by trans 

cranial contrast enhanced ultrasound and 3T MRI in newborn pigs.

Invest Radiol. 2011 Nov;46(11):686-96

III. de Lange C, Malinen E, Qu H, Johnsrud K, Skretting A, Saugstad OD,

Munkeby BH.

Dynamic FDG-PET for assessing early effects of cerebral hypoxia and 

resuscitation in newborn pigs. Eur J Nucl Med. 2012 Feb 2, Epub ahead of print. 



9

4. Selected abbreviations

ADC Apparent diffusion coefficient

ASL Arterial spin labeling

ATP Adenosine triphosphate

AUC area under the curve
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CA contrast agent

CBV cerebral blood volume

CBF cerebral blood flow

CMRgl Cerebral metabolic rate of glucose

CEUS contrast enhanced ultrasonography

DSC-MRI dynamic susceptibility contrast enhanced MRI

DWI diffusion weighted imaging

DTI diffusion tensor imaging

EEG Electroencephalogram

FA fractional anisotropy

FDG-PET (18F) 2-deoxy-2-fluoro-D-glucose-positron emission tomography

FiO2  fraction of inspired oxygen
1H MRS proton MR spectroscopy

HI hypoxic ischemic

HIE hypoxic ischemic encephalopathy

HR heart rate

LC lumped constant                                                                                                             

MABP mean arterial blood pressure

MRS MR spectroscopy                                                                                                 

MTT mean transit time                                                                                                      

PI peak intensity                                                                                                              

PWI perfusion weighted imaging                                                                                                      

ROI region of interest

SNR signal to noise ratio

SUV standardized uptake value

TTP time to peak

US ultrasonography
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5. Introduction

5.1 Perinatal hypoxic ischemic (HI) injury 

5.1.1 Definition

Birth asphyxia is still one of the major causes of chronic handicaps and death in children 

worldwide and is highest in developing countries (1;2). Of 140 million annual births 

worldwide 4-9 million suffer from birth asphyxia (3). Despite improvements in neonatal 

practice the incidence of deaths of about one million has remained essentially unchanged 

while one million develop severe organ injury, resulting in a burden of 42 million disability 

adjusted life years (4;5). The financial, medical and social burdens of birth asphyxia are 

poorly quantified, but undoubtedly substantial.

Birth asphyxia is defined as a condition with impaired gas exchange leading to hypoxemia, 

hypercapnia and metabolic acidosis. All of the following criteria must be fulfilled in order to 

define an asphyctic condition (6).

Evidence of metabolic acidosis in fetal umbilical cord arterial blood at delivery 

Apgar score of 0-3 for five minutes or more.

Evidence of neurological disturbance (e.g. seizures, coma, hypotonia) and one or 

more of the following organ system injuries; cardiovascular, gastrointestinal, 

hematological, pulmonary, renal, or hepatic dysfunction.

Birth asphyxia may result in hypoxic ischemic encephalopathy (HIE) in term or late preterm 

infants. It is a clinically defined syndrome of disturbed neurological function in the earliest 

days of life manifested by difficulty with initiating and maintaining respiration, depression 

of tone and reflexes, subnormal level of consciousness and often by seizures (7).

5.1.2 HI injury mechanisms

HIE follows upon a disruption of cerebral blood flow (CBF) and oxygen delivery to the 

brain most likely caused by reduced placental blood flow and gas exchange before, during,

or after birth. Several factors such as timing, duration and severity of the insult and the 

maturity of the brain influence the development and degree of injury. Severe acute HI injury 

rapidly results in neuronal death while less severe but prolonged insult leads to greater 

injury by apoptosis (activation of genetically determined cell-death programs) (8).
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Clinical and experimental observations demonstrate that HI injury is not a single “event” but 

rather an evolving process (8;9). Brain injury is thought to occur in 2 phases separated by a 

brief recovery or latent phase (10). During the acute phase or “primary energy failure” 

CBF decreases due to interrupted placental blood flow and delivery of oxygen to the brain, 

leading to acidosis. This acute reduction of CBF and oxygen delivery initiates a cascade of 

deleterious biochemical events. Depletion of oxygen causes switch to anaerobic metabolism 

(dominated by anaerobic glycolysis) resulting in 1.a rapid depletion of high-energy 

phosphate reserves including adenosine triphosphate (ATP), 2. accumulation of lactic acid, 

and 3. inability to maintain cellular functions. This loss of cell membrane integrity and 

function causes a loss of electrolyte ionic gradients. Intracellular sodium, calcium and water 

shift cause cell swelling and necrosis. In parallel, potassium leaks into the extracellular 

space inducing a slow depolarization and release of neurotoxic excitatory neurotransmitters,

in particular glutamate. Glutamate then causes an influx of calcium and sodium into 

postsynaptic neurons causing a rapid depolarization. In addition, free fatty acids accumulate 

and undergo peroxidation by free oxygen radicals that arise from reductive processes with 

byproducts of prostaglandins, xanthine and uric acid. Intracellular calcium may induce a

production of the free radical nitric oxide (NO) that diffuses to adjacent cells susceptible to 

NO toxicity. The combined effect of cellular energy failure, acidosis, glutamate release, 

intracellular calcium accumulation, lipid peroxidation and NO neurotoxicity destroy 

essential components of the cell, resulting in cell death. The duration or severity of the insult 

commands the progression and severity of injury. If oxygen is restored by reoxygenation,

brain oxidative metabolism and cellular pH recover briefly during the “latent period”

which does not seem to extend for longer than 6 h (4;8;11).

The delayed phase or “secondary energy failure” appears and evolves 6 to about 48 h

after the hypoxia-ischemia. During this phase, intracellular pH and phosphorus metabolites 

return to baseline and cardiorespiratory status is stable, contributing to further brain injury 

(8;10). The injury mechanisms during the secondary phase include iron accumulation, 

mitochondrial failure and injury from inflammatory mediators that initiate apoptosis. The 

role of inflammation in HI brain injury is complex but seems to give both some beneficial 

and deleterious effects after injury.

It is during the transition from the recovery (latent) phase to the secondary phase that 

there is a potential for diminution of injury by neuroprotective intervention (8;12).
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Cerebral perfusion in HI injury

Perfusion or blood flow is a biological process that assures a sufficient supply of cell 

nourishment, removal of metabolic waste and maintenance of body temperature. Cerebral 

perfusion mirrors cerebral metabolic demand and neuronal function, and therefore, is a vital 

parameter in the evaluation of HI brain injury and recovery. CBF has regional differences 

with the highest perfusion in basal ganglia /thalamus region in term babies. During the brain 

maturation, cerebral vasculature develops in different regions at different time points 

influencing the pattern of injury.

The effect of hypoxia-ischemia on cerebral perfusion has been experimentally studied 

(fig.1) (13). Laboratory studies suggest that most hypoxic injuries in fetuses and infants 

reflect combinations of hypoxia and ischemia rather than hypoxia alone. Decrease in 

cerebral perfusion is necessary for the development of brain injury by a combination of 

oxygen deficit and superimposed ischemia or isolated ischemia (14;15).

During hypoxia, there is an activation of the sympathetic adrenergic system redistributing 

the cardiac output in favor of the central organs. The decreased oxygen and increased 

carbon dioxide partial pressures lead to a vasodilation of the cerebral vascular bed and 

consequently a cerebral hyperperfusion during hypoxia (16).  If the oxygen deficit is 

continued the cardiac output and the mean arterial blood pressure will fall and the cerebral 

perfusion will decline. If the oxygen supply is restored a cerebral hyperperfusion will follow 

in response to the postasphyctic increase in cardiac output. The initial hyperperfusion of the 

brain is followed immediatly by a phase of hypoperfusion that might be due to release of 

free oxygen radicals (17). The phase of hypoperfusion will eventually recover or even 

develop into a new phase of hyperperfusion extending over in the phase of second energy 

failure. The latter is often accompanied by an isoelectric electroencephalogram (EEG) and 

this combination is signaling a very unfavorable prognosis (18). In some cases, a so-called 

no-reflow phenomenon can be observed regionally or generally in the brain after severe 

cerebral ischemia, due to congestion of cerebral vasculature.

This description of vascular changes of perinatal hypoxia ischemia is however schematic, 

simplified and based on experimental animal studies of various species, with limitations and 

differences compared to human babies.
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Fig. 1 The effect of ischemia on cerebral perfusion, Berger et al (13)

As opposed to adult stroke, being in most cases mainly ischemic, in the perinatal situation 

the combination of hypoxia and ischemia is more common. In adult HI injury/ stroke the 

concept of “penumbra” is defined as tissue with flow within the thresholds for maintenance 

of function and of morphologic integrity with a capacity to recover if perfusion is improved 

(19). Significant gaps still exist in our knowledge of pediatric CBF and its relation to the 

time for and cause of HI brain injury, as well as regional cerebral changes related to the 

degree of hypoxia-ischemia.

Very few modalities exist for easy monitoring of CBF in high-risk neonates. Near-infrared 

spectroscopy (NIRS) can monitor microvascular cerebral oxygenation deducing CBF from

changes in total hemoglobin concentration. NIRS is used during cardiothoracic operations, 

postnatally after a HI event and in premature babies with ventilatory problems to prevent 

cerebral periventricular leucomalacia (20). Although the clinical use of NIRS has expanded,

most devices available are limited to quantify only relative changes in CBF (21).

Transcranial Doppler can be used to measure CBF velocity in major intracerebral arteries 

but is limited to only short periods of assessment to avoid high power transmission over a 

long time (22). Recent advances in non-invasive MRI techniques provide novel techniques 

to evaluate neonatal CBF but they are still not bedside techniques suitable for monitoring in 

clinical practice. Under experimental conditions, radioactive, colored or fluorescent 

microspheres have been used for decades and this is the current gold standard technique for 

detection of regional CBF changes (23).
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Glucose metabolism in HI injury

Like perfusion, cerebral metabolic demand and neuronal function are crucially involved and 

important for the evaluation of HI brain injury and recovery. The ischemic cell damage 

involves a cascade of molecular and biochemical mechanisms where glucose and oxygen 

metabolism are closely involved.

Glucose metabolism has regional differences in the brain. Thalamus, cerebellum and 

brainstem, sensorimotor cortex and basal ganglia, have higher metabolic activity than 

frontal, temporal and occipital cortex and white matter (24;25). These areas of the brain 

which have the highest concentrations of glutamate or other excitatory amino acid receptors,

are more likely to excitotoxic injury during HI (14). Excitotoxic injury or excitotoxicity, 

refers to cell death caused by excessive stimulation of extracellular excitatory amino acid 

receptors (26). The degree of brain maturity also influence on glucose metabolism (27).

Premature babies less than 32 weeks of gestational age have decreased glucose metabolism 

compared to term infants as shown in a recent study (24;28).

During the early phase (3-12 h) of the evolving HI injury, areas with increased cerebral 

metabolism of oxygen and glucose have been detected in animal studies (immature rats) and 

and also in relation to CBF changes (29-31). Also in term infants, hypermetabolism was 

found a few days after hypoxia-ischemia correlated to poor outcome (32). Marginally 

ischemic tissue has been revealed to have a higher fraction of anaerobic glycolysis than 

normal tissue and represents areas in danger of developing infarction (33). The mechanism 

of hypermetabolism could be partly due to the action of excitatory amino acids released 

following HI and this hypermetabolic state may precede irreversible infarction later 

presented as hypometabolism.

Patterns of injury

In HIE, the time of the insult, the duration and the severity in addition to the degree of 

cerebral maturation and regional metabolic state of the brain, play a key role for the 

development and pattern of the resultant cerebral injury. Most episodes of hypoxia-ischemia

severe enough to damage the brain cause variable injury to selected groups of structures 

rather than an uniform or global injury, often seen in adult anoxic ischemic injury. Special 

patterns of injuries corresponding to clinical patterns of disability have been revealed 

especially by neuroimaging, such as MRI.

In term babies subjected to mild to moderate hypoperfusion/hypotension, the CBF is 

redistributed to ensure perfusion to the hypermetabolically active and most vulnerable 
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regions including the basal ganglia, brainstem, and cerebellum. This redistribution results in 

injury predominantly to the intervascular zones of the cerebrum between the anterior,

middle and posterior cerebral arteries, in the underlying subcortical white matter in 

parasagittal locations. In severe hypoperfusion/ hypotension, the vulnerable regions of the 

brain affected are: the deep gray matter including lateral thalami, posterior putamina, 

hippocampi, brainstem, corticospinal tracts and sensorimotor cortex (34;35). This pattern is 

commonly associated clinically with severe permanent motor impairment (upper extremities 

more than lower extremities) and motor speech impairment.

5.1.3 Resuscitation after hypoxia-ischemia

The supportive care provided postnatally following asphyxia aims to avoid circulatory 

insufficiency and cerebral hypoperfusion. Resuscitation is often needed and ventilatory 

support is one of the initial steps together with fluid management and measures to avoid 

hypotension and hypoglycaemia as well as treatment of seizures.

Oxygen is the key element of aerobic metabolism. Its reduction to water by the 

mitochondrial transport chain enables the conversion of ADP to ATP in an 18 times more 

efficient way than by glucolysis. Oxygen has been used in neonatal resuscitation since 1780,

but it took over 200 years before it was suggested that it could be harmful when used in 

newborn resuscitation (36).

In 1980 Saugstad and Aasen introduced the theory that oxygen free radicals could cause 

injury during hypoxia and reoxygenation, proposing that care should be taken when using 

pure oxygen during resuscitation (37). Since then the concentration of oxygen in the 

resuscitation air has been under extensive experimental and clinical research to establish the 

long- and short-term effects of high-level oxygen. There has been an on-going debate 

regarding the potentially harmful effects of oxygen free radicals and changes in cerebral 

perfusion and respiratory physiology with 100% oxygen administration, but also about the 

dangers of oxygen deprivation during and after asphyxia. Animal studies now show 

convincing evidence that oxidative stress may, induced by hyperoxemia, lead to 

inflammation and necrosis/apoptosis in the brain, as well as in other organs with potential 

negative effect on survival (38-40) . Clinical studies also show that hyperoxic compared 

with normoxic reoxygenation of newborn infants leads to organ tissue injury, for instance in 

the myocardium and kidney (41). Consequently the International Liaison Committee on 
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Resuscitation (ILCOR) recommends in their new guidelines, to start with air in resuscitation 

of term or near term newborn infants (42).

Hyperoxia has been shown to cause reduced CBF. This hypoperfusion has been observed 

after neonatal HI injury, but the mechanism is not fully understood (17). A study in newborn 

babies could demonstrate reduced CBF ( using xenon clearance) after hyperoxia shortly 

after birth (43). An experimental study on newborn rats (7 days) showed that CBF in the 

ischemic cortex declined following resuscitation with 100% O2 but not with ambient air. 

These findings in hyperoxic animals were accompanied by reduction in perivascular 

production of nitric oxide (NO). The authors suggest that hyperoxia uncouples perivascular 

NO synthase (NOS), probably endothelial NOS, leading to a reduced NO and increased 

superoxide anion (O2
–) production. The hyperoxia causes a loss of vascular reactivity 

initiated by a decrease in the production of perivascular NO and an increase of oxygen with 

vasoconstriction resulting in reduced CBF (44). However newborn piglet studies have 

revealed that hypoxia-ischemia combined with hypercapnia and hyperoxic resuscitation 

resulted in a faster restoration of cerebral microcirculation than with normoxia, suggesting 

that hypercapnia may have protective effects (16).

The effect of hyperoxia versus normoxia on cerebral glucose metabolism in perinatal HI 

injury has not been compared in the previous studies. An experimental study in fetal sheep 

revealed a pronounced hypometabolism 4 h after hypoxia-ischemia and resuscitation with 

100% O2 (45).

5.1.4 Cerebral injury and neuroprotective treatment

Detection of injury - the importance

Resuscitation and early treatment will most often be initiated by the suspicion of perinatal 

asphyxia, which can only later be confirmed by a combination of developing clinical 

symptoms, biochemical markers together with EEG and neuroradiological findings. HI 

injury develops during the first days of life and is classified according to a system based on 

clinical and EEG findings as first described by Sarnat and Sarnat  in mild, moderate or 

severe HIE (46).

Therapeutic treatment has become a reality in infants born at term or near term who have 

suffered perinatal hypoxia-ischemia (9;13;47;48). It is important that this treatment is 

started during the early recovery period, only 2-6 h after the insult, before the permanent 

brain injury is established. Hence, it is crucial to evaluate various methods, including 
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imaging and the use of biomarkers, to assess the viability of cerebral tissue early after birth,

in order to select the infants with the highest risks of developing brain injury after asphyxia,

and those that could benefit from neuroprotective treatment.

Neuroprotective treatment

Until recently, the management of a newborn with encephalopathy has consisted largely of 

supportive care to restore and maintain cerebral perfusion, provide adequate gas exchange 

and treat seizure activity.

Recent randomized controlled trials have shown that mild therapeutic hypothermia initiated 

within 6 h of birth in moderate to severe HI injury reduces disability and may reduce death 

in these infants (49-51). Hypothermia is the most promising treatment for HI injury. Still, in 

the clinical trials more than 40% of the treated infants died or survived with severe 

impairment (48;52). Thus, other neuroprotective interventions that could act synergistically 

or additively need to be investigated. Promising results have been found in animal models

with different agents like xenon, magnesium, calcium blockers, melatonin and recombinant 

erythropoietin but further clinical trials are needed (48;49).

Further knowledge of the early mechanisms of asphyxia leading to injury is of great 

importance for early detection of viable and injured tissue and start of neuroprotective 

treatment.

5.2 Neuroimaging of cerebral HI injury – current challenges and new
techniques in ultrasonography (US), magnetic resonance imaging (MRI) and 
positron emission tomography (PET)

Assessment of cerebral injury can help to predict the outcome of the HIE (53).  However, to 

assess the viability of cerebral tissue early after the HI event in the clinical setting is 

extremely difficult since most techniques used in clinical routine do not provide that 

information. Techniques that do allow assessment of physiological parameters like PET, 

single photon emission computed tomography (SPECT), Xenon computed tomography (Xe 

CT), MRI with diffusion- (DWI) and perfusion weighted imaging (PWI)  and MR 

spectroscopy (MRS)  are until now logistically complex and not well suited for routine 

applications.



18

Of the neuroimaging techniques that have been proposed for investigating cerebral HI

injury, MRI and US are considered the most important for diagnosis and prognosis 

(22;35;54). Transfontanellar US is a routine technique easy to perform bedside in the 

neonatal intensive care unit. Grey-scale, spectral- and color Doppler are used to detect 

parenchymal injury, as well as vascular anatomy and blood flow in detection of HI injury in 

the basal ganglia and cerebral cortex. However, the technique is operator dependent and 

shows only subtle changes, which may in most cases only be visible some days after the 

event. Until now, regional changes in brain perfusion have been difficult to detect with 

Doppler examination in the newborn.

MRI is considered the most sensitive and specific method to diagnose and predict HI by 

conventional sequences, DWI, PWI and MRS. Restricted diffusion corresponding to areas 

of cytotoxic edema has been shown already a few hours after the injury while spectroscopy 

may show increased lactate and reduced N-acetyl aspartate in the affected areas (47;53;55).

However, the interpretation of the different image sequences can be difficult due to the fact 

that the time of the HI injury is often unknown and the time course of changes may be 

different from adult HI injury. MRI is unfortunately an expensive, time-consuming method 

that often requires transport to the MR unit and often sedation of the critically ill babies. 

MRI is often not performed until a few days after birth.

PET is a nuclear medicine technique that can be used to measure brain blood flow, oxygen 

and glucose metabolism. Early changes in glucose metabolism may be a prognostic 

indicator of perinatal brain injury after HI (25;32;56). As for MRI, it is difficult to perform a

PET examination shortly after the insult, requiring transport of the baby to the PET scanner 

and current techniques for metabolic quantification in human babies are challenging.

Most human studies involving MRI and PET have been performed a few days after birth. A 

few animal studies on rats, sheep and piglets investigate the morphologic, metabolic and 

diffusion changes hours after the insult (10;31;45;57).

Neuroimaging experience of the evolution in perfusion and metabolic changes early 

after perinatal HI and resuscitation related to the ultimate injury is currently limited 

in animals and lacking in human studies.
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5.3 Contrast enhanced ultrasonography (CEUS) - perfusion imaging

The introduction of new ultrasonographic contrast agents (CA) based on microbubbles has 

opened new possibilities in US diagnosis and real time non-invasive quantification of tissue 

perfusion. The CA dramatically increases the signal intensity from blood and is thereby 

enhancing the US signal.

Sulphur hexafluoride (SonoVue™, Bracco S.P.A™, Milano, Italy) is a CA of the second 

generation consisting of microbubbles (2-6 μ) containing a gas, sulphurhexafluoride (SF6)

stabilized by a shell (fig.2).

The SF6 is an extremely stable and inert molecule that does not react with other molecules 

within the body and has been shown to be too small to cause vascular obstruction or other 

damage to the brain microcirculation (58). SF6 is eliminated from the body by exhalation 

through the lungs.

Fig. 2 Two-dimensional microscopic photo of SonoVue™ (white arrows) microbubbles (20× 
magnification; optical microscope) compared to red blood cells (black arrows). 
(www.springerimages.com.)

The response of the microbubbles to the sound field mainly depends on the insonation

power, i.e. the amplitude of the acoustic pressure wave called the mechanical index (MI). At 

very low insonation power, the microbubbles remain static, simply reflecting (or more 

correctly, backscattering) the sound wave. At slightly higher acoustic pressures, the 

microbubbles start to oscillate at their resonance frequency resulting in the emission of 

specific sound waves. These waves can be detected by the US transducer as contrast-

specific signals (59). If the acoustic pressure becomes too high, this oscillation becomes so 

strong that the membrane disrupts and the microbubbles are destroyed.

To be able to detect these backscatter signals a special software program within the US 

equipment is applied. For Acuson Sequoia 512™ (Siemens™, Erlangen, Germany) used in 
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our study (Paper II) the Contrast Pulse Sequencing (CPS) Cadence program (1.5 MHz) is 

switched on with a low frequency and MI.

There are two main strategies for contrast-specific imaging: 1. static, destructive imaging 

called high-MI imaging where burst/replenishment kinetics will evaluate the refilling of 

microbubbles after transient local destruction of microbubbles and, 2. continuous non-

destructive imaging called low-MI imaging 

low-MI imaging (soft, flexible shell and high stability), where the bubble destruction is 

minimized allowing continuous real-time assessment of the whole enhancement period.

CEUS provides qualitative perfusion estimates of a 2D scanned sector of the organ. 

Software programs are used for quantitation of parenchymal perfusion where the approach 

of classical bolus kinetics provide parameters, such as the peak intensity (PI) and the time-

to-peak (TTP) area under the curve (AUC) and slope of the curve, after a fast bolus 

injection. Since SonoVue is an intravascular tracer, relative cerebral blood volume (rCBV)

can be estimated from the AUC of the first-pass time intensity curve (TIC) and relative CBF 

(rCBF) from the PI of the TIC.

SonoVue™ is approved for clinical use in adults only and few clinical studies in children 

have been performed (59-62). Relatively few adverse reactions have been reported and no 

more than with other radiological CA (58;62;63).

Studies with CEUS in adults and animals have shown promising results in detecting and 

quantifying regional cerebral perfusion changes due to ischemia in the brain (63-66). CEUS 

has even been used for therapeutic thrombolysis in animal stroke (67). A few animal studies 

have been able to show changes in blood flow maps during normo- and hypercapnia in the 

newborn piglet brain (68;69).

5.4 MRI

Clinical MRI uses the magnetic properties of hydrogen (1H) and its interaction with both a

large external magnetic field and radio waves to produce highly detailed images of the 

human body.

MR imaging is based on the work by Bloch and Purcell showing that a nucleus with a spin 

momentum (spin) can interact with a magnetic field. This interaction is known as the 

nuclear magnetic resonance. The 1H atom has only one proton as a nucleus and its spin can 

be observed. 1H exists in water and fat, which are the main components of our body. The 

varying molecular structures and the amount of hydrogen in various tissues in the body,
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affect how the protons behave in an external field. By placing the patient in a large external 

magnetic field, we magnetize the tissues (hydrogen), preparing it for the MR imaging 

process. Radiofrequency fields then systematically alters the alignment of this 

magnetization. This causes the nuclei to produce a rotating magnetic field detectable by the 

scanner. This information is recorded to construct an image of the scanned area of the body.

MR imaging has five variables for tissue characterization – the proton density of the tissue,

T1 and T2 relaxation times of tissue, flow and spectral shifts from which an image is 

constructed. These variables can be combined in various ways by selecting pulse sequences 

and pulse times to emphasize any desired combination of tissue characteristics in the image

(70). Multiple planes can be chosen for imaging of the body. Of the clinically available 

imaging techniques, MRI has the highest spatial resolution and soft tissue contrast for 

detecting lesions in the brain and has become a very important tool in the detection of focal 

cerebral disorders in particular the neonatal brain and HIE.

5.4.1 Conventional MRI sequences

Conventional MR spin echo sequences based on proton density, T1 and T2 relaxation times,

are less sensitive than newer techniques in revealing an ischemic injury in neonates within 

the first few hours and days following the ischemic event. At this early time point, it can be 

very difficult to detect abnormalities on either T1 or T2 weighted images. Common findings 

after 1-2 days are lesions with hypointense signal on T1- and hyperintense on T2 weighted 

images. After 3-5 days the signal becomes hyperintense on T1- and of variable intensity on

T2 weighted images. These changes occur in the basal ganglia, hippocampi, corticospinal 

tracts including the perirolandic gyri but mainly sparing the remaining cortex. Injury to 

white matter generally results in low signal intensity on T1- and high signal intensity on T2

weighted images, due to ischemia-induced edema (34;71-73). In mild and moderate cases of 

hypotension, the MRI findings are mainly distributed in the parasagittal region. The 

assessment of conventional MR images can be difficult since the precise time of injury is 

often unknown. T1- and T2 weighted imaging findings at the end of the first week after 

birth are excellent in demonstrating permanent brain injury, while early prediction of the 

outcome based on T1- and T2-weighted images remains difficult (54;55).
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5.4.2 Perfusion weighted imaging - dynamic susceptibility contrast (DSC) 
enhanced MRI

PWI is a collective term describing methods for deriving tissue blood flow or perfusion 

related parameters from MR images (74). These methods are based on the principle that a 

CA serving as a blood tracer affects the MR image signal intensity over time and can be 

related to tissue perfusion, blood volume or both. There are alternative methods based on 

completely non-invasive tracers such as arterial spin labeling (ASL) (75;76) but in this 

thesis the focus is on perfusion imaging by intravenous injection of a MR compatible CA –

DSC-MRI.

DSC-MRI is based on the local changes of the MR signal in the tissues, where a CA is 

distributed. The CA alters the biophysical properties of tissue by increasing the proton 

relaxation. When the CA is injected as a rapid bolus intravenously, a dynamic image 

intensity curve as function of time can be related to blood flow, requiring the MR image 

intensity to be monitored with sufficient temporal resolution. In DSC echo-planar imaging 

(EPI) can be combined both with T2 weighted spin echo (SE) or/and T2* weighted gradient 

echo (GE) sequences. They are used to measure the susceptibility effects of the intravenous

bolus injection of the paramagnetic CA, causing MR signal changes.

The EPI technique is very sensitive to  T2* effects of the CA but also to other unwanted 

susceptibility effects present in the brain, which can cause signal loss and image distortion. 

In this thesis, the GE EPI sequence was used for the study in Paper II, in order to record 

stronger susceptibility effects from the CA in the small piglet brains where minor flow 

variations were expected.

Tracer kinetic modeling

Functional information can be derived using a blood tracer. Multiple hemodynamic 

parameters can be estimated from temporal characteristics of the first-pass time course of 

the CA (77). The MR signal intensity change versus time curve is converted by a pixel-wise 

analysis to a CA tissue concentration time curve derived from the first-pass CA response 

curve. Different quantitative maps can be created for different cerebral hemodynamic 

parameters: CBF (ml) CBV (ml/100g of tissue), mean transit time MTT(s) and TTP(s).

These parameters are linked by the following relationship:

CBF × MTT= CBV
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A nonparametric deconvolution technique (singular value deconvolution) is used to estimate 

flow parameters from the time course of T2* weighted signal change in tissue and blood,

following injection of the CA as first proposed by Østergaard and Wu (78;79). A linear 

relationship is assumed between the 1/T2* changes and the CA concentration in tissue and 

arteries. The arterial input function can be detected in pixels of a representative cerebral 

artery. rCBF can be obtained as the maximum value of the residual function obtained by 

deconvolution. rCBV is aquired by the AUC of the concentration time curves obtained from 

numerical integration between user defined time points (corresponding to arrival of CA in 

the ROI and the end of first pass). To eliminate contribution of tracer recirculation, a 

gamma-variate function is generally fitted to the measured raw concentration-versus-time 

curves.

To achieve good quality images of cerebral perfusion studies, adequate quantity of  CA is 

needed and should be injected at a high flow rate preferably with a power injector (80).

With increasing magnetic field strength, the signal increases, but also the artifacts of 

inhomogeneity thus challenging the image quality and calculation of hemodynamic 

parameters.

Although commonly used in adult neuroradiology, DSC-MRI is known to be technically 

difficult to perform in neonates and is not routinely used in the diagnosis of perinatal 

hypoxia. A few studies using DSC enhanced MRI, have reported reproducible and feasible 

techniques with perfusion patterns of injury in babies a few days after HI (80-83). They 

suggest that microvascular perfusion changes could be an important marker for identifying 

future ischemic areas. Reasons for the limited use of MRI in neonates however, include 

expensive and time-consuming examinations needing sedation and transport of an unstable 

critically ill neonate to the MR unit and the use of CA. The small doses of gadolinium CA 

recommended for babies are challenging to administer as a bolus injection with high flow 

rate. Regarding gadolinium CA, caution should be taken in patients with impaired renal 

function for the risk of development of a rare but devastating disease, nephrogenic systemic 

fibrosis (84). These precautions extend especially to neonates due to their immature renal 

function. The use of cyclic non-ionic gadolinium agents is recommended. Gadobuturol is 

one of the recommended CAs often employed for the MR perfusion, although not approved 

for use in children less than 7 years of age. These considerations  make techniques like ASL 

an attractive alternative to DSC especially in pediatrics and a few studies have been reported 
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in infants and perinatal HIE (75;85). This technique was not available at the 3T MR unit at

the time of our study (Paper II).

5.4.3 Diffusion weighted imaging (DWI) and Diffusion tensor imaging (DTI)

The term molecular diffusion refers to thermal Brownian molecular motion (86). In 

biological systems water diffusion occurs within and around cells with exchange between 

the intra- and extracellular space. Tissue water diffusion is restricted by intracellular

structures and cell membranes.

Diffusion weighted MRI is performed using a single shot SE EPI sequences using pulsed 

diffusion gradients. The strength of the diffusion gradient is expressed as a “b” value in 

units of seconds per square millimeters. MRI diffusion is quantified by the apparent 

diffusion coefficient (ADC) which provides a measure of random water diffusion and 

depends on the direction of diffusion within tissues and varies with both overall water 

content and cellular location (87). To require an ADC map, at least 2 orthogonal diffusion 

measurements are needed. The ADC map quantifies the degree of restricted diffusion.

DWI can detect the self-diffusion of water as one of the first elements in the 

pathophysiologic cascade leading to ischemic injury (19). After severe ischemia, there is an 

increase in DWI signal as a response to the redistribution of water from extracellular to 

intracellular space, corresponding to a restricted diffusion. This disturbance in water-ionic 

homeostasis occurs immediately with disruption of perfusion. DWI can detect  this very 

early signs of ischemia within minutes after arterial occlusion caused at least partly by 

cellular swelling or cytotoxic oedema (88). Diffusion restriction can be reversible with early 

recovery of perfusion.

In adult neuroimaging, the combination of DWI and PWI is used in the diagnosis of 

ischemic stroke (89-91). Decreased diffusion may be visualized on the ADC map while 

PWI can demonstrate the areas of perfused tissue. The areas of perfusion diffusion 

mismatch correspond to the “penumbra” representing the ischemic but viable tissue 

(perfusion within the thresholds of functional maintenance and morphologic integrity) that 

could be salvaged by timely reperfusion. This must be distinguished from areas of 

irreversible infarction (19).
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In perinatal asphyxia, few studies have used the combination of DWI and PWI for the 

detection of injured tissue at risk and all have been performed a few days after birth (82;83).

In a piglet study a combined reduction of ADC and PWI during hypoxia-ischemia was 

shown to be reversible 30 min after reperfusion (57). ADC that is reduced in the hyper-acute 

phase following an HI event may underestimate the final extent of injury (92). The role of 

DWI in the prognosis and outcome of HI injury, as well as the optimal timing for imaging is

discussed by Rutherford (93). ADC values seem to be more reliable between the second and 

fourth day. At the end of the first week, DWI is less sensitive than conventional MRI to 

perinatal brain injury because of the transient pseudonormalisation of DWI. However, 

independent of the timing of the exam, DWI seems to be an objective method for

confirming HI tissue injury. Rutherford et al have shown that in the basal ganglia/thalamus 

and in white matter  ADC values < 0.8 x10-3 /mm2/s and  <1.1 x10-3 /mm2/s respectively 

were shown to always be associated with infarction (93). A recent retrospective study 

concludes that the combination of  findings on conventional MR sequences and ADC or 

MRS has a better prediction of outcome of term babies than MRI alone (94).

Diffusion tensor imaging (DTI)

Molecular diffusion is in fact modulated by the spatial orientation of large bundles of 

myelinated axons running in parallel through brain white matter. This feature can be 

exploited to map out the orientation in space of the white matter tracks and to visualize the 

connections between different parts of the brain on an individual basis. DTI gives 

information on apparent diffusion and diffusion anisotropy, related to brain maturation and 

alterations in the white matter pathways caused by HI injury (95;96). The complexity of the 

developing brain connectivity can be assessed in the preterm brain using diffusion tensor 

tractography where involvement of sensorimotor pathways and disruption of connectivity 

between thalamus and cortex can be shown in children with periventricular leucomalacia.

Fractional anisotropy (FA) values may increase in the early phase after HI but with poor 

correlation to ADC values (97). A decrease of FA values appears during the first week after 

severe to moderate HI and show improvement after hypothermia treatment (98).

Furthermore, recent data suggest that diffusion MRI may also be used to visualize rapid 

dynamic tissue changes, such as neuronal swelling, associated with cortical activation, 

offering a new and direct approach to brain functional imaging.



26

5.5 Proton MR Spectroscopy (MRS)

In contrast to MRI, 1H MRS analyzes signal of protons attached to other molecules. Proton 

(1H) is the most common biological nucleus used for MRS although Phosphorus (31P) MRS 

can study tissue energy metabolism detecting phosphocreatine, ATP and inorganic 

phosphate (Pi).

Whereas for MRI only a single peak (water) is being mapped, the output of MRS is a 

collection of peaks at different radiofrequencies (RF) representing proton nuclei in different 

chemical environments, proportional to the number of contributing protons. The

phenomenon called chemical shift is caused by the fact that the same nuclei in different 

molecules (e.g. water or triglyceride) or in a different part of a molecule have a slightly 

different resonance frequency, due to the different electron density, which shield the static 

magnetic field to varying degrees. Thus, different signals seen in the spectrum correspond to 

distinct metabolites. The chemical shift is generally expressed in parts per million (ppm).

MR spectra are obtained by using a stimulated echo (STEAM) or a double spin echo

(PRESS) sequence, with a single voxel (volume of sample) or multi voxel acquisition over 

the desired region (99). The major metabolites revealed by 1H-MRS are; Choline (Cho at ~ 

3.2 ppm, Creatine (Cr at ~3.0 ppm  and N- acetylaspartate (NAA at ~ 2.0 ppm). Lactate 

(Lac) is sometimes detected in normal neonatal brain but at a low level (~ 1.3ppm). 

Numerous other resonances may be recorded including those from glutamate, myo-inositol 

and -aminobutyrate.

Proton MRS can provide information on timing and pattern of acute brain metabolite 

changes during the 2 first weeks after perinatal HI injury, where Lac and NAA are 

considered especially important (99). Lac is produced by anaerobic glycolysis. An increase 

may represent impaired cerebral energy production by oxidative phosphorylation. NAA is 

mainly neuronal and increases with neuronal development, while decreased NAA signal can 

represent neuronal loss (100). Unlike DWI, MRS performed in the first 24 h after birth is 

sensitive to HI injury and seems to be a more reliable method for detecting HIE in this early 

phase and for selecting infants that may benefit from early intervention (101). Increased 

levels of lactate in the region of the basal ganglia/thalami have been detected in neonates 

with subsequent poor neurodevelopmental outcome (102;103).

Most studies report metabolic changes as ratios of the peak area integrals of NAA and Cho 

(NAA/Cho) and NAA and Cr (NAA/Cr). Quantitative measurements of  metabolite 
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concentrations in mmol /kg wet weight of brain tissue, is recommended and may improve 

the prognostic value of studies soon after birth (104). Determining metabolite concentration 

is however, very complicated, requiring brain signal calibration against a reference signal 

as well as a complex spectral fitting and is therefore not often performed in neonatal clinical 

practice (105).

5.6 Positron emission tomography (PET)

5.6.1 PET tracers

PET is a non-invasive nuclear medicine technique that can detect abnormalities in different 

organs based on disorders in the chemical function and/or receptor expression at the cellular 

level, related to glucose metabolism, blood flow, receptor binding, oxygen utilization and 

the protein synthesis, release and transport. PET can provide hemodynamic information

with quantitative parameters including rCBV, rCBF, regional oxygen extraction (rOEF) and 

cell viability, but also proliferation and/or metabolic activity of tissues, regional cerebral 

metabolic rate of oxygen (CMRO2) and of glucose (CMRgl). These quantitative maps result 

from the use of different substances of biological interest labeled with positron emitting 

radioisotopes. PET tracers for CBF are 15O2 (inhal), C15O2 (inhal) and H2
15O (iv). 15O2 and 

C15O2 in inhalation allow measurement of CBV and CMRO2.

PET radiopharmaceuticals are cyclotron products and have variable but generally very short 

half-life. The hybrid scanners with PET-CT can provide information on functional changes

with anatomical correlation. Also PET-MR scanners are now commercially available.

5.6.2 Fluoro-deoxy-glucose positron emission tomography (FDG-PET)

In FDG-PET, regional glucose consumption is measured in living tissues for the evaluation 

of cancer with whole-body scanning. Additionally it is a reliable method to detect regional 

metabolic deficit in the brain. Using a labelled glucose analogue (18F) 2-deoxy-2-fluoro-D-

glucose (FDG), absolute quantification of regional glucose consumption can be performed 

after an adaptation of the (14C) 2-deoxy-D glucose model, originally described and

developed by Sokoloff and co-workers (106). Deoxyglucose and thereby 

fluorodeoxyglucose is believed to accumulate in active neurons reflecting the energy 

requirements of Na/K ATPase sensitive pumps (107). In HI injury both irreversible and

marginally ischemic tissue may be detected by this technique (108). In human babies it is 
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difficult to perform a PET examination shortly after the insult, because this requires

transport of the baby to the PET scanner. In addition the technique for metabolic 

quantification in human babies is challenging requiring repeated arterial blood samples and 

is not well developed. Single-scan, autoradiographic methods and measurement of relative 

metabolic changes have often been used for calculation, as well as semiquantitative analysis 

of cerebral glucose utilization - the Standardized uptake value (SUV). The latter is defined 

as tissue radioactivity divided by intravenously administrated dose per kg body weight of

the patient.

The radiation dose is a drawback with this method especially regarding pediatric use. The 

European Association of Nuclear Medicine (EANM) recommends a minimum injected dose 

FDG of 3-6 MBq/kg to a newborn, corresponding to an effective dose estimated to be 2.9-

5.7 mSv/kg (109). This radiation dose is quite considerable but still lower than a standard  

brain CT scan of a baby estimated to be of about 5-9.5 mSv (110).

Only a few and small studies of neonatal asphyxia and FDG-PET have been performed until 

now (25;28;32;107;111-114). However, small animal PET systems provide a superior 

spatial resolution compared to clinical human scanners and have the advantage of being 

portable and can be taken to the newborn nursery for scanning of the baby (56).

Dynamic PET analysis

CMRgl values can be estimated from the dynamic FDG-PET series over time by a multiple 

time-graphical analysis , by an approach proposed by Patlak et al (115). This is based on a 

compartmental tissue model assuming irreversible trapping of the tracer. Here, plotting the 

ratio of the FDG tissue concentration Ctissue to the plasma concentration Cp versus the 

plasma FDG concentration time integral to Cp, , yields a curve that approaches a straight line 

at late time points post injection. The ratio, Ctissue/Cp, is often denoted “volume of 

distribution” while the latter is termed “normalized plasma integral”. The Patlak equation is 

given by the expression:

( ) ( )  = K  
( )( )  +Vo 

The slope of the line, K, is proportional to CMRgl. V0 equals the initial distribution volume 

(including the fractional blood volume). Ctissue is obtained from dynamic FDG-PET and Cp
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from the arterial blood sampling. In order to obtain the cerebral metabolic rate of glucose, 

the lumped constant (LC), used to correct for the difference in metabolism between 

fluorodeoxyglucose and glucose in the brain, must be taken into account. LC varies for 

different species, age, studied organ  and also change under pathological conditions (116).

Together with b-glucose values [Glc] of the blood samples, CMRgl is calculated according 

to the following expression:

 

CMRgl = [Glc]    
5.7 Other perfusion imaging techniques

Single photon emission computed tomography (SPECT) is a non-invasive technique 

generating tomographic images of the 3D distribution of a specific radiopharmaceutical, 

which may reflect regional cerebral hemodynamics, dopamine or other transporter 

distribution. The main indications are acute and chronic cerebrovascular diseases (head 

trauma), psychiatric disorders  and presurgical localization of epileptogenic foci (117).

CT Xenon 133 Xenon enhanced CT has long been used for quantitative evaluation of CBF in 

humans. Stable non-radioactive xenon is inhaled and serves as a CA. The gas dissolves in 

the blood and crosses the blood brain barrier to the brain and CBF is calculated. The main 

clinical application is cerebrovascular disorders, to provide measurements of equal validity 

in the cortex and deep structures and determine the ischemic threshold. The short half-life of

inhaled xenon makes Xe CT suitable for repeat CBF measurements (117).

Dynamic Perfusion CT like DSC-MRI uses first pass tracer methodology following

intravenous bolus injection of iodinated CA to measure brain hemodynamics. CBF, CBV, 

and MTT can be measured and visualized by parametric maps. The advantage is short 

imaging times (<10 s) and widespread availability in the emergency setting. Perfusion CT 

can rapidly detect the size of hypoperfused regions (penumbral tissue) in cases of acute 

stroke, vasospasm following subarachnoid hemorrhage (118).

The radiation burden is considerable in all the mentioned techniques and careful selection 

of indications is warranted, especially in pediatrics even though bedside use is possible.
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5.8 The piglet model for studying HI

In all animal studies, ethical considerations must always be taken and as a rule all efforts 

must be made to:

Reduce the number of included animals as much as possible while retaining the 

scientific requirements for statistical analysis.

Refine the models to minimize the group sizes while maximizing the quality of 

acquired information.

Replace in vivo analysis by in vitro models whenever equivalent information can be 

obtained. This has not been possible for this thesis.

Relieve animals from any distress by careful handling and adequate analgesia and 

anesthesia when needed.

In our studies, all the experimental protocols were approved by the Oslo University 

Hospital’s ethics committee for animal studies under the surveillance of the National 

Animal Research Authority, and performed by certified category C researchers of the 

Federation of European Laboratory Animal Science Associations. We have studied 12-36 h

old Noroc pigs. They were delivered from the farmer on the day of the experiment in a 

warm incubator, remaining as long as possible with the sow to avoid stress and dehydration. 

Exclusion criteria: a reduced general condition, wounds, dehydration, Hb < 5g/dL and a

weight < 1600g.

The accessibility of a well-controlled animal model for investigating neonatal injury due to 

hypoxia-ischemia is of great importance. It is difficult to study the pathophysiology of 

perinatal asphyxia in human babies and much of our understanding concerning neonatal HI 

injury originates from animal studies.

When choosing an animal model it is important to consider the differences between species 

regarding O2 response, different biochemical responses, lack of reference values for 

common functional variables and different cerebral maturation at birth. The resemblance to 

the HI injury found in human babies is essential. For this purpose, the piglet is suitable and 

many studies over the last decades have gathered experience and data. The piglet has the 

size comparable to a newborn baby and the cerebral maturation and myelinisation of the 

newborn pig is comparable to the human neonate of 36-38 weeks of gestation, but its 

physiology is probably more mature (119). Newborn piglets have higher rates of cerebral 
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metabolism and CBF than humans do. The normal values of CBF decrease with age in 

contrast to humans. However, the hemodynamic and pathophysiologic responses to HI 

resemble the responses seen in human babies.

Animal models can never completely mimic the human perinatal conditions. The piglet 

model has several limitations. As human babies in the clinical setting, piglets are variable in 

their response to hypoxia. Some piglets are preconditioned to hypoxia in intrauterine life 

and some are more resistant to HI for various reasons. In the perinatal model often used, the 

period of transition from fetal to newborn circulation cannot be studied. Similar to humans,

the PDA is functionally closed at 4-20 h after birth and the pulmonary pressures have 

already fallen at the time of the experiment.

The combination of hypoxia and ischemia or isolated ischemia is necessary for the 

development of brain injury (14). Different ways to induce asphyxia/ hypoxia-ischemia 

have been used. The Vannucci model often used in rodents, has been adapted for use in 

piglets (120). The occlusion of carotid arteries combined with low flow FiO2 induces both 

local ischemia and global hypoxia (121). Other models use global hypoxia with variable or 

constant FiO2 (16;122;123). Here ischemia can be induced when MABP falls below 

cerebral autoregulation for a longer period of time. In constant FiO2 models MABP and BE 

have been used to monitor the animals and ensure adequate damage. 

In our studies, we have used the two different models. In Paper I, both carotid arteries are 

clamped during global hypoxia with a constant FiO2 0.08, until MABP <15 mmHg or Base 

excess < -20 mmol/l is achieved. A relatively severe brain injury is established by this 

model. In Paper II and III, global hypoxia was induced with a constant FiO2 0.08 alone until 

MABP < 15 mmHg or Base excess < -20 mmol/l was achieved, or alternatively a total 

duration of hypoxia of up to 30-60 min. With this approach, the degree of injury may be 

more variable.

In the two studies, using the model of global hypoxia the goal was to establish a moderate

brain injury, which in clinical practice is the most challenging in terms of early 

identification of injury. If the injury is too severe with early development of cell death and 

especially brain edema this would hinder perfusion and metabolic measurements.
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6. Aims of the study

The aim of this study was to introduce and evaluate methods from radiology and nuclear 

medicine for use in newborn piglets to detect early effects and mechanisms of perinatal 

cerebral hypoxia-ischemia correlated to the degree of injury. The influence of high-level

oxygen versus air in the resuscitation air was another goal of the study. Cerebral perfusion, 

diffusion and metabolism were measured by using CEUS, DSC enhanced- and DWI MRI

and MRS. The glucose metabolism was measured by using FDG-PET.

Specific aims

1. To develop a piglet model where the MR techniques, MRS and DWI are used for 

early assessment of acute tissue changes in the piglet brain after hypoxia-

ischemia. Our hypothesis was that this model is suitable to mimic human 

perinatal HI injury to be demonstrated with the MR techniques.

2. To quantify cerebral glucose metabolism  and  cerebral microvascular perfusion 

changes due to hypoxia and resuscitation. FDG-PET, DSC enhanced- and DWI 

MRI and CEUS were used. Can these techniques be adapted to study the 

newborn piglet brain?

3. Can DSC enhanced-, DWI MRI and CEUS detect early diffusion and 

microvascular perfusion changes respectively corresponding to early brain injury 

after global hypoxia and resuscitation? 

4. To use a dynamic FDG-PET method to evaluate changes in cerebral glucose 

metabolism in the early phase after global perinatal hypoxia. Can PET quantify 

hypermetabolism after hypoxia?

5. How does the resuscitation strategy, using air (21% O2) or hyperoxia (100% O2),

influence on cerebral perfusion, diffusion and the glucose metabolism after 

global hypoxia?
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7. Summary of papers

Paper I. A piglet model for detection of hypoxic-ischemic brain injury with magnetic 

resonance imaging, Acta Radiol. 2008 Nov;49(9):1049-57

Purpose

To assess whether the use of a combined protocol including conventional MRI, DWI, DTI,

and proton MRS can detect pathological findings in a piglet model 7 h after HI.

Material and methods

In this study, we used a piglet model of HI injury. Detailed description of the protocol is 

found in paper I. Ten piglets were subjected to hypoxia-ischemia for 30 min by FiO2 0.08 in 

N2, and bilateral clamping of the common carotid arteries and this was followed by 

7 h reoxygenation with ambient air (21% O2) and reperfusion. The occlusion of the arteries 

was verified by 2D ultrasonography with color and spectral Doppler. MRI was done prior to 

and 7 h after the hypoxia-ischemia.

Anesthesia was induced by sevoflurane 5% and replaced by an intravenous (iv) bolus 

kg iv. Anesthesia was 

maintain .

Tracheostomy was performed, and ventilation secured by a pressure-controlled ventilator at 

a rate of 30 breaths/min. Normal ventilation (arterial carbon dioxide tension [PaCO2] 4.5–

6.0 kPa, O2 . FiO2 and end-tidal CO2 were monitored. After stabilization, 

the piglets were transported to the MRI suite in an incubator where anesthesia was 

maintained with a continuous inhalation of isoflurane (1–1.5% minimum alveolar 

concentration and a mixture of N2O (30%) and O2 (70%) and an hourly bolus injection of 

heart rate,

peripheral O2 saturation, end-tidal CO2, and invasive blood pressure. Rectal temperature 

was maintained between 38 and 40°C. At the end of the experiment, the piglets were 

terminated by a dose of 150 mg/kg pentobarbital iv.

1.5T MRI was performed with 2D turbo spin-echo (TSE) T2-weighted images, coronal 2D 

fluid-attenuated inversion recovery (FLAIR) images, 3D SE EPI diffusion-weighted 

images,  b values 0, 500, and 1000 s/mm2, and 12-directional SE EPI diffusion tensor 

images, b value 750 s/mm2. Single-voxel proton MRS (PRESS, TE/TR 270/1600 ms), was 

obtained from the basal ganglia, identifying the metabolites NAA, Cho, Cr and Lac.
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MR analysis Morphological changes on T2- and FLAIR-weighted sequences were 

evaluated. MRS post processing was performed and the peak area ratios of NAA/Cho and 

NAA/Cr were calculated using integral values and the presence or absence of a Lac peak 

was recorded.

ADC- and FA maps were co-registered with conventional MR images and ROIs were drawn 

around the basal ganglia. Mean ADC and FA values for both time points were recorded. 

Histology stained with hematoxylin and eosin (H&E) and microtubule-associated protein 2 

(MAP-2) staining was performed in the basal ganglia at the end of the experiment. Necrotic 

areas showed loss of MAP-2 staining. The damage was reported as <10%, 10–30%, 30–

60%, 60–90%, or >90%.

Statistical analysis the ADC and FA pixel values from the ROIs were compared for the two 

time points using a Student t test. Binary logistic regression was used to differentiate the 

ADC and FA values being best to differentiate between the time points. The differences

between mean ADC, FA values and MRS ratios for the two time points for the piglets as a 

group were evaluated by Mann-Whitney tests. The correlation between the results from 

histology and MR was evaluated for the ADC- and FA values, and the presence of lactate 

(yes/no) using the Spearman rank-correlation coefficient (Rs).

Results

We found alterations in the basal ganglia with MRS and DWI confirmed by histology. 

Compared to baseline, ADC, NAA/Cho, and NAA/Cr were significantly reduced after 7 h 

(P< 0.001, P= 0.01, and P= 0.05, respectively) (fig. 3 and 4) and FA values were increased 

(P< 0.025). The ratios of Lac/Cho and Lac/NAA were significantly higher after 7 h

compared to baseline (P< 0.001). Presence of necrosis correlated well with reduced ADC 

(R(S) = 0.91) and presence of Lac (R(S) = 0.80). Histology and MAP-2 staining showed 

more than 90% necrosis in eight piglets, 60% in one piglet, and no necrosis in one piglet.

Diffusion MRI and proton MRS can detect HI injury in the piglet brain 7 h after hypoxia.
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Fig 3. Proton MRS spectra (single voxel, PRESS) of a subject after 7 h. Integral (I) and position (P) 

values of Choline (Cho), creatine (Cr), N-acetyl aspartate (NAA), and Lactate (Lac) were recorded 

in the basal ganglia.

Fig 4. ADC maps co-registered with MR images, with traced ROIs in the region of basal ganglia

before (A) and 7 h after hypoxia and resuscitation (B). High diffusion corresponds to yellow and 

restricted diffusion to dark red/ black, illustrated with the color bar. 
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Paper II. Cerebral perfusion in perinatal hypoxia and resuscitation assessed by Trans 

cranial Contrast Enhanced Ultrasound and 3T MRI in newborn pigs. Invest Radiol. 2011

Nov;46(11):686-96

Purpose

By further developing the piglet model from paper I, this study aimed to quantify 

microvascular perfusion changes due to hypoxia and resuscitation. CEUS, DSC-MRI and 

DWI were compared. Can these techniques detect early changes corresponding to brain 

injury after hypoxia and resuscitation?

Material and methods

Seventeen piglets were included in the study. After 1 h of stabilization 12 piglets were 

subjected to 30 min hypoxia, FiO2 0.08 in N2 and then randomized to 30 min of 

reoxygenation with FiO2 0.21 (n=6) or FiO2 1.0 (n=6) and then 7 h reoxygenation with air. 

Five sham-operated piglets served as controls. CEUS followed by MRI, was performed after 

stabilization immediately before the intervention. CEUS was performed after 10 and 25 min 

of hypoxia and after 15 min of resuscitation. CEUS followed by MRI was then performed 

after 30 min, 2, 5 and 7 h of reoxygenation.

Anesthesia is described in the summary of paper I and in paper II. Anesthetized and 

tracheotomized piglets were placed on a portable MR bench. They were transported in and 

out to of the next-door MR suite for each MRI exam. During the experiment, the animals 

were monitored measuring heart rate, peripheral oxygen saturation, end-tidal CO2.

Continuous invasive blood pressure recording in the abdominal aorta was assured by a MR 

compatible catheter via the femoral artery.

Fig. 5 Experimental setup, described below.
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US examination Transcranial US with CEUS was performed, with a curved linear 

transducer (4V1S, 1-4 MHz) in a midline coronal plane, at the level of the basal ganglia and 

the internal carotid arteries (fig. 5).

CEUS The US-equipment was switched to CPS, Cadence. The frame rate was 17 Hz and

MI= 0.16 with an insonation depth of 60mm. A bolus injection of SonoVue™ 0.2 mL (0.03

mg/kg bodyweight) in the internal jugular vein was administered followed by a flush of 2

mL saline solution. A 30 s image sequence was digitally stored.

CEUS perfusion analysis was performed with Axius Contrast Quantification™, by manual 

tracing of ROIs; in the internal carotid arteries, basal ganglia (BG) and parasagittal cortex in 

both hemispheres and one ROI of the whole brain. Subsequently the datasets for the TICs 

for the different regions were analyzed offline with an adapted software program (fig.6) The 

parameters TTP, PI, the upslope of the TIC named ” a” were estimated. The AUC was 

reported with values of the raw curve and of the gamma-variate fit curve. Since SonoVue™

is an intravascular tracer rCBV can be estimated from the AUC of the first-pass TIC and 

rCBF from the PI of the TIC. The parameters were recorded for the different ROIs and at 8

time points: prior to, early and late during hypoxia, during resuscitation and reoxygenation.

Fig 6. CEUS of a piglet brain in a coronal plane.  A. Raw maximum intensity in Cadence mode, with 

the different traced ROIs. B, Corresponding TICs with gamma fit. The violet and white ROIs in the 

internal carotid artery and the corresponding TICs showing recirculation of the microbubbles.
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3T MRI was performed after the US examination at five fixed time points with sagittal 3D 

TSE T2-weighted images and coronal 2D T1-weighted inversion recovery images. DWI 

was derived from SE EPI diffusion tensor sequence with b-values of 0 and 1000 s/mm2

applied in 15 directions. DSC-MRI was performed using a GE EPI sequence acquired in an 

axial plane with 60 dynamic scans. Gadobuturol 0.2 mmol/kg was injected as a bolus by 

hand followed by 9 ml of saline solution.

MR analysis Morphological changes on T1/T2-weighted images were evaluated as in Paper 

I. For the MR perfusion analysis, maps of rCBF, rCBV and MTT were created from pixel-

wise analysis of the CA concentration time curve derived from the first-pass CA response 

curve. The non-parametric deconvolution technique (singular value deconvolution) was 

used to estimate flow parameters from the time course of T2* weighted signal change in 

tissue and blood following injection of the CA. The arterial input function was detected near

the anterior cerebral artery.

For diffusion analysis, ADC maps were generated from the diffusion tensor images, rCBF, 

rCBV, MTT, and ADC maps were co-registered with the conventional MR images, and 

ROI’s were manually drawn around the basal ganglia, the parasagittal cortex, the central 

sulcus in each hemisphere and of the whole brain (fig. 7). The mean values of rCBF, rCBV, 

MTT, ADC at the five time points were recorded. All perfusion/diffusion analysis and 

image co-registration were performed using the same software program as for CEUS 

analysis.

Histopathology Fixation, staining and immunohistochemistry were performed as in paper I.

Statistical analysis Differences in the values of mean arterial blood pressure and heart rate 

in the hypoxia group were compared between baseline and hypoxia with paired samples t-

test. The diffusion and perfusion changes were evaluated for MR and CEUS for the piglets 

as a group, depending on the type of resuscitation (six piglets in each group) and 

histological outcome compared to controls (n=5). Baseline values were compared to those at 

time point 2-5 in MRI and corresponding time points 2-8 in CEUS  using linear mixed 

model, with a significance level of p= 0.05. The difference between mean values at each 

time point for the piglets compared to the controls was evaluated by Mann-Whitney test.

The relationship between the results from histology and MR and CEUS was evaluated for 

ADC, rCBV, rCBF, MTT and PI, TTP, AUC raw/gamma and upslope a.

Results
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We found in CEUS, compared with the control group, that perfusion changed significantly 

over time, in the hyperoxic group in all regions for PI, AUC in all regions of interests. The 

changes presented mainly as decreased perfusion during and shortly after resuscitation, for 

PI in the BG, cortex, and the whole brain with 50 to 60% (P 0.001). A decrease was also 

found for AUC in the BG (fig. 8) and cortex with 90% ( 0.02) and in the whole brain 

with 70% (P = 0.004). In the injured brains (confirmed by histology), significant changes 

over time were seen in TTP and AUC with mainly increased perfusion during late hypoxia. 

This increase was seen for TTP in the cortex, AUC in the BG and whole brain with 90 to 

100% (P and for TTP in the whole brain with 50% (P = 0.02). DSC-MRI showed 

the same trends as CEUS in perfusion with regard to relative CBV. In all piglets exposed to 

hypoxia, perfusion returned toward baseline values at 7 h after hypoxia in both methods. 

ADC decreased significantly after 7 h in the injured brains in the BG from 

114.6 ± 1.2 x 10-5 mm2/s to 90.3 ± 24 x 10-5 mm2/s (P =0.03).

Fig. 7 MRI, axial T1 weighted image at baseline a), DSC-MRI CBF map with ROIs around the basal 

ganglia b), and in the cortex c).
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Fig. 8 CEUS - Evolution of AUC. a) Values (with SD error) in the basal ganglia over 8 different 

time points for the piglets as a group resuscitated with 21 or 100% O2 compared to the controls. 

Increased AUC is seen during hypoxia and marked decrease during resuscitation in the hyperoxic 

group.

Base=baseline, H1=early hypoxia, H2=late hypoxia, Res=resuscitation, Reox=30 min after start of  

reoxygenation, 2h, 5h, 7h=hours after start of reoxygenation.
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Paper III. Dynamic FDG-PET for assessing early effects of cerebral hypoxia and 
resuscitation in new born pigs, Eur J Nucl Med 2012 Feb 2 Epub ahead of print 

Purpose

In this paper, we hypothesized that experimental global hypoxia would cause immediate 

regional changes in glucose metabolism in the brain and that the oxygen content in the 

resuscitation air would influence the changes. A dynamic FDG-PET method was adapted 

for quantitative measurement of glucose metabolism by using a microPET system suitable 

for imaging small animals and newborn babies in clinical practice.

Material and methods

Sixteen piglets were included in this study and subjected to 60 min of hypoxia with FiO2 

0.08 in N2 and then randomized to 30 min of resuscitation with FiO2 0.21 (n=8) or FiO2 1.0

(n=8) followed by 1 h reoxygenation. Dynamic FDG-PET was performed at baseline and 

then repeated after hypoxia and resuscitation. MRI was performed at the end of the 

experiment, post-mortem, for anatomic correlation and co-registration with PET. Sagittal 

3D TSE T2-weighted images were acquired.

Anesthesia is described in the summary of paper I and in paper II and III. The newborn pigs 

were anesthetized and tracheotomized. After stabilization, they were transported to the PET 

examination room nearby where the anesthesia was continued throughout the experiment.

PET scanning was performed in a prone position with the head fixed on the movable table

top. Only the head fitted inside the gantry of the scanner. All animals had fasted at least 2 h 

before the start of the PET examination. A 68Ge source was used for attenuation and scatter 

correction. 4D dynamic data were reconstructed using OSEM-MAP (2 OSEM iterations, 18 

MAP iterations, = 0.5, matrix size 128×128×95), providing images with a voxel size of 

0.87×0.87×0.80 mm3. Total scan time was 50 min. For the baseline study, 20 MBq FDG 

were administered as a bolus injection by hand in the internal jugular vein. Dynamic PET 

scanning was started immediately at the end of injection and arterial blood samples (0.3 ml) 

from the femoral artery were retrieved before start of injection and repeated regularly during 

scan time. B glucose values were recorded at the start and end of PET scanning.

The second PET study, after hypoxia and resuscitation was performed after the injection of 

a new dose of 60 MBq. 

Analysis of glucose metabolism CMRgl values were estimated from the dynamic FDG-PET 

series by the Patlak analysis (described in detail in paper III).The slope of the line, K, is 
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proportional to CMRgl. V0 equals the initial distribution volume (including the fractional 

blood volume). Ctissue was obtained from dynamic FDG-PET and Cp from the arterial blood 

sampling. LC was chosen to be 0.44. Together with b-glucose values [Glc] of the blood 

samples, CMRgl was calculated (fig. 9).

MRI and anatomic correlation The 3D MRI images were imported into a software 

application, for manual delineation of volumes of interest (VOI) in the basal ganglia/

thalamus, the parasagittal cortex bilaterally, white matter, cerebrum and cerebellum. The 

MR images with VOIs where co-registered with the PET images.

Radiation dose The absorbed organ dose and the effective dose for humans were estimated 

using the established dose charts from the guidelines of EANM.

Statistical analysis The values of CMRgl in the two resuscitation groups were compared by 

assessing differences in the regions between baseline and hypoxia/ resuscitation with paired 

t-test. The same test was performed for the values of volume of distribution V0. The 

difference in CMRgl changes between the groups was also compared using Mann-Whitney 

test. 

Results

We found that global hypoxia caused immediate decrease of cerebral glucose metabolism 

from a mean baseline level (± 1SD) of 21.2± 7.9 to 12.6± 4.7 μmol/min/100 g (P< 0.01). 

The BG, cerebellum, and cortex showed the greatest decrease in CMRgl but no significant 

differences in global or regional CMRgl between the resuscitation groups were found 

(table 1).
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Fig. 9 Parametric maps of increasing tissue activity over time at baseline and after hypoxia and 

resuscitation (left). Patlak plots for the two time points (top right) and corresponding parametric 

maps for CMRgl (bottom right). Colour bars indicating max and min FDG tissue activity and CMRgl

respectively.

Table 1 CMRgl before and after intervention in the different regions regardless of resuscitation 

mode.
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8. Discussion

8.1 The piglet model in MRI investigation of hypoxia-ischemia (Paper I)

In a well-controlled piglet model, HI injury was studied by a correlation between MR 

findings and histopathological changes.

The recorded reduced ADC and increased Lac correlated strongly to tissue damage, findings 

in accordance with a retrospective study in newborn infants (54).

ADC values < 0.8 x 10-3/ mm2/s were found in the basal ganglia in the injured piglets. This 

is in accordance with clinical findings where these values were shown to always be 

associated with thalamic infarction (93). We found one piglet without histology proven 

injury. Piglet’s response to hypoxia-ischemia is variable, and preconditioning in intrauterine 

life may be protective to postnatal injury.

The increased Lac/NAA and Lac/Cho ratios and decreased NAA/Cho and NAA/Cr were in 

line with previous studies and have been shown to correlate with poor prognosis in clinical 

studies (53;94). DTI showed increased values in the BG for the piglets as a group 7 h after 

HI in accordance with an adult study (97). However, three piglets had reduced FA 

suggesting that FA values are less predictive of injury than ADC.

Animal models will never perfectly mimic the clinical human perinatal situation. The piglets 

with an age of 12-36 h were already to some extent adapted to extrauterine life. Cerebral 

maturation is probably quicker in piglets, but piglets and humans are comparable at birth 

regarding brain growth and myelinization, maturation and distribution of grey to white 

matter (119). Since our piglets were close to 36 h old at the time of the experiments we do 

not think this influenced the results significantly.

General anesthesia makes it impossible to observe the animals for neurobehavioral testing.

It would be desirable to study the development during the phase of second energy failure, 

long-term effects, and neurological outcome of the “patients”. Such long-term and follow up 

studies in piglets are difficult, when following the ethical rules and laws of animal research 

in Norway.

8.2 Cerebral perfusion after hypoxia and resuscitation detected with CEUS 
and DSC-MRI (Paper II)
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This study reports of an early temporal evolution of brain perfusion using CEUS and DSC-

MRI in perinatal brain injury in a hypoxic piglet model during and up to 7 h after the insult. 

These adapted techniques were feasible in the small piglet brain for perfusion 

quantification.Our main findings were significant regional and general changes in perfusion 

parameters, indicating increased perfusion during hypoxia followed by a decrease during 

resuscitation with 100% O2. In the injured brains (verified by histology) the same changes 

were found in CEUS (for AUC and PI) and in MRI (for rCBV and MTT). There were only 

slight but no significant changes over time after normoxic resuscitation. Finally, the 

perfusion changes were reversible, returning gradually towards baseline values at the 

endpoint of the experiment, without correlation to histological findings or to decreased 

diffusion at 7 h. We have studied the cerebrovascular changes over time during the primary 

energy failure and the early phase of the secondary energy failure. The latter correlates with 

adverse neurological outcome and depends on the gravity of the first failure (48).

Cerebral hyperperfusion known to occur during hypoxia and early resuscitation could also 

be demonstrated with CEUS in our study (13). We then found compromised cerebral 

perfusion with a decrease of PI and AUC during and shortly after resuscitation with 100% 

of O2 but not in the normoxic group. This development is probably due to a loss of vascular 

reactivity caused by the hypoxic event and the fact that hyperoxia causes a reduction of the 

production of perivascular nitric oxide and an increase of O2
- with vasoconstriction 

resulting in reduced cerebral blood flow (44). This decrease in perfusion might be able to 

cause a more extensive injury evolving during the period of “secondary energy failure”.

In this 3T MRI study we were able to measure “low flow” perfusion changes in our hypoxic 

model. rCBF, which has been shown to be the most important parameter in HI and stroke,

did not show significant changes in our study (21;83;91). rCBV changed slightly in 

accordance with AUC in CEUS, which was also found in a study of brain perfusion in 

healthy adults (124). Similar to this study, we found AUC the most sensitive parameter to 

detect hemodynamic changes resulting from hypoxic injury. For the piglets as a group, we 

found a mismatch between restored perfusion and decreased ADC at 7h.

A fair comparison between CEUS and DSC-MRI is difficult in our study, since we were 

unable to perform MRI during hypoxia/ resuscitation, where the most significant perfusion 
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alterations were seen. MRI provides semi-quantitative estimates of perfusion while CEUS 

provides qualitative perfusion estimates of a 2D scanned sector of the brain.

The anesthetic drugs used in the study may have influenced the CBF. The same combination 

and dosage of mild continuous anesthesia with midazolam, fentanyl and isoflurane were 

used for all the animals to ensure minimal distress to the piglets (125). We have tried to 

minimize and adjust for these influences, in the statistical calculations, by using a control 

group.

Few clinical studies with CEUS and SonoVue™ have jet been performed in children(62).

We did not find injury proven by histology in the control group or in seven of the piglets 

exposed to hypoxia. During the relatively short time of observation, we did not register any 

side effects associated to their response to US low energy transmission, even though we 

injected a double dose of the CA, repeated 8-10 times over 9 h. This is far beyond the 

recommended doses for adults in clinical practice. The possible damage to the cerebral 

circulation by trans cranial US has been studied in rats and no adverse effect have been 

found (58). We speculate that as cerebral US was performed transcranially and with low MI,

this may protect brain from the mechanical impact of the US waves to the micro bubbles 

and to the cerebral tissue.

The use of cyclic non-ionic gadolinium agents like gadobuturol is recommended to 

minimize the risk of developing a rare but devastating disease, nefrogenic systemic fibrosis 

(84). These precautions are especially important in neonates due to their immature renal 

function. The double dose of gadobuturol has been shown to give a better enhancement and 

was chosen in order to optimize the detection of the low flow perfusion under the 

experimental study conditions (126).

8.3 Cerebral glucose metabolism after hypoxia and resuscitation detected 
with FDG-PET (Paper III)

In this study, we established a dynamic FDG-PET method for calculation of CMRgl in the 

newborn piglet brain using an animal microPET system. The most important results from 

our study were that global hypoxia caused immediate decrease in cerebral glucose 

metabolism and that the two modes of resuscitation using normoxia versus hyperoxia, failed 

to produce a significant difference in the resulting CMRgl. In this very acute phase of 
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evolving cerebral injury, the glucose hypometabolism may be due to early metabolic down-

regulation or early regional cell death. 

Previuos animal and human studies have not been able to perform dynamic quantitative 

measurements of CMRgl (25;29;32;45;111-113). In this study a kinetic analysis of the 

complete tissue uptake was performed. This in combination with higher resolution in PET 

images achieved by using the animal microPET system and the use of 3T MRI for VOI 

delineation, were expected to optimize the detection of the metabolic changes. However,

despite these efforts no significant regional difference in cerebral metabolism was found in 

this early phase after HI, although the most pronounced hypometabolism was found in the 

deep gray matter, cerebellum and cortex (the most metabolically active regions of the brain).

The interpretation of our findings with hypometabolism is in line with other studies and 

hypotheses. The combination of hypoxia-ischemia or ischemia alone is necessary for the 

development of brain injury (14). In our experimental model, the longstanding hypoxia was 

expected to cause a certain degree of injury although the resulting acid base values indicate 

that a severe hypoxic injury or anoxia is less likely. Therefore, we assume an early down-

regulation of glucose metabolism instead of neuronal death. In a study of the immature rat 

brain, a decline in CMRgl was found 1 h after hypoxia similar to our findings but was 

followed by an increase up to 24 h after the insult (31;127). The opposite was discovered

after hypoxia-ischemia with a transient increase in CMRgl followed by a decrease. In a 

study of fetal lambs, marked hypometabolism 4 h after hypoxia ischemia and hyperoxic 

resuscitation were revealed (45). In these studies however, only autoradiographic 

calculations of CMRgl were performed, and where quantification in small research animals 

can be difficult. Human studies measuring SUV and relative values of CMRgl have shown 

regional hyper- and hypometabolism a few days after birth correlating well with 

neurological outcome (32;113). Our short-term results do not allow prediction of outcome 

but may indicate the possibility of a later development of hypermetabolism according to 

these human and animal studies. Hypermetabolism that may be associated with less severe 

neurological outcome. Still long-term studies reaching beyond the period of second energy 

failure would be necessary to reveal these possible changes and outcomes.

The correction term, LC is assumed constant in the normal brain. Under pathological 

conditions changes in LC occur and may increase several times in ischemic regions of the 

brain (116). The value of LC in the normal newborn brain is not known. The chosen LC of 
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0.44 for our study represents a limitation, in that the posthypoxic estimate of CMRgl may be 

underestimated under hypometabolism due to an expected increase in LC. To establish the 

true LC uptake of 3-0-[11C] methyl-D-glucose must be performed in the future, since this 

tracer was unavailable at the time of our study.

8.4 General discussion

Birth asphyxia is an important worldwide problem with major morbidity and mortality 

factors (1;9;47). The primary goals of management of a newborn asphyctic baby are early 

identification of the baby at highest risk for developing injury and consideration of 

intervention. Assessment of cerebral injury can help to predict outcome of the HIE, which 

remains a major marker of perinatal morbidity and neurodevelopmental disabilities (53).

Animal research models play an important role when studying the pathophysiology of the 

very early phase in perinatal HI injury. These pathophysiological mechanisms in particular 

of cerebral perfusion and glucose metabolism, are the key to the further development of

HIE. Finding and developing neuroimaging and biochemical tools to investigate HI 

mechanisms in the early phase after the insult are important for initiating early 

neuroprotective treatment. 

Our hypoxic ischemic piglet model has similarities with a newborn baby in the perinatal HI 

situation. The model can produce histopathologic findings of HI injury in accordance with 

findings on MRI/ MRS 7 h after the insult, which again is in line with findings in clinical 

studies (93). This piglet model has helped to establish diagnostic methods in MRI, US and 

PET, adapted to detect early effects of cerebral perinatal hypoxia with regard to perfusion, 

diffusion, and glucose metabolism in the early post hypoxic period.

Our main findings were an early temporal development of brain perfusion measured by

CEUS and DSC-MRI in perinatal hypoxic piglet model during and up to 7 h after the insult. 

Low flow perfusion quantification was feasible in the small piglet brain. We found a 

mismatch between restored perfusion and diffusion at the end of the experiment without 

correlation to histological findings suggesting viable, penumbral tissue (82;83). CEUS used 

during hypoxia and resuscitation could demonstrate the most important perfusion changes in 

accordance with other animal studies using other techniques (13;17;44).
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CEUS, is a technique with higher temporal resolution than DSC-MRI and can demonstrate 

perfusion in real time (60). CEUS and the CA SonoVue™ is not jet registered for pediatric

use. Our experience showed that transcranial CEUS was safe in newborn piglets.

Ventilation with high-level concentration of oxygen has proven harmful to the brain and 

other organs (38-41;121). Resuscitation with air is now recommended for term and near 

term infants by ILCOR (42). The toxic mechanisms of hyperoxia to different organs are not 

fully understood or studied, especially regarding cerebrovascular and metabolic changes in 

HIE. CEUS revealed that oxidative stress caused a cerebral hypoperfusion, probably due to 

vasoconstriction as confirmed by a study in rats (44). This decrease in perfusion might cause 

a more extensive injury developing during the period of “secondary energy failure”.

Dynamic FDG-PET revealed marked hypometabolism of glucose after prolonged global 

hypoxia as found in other animal studies (31;127). In this very acute phase of evolving 

cerebral injury, the glucose hypometabolism may be due to early metabolic down regulation 

or early regional cell death. No significant change related to hyperoxia was found. Earlier 

animal and human newborn studies have not been able to perform dynamic quantitative 

measurements of CMRgl (28;29;31;32;45;111-113;127). In clinical studies, relative glucose 

values or semiquantitative measurements have been performed a few days after birth. They 

revealed hyper- and hypometabolism as associated with short-term neurological outcome

(25;112;113).The adapted techniques, CEUS, DSC-MRI and dynamic FDG-PET have been 

shown to be feasible in the newborn piglet brain under experimental HI conditions.
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9. Conclusions and future aspects

9.1 Conclusions

1. Our piglet model is suitable for investigating HI injury with neuroimaging techniques, 

MRI and MRS, and may be relevant to the clinical perinatal situation.

2. Quantification of cerebral perfusion with CEUS and DSC-MRI in addition to glucose 

metabolism with dynamic FDG PET is feasible in the newborn piglet brain.

3. Our perinatal hypoxia model revealed an evolution of perfusion changes over time with 

restored values after 7 h, without significant correlation to histological injury or to 

decreased diffusion. The results suggest that CEUS/ DSC-MRI cannot be used alone in the 

early diagnosis of perinatal hypoxia

4. Dynamic FDG-PET can assess early effects of cerebral perinatal hypoxia. In the piglet 

model, global hypoxia caused immediate decrease of cerebral glucose metabolism.

5. Hyperoxic (100% O2) resuscitation causes immediate decreased cerebral perfusion not 

seen when normoxia (21 % O2) is used. No significant effect of hyperoxia was found on 

glucose metabolism.

9.2 Future aspects

By using a piglet model resembling a newborn baby, our experimental studies may 

contribute to the further understanding of perinatal hypoxia injury mechanisms and 

regulation of cerebral perfusion. We indicate a potential use of CEUS to monitor, in real 

time, cerebral perfusion changes during different treatment strategies aiming to prevent 

cerebral injury under experimental conditions. The absence of radiation combined with the 

easy bedside use of CEUS, makes this technique attractive for pediatric use, especially in 

critically ill infants. However, further clinical studies are needed. By the introduction of MR 

compatible incubators, the monitoring of vulnerable term and premature babies during 

transport and examination will facilitate MR studies at an earlier time point after birth.The 

technical development of non-contrast enhanced perfusion techniques like ASL will likely 
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become more important in pediatric imaging, especially in the light of increasing concerns 

about the toxic effects of gadolinium and expensive CAs.

Further studies of FDG-PET, reaching beyond the period of secondary energy failure and 

studies to establish the LC in newborn hypoxic piglets, are needed to get more accurate 

quantification of the CMRgl. MicroPET systems might be a useful clinical easy-access tool 

to evaluate brain function in newborn babies and be important in diagnosis and prognosis of 

perinatal hypoxia. Multiple tracers, receptor ligands or hypoxia markers applicable in PET 

combined with MRI in hybrid scanners, will be able to provide us with further 

understanding of cerebral perinatal HI injury.
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immature rat brain. J Cereb Blood Flow Metab 1998 Feb;18(2):222-8. 
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Errata Paper I

A few references were regrettably erroneously cited due to problems in the publication process.

-In Material and Methods

/ Magnetic resonance imaging/ line 4: reference (15) should be omitted.

/ Image analysis/ second paragraph/ line 5: reference (14) should be changed to   reference (9)./ 

Evaluation (immunohistochemistry)/ line 4 for from end of paragraph: reference (16) should be 

omitted and replaced by: Johnson GV, Jope RS. The role of microtubule-associated protein 2 (MAP-2)in 

neuronal growth, plasticity, and degeneration. J Neurosci Res 1992;33(4):505-512.

-In Discussion

/ paragraph 3 from the end of section/ line 4: reference (40) should be omitted and changed to 

reference (21).

/ paragraph 3 from the end of section / line 5 – reference (21) should be replaced by:

Cady EB. Metabolite concentrations and relaxation in perinatal cerebral hypoxic–ischaemic injury. 

Neurochem Res 1996; 21: 1043–52.

 



Errata for: 

Early effects of perinatal hypoxia and resuscitation on cerebral perfusion and 
metabolism assessed by MRI, CEUS and FDG-PET. 
Experimental studies in newborn pigs.

Page 12, Last paragraph/ first sentence:

“HI” should be changed to “hypoxia ischemia”

Page 48, Second paragraph, second line:

After  “HI” - “injury” should be inserted.

References:
Corrected and updated publication dates to:

 (3)   Mwaniki MK, Atieno M, Lawn JE, Newton CR. Long-term neurodevelopmental outcomes 
         after intrauterine and neonatal insults: a systematic review.  
         Lancet 2012 Feb 4;379(9814)445-52. 

(22)   Ilves P, Lintrop M, Metsvaht T, Vaher U, Talvik T. Cerebral blood-flow velocities in 
          predicting outcome of asphyxiated newborn infants. Acta Paediatrica 2004 Apr;93(4):523-8. 

(76)   Detre JA, Rao H, Wang DJ, Chen YF, Wang Z. Applications of arterial spin labeled MRI in  
          the brain. J Magn Reson Imaging 2012 May;35(5):1026-37 

(81)   Westmark KD, Barkovich AJ, Sola A, Ferriero D, Partridge JC. Patterns and implications of 
          MR contrast enhancement in perinatal asphyxia: a preliminary report. Ajnr: American 
          Journal of Neuroradiology 1995 Apr;16(4):685-92. 
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