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Abstract 
 

The concept that messenger RNA (mRNA) degradation in E. coli begins with endonucleolytic 

cleavage has been challenged by the recent discovery that the conversion of the 5’ terminus 

from a triphosphate to a monophosphate is required prior to endonucleolytic activity. RNA 

pyrophosphohydrolase (RppH) initiates the degradation of transcripts by removing 

pyrophosphate from the 5'-end of mRNAs which allows binding of RNase E/ RNase J in 

bacteria. A putative RNA pyrophosphorylase is present in cells of the unicellular green alga 

Chlamydomonas reinhardtii and several lines of evidence suggest that the protein is involved 

in mRNA degradation in the chloroplast. In order to determine the location of the protein in 

Chlamydomonas cells, the 5’ region of the rppH gene was tagged to a codon optimized green 

fluorescent protein and introduced into Chlamydomonas cells.  

This study focuses on developing a reporter vector construct that can be used to transform the 

Chlamydomonas reinhardtii nuclear genome. GFP (Zsgreen 1) was codon optimized by using 

a Codon Usage Database. The reading frame of the optimized synthetic GFP was adjusted and 

cloned into the pBluescript-5’rppH SK+ vector. The 5’rppH-GFP gene fragment was then 

sequentially cloned into the pE coli-Cterm 6HN protein expression vector, intermediate vector 

and finally in the pChlami transformation vector. All constructs were verified by restriction 

cutting and sequencing. Transformants were screened for the presence of the chimeric GFP 

gene by PCR. The screening experiments have led us to choose one transformant that could 

be used for further work. In addition although fluorescence was not checked, the optimized 

synthetic GFP was expressed in E. coli (BL21DE3) cells confirming the functionality of the 

synthetic GFP construct in vivo. 
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1. INTRODUCTION 

1.1 Chlamydomonas reinhardtii  
 

Chlamydomonas is a genus of unicellular green alga. Morphologically the cells are spherical 

or ellipsoidal with a size of ~ 10 µm in diameter and have two flagella of the same size that 

are situated at the anterior end of the cell. They are found mostly in fresh water, on damp soil, 

and there is a report that few occur also in the sea. 

Chlamydomonas reinhardtii is one of the most widely used model organisms. Cells have the 

ability to grow quickly with a generation time of approximately 5 hours. They are haploid and 

can reproduce asexually or sexually.  

It has been used as a model organism for photosynthesis and chloroplast biogenesis studies, 

mitochondrial biogenesis, gametogenesis and mating, assembly of flagella and motility, and 

cellular metabolism. It is an excellent system to study mutations as it has only a single copy of 

each gene and chloroplast, mitochondrial and nuclear genomes have been sequenced (Maul et 

al. 2002, Merchant et al. 2007, Smith and Lee 2008). Cells have the capacity to grow with 

light as sole energy source or on acetate in darkness, facilitating detailed examination of genes 

and proteins critical for photosynthetic or respiratory function. This haploid organism grows 

rapidly on both solid and liquid medium (Grossman et al. 2003). 

1.2 Genetics and Chlamydomonas 
 

Whole-genome sequencing provides a platform for identification of mutations in 

Chlamydomonas (Dutcher et al. 2012). Besides this, C. reinhardtii is one of the best studied 

alga in circadian rhythm research (Matsuo et al. 2008) which are biological rhythms that 

continue under constant conditions of light and temperature with a period of about 24 hour 

(Schulze et al. 2010). Biogenesis and the mode of action of miRNAs and siRNAs were also 

studied in C. reinhardtii (Ibrahim et al. 2010). Based on the degree of compelimentary of their 

small ~ 21 nt sequence and their target mRNA, miRNAs exert or regulate gene expression by 

cleaving or degrading mRNAs. The degradation effect of these miRNAs is highly observed in 

plants, in contrast animal miRNA are involved in translational repression. Despite the whole 

genome complexity differences between those of higher organisms and Chlamydomonas cells, 

the unicellular algal genome has been shown to constitute many of the small RNAs. Strikingly 

the miRNAs identified in C. reinhardtii share structural and functional homology with both 

plant and animal miRNAs (Zhao et al. 2007). 

Based on the completed annotation of the C. reinhardtii genome, micro array platform was 

designed to validate the function of genes that are related to efficient light harvesting and 

photosynthetic electron transport (Toepel et al. 2011). Because chlorophyll synthesis also 

occurs in the dark in C. reinhardtii, the photosynthetic apparatus can be assembled in the 
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absence of light. Therefore it is possible to study photosynthetic reactions in light-sensitive 

mutants (Rochaix 2002, Nishimura 2010).  

It is amenable to a diversity of genetic and molecular manipulations. In addition engineering 

of the plastid genome was first undergone in C. reinhardtii (Boynton et al. 1988). The recent 

sequencing of the nuclear genome and the availability of numerous molecular tools including 

transformation of the three (nuclear, plastid and mitochondrial) genomes, makes C. 

reinhardtii an attractive model for molecular investigations.  

1.3 Organelle Gene regulation 
 

Chloroplast genomes encode the most important genes for photosynthesis (Maliga and Bock 

2011). The genome has uniform densities of genes, simple sequence repeats and transposable 

elements (Merchant et al. 2007). Chloroplast gene expression in C. reinhardtii is a complex 

process that can be influenced by mRNA processing, mRNA stability and protein turnover 

(Rasala et al. 2011). But unlike nuclear genes, genes encoded by chloroplast are not affected 

by transcriptional silencing and position effects (Michelet et al. 2011). The Chlamydomonas 

chloroplast genome has only a few introns located in the psbA, psaA, and 23S rRNA genes 

(Herrin and Nickelsen 2004).  

Studies on higher plants have shown that there are two RNAPs (RNA polymerases), NEP 

(Nuclear encoded RNA polymerase) and PEP (Plastid encoded RNA polymerase). PEP has a 

catalytic core consisting of α, β, β´ and β´´ subunits which is thought to require σ
70

-like 

factors that specifies initiation of transcription downstream of promoter sequences which 

resemble bacterial 10/35 promoters (consensus: -10 TATAAT,- 35 TTGACA). Chloroplast 

gene expression is also dependent on factors that are encoded by the NEP. Characterizing this 

polymerase has revealed that it is a single catalytic subunit polymerase homologous to the 

T7/T3 phage polymerases. Unlike those of higher plants, Chlamydomonas lacks NEP. A 

recent study has shown that C. reinhardtii expresses a single σ
70

-like factor which likely 

functions in chloroplast transcription (Bohne et al. 2006). 

1.3.1 Anterograde/Retrograde signaling 
 

The chloroplast genome encodes proteins that are involved in transcriptional and translational 

apparatus. Concentration of chloroplast proteins and their function is dependent on the 

anterograde (nucleus to chloroplast) and retrograde (chloroplast to nucleus) signaling 

mechanisms. Anterograde mechanisms coordinate gene expression in organelles in response 

to endogenous and environmental stimuli that are perceived by the nucleus. Retrograde 

mechanisms transmit signals that originate in the organelles to regulate nuclear gene 

expression, which can then alter anterograde control (Woodson and Chory 2008). 

The continuous flux of proteins into and out of the nucleus as well as among intra-nuclear 

compartments controls central events such as DNA replication and mRNA processing (Gorski 

et al. 2006). In C. reinhardtii many DNA-binding proteins directly or indirectly involved in 

the regulation of gene expression have been shown to be at least transiently located in the 
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nucleus (Winck et al. 2012). Nucleus encoded proteins in Chlamydomonas are the basis for 

anterograde signalling that enables the nucleo-cytoplasmic compartment to control chloroplast 

gene expression (Michelet et al. 2011). 

The nuclear genome of C. reinhardtii is 100 to 110 million bp, comprising 17 genetic linkage 

groups (Kathir et al. 2003) presumabily corresponding to 17 chromosomes (Merchant et al. 

2007), with a very high GC content (nearly 65%). Chlamydomonas nuclear genome is 

haploid, in contrast to approximately 80 copies of the chloroplast genome (Eberhard et al. 

2011). The number of selection markers available for genetic engineering in Chlamydomonas 

is relatively small compared to those for other model systems. Foreign genetic material 

introduced to C. reinhardtii nuclear genome recombines randomly at any site in its genome 

(Kindle et al. 1989), which may result in deletion of functionally important genes. Moreover 

transgene expression level is very low even if the transformation reaction is highly efficient 

due to the following possible reasons; the first being inadquate amount of promoter and 

regulatory regions affecting the transcription level of the gene (Leon-Banares et al. 2004) of 

interest. In addition epigenetic silencing of transgenes, especially single copy transgenes can 

be transcriptionally silenced without detectable cytosine methylation (Jeong et al. 2002). The 

other being due to codon usage bias; codon frequently used in certain organisms is rarely used 

in others (Nakamura et al. 2000). This has hampered the applicability of C. reinhardtii for 

biotechnological expression analyses. Recently new genetically engineered resistance markers 

were developed (Meslet-Cladiere and Vallon 2011). 

1.4 Chloroplast mRNA Turnover 
 

The level of mRNA within a cell depends on the balance between transcription and 

degradation. mRNA is the most varied class of RNA with respect to its size and stability. The 

activity of RNA is determined by its structure (Zuker et al. 1999). As such the stability of a 

given mRNA transcript can be determined by the presence of sequences within the 5’ UTR 

(untranslated region) (Salvador et al. 2004), which can be bound by trans-acting RNA-binding 

proteins to inhibit or enhance mRNA degradation (Hollams et al. 2002). In addition the 

structural characteristics of 5' untranslated region, such as length, the presence of AUG 

upstream of the initiator greatly affect the efficiency of the translational process (Pesole et al. 

2000) and thereby the longevity of the transcript. Moreover sequences that are found in the 

protein coding region have been shown to control promoter activity in Chlamydomonas 

chloroplast rbcL gene (Klein et al. 1994). 

Regulated mRNA stability is achieved through fluctuations in half-lives in response to 

environmental stimuli like nutrient levels and temperature shifts (Guhaniyogi and Brewer 

2001). In bacteria for example, mRNA half-lives can be in seconds or in hours, whereas in 

vertebrates they range from minutes to days. The half-lives of stable RNAs approach or even 

exceed the doubling times of the cells in which they are made (Meyer et al. 2004); and thus 

their concentration does not depend on cell growth.  

mRNA turnover implys rapid synthesis and equally rapid destruction (Meyer et al. 2004). 

Selective degradation of messenger RNAs enables cells to regulate the levels of particular 
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mRNAs in response to changes in the environment (Mackie 1998). The current knowledge of 

chloroplast mRNA degradation begins by endonucleolytic cleavage which is followed by 3’ 

polyadenylation of the cleavage products. Addition of poly A rich sequences to the 

endonucleolytic cleavage products of mRNA is required to target these molecules for rapid 

exonucleolytic degradation (Schuster et al. 1999). The polyadenylated cleavage products are 

subsequently degraded by 3’-5’ exonuclease. The RNA hairpins (secondary structures) that 

are found at the 3’ termini impede the 3’-5’ exonucleases, thereby stabilizing upstream RNA 

(Pfalz et al. 2009). Essential factors that control mRNA turnover in chloroplast such as cis 

elements, proteins that bind to them, ribonuclease susceptibility, and redox status are briefly 

discussed below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. Model for chloroplast mRNA degaradation. Endonuclease cleavage is initiated by the 

RNase J and RNase E enzymes. The polynucleotide tail addition is facilitated by PNPase or PAP. The 

RNA fragment where the 3’ end is blocked by a PPR protein requires a 5’→3’ decay. The absence or 

low frequency of secondary structures at the 3’ end can also mediate a 3’→5’ decay by PNPase or 

RNase II. Image modified from (Stern et al. 2010). 
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1.4.1 Cis acting elements  
 

The function of RNA can only be understood in terms of its secondary or tertiary structure 

(Zuker et al. 1999). Cis regulatory elements on chloroplast RNA are regions that are required 

for its stability or its degradation. They are usually found on the 5’ and 3’ UTR of mRNA. 

Sequences within the 5'-UTR are essential for translation (Anthonisen et al. 2001). The 5’ 

UTR have been shown to regulate the translation of the psbC (Zerges et al. 1997), psbA 

(Trebitsh et al. 2000), psbD (Nickelsen et al. 1999) genes. In addition inverted repeat 

structures which are nucleotide sequences that are the reverse complement of another 

sequence downstream have been found in chloroplast genome of all Chlamydomonas species 

examined (Harris 2001). These inverted repeats have been shown to determine the stability of 

chloroplast rbcL mRNA in C. reinhardtii (Goldschmidt-Clermont et al. 2008). Sequence and 

condition-dependent 5′→3′ mRNA-degradation pathway was also shown in the chloroplast of 

C. reinhardtii (Salvador et al. 2011). The requirement of specific 5’ sequence for RNA 

longevity is also determined by an interaction of this element with a trans-acting factor (Suay 

et al. 2005). 

1.4.2 Trans acting factors 
 

Trans acting factors are proteins that are mostly nuclear encoded. They are synthesized in the 

cytosol and subsequently imported into the chloroplast, where they interact with their target 

sites on either chloroplast RNAs or proteins (Nickelsen et al. 1999). 

Several protein families playing essential roles in the mRNA metabolism in chloroplast are 

characterized by the occurrence of tandem repeat motifs. PPR members of the 

pentatricopeptide repeat proteins function in RNA processing, and translation (Johnson et al. 

2010, Stern et al. 2010). PPR family, which comprise of 35 amino acid repeats, primarily 

interact with specific RNA-targets. 11 PPR protein-encoding genes have been identified in C. 

reinhardtii (UniProt). The stabilizing mechanism of these PPR protein is by giving a shelter 

to a specific region of RNA from nucleases, in the manner of a protein cap (Johnson et al. 

2010). Functionally they were also implicated in protecting internal transcript sequence 

elements (Zhelyazkova et al. 2012). Moreover in C. reinhardtii, a PPR protein is required for 

stabilization of the rbcL mRNA (Johnson et al. 2010).  

The tetratricopeptide repeat (TPR) is a degenerate 34-amino acid repeat motif, protein-protein 

interaction module found in multiple copies in a number of functionally different proteins 

(Blatch and Lassle 1999). For instance, Raa 1 with five copies of octatricopeptide repeat is 

thought to improve the efficiency of psaA mRNA maturation in C. reinhardtii chloroplasts 

(Merendino et al. 2006). NAC2 is also involved in stabilization of psbD transcripts (Boudreau 

et al. 2000). 
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Figure 1.2. Model for post-transcriptional modifications in chloroplasts. Various nuclear encoded 

RNA-binding proteins participate in RNA processing events by binding directly to their target RNAs. 

These events involve several steps, such as splicing and stabilization which control chloroplast gene 

expression (Jacobs and Kuck 2011). 

1.4.3 Effect of redox state 
 

During photosynthesis, the source of electron is water. In the photosynthetic machinery, 

different components are involved in redox reactions. Changes in the reduction/oxidation state 

of these components are used as signals in gene regulation (Pfannschmidt et al. 2003). Light 

influences chloroplast gene expression, RNA processing, transcript stability, translation and 

turnover of proteins (Salvador and Klein 1999). In C. reinhardtii, the redox state regulates the 

degradation of chloroplast transcripts (Salvador and Klein 1999). 

1.4.4 Ribonuclease susceptibility 
 

As has been mentioned, the extent to which mRNA is susceptible to degradation by 

ribonucleases is dependent on its secondary structure. Thus secondary structures are important 

to prevent mRNA from degradation. Moreover the binding of trans-acting proteins to a target 

mRNA sequence can change its susceptibility to ribonucleases thereby promoting mRNA 

degradation. These ribonucleases determine the longevity of mRNA in prokaryotes such as 

bacteria. 

Chloroplast mRNA and that of prokaryotic have certain differences. The distinguishing 

features are the predominance of introns and complex patterns of processing from 

polycistronic precursors (Stern et al. 2010). In addition, polyadenylation is associated with 

RNA instability in prokaryotic cells, whereas in chloroplast nucleus-encoded mRNAs, 

polyadenylation is to enhance their stability and promote translational initiation (Komine et al. 

2000). Moreover the poly (A) tail sequences are composed of clusters of adenosines mostly 

bound by guanosines, and on rare occasions, by cytidines and uridines (Schuster et al. 1999) 

whereas in bacteria, the sequences are composed of clusters of adenosine residues. 
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But the molecular biology of plastids is basically prokaryotic (Salvador et al. 2011). 

Sequences composed of -35 and -10 elements resembling promoters of E. coli genes direct 

transcription in vitro as chloroplast promoters in vivo (Blowers et al. 1990). Translation 

regulation in chloroplasts has been also reported to be very similar to prokaryotes (Kozak 

2005). The poly (A) tails found in Chlamydomonas chloroplasts are similar in length to those 

of E. coli, being mostly between 20 and 50 nt (Komine et al. 2000). Chloroplast ribosomes 

and that of bacteria share similarities on the mechanism of protein synthesis initiation and 

inhibition (Ellis 1970). In addition higher plants plastid genome encodes subunits of an E. 

coli-like RNA polymerase (PEP) which initiates transcription from E. coli σ
70

-type promoters 

(Hajdukiewicz et al. 1997). Furthermore the ribonucleases involved in chloroplast mRNA 

turnover are derived from bacteria (Barkan 2011). 

1.5 Bacterial gene regulation 
                                                                                                                                                                                                                        

RNA degradation is a major component of RNA metabolism in determining its intracellular 

levels during which rapid decay serves as a mechanism to adjust to environmental change 

(Deutscher 2006). 

Most of the mRNA found in bacteria is polycistronic where its genetic information is 

translated to several polypeptides that are functionally related to each other. The genetic 

information consists of functional gene clusters, termed as operon. Bacterial operons share 

similarity wth the polycistronic transcription units of the chloroplast genome (Barkan 2011).  

1.6 mRNA decay in bacteria 
 

RNA stability, degradation and processing is determined by ribonucleases in bacteria. There 

are two main classes of ribonucleases; endoribonuclease and exoribonuclease. 

Endoribonuclease cleave RNA segment at the internal phosphodiester bonds. Whereas the 

exoribonucleases cleave at the end of RNA chain. Exoribonucleases can act either on the 5’ 

end or 3’ end of an RNA segment.  

1.6.1  Bacterial mRNA stability 
 

Stabilizing elements such as the 5’-triphosphate of primary transcripts and strong secondary 

structures are crucial in bacterial mRNA stability (Evguenieva-Hackenberg and Klug 2009, 

Evguenieva-Hackenberg and Klug 2011). 5' secondary stem-loop structurs are able to protect 

mRNA from attack by cellular ribonuclease that initiates mRNA degradation (Emory et al. 

1992, Sharp and Bechhofer 2005). Ribosome binding at Shine–Dalgarno elements adjacent to 

the translation initiation codon (collectively called ribosome binding site) also serves to 

protect specific endonucleolytic target sites required for the initiation of decay (Petersen 

1992).  
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1.6.2 Bacterial mRNA processing and degradation 
 

RNA processing and degradation determine transcript accumulation and thus are key 

processes in the control of gene expression. RNA processing is used to describe RNase-

catalyzed events leading to the generation of a functional RNA, while RNA degradation is 

used to describe its decay, in which RNA processing leads to an increase in RNA half-life 

relative to the primary transcript whereas RNA degradation leads to a decrease in half life. 

RNA processing is relevant in the 5’ maturation of transcripts. The mRNA processing 

depends usually, but not always, on the activity of RNases (Lehnik-Habrink et al. 2012). 

RNA turnover in E. coli requires pathways that involve endoribonucleases and 

3’‐exoribonucleases that modify RNA or affect its conformation (Carpousis et al. 2009). The 

decay of most mRNAs in E. coli is initiated by RNase E, a 1061-amino acid enzyme which is 

specific for single stranded regions in mRNA. The endoribonuclease RNase E is conserved 

among proteobacteria and is essential for viability due to its role in turnover of mRNA in E. 

coli (Anupama et al. 2011) where it acts on mRNA and small non-coding RNA. RNase E is 

organized into a number of catalytic core domains that are arranged to different sub-domains 

and has a long non-catalytic C-terminal extension (Carpousis 2007). The larger subdomain is 

composed of RNA binding domain and 5’ sensor. Previous study (Garrey et al. 2009) where 

the RNA binding subdomain and the 5′ sensor interact to form a certain compartment that 

enhances 5’monophosphate binding was shown to have increased the RNase E activity. 

RNase E is important in mRNA decay which cleave single stranded AU rich RNA (Mudd et 

al. 1990). A 5’ end-independent mRNA decay pathway which requires endonuclease activity 

is also reported (Deikus and Bechhofer 2011).  

Exoribonucleases can act on mRNA either in the 5’→3’ or 3’→5’ direction in bacteria. Some 

are involed in the maturation and stability of mRNA for instance, RNase J1 (Mathy et al. 

2007) whereas others are involved in quality control, or degradation of defective RNAs such 

as RNase R (Vincent and Deutscher 2009), PNPase or RNase II. E. coli cells contain multiple 

3’→5’ acting exoribonucleases (Arraiano et al. 2010). The 3’ end of bacterial mRNAs is 

protected from 3’-to-5’ exonuclease attack by secondary structure (Condon 2007). Thus, the 

action of endonucleases generate new unprotected 3’ ends that are rapidly degraded by 

exonucleases. Hence since E. coli lacks 5’ exoribonucleases (Kaberdin et al. 2011), it is 

believed that endonucleolytic cleavage generally precedes 3′ exonucleolytic degradation 

(Belasco 2010).  

Similarly stem loop (hairpin loop) which is the building block for a secondary structure, at the 

5’ end of E. coli transcripts can inhibit mRNA degradation by RNase E (Mackie 2000). 

RNase E endoribonucleolytic activity is increased by the 5’ terminus state of its target RNA. 

mRNA stabilization by a 5’-terminal stem-loop has also been reported in B.subtilis 

(Hambraeus et al. 2002). Similar to E. coli, the presence of a 5′-triphosphate have stabilizing 

effects on the downstream genes in B.subtilis (Lehnik-Habrink et al. 2012). In both organisms 

RNA degradation begins with the conversion of the 5’-terminal triphosphate to a 

monophosphate. The hydrolysis of a variety of nucleoside triphosphates is catalyzed in vivo 

by the Nudix hydrolases. 
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1.7 Nudix Hydrolase 
                                                                                                                                                                                               

The terminal RNA sequences are modified by various enzymes of different gene families. 

These modifications are present in organelles. And since RNA metabolism occurs in these 

organelles as well as in cytosol, characterizing the role that these enzymes have in mRNA 

turnover is important.  

“Nudix” Hydrolase is a family of widely distributed pyrophosphohydrolase enzyme found in 

all classes of organisms. Catalysis depends on Nudix motif which is 23 amino acids long. The 

domain structure is formed by two β-sheets packed between α-helices that is well adapted to 

binding and hydrolysis of a wide range of nucleoside (McLennan 2006). The defining 

characteristic of Nudix enzymes is their ability to catalyze the hydrolysis of a variety of 

nucleoside diphosphate derivatives with varying degrees of specificity (Kraszewska 2008). 

Nudix hydrolases could be considered “housecleaning” genes whose function is to cleanse the 

cell of potentially deleterious endogenous metabolites and to modulate the accumulation of 

intermediates in biochemical pathways (Bessman et al. 1996). In E. coli hydrolysis of 5’ 

terminal triphosphate to monophosphate is catalyzed by a member of the Nudix hydrolase 

family called RppH (RNA pyrophosphohydrolase). 

1.8 RNA pyrophosphohydrolase (RppH) 
 

RNA pyrophosphohydrolase (RppH) formerly designated as NudH/YgdP is a recently 

discovered protein that has RNA pyrophosphohydrolase activity in E. coli. It is a member of 

the Nudix family with the Nudix signature motif GX5EX7REUXEEXGU where U is a 

hydrophobic residue and X is any residue (McLennan 2006). It catalyzes the conversion of a 

5’ triphosphosphate primary transcript to a 5’monophosphate RNA, assisting in the 5’→3’ 

mRNA degradation (Deana et al. 2008). Like in E. coli, RNA pyrophosphohydrolase in B. 

subtilis that catalyzes this event is a Nudix protein that prefers unpaired 5' ends. However, in 

B. subtilis, this modification exposes transcripts to rapid 5' exonucleolytic degradation by 

RNase J, which is absent in E. coli but present in most bacteria lacking RNase E (Richards et 

al. 2011). Yet Chlamydomonas appears to encode RNase J (Stern et al. 2010). 

Recent findings that goes along with previous works show that the 5’-3’ rppH mediated 

degradation can be regulated by ribosome binding close to the translation start site (Richards 

et al. 2012). Some evidences suggest that rppH is involved in mRNA degradation in the 

chloroplast. Recently an in vivo study done on degradation of transcripts in a specific reporter 

gene constructs in Chlamydomonas cells shows that initiation of degradation starts at the 5′ 

end (Salvador et al. 2011). The same study has indicated that it is likely that an exposed 5′ 

terminal nucleotide with its phosphate group as the binding site of a protein (trans acting 

factor) that initiates mRNA breakdown in chloroplasts (Salvador et al. 2011) from the 5’ end.  

 

 



Introduction 

10 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3. Bacterial RNA decay model. A) The removal of pyrophosphate by rppH enhances the the 

RNase E compartment binding to 5’ monophosphorylated mRNA thereby activating degradation of 

mRNA in E. coli. B) RNA decay in bacteria containing the exonuclease RNase J (B. subtilis), 

endonuclease activity exposes the primary transcripts to 3’ exonuclease or RNase J attack. In addition 

pyrophosphate removal by rppH analogue results in degradation of monophosphorylated transcript by 

5’ exonulease activity of RNase J (Belasco 2010). 

1.9 Sub-cellular localization 
 

Transcripts are thought to contain localization signals, consisting of discrete stem loop 

structures found at the 5’ end of a gene which are recognized by transacting factor for the 

screening of localized transcripts among the general population of RNAs .  

Cellular asymmetry in Chlamydomonas is determined by the anterior and posterior position of 

the flagella and chloroplast respectively with the nucleus in between these two organelles. 

The nuclear architecture of Chlamydomonas is organized as a series of concentric spheroids, 

the innermost being the nucleolus that serves as the site for the ribosomal RNA synthesis. 

Surrounding the nucleolus is a spherical compartment that presumably contains the sites of 

synthesis and processing of pre-messenger RNAs in Chlamydomonas. Nuclear organization is 

linked to cytoplasmic events such as transcript targeting (Colon-Ramos et al. 2003).  

1.10 GFP 
 

Bioluminiscence in cnidaria is due to oxidation of luciferin via luciferase or Ca
2+

-activated 

photoprotein that excites a class of proteins called green-fluorescent proteins (GFPs) (Prasher 

et al. 1992). GFP, first named (Shimomura et al. 1962) as “Aequorin”, was shown to have 
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emission of light on addition of Ca
2+

 ions. Unlike the other fluorescent proteins A. victoria 

wild type GFP has chromophores in protonated state. 

The green fluorescent protein (GFP) from the jellyfish A. victoria is a 238 amino acid protein 

that exhibits bright green fluorescence under ultraviolet blue light exposure. Neutral wild type 

GFP has a dual absorption wave length at 395nm and 475nm and emits green light at 509nm 

(Brejc et al. 1997). Crystallographic structural analyses on the wild type and mutant S65T 

GFP has shown that, this dual absorption spectra is caused by a change in the ionization state 

of the chromophore, which is the structural unit of GFP. 

GFP tagging permit analyses of proteins in living cells easier and offer distinct advantages 

over conventional immunofluorescence. Among these are lower background, higher 

resolution, and avoidance of fixation artifacts (Michaelson and Philips 2006). Various GFP 

variants have been mutated to give reporters of different spectral properties so that multicolor 

labeling is now a practical option (Paddock 2008). Transgenic expression of GFP within any 

given cell requires simply placing the optimized versions of GFP sequence under the 

transcriptional control of appropriate regulatory sequences and in the correct reading frame 

(Chytilova et al. 1999). The spectral properties of the recombinant GFP suggest that 

production of the fluorescence is not species-specific (Chalfie et al. 1994).  
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1.11 Aim of the project 
 

The aim of this project was to develop a reporter gene construct that could be used to localize 

RNA pyrophosphohydrolase in C. reinhardtii cells. The project had also sub-aims; 

 Selection of a reporter Green fluorescent protein (GFP). 

 Codon optimization of Zs Green 1 from Zoanthus Sp. to codon usage in the nucleus of 

C. reinhardtii. 

 Linking the codon optimized GFP to the 5’rppH region which is thought to have the 

localization signal for RNA pyrophosphohydrolase. 

 Construction of pE coli -5’rppH-GFP vector to express GFP construct in E. coli.  

 Construction of transformation vector pChlami-5’RppH-GFP that could be used to 

transform C. reinhardtii. 

 Nuclear transformation of C. reinhardtii.  

 Selection and screening of positive C. reinhardtii transformants by PCR. 
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2. Materials and methods 

2.1 PCR 
 

By using thermocycler (Biometra), standard PCR procedure was followed to amplify DNA 

fragments by using Taq polymerase. Amplification of fragments for cloning experiments was 

carried out in three steps, two denaturation cycles at 98˚C for 1 min and 30 sec respectively, 

30 annealing cycles at 65˚C for 30 sec, and two elongation steps at 72˚C for 1 min in 30 

reaction cycle. In all PCRs, the primer concentrations were 10 pMol/µL. For genomic DNA 

(1 ng/ µL) amplifications, the annealing temperature were different for different reactions 

involving different primers (see Appendix V). Since different primers that were used have 

different melting temperatures, the annealing temperature was adjusted accordingly.  

2.2 Construction of fusion proteins and vectors 
 

Standard molecuar biology techniques were used as explained in (Sambrook and Russell 

2001), and all restriction enzymes for vector digestion was done according to the 

manufacturers general guide lines (New England Biolabs). Furthermore, for all restriction site 

check up; for ligation or specific sequence analyses, was done by NEB cutter V 2.0 (New 

Englands BioLabs). The following vectors were constructed for the expression of the fusion 

protein in which the 5’-rppH region (207 ), was fused to the N-terminus of the optimized 

GFP. An extra amino acid (GLY) was added inorder to have the correct reading frame of GFP 

by including an extra nucleotide [C] just upstream of the start codon of GFP. The synthesized 

lyophilized plasmid containing GFP gene was manipulated according to the manufacturers 

instruction (Life technologies) for further use. SmaI and EagI sites were used for cloning of 

GFP to a pBluescript II SK+-5’rppH vector received from Uwe Klein. GFP which is flanked 

by SmaI and EagI sites was cloned into pBluescript II SK+-5’rppH at the SmaI and EagI sites 

which was digested with SmaI and NotI restriction enzymes. The 5’rppH-GFP gene was then 

amplified by one PCR thereby introducing the NcoI restriction site in the PCR product. See 

Appendix V for primers. 

The PCR product was purified by using gel purification kit (GE Healthcare), cut with 

restriction enzymes Ncol/Notl and was cloned into pE coli vector (Clontech) after digesting 

the vector with NcoI and NotI enzymes. The 5’rppH-GFP fragment was then amplified by 3 

PCR reactions to incorporate a new NdeI site and replace the Ncol site in pE coli vector. 

Three Ndel forward primers and Xbal reverse primer were used for the oligonucleotide [CAT] 

synthesis (see Appendix V). At each interval of the PCR, amplified PCR products were run on 

agarose gel (1%) and purified. Subsequently each purified PCR products were diluted to meet 

the starting template amount required for the next PCR.  

After purification of the final PCR product from a gel, the NdeI/XbaI digested PCR product 

was cloned into the pBluescript II SK+ vector (Uwe Klein). The vector contains XhoI-XbaI 
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gene fragment that is taken from pChlamiRNA3int vector (Molnar et al. 2009); for clarity this 

vector is named as an ‘intermediate vector’ from now on.  

To form the transformation vector, the XhoI-XbaI fragment which was digested from the 

intermediate vector was cloned into pChlami vector (Molnar et al. 2009) which had released 

its original XhoI-XbaI fragment region after restriction cutting to form the pChlami-5’rppH-

GFP vector. In the next sections the term pChlami vector is used to refer to the 

pChlamiRNA3int vector that has released the rbcS2-intron sequence. 

2.3 Agarose gel electrophoresis 
 

Determination of the size of DNA was done by running DNA samples on a 1% agarose gel 

containing ethidium bromide [0.17 µg/mL] in TAE buffer (see Appendix I). A 1Kb plus 

standard ladder was used to estimate the size of the DNA fragments or PCR products. The gel 

was run at 90 V for 30 min, and for longer durations when separation of smaller bands were 

needed. Pictures were taken for further analyses.  

2.4 Ethanol precipitation 
 

All DNA samples were precipitated by adding 1/10 volume of Na acetate [3M] and 2× 

volume of 96% ethanol on ice for 30 min. Centrifugation at 4˚ C, washing with 70% ethanol 

was respectively done afterwards. 

2.5 Bacterial cells 
 

TB1 E. coli strain was the host bacteria that was used for all plasmid and vector 

transformation in this study except for recombinant protein expression analyses. Procedures 

for E. coli growth, transformation, maxipreps and minipreps was done by following the lab 

manual and coarse book (Uwe Klein). All E. coli transformants were grown on agar plates 

containing ampicillin (60 µg/mL) as a selection marker, and overnight growth of cultures was 

done for all on LB medium (See Appendix I) supplemented with ampicillin (100 µg/mL). 

2.6 Transformation of Chlamydomonas 
 

Nuclear transformation of the cell wall-less Chlamydomonas strain cw-15 cells, was done by 

Uwe Klein, by following the protocol of (Kindle et al. 1989). Cells were vortexed in the 

presence of linearized DNA (transformation vector), glass beads and polyethylene glycol 

(PEG). Cells were plated out on paromomycin containing agar plates and incubated under 

sterile condition.  
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2.7 Selection of transformants 
                                                                                                                                                                           

Individual colonies were picked once their sizes were clearly visible on the paromomycin 

(50mg/mL) containing agar plate. Each colony that was picked was marked at the back of the 

plate. 

2.8  Cell culture 
 

The mutant strain cw-15 of C. reinhardtii was obtained from cell culture in Chalmaydomonas 

genetic center at duke university NC, USA. Transformants of the alga grown on paromomycin 

containing agar plates were inoculated in 100-mL liquid culture. Cells were maintained on HS 

(high salt) (Sueoka 1960) medium supplimented with [salt stock, phosphate stock and trace 

elements, see Appendix I] at ~24˚ C on light intensity ~ [500 W/m
2
]. Cells were supplimented 

with 2% CO2 in bubbling water chamber (water- bath supplimentd with air) until the growth 

confluency is about ~ 2×10
6
 cells/mL at 32˚C in 12 hours light and 12 hours dark cycle. For 

genomic DNA isolation purposes, cells were collected from the cell culture according to 

laboratory manual (Uwe Klein).  

2.9 Selective marker 
 

Different marker genes are used for developing of transformation in Chlamydomonas. For this 

experiment, the aphVIII gene (encodes for aminoglycoside 3'-phosphotransferase) was used 

which confers paromomycin resistance to the Chlamydomonas cells. aphVIII has a codon 

usage similar to Chlamydomonas genes (GC content of 68.9%), thereby expression of this 

gene in Chlamydomonas cells doesn’t creat random mutations (Sizova et al. 2001). Usually 

expression of a gene from chimeric gene constructs requires strong, constitutive or inducible 

promoter system. Previously a linearized plasmid used to express aphVIII under the control of 

RBCS-HSP70 chimeric promoter and the RBCS terminator generated ~22,000 

Chlamydomonas transformants (Gonzalez-Ballester et al. 2005). Moreover high sensitivity of 

C. reinhardtii cells to paromomycin and the efficient inactivation of paromomycin by 

aphVIII, made the aphVIII gene a good candidate (Sizova et al. 2001). Concentration of 

marker gene will impact the number of transformants obtained per transformation event and 

the number of integrated marker gene copies per transformant. 

2.10 Codon optimization 
 

Codons used frequently in a certain organism are often not used in others. This causes a 

change in the number of tRNAs and significantly affects the translation efficiency. GFP 

(Clontech) which was derived from Zoanthus Sp. was opimized to C.reinherdtii nuclear 

codon sequence (Nakamura et al. 2000). Graphical analyses of codon usage was done by 

using Graphical Codon Usage Analyzer (Fuhrmann et al. 2004). 
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2.11 Screening of transformants with PCR  
 

PCR was used to check whether C.reinherdtii wild type cells have integrated the transgene. 

Template DNAs from C.reinhardtii genome of selected transformants were amplified by 

different primers to analyze the PCR product. The list of primers and the melting temperatures 

can be reffered (Appendix V). 

2.12 Recombinant protein expression in E. coli (BL21DE3) 
 

The pE coli expression vector system (Clontech) contains the hybrid T7 lac promoter as well 

as a lacI gene, which encodes Lac repressor. In lac hybrid promoter system (Clontech), basal 

expression of the protein of interest is repressed by the Lac repressor (lacI), that binds to the 

lac operator, preventing expression of genes from the promoter p lac in the absence of IPTG. 

Isopropyl β-D-1-thiogalactopyranoside (IPTG) is a lactose metabolite in which up on 

addition, causes allosteric conformational change in the repressor (lacI), allowing T7 RNA 

polymerase to gain access to the promoter and initiate transcription of gene coding for beta-

galactosidase.  

 

              

Figure 2.1. Recombinant protein expression in E. coli (BL21DE3) transformed with pE coli-C-

term 6HN vector. Induction of E. coli (BL21 DE3) cells with IPTG enables the T7 RNA polymerase 

machinery to initiate transcription and translation. Basal protein expression is inhibited by lacI in the 

absence of IPTG (Clontech). 

 
The vector also contains an ampicillin resistance gene (Ampr) and a pBR322 origin of 

replication, which maintains the vector at a low-copy-number to reduce basal levels of the 

protein of interest. An origin of replication is sequence of DNA at which replication is 

initiated in plasmids. It determines the vector copy number. The pBR322 replication origin is 

a site from where two RNAs (RNA I and II) are transcribed. RNA I serves as the primer 

initiating transcription which is attached to the 5’ RNA II sequences which is stabilized by 

rop gene product. Hence the stabilization prevents change in the conformation of RNA II 

which would otherwise lead to RNAse H cleavage. Therefor this stabilized bond between the 
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two RNAs maintain replication initiation from a single site or origin and inturn the 

mechanism should also maintain the number of copies of the vector at low level. 

E. coli strain (BL21DE3) was transformed with pE coli-5’rppH-GFP vector. The 

transformants were grown on agar plates containing ampicillin at 37˚C. A 3 mL LB/Amp 

culture was inoculated and was grown overnight. The next day, 2 mL of the overnight culture 

was inoculated in 100mL fresh LB/Amp medium. The culture was incubated on a shaker (200 

rpm) for 2 hours (until the OD reaches 0.6-0.8). The cell culture was induced by adding IPTG 

to a final concentration of [0.22 ng/µL]. Cells were continously induced for 6 hours on a 

shaker (200 rpm). Samples were centrifuged at 5000 rpm/5 min, supernatant was descarded 

and pellet was resuspended in buffer A (Appendix II).   

2.12.1 Purification of Histidine-tagged GFP  
                                                                                                                                                                                           

BL21DE3 cells expressing His-tagged GFP (always kept on ice) suspended in low imidazole 

buffer A (Binding/wash buffer, see Appendix II) were thawed, sonicated three times 5/10 sec 

burst on /off cycle while maintaining the samples on ice, then centrifuged at 4˚C for 10 min, 

at 10,000 rpm. Sequential extraction of samples and washing was done according to the 

laboratory manual (Uwe Klein). 

Preparation of TALON Co resins (Clontech), was done according to the manufacturers guide 

lines. 200 μL TALON Co resin was centrifuged at 1500 rpm for 5 min. Supernatant was 

discarded and the resin was resuspended in 1.5 mL dH2O and centrifuged once more at 1500 

rpm for 5 min. The procedure was repeated with buffer A instead of dH2O. The resin was then 

added to Empty PD-10 Desalting column (Biorad).   

2.13 SDS PAGE 
 

In sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), proteins are 

separated according to their molecular mass under denaturing conditions. Treatment with the 

anionic detergent SDS in heating environment (92˚C) destabilizes secondary and tertiary 

structures, thus denatured proteins gain a uniform net negative charge thereby movement of 

proteins on the gel depends on their size. 

A 12% polyacrylamide solution was prepared by using solutions; dH2O, A, B and APS 

(Appendix II) by carefully mixing. The gel was poured into a casting strand between glass 

plates leaving 1 cm of space between the top of the short plate and the resolving gel level. The 

top part was filled with water. After 30 min polymerization, the floating water was removed 

from the top. Stacking solution was prepared by carefully mixing solutions dH2O, A, B’, and 

APS (Appendix II). The stacking solution (4%) was quickly added to the top of the 12% 

polyacrylamide solution. Then the comb was inserted on top before the stacking solution 

polymerizes. After 30 min polymerization, the comb was taken out and the space between the 

glass plates was rinsed with water to get rid of bubbling. The electrophoresis was done at 90 

V for 15 min and susequently at 120 V for 30 min.  
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3. Results 

3.1 Optimization of GFP 
 

Sequencing of C. reinhardtii nuclear genome revealed a high GC content (65%). Usage of 

codons specific for Chlamydomonas nuclear genes is essential. Previous works have shown 

that adaptation of codon usage of transgenes greatly enhances the expression of transgenes 

because of differences in tRNA abundance (Leon-Banares et al. 2004). It significantly 

improves translation and even promotes efficient integration into the genome (Meslet-

Cladiere and Vallon 2011).  

This study focused mainly on development of a reporter construct for the localization of the 

putative RNA pyrophosphohydrolase in C. reinhardtii. We used ZsGreen 1 GFP as reporter 

molecule from (Clontech), which has a size of 699 bp because of its bright green fluorescence 

with excitation, and emission maxima at 493 and 505 nm, respectively. GFP was codon 

optimized using the Codon Usage Database (Nakamura et al. 2000). Standard format was 

used for code selection. The database lists C. reinhardtii’s codon usage in genes and sum of 

codon; used. The codon usage table lists the relative frequency of each codon for a particular 

amino acid. Triplet codons are grouped according to the fraction of each triplet in the total 

nuclear genomic sequences and the frequency of each triplet per thousand bp of genomic 

sequences (see Appendix IV).  

By using the GCUA tool (Fuhrmann et al. 2004), the GFP sequence was split into triplet , and 

the frequency of each codon was compared to that of 420,455 nuclear C. reinhardtii codons 

from the codon usage table. Thus, the relative adaptiveness defined by the GCUA tool shows 

the percentage of each codon as compared to that of the most preferred C. reinhardtii codon. 

Each GFP codon was manually optimized to codons that are most preferred and frequently 

used in the total nuclear C. reinhardtii genome. Almost all codons of GFP were optimized to 

the most preferred C. reinhardtii nuclear codons as shown in fig. 3.1.  

The sequence was further modified prior to GFP synthesis for cloning into the pE coli-Cterm 

6xHN (Clontech) vector. This vector encodes a 6xHN tag composed of 6 repeating His-Asn 

subunits. For the purpose of GFP expression and purification in E. coli cells, the 6xHN tag is 

incorporated in our gene construct. The stop codon for GFP was removed and an extra [C] 

nucleotide was included just upstream to the start codon of GFP. The optimized and adjusted 

GFP sequence was then synthesized (Life technologies). 
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Figure 3.1. Graphical Codon Usage Analyses. GFP (Zsgreen1) has 699 total codons. Most codons 

were optimized to a relative adaptiveness (vertical line) of > 75% (black bar). Codons that have 

relative adaptiveness of < 20% are also shown (grey bar). The analyses was done by (GCUA) 

(Fuhrmann et al. 2004).  
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3.2 Cloning 
 

Step by step cloning of the synthesized GFP is shown in fig. 3.2. There are four cloning steps 

designated as A, B, C and D. 
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Figure 3.2. Cloning of GFP. Four steps (A-D) of cloning procedures and the restriction sites used are 

shown. Step A; GFP was cloned into pBluescript-5’rppH vector. Step B; 5’rppH-GFP was cloned into 

pE coli-C-term vector. Step C; 5’rppH-GFP was cloned into intermediate vector. Step D; 5’PSAD-

5’rppH-GFP was cloned into pChlami vector (transformation vector). Red color-5’PSAD promoter 

sequences; Grey color-5’rppH region; Black color-GFP; Yellow color; 3’PSAD terminator sequences. 

 

3.2.1 pBluescript II SK+ 5’ rppH-GFP vector: Cloning step A 
 

For the purpose of localization of RppH in C. reinhardtii, the 5’ region of RppH was tagged 

to GFP to be able to follow the localization of the GFP-tagged gene product. Although not 

proven, a signal peptide that directs localization of the RppH protein was assumed to be 

present in the 5’ region of RppH.  

The pBluescript II SK+-5’rppH vector was received from Uwe Klein. It is a pBluescript II 

SK+ with 2961 bp (stratagene) that has the 5’ region of RppH. GFP was cloned into 

pBluescript II SK+-5’rppH at the Smal and Eagl sites to form pBluescript II SK+-5’rppH-

GFP as shown in fig. 3.2 A and fig. 3.3. The restriction site for Smal (CCCGGG) is found one 

nucleotide upstream of the start codon of GFP i.e. at the end of the 5’rppH sequence, and 

Eagl (CGGCCG) is found at the end of the coding region of GFP (see Appendix III). By 

restriction cutting, the vector fig. 3.4 (pSK+-5’rpph-GFP), at EcoRV/Eagl restriction sites 

and subsequent gel-electrophoresis analyses, the vector released a fragment which is ~ 953 bp 

in size as expected (fig. 3.4). The vector used for cloning pBluescript II SK+-5’rppH fig. 3.4 
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(C) was also cut with the same restriction enzymes. From the gel electrophoresis analyses, it 

can be seen that the restriction digested vector released a band (lower) of ~ 250 bp 

corresponding to the 5’ rppH region (see fig. 3.4 ).  

 

 

 

 

 

Figure 3.3. Restriction map for pBluescript II SK+-5’rppH-GFP. The 5’ rppH is represented by vertical 

lines. GFP is represented with diagonal lines. The different restriction sites present in 5’ rppH-GFP gene 

fragment (SmaI, EagI) as well as in the pBluescript SK+ vector (EcoRV, PstI) are shown. EcoRV site is found 

253 bp upstream to the start codon of GFP in the pBluescript II SK+ vector. SmaI and EagI flanked GFP region 

has a size of 700 bp. Dotted line represents sequences in the pBluescript II SK+ vector. 

 

                                            

                                                                                  

 

        

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. Gel electrophoresis analyses of pBluescriptII SK+-5’rppH-GFP vector cut with 

EcoRV/Eagl. Lane 1 (L); is 1kb+ ladder. Lane 2 (pSK+-5’rppH-GFP); is restriction digested 

pBluescriptII SK+-5’rppH-GFP construct. Lane 3 (C); is pBluescript II SK+-5’rppH used for cloning 

as a control. 
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3.2.2 pE coli-C-term-5’rppH-GFP 6×HN vector: Cloning step B 
 

The 5’rppH-GFP gene was amplified by PCR thereby introducing an NcoI restriction site in 

the PCR product. After cutting the PCR product with Ncol/Notl restriction enzymes, the 

5’rppH-GFP gene flanked by Ncol/Notl sites was cloned into Ncol/Notl restriction sites of pE 

coli-C-term 6×HN vector with the same enzymes as shown in fig. 3.2B. The ligation was 

checked with restriction digest of the ligated vector (pE coli-5’rppH-GFP-6HN) by using 

Ncol/Xbal, that releases a weak fragment which is ~ 990 bp as shown in fig. 3.6. 

In the control experiment fig. 3.6 (C), the restriction digest releases a fragment that 

corresponds to the multiple cloning sites (MCS) in the pE coli-C-term 6×HN vector 

(Clontech) between NcoI/XbaI sites. But since the size is very small and the band is too weak, 

it is not seen in the gel electrophoresis analyses. 

      

 

Figure 3.5. Restriction map of 5’rppH-GFP in pE coli vector. The map shows the different 

restriction sites NcoI, SmaI, NotI, XbaI. +1 refers to the translation start site of the fusion protein 

[5’rppH-GFP-6×HN  (boxed)] until the XbaI site. Single dot line represent 39 nucleotide sequences 

that are present in the pE coli-C-term 6×HN vector (MCS). The vertical lines represent 5’rppH (207 

bp) and the diagonal lines represent the GFP region.  
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Figure 3.6. Gel-electrophoresis analyses of pE coli 5’rppH-GFP vector digested with Ncol/Xbal. 

Lane 1 (L) is 1 kb+ ladder; Lane 2 (VC) and Lane 3 (C); are restriction digested vector construct and 

pE coli C-term 6×HN vectors (used for cloning) respectively with Ncol/Xbal.  

3.2.3 Intermediate 5’ rppH-GFP-6×HN vector: Cloning step C 
                                                                                                                                                                     

The intermediate vector which was received from Uwe Klein, is a pBluescriptII-SK+ vector 

that has a 1233 bp Xhol/Xbal fragment taken from the pChlamiRNA3int vector (Molnar et al. 

2009). This fragment has a Chlamydomonas 5’-PSAD promoter region from the XhoI site 

until the NdeI site as can be seen in fig. 3.8.  

 

Figure 3.7. pChlamiRNA3int vector background. Vector map showing the restriction sites, 

selective marker (aphVIII) and the regulatory promoter and terminator regions (Molnar et al. 2009). 
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One of the characterstic features of nuclear genes is the presence of introns in the coding 

region. Transgene expression was shown to significantly increase by the presence of an intron 

in constructs used for ectopic expression in Chlamydomonas (Lumbreras et al. 1998). The 

RBCS2 intron has been widely used in transgene expression in C. reinhardtii. Although this 

system is possible, it takes time to insert the RbcS2 intron into the coding sequence. The 

nuclear encoded PsaD protein which has a size of 20 kDa, encodes an abundant chloroplast 

protein found in the stromal side of the photosystem I complex. The psaD reading frame 

doesn’t have any introns implying that the regulatory sequences should reside in the 5’ and 3’ 

untranslated regions.  

For cloning of 5’rppH-GFP gene into the intermediate vector, a restriction site (Ndel) was 

introduced by PCR at the translation start site of pE coli 5’rppH-GFP (see Appendix V). The 

Ndel site was introduced in 3 PCRs (section 2.2). Each PCR amplification gave a product that 

changed a single nucleotide. Three different 5’ primers and a single 3’ primer at the Xbal site 

were used for oligonucleotide synthesis. The PCR product which is flanked by the Ndel site at 

5’ end and Xbal site at the 3’ end was then cloned into the Ndel/Xbal digested intermediate 

vector. Cloning of the PCR product was checked by digesting the vector with Pvull which 

cuts GFP at two sites that are 186 bp apart (see fig. 3.8) and at two other sites in the vector 

background (see fig 3.9). The restriction digest was run on a 1% agarose gel (fig. 3.9). 

 

 

Figure 3.8. Restriction map of 5’PSAD-5’rppH-GFP-6×HN gene segment in the intermediate 

vector. Shown here are restriction sites (XhoI, NdeI, SmaI, PvuII, NotI and XbaI) relative to +1 which 

is the translation start codon. The 5’ PSAD promoter region is shown in black, vertical and diagonal 

lines represent 5’ rppH and GFP regions respectively. Bold dots represent sequences that are part of 

the vector. 
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Figure 3.9. Gel electrophoresis analyses of PvuII digested Intermediate vector. Lane 1 (L); is 

1kb+ ladder, Lane 2 (I); is an intermediate vector with gene construct (5’rppH-GFP) and Lane 3 (C); 

is an intermediate vector without the gene construct (5’rppH-GFP) used as a control.  

3.2.4 Transformation vector pChlami-5’rppH-GFP-6×HN: Cloning step D  
 

Finally, the gene fragment flanked by Xhol/Xbal was cloned into pChlami vector. First 

pChlamiRNA3int vector was digested by cutting the vector at Xhol/Xbal sites. The gene 

fragment flanked by Xhol/Xbal was also cut out from the intermediate vector and ligated into 

the opened transformation vector at the Xhol/Xbal sites. It is important to note here that the 

transformation vector has no longer the rbcS2-intron sequence which is present in the original 

pChlamiRNA3int vector (fig 3.7).  

 

Figure 3.10. Restriction map of 5’PSAD-5’rppH-GFP-6×HN in pChlami vector. Shown here are 

positions of restriction sites XhoI, NdeI, SmaI, XbaI and SmaI relative to +1 which is the translation 

start codon. The 5’ PSAD promoter region is shown in black; 5’ rppH and GFP regions are 

represented in vertical and diagonal lines respectively. The 3’ PSAD terminator sequence is shown in 

dotted gray color.   

Cloning of the insert in the transformation vector was checked by restriction cutting the vector 

at Xhol/Xbal site and subsequent agarose gel electrophoresis analyses. The expected insert 

size from the Xhol site to the Ndel site and further to the Xbal site is 1814 bp see fig. 3.10. 
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This fragment (approximate size) was released when analyzed by gel electrophoresis as can 

be seen in fig.3.11. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11. Gel electrophoresis analyses of pChlami- 5’rppH-GFP-6×HN vector digested with 

Xhol/Xbal restriction enzymes. Lane 1(L) is 1kb+ ladder; Lane 2 (pC) is digested pChlami- 5’rppH-

GFP-6×HN vector releasing a fragment of ~ 1810 bp (lower band); Lane 3 (C) is digested 

pChlamiRNA3int vector (control) used for cloning releasing a fragment of ~ 1300 bp (lower band). 

The difference between the two lower bands corresponds to the difference between the two (pC and C) 

total vector sequences (581 bp).   

 

3.3 Transformation and selection of transformants 
 

The cell wall-less Chlamydomonas strain cw-15 cells were transformed by Uwe Klein as 

explained in section 2.6. Cells were grown on agar plates containing paromomycin (section 

2.7). Cells which have integrated the marker gene (aphVIII) were selected. It is impossible to 

conclude that cells that have exhibited resistance to paromomycin are all positive 

transformants for the GFP construct. This is because of random integration of sequences into 

the Chlamydomonas nuclear genome. Thus further screening for GFP positive transformants 

at the genomic DNA level was needed. 

 

 

 

 



Results 

28 

 

3.4 Analyses of transformants by PCR  
 

Genomic DNA was isolated as described in section 2.8. Identification of cells harboring the 

introduced gene at the genomic level was done by PCR. More than 15 transformants that were 

resistant to paromomycin were analyzed. And we proceeded with five transformants that we 

thought were GFP positive. A combination of different primers was used to amplify specific 

sequences of genomic DNA at different sites as can be seen in fig.3.12. 

 

 

Figure 3.12. Map of the transformation vector (pChlami 5’PSAD-5’rppH-GFP-6×HN) with the 

different primers that were used to amplify specific sequences by PCR. Each primer (boxed) and 

the respective starting nucleotide positions in each strand depicted are shown relative to +1 which is 

the translation start codon. The 5’ PSAD promoter region is shown in black; 5’ rppH and GFP regions 

are represented in vertical and diagonal lines respectively; 6×HN until the XbaI site (see fig. 3.5) is 

shown as a background color. The 3’ PSAD terminator sequence is shown in dotted gray color. The 

selective marker gene (aphVIII) is shown in gray. Dotted lines represent sequences in the pChlami 

vector. 
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Genomic DNA from the five transformants were amplified by 5’ PSAD6401 and 3’ PSAD495 (see 

fig. 3.13). As a positive control, template gene fragment from the tranformation vector was 

amplified by the same primers. Similarly, as a negative control, Chlamydomonas wild type 

genome was used as a template. 

 

 

Figure 3.13. Gel electrophoresis analyses of PCR products using genomic DNA as a template. 

Lanes 1-5; represent transformant’s (samples 1-5 respectively) genomic DNA amplifications. The 

PCR gave a product which has a size of ~ 780 bp that corresponds to the endogenous psaD. Lane 6 

(+Ve) positive control; is amplified template gene fragment from the transformation vector; Lane 7 

(WT); is the negative control (amplified wild type, Chlamydomonas genomic DNA as a template). The 

positive control (+Ve) shows amplification at ~ 780 bp (lower band) and at 1178 bp (upper band). The 

latter is the expected band size from this PCR. The negative control also shows amplification as 

expected at ~780 bp (psaD) gene size. Lane 8 (L); is ladder used (1Kb+).  

 

The above figure shows that the genomic DNA of the five transformants have a PCR product 

which is ~ 780 bp that corresponds to a fragment from the endogenous psaD gene. The 

expected PCR product ~ 1178 bp, in the positive control (amplified template from 

transformation vector), upper band is also shown in fig. 3.13. On the negative control, the 

primers have amplified a gene fragment that has a similar size to the PCR products from the 

genomic DNA of the transformants and to the positive control (lower band). In the negative 

control (amplified wild type, Chlamydomonas genomic DNA as a template), the expected 

PCR product is 778 bp that corresponds to the wild type endogenous psaD gene from the 

primers used for this amplification.    
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Next, a specific genomic DNA fragment was amplified by using NUD3’-5COMP and 3’GFP 

primers (see fig. 3.14). These primers amplify a gene fragment that has a size of 205 bp (see 

fig. 3.12). The amplification reaction gives PCR products that are 205 bp in size. This is 

expected from this PCR reaction. The positive (amplified template from transformation 

vector) and negative controls (amplified wild type, Chlamydomonas genomic DNA as a 

template) were also included in the PCR. The positive control has a PCR product that is 

similar in size to that of the transformants (samples 1-5 respectively) genomic DNA 

amplification. In the negative control, the DNA amplification has a size of ~ 650 bp. This is 

unexpected in a way that one of the primers (3’GFP) is not supposed to amplify the wild type 

genomic DNA used as a template, since GFP is not present in the Chlamydomonas genomic 

DNA.  

 

Figure 3.14. Gel electrophoresis analyses of PCR products using genomic DNA as a template. 

Lane 1(L); is 1kb+ ladder used. Lane 2-6 (sample 1-5 respectively); represent transformant’s genomic 

DNA amplifications. Lane 7 (+Ve); is amplified transformation vector Lane 8- (WT); is the negative 

control (amplified wild type, Chlamydomonas genomic DNA as a template). Samples 1-5 have PCR 

products at 205 bp which is similar to the positive control. Amplification product in the negative 

control has a size of ~ 650 bp. 

 

The transformants were also screened for the gene that confers paromomycin resistance which 

is present in the transformation vector but absent in the wild type genomic DNA. Figure 3.15 

shows PCR products of gene fragments amplified by using 5’paro4331 and 3’paro4743 primers 

(see fig 3.15). The PCR products from all samples (1-5 respectively) have size of 433 bp. The 

positive control (amplified template from transformation vector) also has a PCR product of 

approximately the same size. The wild type Chlamydomonas lacks the gene that confers 
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paromomycin resistance, aphVIII. Thus, no amplification is seen in the negative control as 

expected. 

 

 

 

 

 

 

 

 

 

Figure 3.15. Gel electrophoresis analyses of PCR products using genomic DNA as a template. 

Lanes 1-5 (samples 1-5 respectively); show PCR amplification at ~ 430 bp as expected. Lane 6 (+Ve); 

is transformation vector that shows amplified fragment, which has a size of ~ 430 bp. Lane 7 (WT); is 

negative control (amplified wild type, Chlamydomonas genomic DNA as a template) which shows no 

amplification since it lacks the aphVIII. Lane 8 (L); is 1Kb+ ladder. 

 

Finally transformants (samples 1-5 respectively) were screened by using 5’NUD GFP and 3’ 

PSAD 495 (see fig. 3.16). From the gel electrophoresis result, only transformant number 5 

(sample 5) gives a PCR product that has a size of ~1070 bp as expected. The amplified gene 

fragment of the positive control (transformation vector) also has the same size (1070 bp). The 

negative control (amplified wild type, Chlamydomonas genomic DNA as a template) shows 

weak products that have sizes of ~ 200 and another at ~ 1000 bp.  

 

 

 

 

 

 

 

 



Results 

32 

 

 

 

 

 

 

 

 

Figure 3.16. Gel electrophoresis analyses of PCR products using genomic DNA as a template. 

Lanes 1-5 (samples 1-5 respectively). Lane 5 (transformant number 5); shows a PCR product that has 

a size of ~ 1070 bp. Lane 6 (+Ve); is amplified transformation vector that gives a PCR product which 

has a size of ~ 1070 bp similar to PCR product from transformant number 5. Lane 7 (WT); is a 

negative control (amplified wild type, Chlamydomonas genomic DNA as a template) that shows weak 

bands at ~200 bp and at ~ 1000 bp. Lane 8 (L); is 1Kb+ ladder.   

3.5 Recombinant protein expression and purification 
 

Recombinant expression of GFP from the jellyfish A. victoria was first accomplished in E. 

coli (Chalfie et al. 1994). To determine if the GFP construct transformed into 

Chlamydomonas is capable of producing functional GFP protein (fluorescence) in vivo, the 

construct was expressed in E. coli cells as described in section 2.12. But fluorescence 

microscopy was not done due to shortage of time. Rather E. coli BL21DE3 lysates were 

purified by His-tag affinity chromatography using cobalt-sepharose. We examined E. coli 

BL21DE3 cell lysates for the expression of the GFP fusion protein.  

 

 

 

 

 

 

Figure 3.17. SDS-PAGE analyses of E. coli BL21DE3 lysates purified by Co sepharose affinity 

chromatography. Lane 1; is prestained protein ladder. Lane 2 (CE); is crude extract showing all 

proteins that are present in E. coli cells. Lane 3 (FT); is the flow through, all proteins that are present 

in the crude extract except for the HN tagged GFP protein (5’rppH-GFP). Lane 4 (S); is the purified 

cell lysate sample (transformed with pE coli-5’rppH-GFP-6×HN) that was made in this experiment. 

Lane 5 (C); is a purified 5’rppH-GFP-6×HN protein as a control. The purified sample (S) does not 

show any proteins that are purified. The purified sample (C) shows the expected 5’rppH-GFP-6×HN 

tagged protein size which is 36 kDa. 
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The SDS-PAGE analyses shows E. coli BL21DE3 lysates purified by affinity 

chromatography. Crude extracts (CE) in Lane 2 in fig. 3.17, are all proteins in the cell. The 

flow throw (FT), are polypeptides that have no affinity to the metal (cobalt) therefore directly 

pass through the column. Due to the high affinity of histidine which is tagged to the N-

terminal region of GFP, to the metal ion, the tagged protein remains bound to the resin. The 

tagged protein is eluted with elution buffer which has a higher imidazole concentration than 

the washing buffer. The size of the fusion protein (5’rppH-GFP-6×HN) is 36 kDa. We have 

tried to express this protein in E. coli. From fig. 3.17, the construct that was made in this 

experiment (S) didn’t show any purified protein signal. But other already induced E. coli cells 

received from Uwe Klein represented as (C) on fig. 3.17 shows a band that is ~ 36 kDa in size 

which is the expected band size for the fusion GFP protein. 
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4. Discussion 
 

To develop a reporter gene for expression in the C. reinhardtii nucleus, a codon optimized 

GFP gene was synthesized. The reporter GFP fused to the 5’ region of the rppH gene was 

used to transform C. reinhardtii cells. Transformants were then screened at the genomic level 

for GFP positives. 

Codon optimization of synthetic GFP 

Nuclear-based ectopic expression in C. reinhardtii is highly codon biased with G or C 

preferred at the third position. Events causing gene silencing in C. reinhardtii are related to 

inappropriate nucleotide sequences (Fuhrmann et al. 1999). In addition, previous reports have 

shown that codon usage affects the level of expression of recombinant proteins in the C. 

reinhardtii (Franklin et al. 2002). Other experiments have also shown that the cellular tRNA 

abundance is correlated with the number of tRNA genes and is adjusted to the codon usage to 

optimize translation efficiency in C. reinhardtii (Cognat et al. 2008). Moreover the extent of 

codon bias for each gene is related to the protein production level (Nakamura et al. 1999).  

Previously synthetic GFP tagged to a protein reflecting the C. reinhardtii nuclear codon usage 

was expressed in C. reinhardtii which allowed the visualization of the recombinant protein. 

We have optimized GFP according to the nuclear C. reinhardtii codon usage preference by 

using Codon Usage Database. The fraction of each codon usage from the GFP was computed 

to that of C. reinhardtii nuclear genome codon usage. Among the total 233 codons in GFP, 

198 were optimized to the most frequently used codons in C. reinhardtii i.e. 100% relative 

adaptiveness as defined by the GCUA tool. 4 of the GFP codons were optimized to those that 

are not as most frequently used, but moderately used in the C. reinhardtii nuclear genome. 

There is one codon in the GFP sequence that codes for glycine (GGT) which is not optimized 

at all (relative adaptiveness ˂20%). Genes encoding highly expressed proteins tend to utilize 

codons whose levels of tRNAs are particularly abundant. rbcL which is highly expressed in 

the C. reinhardtii genome was computed in the same way as was done for GFP. From the 

analyses, it is evident that around 7% of the total codon sequence have relative adaptiveness 

(as defined by GCUA) below 20%.  

Expression of GFP in E. coli BL21DE3 

GFP was expressed in E. coli cells to validate its function (fluorescence) in vivo. Due to 

shortage of time, fluorescence couldn’t be analyzed. But E. coli BL21DE3 cell lysates were 

purified by Co sepharose affinity chromatography to detect the chimeric GFP protein. SDS-

PAGE analyses of the synthesized GFP expressed in E. coli cells shows that the expression 

level of the protein is low as seen in the control experiment. This is expected in a way that the 

GFP codon sequences were not optimized to that of bacterial cells genome codon usage rather 

to C. reinhardtii nuclear genome.  
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Nuclear transformation of C. reinhardtii 

Nuclear transformation in C. reinhardtii is random. Although billions of cells were used to 

transform C. reinhardtii, we could only proceed with 5 transformants that integrated the 

paromomycin resistance gene. We primarily used PCR for transformant screening at the 

genomic level. Since results from PCR do not differentiate between genomic and ectopic 

fragment amplification, we used our construct (transformation vector) as a positive control 

and wild type C. reinhardtii genomic DNA as a negative control to determine positive 

transformants.  

Transformants were first screened for gene fragment that is amplified by primers that anneal 

at the 5’ and 3’ PSAD regulatory regions. The expected PCR product amplification for the 

transgene is 1178 bp. This could not be verified from this PCR for all the transformants. In 

addition the wild type C. reinhardtii genomic DNA has psaD gene flanked by 5’ and 3’ UTR. 

Amplification product of the negative control by the primers used gives a PCR product which 

is ~ 780 bp, expected product for the endogenous amplification. In the same experiment the 

positive control has amplification products of two sizes at ~ 1180 and at ~ 780 bp. This could 

either be contamination with the wild type genomic DNA or that the PCR was not optimal to 

amplify a template gene fragment that has a larger size. The possibility that the positive 

control is contaminated is less likely that all the PCR reagents were prepared in master mix 

first and that the template DNA was added to the respective reaction tubes. In addition the fact 

that only the endogenous genomic DNA amplification from the transformants imply that the 

PCR was not optimal (concentration, annealing temperature and elongation time) for larger 

size template DNA. The PCR was optimized by altering the annealing temperature, but valid 

results could not be obtained. Additional experiment can be done to optimize the PCR more 

by altering the primer concentrations and adjust the concentration of magnesium ions.  

We further screened the transformants with primers that amplify a gene fragment from the 5’ 

rppH region to the 5’ end of GFP. The PCR product for all genomic DNA from the 

transformants and the positive control (transformation vector) has a size of 205 bp as 

expected. The negative control (wild type genomic DNA) on the other hand has a PCR 

product which was not expected in this PCR since there is no GFP in the wild type genome. 

But other results (not shown) have implicated that the NUD 3’-5 COMP primer binds non-

specifically. Transformants were also screened for aphVIII gene which encodes for 

aminoglycoside 3'-phosphotransferase that confers resistance to paromomycin. All the 

specific transformant genomic DNA amplification with primers that amplify the aphVIII gene 

sequence have product sizes of ~ 430 bp similar to the amplification product from the 

transformation vector (positive control). The wild type genomic DNA lacks aphVIII therefore 

no amplification is seen in the negative control. 

Finally all transformants were screened with primers that amplifies a gene fragment that has a 

size of 1072 bp. We found one transformant (№ 5) that is positive for this screening that has a 

similar amplification product with the positive control. The wild type genomic DNA 

amplification shows that there is non-specific binding of the primers. Further optimization of 
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the primers can be applied by altering the annealing temperatures and changing the 

concentration of the magnesium ions in the PCR.  
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5. Conclusion 
 

Vector constructs made for this experiment were analyzed by restriction cutting analyses. All 

analyses show that the vectors have incorporated the 5’ rppH-GFP gene fragment. The 

transformation vector, which is the reporter vector construct was as well validated by 

restriction cutting analyses.  

The screening of transformants for positives has led us to choose one transformant (№ 5) that 

seems to harbor the GFP transgene. Further analyses needs to be done to verify expression of 

the transgene at the mRNA and protein levels. From these experiments it is possible to 

conclude that transformants that have incorporated the paromomycin resistance gene don’t 

necessarily have the GFP transgene.  

Further work 

Even though there was an attempt to express GFP by the pE coli vector construct which was 

made in this study, it was not possible to detect GFP when the purified sample was run on 

SDS-PAGE. Normally E. coli cells transformed with a protein expression vector induced with 

IPTG (depending on the concentration, timing and length of induction) should be able to 

express the protein of interest. Even though the cells were induced by following the protocol 

and later with slight modification, such as various timing of induction (result not shown), it 

was impossible to detect the fusion protein in all cases. Moreover, the construct has been 

validated by restriction cutting as shown in fig. 3.6. Nevertheless the vector was not 

sequenced. So further work can be done to sequence the vector construct and also detect the 

fluorescence of the protein in E. coli cells. 

In addition in the control experiment, the purified sample shows other purified proteins in 

addition to what is expected for the fusion GFP protein. Thus to be certain that GFP is indeed 

expressed in these E. coli cells and that the result is not an artifact of certain experimental 

error, the sample could be analyzed by mass spectrometry (MS). By applying prior washing 

and elution conditions, the presence of imidazole and high salt concentration can be adjusted 

unless and otherwise would increase mass spectrometry backgrounds. Furthermore by using 

specific antibody against GFP or HN tag, immunoprecipitation technique can be applied to 

precipitate the fusion protein.  

Conventional PCR provides limited information on the number of inserts (copy number). In 

addition false negatives can result from problems with long-range PCR or low amounts of 

DNA. Therefore further validation of the transformant can be done to have further 

information on the copy number of the transgene before proceeding with the transcription 

analyses. Even though Southern analyses is laborious, time consuming and requires large 

amounts of high-quality DNA when compared to conventional PCR, screening with Southern 
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blot analyses identifies targeted transformants and permits analyses of the copy number of the 

transgene. 

Furthermore, before concluding that transformant (№ 5) could be used for the localization of 

RNA pyrophosphohydrolase in C. reinhardtii cells, it is advisable to confirm the transcription 

of the transgene. RNA can be isolated and further hybridization based experiments (e.g 

Northern blot) can be done by designing specific probes. Alternatively, the RNA template can 

be reversibly transcribed to synthesize cDNA, and gene expression could be analyzed by 

using real-time reverse transcription polymerase chain reaction (RT-PCR) which uses 

fluorescent reporter molecules to monitor the production of amplification products during 

each cycle of the PCR reaction.  
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APPENDIX I 
 

Agarose gel electrophoresis: 

 

TAE (50×)/L                                     Loading buffer 

242g Tris base                                 0.25% bromphenol blue 

57.1 mL glacial acetic acid…………0.25% xylene cyanol FF 

100 mL 0.5M EDTA (pH 8.0)          30% glycerol 

LB medium/L:                           LBAmp/L Plates:           

10 g tryptone                             10 g  tryptone     

5 g yeast extract                         5 g yeast extract 

 10 g NaCl                                 10 g NaCl 

                                                  15 g agar 

                                                  100 µg Amp        

 

psaD gene 

HS media 

Salt stock (50×)/0.5 L:     Phosphate stock (50×)/0.5 L:             Hutner trace elements/L: 

12.5g NH4Cl                        47g k2HPO4.3H2O             compound          amount       water  

0.50g MgSO4.7H2O             18g KH2PO4                EDTA disodium salt     50 g           250 mL  

0.25g CaCl2.2H2O                                                         ZnSO4 . 7 H2O          22 g          100 mL  

                                                                                                    H3BO3       11.4 g          200 mL  

                                                                                      MnCl2 . 4 H2O       5.06 g            50 mL  

                                                                                        CoCl2. 6 H2O       1.61 g            50 mL  

                                                                                     CuSO4 . 5 H2O        1.57 g            50 mL  

                                                                         (NH4)6Mo7O24. 4 H2O        1.10 g            50 mL  

                                                                                       FeSO4. 7 H2O        4.99 g            50 mL         
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APPENDIX II 

 

SDS page buffers: 

Solution A (Acrylamide)-[30%] 

Solution B (Tris-HCl)-[1.5M] 

Solution B’ (Tris-HCL)- [0.5M] 

12% polyacryl amide gel: 

dH2O-1.425 mL 

Solution A -1.65 mL 

Solution B-1.03mL 

Ammonium persulfate [10%]-16.25 µL 

4% Stacking gel: 

dH2O-1.8 mL 

Solution A-0.4 mL 

Solution B’-0.75 mL 

Ammonium persulfate [10%]-30 µL 

1×electrode buffer: 

Tris base   3 g 

Glycine     14.6 g 

SDS          1 g 

Affinity chromatography buffers: 

Buffer A (Binding/wash buffer):                  Sodium phosphate-[20 mM] 

                                                                  NaCl-[500 mM] 

                                                                  Imidazole, pH 7.3-[20 mM] 

Buffer B (Elution buffer):                           Sodium phosphate-[20 mM] 

                                                                  NaCl-[500 mM]  

                                                                  Imidazole, pH 7.3-[500 mM] 
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APPENDIX III 

 

pChlami-5’rppH-GFP 6HN transformation vector sequence 

 

       1                                           C ATATGGACGA GGGAGACGCG 
      22  CCCGCTGCCG CCCCTGGTGG CGTTCGGCTG CTTGTGGTGG TGGGTGTGGT CCTGCTGGAC 

      82  GACCCACTGT GGGACCACGA GACGGGCGAG CCCAGCAAGG GCGCCGCCGC CGCGGATCGG 

      142 CCTGTGCGGG TGCTGCTGGC TCGGCGGCCT GTGGGCAAGA GCAACGCGGG GCTGTGGGAG 

      202 TTCCCGGGCA TGGCCCAGAG CAAGCACGGC CTGACCAAGG AGATGACCAT GAAGTACCGC 

      262 ATGGAGGGCT GCGTGGACGG CCACAAGTTC GTGATCACCG GCGAGGGCAT CGGCTACCCC 

      322 TTCAAGGGCA AGCAGGCCAT CAACCTGTGC GTGGTGGAGG GCGGCCCCCT GCCCTTCGCC 

      382 GAGGACATCC TGAGCGCCGC CTTCATGTAC GGCAACCGCG TGTTCACCGA GTACCCCCAG 

      442 GACATCGTGG ACTACTTCAA GAACAGCTGC CCCGCCGGCT ACACCTGGGA CCGCTCGTTC 

      502 CTGTTCGAGG ACGGCGCCGT GTGCATCTGC AACGCCGACA TCACCGTGTC CGTGGAGGAG 

      562 AACTGCATGT ACCACGAGAG CAAGTTCTAC GGCGTGAACT TCCCCGCCGA CGGCCCCGTG 

      622 ATGAAGAAGA TGACCGACAA CTGGGAGCCC AGCTGCGAGA AGATCATCCC CGTGCCCAAG 

      682 CAGGGCATCC TGAAGGGCGA CGTGTCCATG TACCTGCTGC TGAAGGACGG CGGTCGCCTG 

      742 CGCTGCCAGT TCGACACCGT GTACAAGGCC AAGAGCGTGC CCCGCAAGAT GCCCGACTGG 

      802 CACTTCATCC AGCACAAGCT GACCCGCGAG GACCGCAGCG ACGCCAAGAA CCAGAAGTGG 

      862 CACCTGACCG AGCACGCGAT CGCCAGCGGC AGCGCCCTGC CCGGCGGCCG CCTGGTTCCG 

      922 CGTGGCTCTC CGGGCGCTGC AGGTCATAAT CATAATCATA ATCATAATCA TAATCACAAT 

      982 TAATTAATTA ATCTAGAtgg cagcagctgg accgcctgta ccatggagaa gagctttact 

     1042 tgccgggatg gccgatttcg ctgattgata cgggatcgga gctcggaggc tttcgcgcta 

     1102 ggggctaggc gaagggcagt ggtgaccagg gtcggtgtgg ggtcggccca cggtcaatta 

     1162 gccacaggag gatcaggggg aggtaggcac gtcgacttgg tttgcgaccc cgcagttttg 

     1222 gcggacgtgc tgttgtagat gttagcgtgt gcgtgagcca gtggccaacg tgccacaccc 

     1282 attgagaaga ccaaccaact tactggcaat atctgccaat gccatactgc atgtaatggc 

     1342 caggccatgt gagagtttgc cgtgcctgcg cgcgccccgg gggcgcagtt tagctgacca 

     1402 gccgtgggat gatgcacgca tttgcaagga cagggtaatc acagcagcaa catggtgggc 

     1462 ttaggacagc tgtgggtcag tggacggacg gcaggggagg gacggcgcag ctcgggagac 

     1522 agggggagac agcgtgactg tgcaatgcgg ccgccaccgc ggtggagctc caattcgccc 

     1582 tatagtgagt cgtattacgc gcgctcactg gccgtcgttt tacaacgtcg tgactgggaa 

     1642 aaccctggcg ttacccaact taatcgcctt gcagcacatc cccctttcgc cagctggcgt 

     1702 aatagcgaag aggcccgcac cgatcgccct tcccaacagt tgcgcagcct gaatggcgaa 

     1762 tgggacgcgc cctgtagcgg cgcattaagc gcggcgggtg tggtggttac gcgcagcgtg 

     1822 accgctacac ttgccagcgc cctagcgccc gctcctttcg ctttcttccc ttcctttctc 

     1882 gccacgttcg ccggctttcc ccgtcaagct ctaaatcggg ggctcccttt agggttccga 

     1942 tttagtgctt tacggcacct cgaccccaaa aaacttgatt agggtgatgg ttcacgtagt 

     2002 gggccatcgc cctgatagac ggtttttcgc cctttgacgt tggagtccac gttctttaat 

     2062 agtggactct tgttccaaac tggaacaaca ctcaacccta tctcggtcta ttcttttgat 

     2122 ttataaggga ttttgccgat ttcggcctat tggttaaaaa atgagctgat ttaacaaaaa 

     2182 tttaacgcga attttaacaa aatattaacg cttacaattt aggtggcact tttcggggaa 

     2242 atgtgcgcgg aacccctatt tgtttatttt tctaaataca ttcaaatatg tatccgctca 

     2302 tgagacaata accctgataa atgcttcaat aatattgaaa aaggaagagt atgagtattc 

     2362 aacatttccg tgtcgccctt attccctttt ttgcggcatt ttgccttcct gtttttgctc 

     2422 acccagaaac gctggtgaaa gtaaaagatg ctgaagatca gttgggtgca cgagtgggtt 

     2482 acatcgaact ggatctcaac agcggtaaga tccttgagag ttttcgcccc gaagaacgtt 

     2542 ttccaatgat gagcactttt aaagttctgc tatgtggcgc ggtattatcc cgtattgacg 

     2602 ccgggcaaga gcaactcggt cgccgcatac actattctca gaatgacttg gttgagtact 

     2662 caccagtcac agaaaagcat cttacggatg gcatgacagt aagagaatta tgcagtgctg 

     2722 ccataaccat gagtgataac actgcggcca acttacttct gacaacgatc ggaggaccga 

     2782 aggagctaac cgcttttttg cacaacatgg gggatcatgt aactcgcctt gatcgttggg 

     2842 aaccggagct gaatgaagcc ataccaaacg acgagcgtga caccacgatg cctgtagcaa 

     2902 tggcaacaac gttgcgcaaa ctattaactg gcgaactact tactctagct tcccggcaac 

     2962 aattaataga ctggatggag gcggataaag ttgcaggacc acttctgcgc tcggcccttc 

     3022 cggctggctg gtttattgct gataaatctg gagccggtga gcgtgggtct cgcggtatca 

     3082 ttgcagcact ggggccagat ggtaagccct cccgtatcgt agttatctac acgacgggga 

     3142 gtcaggcaac tatggatgaa cgaaatagac agatcgctga gataggtgcc tcactgatta 
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     3202 agcattggta actgtcagac caagtttact catatatact ttagattgat ttaaaacttc 

     3262 atttttaatt taaaaggatc taggtgaaga tcctttttga taatctcatg accaaaatcc 

     3322 cttaacgtga gttttcgttc cactgagcgt cagaccccgt agaaaagatc aaaggatctt 

     3382 cttgagatcc tttttttctg cgcgtaatct gctgcttgca aacaaaaaaa ccaccgctac 

     3442 cagcggtggt ttgtttgccg gatcaagagc taccaactct ttttccgaag gtaactggct 

     3502 tcagcagagc gcagatacca aatactgtcc ttctagtgta gccgtagtta ggccaccact 

     3562 tcaagaactc tgtagcaccg cctacatacc tcgctctgct aatcctgtta ccagtggctg 

     3622 ctgccagtgg cgataagtcg tgtcttaccg ggttggactc aagacgatag ttaccggata 

     3682 aggcgcagcg gtcgggctga acggggggtt cgtgcacaca gcccagcttg gagcgaacga 

     3742 cctacaccga actgagatac ctacagcgtg agctatgaga aagcgccacg cttcccgaag 

     3802 ggagaaaggc ggacaggtat ccggtaagcg gcagggtcgg aacaggagag cgcacgaggg 

     3862 agcttccagg gggaaacgcc tggtatcttt atagtcctgt cgggtttcgc cacctctgac 

     3922 ttgagcgtcg atttttgtga tgctcgtcag gggggcggag cctatggaaa aacgccagca 

     3982 acgcggcctt tttacggttc ctggcctttt gctggccttt tgctcacatg ttctttcctg 

     4042 cgttatcccc tgattctgtg gataaccgta ttaccgcctt tgagtgagct gataccgctc 

     4102 gccgcagccg aacgaccgag cgcagcgagt cagtgagcga ggaagcggaa gagcgcccaa 

     4162 tacgcaaacc gcctctcccc gcgcgttggc cgattcatta atgcagctgg cacgacaggt 

     4222 ttcccgactg gaaagcgggc agtgagcgca acgcaattaa tgtgagttag ctcactcatt 

     4282 aggcacccca ggctttacac tttatgcttc cggctcgtat gttgtgtgga attgtgagcg 

     4342 gataacaatt tcacacagga aacagctatg accatgatta cgccaagcgc gcaattaacc 

     4402 ctcactaaag ggaacaaaag ctgggtaccc gcttcaaata cgcccagccc gcccatggag 

     4462 aaagaggcca aaatcaacgg aggatcgtta caaccaacaa aattgcaaaa ctcctccgct 

     4522 ttttacgtgt tgaaaaagac tgatcagcac gaaacgggga gctaagctac cgcttcagca 

     4582 cttgagagca gtatcttcca tccaccgccg ttcgtcaggg ggcaaggctc agatcaacga 

     4642 gcgcctccat ttacacggag cggggatccc aacgtccaca ctgtgctgtc acccacgcga 

     4702 cgcaacccta cccagccacc aacaccatca ggtccctcag aagaactcgt ccaacagccg 

     4762 gtaaaacgcc agcttttcct ccgataccgc cccatcccac ccgcgcccgt actcccgcag 

     4822 gaacgccgcg gaacactccg gcccgaacca cgggtcctcc tcgtgggcca gctcgcgcag 

     4882 caccagcgcg agatcggagt gccggtccgc acggccgacc cgccccacgt cgatcagccc 

     4942 ggtcacctcg caggtacgag ggtcgagcag cacgttgtcc gggcacaggt gaccgtggca 

     5002 aaccgccaga tcctcgtccg caggccgagt ccgctccagc tcggcgagaa gccgctcccc 

     5062 cgaccacccc ttccgctcct cgtccagatc ctccaagtcg acgctccctt cagcgacagc 

     5122 acgggccgcc tgcggcaccg tcaccgcgag actgcgatcg aacggacacc gctcccagtc 

     5182 cagcgcgtgc agcgaacgag cgagccccgc gagcgccacc gccacgtcca gccgctgctc 

     5242 ccgcggccac cgcgcactgg ccggacgccc cggaaccgct tcggtgacca accaggcgac 

     5302 cctctcgtcc ccaccaccct ccacaacacg aggtacggga atccccacct ccgccaacca 

     5362 caccagccgc tcagcctcac ccaacaagcc caccccggcc cccagagctg ccaccttgac 

     5422 aaacaactcc cgcccaccac cccgaagccg ataaacacca gcccccgagg ccccatcctc 

     5482 cacaacaacc cactcacaac cgggataccg accccgcagt gcacgcaacg catcgtccat 

     5542 gcttcgaaat tcttcagcac cggggagggc ggagtggcca tcctgcaaat ggaaacggcg 

     5602 acgcagggtt agatgctgct tgagacagcg acagaggagc caaaagcctt cgtcgacaca 

     5662 atgcgggcgt tgcaagtcaa atctgcaagc acgctgcctg atccgccggg cttgctcgtc 

     5722 gactcacctg gccattttaa gatgttgagt gacttctctt gtaaaaaagt aaagaacata 

     5782 ggccccctgg ccggtttatc aggagggcac cgctccaggg gctgcatgcg aactgcttgc 

     5842 attggcgcct agcctttgtg ggccaggggg cttccggata agggttgcaa gtgctcaaat 

     5902 accccatcaa acatcatcct ggtttggctg cgctccttct ggcgcgcccg gcatgcaagc 

     5962 ttgatgggat cttaagctag ctgagtggtt atgtatagcg gcagaatagt cgcgtatgta 

     6022 taagtgctcg tttgtcgctg aaagtggagg tcaccgttcg gggtcgcggg cttttatacc 

     6082 ggatgggtgc cgccagcggg ccgtatggcg ccttctggac gccgcgcgcc ccatcgcggc 

     6142 ccttccagag cttcccgcgc cctcatagcc cgccaaatca gtcctgtagc ttcatacaaa 

     6202 catacgcacc aatcatgtca agcctcagcg agctccccgc tcgagcacac acctgcccgt 

     6262 ctgcctgaca ggaagtgaac gcatgtcgag ggaggcctca ccaatcgtca cacgagccct 

     6322 cgtcagaaac acgtctccgc cacgctctcc ctctcacggc cgaccccgca gcccttttgc 

     6382 cctttcctag gccaccgaca ggacccaggc gctctcagca tgcctcaaca acccgtactc 

     6442 gtgccagcgg tgcccttgtg ctggtgatcg cttggaagcg catgcgaaga cgaaggggcg 

     6502 gagcaggcgg cctggctgtt cgaagggctc gccgccagtt cgggtgcctt tctccacgcg 

     6562 cgcctccaca cctaccgatg cgtgaaggca ggcaaatgct catgtttgcc cgaactcgga 

     6622 gtccttaaaa agccgcttct tgtcgtcgtt ccgagacatg ttagcagatc gcagtgccac 

     6682 ctttcctgac gcgctcggcc ccatattcgg acgcaattgt catttgtagc acaattggag 

     6742 caaatctggc gaggcagtag gcttttaagt tgcaaggcga gagagcaaag tgggacgcgg 

     6802 cgtgattatt ggtatttacg cgacggcccg gcgcgttagc ggcccttccc ccaggccagg 
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     6862 gacgattatg tatcaatatt gttgcgttcg ggcactcgtg cgagggctcc tgcgggctgg 

     6922 ggagggggat ctgggaattg gaggtacgac cgagatggct tgctcggggg gaggtttcct 

     6982 cgccgagcaa gccagggtta ggtgttgcgc tcttgactcg ttgtgcattc taggacccca 

     7042 ctgctactca caacaagccc a 

 

 

 

Features: 
 

Purple-5’rppH (4..210). 

Green-GFP (210..906). 

Light Blue-Histidine tag (946..982). 

Orange-3’PSAD terminator region (994..1379). 

Dark blue- HSP70A-RBCS2_promoter::aphVIII::RBCS2_terminator (4430..6241). 

Red-5’PSAD promoter region (6242..7062). 

Double Underlined-Different primers used . 

Single Underlined-Ndel/Xbal/Notl/Xhol/SmaI/EagI restriction sites. 

TT-The 5’ and 3’ end of second and first primers in their respective strand. 
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Codon Usage Table 

 

(Nakamura et al. 2000). 
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APPENDIX V 

 

Primer List: 

Genomic DNA amplification: 

PCR at annealing temperature of 63 ˚C 

5’PSAD6401 : 5’- CGCCGAGCAAGCCAGGGTTA-3’ Tm (63.5˚C)  

3’PSAD495 : 5’-GCGAAAGCCTCCGAGCTCCGAT-3’ Tm (65.8˚C)  

PCR at annealing temperature of 63.5 ˚C 

NUD3’-5COMP: 5’-TTCGGCTGCTTGTGGTGGTGGG-3’ Tm (54˚C) 

3’GFP: 5’-GTCATCTCCTTGGTCAGGCCG-3’ Tm (64 ˚C)  

PCR at annealing temperature of 61 ˚C 

5’paro4331:5’-ACGGCCGACCCGCCCCACGT-3’ Tm (69.6 ˚C) 

3’paro4743-:5’-GATTCCCGTACCTCGTGTTGT-3’ Tm (59.8 ˚C) 

PCR at annealing temperature of 61 ˚C 

5’NUD GFP:5’-CTGCCGCCCCTGTGGCGTT-3’ Tm (67.6 ˚C)  

3’ PSAD 495: 5’-GCGAAAGCCTCCGAGCTCCGAT-3’ Tm (65.8˚C) 

 

Plasmid DNA amplification: 

PCR at annealing temperature of 65 ˚C, pBluescriptII SK+ 

5'NUD-22 Forward : 5’-ACCTTTGCCACCATGGACGAG-3’ 

5'NUD-22 Reverse : 5’-GGAAACAGCTATGACCATG-3’ 

PCR PCR at annealing temperature of 65 ˚C ,NcoI→NdeI 

Forward : 5’-AAGAAGGAGATATACTATGGACGA-3’ 

                 5’-AAGAAGGAGATATAATATGGACGA-3’ 

                 5’-AAGAAGGAGATATCATATGGACGA-3’  

Reverse : 3’-CCAACTCAGCTTCCTCTAGAT-5’ 
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Abbreviations: 

Ampr-Ampiciline resistant 

AphVIII- Aminoglycoside 3'-phosphotransferase type VIII 

APS- Ammonium persulfate 

MCS-Multiple cloning sites 

NEP- Nuclear-encoded plastid RNA polymerase 

ORF-Open reading frame 

PEP- Plastid encoded RNA polymerase 

PPR- Pentatricopeptide repeat proteins 

RBCS2-HSP 70- Ribulose bisphosphate carboxylase small chain 2-Heat shock prtein 70 

Rpm-Rounds per minute 

SDS-PAGE-Sodium dodecyl sulfate polyacrylamide gel electrophoresis 

TAE- Tris-acetate-EDTA 

UTR- Untranslated region 
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Bioinformatic tools: 

C.U.D (http //www.kazusa.or.jp/codon) 

Expasy (http://www.expasy.org/) 

GCUA (http://gcua.schoedl.de/) 

KEGG pathway (http://www.genome.jp/kegg/pathway.html) 

NCBI (http://www.ncbi.nlm.nih.gov/) 

NEB cutter V2.0 (http://tools.neb.com/NEBcutter2/) 

Uniprot (http://www.uniprot.org/) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


