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Chapter 1

Introduction

The cardiovascular system consists of the heart and the vessels. The pressure
in the arteries is regulated by the baroreflex, which means pressure reflex.
The main purpose of this thesis is to couple a baroreflex model by Toska et
al [4, 14] that previously was connected to a simple Windkessel model, to a
closed loop circulation model with a four-chamber elastic heart that models
pulsatile blood flow [1]. The latter model is called Circ_with Baroreceptors,
or CwB. The CwB model was written in JSim’s MML (Mathematical Mod-
eling Language), and the Toska model was programmed in Matlab. Both of
these were converted into Python in the beginning of the project.

We will introduce common and specific models for resistance, flow, pres-
sure, volume and compliance of blood vessels. We will particularly focus on
how the baroreflex regulate the arterial blood pressure. The baroreflex is a
part of the central nervous system.

The Toska model was made with the intension to optimize parameters
of a baroreflex model to individuals. We will test the Toska model against
measurements, for randomized start parameters. Originally it had only been
tested against two parameter sets for each subject. We want to find out how
stable the results from the optimizing process are.

When we connect the Toska baroreflexes to the pulsatile CwB circulation,
we need to make some adjustments to the model to retain the original intent.
This is particularly important for regulating the force of contraction. In the
CwB heart model the compliance of the heart muscle varies over the heart
beat. The Toska circulation involves average values beat-to-beat.

We compare the CwB model with both original and Toska baroreflexes,
to find if the Toska model works when it comes to regulating the CwB
circulation. We are interested in whether the Toska barorefex parameter
values that fit the CwB circulation are within the values that were optimized
when running the original Toska model for the individual measurements.



CHAPTER 1. INTRODUCTION



Chapter 2

Circulation models

Any model of the circulatory system will make choices about the level of
detail that is desirable or practical, depending on what we want to study.
A brief physiological overview of the circulation system shows that blood
flows from the heart into the arteries, then enters the capillaries where the
gas exchange occurs, and is finally transported back to the heart through
the veins. The vessels that take blood depleted of oxygen from the right
ventricle of the heart to the lungs, make up the pulmonary circulation. The
vessels that take oxygen rich blood from the left ventricle out to all the cells
in the body, are called the systemic circulation.

To each kind of vessel one assigns different properties to get the right
behaviour. The resistance to flow in a vessel is dependant on viscosity of the
blood and the radius of the vessel. Vessels with smaller radius have a larger
resistance. When a pulse of blood enters an artery the compliant walls makes
the vessel expand, and when the flow into the arteries diminish between heart
beats, the loss of pressure will make the walls fall back, pushing flow through
to the rest of the system. This is called elastic recoil, [10] The amplitude of
the pressure pulse decreases throughout the circulation due to friction forces.
In the veins the flow is almost steady.

Mathematical formulas can either be based on theoretical considerations
of flow through vessels of given properties, or curve fitting based on results
from experiments. Regarding the two main models of this thesis, we note
that the CwB model has separated a number of different vessels, while the
Toska model lacks a pulmonary circulation.

The overall purpose of this section is to present the building blocks that
together make up the system of ordinary differential equations (ODEs) in
the case of the CwB model, and the beat-to-beat discrete algebraic equations
of the Toska model.

The CwB model source code presents some reference equations, among
them equations for linear resistance and compliance vessels. To some of
these equations one can find mathematical analogues to formulas for electric

3



4 CHAPTER 2. CIRCULATION MODELS

circuit components, which makes it easier to make comprehensible drawings
of different circulation models.

2.1 Linear resistance and compliance vessels

We want to work with simple vessels, so for instance we lump together all the
systemic capillaries into one vessel and make a choice whether it is resistance
to flow or compliant vessel wall that is most important to describe for the
vessel.

A resistance vessel has inflexible walls so that the blood volume it can
contain is fixed. This means that the flow into the vessel must be equal to
the flow out of the vessel. The flow, @ through a resistance vessel depends
linearly on the pressure drop, AP

AP
Q="+ (2.1)

and the resistance, R is the opposition to this flow.

This is analogous of Ohm’s Law, which states that the current is directly
proportional to the electric potential drop over the wire/resistor. A resistor
is only said to obey Ohm’s Law if the resistance is constant, see for instance
[15, p. 950-951].

In a compliance vessel the walls are flexible. The volume in the vessel
depends on the pressure, and the compliance is a measure of how much the
walls can stretch. A common assumption, see for instance Hoppensteadt and
Peskin [6, p. 15-16], is that the resistance to blood flow is negligible, and
it follows that the pressure drop over a compliance vessel is zero. Since the
vessel walls are elastic, a given pressure, P determines the blood volume, V'
the vessel can contain. We have

V=0CP (2.2)

where C' is the compliance. Again we have an electrical analogue, which
is the capacitor. A capacitor is formed by two conductors separated by
an insulator, for instance two parallel metal plates with air in between, as
explained in [15, p. 909-910]. A major difference between the two systems
is that in the electrical case there will be no accumulation of charge if there
is no potential difference over the capacitor, but a vessel will contain some
blood even if the pressure is zero. To account for this addition we write

V=V,+CP (2.3)

where Vj is the remaining "dead" volume if there is no pressure.
Flow through a compliance vessel can also be derived from a simpli-
fication of the Stoke’s equation, as described by Keener and Sneyd |7, p.
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474-478|. The vessel is considered to be a cylinder, and the flow is given by

dP
—— A2 2.4
Q. (24)
This is called Poiseuillle’s law. The cross sectional area, A is assumed to
depend linearly on the pressure. The vessel of length, L then has a pressure

drop, and a resistance.

1

RQ = 3-(1+ VPR, (2.5)
4P

V. _3|0+P) e P (2.6)

Va 4| (1+~P)3p

Where v = ¢/Ay, and ¢ is compliance per length and Ay is the cross sectional
area of the vessel at zero pressure.

By including only linear terms, we still get a linear model for the volume
of the compliance vessel,

RQ =Py — P, (2.7)
Vv 0
— =14+ —(F, Pp). 2.8
7 +2( 0 + P1) (2.8)

If we also eliminate the pressure drop over the vessel, we end up with equation
(2.3). If we instead assume that A was constant when we integrate equation
(2.4) then we get a linear resistance vessel with constant volume.

2.1.1 The heart as a compliance vessel

When modelling the circulation, a heart model must be included. It is com-
mon to model the heart as a compliance vessel where the compliance varies
with the heart cycle. We consider a model taken from the book by Hop-
pensteadt and Peskin [6, p. 11-12|. This model is only concerned with the
ventricles, and neglects the influence of the smaller atria.

During contraction and ejection (systole) the heart walls are stiff and
compliance is small, almost negligible. During filling (diastole) the walls are
relaxed and there is a large compliance. This variation can be described by
making the compliance a prescribed, periodic function of time. We have

V() = Vy+ C(t)P(t) (2.9)

At the end of the filling, when the inflow valve closes, the heart volume is
at its maximum. This is called end diastolic volume, Vgp. Before the valve
closes the pressure in the ventricle is essentially the same as the adjacent
vein, P, and we call the compliance at this time Cy.

Vep = Vg + Cq Py (2.10)
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During contraction the pressure increases inside the heart until it is slightly
above the pressure in the arteries, P,, which then pushes open the outflow
valve. The valve stays open until the ventricular pressure falls slightly below
the arterial pressure, P,. When the outflow valve closes we find the minimum
volume of the cycle, the end systolic volume, Vgg. We have

Ves =Va+ CsP, (2.11)

where the systolic compliance is Cs.
From this follows the stroke volume, Vii.ore Which is the ejected volume
per heart beat.

Vtstrok:e = VED - VES = Cde - CsPa (212)

When we know the heart rate, F' (frequency) and Vi.oke which is volume
per beat, we can find the cardiac output, () which models total flow out of
the heart. To further simplify the formula for cardiac output, we take the
systolic compliance to be so low, that we can neglect the influence of the end
systolic volume. We have

Q = F‘/:stroke = FCdP’U it Cs= (213)

This phenomenon, that cardiac output increases with increased filling,
achieved by higher venous pressure, is commonly referred to as Starling’s
law |7, p. 484]. By modeling the heart in this way, we get a steady state
situation, where there are no fluctuations. The result is that all variables
can be considered as average values over a heart beat.

2.1.2 Connecting vessels into a small circulation

The model components introduced above can be built into a steady state
circulation with two compliance vessels and one resistance vessel in both the
pulmonary and the systemic system, as presented in [6, p. 15-16]. Here
Cjq and C}4 are the diastolic compliances of the left and right ventricle
respectively. The equations that make up the model can be summarised as
follows.

Systemic Pulmonary
Heart QL = FCldev QR = FCrdPsv
Arteries Via = CsaPsq Vpa = CpaFpa

(2.14)

. . _ Pyo—Ps o Ppa_Pp'u
Capillaries | Qs = B Qp = e

Veins Voo = Csu Poy Vv = Cpu Ppy
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Since this is a steady state, non pulsatile flow, the flow into the vessel must be
the same as the outgoing flow. If not, the system would not be in equilibrium,
and volume would accumulate in parts of the system.

Q:QR:QL:QS:QP (2.15)

On the time scale considered here, the total blood volume, V; in the body
will be constant.

‘/t:‘/sa““/sv"i“/pa"i"/}w (216)

The model equations in (2.14) can now be solved for the nine unknowns
which are the volumes, the pressures, and the cardiac output, . All other
properties in the model are considered to be known parameters. These can
be estimated from measured resting values of volumes, pressures and flow.
Even if this model is a highly simplified representation of the circulation,
it can give useful insights into how changes in the parameters influence the
System.

! c o C
Via = CpaPra Voo = Cpu Py i Ppo| 1
I —L—_) o H@:—
Y
QR = FCdTPsv QL = FClepv CT Cl
A %D 1%
Y L L
‘/sv = Osvpsv Vsa = Osap
1 RsQs = Psq — Psy Cav | Psa‘jsa
e, 1
R,

a) b)

Figure 2.1: a) The Hoppensteadt and Peskin circulation as seen in [6, p. 15] ,
b) is the same circulation portrayed using electric circuit components.

The next system we consider is the simplest circulation found in the book
by Keener and Sneyd |7, p. 491-492|. Given the definition of a compliance
vessel with resistance, this circulation contains only two compliance vessels
in the systemic system and one compliance vessel in the pulmonary system.
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The equations in the model can be summarized as

Systemic Pulmonary
Heart Q= FCiqPpy Q= FCpqPsy
Q= Ps}%*Ps
Arteries sa
Vea = Vi + 59 (Peq + Py) (2.17)
Q= Ppa —Ppo
Arteries/Veins ’RP o
Vp = V; + Tp(Ppa + Ppy)
Q= Ps—Psqy
Veins g.s“'u
Vso = =5%(Ps + Psv)

The total blood volume, V; in the body again has to be constant.
Vi=Via+Vso + V) (2.18)

Given that we still assume a constant cardiac output, we have a steady
state, non pulsatile system. The model is illustrated in Figure 2.2. Since the
compliance equations here do not directly translate into electrical analogues,
we can not make a corresponding circuit diagram in this case.

The obvious extension of these models, is to connect a heart that gives
pulsatile outflow. In this case the compliance vessels, by their nature of
being compliant, will have a changing volume, and the algebraic relations
are changed into an a system of ODEs, ordinary differential equations.

Q
Pra, R, C, V, Lo
\
Right Left
Heart Heart
Car Cal
A
PSU Psa
Rsa Csa Vsa
P, Q P,

Figure 2.2: The Keener and Sneyd circulation as seen in |7, p. 492]
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2.2 The CwB circulation model

We chose the model number 0095 (called Circ_with Baroreceptors) in the
JSim project [1], henceforth referred to as the CwB circulation model. For
visualisation, Figure A.1 in the appendix is a rendition of the drawing in the
MML source code of this model, with some corrections. The model consists
of a four-chamber elastic heart, pulmonary and systemic circulation with
additional branches for coronary and cerebral circulation, the pericardium
and baroreflex. The CwB model consists of 36 first order, and one second
order ordinary differential equations. The second order equation is for the
baroreceptor signal and is decomposed into two first order equations. For
most vessels and the heart chambers, the state variable is the volume, there
are 24 equations for the change in these volumes. To model inertia in the
aorta and the pulmonary artery, we have four equations where the state vari-
able is the flow through the vessel. The model for the aorta also include two
pressure state variables. Two state variables gives approximations for the
mean arterial pressure and the cardiac output. In addition to the barorecep-
tor signal there are four delay-differential equations for the signal pathways
of the baroreflex. The baroreflex is explained in Section 3.2. Eventually we
want to examine the differences between this model and the baroreflex model
by Toska et al [14].

2.2.1 Linearity is a simplification

We will examine how the CwB circulation model is put together. Throughout
this section, it is helpful to check Figure A.1 for branches and relations
between vessels. Most of the vessels in this model consist of one compliance
vessel connected by one resistance vessel, to ensure that each vessel is both
compliant and has some resistance to flow. This is different approach than
in the model from Keener and Sneyd [7] presented in (2.17), where one vessel
component has both resistance and compliance properties.

In many vessels both the resistance and compliance relations are chosen
to be linear. The compliance relation is in the form of equation (2.2), but in
addition there is included a non-linear term that only becomes important at
small volumes, instead of simply setting a "dead” volume, see equation (2.26).
These mostly linear vessels include all vessels in the systemic arterioles and
capillaries, the coronary circulation, and the pulmonary arterioles, capillaries
and veins.

Some bigger vessels in the CwB model are modeled as completely non-
linear compliance relations. This includes the heart, the aorta, the systemic
arteries, the systemic veins, the vena cava and the pulmonary arteries. The
pressure in these vessels still depend on the volume

P, = P[V]] (2.19)



10 CHAPTER 2. CIRCULATION MODELS

The vena cava and the systemic arteries also have non-linear resistances
which depend on the volume.

R; = R;[V]] (2.20)

We will comment on the justifications of each vessel’s modeling as presented
in the original article, [8].

For the vessels that are close to the thorax, that is the cavity where
we find the heart and lungs, we have an external pressure, P., that we
need to consider. Inside pleural membrane that encloses the lungs we have
subatmospheric pressure. For the heart we also include the effect of the
pericardial pressure, that depends on the entire volume of the heart. We
will come back to this in Section 2.2.5. The chamber pressure, P, inside of
the vessels, influenced by an external pressure is

P.=Pry + Py (2.21)

where Prjs is the transmural pressure across the vessel wall set up by the
volume inside the vessel. This is explained in [9]. The pressures that we
have considered until now are transmural pressures.

2.2.2 Resistance vessels

The most straight forward example of a pure resistance vessel in this model
is the cerebral circulation. It is modelled as a single linear resistance vessel,
with inflexible walls. The flow through this cerebral vessel is Q,-, and the
resistance is R, The blood vessels that go to the brain branch off from the
heart.

o Poode — Pryce
Qeor = ——FH——

Rcbr
The purpose of this simple vessel is to get the right fraction of the blood
volume to pass through the brain. The pressures in this equation are those
of the distal part of the aorta, P,,q., and at the vena cava, P,.. These
vessels are both connected to the heart.

(2.22)

The heart valves are also modelled as linear resistance vessels, but with
a switch that cuts off the flow when the pressure conditions dictate that the
valves are closed. For instance the mitral valve is open when the pressure
in the left atrium, P, is higher than the pressure in the left ventricle, P,
and closed otherwise

la

Qla =

{ % if Pige > Prye, (2.23)

0 otherwise.

The flow out of the left atrium, @, is determined by the resistance, R,
through the valve. In a healthy heart, valve resistances are low.
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In a real vessel the smooth muscle in the walls can contract or relax
according to how much blood the tissue needs. When a vessel contracts
the resistance will rise and the flow abates. In the CwB model there is
only included variable resistance in the vena cava and the systemic arteries.
From the program we find that most of the non-linear vessel components are
taken from the article [8]. This article put together models of vessels from
other papers. We will only discuss the intention of each component, not the
rational behind obtaining it.

The resistance of the vena cava, R,. decreases when the volume, V.
comes closer to the maximum volume, Vi¢maz-

v 2
va = KR < v;mdm) + RO (224)

ve

Kp is a scaling parameter and Ry is an offset parameter. The flow through
the variable resistances are still given by the pressure difference over the
resistance, similar to equation (2.22).

The resistance of the systemic arteries, Rs, involves two terms. The first
term is affected by the baroreflex, and the second is on the same form as the
vena cava resistance.

V 2
Ryq = K et vase L[, (ﬁ;’"“"’”) (2.25)
sa

K, is a resistance scaling factor, and F},,s, is a normalized baroreflex signal
of sympathetic efferent firing frequency. We will introduce the baroreflex in
the next chapter.

2.2.3 Compliance vessels

Most of the vessels in this model consist of one compliance vessel connected
to one resistance vessel, to ensure that each vessel is both compliant and
has some resistance to flow. The pressure is dependent on the volume and
compliance. The flow is dependent on the pressure difference from one vessel
to the next in addition to the resistance.

The systemic capillaries are modelled as one such vessel, see Figure A.1.
We have the pressure, P, given by the compliance relation

‘/sc P:cQ

Cow  cVeelVes —1 (2.26)

Psc:

The second term is chosen to give a realistic P-V relation, this term is only
significant at a very low capillary volume, V.. The choice of the constants
P,o = 2 mmHg and Vg = 8 ml relate to the size of the vessel. In other
vessels different choices have been made. When P,. = 0 this equation can
be solved for the corresponding "dead" volume of the vessel.
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Since the heart is beating, the system is not in a steady state, and we
have pulsatile flow. This means every vessel has a changing volume. The
volume change is the difference between inflow and outflow, as for the volume
of the systemic veins, V,,

dVsy
dt

The CwB model includes several junctions of the circulation. Conservation of
mass states that all flow entering a junction must also leave the junction. In
electric circuits this is called Kirchhoff’s junction rule and relates to currents.
As an example of branching of vessels, we consider the vena cava, which
receives blood from two vessels, the systemic veins and the cerebral vessel.
The volume is given by

= Qsc - st- (227)

dch
dt = st + chr - ch' (228)

This branch can be seen in Figure A.1.

The first of the more complicated compliance relations is the case of
the proximal aorta, right next to the heart. Here there are two compliance
relations connected to one junction, see Figure A.1. There is however a
resistance to flow, Ry between the proximal aorta compliance, Cyop and
the rest of the circulation, which eliminates the problem of having first order
derivatives of two variables in one equation. The pressure difference between
the junction, Ppepe and that set up by the proximal aorta compliance, Cyop,
results in a flow through the resistance Ryq0p . Since the flow doesn’t branch
off, this flow must be a change in the volume of the proximal aorta, Vgep.

dvaop - Vaop P:EQ
Sdt [P aore <caop  eVaor/Vas — 1>] [ Btaor (2.29)

The proximal part of the aorta is connected to the proximal epicardial ar-
teries in the coronary circualtion, which are also compliant (Ceoreo). The
pressure relation at the junction is rather complex

dPaopc 1 P{L‘2 evcorao/vzl

dt

AVaop
dt

Ceorao Vi (6VCOMO/V$1 - 1)2

(2.30)
Decoding the previous equation, taking into account Kirchhoff’s junction
rule and Figure A.1, we find that

= |:le - - anp - Qcorao:|

dP(lOpC o d‘/corao

dt dt

Ceorao Vi1 (chomo/Vu _ 1)2

(2.31)

1 —P:E2 e%orao/vzl ]

This equation we observe is the time derivative of a compliance equation on
the same form as equation (2.26).
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The next compliance relation that needs to be addressed, is the distal
pulmonary arteries. Here too, there is a resistance to flow between the
compliance vessel and the circulation, see Figure A.1

Vbad PIL‘Q

Ppadc - Ctpad - evpad/Vms ] + (Qpap - Qpad)Rtpad + Pplc (2.32)

The volume, V),,q determines the pressure from the compliant walls, and
then there is a pressure drop as a result of the flow through the resistance,
Ripeq. This flow is inevitably the difference between the flow going into the
vessel, Qpap and the one going out, Qpqq- The equation also includes the
pleural chamber pressure, P as this is close to the lungs.

In the distal aorta one can recognise a similar construction, but owing
to a branch off to the cerebral circulation, through a resistance R, it has
additional features.

V. P,
[CZZZ - eVaod/x‘?zsfl + (anp - and)Rtaod] : Rcrb + Pvcthaod

(Rcrb + Rtaod)

P, aodc —

(2.33)
We note that in the case of R, — oo, which would be the same as if there
is no branch, the equation simplifies to the form of (2.32). The cerebral cir-
culation rejoins the systemic circulation at the vena cava, where the pressure
is Pyee.
For the proximal pulmonary arteries, the chamber pressure, Py is deter-
mined from different formulas depending on whether the pulmonary valve
is open or closed. When the valve is closed, we have an equation for the
pressure on the form of (2.32), only there is no flow into the compliance

vessel
V; P,y
- evpap/\g;ch 1 QpapRipap + Ppic- (2.34)

P, papc2 — C
tpap

When the pulmonary valve is open, the flow out of the ventricle, @, is
modeled on the form of a branch, like equation (2.33). We have

|:[ Vpap Py — QpapRtpap + Pplc] : Rpuv + Prchtpapi|

Ctpap evpap/vzg —1
(Rpuv + Ripap)

Ppapcl =

(2.35)

The chamber pressure in the right ventricle determines if the valve is open
or closed.

o Ppapcl if Prvc > Ppapcl

Poape = { Poape2  otherwise (2.36)

The rest of the vessels have non-linear pressure-volume relations, found
in the article [8]. We still only discuss the intention of each component. The
components were developed in other articles.
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For the systemic veins, the vessel walls will stiffen for increasing volume,
Vv, which increases the transmural pressure Py,:

Py = — Ky, logyg (V;W - o.99> (2.37)
Vo
K, is a pressure scaling factor, and V,4z ¢ is the maximum volume of
systemic veins.

For certain pressure conditions the vena cava can collapse. The pleural
membrane envelops each lung, and inside the lungs there is subatmospheric
pressure, Pp.. If the pleural pressure is greater than the luminal (cavity)
pressure of the vena cava, caval volume will decrease and resistance increase.

In the article the vena cava transmural pressure, P,. is on the following
form, V} is the unstressed volume.

Dy + K1 (Voe — Vo) if Ve = Vo
Py = (2.38)
D2 + K2 . e(ch/ch,min) lf VUC < %

Vie,min 1s the minimum volume. The values of Dy,Dy, K1 and K3 are based
on curve fitting. We note that for V,. > V{ the vena cava is described
by a linear compliance vessel. For the vena cava in the program, the D;
parameter is chosen to be the pressure at V,. = Vj, which will make the
transition smooth.

D2 + K2 . e(VO/ch,min) + Kl(‘/vc _ %) lf %C 2 ‘/0
Fre = (2.39)
.D2 -+ K2 . e(VUC/ch,min) if V;)C < ‘/O

The baroreflex can influence the systemic arteries to contract or relax.
When the vessel contracts the walls also stiffen. The following P-V relations
are developed from active and passive length-tension relationship of the mus-
cle. The pressure in the systemic arteries activated by sympathetic stimuli,

Py, is determined by the volume, Vi,

Vea — V.
P = K.log,, (“DO“O + 1) : (2.40)

where Vi, is the minimal volume, K. is a scaling parameter, and Dy is a
volume parameter. The passive pressure in the systemic arteries, Pl:

Pspa = Kpl . eTp(Vs(L_Vsa,O) + Kp2(‘/;a _ VSa,O)Q (241)

where Kp1, Kp2 and 7, are scaling parameters. The baroreflex determine
which of the two is the most dominant. The baroreflex will be explained in
Section 3.2.
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2.2.4 Inertance vessels

Inertance, L is an opposition to change of flow, ). The pressure difference
AP over an inerthance is
dQ dQ
AP = LE = I AP/L. (2.42)
Both in the pulmonary arteries, and the aorta there is included two inertance
vessels, in both cases named proximal and distal.

We will consider the inertance component, L,qq of the distal pulmonary
artery, see Figure A.1. Since there is no expression for the pressure immedi-
ately before the inertance component, the pressure, Pp,q. in the point before
the resistance, R,,q in series with the inertance is used as a starting point,
and the pressure drop caused by this resistance is subtracted, to find the
remaining pressure drop over the inertance.

dQpa
" = [(Prade = QpaaBpad) = Pracl / Lpad (2.43)

The pressure in the point after the inertance component is the pressure of
the pulmonary arterioles, FPpq.. A similar equation to that of the distal
pulmonary artery is employed in all four cases.

In the smaller vessels the resistance causes the flow to decrease, this
makes inertance less important [9]. One reason not to include inertance
properties in the larger veins is that the flow is almost steady, a small varia-
tion in flow makes a small pressure difference over the inertance component.
It can then be neglected.

The electrical analogue of inertance is inductance. In an electrical circuit,
an inductance is a coil, [15, p. 1151].

2.2.5 The Heart

The CwB model includes a four-chamber elastic heart. The pressure in each
chamber is determined by the phase of the heart cycle and the blood volume
inside the heart.

We show the equations of the right heart chambers, and the left heart
has a similar form. The chamber pressure of the right atrium, P,

P,
Proe = (‘/ra - V;"a,r)Era - m =+ Ppcdc (244)
The right ventricular pressure, P,
Px2
Prvc - a2(Fcon)(V;“v - ‘/rv,r)Erv - m + Ppcdc (245)

FE,q and E,.,, are the elastances of the right atrium and ventricle respectively.
Vrar and V., are the unstressed volume of each chamber. We note that the
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unstressed volume has a similar purpose as the "dead” volume in equation
(2.3). The second term is a scaling for small volumes like in equation (2.26).

Elastance is the inverse of compliance, so a high compliance corresponds
to a low elastance. The elastance is high during systole and low during
diastole.

Atrial systole is triggered before ventricular systole. The electric acti-
vation is in each case a periodic function based on the heart rate. The
activation function in the CwB model is from article [5], see the program
in the appendix. In the article it was used only on elastance of the ventri-
cles, E,, and Ej,. In the CwB model it was also used for elastance of the
atria, and to scale the unstressed volumes of the ventricles and atria. The
unstressed volumes then becomes lower during systole than during diastole,
which also raises the pressure during systole.

The sympathetic barosignal as(Frop) that influence elastance and there-
fore the force of the contraction, will be explained in Section 3.2.

The pericardium is the membrane around the heart. The pericardium
chamber pressure, P4, is dependant of the volume inside the pericardium,
Vped- Vpea is modeled to contain the pulsatile blood volume of the four heart
chambers, the blood in the coronary circulation and the constant volumes of
the myocardium, (heart muscle) and pericardial fluid. The P-V-relation for
the pericardium in the CwB program is

P:c2

P, = K e((vpcdfvpcd,o)/d)pcd) - =
pede ped eVoed/Vars _ 1

+ Pplc; (2.46)
the first term of the above formula has been used for the pressure in the
pericardium in article, [2]. K,cq is a pressure scaling factor, ¢peq and Vieq o
are fitted parameters. The pericardial pressure is negative in relation to
ground because of the influence of pleural chamber pressure of the lungs,
Ppi.. We checked this for a run in JSim, and plot of the P-V-relation. The
pericardial pressure is the only part of the model that includes interaction
between the ventricles and atria.

2.3 Toska circulation model

The Toska circulation model captures variations from beat to beat, but ne-
glects the pulsatile pattern of the flow. The main reason for choosing a
beat-to-beat model was that the measurements were sampled on a beat-to-
beat basis [4].

The heart is modeled as a RR interval and a stroke volume, SV. Both of
these are determined by the baroreflex signals, so the formulas for them will
be introduced in the baroreflex chapter. For now, they can be considered
constant. The RR interval is the inverse of the heart rate,

RR=1/HR. (2.47)
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It is called a RR interval after the naming convention for the different parts of
an ECG signal. The ECG signal is a measurement of the electrical activation
of the heart. The highest spike in signal is the R wave, which results from
the activation of the ventricles. The RR interval therefore begins and ends
at the start of the ventricular systole.

The Toska model divides the circulation into the aorta and the peripheral
vessels, see Figure 2.3. The peripheral vessels are divided into two parallel
vessels representing exercising and non-exercising tissue. Total peripheral
conductance, G, is the combined effective conductance of the two parallel
vessels.

We want to calculate total peripheral conductance from measurements.
Since this is a beat-to-beat model, the flow into the vessels can be represented
by the cardiac output, CO that is defined in equation (2.13). If we assume
zero venous pressure, then equation (2.1) implies that an estimate of the
total peripheral conductance is

G, = SV/(MAP-RR) = CO/MAP, (2.48)

where M AP is the mean arterial pressure.

The recording of data started with the subject at rest. After a 10s count-
down the subject performed moderate dynamic exercise while supine, that is
laying down, see [13] for detailed information on the setup of the experiment.
The muscles that perform work are the quadriceps muscles in the thigh. The
femoral arteries is the main artery of each leg.

2.3.1 Windkessel model of the aorta

A linear elastic reservoir with a certain compliance is a one-element Wind-
kessel model [4], which we have previously called a linear compliance vessel.
The pressure in the aorta, P, is then given by

P, =V,/C, (2.49)

where C' is the compliance of the aorta.

The stroke volume is added to the compliant aorta in one go at the end of
the systole. Even though the model only samples the pressure at the end of
the diastole, P; and mean arterial pressure, M AP beat-to-beat, these values
are found considering flow out of a compliant vessel.

Difference between inflow and outflow in a compliance vessel gives a
changing volume, here the volume of the aorta, V,. The rate of change in
the pressure in the aorta is

dP, 1dV,
e 2T Q- Q)/C (2.50)

where @)}, is flow out of the heart and, @, is the flow into the peripheral

vessels, given by
Qp = PGy, (2.51)
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if we assume zero venous pressure, this is the relation for a resistance vessel.
Peripheral conductance, G, is the inverse of peripheral resistance.

Solving equation (2.50) with (2.51) and remembering that the inflow, @
is added to the volume reservoir, V{ in one go called the stroke volume, SV'.
The volume of the aorta becomes

Vo = Voe 1/C (2.52)

The outflow @, is the result of an exponential pressure-dependent volume
decay.

2.3.2 Parallel peripheral arteries

The general formula for peripheral conductance, G is affected by a sym-
pathetic barosignal, Bs,. This signal will be introduced in the baroreflex
chapter. For now we set

G = G(Gy, Bsp) (2.53)

where G is the mean of total peripheral conductance at rest, calculated from
measurements. Exercising and resting tissues are divided into two vessels in
parallel. From the experiment set up we have that the exercising part is the
legs, and the resting part is the rest of the systemic circulation. The effective
conductance of the peripheral vessels, G, is

Gp =G, +G. (2.54)

The equation (2.53) determines both G, and G, before exercise, so that the
conductance of resting tissue, G, is given by

Gr = (1 - EwCond)G (255)

where Excopnqg is the fraction of the total conductance that is through exer-
cising tissue.

During exercise, local metabolites will override sympathetic stimuli, and
result in vasodilation of the muscles that need more oxygen. We will come
back to this in section 3.1. In the article [4] this is solved in the following
way

ExcondG before and,
Ge = (2.56)
Qmyf/MAP after onset of exercise.

This model would be correct if @,y was the entire flow though the exercising
muscles, but in the program @, is set to be the increase in flow compared
to baseline.

Increase in flow in exercising muscles, @, is modeled as an exponential
function. There is a small delay, d,,; between start of exercise and increase
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in flow.

me,O t<tex+dmf7

me =

me,O + me,ma:p(l - e(teerdmfit)/Tc’mf) t 2> tex + dmf
(2.57)
This relation for @, s is displayed in article [4]| figure 2B and in the program
in the appendix. Since @),y models the increase in flow then Q.70 = 0.
Time of onset of exercise is tez.

When we define Q)5 as the increase in flow during exercise, we need to
include the baseline conductance, G o when we model conductance through
exercising muscles. This is done in the program and the equation is given
below

ExcondG before and,
Ge = (2.58)
Geo+ Qms/MAP, after onset of exercise.

where G = ExconaGo. Compare this equation with equation (2.56) that
is taken from the article [4]. If we don’t include G, then equation (2.57)
is going to make G, = 0 right after the start of exercise.

There is also another difference between the article and the program. In
equation 2.58, we see that the conductance in exercising muscles is given
by baseline mean arterial pressure, M AP, while in the article this relation
instead includes the mean arterial pressure at the given heart beat, M AP.
Conductance is defined as the flow divided by the pressure difference, since
it is the inverse of the resistance, see equation (2.1). We assume that the
systemic venous pressure is negligible. This means that the program should
be changed to fit the original intension of the article.

A
R,

Left @n
Heart '

LA
R,

Figure 2.3: Circulation in the Toska model, representing the heart, the
aorta/large arteries and the peripheral vessels.
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Chapter 3

Baroreflex models

3.1 Physiology of the Baroreflex

The function of the baroreflexes is to stabilize the blood pressure. The
baroreflexes are a part of the central nervous system (CNS).

Nerve cells that act as receptors are called afferent neurons. The CNS
then interpret the information, and an appropriate response is sent through
efferent neurons to target cells. Neurons have a cell body, axons and den-
drites. At the end of the axon, where the neuron reach the target cell it ends
in a synapse.

It is common to divide the CNS in two blocks. The somatic division
includes that which we are conscious of. Examples include afferent receptors
of temperature, and efferent control of the skeletal muscles. The autonomic
division makes automatic, unconscious responses to changes in the body’s
internal environment.

The autonomic division is subdivided into the sympathetic and parasym-
pathetic pathways. Autonomic pathways control smooth and cardiac muscles
and some glands.

The sympathetic branch controls fright, fight and flight responses, but
also serves other functions like control of blood flow to tissues. The parasym-
pathetic pathways dominate when the body is at rest.

Most internal organs are under antagonistic control by the autonomic
pathways. For instance sympathetic inervation increases heart rate while
parasympathetic decreases it.

The smooth muscle in most blood vessels are innervated only by the
sympathetic branch. Most vessels contain one type of adrenergic receptor
that causes smooth muscle contraction (vasoconstriction), but some contain
a second type of receptor that causes smooth muscle to relax (vasodilation).
Both receptors are activated by the sympathetic neurotransmitter.

Most sympathetic pathways secrete the neurotransmitter norepinephrine
also called noradrenalin, at the synapse. Parasympathetic pathways secrete

21
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the neurotransmitter acetylcholine. The target cells responds differently to
each transmitter.

The baroreflex belongs to the autonomic nervous system, and is the pri-
mary reflex for homeostatic control of blood pressure. Baroreceptors are
stretch sensitive and respond to changes in pressure. There are barorecep-
tors on the vessel wall of the aorta and the carotid artery. When the blood
pressure drops the baroreceptor firing rate decreases, and the reverse is true
for increasing pressure. The response of the baroreflex is rapid; changes in
cardiac output and peripheral conductance occur within two heart beats of
the stimuli.

There are four important baroreflex pathways, three of which we have
already mentioned. Increased sympathetic signal causes vasoconstriction.
For the heart, increased sympathetic signal will increase heart rate at the
sinoatrial node where the activation starts, and shorten conduction time
through the AV node. Increased sympathetic signal will also enhance the
force of myocardial, that is cardiac muscle, contraction. Increased parasym-
pathetic signal will slow the heart rate. Parasympathetic signal have very
little influence on contraction, so this is not included in the models.

Baroreflexes are responsible for changes that happen during exercise.
When muscles work they need more oxygen, and the cardiac output must
rise. Initially the heart rate increases due to decreased parasympathetic
signal, then from increased sympathetic signal. The increase in heart rate
gives the heart less time to relax and protect it from overfilling. Sympathetic
stimuli also increases contractility and thus stroke volume.

During exercise the blood is redistributed to the exercising muscles through
vasodilation in skeletal muscle arterioles and vasoconstriction in other tis-
sues. The sympathetic stimuli causes vasoconstriction. Vasodilation can be
caused by local decrease in Og concentration, and increase in COg among
other factors. Metabolites is a general term for products of the metabolism.

The result of all these changes is that the blood pressure rises slightly
during exercise. One theory of why this is allowed by the baroreflex is that
the baroreflex setpoint is reset to a higher pressure.

The content of this section is based on chapters 5, 6, 8, 10, 11, 15 and 25
in [10].

3.2 CwB baroreflex

The baroreceptor signal, Vi, depends on the pressure in the aorta, and the
rate of change in this pressure. The equation of the barosignal in the CwB
model is taken from article [11]. It is developed from measurements, on the
form of a transfer function, a Laplace transform,

Ny (s) (1+ays)

Paod(s) B K(l + GQS)(l + GS) ’ (31)
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The corresponding differential equation is given in the article. It can be
found from reverse Laplace transform. The program uses the differential
equation form of the baroreceptor signal, N,

d> Ny,
dt2

N dP,
; tl” + Ny = K Pyog + a1 K —2%

aas + (a + a2) d (3.2)
where the time constants a; and ao are average values from measurements,
found from plotting the gain, defined as amplitude of the baroreceptor re-
sponse divided by the amplitude of the pressure wave. The time constant
a is included, because in the article it is expected that pressure waves of
high frequency will not result in similar rapid strain of the vessel walls. The
baroreceptor signal will go to zero in this case, a time constant a < as should
have this effect. In the program a = 0.001s, and this is chosen without ref-
erence to measurements. The parameter K accounts for differences in units
between impulse frequency and pressure. The equation is based on mea-
surements of the carotid baroreceptors in dogs, in our case it is used for the
aortic baroreceptors in humans.

In the article [8] they use the baroreceptor above, as well as the signal
for each pathway at the central nervous system, CNS and the efferent path-
way. The pathway discharge frequency at CNS, IV, is described by a transfer
function in figure 2 in the article. This is a model for the medullary cardio-
vascular control center in the brain, and z is exchanged for the four different
signal pathways. The signal pathways are sympathetic and parasympathetic
control of heart rate ,Np,.s and Np,, respectively, and sympathetic control
of contractility, Neo, and peripheral conductance, Nyqso-

N, (s) B Kye Las

Nor(s) ~ (Tos+1) (3:3)

Each pathway, NV, react to stimuli, Ny, with a delay, L,, a time parameter,
T, and a gain K,. The corresponding differential equation from reverse
Laplace transform is given in the program.

Ty Y% + Ny(t) = KoNop(t — Lg) ¢ > Ly,

(3.4)
ANy _
=0 t < L.
F, is the normalized outgoing efferent signal to the affected organs
ba
F,=a,+ (3.5)

eTz‘(Nr(t)_Nz,O) + 1

The parameters 7, and N, are fitted to representative data. The equa-
tion gives a sigmoidal relationship between central neuron activity, /N, and
discharge frequency of efferent neurons, F,. Since increase in barorecep-
tor signal causes increased parasympathetic signal, the corresponding 7.,
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is negative. Baroreceptor signal and sympathetic signals change in opposite
directions, and 7, is positive in these cases.

Heart rate is regulated by both a sympathetic, Fj,.s and parasympathetic
., efferent signal. The following equation characterizes a three dimensional
heart rate response surface to sympathetic and parasympathetic stimuli.

HR = hy + hoFpps — haFry — haFppy + hs Ry — he Fnpo Fhrs (3.6)

where h1 — hg are constants. In the CwB program, the heart rate is changed
once every heart beat according to the formula above. Otherwise the heart
beat gets interrupted and become erratic, as noted in the program, [1|. This
also applies to the contraction baroreflex.

The force of contraction of the heart is controlled by the sympathetic
efferent signal, F,,,. Increase in the sympathetic signal increases the maxi-
mum elastance through this linear equation

a(Fcon) = amin + KoFeon (3.7)

with minimal value a,,;, and scaling K.

In the program the function ag(F,y,) is sampled from a(Fyy,) once every
heart beat, and kept constant during the beat. The following equation is for
the pressure in the left ventricle, Py, and a similar expression exists for the
right ventricle, equation (2.45).

Px2

Plvc - QQ(Fcon)Elv(Wv - Viv,r) - m

+ Ppede (3.8)
the elastance, Ej, is defined as the inverse of the compliance. The CwB model
employs a different activation function of the ventricle than the article [8].
In the article it is included a formula so that increased signal F,,,, affects the
activation function by shortening ventricular systole, this is not included in
the CwB model.

A high value for sympathetic signal, Fy,.s, increases the resistance in
the systemic arteries. This is called vasoconstriction. When smooth muscle
in the arteries constrict, the vessel diameter decreases and the muscle wall
stiffen. Therefore, the sympathetic signal affects both resistance and and
compliance. The equation for resistance we recognize from Section 2.2.2.

v 2

Rsa — Rsa,O + Kre4Fuaso + KT‘ <Sa’m> (39)
Va
Figure 3.1 shows how resistance depends on the volume for two values of
F’U(lSO'

The pressure is determined by an active, Py, , and a passive, Py,
pressure-volume relation, see equations (2.40) and (2.41) respectively. A

high signal Fys favours the active, slightly higher pressure

Psa = FvasoPsa,a + (1 - Fvaso)Psa,p (310)
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Figure 3.1: Resistance of systemic arteries Figure 3.2: P-V relations of systemic arter-
ies

When there is no sympathetic signal, the pressure in the arteries are de-
scribed by Psgp, article [8]. Figure 3.2 shows the two pressure-volume re-
lations for active and passive respectively. We note that if the volume falls
outside a specific range, the passive pressure formula becomes the largest.
In this case the baroreflex will loose its purpose, and the results will be un-
predictable. In the given parameter setting the volume does not fall outside
the permitted range.

3.3 Toska baroreflex

3.3.1 Modeling of baroreflex signal: article contra code

The baroreflex is modeled as a continuous function [4], even though the
circulation variables are sampled beat-to-beat. The baroreceptor registers
deviation in mean arterial pressure from setpoint, but not the rate of change
in pressure, which would be difficult in a beat-to-beat model. This integral
for baroreflex signal is given in the two articles that present this model.

t—d
B(t) = - / [P(H') — Py(#)el /T gy (3.11)
T. J_

The signal that the program actually produces is quite different, and more
realistic. This is described in detail in Section 4.2.4.

Both versions of the barosignal feature a delay, d and a time constant, T
to model how fast the baroreflexes react to changes in arterial blood pressure.
The time constant 7. and delay d is different for each signal pathway. The
Toska model includes three efferent pathways. Those are the parasympa-
thetic influence on heart rate and the sympathetic influence on contraction

and peripheral conductance. The signal represents the firing frequency of
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the respective nerves, but it is expressed in mmHg which are the units for
pressure.
The baroreflex setpoint, P; is found from program and Figure 2A in
article [4].
PS,O t < tcount;
P, = (3.12)
Ps,(] + Ps,stepF(l - e(twumit)/TC’SEt) t > teount-

P step is the maximum increase in baroreflex setpoint, and T s is the time
constant that determines how fast the setpoint increases. The model pro-
poses that the setpoint increases when the body is getting ready for exercise,
here represented by fcount Which is the time when they start a countdown
in the exercise experiments. There is a parameter in the program called the
before fraction, left over from the development of the code, here called F'.
This parameter is always I = 1, and changing it would give the wrong in-
crease in setpoint, Ps s¢p. For each subject the initial baroreflex setpoint is
the mean arterial pressure at rest, Ps o = M AP, found from measurements.

3.3.2 Baroreflex for the Heart

The duration of one heart beat is influenced by the parasympathetic signal,
By, The sensitivity to the signal is K, this parameter is sometimes called
the gain of the signal.

RR = RRy + Kpthh (3.13)

RRy is the average RR-interval at rest, found from individual measurements.
An earlier version of the model also included sympathetic influence on RR-
interval. This reflex did not improve the fit between the simulated and the
recorded time courses [4].

The sympathetic signal to the heart muscle changes the force of contrac-
tion, resulting in a change in stroke volume, SV. The stroke volume also
depend on afterload and preload, modeling the effect of aortic pressure and
filling of the ventricle respectively.

SV =SV + Kan(n—l) + Qm(RR(n—l) - RRO) + KsnBsh (3'14)

SVy is the average stroke volume at rest, from measurements. The three
other terms model the factors that cause deviation from this baseline. The
sympathetic signal, By, result in a slight decrease in stroke volume when
mean arterial pressure is below the setpoint, the gain is K. This is the
opposite of the CwB model where a decrease in aorta pressure will result in
increasing sympathetic barosignal and increased contraction.

Preload is the degree of heart muscle stretch, and that depends on the
filling, [10]. @y, is the mitral flow into the ventricle, and is assumed to be
constant in the late diastole, [4]. The difference in RR-interval determines
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the increase or decrease in filling volume compared to baseline. RR(,_y)
is the value at the previous beat. The Frank-Starling law states that the
end-systolic volume of the ventricle is constant, so the blood returned to the
ventricle is ejected.

Afterload is the ventricular force that must be used to overcome the
resistance created by the blood filling the aorta, [10]. Py,—1 is the end-
diastolic pressure in the aorta at the previous beat. The afterload sensitivity,
K, is a negative constant. Increased pressure will decrease stroke volume.

In the program the equation for the stroke volume is slightly different

SV = SVo + Ka(Pyn-1) — Pa)) + Qu(RRp—1) — RRo) + K Bgp, (3.15)

The difference lies in the term that represents the effect of afterload on stroke
volume. The version in the program is the most plausible since it adds the
deviation from baseline in end-diastolic pressure, Py. It also resembles the
filling term, where it is the change in RR-interval that determines if this
term increases or decreases the stroke volume. The SV} term includes both
the effect of afterload and filling at baseline.

3.3.3 Parallel peripheral arteries

In general the peripheral conductance, G is altered by sympathetic vaso-
constriction. If the mean arterial pressure is below the setpoint then the
sympathetic signal By, is negative. The conductance G decreases and we
have vasoconstriction.

G = Go(1 + Ky Bsp) (3.16)

(G is the mean of total peripheral conductance at rest, calculated from mea-
surements. Ky, is the gain or sensitivity of the vessel to a given barosignal.
This equation will substitute equation (2.53) in the model of the parallel
peripheral arteries.
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Chapter 4

Conversion of code

The CwB model was written in JSim’s MML (Mathematical Modeling Lan-
guage), and the Toska model was programmed in Matlab. Both were con-
verted into Python in the beginning of the project to facilitate integration.
In the case of the CwB model, the equations needed to some extent to be re-
arranged since MML is not a sequential language. Due to this, the equations
were ordered according to physiology. The conversion of the Toska model
was more straightforward after one had untangled the core model from the
MATLAB GUI that was included to simplify model parameter adjustments
for non-programmers.

4.1 CwB program

We start with a short introduction to programming in JSim and MML. In
MML one can write differential equations almost like one would write them
on paper. Every variable and parameter is declared with units like ml, sec
and so on, and JSim has automatic unit conversion. In MML, the time span
of the simulation is declared as a realDomain, which is the construct for the
independent variables of ODEs. It is a fixed, evenly spaced grid.

realDomain t sec; t.min=0; t.max=20.0; t.delta=0.01;

We are using the baroreflex for contractility control as an example. We give
a reminder of the equations (3.4) and (3.5) below for the contractility case.

Teon™eon 4+ Noon (t) = KeonNpr(t — Leon) > Leon,

(4.1)

chon j—
dWean = ( t < Leon.

beon
Feon =a 4.2
con con + eTcon (Ncnn(t _Ncon,O) _|_ 1 ( )

We observe that in JSim parameters are declared as real.
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real K_con=1 dimensionless;//CNS gain for contractility control
real T_con=10 sec;//CNS time parameter, contractility control

State variables are declared as an array with the same dimensions as the
independent variable realDomain, here time.

real N_con(t) sec~-1;// Sympathetic discharge rate at CNS for
// contractility.

Other variables that change continuously through the calculation, are also
declared as an array of time.

real F_con(t) dimensionless; // Normalized discharge rate for
// contractility control

real afs_con(t) dimensionless;// Dynamic heart contractility
// scaling function

Variables that are updated discretely are given a different label; realState,
but are still declared as an array of time, with the same spacing.

realState afs_con2(t) dimensionless;
// Discrete heart contractility scaling function

These declarations result in both discrete and continuous variables being
saved when applying the ODE-solver, and they can be plotted in JSim. In
Python the only output of the scipy.odeint function are the state variables,
which is the standard for ODE solvers.

Initializing these arrays of time, is done using an MML operation called
when. Which is, at least from the users point of view, the same as an if-test.

when(t=t.min) {
N_con = 94.97;
afs_con2 = 1;}

The discrete variables are changed at the end of every heart beat, with an
operation called event, which also resembles an if-test. This kind of event
handling is a common feature of many ODE-solvers, but it is not supported
in scipy.odint or other available solvers in python.

event (t+t.delta>=(tshift+(1/HR))){
HR = HRcont;

tshift = t;

afs_con2 = afs_con;}

Here a(Fiopn) or afs_con is the continuous variable calculated from equation
(3.7). Before a(Frop) is used in equation (3.8) as a baroreflex, it is sampled
at the end of every heart beat in afs con2, see Figure 4.1. Notice that it
is not necessary to write something like HR(t) = H Rcont(t), to access the
current element of an array.

A simple first order ODE, represented by equation (2.27), is written like
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Figure 4.1: The variables a(Fon) and ag(Feop,) calculated by CwB model in JSim, the
discreate as(Fropn) scale the compliance of the ventricle.

Vsv:t = Qsc - Qsv;

The differential operator is given by a colon. This is the entire code needed
for such a differential equation.
The contraction baroreflex is a delay first order ODE.

//Discharge frequency controlling contractility of heart
N_con:t=if (t.min+t>L_con) (-N_con +(K_con*Nbr(t-L_con)))/T_con
else 0;

We notice that normal if-tests in JSim only work on one variable, here the
dN¢opn /dt is defined from an if-test. To access what is stored in the N, state
variable from an earlier time, just subtract the delay from the current time.

We extract data from a JSim run so that we can compare plots from
JSim and python more conveniently.

JSim and MML are highly integrated. In the MML source code all pa-
rameters and initial conditions are declared and given a value, but these
values are always replaced by the values entered into the JSim GUI. For
a while we used values from the source code in the new python program,
since this was the starting point of the conversion. These values were not
optimized, which meant it looked like there was something wrong with the
translation process.

4.1.1 JSim has automatic unit conversion

Because of the automatic unit conversion, some equations had to be carefully
translated since python does not include units, only plain numbers. The most
prevalent units are millilitres (ml) for volumes, seconds (sec) for time and
millimetres of mercury (mmHg) for pressure. We make certain litres (L)
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and minutes (min) are accurately transferred to ml and sec. All parameters
related to the heart rate were given in minutes, which had to be converted
to seconds.

In addition to the equations that include the heart rate, the two inertance
equations have mixed units. The equations that involve inertance are the
proximal aorta flow and proximal pulmonary arterial flow. Here the flow
is given in L/min, while the other entities have the prevalent units. The
proximal aorta flow is shown as an example.

real Raop=0.0001 mmHg*sec/ml; // Proximal aortic resistance
real Laop=3.5E-4 mmHg*sec~2/ml;// Proximal aorta inertance

real Qaop(t) L/min;// Proximal aorta flow
real Paopc(t) mmHg; // Proximal aorta chamber pressure
real Paodc(t) mmHg; // Distal aorta chamber pressure

when(t=t.min){Qaop =0.69034755;%}

Qaop:t = (Paopc - Qaop*Raop - Paodc) / Laop;

In the python program we use the conversion 1L/min=1000ml/60sec in
python and obtain the initial value:

Qaop_0 = 11.5057925

The automatic unit conversion is the reason that there is no conversion factor
that we need to change. We plot Q40 simulated by both python and JSim,
see Figure 4.2, and we observe that the initial condition is correct.

4.1.2 Handling discrete variables in scipy.odeint

The scipy.odeint function only accepts as input a function containing the
right hand side of the differential equations, initial conditions for state vari-
ables, time and a tuple for parameters. The parameters must be immutable,
they cannot be changed. The continuous variables, like pressures, are com-
pletely determined by state variables and constant parameters, and are cal-
culated in each time step, so there is no problem here. However, the discrete
variables are dependent on values calculated at the previous heart beat, and
these are in scipy.odeint either not saved, or in the case of state variables,
not accessible until the integration is done.

The problem lies in the variables that are declared realState in JSim, and
changed by event. The quick solution is to create a class where we can store
the necessary variables during an odeint-run. We make an object of this class
in main. It is not possible to send this object into the scipy.odeint function
since an object is certainly not immutable. The reason this works regardless,
is that any variable declared in main in python is a global variable. If a global
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variable defined in this way is going to be changed inside a function, it needs
to either be inside a class or an array. This is not good programming, and
should be avoided if at all possible. In this case it was the simplest way
to circumvent the restrictions of scipy.odeint. The result is that all discrete
realState variables in JSim, become class variables in our program. Without
tampering like this we would have had to write a new ode-solver.

4.1.3 Choice of delay in the baroreflex differential equation

From equation (3.4) we see that when we want to calculate the pathway
signal at CNS, N., we need to access the Ny, variable from a fixed delay
L, back in time, depending on the reflex. This is called a delay differential
equation.

The delay means we must save Np,.(t). The scipy.odeint function does
not use a fixed time step while integrating, it is adaptive. The reason to
include a time step, dt is to specify which values to save to the resulting
state variable array. To save Ny, (t) for every tiny adaptive time step would
be too time consuming. JSim, like python, only saves Ny, with a sampling
spacing dt, and this is what they can access when writing Ny,.(t — L;). The
"MML Reference Manual” which can also be found from the Cwb page [1],
says that the return value is determined by interpolation.

We do not include interpolation in our program. Instead we choose to
hold the value of N, constant for each time step, dt. This will be more
effective than saving for every variable time step. We are saving fewer values,
and it is much easier to backtrack when the time step is fixed. We still chose
to use a list for saving N, even though an array is possible in this case.
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The list will be as long as the number of saved time steps. Going back a
delay L, in time, is always the same number of steps from the end of the
list. Python has short hand notation so Ny.[—1] is the last element in the
list Ny,.. The form of the delay differential equation in python then becomes

if (t_min+t>L_con):
dN_con =(-N_con+ K_con*hr.Nbr[-int(L_con/t_delta)]))/T_con
else:dN_con =0

As explained in the previous section, we use an object to save values. Even
though Ny, is a state variable, we can’t access the array where odeint stores
output.

if ( t>= hr.t_shift_Nbr+t_delta):
hr.Nbr.append (Nbr)
hr.t_shift_Nbr+=t_delta

4.1.4 Sorting equations

In the CwB program the equations are separated in sections for each part
of the circulation. For instance, all equations for the pulmonary circulation
are grouped together. MML is not a sequential language, which means that
the order of equations is irrelevant as long as all variables are defined in the
end.

A typical example is the equations for the left atrium. Observe that
the equations are given in almost the reverse order of what is necessary in
python.

// Left Atrium, la, and its contraction:
Vla:t= (Qpv-Qla);

Qla = if (Plac>Plvc) (Plac-Plvc)/Rla // Eq. C
else O;
Pla = (Vla-Vlar)*Ela-Px2*(1/(exp((Vla)/Vx8)-1)); // Eq. B,F

Plac = Pla + Ppcdc;

We go through the positions of the variables that are involved, but not
defined in the above program excerpt. V., and Ej, are given further up in
the program, together with the other equations for the activation of the heart.
P, is defined in the paragraph directly below in the program, concerning
the left ventricle. To find the equation for @,,, we search further down in
the section with equations for the pulmonary system. Pp.q. is given in the
section in the program with equations of the pericardium.

For the python program, we tried to keep as much as possible of the
sections in which the equations are grouped. For instance we could move
all the equations of the pericardium up and place them right under the
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activation of the heart. This was necessary since many chamber pressures in
the torso are influenced by the pericardial chamber pressure, Ppqc.

While sorting the equations, we found a problem in the code. The suffix
sap has been assigned two different meanings. It stands for both systemic
arterioles and proximal systemic arteries. From physiology the proximal sys-
temic arteries are between the aorta and the systemic arteries, while the
systemic arterioles are between the systemic arteries and the systemic capil-
laries.

First we get this definition:

real Vsap(t) ml; // Systemic arterioles volume
real Psap(t) mmHg; // Systemic arterioles pressure

But then the definition changes:

real Rsap=0.025 mmHg*sec/ml;//Prox.systemic arteries resistance
real Csap=1.484 ml/mmHg; //Prox. systemic arteries compliance

The reason it becomes proximal systemic arteries is because following the
conventions of variable names in the rest of the program, the last p means
proximal. As a result, these equations are placed before the systemic arteries
in the flow equations. Since the compliance relation for Py, is modeled like
the smaller vessels, on the form of equation (2.26), it is more likely that this
is indeed the systemic arterioles.

In the CwB python program, we tested what would happen if we changed
the six affected equations. The initial conditions for Vi, and Vi,, can not
be interchanged because the given P-V relation for systemic arteries only
apply for volumes in the interval [~450-550ml|, where active pressure is
above passive pressure, see Figure 3.2. Another reason not to switch is that
we want the volume of the systemic arteries to be the same. We want to
interchange two vessels, but we want their respective volumes maintained.

Though the results were not unreasonable, it was clear that the parame-
ters needed to be fitted again for this new case. For instance, all volumes in
the pulmonary system increased. In all subsequent runs of the CwB-model
we use the original order of equations, with 4, meaning proximal systemic
arteries.

4.1.5 Differences between the CwB-model in JSim and Python

The results of the CwB-model shows some differences between the JSim and
Python programs. The main differences are in the baroreflex variables. From
Figure 4.3 we observe the differences in the baroreceptor signal Ny, and the
contraction pathway signal at CNS, Ngp,.

In figure 4.3a we observe that the N, signal from the Python run in-
crease to a level while the JSim run also oscillate with large period. The
other signal pathways Np.s, Npm and Nygso also have these oscillations in
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the JSim run. The oscillations have a period of approximately 15s. In Fig-
ure 4.1 we observe that the oscillation in N, cause a similar period to
the discrete as(Fropn) variable which is the one that actually influences the
contraction of the ventricle.

The signal N, is entirely dependant on N, and some constant parame-
ters. If we compare the Figures 4.3b and 4.3d we observe that the differences
in Non are more pronounced than differences in Ny, leading to a suspicion
that it is the implementation of the delay differential equation that causes
the differences.

The flow in the proximal aorta, Qqep is affected by the consequences of
both the sympathetic contraction barosignal N.,, and the parasympathetic
and sympathetic heart rate barosignal Ny, and Np,.s. We see from Figure
4.2 that the differences in QQq0p between the JSim and the Python run are
very small. Another interesting difference is the M AP variable, or mean
arterial pressure. This variable is discussed in Section 5.3 in the chapter
about connecting the two models. In all variables there is an initial period
before the baroreflexes land the system in a stable state. In Figure 4.4 we
observe that after the initial change, the M AP variable in addition to varying
with the heart rate, also oscillates with a larger period in time, when using
the JSim program. In the python program this larger oscillation does not
occur. This is similar to the oscillations in the signals N, and the other
pathways. One reason that this variable in particular is so affected can be
that the arterial pressure Py, is directly affected by Nyqs0. Though when we
look at P;, in JSim we do not see a marked oscillation here.

There are measured oscillations in atrial pressure and heart rate of around
that of respiration, which are not well understood. The most studied is how
heart rate varies with breathing. This is called respiratory sinus arrhythmia,
[7, p. 496]. The effect of breathing on the circulation is not included in
our model, the only related parameter is pressure in the lungs, P, which is
modeled to be constant. During respiration the pressure in the lungs varies
periodically.

In JSim the total volume is constant to machine precision, but in the
python program we get an error of order of magnitude 0.01ml. The error
does not get bigger with time. We checked a run of the python program that
simulates 400s.

All other variables seem to be in accordance, to the same degree as Qa0p
in Figure 4.2. Overall, the result of the conversion is satisfactory for our
purpose.

The most likely cause of the discrepancies between the two versions of
the model, is the delay in the baroreflex. As noted in Section 4.1.3, in JSim
they find the delay from interpolation of the values at the two neighbouring
time steps, while we chose an easier solution of using the same value of the
Ny, (t — L) delay over an interval dt.

The event handling is also slightly different between the two programs,
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Figure 4.3: Baroreceptors of CwB from JSim and Python

although we have tried to get as close as possible.

We use the scipy.odeint function for solving the CwB model. It is based
on the ode-solver Isoda from Fortran library odepack. Another option would
have been to use the scipy.ode function where the ode-solver is based on
the Fortran library VODE. JSim uses CVODE, which is a translation of the
VODE library into the C programming language. Both lsoda and VODE
uses a method based on backward differentiation formulas (BDF) for solving
stiff ODE problems. We used the scipy.odeint’s output option to find that the
CwB model is a stiff ODE system, as opposed to a non-stiff system, which
would be solved by a different method. This information is from Python
documentation and the Physiome project web pages [1].

We have not investigated further to establish for certain the reason for
the differences between the runs of the CwB-model for JSim and Python.
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4.1.6 CPU time differences of the CwB-model

We want to measure the CPU time of running the CwB-model in JSim
and Python. While working on the conversion it seemed that the JSim
program was about 200 times faster than the python program. According to
the "Introduction to the JSim GUI” that can be found from page [1], JSim
compiles the MML source code into executable Java code before the program
can be run. So when we are comparing JSim and Python, we are actually
comparing Python and Java. We did not work on optimizing the python
program, but there are many ways to improve straightforward python code.

In JSim there is a section of the GUI that shows the time when the model
is executed and the time where the run is terminated, down to the accuracy
of seconds. This is not a very accurate measure of CPU time, but given
the limited manuals on JSim on the JSim Project web pages, it is the only
available option.

To get as accurate results of CPU time differences as possible, we use a
simulation time of 400s. For shorter simulation, the JSim measure time too
inaccurately, see Table 4.1. The output in the JSim GUI for 400s simulation
time looks like this:

12:27:49 Job "Run model MODEL" in progress...
12:28:43 terminated normally

We tried to run the JSim program with a simulation time of 4000s, but
JSim wouldn’t compile the code because there was insufficient memory avail-
able. By just looking at the error messages it seems that there was an over-
load of the data structures in Java, that JSim uses. The results for CPU-time
and the longest simulation time that would compile is presented in Table 4.1.

The JSim GUI takes a long time when plotting the results of the 3500s
run. The second time we adjusted the axis it actually crashed the JSim GUI.

10
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Language | Simulation time | CPU-time | CPU-time/Simulation time
Python 4s 83.32s 20.830
JSim 4s 1s 0.250
Python 40s 958.44s 23.961
JSim 40s 6s 0.150
Python 400s 9745.77s 24.364
JSim 400s 54s 0.135
JSim 3000s 415s 0.138
JSim 3500s 531s 0.152
JSim 3600s did not compile

Table 4.1: CPU-times for the CwB-model

We did get a look at the results though, and the Ng,, and M AP variables
where stable, there was no divergence of the solution.

We only make one change to make the Python program faster. In JSim
all variables can be plotted, not just the state variables. For instance there
is a variable representing a very simple ECG signal, based only on heart
rate. There are a few more of these equations just for plotting that do
not affect the rest of the equations. These will not become part of the
output of python integration, unless we specifically save them, so we remove
them. JSim includes calculation of transmural and chamber pressures, in
cases where the pressure outside the vessel is different from ground. Only
chamber pressures are used in further calculations.

4.2 The Toska program

The original program was written in Pascal and operated from DOS. The
program we consider here, is a modified version of an earlier model published
in [14]. The earlier model was designed to explain the cardiovascular changes
on thigh cuff inflation. The version we use, investigate changes at the onset
of exercise. The medical data for the exercise experiments were gathered at
two trials. In [13] they measure arterial pressure, stroke volume and heart
beat, and in [3] they also measure femoral flow. An optimization algorithm is
used to minimize the deviations between the recorded data and the model’s
predictions.

The conversion from Pascal to Matlab, was done by Sjur Urdson Gjerald,
years before the start this project. All work related to this thesis is based on
the Matlab program, if not stated otherwise. The original Matlab program
can be found printed in a report [12]. During the work on this thesis on the
conversion to Python, the program has been slimmed down to the essentials.
The Matlab program runs slower than the original Pascal program. The
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Pascal program is the version that they used in the articles [4, 14].

The new element in the Matlab program, compared to the Pascal pro-
gram, is the added functionality needed to include measurements of femoral
flow.

4.2.1 Untangle essential model code from the GUI

The Matlab program is organized so that it is operated from a graphic user
interface (GUI). In order to have more control over parameter input, we
want to remove the GUI, which constrain us to entering parameter values
manually. For extensive testing of the program, we need to be able to start
with randomized parameters. We also want to be able to reload files with
optimized parameters to visualize results.

We start with exploring the model using the GUI. In Matlab we start
Systemic_ Circulation Model.m, which basically sets up the GUI and en-
sures the user input results in calls to the right programs. The GUI includes
sliders for changing all the parameters. Every time a parameter is changed,
the model is rerun and plots are updated with the new result. This is very
useful for getting an understanding of which parts of the model each param-
eter influences.

The optimization is quite slow in Matlab, but we get some plots of what
happens to the function through the optimization process. The plots are
updated in every iteration, along with current error and number of iterations
done. This is one of the things that slow the optimization down.

The functions in the Matlab program that include GUI-commands are
Intervall skjekk.m, Optimaliser.m and Systemic Circulation Model.m.

Opening the Systemic Circulation Model.m file, we observe that it con-
sists of almost entirely GUI commands. The different parts are ordered by a
switch-case setup. This makes it easy to ensure that we keep all useful func-
tionality while discarding everything else. Unlike most of the other functions,
Systemic Circulation Model.py is written entirely from scratch. The only
part of the GUI we kept were the plot routines. During the process we also
made a Matlab version of the program without GUI. This made it easier to
compare with the Python program.

The core model is the function ExecuteModel.m. From here the objects
containing the model equations are initialized. Classes in Matlab are con-
structed so that files with class functions are put in a folder called @QClass-
name. The present model contains eight classes representing the different
parts of the circulation. The original Matlab program had only to a minor
degree used the opportunity to put more than one function in each file. The
entire model ends up containing in total 46 files. Programming with classes
in Python is more practical than in Matlab, as we can easily put all eight
classes into one file in Python while Matlab needs eight folders.



4.2. THE TOSKA PROGRAM 41

» SyPerTc Sympathetic peripheral time constant Tt.sp = 10s
» SyPerDel Sympathetic peripheral delay dsp = 6.00s
» SyRrGain Sympathetic rr-interval gain/sensitivity Konrr =0
» SyRrTc Sympathetic rr-interval time constant T sn = 10s
» SyRrDel Sympathetic rr-interval delay dgp, = 1.00s
» ParaRrTc Parasympathetic rr-interval time constant Tt ,, = 0.25s
» ParaRrDel Parasympathetic rr-interval delay dpn, = 0.25s
» MuscFIDly  Muscle flow delay Ay = 1.8s

Table 4.2: Constant parameters of the Toska model.

4.2.2 Parameters to the model’s equations

The program needs two input files, the measured data for the given subject
and a standard input file for model parameters. The model parameters can
be subdivided depending on what we do with them after they have been
imported from the input file. Some we set as constant, and five of the
parameters are not used. Others we change in relation to the given subject’s
medical data. The remaining are the ones we optimize for. We include
lists of the parameters to make it easier to check the program against the
equations.

Parameters that are held constant during optimization, are the time con-
stants and delays of the baroreflexes, and the delay in increase in muscle flow
after the start of exercise, see Table 4.2. For reasons already discussed, we
set the sympathetic RR-interval gain to zero, which means we choose to
ignore the sympathetic influence on heart rate.

Parameters that depend on individual subjects are changed right after
the input files are imported, they are listed in Table 4.3. When there is not
any recorded data for muscle flow, it is assumed that Ezcypq=0.15. The
Windkessel compliance is the compliance of the artery, this is assumed to be
related to the mass of the subject. The initial values are the average of the
first 10s of the medical data of the respective subject. This is the period of
rest before they start counting down to start of exercise.

The parameters that we focus on are the ones adjusted during optimiza-
tion, listed in Table 4.4.

We find individual values for these parameters so that the model comes
as close as possible to the medical data.

4.2.3 Old parameters from the development of the code

The input parameter file has a format that includes parameters to functions
that is either not included in the original program, or has been dismissed as
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» RestExFrac  Exercising fraction of body Excond
» WkComp Windkessel compliance C

» MAPO Mean arterial pressure MAP,
» RRO Rr-interval rTo

» SVO Stroke volume SVo

» MFO Muscle flow MFy

Table 4.3: Parameters of the Toska model that depend on individual mea-
surements.

» SyPerGain Sympathetic peripheral gain/sensitivity K,
» SyCoGain Sympathetic contractivity gain/sensitivity — Ky
» ParaRrGain  Parasympathetic rr-interval gain/sensitivity K,
» AfterLoadSens Sensitivity to afterload on stroke volume K,

» MitrFl Mitral flow Qm

» MuscFlow Muscle flow Qmy
» MuscFl1Tc Muscle flow time constant Temf
» SetpStep Baro set point step Ps step
» Barotccount Baro set point tc countdown Tt set

Table 4.4: Parameters of the Toska model that we optimize against mea-
surements.

» VenousFrac  Venous fraction

» VenousDly Venous delay

» Barotc Baro set point time constant

» BeforeFrac=1 Baro set point before fraction

» AdaptFac=0 Adapt factor for mean arterial pressure deviation

Table 4.5: Parameters of the Toska model from the development of the code.

not relevant to the system. These parameters are not mentioned in any of
the articles, we list them in Table 4.5.

The venous parameters were supposed to model the venous return’s effect
on stroke volume. Two baroreflex setpoint time constants are included, but
only one of them is used. The last two parameters are still a part of the
program, and will influence the solution if they are changed. When AdaptFac
is zero, the current mean arterial pressure’s deviation from baroreflex set
point is stored for use in the baroreflex signal. This is the same as if the
T BaroAdapt class is not present. Changing BeforeFrac will give the wrong
increase in setpoint, P sp for the baroreflexes.

Since these unused parameters are included in all the parameter input
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files, we consider compatibility backwards in time and choose to keep them.
We make it clear in the program that these are not in use and should not be
optimized for. These parameters are more of a problem in the Matlab GUI
where there are sliders to change parameters.

4.2.4 TimeConstDelay, the baroreflex signal function

The baroreflex signal in the program is calculated in an object of the class
TimeConstDelay. Inside this class, the delay in the baroreflex was stored as
a circular FIFO queue, and programmed as an object of the class DelayFifo.
Stored in the FIFO queue is the M AP deviation from setpoint and the
corresponding time, once for each heart beat. We can replace the DelayFifo
object with a python dictionary, and still retain all the useful functionality.
We choose a dictionary and not an array because the RR interval is not
constant, so it will not have a fixed length. We could easily have used a list,
though a dictionary makes it look more like the original program.

The reason why they used a circular FIFO queue, was storage and mem-
ory constraints when the original Pascal program was made, around 1994.
The circular FIFO queue resets the write pointer to zero after a hundred
values have been saved, and starts overwriting previous values to save mem-
ory. This could have been improved further by observing that the largest
delay in the article, for the sympathetic influence on peripheral vessels, is
dsp = 6.0 s. If we consider the minimal duration of a heart beat, about 0.7s,
then saving the values for twenty heart beats is more than sufficient.

We remove some tests on the values of the pointers in the FIFO queue,
because the incidents that there are concerns about, will not happen. For
instance, to get a circular FIFO queue overflow and start writing over values
that has not been used yet, the delay must be d > 100 s, since the circular
queue saves a hundred values.

The reason we decided to forego the circular FIFO queue is that a normal
run of this program includes less than 300 heart beats, given by the duration
of the experiments. Since having enough memory to run the program is no
longer an issue, resetting the value of the write and read keys in a circular
manner, will add complexity to reading the code with minimal effect on
efficiency.

The baroreflex signal reacts to disturbance in arterial pressure. The time
course and corresponding difference between arterial pressure and setpoint,
called MapError, we now store in a python dictionary.

As mentioned in Section 3.3.1 the baroreflex signal in the program is
not the same as the integral presented in the articles [4, 14]. We need an
analysis of how the "flow” through if-tests in TimeConstDelay determines
what is stored in the signal, B(¢). The program is included in the appendix.

It is easy to see what happens before the simulation time passes the delay
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time;
B(t,) = MapError(t = 0) = P(0) — P5(0), if ¢, <d. (4.3)
The signal is equal to the initial pressure deviation from setpoint, during the
time before it is possible to go a delay d back.
The next equation is only exact if the RR-interval is constant, which is
never the case, but it illustrates how the signal is formed.

B(t,) ~ fMapError(t,—1 —d)+ (1 — f)MapError(t,, —d) if ¢, >d (4.4)

The signal is based on two, or at the most three adjacent MapError, the
deviations from setpoint. The delay is there to model the time between
detection at the baroreceptor and response through efferent pathway. The
weight of each term is decided from the factor f, where

tn—d—(tn_l—d))  RRy
=€

f= e_( Tc Tc (4.5)

RR,, is the RR-interval at the current time, and 7. is a time constant depend-
ing on the pathway. The integral version of the signal sum up all previous
MapError before the delay.

To describe the difference between the article and the code, we plot the
two cases. We make a very simple program that calculate this integral

t—d
B(t) = - / [P(t') — Py(t")] el D/ el gy (4.6)
T Jo
which is the same as in the article, only assuming the pressure is at the
setpoint before we start our simulation.

One option for comparison is to use the time sequence and the corre-
sponding MapError taken from a previous run of the program as input.

We use an optimized run for the subject GT from the newer measure-
ments [3], the input to the baroreflexes are MapError and the responding
time series, beat-to-beat. In Figure 4.5a we observe that the integral from
the article is rapidly diverging. The parasympathetic signal to the heart is
diverging so fast that it can not be plotted in a reasonable way. This is be-
cause of a small time constant, Tt ,;, = 0.255. We have not tried to use the
integral in an actual run of the program, but would assume that the results
would be unpredictable. Looking at the program’s baroreflex in detail in
Figure 4.5b we see that here a small time constant preserve the variation
in the MapError for the parasympathetic signal, while a time constant of
Tt sh = T¢sp = 10s smoothes out the sympathetic signals.

Another option is to study the two signals with an artificial MapError
input. In Figure 4.5¢ and 4.5d we set

1 30s <t<60s,
MapError = (4.7)
0 otherwise.
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Figure 4.5: Baroreflex for subject GT

We observe that the signal from the code will decrease toward zero when
there is no input, while the signal from the article will only go down if we
have MapError of the opposite sign. If there is some other reason in the
model for the mean arterial pressure never reaching the setpoint, so that it
is either always below or above, then the signal from the article will diverge.

4.2.5 Include flow measurements from exercising muscle

In the original version of the program without measurements for femoral flow,
the muscle flow parameter @), represent the increase in flow in reaction to
exercise, see Section 2.3.2. Since in [13] the femoral flow was not measured,
it was estimated that the fraction of total peripheral conduction representing
the legs was Excong = 0.15 in the original Pascal program.

When we have measurements for femoral flow, we want to find the frac-
tion of conductance through the legs from these, instead of an estimate. In
the experimental data files, Column 7 is the femoral flow as it was measured.
Column 8 is the femoral flow data with mean at rest, M Fp, subtracted.

We want to optimize the results against the data in Column 8, since this
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is the increase in flow, but first we need to find Fxcong for each subject from
the fraction of total femoral flow to total flow. To do this we use mean values
at rest. In the Matlab program Ez¢,,q only became correct if we imported
Column 7. If we imported Column 8 that we should optimize against, then
Excong became zero. That means the program was run as if no part of the
peripheral arteries were influenced by local metabolites when exercising.

To fix this problem, we import column 7 and find the mean at rest, M Fy.
Then we calculate Excong. We need to subtract M F; from the measured
femoral flow data from Column 7 to obtain the increase in flow, seen in
Column 8. Another solution would have been to import both these columns.

The suggestion in practice:

1) Import Column 7 where M Fy # 0
. MF,

2) Excona = gl ~0.15

3) Column 7 — Column 7/ M Fy

4) Set MFy—0

In the Matlab program it was implemented this way:

1) Import Column 8 where MFy =0
2) Excond = % =0

Another suggestion is to make it identical to the case without data for
femoral flow:

1) Import Column 8 where M Fy =0
2) Set Excong = 0.15

4.2.6 Constrain intervals for model parameters

We use an optimization function to fit the parameters in the model to ac-
tual data for individual patients. More information about the optimization
algorithm can be found in Section 6.1, where we analyse the results.

A practical problem about this function is that it does not have any built
in possibility to constrain the parameters that are optimized. We want to
constrain the parameters to physiologically relevant values. Many of the
parameters can not be negative.

The problem is more generally called a constrained optimization prob-
lem. There are many methods for solving these, but we chose not to go
into this topic in this thesis. The scipy.optimize library only include a one-
dimensional constrained optimization algorithm, and our problem is multi
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dimensional. We choose the same optimization algorithm that is used in the
Matlab program.

In the original program, intervals are only checked for sliders and in-
side some objects. The sliders in the GUI present the results. This means
that while it seems that parameters we have found are within limits, the
values we see on the screen might not actually be the ones that the opti-
mization ended up with. We get the opposite problem when the parameters
are changed inside objects. The function value that we are minimizing, will
then not necessarily be based on parameters that the algorithm is using for
optimization.

There is no perfect solution to this problem in python. One option is to
check if the parameters are within the interval immediately after they have
been suggested by the optimization algorithm. The parameters are then
changed before the optimization of the set starts.

4.2.7 Create routines for different scenarios

The data presented in [4, 13|, had measurements of mean arterial pressure,
heart rate and stroke volume, and the model was optimized against these.
In the newer measurements published in [3]| they also measured the femoral
flow of the subjects.

There has not been published an article where the program is used on
the newer measurements that include femoral flow yet. So these results will
be presented for the first time in this thesis. In this case the program should
optimize against all four measurements.

It is important to have a simple user interface for changing conditions
in the program for running different scenarios. We want the program to be
able to work with both the older and newer measurements. As mentioned
in section 4.2.5, we have two data columns with femoral flow, for the newer
measurements. One of the actual measurements, and one where the average
at rest is subtracted. In order to test the program, we want to be able to use
both. For the old measurements we should not import, or optimize against,
femoral data. Another thing we would like to change at will, is whether or
not the Windkessel compliance is dependent on the mass of the subject.

4.2.8 Test program with random start values for optimizing

In the two articles [4, 14|, they tested the program for each subject with only
two different parameter starting points.

To test if the optimization is independent of initial parameters, we make a
random number generator pick them. We use the random.uniform function,
and choose intervals for the parameters that are narrower than those we allow
for the optimization results. The reason for this is that many combinations
of parameters make the model oscillate or diverge. We realised this while
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using the sliders in the Matlab GUI, and then looked for intervals of each
parameter where this did not happen. There might still be combinations of
parameters within the intervals chosen that oscillate, but we do not want
the intervals to be too narrow. If the optimization starts at such a point, it
will normally not converge to a relevant result.

We also make a Matlab version of the program without GUI, to make it
easier to compare the results with the python program. We save the random
variables from the python program that we start the optimization with, to
file. The intention is to start the Matlab version with the same random
variables.
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Model development

5.1 Connecting Toska baromodel and CwB circula-
tion

The Toska model is made specifically to investigate what role the barore-
ceptors play in regulating the body when it goes from a resting state to
exercising. The CwB model simulate how baroreceptors deal with other
kinds of stress to the system, like the Valsava manoeuvre, [8], but it does
not include how metabolites influence the conductance in exercising muscles.

In the simple Toska circulation, the peripheral vessels are divided into a
resting part and an exercising part which is the legs, connected in parallel.
The CwB circulation has parallel vessels for the head, over the heart and the
rest of the body in the systemic circulation. Since there is no division into
parallel vessels between exercising and resting muscles in the CwB circula-
tion, we will not activate the changes during exercise when we use the Toska
baroreflexes. To accomplish this we set the parameter ExerciseState to be
zero which represent rest, during the entire simulated time. This means that
the baroreflex setpoint in the Toska model will be constant, and metabolites
influence on conductance in exercising muscles will not be triggered.

The parameters from the Toska model that we need are the ones related
to the sympathetic and the parasympathetic pathways, plus the initial values
MAPy and RRy. The rest of the parameters are either related to exercise,
or to the beat-to-beat circulation.

5.2 Running CwB circulation model without any
baroreceptors

Disconnecting the baroreflexes is quite straight forward. In the case of the
contraction the baroreflexes affects the ventricles but not the atria. We
choose to set a(F,on) = 1, which makes the equations for atria and ventricles

49
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Figure 5.1: The CwB model in python with original baroreceptors and no baroreceptors

on the same form. We choose to keep the heart rate constant at the initial
value. Vasoconstriction involves the most intricate equations. We choose to
set the efferent sympathetic signal to Fy,.s, = 0 since this gives the passive
arterial pressure: P, = Py p.

We observe from Figure 5.1 that some parts of the system are more
affected by baroreflexes than others. We will keep an eye on the systemic
arteries and veins when we later try to fit the Toska baroreceptors to the
model, since these are among the state variables that differ the most. The
systemic veins are very compliant, so if blood volumes get shifted in the
system, the veins will act like a reservoir. The systemic arteries are affected
in two ways from the vasoconstriction, as both the resistance and the pressure
involves Fyqs0. In Figure 5.1¢c we note that the blood pressure is lower when
the baroreflex is turned off.

5.3 Averaging beat for beat

The Toska baroreflex uses mean arterial pressure over a heart beat as input.
Since all pressures in the CwB circulation vary we need to integrate them to
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find average values. To find the mean arterial pressure we integrate Ps, over
a heart beat using the simplest square method, adding for every variable
time step, then divide by the current RR-interval.

The CwB program include formulas for the mean arterial pressure and
cardiac output. They estimate MAP and CO by including the following
differential equations. This models the rate of change, though we could
not find a justification for the choice of time constant. The time constant
smoothes out the pulsatile behaviour, so that we get closer to mean values
of Py, and Q.

real COtau = 15 sec; //Cardiac output equation time constant
COutput:t = (Qlv-COutput)/COtau; //Cardiac output

MAP:t = (Psa-MAP)/COtau; //Mean arterial pressure

Since this version of mean arterial pressure varies over the heart beat, it can
not be used as input in the Toska baroreflex.

We chose to average the arterial pressure Ps, in the Toska baroreflex even
though it is the pressure in the distal aorta P,y that is driving the CwB
baroreflexes, and the actual baroreceptors are located in the aorta.

The next step is to introduce each baroreflex to the circulation, observe
differences between models, and make adjustments.

5.4 Contraction

In the Toska model, the sympathetic barosignal for contraction is included as
a term in equation (3.14) that determines the stroke volume. The equation
also includes a term for how afterload and filling time will affect the stroke
volume. In a pulsatile model these two terms will be an integrated part of
the flow out of the ventricle. It is then only the sympathetic barosignal that
need to be added to the CwB model. In the CwB model the flow out of the
left ventricle, @y, is:

_ Plve = Paope

Rav

from the pressure difference between the pressure of the left ventricle, Py,
and the proximal aorta, P,pe over the aortic valve resistance, Ry, .

Stroke volume is defined as total flow output during one heart beat, or
the RR-interval. For a pulsative system this is the integral of the flow out
of the left ventricle, @y,

le (51)

SV = [ Qudt (5.2)
RR

In the Toska model the way of including the baroreflex of contraction, is
to add the resulting change to what would otherwise be the stroke volume,
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SVorig, see equation (3.14).
S%aro = SVorig + Ksthh (53)

We want to add the Toska contraction baroreflex to a pulsatile system, the
barosignal, By, is constant over the duration of a heart beat. The following
is the effect we want to accomplish

Sv;mro - / le,origdt + Ksthh - / (le,orig + Ksthh/RR)dt (54)
RR RR

We need to find a way that does not violate the conservation of volume,
while giving a similar change in stroke volume.

The baroreflex influence the force of contraction, which determines the
chamber pressure in the ventricle, Pj,.. This in turn change the flow out of
the ventricle, @y, , see equation (5.1). Since @y, depends linearly on Py, the
first proposition on how to include the change in stroke volume is to change
the ventricular pressure from the CwB model in the following way

-Plvc = Plvc,orig + KsthhRav/RR (55)
and similarly for the right ventricle
Prvc = Prvc,orig + Ksththuv/RR (56)

This is not acceptable because just raising the pressure in the ventricle by
a constant value is not the same as changing the force with which the heart
can contract.

In the CwB model the baroreflex signal for contraction is multiplied with
the varying elastance of the ventricle, here Ej,, hence changing the elastance
that determines the force of contraction, see equation (3.8).

In order to make the models as similar as possible, we propose this form
when including the Toska baroreflex. The signal changes the varying elas-
tance.

P
Plvc = [1 + Ksthh/RR]Elv(WU - Vvlv,r) - & 1 + Ppcdc (57)

evlv /sz —

We want the two baromodels to give equal pressure in the ventricle when
there is no input signal. In the Toska model, By, = 0 is the case of no
baroreflex signal, when the blood pressure is at the preferred level. In equa-
tion (3.8) from the CwB model a(F.y,) = 1 is the signal that make the
ventricular pressure on the same form as the atrial contraction which does
not have baroreflex inervation. We include the barosignal in the right ven-
tricle in the same way.
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5.5 Heart rate

Changing the baroreceptors for heart rate is simple. In both cases the
barosignal is influencing the heart rate directly. We do not need to make
any adjustments, as we did in the contraction case. The heart rate that is
used in the CwB model is only updated at the end of the heart beat anyway.
Heart rate is the inverse of the RR-interval. We exchange equation (3.6) in
the CwB model for equation (3.13) from the Toska model.

5.6 Peripheral vessels

In the CwB baroreflex the signal to the peripheral vessels affects both the
pressure and the resistance of the systemic arteries. Setting F,qs0 = 0 means
that the arterial pressure is passive, Py, = Py, and we have no barore-
flex, like we see in Section 3.2. There is no logical way to make the Toska
baroreflex affect pressure directly, as the model only applies to peripheral
conductance. We therefore use the formula for passive pressure, Py, as the
arterial pressure.

The Toska model has a total peripheral conductance that is the sum of
two conductances through parallel vessels representing different parts of the
body, see equation (2.54). We decide not to include metabolite influence in
reaction to exercise. The reason is that to accomplish this in the CwB model,
we would have to divide the systemic circulation into two equal branches,
and then fit all the parameters in these two branches from scratch. This
simplification means that we only include the sympathetic peripheral signal
from the Toska model.

Conductance is defined as the inverse of resistance. For an electrical
circuit, we can always find an equivalent resistor that gives the same current
and potential drop as any combinations of resistors, see [15, p. 981-982|. It
follows that equivalent resistance of a system is the inverse of the equivalent

conductance. .

Geg
In general for resistors in parallel, the equivalent conductance is the sum

of the conductance of the components.

G€q=G1+G2+... (5.9)

Reg = (5.8)

The Toska model has two parallel components. Equation (5.8) ensures that
the relation between the corresponding resistances is

1 1 1

Ry R R

T (5.10)

In the systemic circulation of the CwB model we have vessels in series.
Since the vessels have alternating resistance and compliance components,
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using the equivalent resistance for resistors in series is an approximation. The
volume change of a compliance vessel means that the two adjoining resistance
vessels can have different flow. The equivalent resistance of resistors in series
is derived from the fact that in series the current through each component
must be the same. Ohm’s law then gives

Req:R1+R2—|—... (5.11)

The definition of conductance gives this relation for resistors in series

SR (5.12)
G.oamta .

When we do not include reactions to exercise, the Toska model affect the
total peripheral conductance, G, in the following way, see equation (3.16)

1 1 1 1
_ _ , (5.13)
Geq  Gegorig(L+ KspBsp)  Gegorig \1+ KopBsp

where Geg orig is the original total peripheral conductance without baroreflex.
Since the CwB systemic circulation features vessels with resistance in series,
we use equation (5.8) and (5.11). We find that the equivalent resistance of
the systemic circulation, R., becomes

1 1
Rey = Regopiag | ——— )= ———— ) (R + Ro + ... 14
q @ 9<14-A;p3w> <14-A;p3w>( ! 2 ) (514)

where Req orig is the original total systemic resistance.

This means that if we were to get the same equivalent resistance of the
systemic circulation for the two models, we should include the baroreflex
term in the formula for all the resistances.

From physiology we know that it is the peripheral arteries that are af-
fected by vasoconstriction. We propose to include the factor only in the
formula for arterial resistance. From equation (3.9) the new form of the
arterial resistance then becomes

1 V. 2
Ry=——1)[R K, etfvaso 4 g [ Z20mar ) 5.15
sa <1 + Ksszp> < ol i e - " < V:ea ( )

This can be justified since in the CwB model, the vasoconstriction signal
only influences Ry, and Ps,. The efferent signal from the original baromodel
is Fyaso = 0 so that the second term is also a constant.
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Results

This thesis is the first extensive testing of the Toska model. In the articles
[3, 14] they tested for only two different starting values.

We divide this section into two parts. The first one contain the data
from testing the Toska model, and the second shows the results from using
the Toska baroreflexes with the CwB model.

6.1 Running the Toska model

When the conversion was complete, the first thing we wanted to do was to
check it against the published results in article [4]. Like they noted in the
article when commenting the constraints on the parameters, they chose two
different sets of starting values for the nine adjusted parameters. First the
mean of several model runs, and then secondly some above and some below
within a physiologically reasonable range.

That they could start with the mean of previous model runs, imply that
the model does not optimize to exactly the same result every time. We
needed to check how these differences influence the results. In the article
[4], they explained that the parameters were identical in all but three indi-
viduals in the two simulation runs. The parameters in question were @,
and K, (the articles states Bgj,, but that is the barosignal not an optimized
parameter). Both of them affect stroke volume.

In the python program we chose the scipy.optimize.fmin function, which
employs the Nelder-Mead downhill simplex algorithm. This is the same
algorithm that the fminsearch function in Matlab uses, and it was the one
included in the model. In the article [14], the minimization algorithm is also
the downhill simplex method of Nelder and Mead, so this algorithm was also
used in Pascal.

The convergence criteria xtol and ftol can not be set too strict given the
noise in the recorded data, like we see in Figure 6.1. The optimization is
terminated when reaching an accepted relative error in the parameters, xtol,

55
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and a corresponding relative error in the function we want to minimize, ftol.
In the Matlab program the values are set to xtol=10 and ftol=1, this ensure
that in our case the ftol criteria terminates the optimization.

During the initial testing we found that if we made the ftol criteria slightly
stricter, we got better results without having a greater fraction of results
ending up on parameter boundaries. We choose tolerance ftol=0.1 for the
error function.

The error function that we optimize over, is the sum of the squared dif-
ferences between the model and the recorded data for mean arterial pressure,
RR-interval and stroke volume. For the measurements from [3] it similarly
includes femoral muscle flow. To get a dimensionless function, each sum is
divided by the variance of the recorded data at rest, see the program in the
appendix. The optimization procedure is therefore trying to reach a least
squares solution. In the data there is a 10s rest period before counting down
to start of exercise, we select only the 40s after rest to be optimized for, see
program. According to [4] this was decided because after that time there
will be humoral influence and other possible neural reflexes with a long time
delay.

As already noted in Section 4.2.8, we choose relatively narrow parameter
interval when we pick random start parameters. For the optimized parame-
ters we allow wider intervals. Both intervals can be found in the program in
the appendix.

We run optimization on 100 random parameter sets for each subject, and
we apply the optimization algorithm four times on each set, with output from
one being input to the next. The reason for this is that between the third
and fourth optimization the number of function calls are notably smaller,
and we have then usually reached a local minima even though the tolerance
ftol is high.

For four of the subjects the optimization occasionally ends up with pa-
rameters that create an index error in the array that sums up the squared
differences. This probably happens because of the RR-interval, but we have
not managed to find such a result to visualize. It is a rare problem, usually
occurring only once for every hundred set. This means that since we have to
start the program again, there are more than 100 optimized parameter sets
in the result files.

Before we can judge the results, we need to remove the sets where one
of the parameters ended up on the boundary, since they are not actual local
minima. In Tables 6.1 and 6.5, we show the fraction of sets that we accept
for each subject, for the old and new subjects respectively. In addition to
parameters on the boundary, we also dismiss solutions with an error function
of € = 700 as not relevant. We observe that either more than half of the sets
are accepted or almost all end up on the boundary.

We allow for parameters to be zero, even though this is the lower bound-
ary for most parameters. The parameters that usually ends up on the upper
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boundary, are the increase in baroreflex setpoint, P scp, the corresponding
time constant, Tt o and the time constant for increase in muscle flow, Tt . 7.

The results with parameters on the boundary do in general make good
curves, which may imply that the intervals could be widened.

The overall impression of any file of accepted parameter sets, is that
usually a portion of the ones with the best error functions, has parameters
that are equal to the precision of one significant digit. For some parameters
it is slightly worse. This is not a very stable result, though it is certainly
not random. In the articles [14] and [4] the parameters are published to a
precision of two or three significant digits depending on the parameter.

In Tables 6.2, 6.3 and 6.4 we show the best accepted parameter set, then
an average of all the accepted results are sent as input to the program to find
the error function for the average parameters. Since there are many local
minima, some of the results are better than others. We want to also make
an average of the best results, and after studying the data we chose to select
those with error function € < €, +3 to be certain that the results are close.

In Table 6.2 we also include the published results from the article [4].
We note that when we do this more thorough optimization, we end up with
a better error function for all subjects.

For the subject MK the optimization ends up on the boundary every
time. In the article [4] it is also noted that the time constant, T¢ ¢ is
constrained. They set it to T, ,,y = 13.2s so here too we have a boundary
solution, see Table 6.2.

The published parameters are in general quite different from those we
reach. To show how this affects the solution, we choose to view the results of
Table 6.2 for two subjects. We choose subjects that have a high acceptance
ratio, while having different time courses. In Figure 6.1 we have subject EL.
First we note how equal our three optimized and averaged curves are. We
can also see this from the table. We choose this figure because the published
values and the average results were quite similar.

The subject PL in Figure 6.2 is one of the subject where we have the
greatest difference between our optimized results and the published values.

A trend in the data of Table 6.2, is that the set point increase Pj gsep is
at least twice as large for our optimized curves compared to the published
values. We observe that when setpoint increase doubles, then the sensitivity
or gains, Kpj,, K, and Ky, are halved. On the other hand there is not much
difference in muscle flow Q¢ maz, the time constant for muscle flow increase
Tt my and afterload sensitivity, K,. In the tables we have called Q) fmae for
@my- This is the notation in the tables of article [4]. The reason that Ps sep
affects the gains of the baroreflexes is quite simply that a large increase will
give a large barosignal. A way to get similar time courses is to lower the
gains so that the large barosignal has less effect.

There are too many dependent variables in the model to get a unique
solution. The published values are reasonable solutions of the system just
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not the best optimized ones. The fact that the set point increase is in general
optimized to such a high value might not be physiologically plausible.

We also did an experiment with setting set point increase to Ps g¢p = 7.0
mmHg. This is the optimized value for the average of time course data for all
the subjects, called global average response in the article [4]. We optimized
over the eight remaining parameters. In this case all parameters settled
closer to that of the published values. The ones where we saw the greatest
difference, were KY and RJ since the published P ¢ is higher here. We do
not include the data from this experiment.

The results that are based on the newer measurements that also involves
femoral flow, are displayed in Tables 6.3 and 6.4. We include simulations
of two scenarios. In order to find out how predictive the model is, we run
it with the same error function as the old measurements. Then we see if
the optimized femoral flow increase matches the new measurements. The
other case we are interested in, is when we include the squared difference
between measurement and simulation of the femoral flow in the sum in the
error function that we minimize over. We want to see the effect this has on
the parameters compared to the previous optimization.

In Table 6.5 we see that there is a greater fraction of the newer subjects
that are difficult to optimize. We observe in Table 6.3 the bad result for
subjects C and G when the parameters we average over are far apart. When
we run the model, we end up in a part of the parameter space that cause
oscillations, hence the really high error functions.

We concentrate on the subjects where we have a good fraction of accepted
results. We observe from Table 6.3 and 6.4 that the error function is larger
when we also optimize for femoral flow. This is understandable since it
involves an extra sum.

The interesting parameter when regarding different optimizing criteria, is
Qmfmaz- Subject I is one of the poorer fit for Q,, f,maz- In Figure 6.3, where
the original error function is used, the increase in femoral flow is almost twice
that of the measurements. In 6.4 we see the same subject for the new error
function. We note that the original error function gives a better fit for the
three other measurements; SV, M AP and RR-interval. From Table 6.3 we
similarly see a doubling of @),y for the original error function. The other
parameters are slightly shifted to accommodate this change.

In Figures 6.5 and 6.6 we show the subject M. Here we see one of the
best predictive results for the original error function. This we also note from
the Table 6.4. In subject M we have the closest resemblance for all the
parameters for the two error functions.

In section 2.3.2 we noted that the formula for conductance in exercising
muscle in the programs involve baseline mean arterial pressure, M APy, while
in the article they use M AP. In all the measurements that we have shown
here, we kept the program the way it was, to facilitate comparisons.

We did an experiment with using M AP with the old measurements. The
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EL |HG |HV |KY |LJ |LM | MK | PL |RJ |TK

Fraction | 0.78 | 0.92 | 0.69 | 0.05 | 0.88 | 0.64 | O 0.62 | 0.35 | 0.71

Table 6.1: Fraction of accepted parameter sets when model is run with the
measurements from [13].

RR (s) SV (ml/beat)

I
0.080] M\‘ M H Il
‘H\ Uj\j L ﬂ

L]

A
" g

\
I /N— il
N | \‘Ls \) H\
v My W, \“ W -
]\\) “ — Recorded data
N A “ —  Best accepted
0.072 ‘\ ‘\ — Mean accepted
U | — Mean of fraction
“ Published values.
o 20 40 60 80 100 120 140 o 20 40
Time (s)
(a) RR-interval (b) Stroke volume
MAP (mm Hg) o MuscFlow (I/s)
|
/\/ \ 0.04 /
M ol
‘r\j\j 0.02| /
0.01] /
7 20 40 60 80 o 20 40 60 80
Time (s) Time (s)
(c) Mean arterial pressure (d) Flow in exercising muscle

Figure 6.1: Plot of the model run in Table 6.2 for subject EL

difference in the parameters was minor compared to the differences within a
run of 100 parameter sets. There was no parameter where we could clearly
see that the two files was not related to the same subject.

6.2 Connecting the two models

We are interested in finding out if a baroreflex made for the simple beat-to-
beat circulation model is general enough to work for another circulation.
We start by testing the default Toska model parameters, the ones that
we always initialize the model with before optimizing. The parameters that
are relevant to change are shown in Table 6.6. In order to see the effect that
the baroreceptors have on the system, we plot three state variables with the
default parameters, and then the same state variables when the parameters
are fitted to the CwB circulation. Fitting the Toska parameters to the CwB
circulation is similar to fitting them to a given subject. This is always a part
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‘Weight Setpoint Te,set Kpp Ksp Kgp Qmf Tems Qm Kq Error
Increase
(kg) (mmHg) (s) (ms (1 (ml (1/s) (s) (ml/s) (ml
/mmHg) | /mmHg) | /mmHg) /mmHg)

EL
a 64 18.843 5.773 13.234 0.022 0.145 0.049 4.951 0.000 -0.780 176
b 64 17.168 5.178 15.149 0.026 0.185 0.050 5.052 0.762 -0.794 188
c 64 17.810 5.523 14.411 0.025 0.171 0.050 5.131 0.545 -0.792 182
d 64 7.500 2.950 30.700 0.068 0.360 0.057 6.410 0.000 -0.980 205
HG
a 73 9.540 8.130 15.589 0.028 0.296 0.022 1.065 24.159 -0.551 134
b 73 9.415 7.856 16.699 0.029 0.240 0.022 1.048 21.552 -0.526 148
c 73 9.553 8.069 15.616 0.028 0.285 0.022 1.076 23.614 -0.543 134
d 73 5.000 6.960 26.800 0.053 0.400 0.023 1.900 21.600 -0.810 157
HV
a 56 28.804 15.672 14.507 0.008 0.314 0.048 1.541 19.457 -0.368 270
b 56 19.603 12.881 21.390 0.016 0.355 0.051 2.013 17.331 -0.431 390
c 56 26.752 15.537 15.454 0.010 0.334 0.049 1.724 19.541 -0.391 271
d 56 5.000 1.790 40.700 0.027 0.350 0.050 2.560 11.600 -0.600 323
KY
a 65 27.915 21.857 20.278 0.056 0.390 0.048 7.372 0.000 -0.571 116
b 65 25.391 18.027 35.256 0.034 0.723 0.037 5.474 0.075 -0.546 369
c 65 28.939 24.642 20.894 0.047 0.518 0.040 6.297 0.000 -0.678 115
d 65 13.500 16.280 55.200 0.139 1.210 0.040 5.160 0.000 -0.660 186
LJ
a 73 16.725 9.673 15.564 0.031 0.177 0.031 2.406 12.733 -0.588 238
b 73 16.162 9.131 16.380 0.032 0.108 0.031 2.368 8.715 -0.586 241
c 73 15.919 9.418 16.420 0.033 0.166 0.032 2.492 11.614 -0.593 239
d 73 8.000 8.650 33.500 0.077 0.400 0.035 3.510 6.800 -0.890 289
LM
a 61 16.320 7.484 17.846 0.000 0.220 0.021 8.378 0.000 -0.739 249
b 61 14.594 7.128 21.007 0.002 0.316 0.023 9.213 2.175 -0.720 256
c 61 15.127 7.197 20.046 0.000 0.286 0.021 8.741 1.568 -0.725 254
d 61 8.500 5.330 39.800 0.016 0.540 0.028 11.460 0.000 -0.770 270
MK
d 62 6.000 4.510 27.200 0.075 0.020 0.042 13.200 3.400 -0.980 253
e 62 30.000 10.704 5.776 0.028 0.078 0.067 15.000 14.861 -0.728 135
PL
a 83 17.191 13.480 8.366 0.017 0.018 0.017 2.908 0.000 -0.396 236
b 83 13.571 13.764 14.942 0.033 0.033 0.021 4.318 0.632 -0.414 409
c 83 15.008 13.225 10.151 0.023 0.025 0.019 3.301 0.378 -0.390 248
d 83 5.500 8.610 25.700 0.090 0.060 0.027 6.640 0.000 -0.470 263
RJ
a 75 19.999 17.126 17.317 0.001 0.665 0.009 0.102 0.000 -0.844 280
b 75 17.208 22.050 42.286 0.010 1.732 0.009 0.471 0.820 -0.865 439
c 75 20.229 18.069 18.669 0.002 0.776 0.009 0.144 0.201 -0.880 282
d 75 11.000 13.000 38.400 0.023 1.130 0.012 0.900 0.000 -0.670 297
TK
a 57 17.462 3.063 10.939 0.023 0.129 0.038 2.369 2.074 -0.717 147
b 57 17.095 2.853 11.376 0.024 0.130 0.038 2.373 1.814 -0.719 150
c 57 16.941 3.008 11.390 0.024 0.133 0.039 2.410 2.001 -0.719 147
d 57 7.500 1.730 24.200 0.058 0.230 0.041 3.400 0.000 -0.890 194

Table 6.2: Model applied on the measurements from [13]. a) Best accepted optimization
reached, b) Mean of accepted parameter sets, ¢) Mean of fraction of accepted parameter
sets, d) Published values, e) Best optimization reached
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Figure 6.2: Plot of the model run in Table 6.2 for subject PL
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Figure 6.3: Plot of the model run in Table 6.3 for subject I, with including muscle flow
data in error function
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Weight Setpoint Te,set Kpp Ksp Kgp Qmy Te,mys Qm K, Error
Increase
(ke) (mmHg) ) (ms a (ml | (/s) () | (mi/s) (ml
/mmHg) /mmHg) /mmHg) /mmHg)

B
d 55 1.210 0.128 82.032 0.068 0.000 0.008 8.965 22.799 0.000 419
e 55 1.210 0.128 82.032 0.068 0.000 0.008 8.965 22.799 0.000 419
f 55 1.210 0.128 82.032 0.068 0.000 0.008 8.965 22.799 0.000 419
C
a 63 6.219 6.132 113.351 0.000 6.802 0.025 0.225 45.236 -0.759 576
b 63 7.608 13.831 168.890 0.002 8.426 0.027 1.749 18.244 -1.777 11449
c 63 6.219 6.132 113.351 0.000 6.802 0.025 0.225 45.236 -0.759 576
d 63 23.146 28.006 43.746 0.024 3.515 0.040 0.100 50.235 -1.147 446
e 63 27.643 26.767 31.377 0.048 2.585 0.069 6.275 30.934 -2.278 533
f 63 23.146 28.006 43.746 0.024 3.515 0.040 0.100 50.235 -1.147 446
E
a 82 6.964 0.605 9.768 0.000 0.136 0.006 0.562 36.216 -0.437 458
b 82 6.835 0.573 10.278 0.000 0.158 0.006 0.619 33.705 -0.508 458
c 82 6.973 0.558 9.942 0.000 0.143 0.006 0.591 34.698 -0.469 458
d 82 9.260 0.721 7.432 0.018 0.000 0.023 0.100 6.065 -0.824 222
e 82 9.186 0.538 7.504 0.018 0.008 0.023 0.103 6.997 -0.823 223
f 82 9.149 0.529 7.527 0.018 0.005 0.023 0.103 6.753 -0.823 223
F
a 90 4.540 0.101 45.967 0.000 0.000 0.015 0.104 19.259 0.000 367
b 90 2.627 0.107 92.822 0.000 0.145 0.017 1.804 19.586 -0.901 450
c 90 4.540 0.101 45.967 0.000 0.000 0.015 0.104 19.259 0.000 367
d 90 17.484 29.500 26.565 0.020 0.000 0.036 2.400 9.137 -0.346 146
e 90 9.527 16.123 70.815 0.012 0.456 0.030 1.938 7.291 -0.531 264
f 90 17.484 29.500 26.565 0.020 0.000 0.036 2.400 9.137 -0.346 146
G
a 72 1.112 0.111 116.529 0.000 1.293 0.043 2.897 0.080 -2.661 437
b 72 0.898 3.692 131.122 0.000 4.127 0.037 3.514 6.211 -1.505 13608
c 72 1.112 0.111 116.529 0.000 1.293 0.043 2.897 0.080 -2.661 437
d 72 29.950 27.747 19.265 0.066 0.346 0.147 9.544 0.148 -0.777 135
e 72 17.422 15.944 49.290 0.085 0.592 0.120 8.229 0.341 -1.067 1435
f 72 28.768 28.121 20.217 0.068 0.376 0.145 9.385 0.613 -0.808 135
H
a 55 9.252 12.182 65.763 0.083 0.182 0.035 6.367 0.000 -0.315 319
b 55 9.247 12.200 66.404 0.082 0.203 0.035 6.329 0.564 -0.284 319
c 55 9.261 12.172 65.593 0.083 0.182 0.035 6.347 0.365 -0.294 319
d 55 9.335 12.083 63.701 0.015 0.125 0.021 3.902 0.000 -0.279 279
e 55 9.108 12.427 69.665 0.012 0.364 0.020 4.030 2.042 -0.250 283
f 55 9.210 12.199 65.476 0.012 0.209 0.020 3.940 1.265 -0.251 279
I
a 68 5.963 0.121 28.402 0.000 0.310 0.022 1.542 3.450 -0.576 416
b 68 10.027 6.202 28.780 0.000 0.332 0.022 1.566 5.115 -0.760 758
c 68 5.932 0.276 28.673 0.000 0.309 0.022 1.552 3.136 -0.591 416
d 68 5.454 0.859 34.857 0.038 0.248 0.039 2.168 0.000 -0.606 302
e 68 12.103 8.521 25.099 0.024 0.228 0.038 1.971 1.479 -0.600 498
f 68 5.538 0.651 34.515 0.038 0.274 0.039 2.141 0.633 -0.611 303
J
a 50 22.149 9.354 25.165 0.019 0.143 0.021 4.239 0.000 -0.670 234
b 50 18.104 10.294 52.612 0.037 0.622 0.021 4.462 0.983 -0.725 358
c 50 21.414 9.471 27.177 0.021 0.175 0.021 4.434 0.294 -0.675 235
d 50 17.739 10.757 37.851 0.065 0.240 0.038 9.234 0.000 -0.681 205
e 50 16.396 11.406 67.754 0.041 0.928 0.022 5.586 0.725 -0.791 299
f 50 19.090 10.617 34.565 0.056 0.207 0.036 8.569 0.072 -0.670 210

Table 6.3: Model applied on the measurements from |3]

muscle flow data

. a) Best accepted optimization
reached, b) Mean of accepted parameter sets, ¢) Mean of fraction of accepted parameter
sets, d) Best accepted optimization reached, no muscle flow data, e) Mean of accepted
parameter sets, no muscle flow data, f) Mean of fraction of accepted parameter sets, no
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Figure 6.4: Plot of the model run in Table 6.3 for subject I, without including muscle
flow data
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Figure 6.5: Plot of the model run in Table 6.3 for subject M, with including muscle flow
data in error function.
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Weight Setpoint Te,set Kpp Ksp Kgp, Qmy Te,mys Qm Kq Error
Increase
(ke) | (mmtig) ®) (ms a ml | /) ) | /s (ml
/mmHg) | /mmHg) | /mmHg) /mmHeg)

L
a 54 26.153 29.119 41.974 0.034 0.756 0.018 4.228 0.187 -0.543 272
b 54 22.035 26.413 67.726 0.052 0.791 0.018 2.896 6.228 -0.225 286
c 54 26.680 26.975 37.071 0.030 0.652 0.019 4.205 0.123 -0.535 273
d 54 18.582 24.715 82.941 0.000 1.646 0.008 0.100 12.078 -0.229 246
e 54 19.823 27.800 86.214 0.002 1.394 0.007 0.101 14.218 -0.096 247
f 54 19.823 27.800 86.214 0.002 1.394 0.007 0.101 14.218 -0.096 247
M
a 63 16.688 8.787 20.690 0.013 0.413 0.029 4.467 10.895 -0.821 335
b 63 15.645 8.569 23.053 0.015 0.383 0.029 4.544 7.572 -0.875 340
c 63 15.607 8.569 22.675 0.015 0.413 0.030 4.516 8.973 -0.860 336
d 63 24.478 10.031 13.508 0.003 0.342 0.023 3.830 16.307 -0.736 319
e 63 15.319 8.943 27.528 0.019 0.544 0.031 5.374 6.803 -0.934 413
f 63 18.353 9.202 19.216 0.006 0.382 0.024 4.126 10.751 -0.829 325
TO
a 65 28.008 20.693 15.546 0.001 0.256 0.021 2.578 3.204 -0.759 239
b 65 22.346 21.212 32.989 0.003 0.636 0.021 2.577 1.417 -0.871 790
c 65 26.881 20.459 16.382 0.001 0.249 0.021 2.611 1.673 -0.787 240
d 65 20.418 17.078 21.156 0.017 0.269 0.032 3.559 1.694 -0.700 224
e 65 16.326 18.537 35.880 0.045 0.532 0.039 4.710 0.927 -0.793 281
f 65 18.553 17.330 25.550 0.027 0.313 0.034 4.018 0.595 -0.744 240

Table 6.4: Model applied on the measurements from [3|. a) Best accepted optimization
reached, b) Mean of accepted parameter sets, ¢) Mean of fraction of accepted parameter
sets, d) Best accepted optimization reached, no muscle flow data, e) Mean of accepted
parameter sets, no muscle flow data, f) Mean of fraction of accepted parameter sets, no
muscle flow data

Fraction | B C E F G H I J L M TO

With 0 0.03 | 0.85]0.02 ] 0.02 | 0.92 | 0.52 | 0.71 | 0.07 | 0.89 | 0.54
Without | 0.01 | 0.03 | 0.79 | 0.03 | 0.09 | 0.71 | 0.70 | 0.65 | 0.04 | 0.85 | 0.60

Table 6.5: Fraction of accepted parameter sets when model is run with the measurements
from [3], with and without including the muscle flow measurements.

of the Toska model, since it is patient specific.

We choose the state variables V.4, Vs, and Vy, since when the Toska pa-
rameters have been fitted, the largest discrepancies between the two barore-
flex models are in these state variables. All the other state variables have
small deviation in heart rate as the major difference.

Figure 6.7 shows the blood volume of the systemic veins. We look at
each individual baroreflex and the combined effect for both the default Toska
parameters and CwB. We see that the effect of the Toska baroreceptors are
too strong for this case, the blood volume is shifted so that the veins either
gain or loses extensive amounts of blood.

In Figure 6.11 we observe the main reason for the drastic changes to the
system. The default Toska baroreceptors are correcting what is conceived
to be a high blood pressure for the systemic arteries. Decrease in volume
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Figure 6.6: Plot of the model run in Table 6.3 for subject J, without including muscle
flow data

means decrease in pressure, here in the distal aorta, V,q.

When one compares Figure 6.9 and 6.10 that show arterial volume, Vi,
it seems that the default gives the better fit. This is the only state variable
where that happens. The reason is that we have not included the peripheral
baroreflex effect on arterial pressure. This means that while the volumes in
Figure 6.9 are close, the corresponding pressure, Py, will be lower in the case
of the Toska baroreflex, see Figure 3.2. The default baroreflex is trying to
lower the mean arterial pressure which is calculated from P,.

We want to fit the baroreflex parameters to the CwB circulation, but we
realize that applying the optimization algorithm will be too time consuming.
We need to simulate at least 10s to see the full effect of the baroreflex, and
an average run of the optimization algorithm makes about 300 function calls.

The models are in any case quite different so a perfect match is not to
be expected. There are five parameters in the baromodel that we need to
change. These are listed in Table 6.6.

We make the fit by considering the steady state of the CwB model and
visual comparison of the plots of all the state variables.

We need to change RRy and M APy because we want to drive the system
toward the solution that is stable in the original CwB-model. From the JSim
program we find that the heart rate varies little during the simulation. The
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initial value is HR = 77/60s. To find a good choice for baro setpoint, M AP
we look at the variables Py, and M AP in JSim.

In order to figure out the gains of the barosignal, we look at one reflex
at the time with the new estimation for baro setpoint. We find that the
biggest difference is now in the peripheral vasoconstriction. It is too sensitive,
so we turn the gain down. The value we end up with is well within the
interval containing the optimized SyPerGain/Kj, values for the subjects,
see Table 6.2 and 6.6. For a reasonable good fit, the other variables can
remain unchanged. This result is the second column in Table 6.6.

Since we want to have a better understanding of all the parameters, we
see how close the two baromodels can get. From the fitted parameters in
Table 6.6, we show the plots for the same state variables that we present
with the default parameters.

When it comes to heart rate, we find that keeping RRy the same as
the initial condition in the CwB model, gives the overall best results. Even
though the resulting RR-intervals are slightly shorter than that of the CwB
baroreflex, see Figure 6.12 of the volume in the aorta. Of the three state
variables we are plotting, this one is most directly affected by heart rate. We
see from Figure 6.12a that when the heart rate baroreflex is not included, the
heart rate is more similar. The reason for the RR-intervals getting shorter
with baroreflex, is that the mean arterial pressure is slightly lower than the
set point. This means that in order to make it a closer fit, it is the set point,
M APy that should be changed, not RRy.

The sympathetic signal that influence contraction, has a small contribu-
tion to the system when the system is close to right mean arterial pressure
for both baromodels, compare Figure 6.8c and the case with no baroreflex
in Figure 5.1a. On the other hand we know from Figure 6.7c that when the
system is not close to the baro setpoint, this gain will have a marked effect.

We conclude the fitting when we are content with the result in Figure
6.8d of the systemic veins.

The next step when testing if the Toska baromodel works similar to the
CwB baromodel, is to introduce a perturbation in an interesting parameter.

A healthy valve has low resistance to forward flow and block backflow.
If a valve defect increase resistance it is called valve stenosis. Valve defects
can be a congenial malfunction or a result of certain diseases, as explained
in [6, p 45]. We change aortic valve resistance from Ry, = 0.0001 mmHg
s/ml to Ry = 1 mmHg s/ml . We test out different values in JSim, and for
lower values of Ry, there are little difference to the system. The choice is not
based on medical data for valve stenosis. In Figure 6.13 we see the results
for the CwB baroreflex, the fitted Toska baroreflex and without baroreflexes.

We see in Figure 6.13c that the baroreflex quickly counter the effect of
less flow out of the left ventricle. When there is no baroreflex, the blood
volume in the distal aorta falls to a lower plateau and settles. Both the
baroreflex models react to the change, and within 10s the blood volume and
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Parameter | Starting point | First attempt | Fitted parameters
Ky, 0.054100590 |  0.030000000 0.028000000
K 0.000345964 | 0.000345964 0.000345964
Ky, 0.042343168 | 0.042343168 0.010000000
MAP, 74.740546667 | 90.000000000 91.000000000
RRy 1.102551111 0.779220779 0.779220779

Table 6.6: Connecting the Toska baroreflex to the CwB-model

Python CPU-time | CPU-time/Simulation time
CwB baroreceptors 231.61 23.16
No baroreceptors 43.84 4.38
Toska baroreceptors 43.88 4.39

Table 6.7: CPU-times for the CwB-model with different baroreflexes, simu-
lation time is 10s.

hence the blood pressure in the distal aorta is back to the level of the initial
value. The Toska baroreflex reacts slightly faster than the CwB baroreflex.
To find out which is the most realistic we would have to compare with mea-
surements. The fact that the volume stabilize toward the same value for
both baroreflexes shows that the merging of the Toska model with the CwB
circulation can work well.

In Figure 6.13b we find that the Toska baromodel keep the blood volume
in the systemic arteries higher than the case without baroreflex, to keep up
the arterial blood pressure. The CwB baroreflexes react to the fall in blood
volume, but reach a lower new level. The reason for the lower blood volume
is again that the peripheral baroreflex also alters the pressure Ps,.

With aortic valve stenosis, parts of the blood volume is shifted from the
systemic circulation to the pulmonary circulation. In Figure 6.13a we see
that the volume in the systemic veins decrease with on average 110ml for
the three cases. The blood volume in the pulmonary vein in Figure 6.13a in
reaction increase with 150ml. Studying all the state variables, we observe in
general that the pulmonary system is less effected by the baroreflexes.

One reason to choose the Toska baroreflex, is that it does not involve
ODEs, which means that the CPU time for a simulation is much faster than
for the CwB baroreflex, see Table 6.7. We note that the IV, barosignal in
Figure 4.3d gets a sharp spike every heartbeat which is very difficult to solve
for the ODE solver.
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Chapter 7

Concluding remarks

The Toska baromodel gives more varied results than previously thought.
Optimizing the model to recorded data will not give a conclusive result.
Average results of many optimized runs, is preferred instead. A test sample
of 100 runs, is too small for statistical reasons, particularly when many runs
end up on the boundary and are therefore not actual local minima.

The time constants for setpoint, 7. s¢; and increase in muscle flow, 17 ,,
should probably be less constrained, since many optimized runs end up on
the upper boundary. Another option is to make them constant, like the time
constants of the signal pathways. The two time constants T, s; and ¢ ¢
are the parameters that change the solution the least, we found this from
experimenting in the Matlab GUI. Since the system is not very sensitive to
these parameters, it is hard to find minimum points for them.

The Toska baromodel can be coupled to the CwB circulation, using gains
that are in range of those for the recorded subjects. This model manage to
regulate the circulation system in qualitatively the same way as the CwB
baroreflexes. The Toska model involves less parameters to fit, and is less
complex, though equations are not based on baroreceptor nerve measure-
ments. It might be possible to include Toska baroreflex influence on stiffness
of the arterial wall given by Py, if we find a function that take the Bj), signal
and return a value on the interval [0,1] in a similar way that the CwB efferent
pathway signal F} is a normalized version of the CNS signal N,. Then we
can use this function to scale which of P, and P2 is the most dominant,
instead of just using Pk, for the arterial pressure.

We mention some other opportunities for further study:

e Possible to test for other perturbations, validate the baromodels
e Connect the CwB circulation model to a more realistic 3D heart model

e Include the possibility of local metabolites when exercising in the CwB
circulation
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Appendix A

Python code

We include all the python code developed in this project. This is done mainly
for documentation purposes. First we present the Toska model, and then the
CwB model with original and Toska baroreflexes.

A.1 The Toska model in python

The Toska model consists of six files. We make a short introduction so that
it should be easier to find the parts of the model mentioned in the thesis.
The Systemic Circulation Model.py file runs the model. The InitialSim-
ulation.py file load the parameter and experimental files and calculate the
initial values. The ExecuteModel.py initialize objects of the of the classes
of parts of the circulation, contains some of the model equations, and in-
clude the acceptable intervals for optimized model parameters. The ob-
jects in_baromodel.py contain classes for each part of the circulation, and
the model equations. The class TimeConstDelay for the barosignal function
that we discuss in Section 4.2.4 is in this file. The Optimaliser.py file con-
tains calls to the optimize algorithm, and the error function of the difference
between the model solution and experiments. The RandomNewParam.py
file includes routines for running the model for random parameters, routines
for accessing optimized parameter sets and functions for statistics, plots and
tables.

nnn

Systemic_Circulation_Model.py

nnn

from InitialSimulation import *
from Optimaliser import *

def plotter(result,expdata,subject):
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titles=[’RR (s)’,’SV (ml/beat)’,’MAP (mm Hg)’,’MuscFlow (1/s)’,
'TPC  (1/(s*mmHg)) ’]
names=[’rr’,’sv’, ’map’,’mf’, tpc’]

for i in xrange(len(names)):
plot(result[’time’], result[names[i]], ’r’,
expdatal’exptime’], expdatal’expls’¥%names[i]], ’g’,
title=titles[i], xlabel=’time (s)’);
hardcopy (’%s%s.eps’%(subject ,names[i]))

plot(result[’time’] ,result[’totcond’],
result[’time’], result[’tpc’], ’r’,
title=’Total peripheral conductance (1/(s*mmHg))’,
xlabel="time (s)’,legend=[’totcond’,’tpc’])
hardcopy (’%stotcond.eps’subject)

def plotter2(result,expdata,subject):
titles=[’RR (s)’,’SV (ml/beat)’,’MAP (mm Hg)’,’MuscFlow (1/s)’,
>TPC  (1/ (s*mmHg) ) *]
names=[’rr’,’sv’,’map’, ’mf’]
#figure(1)
for i in xrange(len(names)):
subplot(2,2,i+1)
plot(result[’time’], result[names[il], ’r’,
expdatal[’exptime’], expdatal’expls’¥%names[il], ’g’,
title=titles[i], xlabel=’time (s)’);
hardcopy(’%smodel .eps’’ (subject))
nmn
figure(2)
plot(result[’time’] ,result[’totcond’],
result[’time’], result[’tpc’], ’r’,
expdatal’exptime’], expdatal’exptpc’]l, ’g’,
title=’Total peripheral conductance (1/(s*mmHg))’,
xlabel="time (s)’,legend=[’totcond’,’tpc’,’exptpc’])
hardcopy (’Ystotcond.eps’’subject)
def write_model_results_to_file(result,modeloutfile):
outfile=open(modeloutfile,’w’)
outfile.write (’Time\t\t RR\t\t SV\t\t MAP\t\t MF\t\t TPC\n’)
for i in xrange(len(result[’time’])):

outfile.write(’%15.9f%15.9%15.9£%15.9f%15.9f%15.9f\n’
%(result[’time’] [i] ,result[’rr’][i],
result[’sv’] [i] ,result[’map’][i],
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result[’mf’] [i],result[’totcond’] [i],))
outfile.close()

def write_to_file_and_screen(ModParam,ModParamNames,errorNow,paramoutfile):
outfile=open(paramoutfile,’w’)

print ’\n\n%15s\t%15f’%(’errorNow’ ,errorNow)

for i in xrange(len(ModParam)-1):
outfile.write(’%15.9f\t%15s\n’% (ModParam[i], ModParamNames[i]))
print ’%15s\t%15f’% (ModParamNames[i], ModParam[i])

print ’%15s\t%15f\n\n’%(’MFO’, ModParam[-1])
outfile.write(’%15.9f\t%15s\n’% (errorNow, ModParamNames[-1]))
outfile.close()

def run_simulation(extra,time_param,FILES,MODEL) :
time,Map,rr,sv,nbeats,mf,totcond=ExecuteModel (extra[’ModParam’] ,time_param)
TPC=sv/ (rr*Map)
extral[’result’]={’time’:time, ’map’:Map,’rr’:rr,’sv’:sv, ’Nofbeat’ :nbeats,
'mf’ :mf,’tpc’ :TPC, *totcond’ :totcond}

if MODEL[’plotl’]:

plotter(extral’result’],extral’expdata’] ,FILES[’subject’])
if MODEL[’plot2’]:

plotter2(extral[’result’],extral’expdata’] ,FILES[’subject’])

errorNow=ErrFvalVec([],extra[’ModParam’],extra[’expdata’], [],time_param,
MODEL [’mf _data’])
extra[’errorNow’]=errorNow
write_to_file_and_screen(extra[’ModParam’] ,extral’ModParamNames’]
,errorNow,FILES [’paramoutfile’])
write_model_results_to_file(extral[’result’] ,FILES[’modeloutfile’])

def Systemic_Circulation_Model (FILES,newparam,inds,MODEL) :

SIMTIME =110#129.4 #Total duration of simulation

EXERCISETIME= 20.0 #Time of onset of exercise

COUNTTIME = 10.0 #Time of counting down

SYSTDUR = 0.15 #Half of duration of systole, must be < MINRR
DT = 0.2 #Sampling time of template

time_param=[SIMTIME,EXERCISETIME, COUNTTIME, SYSTDUR,DT]
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"""case 1: Initialising"""
extra=InitialSimulation(FILES,time_param,MODEL)

if MODEL[’run_newparam’]:
"""case 2: Put new values into Modparam vector"""
extra[’ModParam’] [inds]=newparam
run_simulation(extra,time_param,FILES,MODEL)

if MODEL[’optim_newparam’]:
"""reget"""
extra[’ModParam’]=extral[’0rigModParam’]
"""case 3: Callback function for Optimaliser"""
extra=Optimaliser (extra,newparam,inds,time_param,MODEL)
run_simulation(extra,time_param,FILES,MODEL)

return extra #[’ModParam’] ,extral’errorNow’]

SyPerGain_min =0; SyPerGain_max =0.5;
SyPerTc_min =0.1; SyPerTc_max =30;
SyPerDel_min =0; SyPerDel_max =20;
SyRrGain_min =0; SyRrGain_max =1;
SyCoGain_min =0; SyCoGain_max =1;
SyRrTc_min =0.1; SyRrTc_max =30;
SyRrDel_min =0; SyRrDel_max =5;
ParaRrGain_min =0; ParaRrGain_max =1;
ParaRrTc_min =0.1; ParaRrTc_max =1;
ParaRrDel_min =0; ParaRrDel_max =1,
AfterLaodSens_min =-0.0065;AfterLaodSens_max =0;
MitrFl_min =0; MitrFl_max =1;
RestExFrac_min =0; RestExFrac_max =1;
WkComp_min =0; WkComp_max =1;
AdaptFac_min =0; AdaptFac_max =1;
MuscFlow_min =0; MuscFlow_max =1;
MuscFlTc_min =0; MuscF1Tc_max =10;
MuscF1Dly_min =0; MuscF1Dly_max =10;
VenousFrac_min =0; VenousFrac_max =1;
VenousDly_min =0; VenousDly_max =1;
SetpStep_min =0; SetpStep_max =30;
BeforeFrac_min =0; BeforeFrac_max =1;
BaroTc_min =1.1; BaroTc_max =30;
BaroTcCount_min =1.1; BaroTcCount_max =30;
MAPO_min =0; MAPO_max =120;
RRO_min =0; RRO_max =3;
SVO_min =0; SVO_max =1;
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MFO_min =-1; MFO_max =1;
__name__==’__main__"’:

newparam=_[0.082,0.00030,0.0372,-0.000789,0.00112,0.026,5.9, 6.57]

inds=[0,4,7,10,11,15,16,23]

#newparam=[0.082,0.00030,0.0372]

#inds=[0,4,7]

subj=’T0’

subj=’GT’

FILES={’expfile’:’Data/%sLM.MED’%subj, ’paramfile’: ’RELC_NEW2.PTX’,
>subject’:’%sLM’Ysubj, ’paramoutfile’:’RELC_NEW3.PTX’,
’modeloutfile’:’time_Maplsoptim.dat’%subj}

MODEL={’mf _data’:True, ’mf_column’:7,’plotl’:False,’plot2’:True, ’mass’:None,
’run_newparam’ : True, ’optim_newparam’:True, ’opt_ftol’:0.1}

extra=Systemic_Circulation_Model (FILES,newparam, inds,MODEL)
Modparam, errorNow=extra[’ModParam’] ,extral’errorNow’]

from ExecuteModel import *

def

InitialSimulation(FILES,time_param,MODEL) :
SIMTIME =time_param[0]
COUNTTIME=time_param[2]
DT =time_param[4]

"""read experimental data from file"""
expdata=ReadExpFile (FILES[’expfile’],SIMTIME,DT,MODEL)

"""read initial parameters from file"""
ModParam,ModParamNames ,prevError=ReadParamFile (FILES[’paramfile’])

"""Averaged experimental values from before countdown"""

ModParam[24] = Average(expdatal’expmap’],1, COUNTTIME,DT)
ModParam[25] = Average(expdatal[’exprr’], 1, COUNTTIME,DT)
ModParam[26] = Average(expdatal[’expsv’], 1, COUNTTIME,DT)

if MODEL[’mass’] is not None:
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ModParam[13]=MODEL [’mass’]*0.00005  #Windkessel compliance

if MODEL[’mf_data’]:
ModParam[27] = Average(expdata[’expmf’], 1, COUNTTIME,DT)
ModParam[12] = ModParam[27]/(ModParam[26]*ModParam[25])
if MODEL[’mf_column’]==8:
expdata[’expmf’]=expdata[’expmf’]-ModParam[27]
ModParam[27]=0
else:
ModParam[27]=0
ModParam[12]=0.15

extra ={’ModParam’:ModParam, ’OrigModParam’ :ModParam,
’ModParamNames’ :ModParamNames, ’expdata’:expdata, ’result’:{},
’experimental_file’:FILES[’expfile’],
>parameter_file’ :FILES[’paramfile’],’prevError’ :prevError}
return extra

def ReadParamFile(paramfile):
infile=open(paramfile); lines =infile.readlines(); infile.close()
ModParam=[]
ModParamNames=[]
for line in lines:
ModParam. append(float(line.split() [0]) )
ModParamNames .append( line.split() [1] )

prevError= ModParam[-1]
return array(ModParam),ModParamNames, prevError

def ReadExpFile(expfile,SIMTIME,DT,MODEL) :

time=0 #Time (s)

rr=1 #RR (s)

sv=2 #SV (ml/beat)

Map=3 #MAP (mmHg)

fv=4 #FV (ml/beat) (only right femoral artery)
fv_sum=b5 #FV+FV2sec-delay (ml/beat) (ml blood to both legs per beat)
#mf (1/s) (liter blood per sec to both legs)

if MODEL[’mf_data’]: mf=7

else: mf=MODEL [’mf _column’]

infile=open(expfile); lines=infile.readlines(); infile.close()
data=zeros((len(lines),9))

for cnt in xrange(len(lines)):
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line=array(lines[cnt].split(),float)
datalcnt, :]1=1line

datal:,sv]=datal:,sv]*0.001

expdata={’exprr’:datal:,rr],’expsv’:datal:,sv],’expmap’:datal:,Map],
’exptime’:datal:,time],’expfv’:datal:,fv],
>expfv_sum’:datal:,fv_sum],’expmf’:datal:,mf]}

expdatal’exptpc’]=datal:,sv]/(datal:,rr]*datal:,Map])

expdatal[’rrwh’] = 1 / Variance(datal:,rr], 1, SIMTIME,DT)
expdatal[’svwh’] 1 / Variance(datal:,sv], 1, SIMTIME,DT)
expdata[’mapwh’]= 1 / Variance(datal:,Map]l,1, SIMTIME,DT)

if MODEL[’mf_data’]:

expdata[’mfwh’] = 1 / Variance(datal:,mf], 1, SIMTIME,DT)
else:expdata[’mfwh’] = 0
return expdata

def Variance(data,t1,t2,DT):
avg = Average(data, t1, t2,DT)

itl = int(round(tl / DT))
it2 = int(round(t2 / DT))
s = 0.0

for cnt in xrange(itl-1,it2-1):
TEMP = datalcnt] - avg
s =s+ TEMP * TEMP

return s/(it2 - itl)

def Average(data,tl,t2,DT):
itl = int(round(t1 / DT))
it2 = int(round(t2 / DT))
s = 0.0
for cnt in xrange(itl-1,it2-1):
s = s + datalcnt]
return s/(it2 - it1)

from objects_in_baromodel import *
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def Newparam_within_limits(x,inds):
for k in xrange(len(x)):#after each iteration, x is newparam
j=inds [k]
mini,maxi= Interval(j)
if  x[kl<mini: x[k]=mini
elif x[k]>maxi: x[k]=maxi

def Param_within_limits(x):
for k in xrange(len(x)):
mini,maxi= Interval (k)
if  x[k]l<mini: x[k]=mini
elif x[k]>maxi: =x[k]=maxi

def Interval(index):

min_param=[0,0.1,0,0,0,0.1,0,0,0.1,0,-0.0065,
0,0,0,0,0,0.09,0,0,0,0,0,1.1,0.1,0,0,0,-1]

max_param=[0.2,30,20,1,0.02,30,5,0.2,1,1,0,
0.1,1,1,1,1,15,10,1,1,30,1,30,30,120,3,1,1]

#max_param=[0.2,30,20,1,0.02,30,5,0.2,1,1,0,

" 0.1,1,1,1,1,30,10,1,1,40,1,30,40,120,3,1,1]

return min_param[index] ,max_param[index]

def ExecuteModel (ModParam,time_param) :
SIMTIME =time_param[0]
EXERCISETIME=time_param[1]
COUNTTIME  =time_param[2]

SYSTDUR =time_param[3]
rest =0
downcnt = 1
exerc =2

Param_within_limits(ModParam)

"""Model parameters: adjusted =A"""

symppergain = ModParam[0] #Sympathetic peripheral gain/sensitivity (A)
symppertc ModParam[1] #Sympathetic peripheral time constant
sympperdel ModParam[2] #Sympathetic peripheral delay

symprrgain = ModParam[3] #Sympathetic rr-interval gain/sensitivity
sympcontgain ModParam[4] #Sympathetic contractivity gain/sensitivity(A)
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symprrtc = ModParam[5] #Sympathetic rr-interval time constant
symprrdel = ModParam[6] #Sympathetic rr-interval delay

parasympgain = ModParam[7] #Parasympathetic rr-interval gain/sensitivity(4)
parasymprrtc = ModParam[8] #Parasympathetic rr-interval time constant
parasymprrdel = ModParam[9] #Parasympathetic rr-interval delay
afterloadsens = ModParam[10] #Sensitivity to afterload on stroke volume (A)
mitralflow = ModParam[11] #Mitral flow (A

restexfrac = ModParam[12] #Exercising fraction of body

windcompl = ModParam[13] #Windkessel compliance

adaptfac = ModParam[14] #Adapt factor for mean arterial pressure error
muscflow = ModParam[15] #Muscle flow (h)

musctc = ModParam[16] #Muscle flow time constant (A)

muscdelay = ModParam[17] #Muscle flow delay

venousfrac = ModParam[18] #Never used: venous fraction (on sv)
venousdelay = ModParam[19] #Never used: venous delay

setpstep = ModParam[20] #Baro set point step

beforefrac = ModParam[21] #Baro set point before fraction

barotc = ModParam[22] #Never used: baro set point time constant
barotccount = ModParam[23] #Baro set point time constant countdown (A)

"""Averaged experimental values from before countdown"""

mapO0 = ModParam[24] #Mean arterial pressure

rr0 = ModParam[25] #Rr-interval

svO0 = ModParam[26] #Stroke volume

MFO = ModParam[27] #Muscle flow

RunTime = 0.0 #Running time of simulation
ExerciseState = rest #State of exercise process
"""Initialize function for changes in baroreflex set point """

BaroSetpoint=T_BaroSetpoint (map0,setpstep,barotccount,beforefrac,COUNTTIME)
BaroAdapt =T_BaroAdapt (adaptfac)

"""Initialize baroreflexes with appropriate delays and time constants"""
parasymp= TimeConstDelay(parasymprrdel,parasymprrtc)

symp= TimeConstDelay(symprrdel, symprrtc)

sympperif=TimeConstDelay (sympperdel, symppertc)

"""Tnitialize the big arteries"""
WindKessel=T_WindKessel (windcompl ,map0,sv0,rr0,SYSTDUR)
LastEdp=WindKessel.GetEdp ()

LastMap = mapO
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"""Initialize the heart"""
Heart=T_Heart (sv0,rr0,LastEdp, sympcontgain, symprrgain,parasympgain,
afterloadsens,mitralflow)

"""Total peripheral conductance (TPC)"""
Conductance = sv0O /(rrO * mapO)

"""Devide peripheral vessels into an exercising and non-exercising part """
nonexbody=ResistVessel(Conductance * (1.0 - restexfrac),symppergain)
exbody  =ResistVessel(Conductance * restexfrac,symppergain)

MuscFlowFunc=T_MuscFlowFunc (muscflow,musctc,muscdelay)
Nofbeat = 0
time=[];Map=[];rr=[1;sv=[];mf=[];totcond=[]

while (RunTime < SIMTIME):
"""MAP deviation from set point"""
MapError=LastMap-BaroSetpoint.SetPoint (RunTime,ExerciseState==rest)

MapError= BaroAdapt.Adapt (MapError)

"""Insert MAP deviation from set point into reflexes"""
parasymp.SetMapError (RunTime,MapError)

symp . SetMapError (RunTime,MapError)

sympperif . SetMapError (RunTime,MapError)

"""Calculate baroreflex signals"""
SympPerSig  =sympperif.GetSignal (RunTime)
SympRrSig =symp.GetSignal (RunTime)
ParasympRrSig=parasymp.GetSignal (RunTime)

"""Stroke volume and duration of one heart beat, given baro signals"""
NewSv,NewRR=Heart .NewBeat (LastEdp, SympRrSig, ParasympRrSig)

if (RunTime >= COUNTTIME):
if ExerciseState ==rest: ExerciseState = downcnt
elif ExerciseState ==downcnt:
if (RunTime >= EXERCISETIME):
ExerciseState = exerc
exbody .ExerciseOn()

"""Flow through exercising muscle"""
NewMf = MuscFlowFunc.MuscFlow(RunTime, EXERCISETIME,MFO)
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"""Total peripheral conductance (TPC)"""

TotConductance=(nonexbody.Conductance (SympPerSig, NewMf ,map0) +
exbody.Conductance (SympPerSig, NewMf ,map0) )
#mapO or LastMap

WindKessel.Cycle(SYSTDUR, TotConductance)
WindKessel.AddVolume (NewSv)
WindKessel.Cycle(NewRR - SYSTDUR, TotConductance)

"""Mean arterial pressure during one heart beat"""
LastMap=WindKessel.GetMap ()

"""End diastolic pressure in the artery"""
LastEdp=WindKessel.GetEdp ()

RunTime = RunTime+NewRR

time.append (RunTime)

sv.append (NewSv)

Map . append (LastMap)

rr.append (NewRR)

mf . append (NewMf)

totcond. append(TotConductance)
Nofbeat=Nofbeat+1

sv=array (sv) ;rr=array(rr) ;Map=array (Map)
return time,Map,rr,sv,Nofbeat,mf,totcond

nnn

from scitools.std import *
class T_Heart:
def __init__(self,sv0,rr0,edp0,sympcontgain,symprrgain,parasympgain,
afterloadsens,mitralflow):

self.sv0 = svO #initial stroke volume
self.rr0 = rr0 #initial rr-interval
self.edp0 = edpO #initial end-diastolic pressure

self.lastrr = self.rr0

"""Only allow positive values"""
self.sympcontgain = sympcontgain
self.symprrgain = symprrgain
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self.parasympgain = parasympgain
self .mitralflow mitralflow
"""Only allow negative values"""
self.aftl = afterloadsens

NewBeat (self,LastEdp,sympsignal,parasympsignal) :
"""Normal SV + Filling time effect on SV
+ Afterload effect on SV + Sympathetic effect on contraction"""
NewSv = (self.svO + (self.lastrr - self.rr0)*self.mitralflow +
(LastEdp - self.edpO)*self.aftl - sympsignal*self.sympcontgain)

"""Normal rr interval + Parasympathetic effect + Sympathetic effect"""
NewRR =(self.rr0 + parasympsignal*self.parasympgain +
sympsignal#*self.symprrgain)

MINRR = 60.0/190 #Lowest possible rr-interval duration
if (NewRR < MINRR): NewRR = MINRR

self.lastrr = NewRR #For next beat...
return NewSv,NewRR

class T_WindKessel:
"""Representing large arteries"""

def

def

__init__(self,compliance,Map0,sv0,rr0,SYSTDUR) :
self.compliance=compliance

self.tc =compliance*MapO*rr0/sv0
self.f =exp (- (rr0/self.tc))
self.f2 =exp (SYSTDUR/self . tc)

"""Calculate exact initial end-diastolic volume"""
self.volume=svO*self.f2*self.f/(1-self.f)

self.pint=0
self.tsum=0

Cycle(self,rr,TPC):

self.tc=self.compliance/TPC #calculate time constant of volume decay
exf=exp(-(rr/self.tc)) #compute exponential function coefficient
newmap=self.volume* (1-exf)*self.tc/(rr*self.compliance)
#newmap=self.volumex (1-exf)/(rr*TPC)

self.volume=self.volume*exf #compute volume at end of cycle
"""Compute mean arterial pressure by integration"""

self .pint=self.pint+newmap*rr

self.tsum=self.tsumtrr
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def AddVolume(self,NewSv):
self.volume=self.volume+NewSv

def GetMap(self):
Map=self.pint/self.tsum
self.pint=0
self.tsum=0
return Map

def GetEdp(self):
"""Calculate end-diastolic pressure"""
return self.volume/self.compliance

class ResistVessel:
"""Representing peripheral vessels"""
def __init__(self,GO,symppergain):
"""GO: Total peripheral conductance before exercise"""
self.GO = GO
self.exercise = False

"""Do not allow a negative value of this reflex gain;
innervation/sympathetic vasoconstriction sensitivity """
self.symppergain = symppergain

def Conductance(self,innervate,muscflow,mapsetp):

if (self.exercise):
"""Local metabolites of exercising muscles override
sympathetic nervous input"""
return self.GO + (muscflow/mapsetp)

else:
"""Sympathetic vasoconstriction reduces conductance"""
return self.GO * (1.0 + innervatexself.symppergain)

def ExerciseOn(self):
self.exercise = True

class T_MuscFlowFunc:
def __init__(self,muscflow,tc,delay):
self.tc = tc
self .muscflow = muscflow
self.delay = delay



88 APPENDIX A. PYTHON CODE

def MuscFlow(self, Runtime, ExerciseTime, MFO):

"""Muscle flow start increasing after the onset of exercise
up to a maximum value"""
if (Runtime < ExerciseTime + self.delay):

return MFO #0riginal value:0.0
else:

return (MFO + self.muscflow *

(1.0-exp((ExerciseTime +self.delay -Runtime)/self.tc)))

class T_BaroSetpoint:
def __init__(self,mapsetp,setpstep,barotccount,beforefrac,COUNTTIME) :
self .COUNTTIME=COUNTTIME
self .mapsetp = mapsetp
self .setpstep = setpstep
self.barotccount = barotccount
self .beforefrac = beforefrac

def SetPoint(self,Runtime,Before_COUNTTIME) :

"""The baroreflex set point starts increasing when the countdown
begins, increases up to a maximum value """
if (Before_COUNTTIME) :

return self.mapsetp
else:

return (self.mapsetp + self.beforefrac*self.setpstep *

(1- exp((self.COUNTTIME - Runtime)/self.barotccount)))

class T_BaroAdapt:
def __init__(self,adaptfac):
self.adaptfac = adaptfac
self.LastMapError= 0

def Adapt(self,MapError):
AdaptError = MapError + self.adaptfac * (MapError - self.LastMapError)
self.LastMapError = MapError
return AdaptError

class TimeConstDelay:
def __init__(self,delay,timeconst):
self.Delay={} #Delay FIFO queue
self.wrp = 0O #Set write pointer to zero
self.rep = 0 #Set read pointer to zero
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#Time constant filter cell set to zero
#Set last time value to zero

self.signal= 0.0
self.lastt = 0.0
"""Do not allow negative delays, remember which delay to use"""
self.delay = delay

"""Do not allow too small a time constant in reflexes,
this may cause floating point overflow"""
self.tc = timeconst

def CalcNewExp(self,t,MapError):
dt = t - self.lastt
if (dt <= 0):f = 0.0
else: f = exp(-dt / self.tc)

self.signal = self.signal * f + MapError*(1.0 - f)
self.lastt = t

def GetSignal(self,RunTime):
td = RunTime - self.delay  #Compute delayed time
before=True
while (before):
tm,MapError = self.Delayl[self.rep]
before=(tm < td)
if (before):
self.CalcNewExp(tm, MapError)
self.rep=self.rep+1 #Increment read pointer
else:
self.CalcNewExp(td, MapError)
return self.signal

def SetMapError(self,RunTime,MapError):
"""Insert value at write pointer position"""
self.Delay[self.wrp]l=[RunTime,MapError]
self .wrp=self.wrp+l #Increment write pointer

import scipy.optimize
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from ExecuteModel import *

def

def

def

Optimaliser(extra,newparam,inds,time_param,MODEL) :
"""create local copies of some variables"""
expdata=extral[’expdata’]
ModParam=extra[’ModParam’]

"""set optimization options and do optimization:
Find minimum of unconstrained multivariable function
using derivative-free method"""
newparam,errorNow,itera,funcalls,flag= \
scipy.optimize.fmin(ErrFvalVec,newparam,
args=(ModParam, expdata,inds,time_param,

MODEL [’mf_data’]),
xt0l=10,ftol=MODEL[’opt_ftol’],full_output=1,
callback=
eval (’Newparam_within_limits(newparam,inds)’))

"""put new value into Modparam vector"""
ModParam[inds]=newparam

extra[’ModParam’] = ModParam #contain mean values
return extra

ErrFvalVec(newparam,ModParam, expdata,inds,time_param,musc_flow_data):
ModParam[inds] = newparam
time,Map,rr,sv,nbeats,mf,totcond=ExecuteModel (ModParam,time_param)

Err_map= ErrSum(time, Map,expdatal[’expmap’],time_param)

Err_sv = ErrSum(time, sv, expdata[’expsv’], time_param)

Err_rr = ErrSum(time, rr, expdatal[’exprr’], time_param)

"""To obtain dimensionless numbers, devide by respective variances"""

Err=(expdata[’mapwh’] * Err_map + expdatal’svwh’]*Err_sv +
expdatal[’rrwh’] * Err_rr)

if musc_flow_data:
Err_mf = ErrSum(time, mf, expdata[’expmf’], time_param)
Err=Err+expdatal[’mfwh’] * Err_mf

return Err

ErrSum(time,simvals,expvals,time_param) :
SIMTIME=time_param[0]
DT =time_param[4]
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t1 =time_param[2] #COUNTTIME
t2 =SIMTIME -60

itl = int(round(t1/DT))

it2 = int(round(t2/DT))

intp=zeros (EXP_SAMP)

EXP_SAMP=int (round (SIMTIME/DT) )#Samples in averaged experimental result

for cnt in xrange(len(time)):
if (timel[cnt] > t1 and timel[cnt-1] < t2):
AddInt (simvals[cnt], time[cnt-1], timel[cnt],intp,DT)

errs=0
for cnt in xrange(itl,it2): #(it1-1,it2+3):
TEMP = intplcnt] - expvals([cnt] #Least squares

errs = errs + TEMP * TEMP
return errs

def AddInt(v,t1,t2,intp,DT):
sl = t1 / DT; isi int(sl); si
s2 = t2 / DT; is2 int(s2); s2
for p in xrange(isl,is2+1):
intpl[p] = intplp]l + v
intplisl] = intpl[isl] - v * si
intp[is2] intpl[is2] + v * (s2 - 1.0)

sl-isl
s2-is2

nnn

from Systemic_Circulation_Model import *
import random

def random_new_param(inds) :
newparam=[]
for i in xrange(len(inds)):
mini,maxi= Interval_start_values(inds[i])
newparam.append (random.uniform(mini,maxi))
return newparam

def Interval_start_values(index):
min_param=[0,0.1,0,0,0,0.1,0,0.02,0.1,0,-0.0057,
0,0,0,0,0,0.1,0,0,0,5,0,1.1,1.1,0,0,0,-1]
max_param=[0.1,30,20,1,0.01,30,5,0.1,1,1,0,
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0.1,1,1,1,0.18,10,10,1,1,10,1,30,15,120,3,1,1]
return min_param[index] ,max_param[index]

def param_on_interval_edge(x,inds,zero_edge):
edge=False
for k in xrange(len(x)):
mini,maxi= Interval(inds[k])
if zero_edge:
if  (x[k]==mini or x[k]==maxi): edge=True
else:
if  (x[k]==mini or x[k]==maxi) and not x[k]==0: edge=True
return edge

def write_interior_file(outfilename,Interior_param,mn,statistics):
kl=Interior_param.shape
fraction_interior=k1[0]/float(mn[0])

outfile=open(outfilename, ’w’)
write_to_file(Interior_param,outfile)
outfile.write(’\n’%15.9f\n’Jfraction_interior)
write_to_file(statistics,outfile)
outfile.close()

def write_to_file(x,outfile):
for i in xrange(x.shape[0]):
for j in xrange(x.shape[1]):
outfile.write(’%15.9f°%x[i,j1)
outfile.write(’\n’)

def write_sorted_file(Sorted_Adjusted,outfilename):
outfile=open(outfilename, ’w’)
write_to_file(Sorted_Adjusted,outfile)
outfile.close()

def read_optimized_param_file(name):
infile=open(name,’r’);lines=infile.readlines(); infile.close()
Adjusted_param=[]

for line in lines:
line=array(line.split(),float)
Adjusted_param.append(line)

Adjusted_param.sort(key=lambda adjust:adjust[0])
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return array(Adjusted_param)

experiment_subjects(year,subjects):
"""Subjects id and mass"""

if year==’1996":
experiments={’ELLA’
YHVLC?
’LMLA’
’PLLC?

:64,’ELLC’
:56, ’KYLA®
:61,’LMLC’
:83,’RJLA?

datadirname=’>DATA96/’

elif year=="1996A’:
experiments={’ELLA’
’LMLA”

:64, ’HGLA”’
161, MKLA’

datadirname=’>DATA96/’

elif year==’1996C’:
experiments={’ELLC’
’LMLC’

:64, ’HGLC’
:61, ’MKLC’

datadirname=’>DATA96/’

else:
experiments={’BTLM’
HTLM?
>TOLM?
datadirname=’Data/’

:55,°CTLM?
:55,ITLM?
:65.2}

expname=experiments.keys ()

expname. sort ()

if subjects is not ’all’:

expname=subjects

164, ’HGLA’
165, ’KYLC?
161, ’MKLA’
175, °RJLC?

:73, ’HVLA’
:62, ’PLLA’

173, HVLC’
162, PLLC’

:63, ’ETLM’
.68, JTLM’

return experiments,datadirname,expname

def make_statistics(Interior_param,inds):
statistics=zeros((6,len(inds)+1))
for 1 in xrange(len(inds)+1):

def

statistics[0,1]=Interior_param[:
statistics[1,1]=Interior_paraml[:
statistics[2,1]=Interior_param[:
statistics[3,1]=Interior_paraml[:
statistics[4,1]=Interior_param[:

173, HGLC’
:65,’LJLA°
162, ’MKLC’
175, TKLA”

:56, ’KYLA®
:83,’RJLA?

156, ’KYLC’
183, ’RJILC’

182, ’FTLM?
:50, ’LTLM’

,1] .mean()
,1] .var()
,11.std()
,11 .min()
,1]1 .max ()

statistics[5,1]=median(Interior_param[:,1])

return statistics

find_interior_parameters(Adjusted,mn,zero_edge) :

Interior_param=[]

:73,°HVLA’
:73,°LILC’
162, °PLLA°
157, TKLC’

.65, LJLA’
.75, TKLA’

165, LJLC’
175, TKLC’

:90, ’GTLM’
:54,’MTLM’ :

93

:56,
173,
183,
:57}

173,
157}

173,
157}

172,

63,
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for m in xrange(mn[0]):
newparam=Adjusted[m] [1:]
edge=param_on_interval_edge (newparam, inds,zero_edge)
if ((not edge) and Adjusted[m] [0]<700) :
Interior_param.append(Adjusted[m,:])

return array(Interior_param)

def find mean_optimized_param(Interior_param,epsilon):
"""Find all result that have ErrorNow < min(ErrorNow) + epsilon"""
kl=Interior_param.shape
Final_param=[]
for k in xrange(k1[0]):
if Interior_param[k] [0]>Interior_param[0] [0]+epsilon: break
Final_param.append(Interior_paraml[k,:])

Final_param=array(Final_param)

mean_optimized_param=zeros(len(inds)+1)

for 1 in xrange(k1[1]):
mean_optimized_param[l]=Final_param[:,1] .mean()

return mean_optimized_param

def make_outfilenames(name,ident,zero_edge,artname,modelname,dirname,
dirnameout) :

filename=’%s%s.dat’%(name,ident)
artfilename=’%sY%s.dat’% (artname,ident)
modfilename="%s%s%s.dat’},(dirname ,modelname,ident)
outfilenamel=’%s%s’%(dirname,filename)
outfilenamed="Y%s%s’J%(dirnameout,filename)
namerand=’%srand’s’%(dirname,filename)
filename2=’sorted)s’%filename
outfilename2="%s%s’%(dirname,filename?2)
if zero_edge:

outfilename3=’Y%sinterior%s’’ (dirname,filename?2)
else:

outfilename3=’Y%sinterior_w0%s’%(dirname,filename?2)
return (outfilenamel,outfilename2,outfilename3,namerand,artfilename,

modfilename,outfilename4)

def View_results(Sorted_Adjusted,show,FILES,inds,MODEL) :
mn=Sorted_Adjusted.shape
MODEL [’ optim_newparam’]=False
MODEL [’run_newparam’]=True
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for m in xrange(mn[0]):
newparam=Sorted_Adjusted[m] [1:]
if m==show: break

extra=Systemic_Circulation_Model (FILES,newparam, inds,
MODEL)
return extra

def sort_param(inds3,newparaml,newparam?) :
newparaml=1list(newparaml)
newparam2=1ist (newparam?2)
newparam=array (newparaml+newparam2)
indssort=array([inds3,newparam])
indssort=list(indssort.transpose())
indssort.sort (key=lambda a:a[0])
indssort=array(indssort)
return indssort[:,0], indssort[:,1]

def 0ld_results_and_added_param_optim_all(Sorted_Adjusted,FILES,inds1,inds2,
MODEL,outfilename4) :
mn=Sorted_Adjusted.shape
MODEL [’ optim_newparam’]=True
MODEL [’run_newparam’]=False
outfile=open(outfilename4,’a’)
inds3=array(inds1+inds2)

for i in xrange(mn[0]):
newparaml=list (Sorted_Adjusted[i] [1:])
newparam2=random_new_param(inds2) #remember sorting, outfiles
inds,newparam=sort_param(inds3,newparaml,newparam?2)

for j in xrange(4):
extra=Systemic_Circulation_Model (FILES,newparam, inds,
MODEL)
Modparam, errorNow=extral[’ModParam’],extra[’errorNow’]
newparam=Modparam[inds]

outfile.write(’%20.9f%errorNow)

for k in xrange(len(inds)):
outfile.write(’%15.9f’)Modparam([inds[k]])

outfile.write(’\n’)
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outfile.close()

0ld_results_optim_added_param(Sorted_Adjusted,FILES,inds1,inds2,MODEL,
outfilename4) :

mn=Sorted_Adjusted.shape

MODEL [’ optim_newparam’]=True

MODEL [’run_newparam’]=False

FILES[’paramfile’]= FILES[’paramoutfile’]

outfile=open(outfilename4,’a’)

inds3=array(inds1+inds2)

for i in xrange(mn[0]):
newparaml=1list(Sorted_Adjusted[i] [1:])
newparam2=random_new_param(inds2) #remember sorting, outfiles

ModParam,ModParamNames, prevError=ReadParamFile (FILES[’paramfile’])
ModParam[inds1]=newparaml
write_to_file_and_screen(ModParam,ModParamNames,prevError,
FILES[’paramoutfile’])

for j in xrange(4):

extra=Systemic_Circulation_Model (FILES,newparam2,inds2,

MODEL)
Modparam, errorNow=extral[’ModParam’] ,extra[’errorNow’]
newparam2=Modparam[inds2]

inds,newparam=sort_param(inds3,newparaml,newparam2)

outfile.write(’%20.9f’%errorNow)

for k in xrange(len(inds)):
outfile.write(’%15.9f’%Modparam[inds[k]])

outfile.write(’\n’)

outfile.close()

Run_simulation(outfilenamel,namerand,N,FILES,inds,MODEL) :
outfile=open(outfilenamel,’a’)
outfilerand=open(namerand,’a’)

for i in xrange(N):
newparam=random_new_param(inds)
for k in xrange(len(inds)):
outfilerand.write(’%15.9f’Ynewparam[k])
outfilerand.write(’\n’)
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for j in xrange(4):
extra=Systemic_Circulation_Model (FILES,newparam, inds,
MODEL)
Modparam, errorNow=extral[’ModParam’],extra[’errorNow’]
newparam=Modparam[inds]

outfile.write(’%20.9f%errorNow)

for k in xrange(len(inds)):
outfile.write(’%15.9f’)Modparam([inds[k]])

outfile.write(’\n’)

outfile.close()
outfilerand.close()

def change_units(newparam,inds):
"""Change units for presentation in table"""
change={0:False,4:True,7:True,10:True,11:True,15:False,16:False,
20:False,23:False}

units=zeros(len(inds))
for i in xrange(len(inds)):
if change[inds[i]]:
units[i]=newparam[i]*1000
else:
units[i]=newparam[i]

return units

def make_line_in_table(param,inds,shuffle,table_error):
newparam=param[1:]
newparam_units=change_units(newparam,inds)
"""Present data in same order as in article Elstad et al. 2002"""
new=newparam_units[shuffle]

line=’’
for i in xrange(len(new)):
line+=’& %7.3f’)new[i]

if table_error:
line+=’%& %7.0f’%param[0]
1ine=rll n "%S\\
nn "%line

return line
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def make_headline(inds,shuffle,name,table_error):

header={0: [’$K_{sp}$’,’’,> (1, /mmHg) ’],
4:[’$K_{sh}$’>,’’,’(ml’,’ /mmHg) ’],
7:[’$K_{ph}$’,’’,’ (ms’,’ /mmHg)’],
10: [°$K_{a}$’,’’,’> (ml’,’ /mmHg) ’],
11:0°$Q_{m}$>,’?,> (ml/s)?, ],
15: [°$Q_{mf}$’,°7,°(1/s)’,’],
16: [’$T_{c,mf}$>,%7,°(s)?,7°1,
20: [’Setpoint’,’Increase’,’ (mmHg)’,’’],
23: [’$T_{c,set}$’,?’,°(s)?,7],
—1:[’EI‘I’OI”,”,”,”]}

inds_shuffled=array(inds)
inds_shuffled=inds_shuffled[shuffle]

if table_error:
inds_shuffled=list (inds_shuffled)
inds_shuffled.append(-1)

line1=>{|1]1]’
line2=’\n’s&Weight’%(name[0:2])

line3=’\n&’
line4="\n&(kg)’
line5=’\n&’
line6=’\n&’

for i in xrange(len(inds_shuffled)):

linel+=’1]|’

h=header [inds_shuffled[i]]
line2+=&Y%s’%h[0]
line3+=’&%s’%h[1]
lined+="&%s’%h[2]
lineb5+="&%s’%h[3]

line6+=§&’

line=r"""%s}%s\\%s\\%s\\%s\\%s\\
nnny(linel,line2,line3,1line4,line5,1ine6)

return line

def write_data_line(outfile,experiments,name,num_data,inds,shuffle,
letter,table_error):
1ine:runu%s & %d nnn
outfile.write(line%(letter,experiments [name]))
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data=make_line_in_table(num_data,inds,shuffle,table_error)
outfile.write(data)

def make_table(data,datakeys,experiments,name,dirname,inds,shuffle,
table_error):
filename="’Ys%s.tex’%(dirname,name)
outfile=open(filename,’w’)

headline=make_headline(inds,shuffle,name,table_error)

begin_table=r"""
\begin{table}

\begin{tiny}
\begin{tabular}¥s"""%headline

caption=’"’

line=r"""%s & %d """
outfile.write(begin_table)
letters=[’a’,’b’,’c’,’d’,’e’]
for i in xrange(len(datakeys)):
write_data_line(outfile,experiments,name,data[datakeys[i]][1],
inds,shuffle,letters[i],table_error)
caption+="%s) %s’%(letters[i],dataldatakeys[i]][3])

end_table=r"""
\end{tabular}
\caption{’s}
\end{tiny}
\end{table}
"nnYcaption

outfile.write(end_table)
outfile.close()

def plot_differences(data,datakeys,name,dirname):
titles=[’RR (s)’,’SV (ml/beat)’,’MAP (mm Hg)’,’MuscFlow (1/s)’,
>TPC  (1/ (s*mmHg)) *]
names=[’rr’,’sv’,’map’, ’mf’]
expdata=datal[0] [0] [’expdata’]

for i in xrange(len(names)):
#subplot(2,2,i+1)
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leg=[]

plot(expdata[’exptime’], expdatal’expls’’names([i]], ’g’,
title=titles[i], xlabel=’Time (s)’)

leg.append (’Recorded data’)

hold(’on’)

for j in xrange(len(datakeys)):
result=dataldatakeys[j]1][0] [’result’]
plot(result[’time’], result[names[i]],datal[datakeys[j]][2] )
leg.append(’%s’%(datal[datakeys[j]1][4]))

legend(leg)

hold(’off’)

hardcopy(’%s%sall¥s.eps’’(dirname ,name ,names [i]))

#hardcopy (*%s%sall.eps’’ (dirname,name))

def prepare_plot(param,FILES,inds,MODEL) :
newparam=param[1:]
extra=Systemic_Circulation_Model (FILES,newparam, inds,MODEL)
param[0]=extral[’errorNow’]
return extra

if __name__==’__main__’:
year=’1996C’
subjects=’all’
subjects=[’TKLC’]
experiments,datadirname, expname=experiment_subjects(year,subjects)

#dirname=’TIRftol01_mass_notMFO_SPS/’
dirnameout=’TIRft0l01_1996_mass_8thenSPS/’
dirname=’TwoIntervalResult_ftol01_1996mass_SPS/’

name=’Adjust_param_4x100’
artname=’ArticleResultsSPS/param’
modelname=’time_Map’

FILES={’expfile’:’’,’paramfile’:’RELC_NEW2.PTX’,’subject’:’’,
’paramoutfile’:’RELC_NEW3.PTX’, ’modeloutfile’:’’}

MODEL={’mf _data’:True,’mf_column’:8,’plotl’:False,’plot2’:False, ’mass’:None,
’run_newparam’ :True, ’optim_newparam’:False,’opt_ftol’:0.1}

inds=[0,4,7,10,11,15,16,20,23]
inds2=[20]
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shuffle=[7,8,2,0,1,5,6,4,3]

epsilon=3

show=1

N=100

zero_edge=False
mean_optimized=zeros((len(experiments),len(inds)+1))
table_error=True

for r in xrange(len(expname)):
outfilename=make_outfilenames (name, expname[r],zero_edge,artname,
modelname,dirname,dirnameout)

FILES[’expfile’]=’%s%s.MED’%(datadirname, expname[r])
FILES[’subject’]="%s%s’%(dirname, expname [r])
FILES[’modeloutfile’]=outfilename [5]

#MODEL [’mass’]=None #None gives compliance from parameter file
MODEL [’mass’]=experiments [expname [r]]

#Run_simulation(outfilename[0] ,outfilename[3],N,FILES, inds,MODEL)

#Sort results
Sorted_Adjusted=read_optimized_param_file(outfilename [0])
write_sorted_file(Sorted_Adjusted,outfilename[1])

#01d_results_optim_added_param(Sorted_Adjusted,FILES, inds, inds2,MODEL,
#outfilename [6])

mn=Sorted_Adjusted.shape
extra_sa=View_results(Sorted_Adjusted,show,FILES, inds,MODEL)
#Accepted parameter sets
Interior_param=find_interior_parameters(Sorted_Adjusted,mn,zero_edge)

#Statistcis: mean, var, std, fraction of accepted etc
statistics=make_statistics(Interior_param,inds)
write_interior_file(outfilename[2],Interior_param,mn,statistics)

extra_ip=prepare_plot(Interior_param[0] ,FILES, inds,MODEL)
#Mean of accepted parameter sets
extra_st=prepare_plot(statistics[0],FILES, inds,MODEL)

#Mean of fraction of accepted parameter sets
mean_optimized[r, :]=find_mean_optimized_param(Interior_param,epsilon)
extra_mo=prepare_plot(mean_optimized[r],FILES,inds,MODEL)
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#Published values: 1996
#MODEL [’mass’]=experiments [expname [r]]

article=read_optimized_param_file(outfilename [4])
extra_a=prepare_plot(article[0],FILES,inds,MODEL)

data={}
datal[0]=[extra_sa,Sorted_Adjusted[0][:],’b’,

’Best optimation reached. ’,’Best optim’]
datal[1l]=[extra_ip,Interior_param[0][:], ’c’,

’Best accepted optimation reached.’,’Best accepted’]
data[2]=[extra_st,statistics[0][:], r,

’Mean of accepted parameter sets.’,’Mean accepted’]
data[3]=[extra_mo,mean_optimized[r][:], ’k’,

’Mean of fraction of accepted parameters.’,’Mean of fraction’]
data[4]=[extra_a, article[0][:], y,

’Published values.’,’Published values.’]

#Make tables and plots for report

datakeys=[1,2,3,4]

make_table(data,datakeys,experiments, expname[r] ,dirname,inds,
shuffle,table_error)

datakeys=[0,2,3,4]
plot_differences(data,datakeys,expname [r],dirname)

A.2 The CwB model in python

For the occasion of including the program in this document we decided to
join the CwB model with original and Toska baroreflexes in one program.
This program is called JSim heart complete.py. In all the runs shown and
timed, they where in separate programs for efficiency.

One way to connect them would be to include if-test everywhere were
the baroreflexes are involved. There are two reasons why this is not the best
idea. The most important is that the original program has an additional six
state variables, since the baroreflexes are modeled as differential equations.
We want to avoid them in the version with Toska baroreflexes. The other
reason is that if-tests slow down the code, and it is already slow.

Since the programs are basically built round the same vessel components,
all the parameters are equal. To avoid them being printed twice, we make a
string that include all parameters. A string is immutable so it can be put in-
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side a tuple, and accepted by the args parameter in the scipy.odeint function.
Then at every time step the python function exec() is called on the string.
This makes the parameters local inside the solve system() function. The
program slows down approximately by a factor three, compared to declaring
the parameters directly inside the solve system() function.

At the end of the original CwB-program there is a drawing, which use
symbols from electrical circuits to represent different properties of the vessels
in the circulation. This is appropriate since the mathematical representa-
tion of flow through these vessels are analogous of the equations of current
through the respective circuit components. The exception is the compliance
of the big arteries and veins already mentioned, but we still use capacitors
to visualize them. The drawing of the CwB-circulation is Figure A.1.

JSim_heart_complete.py

Modeled using: from scipy.integrate import odeint

Changed initial conditions to model input in Jsim
nmn

from scitools.std import *

from scipy.integrate import odeint
from objects_in_baromodel import *
import sys,time

def print_to_outfile(t,z,outfilename):
ofile=open(outfilename, ’w’)

for i in xrange(len(t)):
ofile.write(’%12g ’%(t[i]1))
ofile.write(’\n’)

for j in xrange(z.shape[1]):
for i in xrange(z.shape[0]):
ofile.write(’%12g ’%(z[i,j1))
ofile.write(’\n”’)
ofile.close()

class Heartrate:
def __init__(self):
self .HR = 77.0/60
self.afs_con2 1 #afs_con
self.t_shift = t_min
#Scaler to set ventricular systolic fraction of heart cycle (sec)
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#Scaler to set atrial systolic fraction of heart cycle (sec)

self.TsvK*sqrt(1.0/self.HR)
self.TsaK*sqrt(1.0/self.HR)
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self.TsvK = 0.35
self.TsaK =0.2
self.Tsv =
self.Tsa =
self.shift =

False

self.baro_on =[True,True,True,True]

self .Nbr =[]

self.t_shift_Nbr =t_min

def InitialSimulation(paramfile):
"""read initial parameters from file"""

infile=open(paramfile);

ModParam=[]
ModParamNames=[]
for line in lines:

lines =infile.readlines();

ModParam.append(float(line.split() [0]) )
ModParamNames .append( line.split()[1] )

ModParam =array(ModParam)
ModParam[27] = ModParam[12]*(ModParam[26]*ModParam[25])
extra ={’ModParam’ :ModParam, ’ModParamNames’ :ModParamNames, result’:{}}

return extra

class Baroreflex:

def __init__(self,ModParam):

self .COUNTTIME=10

"""Model parameters:"""
ModParam[0]#Sympathetic peripheral gain/sensitivity
ModParam[1]#Sympathetic peripheral time constant
ModParam[2]#Sympathetic peripheral delay
ModParam[3]#Sympathetic rr-interval gain/sensitivity
ModParam[4]#Sympathetic contractivity gain/sensitivity
ModParam[5]#Sympathetic rr-interval time constant
ModParam[6]#Sympathetic rr-interval delay

self.symppergain =
symppertc =
sympperdel =
self.symprrgain =
self.sympcontgain=
symprrtc =
symprrdel =
self .parasympgain=
parasymprrtc =
parasymprrdel =
setpstep =
beforefrac =
barotccount =
self .map0 =
self.rr0 =

ModParam[7]#Parasympathetic
ModParam[8] #Parasympathetic
ModParam[9]#Parasympathetic
ModParam[20] #Baro set point
ModParam[21]#Baro set point
ModParam[23]#Baro set point

infile.close()

rr-interval gain/sensitivity
rr-interval time constant
rr-interval delay

step

before fraction

time constant countdown

ModParam[24]#Mean arterial pressure

ModParam[25]
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def

def

def

self.
self.

HR = 1/ModParam[25]#77.0/60
ExerciseState=0

"""Initialize function for changes in baroreflex set point """

self.

BaroSetpoint=T_BaroSetpoint (self.map0,setpstep,barotccount,
beforefrac,self.COUNTTIME)

"""Initialize baroreflexes with appropriate delays and time constants"""

self .parasymp= TimeConstDelay(parasymprrdel,parasymprrtc)
self.symp= TimeConstDelay (symprrdel, symprrtc)
self.sympperif=TimeConstDelay (sympperdel, symppertc)
self.SympPerSig=0

self.SympRrSig =0

self.ParasympRrSig=0

self.t_shift = t_min

self.t_shift_dt= t_min

self.baro_on=[True,True,True, True]

#Scaler to set ventricular systolic fraction of heart cycle (sec)
self.TsvK = 0.35

#Scaler to set atrial systolic fraction of heart cycle (sec)
self .TsaK =0.2

self.Tsv = self.GetTs(self.TsvK)

self.Tsa = self.GetTs(self.Tsak)

self.pint=0

self.tsum=0

SumMap (self,Psa,t_delta):

self
self
self

.pint=self.pint+Psa*t_delta
.tsum=self.tsum+t_delta
.t_shift_dt+=t_delta

GetMap (self):
Map=self.pint/self.tsum

self
self

.pint=0
.tsum=0

return Map

NewRR (self):
"""Normal rr interval + Parasympathetic effect + Sympathetic effect"""
NewRR =(self.rr0 + self.ParasympRrSigxself.parasympgain +

self.SympRrSig*self.symprrgain)

MINRR = 60.0/190 #Lowest possible rr-interval duration
if (NewRR < MINRR): NewRR = MINRR
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self .HR=1/NewRR

def SympatheticContractivity(self):
return self.sympcontgain*self.SympRrSig+*self.HR

def SympatheticPeripheral(self):
return 1.0/ (1+self.symppergain*self.SympPerSig)

def NewBeat(self,t):
self.t_shift =t
Map=self.GetMap()
"""MAP deviation from set point"""
MapError=Map-self.BaroSetpoint.SetPoint (t,self.ExerciseState==0)
"""Insert MAP deviation from set point into reflexes"""
self .parasymp.SetMapError (t,MapError)
self.symp.SetMapError (t,MapError)
self .sympperif.SetMapError (t,MapError)

"""Calculate baroreflex signals"""
self.SympPerSig  =self.sympperif.GetSignal(t)
self.SympRrSig =self.symp.GetSignal (t)
self.ParasympRrSig=self.parasymp.GetSignal (t)

if self.baro_on[0] and self.baro_on[1]:
self .NewRR()

self.Tsv = self.GetTs(self.TsvK)
self.Tsa self.GetTs(self.TsakK)

def GetTs(self,TsK):
return TsK*sqrt(1l.0/self.HR)

def Activation(self,trel,Ts):
if (0.0<=trel and trel<Ts):
y=(1.0 - cos(pi*trel/Ts))/2.0
elif (Ts<=trel and trel<1.5%Ts):
y=(1.0 + cos(2.0*pi*(trel-Ts)/Ts))/2.0
else:
y=0.0
return y

def Activation_function(self,t,PRint):
trela = t-self.t_shift
trelv = t-self.t_shift-PRint
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ya=self.Activation(trela,self.Tsa)
yv=self.Activation(trelv,self.Tsv)

return ya,yv

parameters=(r"""

# I. PARAMETERS OF
Vlivrd= 72.0

Vlvrs= 23.0

Vrvrd= 103.0

Vrvrs= 53.0

Vlard= 10.0

Vlars= 8.0

Vrard= 10.0

Vrars= 8.0

Rra = 0.001

Rla = 0.001

PRint = 0.12

Emaxlv= 5.6

Eminlv= 0.186874659
Emaxrv= 0.67

Eminrv= 0.1041640922
Emaxra= 0.1091675077
Eminra= 0.0992431888
Emaxla= 0.1446191772
Eminla= 0.1314719793
Pbs =0

Vmyo = 238.0

#Resistances:

#Unstressed
#Unstressed
#Unstressed
#Unstressed
#Unstressed
#Unstressed
#Unstressed
#Unstressed

end-diastolic left ventricle volume (ml)
end-systolic left ventricle volume (ml)
end-diastolic right ventricle volume (ml)
end-systolic right ventricle volume (ml)
end-diastolic left atrium volume (ml)
end-systolic left atrium volume (ml)
end-diastolic right atrium volume (ml)
end-systolic right atrium volume (ml)

#Tricuspid valve resistance (mmHg*s/ml)
#Mitral valve resistance (mmHg*s/ml)

#Maximum
#Minimum
#Maximum
#Minimum

#Maximum
#Minimum
#Maximum
#Minimum

elastance
elastance
elastance
elastance

elastance
elastance
elastance
elastance

#Difference in atrial, venticular activation times(sec)

left ventricle (mmHg/ml)
left ventricle (mmHg/ml)
right ventricle (mmHg/ml)
right ventricle (mmHg/ml)

right atrium (mmHg/ml)
right atrium (mmHg/ml)
left atrium (mmHg/ml)
left atrium (mmHg/ml)

#Reference pressure at body surface (ground) (mmHg)
#Volume of myocardium (ml)
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Rav = 0.0001 #Aortic valve resistance (mmHg*s/ml)

Raop = 0.0001 #Proximal aortic resistance (mmHg+*s/ml)

Rcrb = 6.8284472205 #Cerebral circulation resistance (mmHg*s/ml)
Raod = 0.025 #Distal aortic resistance (mmHg+*s/ml)

Rtaop = 0.2 #Transmural proximal aortic resistance (mmHg*s/ml)
Rtaod = 0.3 #Transmural distal aortic resistance (mmHg*s/ml)
Rsap = 0.025 #Prox. systemic arteries resistance (mmHg*s/ml)
Rsc = 0.1545054945 #Systemic capillaries resistance (mmHg+*s/ml)

Rsv = 0.1381298227 #Systemic veins resistance (mmHg*s/ml)
#Compliances:

Caop = 0.3445734208  #Aortic proximal compliance (ml/mmHg)

Caod = 1.4544677036  #Aortic distal compliance (ml/mmHg)

Csap = 1.4843409851  #Prox. systemic arteries compliance (ml/mmHg)
Csc = 7.9822364317  #Systemic capillaries compliance (ml/mmHg)
#Inertances:

Laop =3.5E-4 #Proximal aorta inertance (mmHg+*sec~2/ml)

Laod =3.5E-4 #Distal aorta inertance (mmHg*sec~2/ml)

#0ther parameters:

Kc = 497.7852450367  #Active vasomotor tone scaling parameter for systemic
#arterial pressure (mmHg)

DO = 50.0 #Active vasomotor tone volume parameter for systemic
#arterial pressure (ml)

Vsa0=485.7624931891  #Minimal volume of systemic arteries (ml)

Vsa_max=577.7106000108#Maximal luminal volume of systemic arteries (ml)

Kpl = 0.03 #Passive vasomotor tone scaling parameter for systemic
#arterial pressure (mmHg)

Kp2 = 0.05 #Passive vasomotor tone scaling parameter for systemic
#arterial pressure (mmHg/ml~2)

Kr = 0.01 #Pressure scaling constant for systemic arterial

#resistance (mmHg+*sec/ml)
Rsao = 0.5508058134  #Arteriolar resistance offset (mmHg*sec/ml)

tau_p = 0.1 #Passive vasomotor tone constant for systemic
#arterial pressure (ml~-1)

Ksv = 21.83 #Scaling factor for systemic venous pressure (mmHg)

Vmax_sv=3379.5450000637#Maximal volume of lumped systemic veins (ml)

D2 = -5.0 #0ffsetting constant for partially collapsed Vena cava
#pressure (mmHg)

K1 =0.0968305478 #Scaling constant for unstressed and distended Vena
#cava pressure(mmHg/ml)

K2 = 0.4 #Scaling constant for partially collapsed Vena cava

#pressure (mmHg)

KR = 0.001 #Scaling factor for Vena cava resistance (mmHg*sec/ml)
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#Vena cava resistance offset parameter (mmHg*sec/ml)
#Unstressed volume of Vena cava (ml)

Vmax_vc=350.5314000065#Maximum volume of Vena cava (ml)

Vmin_vc=50.0107470009

COtau = 15.0

Pplc = -5.6

Px2 = 2.0

Px1 =1.0

Vx1 = 1.0

Vx8 = 8.0

Vx75 = 75.0

Hom
# TIII. PARAMETERS OF
o
#Resistances:

Rpuv = 0.0001

Rtpap = 0.05

Rtpad = 0.05

Rpap = 0.0001
Rpad = 0.03

Rps = 4.2958026137
Rpa = 0.0565149137
Rpc = 0.0309026688
Rpv = 0.0001
#Compliances:

Ctpap = 1.5365929068
Ctpad = 2.6893667388

Cpa = 3.1321449506
Cpc = 7.7147016012
Cpv = 27.87028922

#Inductors:
Lpa =1.801907E-4
Lpad=1.932239E-4

# IV. PARAMETERS OF

#Mimimum volume of Vena cava (ml)

#Cardiac output equation time constant
#Pleural chamber pressure (mmHg)

#P-V (mmHg)
#P-V (mmHg)
#P-V (ml)

#P-V (m1)

#P-V (ml)

curve shaping parameter
curve shaping parameter
shaping parameter
shaping parameter
shaping parameter

curve
curve
curve

#Pulmonary valve resistance (mmHg*sec/ml)
#Proximal pulmonary arterial transmural
#resistance (mmHg*sec/ml)
#Distal pulmonary arterial transmural
#resistance (mmHg*sec/ml)
#Proximal pulmonary resistance (mmHg*sec/ml)
#Distal proximal pulmonary resistance (mmHg+*sec/ml)
#Pulmonary (mmHg*sec/ml)
#Pulmonary arterioles resistance (mmHg*sec/ml)
#Pulmonary (mmHg*sec/ml)
#Pulmonary (mmHg*sec/ml)

shunt resistance

capillaries resistance
veins resistance

#Proximal pulmonary arterial compliance (ml/mmHg)
#Distal pulmonary arterial compliance (ml/mmHg)
#Pulmonary arterioles compliance (ml/mmHg)
#Pulmonary capillaries compliance (ml/mmHg)
#Pulmonary veins compliance (ml/mmHg)

#Pulmonary arterial inertance (mmHg*sec~2/ml)
#Distal pulmonary artery inertance (mmHg*sec~2/ml)

BARORECEPTOR MODEL
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#Baroreceptor Firing Rate is Nbr.

# Firing rate sent to Central Nervous System (CNS).
# CNS filters the Nbr signal and outputs efferent firing frequencies:
# 1. N_hrv - vagal pathway firing frequency
# 2. N_hrs - sympathetic pathway controlling heart rate firing frequency
# 3. N_con - sympathetic pathway controlling heart contractility
# 4. N_vaso - sympathetic pathway controlling vasomotor tone
a = 0.001 #Time constant for baroreceptor firing rate (sec)
#NOTE: I made up the value for ’a’ without any reference(DB)
al = 0.036 #Time constant for baroreceptor firing rate (sec)
a2 = 0.0018 #Time constant for baroreceptor firing rate (sec)
K=1.0 #Baroreceptor gain (used to account for units) (1/(sec*mmHg))

#IVa. HRV pathway

K_hrv = 0.8 #CNS gain for vagal heart rate control

T_hrv = 1.8 #time parameter for vagal heart rate control (sec)
L_hrv = 0.2 #CNS time delay for vagal heart rate control (sec)
a_hrv = 0.372 #Time constant for efferent vagal firing

tau_hrv =-0.04 #Time parameter for efferent vagal firing (sec)

NO_hrv = 110.0 #Frequency parameter for efferent vagal firing (sec”-1)

#IVb. HRS pathway
K_hrs = 1.0 #CNS gain for sympathetic heart rate control
T_hrs = 10.0  #CNS time parameter for sympathetic heart rate control (sec)
L_hrs = 3.0 #CNS time delay for sympathetic heart rate control (sec)
a_hrs -0.283 #Time constant for efferent sympathetic heart rate firing
tau_hrs = 0.09 #Time parameter for efferent sympathetic heart rate
#firing (sec)
NO_hrs = 100.0 #Frequency parameter for efferent sympathetic heart rate
#firing (sec™-1)

#IVc. CON pathway
K_con = 1.0 #CNS gain for contractility control
T_con = 10.0  #CNS time parameter for contractility control (sec)
L_con = 3.0 #CNS time delay for contractility control (sec)
a_con = 0.0483 #Time constant for efferent contractility firing
0.7 #Time constant for efferent sympathetic contractility firing
0.04 #Time parameter for efferent sympathetic contractility
#firing (sec)
NO_con = 110.0 #Frequency parameter for efferent sympathetic contractility
#firing (sec™-1)

b_con =

tau_con
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#IVd. VASO pathway

K_vaso = 1.0  #CNS gain for vasomotor tomne control
T_vaso = 6.0 #CNS time parameter for vasomotor tone control (sec)
L_vaso = 3.0 #CNS time delay for vasomotor tone control (sec)

a_vaso =-0.411 #Time constant for efferent vasomotor tone firing

tau_vaso =0.04 #Time parameter for efferent vasomotor tone firing (sec)

NO_vaso =110.0 #Frequency parameter for efferent vasomotor tone
#firing (sec™-1)

#IVe. Heart rate control parameters

h1 = 35.0/60 #Heart rate control offset parameter (sec~-1)
h2 = 140.0/60  #Heart rate control scaling parameter (sec”-1)
h3 = 40.0/60 #Heart rate control scaling parameter (sec”-1)
hd = 32.0/60 #Heart rate control scaling parameter (sec”-1)
h5 = 10.0/60 #Heart rate control scaling parameter (sec”-1)
h6 = 20.0/60 #Heart rate control scaling parameter (sec”-1)

#IVf. Contractility control parameters

amin = -1.5 #Contractility control offset

#bmin = 0.7 #Contractility control offset

Ka = 5.0 #Contractility control scaling factor

#Kb = 0.5 #Contractility control scaling factor

H o o oo
# V. PARAMETERS OF PERICARDIUM

H o o o oo
K_pcd = 1.0 #Scaling parameter for pericardial P-V curve (mmHg)

phi_pcd = 40.0 #Pericardial P-V curve parameter (ml)
Vpcd0 = 785.0 #Pericardial P-V curve parameter (ml)
perifl = 15.0  #Pericardial fluid in pericardial cavity (ml)

# VI. PARAMETERS OF CORONARY CIRCULATION

#Resistance Parameters
Rcorao = 2.6423673077 #Proximal epicardial arteries resistance (s*mmHg/ml)

Rcorea = 2.6423673077 #Distal epicardial arteries resistance (s*mmHg/ml)
Rcorla = 5.0733452308 #Large coronary arteries resistance (s*mmHg/ml)
Rcorsa = 5.0733452308 #Small coronary arteries resistance (s*mmHg/ml)
Rcorcap= 4.2277876923 #Coronary capillaries resistance (s*mmHg/ml)
Rcorsv = 0.4932418974 #Small coronary veins resistance (s*mmHg/ml)
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Rcorlv
Rcorev

#Compliance Parameters
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0.4932418974 #Large coronary veins resistance (s*mmHg/ml)
0.4932418974 #Epicardial veins resistance (s*mmHg/ml)

Ccorao = 0.13 #Compliance of proximal epicardial arteries (ml/mmHg)
Ccorea = 0.0550702742 #Compliance of distal epicardial arteries (ml/mmHg)
Ccorla = 0.0912942282 #Compliance of large coronary arteries (ml/mmHg)
Ccorsa = 0.1560208066 #Compliance of small coronary arteries (ml/mmHg)
Ccorcap= 1.8 #Compliance of coronary capillaries (ml/mmHg)

Ccorsv = 0.5801545598 #Compliance of small coronary veins (ml/mmHg)

Ccorlv = 0.6837210566 #Compliance of large coronary veins (ml/mmHg)

Ccorev = 0.8322992527 #Compliance of epicardial veins (ml/mmHg)

"o)

def solve_system_beat(z,t,parameters,nothing):

exec(parameters)
neg=len(z)
dz=zeros (neq)

B .
# VII. VARIABLES OF VARYING ELASTANCE HEART MODEL

B .
nnn

Vla=z[0] #Volume of left atrium (ml)

Vliv=z[1] #Volume of left ventricle (ml)

Vra=z[2] #Volume of right atrium (ml)

Vrv=z[3] #Volume of right ventricle (ml)

COutput=z[4] #Cardiac output (ml/sec)

B o o
# VIII. VARIABLES OF SYSTEMIC CIRCULATION

B o o
Paopc=z[5]  #Proximal aorta chamber pressure (mmHg)

PaodFOL=z[7] #Paod follower (mmHg)

MAP=z[6] #Mean proximal aortic pressure (mmHg)

Qaop=z[15]  #Proximal aorta flow (ml/sec)  #(L/min)

Qaod=z[16] #Distal aorta flow (ml/sec)

Vaop=z[8] #Proximal aorta volume (ml)
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Vaod=z[9] #Distal aorta volume (ml)
Vsa=z[11] #Systemic arteries volume (ml)
Vsap=z[10]  #Systemic arterioles volume (ml)
Vsc=z[12] #Systemic capillaries volume (ml)
Vsv=z[13] #Systemic veins volume (ml)
Vve=z[14] #Vena cava volume (ml)
e
# IX. VARIABLES OF PULMONARY CIRCULATION
e o e
Vpap=z[17] #Proximal pulmonary arterial volume (ml)
Vpad=z[18]  #Distal pulmonary arterial volume (ml)
Vpa=z[19] #Pulmonary arterioles volume (ml)
Vpc=z[20] #Pulmonary capillaries volume (ml)
Vpv=z[21] #Pulmonary veins volume (ml)
Qpap=z[22]  #Proximal pulmonary arterial flow (ml/sec)  #(L/min)
Qpad=z[23]  #Distal pulmonary arterial flow (ml/sec)
[/ mmm
// XII. VARIABLES OF CORONARY CIRCULATION
[/ mmm
Vcorao=z[24] #Proximal epicardial arteries volume (ml)
Vcorea=z[25] #Distal epicardial arteries volume (ml)
Vcorla=z[26] #Large coronary arteries volume (ml)
Vcorsa=z[27] #Small coronary arteries volume (ml)
Vcorcap=z[28]#Coronary capillaries volume (ml)
Vcorsv=z[29] #Small coronary veins volume (ml)
Vcorlv=z[30] #Large coronary veins volume (ml)
Vcorev=z[31] #Epicardial veins volume (ml)
e et
// XIII. EQUATIONS OF VARYING ELASTANCE HEART MODEL
[/ mmm

nnn

Heldt (2002) elastance model

if (t+t_delta>=(hr.t_shift+(1/hr.HR))):
nn "NeW bea.t non
hr.NewBeat (t)
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ya,yv=hr.Activation_function(t,PRint)

wHR A
Era = (Emaxra-Eminra)#*ya + Eminra #Elastance driver from activation function
Vrar= (1-ya)*(Vrard-Vrars) + Vrars

nn ||RV’I nn

Erv = (Emaxrv-Eminrv)*yv + Eminrv

Vrvr= (1-yv)*(Vrvrd-Vrvrs) + Vrvrs

nn IILAII nn

Ela = (Emaxla-Eminla)#*ya + Eminla

Vlar= (1-ya)*(Vlard-Vlars) + Vlars

wap

Elv = (Emaxlv-Eminlv)*yv + Eminlv

Vlivr= (1-yv)*(Vlvrd-Vlvrs) + Vlvrs

// XVII. EQUATIONS OF PERICARDIUM

nnn

Vpcd = (Vrv + Vra + V1v + Vla + perifl + Vmyo +
Vcorao+Vcoreat+Vcorla+Vcorsa+Vcorcap+Vcorsv+Vcorlv+Vcorev)

Ppcdc = K_pcd*exp((Vpcd-Vpcd0) /phi_pcd) - Px2/(exp(Vpcd/Vx75)-1)+Pplc

#Eq.from Sun et al.

if hr.baro_on[2]:
cont=hr.SympatheticContractivity()
else:cont=0

"""Left atrial pressure"""

Plac = (Vla-Vlar)*Ela- Px2/(exp(V1a/Vx8)-1) + Ppcdc #Eq. B,F
"""Left ventricle pressure, contractility effects systolic elastance """
Plvc = (1-cont)*(V1v-Vlvr)*Elv- Px2/(exp(V1lv/Vx8)-1) + Ppcdc #Eq. B,F
"""Right atrial pressure"""

Prac = (Vra-Vrar)+*Era- Px2/(exp(Vra/Vx8)-1) + Ppcdc #Eq. B,F
"""Right ventricle pressure, contractility effects systolic elastance"""
Prvc = (1-cont)*(Vrv-Vrvr)*Erv- Px2/(exp(Vrv/Vx8)-1) + Ppcdc #Eq. B,F
R ———

// XV. EQUATIONS OF PULMONARY CIRCULATION
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Ppapcl =((Vpap/Ctpap -Px2/(exp(Vpap/Vx8)-1) - Rtpap*Qpap + Pplc)

*Rpuv+ Prvc*Rtpap)/(Rtpap+Rpuv) #Eq. B,C,D
Ppapc2 =( Vpap/Ctpap -Px2/(exp(Vpap/Vx8)-1) - Rtpap*Qpap + Pplc) #Eq. B,C,D
if (Prvc>Ppapcl) :Ppapc =Ppapcl
else: Ppapc =Ppapc2

if (Plac>Plvc): Qla =(Plac-Plvc)/Rla #Eq. C; Mitral valve
else:Qla =0

if (Plvc>Paopc) :Qlv =(Plvc-Paopc) /Rav #Eq. C; Aortic valve
else:Qlv =0

if (Prac>Prvc): Qra =(Prac-Prvc)/Rra #Eq. C; Tricuspid valve

else:Qra =0

if (Prvc>Ppapc) :Qrv =(Prvc-Ppapc) /Rpuv #Eq. C; Pulm valve
else:Qrv =0

SV = COutput/hr.HR #Stroke volume

nmn

[/ mmm
//  XIV. EQUATIONS OF SYSTEMIC CIRCULATION
et R
nmn

nn llPressures : nnn

Psc = Vsc/Csc- Px2/(exp(Vsc/Vx8)-1) #Eq. B

Psv = -Ksv*loglO((Vmax_sv/Vsv)-0.99) #Lu et al. Eq. (1)
if (Vve>V0) :

Pvcc= D2+K2*exp (VO /Vmin_vc)-Px2/(exp(Vvc/Vx8)-1)+K1*x(Vvc-V0)+ Pplc
#Lu et al. Eq. (2)
else:
Pvcc= D2+K2*exp(Vvc/Vmin_vc) -Px2/ (exp(Vvc/Vx8)-1)+ Pplc
#Lu et al. Eq. (3)

Paodc = (Rcrb*(Rtaod*Qaop- Rtaod*Qaod + Vaod/Caod- Px2/(exp(Vaod/Vx8)-1))+
Pvcc*Rtaod) / (Rcrb+Rtaod)#Eq. B,C
Paod = Paodc - Pbs
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dPaodFOL = (Paod-PaodFOL)/(0.0005)

// XVI. EQUATIONS OF BARORECEPTOR MODEL

F_vaso=0.0#0.52

F e e e L T
// XVIII. EQUATIONS OF CORONARY CIRCULATION

F R e et L LR LR B e et
Pcoreac= Vcorea/Ccorea - Px1/(exp(Vcorea/Vx1l)-1)+ Ppcdc #Eq. B

Qcorao = (Paopc-Pcoreac)/Rcorao #Eq. C

nmn

[/ mmm
// XIV. EQUATIONS OF SYSTEMIC CIRCULATION CONTINUE

F et

"""Nonlinear resistances:"""
Rvc = KR*(Vmax_vc/Vvc)**2 + RO #Vena cava: Lu et al. Eq.(4)

Rsa = (Rsao + Kr*(exp(4*F_vaso) +(Vsa_max/Vsa)**2))

#Sys. arteries: Lu et al. Eq.(16)

if hr.baro_on[3]:
Rsa=Rsaxhr.SympatheticPeripheral ()

"""Transmural flow:"""

dVaop =(Paopc - (Vaop/Caop) + Px2/(exp(Vaop/Vx8)-1))/Rtaop#Eq. A,B,C,D

"""Pressures:"""

dPaopc= (Qlv-dVaop-Qaop-
Qcorao)*(1/Ccorao+Px2+*exp(Vcorao/Vx1l)/(exp(Vcorao/Vx1l) -1) **2)

Psap = Vsap/Csap - Px2/(exp(Vsap/Vx8)-1) #Eq. B

Psa_a = Kc*xloglO( (Vsa-Vsa0)/DO + 1) #Lu et al. Eq. (13)
Psa_p = Kpl*exp(tau_p*(Vsa-Vsa0)) + Kp2*(Vsa-Vsa0)**2 #Lu et al. Eq. (14)
Psa = F_vasox*Psa_a + (1-F_vaso)#*Psa_p #Lu et al. Eq. (15)

if (t>= hr.t_shift_dt+t_delta):
hr.SumMap (Psa,t_delta)

dMAP = (Psa-MAP)/COtau
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"""Flows:"""

Qcrb = (Paodc-Pvcce) /Rerb #Eq. C
Qsap = (Psap-Psa)/Rsap #Eq. C
Qsa = (Psa-Psc)/Rsa #Eq. C
Qsc = (Psc-Psv)/Rsc #Eq. C
Qsv = (Psv-Pvcc)/Rsv #Eq. C
Quc = (Pvcc-Prac)/Rvc #Eq. C
"""Transmural flows:"""

dVaod = Qaop- Qaod - Qcrb #Eq. A,D
dVsap = Qaod- Q(sap #Eq. A,D
dVsa = (sap- (sa #Eq. A,D
dVsc = Q@sa - Qsc #Eq. A,D
dVsv = Qsc - Qsv #Eq. A,D
dVvc = Qsv + Qcrb - Qvc #Eq. A,D
"""Differential equations:"""

dQaop = (Paopc - Qaop*Raop - Paodc)/ Laop #Eq. C,E
dQaod = (Paodc - Qaod*Raod - Psap) / Laod #Eq. C,E

F e et LT
// XV. EQUATIONS OF PULMONARY CIRCULATION CONTINUE

R e it
Ppadc = Vpad/Ctpad-Px2/(exp(Vpad/Vx8)-1) +(Qpap-Qpad)*Rtpad+ Pplc#Eq. B,C
Ppac = Vpa /Cpa - Px2/(exp(Vpa/Vx8)-1)+ Pplc #Eq. B
Ppcc = Vpc /Cpc - Px2/(exp(Vpc/Vx8)-1)+ Pplc #Eq. B
Ppvc = Vpv /Cpv - Px2/(exp(Vpv/Vx8)-1)+ Pplc #Eq. B
Qps = (Ppac-Ppvc)/Rps #Eq. C

Qpa = (Ppac-Ppcc)/Rpa #Eq. C

Qpc = (Ppcc-Ppvc)/Rpc #Eq. C

Qpv = (Ppvc-Plac)/Rpv #Eq. C

dVpap = Qrv - Qpap #Eq. A,D

dVpad = Qpap- Qpad #Eq. A,D

dVpa = Qpad- Qps- Qpa #Eq. A,D

dVpc = Qpa - Qpc #Eq. A,D

dVpv = Qpc + Qps- Qpv

dQpap= (Ppapc - Qpap*Rpap- Ppadc)/Lpa #Eq. C.E

dQpad= (Ppadc - Qpad*Rpad- Ppac )/Lpad #Eq. C,E
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Pcorisfc= abs((Plvc-Ppcdc)/2)

Pcorlac = Vcorla/Ccorla - Px1/(exp(Vcorla/Vx1)-1) + Pcorisfc #Eq. B
Pcorsac = Vcorsa/Ccorsa - Px1/(exp(Vcorsa/Vx1l)-1) + Pcorisfc #Eq. B
Pcorcapc= Vcorcap/Ccorcap-Px1/(exp(Vcorcap/Vx1)-1)+ Pcorisfc #Eq. B
Pcorsvc = Vcorsv/Ccorsv - Px1/(exp(Vcorsv/Vxl)-1) + Ppcdc #Eq. B
Pcorlvc = Vcorlv/Ccorlv - Px1/(exp(Vcorlv/Vx1)-1) + Ppcdc #Eq. B
Pcorevc = Vcorev/Ccorev - Px2/(exp(Vcorev/Vx8)-1) + Ppcdc #Eq. B
Qcorea = (Pcoreac-Pcorlac)/Rcorea #Eq. C
Qcorla = (Pcorlac-Pcorsac)/Rcorla #Eq. C
Qcorsa = (Pcorsac-Pcorcapc)/Rcorsa #Eq. C
Qcorcap= (Pcorcapc-Pcorsvc)/Rcorcap #Eq. C
Qcorsv = (Pcorsvc-Pcorlvc)/Rcorsv #Eq. C
Qcorlv = (Pcorlvc-Pcorevc)/Rcorlv #Eq. C
Qcorev = (Pcorevc-Prac)/Rcorev #Eq. C
dVcorao = Qlv-dVaop-Qaop-Qcorao #Eq. A,D
dVcorea = Qcorao - Qcorea #Eq. A,D
dVcorla = Qcorea - Qcorla #Eq. A,D
dVcorsa = Qcorla - Qcorsa #Eq. A,D
dVcorcap= Qcorsa - (Qcorcap #Eq. A,D
dVcorsv = Qcorcap- Qcorsv #Eq. A,D
dVcorlv = Qcorsv - Qcorlv #Eq. A,D
dVcorev = Qcorlv - Qcorev #Eq. A,D
nmn
e e

"""Left atrium, and its contraction:"""

dvla = (Qpv-Qla) #Eq. A,D

"""Left ventricle, and its contraction, blood loss function here """
dvliv = (Qla - Qlv) #Eq. A,D

"""Right atrium, and its contraction:"""

dVra = (Qvc - Qra + Qcorev) #Eq. A,D

"""Right ventricle, and its contraction:"""

dVrv = (Qra - Qrv) #Eq. A,D

dCOutput = (Qlv-COutput)/COtau #Cardiac output
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dz[0] =dVla
dz[1] =dVlv
dz[2] =dVra
dz[3] =dVrv

dz[4] =dCOutput
dz[5] =dPaopc
dz[6] =dMAP
dz[7] =dPaodFOL
dz[8] =dVaop
dz[9] =dVaod
dz[10]=dVsap
dz[11]=dVsa
dz[12]=dVsc
dz[13]=dVsv
dz[14]=dVvc
dz[15]=dQaop
dz[16]=dQaod
dz[17]=dVpap
dz[18]=dVpad
dz[19]=dVpa
dz[20]=dVpc

dz [21]=dVpv
dz[22]=dQpap
dz[23]=dQpad
dz[24]=dVcorao
dz[25]=dVcorea
dz[26]=dVcorla
dz[27]=dVcorsa
dz[28]=dVcorcap
dz[29]=dVcorsv
dz[30]=dVcorlv
dz[31]=dVcorev

return dz

def solve_system(z,t,parameters,nothing):

exec(parameters)
nmn



120 APPENDIX A. PYTHON CODE

neg=len(z)
dz=zeros (neq)

Vla=z[0] #Volume of left atrium (ml)
Vlv=z[1] #Volume of left ventricle (ml)
Vra=z[2] #Volume of right atrium (ml)
Vrv=z[3] #Volume of right ventricle (ml)

COutput=z[4] #Cardiac output (ml/sec)

// VIII. VARIABLES OF SYSTEMIC CIRCULATION

Paopc=z[56]  #Proximal aorta chamber pressure (mmHg)
PaodFOL=z[7] #Paod follower (mmHg)

MAP=z[6] #Mean proximal aortic pressure (mmHg)
"""Flows:"""

Qaop=z[15]  #Proximal aorta flow (ml/sec)  #(L/min)
Qaod=z[16] #Distal aorta flow (ml/sec)

"""Volumes: """

Vaop=z[8] #Proximal aorta volume (ml)

Vaod=z[9] #Distal aorta volume (ml)

Vsa=z[11] #Systemic arteries volume (ml)

Vsap=z[10]  #Systemic arterioles volume (ml)

Vsc=z[12] #Systemic capillaries volume (ml)

Vsv=z[13] #Systemic veins volume (ml)

Vvc=z[14] #Vena cava volume (ml)

nmn

F e e T T
// IX. VARIABLES OF PULMONARY CIRCULATION

F e e

Vpap=z[17]  #Proximal pulmonary arterial volume (ml)
Vpad=z[18]  #Distal pulmonary arterial volume (ml)

Vpa=z[19] #Pulmonary arterioles volume (ml)
Vpc=z[20] #Pulmonary capillaries volume (ml)
Vpv=z[21] #Pulmonary veins volume (ml)

Qpap=z[22]  #Proximal pulmonary arterial flow (ml/sec)  #(L/min)
Qpad=z[23]  #Distal pulmonary arterial flow (ml/sec)

// X. VARIABLES OF BARORECEPTOR MODEL
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Nbr=z[24] #Instantaneous firing frequency of baroreceptor (1/sec)
Nbr_t=z[25] #Time derivative of baroreceptor firing rate (sec”~-2)
N_hrv=z[26] #Vagal discharge rate at CNS controlling heart rate (1/sec)
N_hrs=z[27] #Sympathetic discharge rate at CNS controlling heart rate(1/sec)
N_con=z[28] #Sympathetic discharge rate at CNS for contractility (1/sec)
N_vaso=z[29] #Sympathetic discharge rate at CNS controlling vasomotor

#tone (1/sec)

Vcorao=z[30] #Proximal epicardial arteries volume (ml)
Vcorea=z[31] #Distal epicardial arteries volume (ml)
Vcorla=z[32] #Large coronary arteries volume (ml)
Vcorsa=z[33] #Small coronary arteries volume (ml)
Vcorcap=z[34]#Coronary capillaries volume (ml)
Vcorsv=z[35] #Small coronary veins volume (ml)
Vcorlv=z[36] #Large coronary veins volume (ml)

Vcorev=z[37] #Epicardial veins volume (ml)
nmmnn

nnn

Heldt (2002) elastance model

nnn

if (t+t_delta>=(hr.t_shift+(1/hr.HR))):
hr.t_shift = t
hr.shift=True

trela = t-hr.t_shift
trelv t-hr.t_shift-PRint

if (0.0<=trela and trela<hr.Tsa):

ya=(1.0 - cos(pi*trela/hr.Tsa))/2.0
elif (hr.Tsa<=trela and trela<l.5%hr.Tsa):

ya=(1.0 + cos(2.0*pi*(trela-hr.Tsa)/hr.Tsa))/2.0
else:

ya=0.0

if (0.0<=trelv and trelv<hr.Tsv):
yv=(1.0 - cos(pi*trelv/hr.Tsv))/2.0
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elif (hr.Tsv<=trelv and trelv<l.5xhr.Tsv):

yv=(1.0 + cos(2.0*pi*(trelv-hr.Tsv)/hr.Tsv))/2.0
else:

yv=0.0

nn ||RA’I nn

Era = (Emaxra-Eminra)*ya + Eminra #Elastance driver from activation function
Vrar= (1-ya)*(Vrard-Vrars) + Vrars
wnRy

Erv = (Emaxrv-Eminrv)#*yv + Eminrv
Vrvr= (1-yv)*(Vrvrd-Vrvrs) + Vrvrs
W g

Ela = (Emaxla-Eminla)*ya + Eminla
Vlar= (1-ya)*(Vlard-Vlars) + Vlars
nn ||LV" nn

Elv = (Emaxlv-Eminlv)*yv + Eminlv
Vlvr= (1-yv)*(Vlvrd-Vlvrs) + Vlvrs

// XVII. EQUATIONS OF PERICARDIUM

Vpcd = (Vrv + Vra + Vlv + Vla + perifl + Vmyo +

Vcorao+Vcorea+Vcorla+Vcorsa+Vcorcap+Vcorsv+Vcorlv+Vcorev)
Ppcdc = K_pcd*exp((Vpcd-Vpcd0) /phi_pcd) - Px2/(exp(Vpcd/Vx75)-1)+Pplc
#Eq.from Sun et al.

"""Left atrial pressure"""

Plac = (Vla-Vlar)*Ela- Px2/(exp(V1la/Vx8)-1) + Ppcdc #Eq. B,F
"""Left ventricle pressure, contractility effects systolic elastance """
Plvc = hr.afs_con2*(V1v-Vlvr)*Elv- Px2/(exp(V1lv/Vx8)-1) + Ppcdc #Eq. B,F
"""Right atrial pressure"""

Prac = (Vra-Vrar)*Era- Px2/(exp(Vra/Vx8)-1) + Ppcdc #Eq. B,F
"""Right ventricle pressure, contractility effects systolic elastance"""
Prvc = hr.afs_con2*(Vrv-Vrvr)*Erv- Px2/(exp(Vrv/Vx8)-1) + Ppcdc #Eq. B,F
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Ppapcl =((Vpap/Ctpap -Px2/(exp(Vpap/Vx8)-1) - Rtpap*Qpap + Pplc)
*Rpuv+ PrvcxRtpap)/(Rtpap+Rpuv) #Eq. B,C,D

Ppapc2 =( Vpap/Ctpap -Px2/(exp(Vpap/Vx8)-1) - Rtpap*Qpap + Pplc) #Eq. B,C,D
if (Prvc>Ppapcl) :Ppapc =Ppapcl
else: Ppapc =Ppapc2

if (Plac>Plvc): Qla =(Plac-Plvc)/Rla #Eq. C; Mitral valve
else:Qla =0

if (Plvc>Paopc) :Qlv =(Plvc-Paopc) /Rav #Eq. C; Aortic valve
else:Qlv =0

if (Prac>Prvc): Qra =(Prac-Prvc)/Rra #Eq. C; Tricuspid valve

else:Qra =0

if (Prvc>Ppapc) :Qrv =(Prvc-Ppapc) /Rpuv #Eq. C; Pulm valve
else:Qrv =0

SV = COutput/hr.HR #Stroke volume

nmn

[/ mmm
// XIV. EQUATIONS OF SYSTEMIC CIRCULATION

R et
nmmnn

nn llPressures : nnn

Psc = Vsc/Csc- Px2/(exp(Vsc/Vx8)-1) #Eq. B

Psv = -Ksv*loglO((Vmax_sv/Vsv)-0.99) #Lu et al. Eq. (1)
if (Vve>V0) :

Pvcc= D2+K2*exp (VO /Vmin_vc)-Px2/(exp(Vvc/Vx8)-1)+K1*x(Vvc-V0)+ Pplc
#Lu et al. Eq. (2)
else:
Pvcc= D2+K2*exp(Vvc/Vmin_vc) -Px2/ (exp(Vvc/Vx8)-1)+ Pplc
#Lu et al. Eq. (3)

Paodc = (Rcrb*(Rtaod*Qaop- Rtaod*Qaod + Vaod/Caod- Px2/(exp(Vaod/Vx8)-1))+
Pvcc*Rtaod) / (Rcrb+Rtaod)#Eq. B,C
Paod = Paodc - Pbs
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dPaodFOL = (Paod-PaodFOL)/(0.0005)

// XVI. EQUATIONS OF BARORECEPTOR MODEL

The governing equation for Nbr is adopted from
Spickler et al.(Kezdi and Geller, 1967).

The general form of the equation determining efferent
responses to the baroreceptor:

T_x*x(N_x:t) + N_x = K_x*Nbr(t-L_x), Lu et al. Eq. in CNS box of Fig 2
and
F_x = a_x +b_x/(exp(tau_x*(N_x-No_x))+1.0),Lu et al. Eq. (7)
where the subscript "x" denotes the pathway name.
if (t>= hr.t_shift_Nbr+t_delta):
hr.Nbr.append (Nbr)
hr.t_shift_Nbr+=t_delta

dNbr = Nbr_t
#Spickler et al. p. 34, also Lu et al. Eq. (6):
dNbr_t=1.0/(a2xa) *(-(a2+a)*Nbr_t -Nbr +K*Paod +al*KxdPaodFOL)

if hr.baro_on[0]:
"nv// Discharge frequency controlling heart rate (vagal pathway)"""
if (t_min+t>L_hrv):
dN_hrv =(-N_hrv + (K_hrv*hr.Nbr[-int(L_hrv/t_delta)]))/T_hrv
else:dN_hrv = 0
b_hrv = 1 - a_hrv
F_hrv = a_hrv + (b_hrv / (exp(tau_hrv*(N_hrv-NO_hrv)) + 1.0))
else:
F_hrv=0
dN_hrv=0

if hr.baro_on[1]:
"""Discharge frequency controlling heart rate (sympathetic)"""
if (t_min+t>L_hrs):
dN_hrs =(-N_hrs + (K_hrs*hr.Nbr[-int(L_hrs/t_delta)]))/T_hrs
else: dN_hrs =0
b_hrs = 1 - a_hrs
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F_hrs = a_hrs + (b_hrs / (exp(tau_hrs*(N_hrs-NO_hrs)) + 1.0))
else:

F_hrs=0

dN_hrs =0

if hr.baro_on[2]:

"""Discharge frequency controlling contractility of heart """

if (t_min+t>L_con):

dN_con =(-N_con + (K_con*hr.Nbr[-int(L_con/t_delta)]))/T_con

else:dN_con =0

F_con = a_con + (b_con / (exp(tau_con*(N_con-NO_con)) + 1.0))
else:

F_con=0

dN_con =0

if hr.baro_on[3]:

"""Discharge frequency controlling vasomotor tone"""

if (t_min+t>L_vaso):

dN_vaso =(-N_vaso + (K_vasoxhr.Nbr[-int(L_vaso/t_delta)]))/T_vaso

else:dN_vaso =0

b_vaso = 1- a_vaso

F_vaso = a_vaso + (b_vaso / (exp(tau_vaso*(N_vaso-NO_vaso)) + 1.0))
else:

F_vaso=0

dN_vaso =0

"""Heart rate control"""
if hr.baro_on[0] and hr.baro_on[1]:
HRcont = (hl + (h2*F_hrs)-(h3*F_hrs**2) - (h4*F_hrv)+
(h5*F_hrv**2) - (h6*F_hrv+F_hrs)) #Lu et al. Eq. (8)
else:
HRcont =hr.HR

"""Contractility control"""
if hr.baro_on[2]:

afs_con = amin + (Kax*F_con)
else:

afs_con=1

#bfs_con = bmin + (Kb*F_con)

// XVIII. EQUATIONS OF CORONARY CIRCULATION
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Pcoreac= Vcorea/Ccorea - Px1/(exp(Vcorea/Vxl)-1)+ Ppcdc #Eq. B

Qcorao = (Paopc-Pcoreac)/Rcorao #Eq. C

L e et e EEE L L P e L e e T
// XIV. EQUATIONS OF SYSTEMIC CIRCULATION CONTINUE

fl-—mmmmmm i

"""Nonlinear resistances:"""

Rvc = KR*(Vmax_vc/Vvc)**2 + RO #Vena cava: Lu et al. Eq.(4)
Rsa = Rsao + Kr*(exp(4xF_vaso) +(Vsa_max/Vsa)**2)

#Sys. arteries: Lu et al. Eq.(16)

"""Transmural flow:"""
dVaop =(Paopc - (Vaop/Caop) + Px2/(exp(Vaop/Vx8)-1))/Rtaop#Eq. A,B,C,D
"""Pressures:"""
dPaopc= (Qlv-dVaop-Qaop-
Qcorao) *(1/Ccorao+Px2*exp(Vcorao/Vx1) /(exp(Vcorao/Vx1) -1) **2)

Psap = Vsap/Csap - Px2/(exp(Vsap/Vx8)-1) #Eq. B

Psa_a = Kc*logl0( (Vsa-Vsa0)/DO + 1) #Lu et al. Eq. (13)
Psa_p = Kpl*exp(tau_p*(Vsa-Vsa0)) + Kp2*(Vsa-VsaO)**2  #Lu et al. Eq. (14)
Psa = F_vaso*Psa_a + (1-F_vaso)#*Psa_p #Lu et al. Eq. (15)
dMAP = (Psa-MAP)/COtau;

"""Flows:"""

Qcrb = (Paodc-Pvcc)/Rerb #Eq. C

Qsap = (Psap-Psa)/Rsap #Eq. C

Qsa = (Psa-Psc)/Rsa #Eq. C

#Qsa = (Psa-Psap)/Rsa #Eq. C

#Qsap = (Psap-Psc)/Rsap #Eq. C

Qsc = (Psc-Psv)/Rsc #Eq. C

Qsv = (Psv-Pvcc)/Rsv #Eq. C

Quvc = (Pvcc-Prac)/Rvc #Eq. C

"""Transmural flows:"""

dVaod = Qaop- Qaod - Qcrb #Eq. A,D
dVsap = Qaod- (sap #Eq. A,D
dVsa = (sap- Q(sa #Eq. A,D
dVsc = Qsa - Qsc #Eq. A,D
#dVsa = Qaod- Qsa #Eq. A,D
#dVsap = (sa- Qsap #Eq. A,D
#dVsc = Qsap - Qsc #Eq. A,D

dVsv = Qsc - Qsv #Eq. A,D
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dVvc = Qsv + Qcrb - Qvc #Eq. A,D

"""Differential equations:"""

dQaop = (Paopc - Qaop*Raop - Paodc)/ Laop #Eq. C,E
dQaod = (Paodc - Qaod*Raod - Psap) / Laod #Eq. C,E
#dQaod = (Paodc - Qaod*Raod - Psa) / Laod #Eq. C,E

F e
// XV. EQUATIONS OF PULMONARY CIRCULATION CONTINUE

F e T e
Ppadc = Vpad/Ctpad-Px2/(exp(Vpad/Vx8)-1) +(Qpap-Qpad)*Rtpad+ Pplc#Eq. B,C
Ppac = Vpa /Cpa - Px2/(exp(Vpa/Vx8)-1)+ Pplc #Eq. B
Ppcc = Vpc /Cpc - Px2/(exp(Vpc/Vx8)-1)+ Pplc #Eq. B
Ppvc = Vpv /Cpv - Px2/(exp(Vpv/Vx8)-1)+ Pplc #Eq. B
Qps = (Ppac-Ppvc)/Rps #Eq. C

Qpa = (Ppac-Ppcc)/Rpa #Eq. C

Qpc = (Ppcc-Ppvc)/Rpc #Eq. C

Qpv = (Ppvc-Plac)/Rpv #Eq. C

dVpap = Qrv - Qpap #Eq. A,D
dVpad = Qpap- Qpad #Eq. A,D

dVpa = Qpad- Qps- Qpa #Eq. A,D

dVpc = Qpa - Qpc #Eq. A,D

dVpv = Qpc + Qps- Qpv

dQpap= (Ppapc - Qpap*Rpap- Ppadc)/Lpa #Eq. C,E
dQpad= (Ppadc - Qpad*Rpad- Ppac )/Lpad #Eq. C,E

[/ mmm -
// XVIII. EQUATIONS OF CORONARY CIRCULATION CONTINUE

[/ mmm -
Pcorisfc= abs((Plvc-Ppcdc)/2)

Pcorlac = Vcorla/Ccorla - Px1/(exp(Vcorla/Vx1)-1) + Pcorisfc #Eq. B
Pcorsac = Vcorsa/Ccorsa - Pxl1/(exp(Vcorsa/Vx1)-1) + Pcorisfc #Eq. B
Pcorcapc= Vcorcap/Ccorcap-Px1/(exp(Vcorcap/Vx1)-1)+ Pcorisfc #Eq. B
Pcorsvc = Vcorsv/Ccorsv - Px1/(exp(Vcorsv/Vxl)-1) + Ppcdc #Eq. B
Pcorlvc = Vcorlv/Ccorlv - Px1/(exp(Vcorlv/Vx1l)-1) + Ppcdc #Eq. B
Pcorevc = Vcorev/Ccorev - Px2/(exp(Vcorev/Vx8)-1) + Ppcdc #Eq. B

Qcorea = (Pcoreac-Pcorlac)/Rcorea #Eq. C
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Qcorla = (Pcorlac-Pcorsac)/Rcorla #Eq. C
Qcorsa = (Pcorsac-Pcorcapc)/Rcorsa #Eq. C
Qcorcap= (Pcorcapc-Pcorsvc)/Rcorcap #Eq. C
Qcorsv = (Pcorsvc-Pcorlvc)/Rcorsv #Eq. C
Qcorlv = (Pcorlvc-Pcorevc)/Rcorlv #Eq. C
Qcorev = (Pcorevc-Prac)/Rcorev #Eq. C
dVcorao = Qlv-dVaop-Qaop-Qcorao #Eq. A,D
dVcorea = Qcorao - Qcorea #Eq. A,D
dVcorla = Qcorea - Qcorla #Eq. A,D
dVcorsa = Qcorla - Qcorsa #Eq. A,D
dVcorcap= Qcorsa - (Qcorcap #Eq. A,D
dVcorsv = Qcorcap- Qcorsv #Eq. A,D
dVcorlv = Qcorsv - Qcorlv #Eq. A,D
dVcorev = Qcorlv - Qcorev #Eq. A,D
nmn
B ———

// XIII. EQUATIONS OF VARYING ELASTANCE HEART MODEL CONTINUE

if (hr.shift):
hr.HR = HRcont
hr.Tsv = hr.TsvK#sqrt(1.0/hr.HR)
hr.Tsa = hr.TsaK*sqrt(1.0/hr.HR)
hr.shift = False
hr.afs_con2 = afs_con

"""Left atrium, and its contraction:"""

dvla = (Qpv-Qla) #Eq. A,D
"""Left ventricle, and its contraction, blood loss function here"""
dvliv = (Qla - Qlv) #Eq. A,D
"""Right atrium, and its contraction:"""

dVra = (Qvc - Qra + Qcorev) #Eq. A,D
"""Right ventricle, and its contraction:"""

dvrv = (Qra - Qrv) #Eq. A,D
dCOutput = (Qlv-COutput)/COtau #Cardiac output
dz[0] =dVla

dz[1] =dVlv

dz[2] =dVra

dz[3] =dVrv

dz[4] =dCOutput
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if

dz[5] =dPaopc
dz[6] =dMAP
dz[7] =dPaodFOL
dz[8] =dVaop
dz[9] =dVaod
dz[10]=dVsap
dz[11]=dVsa
dz[12]=dVsc
dz[13]=dVsv
dz[14]=dVvc
dz[15]=dQaop
dz[16]=dQaod
dz[17]=dVpap
dz [18]=dVpad
dz[19]=dVpa
dz[20]=dVpc
dz[21]=dVpv
dz[22]=dQpap
dz[23]=dQpad
dz[24]=dNbr
dz[25]=dNbr_t
dz[26]=dN_hrv
dz[27]=dN_hrs
dz[28]=dN_con
dz[29]=dN_vaso
dz[30]=dVcorao
dz[31]=dVcorea
dz[32]=dVcorla
dz[33]=dVcorsa
dz[34]=dVcorcap
dz[35]=dVcorsv
dz[36]=dVcorlv
dz[37]=dVcorev

return dz

__name__==’__main__"’:

cO=time.clock()
e0=time.time()
try:

outfile = sys.argv[1]
except:

129
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usage = ’Usage: python %s <outfile>’ 7% sys.argv[0]

print usage; sys.exit(1)

t_min=0; t_max=1; t_delta=0.01

N_t=t_max/t_delta

t=linspace(t_min,t_max,N_t)

dirname=outfile.split(’/’) [0]

"""Initial
Vra_0 =
Vrv_0 =
Vlia_0 =
Viv_0 =
MAP_O =
Qaop_0 =
Qaod_0O
COutput_0
Vaop_0
Vaod_0
Vsa_0 =
Vsap_ 0 =
Vsc_0
Vsv_0
Vvc_0
PaodFOL_O
Vpap_0
Vpad_0
Vpa_0
Vpc_0
Vpv_0
Qpap_0
Qpad_0
Paopc_0
Nbr_0O
Nbr_t_O
N_hrv_0
N_hrs_O
N_con_0
N_vaso_0
Vcorao_0
Vcorea_0
Vcorla_0O
Vcorsa_0

Conditions"""

78

11

108

293

76

NN NN

.49717445
167.
85.
125.
90.
.5057925
23.
.45746221

31.
138.
519.
129.
256.
2961.
232.

87.

33.

60.

58.
107.
.43006456
20.
56.
8rT.
86.
-30.
.47010405
94.
94.
94.
. 73896754
.40458414
.98811541
.21922358

58374732
98610858
30275819
51555238

55735293

10372993
2299

72188207
39153837
79837023
8176

53848523
78931885
08150781
00629041
84204803
52620632

3730138333
97029945
76812894
70389591
55212276

97070286
97070286
92069156
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Vcorcap_0=  8.55952212

Vcorsv_0 = 7.82911551
Vcorlv_0 = 8.21022342
Vcorev_0 = 8.77002707

beat_system=True

if (beat_system) :
extra=InitialSimulation(’%s/RELC_NEW2.PTX’%dirname)
hr=Baroreflex(extra[’ModParam’])

z0=[Vla_0,V1lv_0,Vra_0,Vrv_0,COutput_0,Paopc_0,MAP_0,PaodFOL_0,Vaop_O,
Vaod_0,Vsap_0,Vsa_0,Vsc_0,Vsv_0,Vvc_0,Qaop_0,Qaod_0,Vpap_0O,
Vpad_0,Vpa_0,Vpc_0,Vpv_0,Qpap_0,Qpad_0,Vcorao_0,
Vcorea_0,Vcorla_0,Vcorsa_0,Vcorcap_0,Vcorsv_0,Vcorlv_0,Vcorev_0]

z0=asarray(z0)
z,info_dict=odeint (solve_system_beat,z0,t,args=parameters,
full_output=1 ,printmessg=1 )

else:
hr=Heartrate ()
z0=[V1a_0,V1v_0,Vra_0,Vrv_0,COutput_0,Paopc_0,MAP_0,PaodFOL_0,Vaop_0O,
Vaod_0,Vsap_0,Vsa_0,Vsc_0,Vsv_0,Vvc_0,Qaop_0,Qaod_0,Vpap_0,Vpad_O0,
Vpa_0,Vpc_0,Vpv_0,Qpap_0,Qpad_0,Nbr_O,Nbr_t_O,N_hrv_O,N_hrs_O,
N_con_0,N_vaso_0,Vcorao_0,Vcorea_0,Vcorla_0,Vcorsa_0,Vcorcap_O,
Vcorsv_0,Vcorlv_0,Vcorev_0]

z0=asarray(z0)
z,info_dict=odeint (solve_system,z0,t,args=parameters,
full_output=1 ,printmessg=1 )

print_to_outfile(t,z,outfile)

print time.clock()-cO
print time.time()-e0

nnn

// REFERENCE EQUATIONS:

// Eq. A) Flow (mL/unit time) = change in volume / change in time
// Basis: Definition of flow
// Eq. B) Compliance = Change in volume / Change in pressure
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// Basis: Fluid analog of capacitance

// Eq. C) Pressure drop = Resistance * Flow

// Basis: Fluid analog of Ohm’s Law

// Eq. D) (Sum of flows entering junction = sum of flows leaving junction)
// Basis: Kirchhoff Junction rule

// Eq. E) Pressure drop = (change in Flow/change in time)*Inertance

// Basis: Fluid analog of inductance

// Eq. F) Elastance = Compliance~(-1)

// Basis: Definition of elastance

// Eq. G) Resistance = 8*(length of tube)*viscosity/(PI * radius~4)

// Basis: Poiseuille’s Law
// Eq. H) Reynold’s number=(mean velocity of flow)*density*radius/viscosity
// Basis: Reynold’s equation

// Eq. I) Flow = velocity of fluid through tube * X-section of tube
// Eq. J) Conductance = Resistance~(-1)
// Basis: Definition of conductance

Notes: In the beatwise baroreflex case, changing F_vaso still

changes the solution.

F_vaso should be in the interval [0,1].

Setting F_vaso<0.4 decrease MAP. F_vaso>=0.5 increase MAP

We set F_vaso=0 to model passive arterial pressure, without sympathetic

stimuli
nmn

REVISION HISTORY:
Original Author : Maxwell Neal Date: 14/dec/06
Revised by: BEJ Date:18mayll : update comment format
Modified and translated to Python by Siri Kallhovd: 2012

COPYRIGHT AND REQUEST FOR ACKNOWLEDGMENT OF USE:

Copyright (C) 1999-2011 University of Washington. From the National
Simulation Resource,

Director J. B. Bassingthwaighte, Department of Bioengineering,
University of Washington, Seattle WA 98195-5061.

Academic use is unrestricted. Software may be copied so long as this
copyright notice is included.

This software was developed with support from NIH grant HLO73598.
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Figure A.1: Scematics of the BwC-model
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