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Abstract 
 

Most vertebrates die within minutes when exposed to anoxia (no oxygen). However, a few 

exceptions exist, and a champion among these is the crucian carp, which at low 

temperatures can survive several months in an active state in the complete absence of 

oxygen. This fish survives anoxia by combining metabolic depression with up-regulating 

glycolytic ATP production, and by converting the lactate formed in this process into 

ethanol, allowing it to avoid acidosis. In this way it can survive as the only vertebrate in 

small ponds that get covered by ice and snow in the winter, blocking oxygen diffusion 

from air, and light for photosynthesis. Its extreme anoxia tolerance has made this fish a 

well suited model for investigating adaptation to anoxia. Anoxia related diseases are major 

causes of death in the industrialized world, and this fish may provide us with insight into 

mechanisms that can effectively counteract the damage caused by anoxia and 

reoxygenation of tissues.  

However, while the mechanisms responsible for maintaining ATP levels in anoxia 

have been well studied in crucian carp, few studies have looked at how it tackles the 

numerous other processes that need oxygen. Oxygen-dependent processes in vertebrates 

include nitric oxide synthesis, monoamine neurotransmitter synthesis by tryptophan and 

tyrosine hydroxylases and the synthesis of DNA bases by ribonucleotide reductase. Can 

the crucian carp do without these substances in anoxia or have it found ways around the 

oxygen dependence of these systems? In this thesis I have investigated the function of 

these systems using different experimental approaches. First, the systems were investigated 

on the genetic level by cloning the responsible genes from mRNA and comparing them to 

other vertebrates. Second, their expression was estimated by measuring their mRNA levels 

in hypoxia and anoxia. Finally, these systems were investigated on the protein level by 

looking for adaptations in the function of some of the proteins involved, and by studying 

how metabolite levels may be adjusted to accommodate the oxygen dependence of these 

processes. 

The results indicate an array of adaptations in crucian carp, from storing nitric 

oxide in the form of nitrite at very high levels, particularly in heart tissue, to adjusting the 

stability of a radical involved in DNA synthesis. It also disclosed an apparent lack of 

adaptive change in the enzyme synthetizing serotonin, suggesting that the crucian carp 

needs to economize with this neurotransmitter until oxygen returns. Apparently as a 
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consequence of a recent genome duplication, numerous previously undiscovered variants 

of genes involved in oxygen dependent processes were discovered. Of the genes studied, I 

did not find any dramatic deviations from previously known versions of these genes, but it 

is clear that these extra gene variants gives evolution additional material to work on for 

providing new functions, and an increased capacity to adapt to such a serious challenge as 

anoxia. 
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Introduction 
 

Problems with anoxia and how to overcome them 

It has long been recognized that a major problem for a vertebrate in anoxia is the stop in 

oxidative phosphorylation, leading to a severely impaired capacity for ATP production and 

an inability to match it to ATP demand. Without oxygen, the cells are left with glycolysis 

as the only pathway for ATP production, yielding only 1/10 of the ATP amount produced 

in oxidative phosphorylation (Hochachka and Somero, 2002). All cells need a constant 

supply of ATP, and when the ATP levels fall in anoxia, cells will rapidly lose their ability 

to regulate key factors such as volume and ion balance, with lethal consequences within 

minutes in mammals (Hansen, 1985). 

The brain is particularly sensitive to anoxia due to its high metabolic rate, both in 

fish and mammals (Nilsson, 1996). About half of the brain energy use goes to the Na+/K+-

ATPase that maintains the ionic gradients over the cell membrane, which are constantly 

challenged by ionic movements under depolarizations and repolarizations. When ATP 

levels in anoxia falls, the Na+/K+ ATPase slows down, leading to net K+ efflux from the 

cells, and consequently depolarization of the cells (Hansen, 1985). This again leads to 

further release of neurotransmitters, most importantly glutamate, which will trigger 

massive influx of Na+ and Ca2+ into the neurons, causing an array of damaging effects, 

ending with necrosis and apoptosis (Lipton, 1999).  

However, this catastrophic scenario in anoxia does not apply to all vertebrates. 

Turtles of the genera Trachemys and Chrysemys and fish belonging to the genus Carassius 

can survive several months of complete anoxia (Fig. 1), enabling them to overwinter in 

small bodies of water that get covered by snow and ice in the winter, making the habitat 

anoxic (Blazka, 1958; Ultsch, 1989; Nilsson and Lutz, 2004; Nilsson, 2010).  
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Fig 1. Anoxic survival time related to body temperature. Note that the y-scale is logarithmic, revealing that 

the anoxia-tolerant vertebrates survive anoxia about 1000 times longer than other vertebrates. Redrawn from 

(Lutz et al., 2003). 

 

In contrast to the anoxia tolerant turtles, the crucian carp (Carassius carassius) can 

tolerate anoxic periods without resorting to deep neuronal depression, still remaining 

physically active (Nilsson, 2001). A particular adaptation to anoxia in this fish is its ability 

to produce ethanol as the main anaerobic end product. Among vertebrates, ethanol 

production has so far only been found in crucian carp and in two of its close relatives: the 

goldfish (Carassius auratus) and the bitterling (Rhodeus amarus; Shoubridge and 

Hochachka, 1980; Wissing and Zebe, 1988). Normally, a major disadvantage with 

anaerobic glycolysis is the build-up of lactate and progressive acidosis. The crucian carp 

avoids this by transporting the lactate to the muscle cells where it is converted to ethanol, 

which is subsequently released to the water over the gills (Johnston and Bernard, 1983; 

Nilsson, 2001). To be able to survive on glycolytic ATP production during long periods in 

the winter, it builds up exceptionally large glycogen stores in the liver and other tissues 
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during the autumn (Hyvärinen et al., 1985); Vornanen et al., 2011). It appears that the only 

factor that finally limits the survival time of crucian carp in anoxia is the depletion of the 

glycogen stores (Nilsson, 1990a). 

Saving the glycogen stores will consequently extend the period the fish can survive 

in anoxia (Vornanen et al., 2011), and to be able to survive all winter, the crucian carp 

down-regulate its metabolism to reduce ATP consumption. This is achieved through 

somewhat decreased brain activity (Johansson and Nilsson, 1995; Johansson et al., 1997) 

brought about by elevated levels of the inhibitory neurotransmitter gamma aminobutyric 

acid (GABA) (Nilsson, 1992; Hylland and Nilsson, 1999), and decreased activity of the 

excitatory N-methyl-D-aspartic acid (NMDA) receptor (Ellefsen et al., 2008a; Wilkie et al., 

2008). In addition, swimming activity is reduced in anoxic crucian carp (Nilsson et al., 

1993) and protein synthesis is suppressed in several tissues in anoxia (Smith et al., 1996). 

Finally, and very important for long-time anoxic survival, crucian carp take advantage of 

the low winter temperature to suppress metabolism (Vornanen et al., 2009).  

However, even if crucian carp suppress ATP use in anoxia, the brain is still 

functioning, and it still retains a capacity for physical activity, possibly to be able to seek 

out areas with oxygen in the autumn/spring (Nilsson et al., 1993; Nilsson, 2001). 

Furthermore, the heart is also highly active. In fact, no decrease in cardiac output is seen 

after five days of anoxia, allowing a high rate of gill perfusion that may be necessary to 

keep the crucian carp from getting poisoned by ethanol (Stecyk et al., 2004).   

A functioning brain and heart makes the crucian carp especially interesting as a 

model for anoxia-tolerance, because these two tissues are usually the first to be damaged in 

a vertebrate without oxygen. Furthermore, because they are active in anoxia, the brain and 

heart may need a higher level of protection against anoxia and reoxygenation related 

damage.  

 How the crucian carp can maintain its ATP levels in anoxia has been relatively well 

studied. However, oxygen is not only needed for ATP-production and an animal that has 

overcome the energy crisis in anoxia will most likely need hypoxia and anoxia related 

adaptations in other oxygen-demanding processes.  

 

Oxygen-dependent enzymes 

There are numerous processes that require molecular oxygen in vertebrates. These include 

thyroid hormone synthesis (Ohye and Sugawara, 2010), steroid hormone synthesis, vitamin 

metabolism, and metabolism of endogenous and exogenous substances via the superfamily 
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of cytochrome P450 enzymes (e.g. Munro et al., 2007). In this thesis, I chose to study the 

enzyme responsible for NO production (nitric oxide synthase; NOS), the enzymes 

catalyzing the rate-limiting steps in serotonin and dopamine production (tryptophan and 

tyrosine hydroxylase; TPH and TH, respectively), and the enzyme responsible for de novo 

deoxyribonucleotide production: ribonucleotide reductase (RNR). These are all dependent 

on molecular oxygen.  

In molecular oxygen or dioxygen (O2), the potential high reactivity of the oxygen 

atoms towards organic substrates is held in check by the molecular structure. This is 

because O2 and organic substances are spin mismatched, with O2 being in a triplet state, 

and most organic compounds in a single state. Enzymes that can activate dioxygen often 

contain metals that are able to overcome the spin barrier (Feig and Lippard, 1994; Bugg, 

2003; Kovaleva and Lipscomb, 2008). The metal center often consists of iron, and it can be 

a heme site, a mononuclear iron site or a diiron site, all groups represented in the enzymes 

I have studied. Furthermore, oxygen-dependent enzymes can be grouped based on what 

kind of reaction they catalyze: oxidases reduce dioxygen to hydrogen peroxide or water; 

while oxygenases incorporate the oxygen atoms into the products. Oxygenases can be 

divided again into mono- and dioxygenases. Monooxygenases incorporate one of the 

oxygen atoms into the product and reduce the other oxygen atom to water, while 

dioxygenases incorporate both oxygen atoms of the dioxygen molecule into the product(s) 

(Keevil and Mason, 1978). In addition to the metal center, metalloenzymes have different 

cofactors, or cosubstrates, that deliver electrons to the reaction, for example pterine (BH4) 

or flavin (FAD or FMN). The enzymes studied in this thesis are all metalloenzymes, but 

they have very different reaction mechanisms and they require different cofactors.  

NOS is a monooxygenase containing heme as the iron center and BH4, FAD and 

FMN as electron donors (Mowat et al., 2010), thus being a flavin-containing heme 

monoxygenase with a pterine cofactor. NOS oxidize L-arginine to NO in two rounds of 

mono-oxygenation, yielding L-citrulline and NO.  

TPH and TH share a common reaction mechanism and structure (see below). They 

belong to the group of dioxygenases and, as NOS, they require BH4 as cofactor or 

cosubstrate (Fitzpatrick, 2003). They contain a mononuclear iron site, and they hydroxylate 

the amino acids L-tryptophan and L-tyrosine, yielding 5-hydroxytryptophan (5-HTP), and 

L-dihydroxyphenylalanine (L-DOPA), respectively. One of the oxygen atoms is 

transferred to the product and the other to the pterine, making TPH and TH intermolecular 

dioxygenases (Fitzpatrick, 2003; Abu-Omar et al., 2005; Kovaleva and Lipscomb, 2008). 
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The last enzyme I have studied in this thesis, RNR, contains a diiron site (see 

Andersson, 2008). However, this site does not react directly with the substrate, as in the 

other enzymes, but is generating a radical in the reaction with O2, which is transferred to 

the active site where the ribonucleotides are converted to deoxyribonucleotides (Thelander 

and Reichard, 1979; Bollinger et al., 1991). The reaction at the iron site is 

 

2Fe2+ + Y122 + O2 + 1H+ + e- → Fe3+-O2-Fe3+ + ·Y122 + H2O 

 

where Y122 is the tyrosyl radical site (number 122 in E. coli) close to the iron center 

(Bollinger et al., 1994). Deoxyribonucleotides are the building blocks for DNA, and 

dividing cells require large amounts of these substances (Herrick and Sclavi, 2007). The 

mechanisms for radical formation and catalytic cycle are further described under RNR. 

 The enzymes studied in this thesis are important for normal function of the 

vertebrate body. Thus, it is likely that the crucian carp has evolved adaptations to anoxia in 

the systems involving these enzymes. Since these processes have an absolute requirement 

for oxygen, I did not expect to find them to have become oxygen-independent in crucian 

carp, as that would have involved the evolution of completely new reaction mechanisms in 

a very short time from an evolutionary perspective. A more likely scenario would be for 

the crucian carp to work around the problem by either allowing the processes to function at 

low oxygen conditions, by storing and recycling the products, or by using alternative 

pathways during anoxia. Interestingly, previous studies of the crucian carp have shown 

indications of anoxia-related adaptations in the systems involving the enzymes studied in 

this thesis, as I will describe further in the next sections. 

 

NO synthase (NOS) 

In normoxic conditions, most of the NO in vertebrate plasma is produced by NOS from L-

arginine and O2 (Kleinbongard et al., 2003). Once formed, NO exerts its function through 

interactions with heme- or thiol groups on proteins, forming iron-nitrosyl compounds 

(FeNO) and S-nitroso compounds (SNO), respectively (Fig. 2; Martinez-Ruiz et al., 2011).  
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Fig 2. NO reactions. Simplified overview of reactions involving NO in vertebrates. NO can interact with 

several metals, but the most common is iron, giving FeNO. See text for details. 

 

In addition, NO can also interact with amines, generating N-nitroso compounds 

(NNO), and can be oxidized to nitrite (NO2
-) in blood, or to nitrate (NO3

-) by oxygenated 

hemoglobin in red blood cells (RBC). The classical (Nobel prize winning) NO pathway 

begins with the production of NO by NOS in the endothelial cells, followed by NO 

diffusion into the adjacent smooth muscle cells, where it binds to the heme of soluble 

guanylate cyclase, thereby activating this enzyme. This leads to increased production of 

cGMP, and finally smooth muscle relaxation, which dilates the vessels (Moncada et al., 

1991). In this way NO can increase the blood flow to different tissues. In the last decades it 

has become clear that this is only one of many functions NO has in the vertebrate body, 

and especially S-nitrosylation of proteins has been shown to modify the function of many 

proteins (Derakhshan et al., 2007). One example of this is found in the mitochondria, 

where S-nitrosylation of complex I in the respiratory chain is protecting against ROS 

production at reoxygenation in the mammalian heart (Burwell et al., 2006; Nadtochiy et al., 

2007; Shiva et al., 2007).  

Another discovery that has revolutionized the view on NO biochemistry was the 

finding that nitrite is not only an inert metabolite of NO oxidation as previously thought, 

but can be transformed back to NO by many different enzymes during hypoxic or acidic 

conditions (Lundberg et al., 2008). Thus, nitrite can act as a store of NO which can be 

activated in hypoxia.  



 11  

Previous studies of NO metabolites in mammals have shown that nitrite levels 

decrease in hypoxia, probably because of compromised NOS activity due to low O2 in 

addition to nitrite being consumed to produce NO (Bryan et al., 2004; Feelisch et al., 2008). 

However, in the goldfish, the nitrite levels in the tissues were recently found to be 

maintained, even after two days of hypoxia exposure (Hansen and Jensen, 2010). This 

suggested that this anoxia-tolerant animal had evolved adaptations in the NO system, 

which led us to further investigate this in the crucian carp, especially in anoxia when no 

oxygen is available for NO synthesis via NOS.  

 

Tryptophan and tyrosine hydroxylase (TPH and TH) 

Tryptophan and tyrosine hydroxylase (TPH and TH) are catalyzing the first, rate-limiting 

step in the synthesis of serotonin and dopamine, respectively, see Fig 3. Dopamine is also 

the substrate for the other catecholamines: noradrenaline and adrenaline synthesis.  

 

 
Fig 3. Overview over serotonin and dopamine metabolism in monoaminergic neurons. Note that not only the 

synthesis of serotonin and dopamine are oxygen-dependent, but also the degradation by MAO is oxygen-

dependent. This is the only catabolic pathway for serotonin, but dopamine can be catabolized by other 

enzymes, either to form other catecholamines, or broken down by oxygen-independent processes. Enzymes 

are marked in green letters. Serotonin is symbolized by blue dots, dopamine by orange, noradrenaline by red, 

and adrenaline by pink dots. 5-HIAA = 5-hydroxyindole-3-acetic acid; 5-HTP = 5-hydroxytryptophan; AAD 

= amino acid decarboxylase; COMT = catechol-O-methyltransferase; DBH = dopamine β-hydroxylase; 

DOPAC = 3,4-dihydroxyphenylacetic acid; MAO = monoamine oxidase; PNMT = phenyl-ethanolamine-N-

methyl transferase; SERT = serotonin transporter; TH = tyrosine hydroxylase; TPH = tryptophan hydroxylase; 

Adapted from (Nilsson et al., 1990; Flames and Hobert, 2011). 

 

Serotonin, dopamine, adrenaline and noradrenaline are all monoamines and they play 

important roles as neurotransmitters in the brain. After activating receptors in the synaptic 
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cleft, they can be transported back into the neurons for reuse, or they are degraded by the 

enzyme monoamine oxidase (MAO), another oxygen-dependent enzyme. Catecholamines 

can be degraded in an oxygen-independent manner, but for serotonin, breakdown via MAO 

is the only catabolic pathway (Sallinen et al., 2009; Flames and Hobert, 2011). 

 In mammals, monoamines are involved in many different systems, and loss of 

regulation of brain level of these neurotransmitters are believed to be the underlying cause 

of several diseases, including depression, schizophrenia and Parkinson’s disease. The 

monoaminergic system is well conserved in vertebrates (Kaslin and Panula, 2001; Flames 

and Hobert, 2011), and disturbance of these system has similar effects in mammals and 

fish (Maximino and Herculano, 2010). For example, low serotonergic activity has been 

linked to increased aggression and fear in addition to altered swimming pattern in fish 

(Lillesaar, 2011). Loss of dopaminergic neurons have been shown to cause impaired motor 

control in medaka (Oryzias latipes), lamprey (Lampetra fluviatilis), and goldfish, similar to 

the effects of Parkinson’s disease in mammals (Pollard et al., 1992; Thompson et al., 2008; 

Matsui et al., 2009). Thus, it is likely that the crucian carp need to maintain functional 

monoaminergic systems also during the anoxic period. Indeed, previous studies have 

shown that the crucian carp are able to maintain almost normoxic levels of serotonin and 

dopamine in brain, even after 17 days of anoxia (Nilsson, 1989b; Nilsson, 1989a; Nilsson, 

1990a).  

It should be mentioned that catecholamines, particularly noradrenaline and 

adrenaline also are important as peripheral neurotransmitters and hormones, where their 

synthesis is equally oxygen dependent. However, I have limited my studies to monoamines 

as neurotransmitters in brain, 

 

Ribonucleotide reductase (RNR) 

Ribonucleotide reductase (RNR) catalyzes the conversion of ribonucleotides to 

deoxyribonucleotides, the building blocks of DNA (Eklund et al., 2001). Different 

organisms have different variants of RNR (Reichard, 1993). Eukaryote RNRs belong to 

class Ia and the active form consists of two R1 subunits, containing the active sites, and 

two R2 subunits where the diioron sites are found (Fig. 4). However, the composition of 

these subunits in the enzyme can vary, as R1 subunit recently has been shown to form 

tetramers and hexamers (Ando et al., 2011; Fairman et al., 2011; Hofer et al., 2012). 



 13  

 
Fig. 4. Schematic drawing of the Class I RNR, only showing one subunit of each subunit. The tyrosyl radical 

is formed in a reaction between oxygen and a diiron site in the small subunit (R2 or p53R2). When substrate 

is bound in the active site in the large subunit (R1), the radical is transferred via hydrogens on amino acid 

side chains along a 35 Å long pathway, from the tyrosine in R2 to the sulfur (S) of a cysteine in R1. After 

catalysis, the radical is transferred back to the tyrosine in R2.  

 

As described earlier, a radical is formed on a tyrosine near the diioron site when the 

diioron is allowed to react with O2. This radical was the first stable radical described in a 

protein (Sjoberg, 2010). The radical is then transferred along a radical transfer pathway 

consisting of hydrogens on amino acid side chains, from the tyrosine in R2 to a cysteine in 

the active site in R1 (Uhlin and Eklund, 1994; Uppsten et al., 2006). The radical is there 

used to mediate the reduction of a hydroxyl group to hydrogen on the ribose ring on 

ribonucleotides, creating deoxyribonucleotides (Thelander and Reichard, 1979). The 

radical is not consumed in the reaction, and is after the catalytic cycle transferred back 

along the same radical transfer pathway, to generate the tyrosyl radical in R2 again. The 

active site in the R1 subunit has to be reduced to be able to perform a new catalytic cycle, 

and the storage of the radical in a separate subunit is believed to be necessary to avoid 

reduction of the radical instead of the active site in this process (Kolberg et al., 2004). The 

electron needed in the reduction ultimately comes from NADPH, via a redox chain 
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involving thioredoxin/glutaredoxin (Holmgren, 1989). 40 years after the discovery of the 

RNR protein, an alternative R2 subunit was discovered, called p53R2, and this was found 

to supply cells outside the S-phase (where DNA replication occurs) with 

deoxyribonucleotides for DNA repair and mitochondrial DNA synthesis (Nakano et al., 

2000; Tanaka et al., 2000; Håkansson et al., 2006; Bourdon et al., 2007). 

 To be able to divide, a cell must copy its DNA, and in this process it needs large 

amounts of deoxyribonucleotides. Protein levels of the R2 subunit are generally low, but 

are seen to increase in the S-phase of the cell cycle and this increase is a consequence of 

increased R2 mRNA transcription (Eriksson et al., 1984; Chabes et al., 2004). The R2 

protein is then rapidly degraded at the end of the S-phase. The R1 protein has a longer half-

life, and its level is therefore more stable throughout the cell cycle, but the R1 mRNA level 

is still higher in S-phase (Björklund et al., 1990). This shows that de novo synthesis of 

RNRs are necessary for cell division in mammals, and as these new RNRs need to be 

activated by oxygen before they can produce deoxyribonucleotides, cell division is an 

oxygen-dependent process.  

 Once again the crucian carp seems to be the exception to the rule, as a previous 

study has provided indications of cell division during anoxia in this fish (Sollid et al., 

2005). Even after seven days of anoxia, S-phase cells could be detected (by incorporation 

of the thymidine analogue bromodeoxyuridine, BrdU) in the gills and the intestine, 

although at a lower level than in normoxia. In the liver, BrdU positive cells were actually 

present at normoxic levels after 7 days of anoxia. In addition, a special cell mass that 

covers crucian carp gills in normoxia has been observed to regrow in anoxia in our 

laboratory (J. A. W. Stecyk, A. Dymowska and G. E. Nilsson, unpublished). Thus, it seems 

that the crucian carp have the ability to produce deoxyribonucleotides in anoxia. Earlier 

investigations of one RNR R2 subunit in crucian carp could not detect any significant 

differences in the sequence of this variant compared to other vertebrate R2s, however, it 

was shown that its mRNA was maintained in anoxia (Sollid et al., 2005). It was suggested 

that the reason for continued cell division in anoxia could be found in the stability of the 

radical in R2. To investigate this further, I wanted to characterize all RNR subunits in 

crucian carp, estimate their mRNA levels in anoxia, and to assess their structures to search 

for signs of enhanced half-life of the radical.   
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Genome duplication and evolution 

Genes that are related by gene duplication are called paralogs (Koonin, 2005). Due to two 

rounds of large-scale or whole genome duplications in early vertebrate history, many genes 

exist as paralogs, potentially four in most vertebrate groups (Meyer and Schartl, 1999; 

Kuraku et al., 2009). Genome duplications have been proposed to be an important driver of 

evolution of new traits and speciation, because one copy of the duplicated gene can 

maintain the old function of the gene, when the other is mutated to acquire a new function 

(Ohno, 1970). The teleost fish lineage experienced yet another genome duplication, 

resulting in fish sometimes having twice as many variants of the same gene as in mammals 

and other tetrapods (Taylor et al., 2003). It has been suggested that this duplication has 

contributed to the great diversity in morphology, life-style and ecology found among fishes 

(Postlethwait et al., 2004; Volff, 2005). The crucian carp has even more variants than other 

fishes, indicating an additional genome duplication event (David et al., 2003; Evans et al., 

2008). This duplication probably occurred in a common ancestor of the common carp and 

crucian carp /goldfish, and has been proposed to be an example of speciation relying on a 

genome duplication (David et al., 2003). Because goldfish and crucian carp both have the 

ability to produce ethanol in anoxia, and common carp has not, this could also be an 

example of evolution of a new function of one of the copies of duplicated genes, and it is 

likely that also other genes variants adapted to low oxygen levels will be found in this fish. 

Efforts were therefore made to clone and measure the expression of genes involved in the 

oxygen dependent processes presently studied. 
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Methods 
 

Because of the wealth of gene variants found in fish, laboratory techniques developed for 

mammals are not always directly applicable on fish samples. For example, antibodies that 

work well in mammals cannot be assumed to detect various variants in fish to the same 

degree, if they can detect any fish variants at all. If one of the fish paralogs has evolved to 

acquire a new function, it is of course desirable to distinguish between the two paralogs in 

the analyses. A good starting point is therefore to identify all variants of a gene in the fish, 

and if the fish do not have a sequenced genome (Carassius genomes have not been 

sequenced), this involves cloning and sequencing of the genes. This was therefore done for 

the enzymes studied in this thesis. The sequences can subsequently be used to for 

phylogenetic and sequence analyses and also for design of gene-specific primers for use in 

real-time quantitative PCR (qPCR). If two variants shows very different pattern of 

expression, this can indicate that they have acquired different functions. I was also of 

interest to examine if these variants showed any difference in mRNA levels at different 

oxygen conditions (e.g. anoxia compared to normoxia), which could indicate a role in the 

anoxia-tolerance of crucian carp.  

However, making comparisons of mRNA levels during extreme conditions such as 

anoxia are challenging, because RNA species that can be used to normalize the results are 

also likely to change. These include total RNA (Storey and Storey, 2004; Smith et al., 2009) 

and commonly used internal reference genes (so called housekeeping genes) (Tricarico et 

al., 2002). We have therefore developed an external standard for normalization of the 

qPCR (Ellefsen et al., 2008b), which was used in all studies in this thesis (enclosed as 

Appendix and further discussed below). 

 Because changes in mRNA levels do not necessarily lead to changes in protein 

levels, and to gain better understanding of the function of these enzymes, studies were also 

performed on selected proteins and metabolites. Thus, to gain knowledge of the NO system 

in anoxic crucian carp, I measured NO metabolites in normoxic and anoxic crucian carp 

with chemiluminescence. To study the function of the TPH enzyme, I measured TPH 

activity in brain homogenates using HPLC measurements of 5-HTP production at different 

oxygen levels. To study the RNR radical, I expressed all R2 variants in vitro in E. coli and 

performed structural measurements with electron paramagnetic resonance (EPR) on the 

purified enzymes.  
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 The next paragraphs will explain the principles behind the methods used in this 

thesis.  

 

qPCR measurements of mRNA levels and normalization with an external standard 

qPCR is the most widely used technique for quantification of nucleic acids today. In short, 

the procedure is as follows: the tissue sample is homogenized, and total RNA is extracted. 

mRNA is reverse transcribed, often with oligo(dT)20 as a primer which binds to the A-tail 

of mRNAs. The resulting complimentary DNA (cDNA) is then used as template in a real-

time PCR with gene-specific primers, enabling amplification of only the target gene. The 

principle behind real-time PCR is that the start amount of mRNA in the sample is 

correlated with the amount of PCR product amplified at a defined point in the PCR. The 

PCR product is often measured with the help of SYBR Green which gives fluorescence 

when it is bound to double stranded DNA. Thus, dependent on the original content of the 

target gene mRNA, the fluorescence will reach a threshold at a particular cycle of the PCR. 

This cycle is called the crossing point (Cp), and the more mRNA originally present, the 

earlier the Cp will be reached. Thus, a low Cp value indicates a high concentration of 

mRNA in the sample.  

However, the simple principle behind this technique sometimes misleads 

researchers to believe that the method does not require optimization and considerations. 

This has led to many poorly conducted qPCR studies, sometimes with erroneous 

conclusions (Huggett and Bustin, 2011). One of the main problems with qPCR is that the 

results have to be normalized to something assumed to be constant. Common strategies is 

to normalize to total RNA, ribosomal RNA, and most popular, to so called “house-keeping” 

genes which are used as internal reference genes (Huggett et al., 2005). The assumption 

that these RNA species are not changing in the experimental protocol are often not tested. 

However, several commonly used internal reference genes are frequently reported to be 

regulated in different situations (Dheda et al., 2005), including anoxia in crucian carp 

(Ellefsen et al., 2008b) and turtles (Stecyk et al., 2012), and total RNA is found to decrease 

in anoxia (Smith et al., 1996; Storey and Storey, 2004). 

Other possibilities are to normalize the results to cell number, or sample size 

(Huggett et al., 2005). However, using only these strategies will not compensate for 

differences in RNA extraction yield or efficiency of the reverse transcription reaction, the 

latter contributing most to the variability of qPCR results (Deprez et al., 2002; Stahlberg et 

al., 2004). One solution is to add an external mRNA standard (a non-endogenous mRNA) 
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to the tissue sample in the homogenization step of the procedure, and normalize all results 

to the measured level of this standard (Ellefsen et al., 2008b). This strategy is used in all 

the qPCR experiments in this thesis.  

 

Measurements of NO metabolites with chemiluminescence 

Because NO is very unstable in physiological solutions, NO activity is usually assessed 

from its metabolites, SNO, FeNO/NNO, nitrite and nitrate (Kelm, 1999; Yang et al., 2003; 

Bryan and Grisham, 2007). Many methods exist to measure these metabolites, and the 

most widely used procedure today is I3
- ozone-based chemiluminescence, which was also 

used in this thesis (Paper I). This method makes use of the reaction between I3
-  and NO 

metabolites (nitrite, SNO, FeNO and NNO), resulting in release of NO gas. This gas is led 

from the closed reaction vessel into a chemiluminescent NO analyzer, detecting the 

amount of NO (Yang et al., 2003). To discriminate between the different NO metabolites, 

the sample is divided into subsamples and treated with different chemicals to remove 

different substances before the analysis. Firstly, subsample I is left untreated to measure 

the total of NO metabolites (except nitrate) in the sample. To remove nitrite, subsample II 

is treated with acidified sulfanilamide, reacting with nitrite to form a compound that is not 

reduced to NO by I3
-. In this way, the sum of SNO and FeNO/NNO is measured. To 

remove SNO and nitrite, subsample III is treated with mercuric chloride, to reduce SNO to 

nitrite, and then with acidified sulfanilamide. In this way FeNO/NNO substances are 

measured. Nitrite content is calculated by subtracting the measurement from subsample II 

(SNO and FeNO/NNO) from the subsample I (total). SNO levels are calculated by 

subtracting the measurement of subsample III (FeNO/NNO) from subsample II (SNO and 

FeNO/NNO). Finally, while nitrate is not reduced to NO by I3
- , it will be reduced to NO 

by vanadium at 90 °C and can therefore be measured with the same set-up (Yang et al., 

2003). 

 

TPH enzyme assay 

TPH activity can be assessed with many different methods. A widely used procedure relies 

on quantifying the formation of the product 5-HTP after its further breakdown has been 

blocked with the amino acid decarboxylase inhibitor NSD1015. The increase in 5-HTP 

will reflect TPH enzyme activity. NSD1015 can be administrated in vivo and has 

commonly been used to assess TPH activity in the brain in different situations (Davis et al., 

1973; Hedner et al., 1978; Iizuka et al., 1996; Poncet et al., 1997). However, to be able to 
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control the PO2 during the reaction, in vitro measurements of TPH activity was conducted 

in this thesis. The reaction mixture and homogenization procedure was based on studies of 

TPH done in mammals (Nilsson and Tottmar, 1987; Sugden et al., 1989; Barbosa et al., 

2008), and by pilot measurements. For a successful reaction, a pterine cofactor/cosubstrate 

has to be added, and the more stable synthetic pterine 6-MPH4 was used here. In addition, 

catalase was added to trap H2O2 formed in the reaction, and Dithiothreitol (DTT) was 

added both to the homogenization mixture and reaction incubate to stabilize the sulfhydryl-

groups in the enzyme, thereby postponing its degradation. 

 Enzyme incubates was made from the brain of normoxic fish. In short, the brain 

was dissected out and rapidly homogenized in buffer with DTT, and added catalase, 6-

MPH4, more DTT and NSD1015. The incubate was then divided in three and one of them 

was immediately denaturated by adding perchloric acid (PCA; negative control), another 

was placed in air (normoxic control), while the last incubate was transferred to a glove box 

with controlled atmosphere, at the desired PO2 (hypoxic sample). The hypoxic and 

normoxic sample was bubbled with the appropriate atmosphere for 1 minute before L-

tryptophan was added. The reactions were stopped after 20 min at 20 °C with PCA. 5-HTP 

in the sample was measured the same day using high-performance liquid chromatography 

(HPLC). 

 

RNR in vitro expression and EPR measurements 

To allow studies of the radical in crucian carp RNR R2 subunits, the carp proteins were in 

vitro expressed in E. coli following the method described in Tomter et al. (2008). This 

technique requires that the whole mRNA strand is known, and this was accomplished with 

rapid amplification of cDNA ends (RACE), after identifying a fragment sequence of each 

variant. When the full-length mRNA sequence was obtained, primers that bind on each 

side of the coding sequence (CDS) were designed, and were used in a PCR with high 

fidelity polymerase and crucian carp cDNA to amplify the different variants. The PCR 

fragment was ligated into a vector prior to transformation into BL21 Gold E. coli cells. 

These cells contain a T7 polymerase gene under the control of a lac operon, and 

transcription of this gene can be induced by β-D-1-thiogalactopyranoside (IPTG). The cells 

were grown in a liquid medium in large volumes, before adding the induction agent, 

ultimately starting translation of R2 that is situated after a T7 promoter in the vector. After 

about 14 hours the cells were harvested, and lysed, stripped for DNA, precipitated and 

further purified with the Äkta™ chromatography system (GE Healthcare), first with a 
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desalting column, an anion exchange column and at last a gel filtration column. The 

purified enzymes were then analyzed with EPR, both X-band and high-field EPR.  

EPR spectroscopy is a technique used to detect magnetic movements of unpaired 

electrons in radicals and metal ions, and has been widely used to study the radical center in 

RNR R2 proteins (Bennati et al., 2005; Gräslund and Ehrenberg, 2007). EPR can be 

performed at several different frequencies, X-band and high-field/high-frequency EPR, 

which were used in this thesis. X-band EPR is performed at a medium frequency magnetic 

field (9 GHz), and can be used to detect the radical in the sample and to analyze the 

environment of the radical (Gräslund and Ehrenberg, 2007). With high-field EPR, which is 

performed at high frequency (95-345 GHz), the important parameters called g-values can 

be further resolved (Andersson et al., 2003). The g-values are dependent on the radical 

environment, and small magnetic fields produced by nearby nuclei or electrons will change 

the g-values (Un et al., 1995; Un et al., 2001). There are three g-values, and g1 has been 

found to decrease with hydrogen bonding to the radical (Engström et al., 2000; Bennati et 

al., 2005). These hydrogen bonds have been suggested to protect the radical from being 

destroyed by substances in the solvent (van Dam et al., 1998).  

Not only the radical, but also the iron site can be studied by EPR. In normal EPR 

samples, both irons in the iron center is in the ferric form FeIIIFeIII, which is not visible in 

the X-band EPR spectra. Under mildly reducing conditions, a mixed valence form of the 

iron center FeIIFeIII has been shown to occur in R2 from mouse and virus (Atta et al., 1994; 

Davydov et al., 1997). This form is visible in the X-band EPR spectrum, and can be used 

to assess the structure of the iron-site.  

 

 

Aims 
 

The aims of this thesis were to search for anoxia related changes and adaptations in the 

oxygen-dependent processes involved in NO storage and formation (Paper I), monoamine 

synthesis (Paper II) and the deoxyribonucleotide synthesis (Paper III) in crucian carp. This 

was done by identifying genes for the enzymes involved, investigating their mRNA levels, 

examining changes in the levels of relevant metabolites, and in the case of serotonin 

synthesis measuring the enzyme activity, all at different oxygen levels. In addition, the 

structures of the RNR small subunit proteins were assessed. 
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Summary of results 

 

Paper I:  

Dramatic increase of nitrite levels in hearts of anoxia-exposed crucian carp 

supporting a role in cardioprotection 

Am. J. Physiol. Regul. Integr. Comp. Physiol. (2012). 302:R468-R477 

Guro K. Sandvik, Göran E. Nilsson, Frank B. Jensen 

This study demonstrated that, despite that no oxygen were available for NO-production 

from arginine via NOS, the NO metabolite nitrite increased 10-fold in anoxic crucian carp 

hearts after 1, 3 and 5 days of anoxia exposure. Nitrite levels decreased to normoxic levels 

at reoxygenation. Also the other NO metabolites SNO and FeNO increased in the anoxic 

hearts, but nitrate levels were not significantly changed. In the red blood cells (RBC), the 

nitrite concentration tended to increase. Because the plasma nitrite levels decreased 

dramatically in anoxia, this reflected a 20-fold change in distribution of nitrite over the 

RBC membrane. SNO species increased significantly in the RBC. In the rest of the tissues, 

the trend was maintained nitrite levels in anoxia, while other NO metabolites were 

maintained or increased, depending on tissue. SNO levels increased in brain and liver, 

while FeNO/NNO levels were increased in anoxic gill and liver.  

We identified four different NOS variants in crucian carp, NOS1, NOS2A and two 

variants of NOS2B (NOS2Bi and NOS2Bii). NOS1 mRNA was found in brain and heart, 

but showed no change in anoxia. NOS2A mRNA was detected in all four tissues examined 

in this experiment, brain, heart, gill and liver. The levels were massively decreased in the 

anoxic gills, but increased in the anoxic hearts. NOS2Bi mRNA, which was the only 

NOS2B mRNA that we were able to quantify, was found in brain and heart. This variant 

increased in brain during hypoxia and anoxia.  

 

Paper II: 

Characterization of oxygen-dependent enzymes involved in monoamine synthesis in 

the anoxia-tolerant crucian carp: tryptophan and tyrosine hydroxylase 

Manuscript 

Guro K. Sandvik and Göran Nilsson 

This study revealed four variants of TPH (TPH1A, TPH1Bi, TPH1Bii and TPH2) and 

three variants of TH (TH1i, TH1ii and TH2) in crucian carp. TPH1B mRNA levels were 
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40 times higher than TPH2 mRNA levels in brain. The mRNA levels for the TH variants 

were quite similar in the brain. In general the levels of the mRNA for these enzyme 

variants were well maintained at low oxygen levels, although TH1i and TH1ii seemed to 

be slightly down-regulated in hypoxia and anoxia. The Km of crucian carp TPH for 

oxygen was found to be 25 mmHg, which is close to that found in mammals and do not 

indicate any adaptation allowing continued function at low oxygen levels. 

 

Paper III:  

Protection of the tyrosyl radical in crucian carp ribonucleotide reductase R2 subunits 

may enable cell division in anoxia 

Manuscript 

Guro K. Sandvik, Ane B. Tomter, Jonas Bergan, Giorgio Zoppellaro, Anne-Laure Barra, 

Åsmund K. Røhr, Matthias Kolberg, Stian Ellefsen, K. Kristoffer Andersson, Göran E. 

Nilsson 

In this paper, we present the full-length sequence of two RNR R1 subunits, two R2 

subunits and two p53R2 subunits in crucian carp. This is twice the number of variants 

present in mammals and zebrafish. The variants was highly conserved to other RNRs, as 

indicated by modeling of the protein structure, phylogenetic analyses and analyses of 

important sites in the predicted amino acid sequence.  

qPCR showed that mRNA for all RNR variants were present in both heart and brain 

in anoxia, and also mRNA of the cell division markers Ki67, PCNA and BDNF (the latter 

only measured in brain) were detected in anoxia. Generally, the mRNA levels for R1 

variants were seen to decrease in anoxia, while the R2 mRNA variants were maintained 

(and even increased transiently at 1 day of anoxia in the heart). Finally mRNA for the 

p53R2 subunits were decreased or maintained. The mRNA for the cell cycle markers 

PCNA and BDNF seemed to be maintained in the two tissues during anoxia, with PCNA 

mRNA showing increased levels at reoxygenation of the heart. Interestingly, Ki67 mRNA 

levels increased in anoxic brains, and also to some extent in the anoxic hearts.  

All four R2 subunits were in vitro expressed in E. coli, and EPR measurements 

showed similar spectra to mammalian RNR at the X-band, both in the normal state and the 

mixed valence state. With high-field EPR, we found an unusually low g1-value at 2.0073 

for crucian carp RNRR2i and RNRR2ii, which could be indicative of a particularly well 

protected radical. For p53R2 subunits the g1-value was 2.0074, which is the same as for 

the human p53R2.  
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General discussion 

 

Crucian carp genes and gene expression in anoxia 

Identification of sequences for oxygen-dependent enzymes revealed that the crucian carp 

had more variants of NOS, TPH, TH and RNR than zebrafish, which is in line with the 

presumed genome duplication in their lineage (see Introduction). The variants were named 

after their zebrafish homolog, and designated i and ii if two of the same zebrafish variant 

were found, as for NOS2Bi and NOS2Bii, TPH1Bi and TPH1Bii, TH1i and TH1ii, and all 

RNR subunits (R1i and R1ii, R2i and R2ii and p53R2i and p53R2ii). Where it was 

possible to distinguish between the two paralogs in the qPCR assay, they sometimes 

displayed different mRNA levels. RNR R2ii mRNA levels were for example significantly 

higher than R2i in both brain and hearts, and increased to almost 10-fold of R2i mRNA 

levels at reoxygenation in the brain (Paper III). This indicates that the two paralogs have 

evolved to play different roles. All RNR paralogs displayed differences in mRNA patterns 

between the paralogs. Also NOS2Bi and NOS2Bii showed very different mRNA levels. 

NOS2Bi had comparable levels to NOS2A in brain and heart, while NOS2Bii could not be 

detected in any of the tissues included in the analysis (Paper I). Other paralogs, as TH1i 

and TH1ii were almost identical in their mRNA expression patterns in brain (Paper II), 

indicating that these paralogs are under identical expressional control and may not have 

acquired any mutations that have made them to functionally diverge after the genome 

duplication. 

mRNA levels are dependent on synthesis (transcription of genes) and degradation 

rates, which varies widely between different transcripts (Sharova et al., 2009). In anoxia, 

mRNA half-life has been found to increase in aestivating anoxic brine shrimp (Artemia 

franciscana; Van Breukelen et al., 2000; Hand et al., 2011), thus reducing the cost of 

maintaining mRNA levels in anoxia (Storey and Storey, 2004). However, even if the 

mRNA half-life could be enhanced in anoxic crucian carp, the different mRNA species are 

still individually regulated, as studies presented in this thesis and previous studies 

performed on crucian carp show significant increases and decreases of different mRNA 

species in response to anoxia (Paper I-III; Ellefsen et al., 2008a; Stensløkken et al., 2008; 

Stensløkken et al., 2010).  
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NO system in anoxia - nitrite as a cardioprotective substance in anoxic crucian carp 

The finding that crucian carp hearts accumulate nitrite during anoxia (Paper I) was 

somewhat surprising, as nitrite has been found to decrease in hypoxia in mammals (Bryan 

et al., 2004; Feelisch et al., 2008), possibly because nitrite is consumed to produce NO in 

hypoxia. Interestingly, nitrite has been found to protect the ischemic heart against reactive 

oxygen species (ROS) during reoxygenation in mammals (Duranski et al., 2005; Shiva et 

al., 2007; Gonzalez et al., 2008; Hendgen-Cotta et al., 2008; Bryan, 2009; Raat et al., 

2009). Much of the damage related to anoxia is ascribed to the reintroduction of oxygen 

after the anoxic event (Hermes-Lima and Zenteno-Savin, 2002; Yellon and Hausenloy, 

2007). The protection mediated by nitrite has been shown to be dependent on S-nitrosation 

of complex I in the mitochondrial chain, which is a major site for ROS production (Shiva 

et al., 2007; Raat et al., 2009; Shiva, 2010). Also other proteins are protected against 

oxidative damage by S-nitrosation (Sun and Murphy, 2010). The nitrite is possibly 

converted to NO, which subsequently mediates S-nitrosation in the hearts. This theory is 

supported by the fact that FeNO compounds also increase in the hearts during anoxia. In 

mammals, the conversion of NO from nitrite has been shown to be dependent on 

myoglobin (Rassaf et al., 2007; Hendgen-Cotta et al., 2008), and the myoglobin of goldfish 

(and presumably also crucian carp) is particular effective at reducing nitrite to NO 

(Pedersen et al., 2010).  

 Because plasma nitrite levels were found to decrease during anoxia, we proposed a 

mechanism where nitrite is taken up from the plasma in anoxia, and accumulated in the 

heart of crucian carp. This nitrite is probably converted to NO, which mediates S-

nitrosation of proteins including complex 1, to protect the heart from oxidative damage at 

reoxygenation. The heart of crucian carp may need a high level of protection, because it is 

fully active during anoxia (see Introduction; Stecyk et al., 2004). The nitrite in plasma 

could be actively taken up from the surrounding water, as nitrite has an affinity for the 

chloride transporters in fish gills (Jensen, 2003; Jensen, 2007).  

 Also the other tissues in crucian carp seemed to take up nitrite during anoxia, as NO 

metabolites were maintained, or increased, while the nitrite level was generally maintained, 

except for a slight decrease in white muscle. The nitrite in these tissues can possibly also 

mediate protection against reoxygenation, as nitrite has been found to also protect brain 

(Jung et al., 2006) and liver (Duranski et al., 2005; Shiva et al., 2007) against 

ischemia/reperfusion damage in mammals. Interestingly, we found increased levels of 
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SNO compounds in anoxic crucian carp brains. S-nitrosation of NMDA receptors can 

inhibit its activity, which is found to mediate neuroprotection in mammals (Calabrese et al., 

2007; Takahashi et al., 2007). Thus, the increase of SNO is possibly correlated to the 

decreased NMDA receptor activity seen in anoxic crucian carp and goldfish (see 

Introduction).  

 Hemoglobin in the red blood cells is thought to be an important nitrite reductase, 

which can produce NO to dilate the vessels in hypoxic conditions (Cosby et al., 2003; Patel 

et al., 2011), thereby increasing blood flow. In despite of very low levels of nitrite in 

plasma, the crucian carp red blood cells maintained their nitrite levels in anoxia, pointing 

to a function of nitrite in anoxia in these cells. It also seems that NO is produced in these 

cells, because we found increased levels of SNO compounds. It is possible that the crucian 

carp red blood cells produce NO from nitrite, and thereby act to decrease the systemic 

resistance of the blood vessels in anoxia. Indeed, reduced systemic resistance is seen in 

anoxic crucian carp, which would decrease the work load on the heart (Stecyk et al., 2004). 

 The analysis of NOS mRNA levels revealed that NOS2A mRNA increased in heart 

during anoxia, while NOS1Bi mRNA increased in the brain during anoxia. NOS3 has been 

found to be capable of reducing nitrite to NO during anoxia (Gautier et al., 2006). This 

could also apply to NOS2 in crucian carp, but this needs to be further investigated.   

 The conclusion of this paper is that crucian carp shows striking adaptations to 

anoxia in the NO system. No other animal has been found to be able to accumulate nitrite 

in response to anoxia. The crucian carp can be regarded to provide evolutionary 

precedence for the use of exogenously added nitrite as a heart protectant, as is now being 

tested as a therapy against ischemia/reperfusion damage (Lundberg et al., 2008; Bryan, 

2009). It would be interesting to know if other anoxia-tolerant animals share the same 

strategy in anoxia.  

 

Characterization of TPH and TH in crucian carp 

One of the major findings in Paper II was that the mRNA levels of TPH2 were only 1/40 of 

the TPH1-levels in crucian carp brains. TPH2 is generally regarded to be the central form 

of TPH, because it is the variant most abundant in mammalian brain (Walther and Bader, 

2003; Sakowski et al., 2006), but the results from this study shows that the situation in fish 

can be quite different. Also in other fish species, TPH1 mRNA is found in the brain and 

TPH2 in the peripheral tissues (Bellipanni et al., 2002; Rahman and Thomas, 2009; 
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Lillesaar, 2011; Raghuveer et al., 2011), supporting that TPH1 should be included in future 

analyses of serotonin synthesis in brains of fish.  

In hypoxia and anoxia, we found that the mRNA levels of all TPH and TH variants 

were maintained, except for a slight fall in TH1 in anoxia (both paralogs). This is in 

contrast to findings in Atlantic croaker (Micropogonias undulates) where mRNA levels for 

TPH decrease in hypoxia (Rahman and Thomas, 2009; Rahman et al., 2011). For TH, the 

results are similar to zebrafish data, where TH mRNA levels has been found to be 

maintained after 4 days of hypoxia (Steele et al., 2011). The continued presence of TPH 

and TH can be important for hypoxic survival in crucian carp, to allow serotonin and 

dopamine synthesis when the oxygen levels fall in the autumn. It is probably also an 

advantage to have high levels of mRNA, and possibly also protein, for these enzymes 

ready for when oxygen reappear in the spring, so that monoamine levels can be replenished 

as soon as possible.  

Finally, we examined if crucian carp TPH could function at low oxygen levels. By 

measuring TPH activity in brain homogenates, we found the Km for pO2 to be 25 mmHg. 

Compared to the Km found in rat synaptosomes at 3-4 mmHg (Katz, 1980), and Km 

measured with partly purified TPH enzyme from rabbit hindbrain at 40 mmHg (Friedman 

et al., 1972), the crucian carp TPH seems not to be especially well adapted to function at 

low pO2. It can be concluded that the underlying mechanism for the maintained serotonin 

levels seen in anoxic crucian carp brain (Nilsson, 1990a) must rely on other adaptations 

than in a TPH enzyme with a high affinity for oxygen. Possibly, the crucian carp is able 

recycle the serotonin at the synapses for a long time, as serotonin turnover has been shown 

to be very slow in crucian carp (Nilsson, 1990b). 

 

RNR R2 subunit may be protected to function in anoxia 

We found that mRNA of the cell division marker PCNA were maintained during anoxia in 

the heart and brain, and the mRNA of an additional cell division marker in the brain, 

BDNF, was also maintained during anoxia (Paper III). Most vertebrate cells goes into cell 

cycle arrest in hypoxia (Douglas and Haddad, 2003; Semenza, 2011), but the results from 

the present study is in line with a previous study on the crucian carp, which show that cell 

division in intestine and liver is maintained after 7 days of anoxia (Sollid et al., 2005). As 

previously discussed, the brain and the heart of crucian carp are active in anoxia, and it is 

likely that these tissues need some replacement of cells during the long anoxic period in 

the winter. Moreover, new cells may also be needed at reoxygenation in the heart, as 
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PCNA and Ki67 mRNA levels increased in this group. Interestingly, Ki67 mRNA was 

increased in the anoxic brains, and in the heart of some anoxic groups. As for PCNA and 

BDNF, Ki67 is widely used to mark dividing cells (Ross and Hall, 1995; Lu and Chang, 

2004; Leung et al., 2005). However, as opposed to the two former, the function Ki67 plays 

in cell division is not well characterized and it has been shown that it is also involved in 

chromatin remodeling and ribosomal RNA synthesis in non-dividing cells (Eisch and 

Mandyam, 2007). 

 The mRNA of the RNR subunits showed some differences in their response to 

anoxia. The two large R1 subunits were decreased in hypoxia and anoxia, and also the 

small p53 RNR subunits involved in DNA repair decreased in some hypoxic and anoxic 

groups, while it was unchanged in others. However, the decrease in R1 and p53 mRNA 

levels were minor, and the levels did not show any progressive fall during the anoxic 

period. The mRNA for the small subunits R2 were more or less maintained in anoxia, and 

showed increased expression at reoxygenation. It is probably an advantage for the crucian 

carp to maintain mRNA levels of RNR R2 subunits, allowing for rapid activation of many 

RNR enzymes to replace damaged cells when oxygen reappears in the spring.  

 Full-length sequencing enabled structural analyses of the proteins, both in silico 

with homology modeling of the structure and in vitro by expression of crucian carp 

proteins and measurements with EPR. The homology modeling suggested that the 

structures of the subunits were similar to their mammalian counterparts. Furthermore, EPR 

spectroscopy measurements at X-band also showed spectra similar to mammalian RNR R2 

and p53R2 subunits, further suggesting that crucian carp RNR is functioning in the same 

way as the mammalian RNR. The mixed valent EPR for R2i and p53R2i (which were the 

two variants measured) also showed similar signals as to the mammalian spectra, although 

crucian carp showed a bit narrower spectra. However, with high-field EPR, the g-values 

can be better resolved, and here we found an unusually low g1-value for both variants of 

RNR R2. As explained in Methods, these values are changed in the presence of hydrogen 

bonding to the tyrosyl radical (Engström et al., 2000; Bennati et al., 2005). As hydrogen 

bonds are believed to increase the stability of the radical in mouse by protecting the radical 

from damaging substances in the solvent (van Dam et al., 1998), the finding of an even 

lower g-value in crucian carp indicates that this radical could be even more protected. Thus, 

we suggest that the hydrogen bonding and low temperature of the anoxic pond probably 

enables the crucian carp RNR to maintain its radical and thereby to continue to produce 

deoxyribonucleotides for a long period, thereby enabling cell division in anoxia.   
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Crucian carp and anoxia-related damage in humans 

Two of the major causes of death in the world are heart infarction and stroke, both events 

characterized by impaired blood supply to the tissues, leading to oxygen deprivation of the 

cells. It has repeatedly been suggested that anoxia-tolerant animals could serve as models 

to find protective mechanisms against anoxic damage in vertebrates (Nikinmaa, 2002; 

Bickler, 2004; Nilsson and Lutz, 2004; Tota et al., 2011). The crucian carp is very well 

suited for this purpose, as it can survive for a long time in anoxia in an active state, with a 

fully active heart and at least a partly active brain. Furthermore, the fact that it has 

undergone a recent genome duplication gives evolution additional genes to work on, which 

could allow particularly rapid and novel adaptations to anoxia. Indeed, in the present thesis, 

I found adaptations to anoxia in both RNR and the NO system in the crucian carp (Paper I 

and III), and the results from the NO study clearly suggested that studies on this fish can 

have relevance for human medicine. Much of the research on anoxic survival of crucian 

carp has been focused on mechanisms related to maintenance of ATP levels during anoxia. 

The present studies suggest that also responses to the reoxygenation event should be 

investigated in this fish, as this may present similar challenges for the anoxic crucian carp 

as reperfusion does for ischemic tissues in mammals. Thus, the crucian carp could provide 

an interesting model not only for finding effective mechanisms for counteracting anoxic 

damage, but also for reoxygenation damage.  
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Abstract 

Tryptophan hydroxylase (TPH) and tyrosine hydroxylase (TH) catalyze the rate-limiting 

step in serotonin and dopamine synthesis, respectively. These reactions consume molecular 

oxygen. Most vertebrates die within minutes of anoxia, mainly because they cannot match 

ATP production with ATP demand. However, the crucian carp can survive weeks to 

months of anoxia, making it an exceptional vertebrate. Previous studies have shown 

maintained brain levels of serotonin and dopamine even after 17 days of anoxia, suggesting 

possible adaptations in their monoamine synthesizing enzymes. In the present study, we 

report four variants of crucian carp TPH mRNA (denoted TPH1A, TPH1Bi, TPH1Bii and 

TPH2) and three variants of TH mRNA (denoted TH1i, TH1ii and TH2). In contrast to 

mammals, TPH1 mRNA showed the highest levels in crucian carp brain, and TPH2 

mRNA was only at 1/40 of this level, questioning the general assumption that TPH2 is the 

‘central TPH’ in vertebrates. Furthermore, we report generally maintained brain mRNA 

levels for up to five days of anoxia, measured by quantitative real-time PCR. However, 

measurements of TPH activity in brain homogenates at different pO2 indicated a Km for 

oxygen of 25 mmHg, similar to that of mammals, suggesting no particular adaptation of 

this enzyme to low oxygen levels.  
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Introduction 

A main problem for a vertebrate brain in anoxia is its inability to maintain ATP levels, as 

anaerobic ATP production (i.e. glycolysis) is far less effective than oxidative 

phosphorylation. The pumping of ions requires ATP, and as ATP levels fall, ionic 

gradients over nerve cell membranes are lost, causing uncontrolled firing of neurons 

(Hansen, 1985). This causes a cascade of catastrophic events, and consequently most 

vertebrates die within minutes when exposed to anoxia. However, the crucian carp is a 

striking exception to this rule, as this teleost can survive in an active state for several 

months in anoxia at low temperatures (Blazka, 1958; Vornanen et al., 2009). This enables 

it to be the sole piscine inhabitant of small ponds that becomes anoxic in the winter, due to 

snow and ice coverage blocking oxygen diffusion from air and light for photosynthesis. 

The crucian carp survives on glycolysis fuelled by glycogen from exceptionally large 

stores (Vornanen et al., 2011), and avoids acidosis by converting the lactic acid to ethanol, 

which is easily diffusing out of the fish body through the gills (Johnston and Bernard, 

1983). Thus, the ATP and ultimately, the ionic gradients in the neurons can be maintained, 

as long as glycogen is not depleted (Nilsson, 1990a).  

However, other processes than oxidative phosphorylation are dependent on oxygen. 

These include the synthesis of monoamine neurotransmitters like serotonin and dopamine. 

Tryptophan hydroxylase (TPH) and tyrosine hydroxylase (TH) are catalyzing the first, 

rate-limiting, step in serotonin and dopamine synthesis, respectively. TPH catalyzes the 

formation 5-hydroxytryptophan (5-HTP) from L-tryptophan, and TH catalyzes the 

formation of L-3,4-dihydroxyphenylalanine (L-DOPA) from L-tyrosine. At least two 

isoforms of TPH exists in both mammals (Walther et al., 2003) and fish (Bellipanni et al., 

2002; Teraoka et al., 2004) with TPH2 being responsible for brain serotonin synthesis in 

mammals. Also for TH, fish and many tetrapods have two variants (Candy and Collet, 

2005; Yamamoto et al., 2010), but the TH2 variant has been lost in placental mammals 

(Yamamoto et al., 2010). TPH and TH, together with phenylalanine hydroxylase (PAH), 

are members of the aromatic amino acid hydroxylase family. They share a common 

evolutionary origin (Patton et al., 1998; Cao et al., 2010), and are therefore similar in 

sequence, reaction mechanism and structure (Fitzpatrick, 2003). For the hydroxylation 

reaction, they need Fe2+, molecular oxygen and tetrahydrobiopterin (BH4) (Fitzpatrick, 

1999). In the subsequent step, 5-HTP and L-DOPA are converted to serotonin (or 5-

hydroxytryptamine; 5-HT) and dopamine, respectively, by aromatic amino acid 

decarboxylase (AADC). This step is not oxygen-dependent. However, the breakdown of 



 3 

serotonin and dopamine by monoamine oxidase (MAO) requires oxygen, and for serotonin 

this is the only catabolic pathway. The conversion of dopamine to noradrenalin is also 

oxygen-dependent.  

Clearly, serotonin and dopamine levels should be affected by hypoxia and anoxia. 

An increase of the level of serotonin in rat brains has been shown in mild hypoxia in vivo 

(Broderick and Gibson, 1989; Poncet et al., 1997). At more severe hypoxia, the serotonin 

level have been found to decrease in brains of mammals (Prioux-Guyonneau et al., 1982) 

and lizard (Anolis sagrei; Nilsson et al., 1991).  

Serotonin and dopamine regulates many processes in both mammals and fish, 

including locomotion, stress, aggression, motivation and fear (Winberg and Nilsson, 1993; 

Filby et al., 2010; Maximino and Herculano, 2010; Lillesaar, 2011). Disturbance in the 

serotonergic system can lead to depression and anxiety in mammals, and in fish changes in 

serotonergic activity are associated with changes in aggressive behavior, fear and 

locomotion (Lillesaar, 2011). Dopamine depletion in lamprey have been shown to impair 

motor behavior (Thompson et al., 2008), and drug induced destruction of dopamine 

neurons leads to a Parkinson’s disease phenotype not only in mammals, but also in fish, 

where severe movement disorders and reduction of swimming have been seen (Burns et al., 

1983; Pollard et al., 1992; Matsui et al., 2009).  

Thus, a disturbance of serotoninergic and dopaminergic systems in fish can have 

serious effects, and it is must be important for the crucian carp to maintain the functional 

integrity of these systems over the long anoxic period it experiences during winter. 

However, this must be a considerable challenge because of the oxygen dependence of the 

hydroxylases catalyzing serotonin and dopamine synthesis. Even so, the crucian carp has 

been shown to be able to maintain significant levels of serotonin and dopamine in brain 

during anoxia (Nilsson, 1989a; Nilsson, 1989b). Even after 17 days of anoxia at 8 °C, the 

serotonin and dopamine levels in the brain were only reduced by 24% and 29%, 

respectively (Nilsson, 1990a).  

The aims of the present study was to charter the isoforms of TPH and TH present in 

crucian carp, measure their expression in brain under different oxygen conditions, and 

finally find out if crucian carp TPH shows a particular capacity for functioning at low 

oxygen levels. 
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Material and methods 

All chemicals were purchased from Sigma, unless otherwise is stated. Concentrations are 

given as concentration in the final reaction mixture, if nothing else is explained.  

 

Experimental animals 

Crucian carps were caught in Tjernsrud pond near Oslo and were kept at the aquarium 

facility of the Department of Molecular Biosciences, University of Oslo, in tanks (100 

fish/500 l) continuously supplied with aerated and dechlorinated Oslo tap water (17°C). 

The fish were fed daily with commercial carp food and were acclimated to the 

experimental temperature for at least four weeks. Fish were not fed during hypoxia and 

anoxia exposure. The experiments were approved according to Norwegian animal research 

guidelines. 

 

Cloning and sequencing of crucian carp TPH mRNAs 

Based on TPH sequences from other vertebrates found on NCBI, with special emphasis on 

zebrafish and goldfish sequences, we designed fragment primers (see Table 1) in the 

Primer3 program (Rozen and Skaletsky, 2000). With these primers (Invitrogen) and 

crucian carp brain cDNA (made by the procedure described under qPCR assay) a PCR was 

performed using Taq Polymerase (Invitrogen). To amplify sequences that did not exactly 

fit to the primers, low annealing temperature (55 °C; primer melting temperature was 

60 °C) was used. PCR products were ligated into pGEM®-T Easy Vector System I 

(Promega), according to the protocol from the manufacturer. The plasmids were 

subsequently used to transform competent E. coli bacteria. Bacteria from positive colonies 

were used in an additional PCR with M13F2 and M13R primers, and PCR products with 

the right size were purified with ExoSAP-IT (VWR) and sequenced with M13 primer at 

the sequencing facility at the Department of Biology, University of Oslo.  

Based on 92 amino acid sequences (deduced from the nucleotide sequences 

identified by cloning and sequencing), a phylogenetic tree was made with Protdist and 

Neighborjoining from the PHYLIP Phylogeny Inference Package, version 3.67 

(http://evolution.gs.washington.edu/phylip.html). Only the parts of the sequences where all 

variants overlapped were used to make the tree. Because of too short overlapping area for 

TPH1Bi, this variant was left out of the analysis.  
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Anoxia exposure and tissue sampling 

Crucian carp of mixed sex (30.9 ± 2.3 g; n = 40) were exposed to different oxygen levels at 

10 ± 0.5 °C in separate, dark tanks (minimum 1 l/fish) to obtain the following five groups: 

normoxia, 7 days of hypoxia, 1, 3 or 5 days of anoxia (post hypoxia), and 5 days 

reoxygenation (post 5 days anoxia). Anoxic conditions were obtained by running the water 

through a narrow, 2 m high column bubbled with N2 gas (AGA) before letting it into the 

sealed experimental tanks with a flow rate at 4 l h-1. Oxygen content of the inflowing water 

was continuously monitored with a galvanic oxygen electrode, Oxi 340i (WTW, Weilheim, 

Germany). The inflowing water was kept below the limit for the electrode 0.01 mg l-1 

(pO2  � 0.13 mmHg). Nitrogen gas was also bubbled directly into the tanks.  

Hypoxic conditions were obtained with the same set-up, but oxygen content of 

inflowing water was kept at 0.6-0.9 mg O2 l-1 (pO2  �  9-12 mmHg), resulting in 0.2-0.3 mg 

O2 l-1 (pO2  � 3-5 mmHg) in the outflowing water due to oxygen consumption of the fish 

(flow rate = 8 l h-1). Normoxic controls were kept in an identical tank bubbled with air 

(pO2  � 157 mmHg).  

At the time of sampling, 8-10 fish were killed by a sharp blow to the head and 

subsequent cutting of the spinal cord. Brain tissue was dissected out within 2 min, 

immediately snap-frozen in liquid N2, and stored at -80 °C until RNA extraction. Crucian 

carp can survive more than two weeks of anoxia at the present temperature (Nilsson, 1990a) 

and no mortality was seen. 

 

qPCR assay 

From the crucian carp TPH and TH sequences identified by cloning and sequencing, qPCR 

primers were designed using Primer3 (table 1). The primer pair for TPH1B amplified both 

variants of this mRNA (TPH1Bi and TPH1Bii). To avoid amplification of genomic DNA, 

at least one primer in each pair was placed at an exon-exon boarder. All primers used in the 

experiment gave one peak in the melting curve analysis, and amplified the desired cDNA, 

verified by cloning and sequencing of the qPCR as described above. Total RNA was 

extracted with Trizol (Invitrogen, Carlsbad, CA, USA) following the manufacturer’s 

protocol. The tissue was weighed frozen and quickly added Trizol (15 μl per mg tissue). 

Extraction was done in a random order. At the homogenizing step, an external mRNA 

standard, mw2060 (Ellefsen et al., 2008b) was added (100 pg mw2060 per mg tissue).  

cDNA synthesis was performed using 2 μg of total RNA (DNase treated with 

DNA-free™ (Ambion)), oligo(dT)18 and SuperscriptIII (Invitrogen). qPCR was performed 
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with LightCycler® 480 Real-Time PCR System (Roche Diagnostics, Basel, Switzerland) 

with 3 μl 1:10 cDNA and 0.5 μM of each primer, with a total reaction volume of 10 μl. 

Each reaction was run in duplicate on different plates.  

The efficiency for each qPCR reaction was calculated with the LinReg software 

(Ramakers et al., 2003; Ruijter et al., 2009), and the mean of all efficiencies for each pair 

was used in the calculation of the mRNA levels. The crossing point (Cp) value of each 

reaction was calculated by the LightCycler 480 software. The relative mRNA level was 

calculated with the following formula: (Emw2060^Cpmw2060)/(Etar^Cptar), where E is the mean 

efficiency for the primer pair, Cp is the mean Cp value for the two duplicate qPCR 

reactions, and tar is the target gene. mw2060 is the external standard used to normalize all 

qPCR data (Ellefsen et al., 2008b).  

 

Table 1. Primer sequences used for PCR. 
Cloning primers:   
Sequence obtained from 
primers 

Primer sequence (5’-3’) 

TPH1A F: GAGGAGGAGGTGAAGACGTG 
R: CATGTCACATTGGGGTCAAA 

TPH 1bI F: ATACGTGCGTCACAGCTCAG 
R: GGCAGGGTTGAATGTTGAGT 

TPH 1bII F: GAGGAGGAGGTGAAGACGTG 
R: GGCAGGGTTGAATGTTGAGT 

TPH 2 F: ATGCGAGTGCTGATGTATGG 
R: GAAGCGCCTAGAGATGCAAG 

TH1i F: CAGCACACTGGTCAGCTCTC 
R: CAGCACACTGGTCAGCTCTC 

TH1ii F: AAGGACGGTCTGGAGGATCT 
R: CAGCACACTGGTCAGCTCTC 

TH2 F: GAGTTCTTCATGCGGTGTGA 
R: TCCTCATCWGATGMTCCAAG 

qPCR primers  
Sequence amplified by 
primers 

Primer sequence (5’-3’) 

TPH1A (102 bp; 1.86)
  

F: GCCCAGCTTTGCTCAGTTTA 
R: TCCACAGTGAAGAAATAACAAGTG 

TPH1B (141 bp; 1.84) F: TCAATCAGCGAACTTAAGCACT 
R: TTTGGCTTCCTCAAAACTCTCT 

TPH2 (90 bp; 1.84) F: TCTCTATACACCAGAACCGGACA 
R: TCTTGAGAAAACTGAGCAAACTT 

TH1i (167 bp; 1.81) F: GACATTGCCTTCAAATACAAACAT 
R: CGCAGTGTTTCTCCAGTAAGC 

TH1ii (143 bp; 1.80) F: GATCAGGATCATCCAGGATTT 
R: ACCTCACGCCATGTTTCAA 

TH2 (151 bp; 1.83) F: GCTTTCTGCTCGGGACTTC 
R: TTCTTTGTCTGCAAGCATGG 

mw2060 (104 bp; 1.82) F: CTGACCATCCGAGCGATAAT 
R: AGCAAGCTGTTCGGGTAAAA 

Melting temperature for all primers was 60 °C. Amplicon lengths and efficiency for each qPCR primer pair 
are given in the parenthesis after the primer name. F = forward primer; R = reverse primer. 
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Enzyme assay to estimate TPH oxygen affinity 

To find out if crucian carp TPH can function in very low oxygen levels, we measured 

enzyme activity in brain homogenates in normoxia and different degrees of hypoxia. Seven 

pO2 levels were tested: 156 mmHg (air saturation, n = 20); 78 mmHg (n = 5), 58.5 mmHg 

(n = 2), 39 mmHg (n = 5), 19.5 mmHg (n = 3), 9.75 mmHg (n = 2) and 2.4 mmHg (n = 3).  

The enzyme assay was based on previously described assays for rat brain (Nilsson 

and Tottmar, 1987; Sugden et al., 1989; Barbosa et al., 2008), all concentrations are given 

as concentrations in the final solution. Whole brains of crucian carp (fish weight: 23.3 ± 

1.5 g; n = 20; kept at 17 °C) were dissected out, weighed, and added 50 mM cold 

phosphate buffer (pH 7.8) with 2 mM freshly prepared DL-dithithreitol (DTT). Buffer 

volume (in μl) was 9 times brain weight (in mg). Brains were immediately homogenized 

for 20 s at low speed in Lysing Matrix D tubes with a FastPrep-120 homogenizer (Thermo, 

MA, USA). The homogenates were centrifuged at 12000 g for 5 min at 4 °C. To 540 μl of 

the supernatant 5 μM DTT, 1mM, 3-hydroxybenzylhydrazine (NSD1015; a decarboxylase 

inhibitor that blocks conversion of 5-HTP to serotonin), 500 μM freshly prepared 6-

methyl-5,6,7,8-tetrahydropterine dihydrochloride (6-MPH4, a synthetic analogue of 

tetrahydrobiopterin) and 5 mg of bovine liver catalase (2000-5000 units/mg protein) was 

added, to a final volume of 585 μl (final incubate volume was 600 μl when tryptophan was 

added). The sample was subsequently divided into three subsamples: hypoxic, normoxic 

control and negative control. Hypoxic incubates were made in a glove box (EW-34750-15, 

Cole Parmer, USA) with different pO2 levels. The pO2 level in the box was obtained by 

mixing air with a gas mixture of 90% N2 and 10% H2 gas. The three lowest levels were 

obtained using a palladium catalyst consuming oxygen and H2. pO2 was measured in the 

box atmosphere with a WTW 340i oxygen electrode. The incubates were bubbled with the 

atmosphere in the box for at least 30 sec, and the lids were left open during the handling 

time, to ensure equilibration with the atmosphere. It has previously been reported that 30 

sec of bubbling leads to the desired pO2 of the incubate (Friedman et al., 1972). Finally, 15 

μl L-tryptophan (500 μM final concentration) was added to the incubates and the reactions 

were run for 20 minutes at 20 °C in a circulating water bath. A pilot experiment showed 

that the amount of 5-HTP produced increased linearly over time for at least 20 min. To 

stop the reaction, 5% (wt/vol) perchloric acid (PCA), containing 500 μM NaHSO4, was 

added (final concentrations).  

Normoxic control was run in air under the exact same conditions, and blanks were 

obtained by adding PCA before L-tryptophan. After PCA-addition, the incubates were 
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immediately centrifuged at 19000 g for 5 min at 4 °C. The supernatants were then 

transferred to new tubes and 10 μl aliquots analyzed with high-performance liquid 

chromatography with electrochemical detection (HPLC-EC) the same day. The HPLC set-

up consisted of a solvent delivery system (model 582, ESA, MA, USA), an autoinjector 

(model ASI-100, Dionex Softron GmbH, Germany), a ReproSil-Pur C18-AQ (150x4 mm) 

reverse phase column (Dr.Maisch HPLC GmBH, Germany), and an ESA 5200 Coulochem 

III EC-detector (ESA, MA, USA) with two electrodes at oxidizing potentials of +320 and 

+450 mV, respectively. To oxidize potential contaminants, a conditioning electrode with a 

potential of +40 mV was placed before the analytical electrodes. The mobile phase 

consisted of 75 mM monobasic sodium phosphate, 500 μM EDTA, 1 mM sodium 

octylsulphate, and 10% (v/v) acetonitrile. pH was adjusted to 2.75 with phosphoric acid. 

Flow rate was 1.2 ml/min. Peak areas was measured and calibrated to standard 

concentrations of 5-HTP. Any presence of 5-HTP in the blank samples were subtracted. 

To account for day-to-day-variations in the assays, 5-HTP production was calulated 

in each hypoxic sample as percent of the normoxic sample. The data were fitted to the 

Michaelis-Menten equation by the freeware Hyper32, version 1.0.0.  

 

Statistical analyses 

The data were analysed for statistical significant differences between groups with one-way 

ANOVA in the statistical analysis software JMP8 (SAS Institute). If the ANOVA gave a 

P-value < 0.05, Dunnett’s post-test with comparison to the control was performed. All 

values are given as mean ± s.e.m., if not otherwise stated.  
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Results 

 

Crucian carp TPH and TH variants  

By cloning and sequencing, we identified four different TPH mRNA variants in crucian 

carp, TPH1A (JQ678997), TPH1Bi (JQ678998), TPH1Bii (JQ678999) and TPH2 

(JQ679000), accession numbers at GeneBank given in parenthesis. The paralogs (genes 

related via duplication) were named after their mammalian homolog (genes sharing a 

common origin), TPH1 and TPH2 (Fig. 1). They were also given the suffix a or b, after 

their zebrafish homologs TPH1A and TPH1B (tphD1 and tphD2 in Bellipanni et al. (2002), 

respectively). Finally, the two TPH1B variants were designated I or II to separate the two 

paralogs (genes related via duplication) of the same zebrafish homolog. Note that only one 

paralog (TPH1Bi) is shown in the tree, because the other was too short to be included in 

the phylogenetic analysis. 

 We also identified several variants of TH mRNA sequences in crucian carp: TH1i 

(JQ679001), TH1ii (JQ679002) and TH2 (JQ679003). According to the same scheme as 

for TPH, the variants were named after their homologs TH1 and TH2 (Fig. 1), and the two 

paralogs of TH1 were named TH1i and TH1ii.  

The crucian carp TPH and TH variants were well conserved compared to their 

zebrafish homologs in the area sequenced (Table 2). Table 2 also shows similarities 

between the crucian carp variants, and the naming of the variants is based on the values 

found here. For example, the high similarity between the two TH1 variants found in 

crucian carp indicate that these two variants are not a result of the ancient genome 

duplication in the teleost lineage, but probably a result of a more recent genome 

duplication in a crucian carp ancestor (see Discussion). These variants are therefore called 

TH1i and TH1ii, and not THA and THB, which would be the usual way to name two 

variants originating from the teleost-specific duplication. Thus, we have here followed the 

ZFIN Zebrafish Gene Nomenclature Guidelines. 
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Fig. 1. Phylogenetic tree with TPH and TH variants from crucian carp and selected species. TPH1Bi was left 
out of the analysis because of too short overlapping area. Aa = Anguilla anguilla (European eel); Ac = Anolis 
carolinensis (green anole lizard); Ca = Carassius auratus (goldfish); Cc = Carassius carassius (crucian carp); 
Dr = Danio rerio (zebrafish); Gc = Geodia cydonium (sea sponge); Gg = Gallus gallus (chicken); Hs = Homo 
sapiens (human); On = Oreochromis niloticus (Nile tilapia); Mm = Mus musculus (house mouse); Mu = 
Micropogonias undulatus (Atlantic croaker); Tr = Takifugu rubripes (Japanese pufferfish); Xt = Xenopus 
(Silurana) tropicalis (western clawed frog). The confidence scores of a bootstrap test of 300 replicates are 
indicated for each branch. The tree was made with PHYLIP with a 91 aa long alignment with phenyl alanine 
hydroxylase (PAH) from a sea sponge (Geodia cydonium) as outgroup.  
 

Table 2: Sequence similarity of crucian carp TPH and TH variants (nucleotide sequence) 

 

 

  

Gene Zebrafish Similarity 
between 1 and 

2 

Similarity 
between a 

and b 

Similarity 
between I and 

II 
TPH1A 89% 75% 75-76%
TPH1Bi 89% 78% 75% 94%
TPH1Bii 92% 76% 76% 94%

TPH2 92% 75-78%
TH1i 90% 70% 93%
TH1ii 89% 68% 93%
TH2 90% 68-70%
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TPH and TH mRNA levels in normoxia, hypoxia and anoxia 

The mRNA levels of tyrosine and tryptophan hydroxylase in 7 days of hypoxia, 1, 3 and 5 

days of anoxia and reoxygenation groups were measured with qPCR (Fig. 2). The data 

were normalized to an externally added standard to avoid problems with changes in total 

RNA and house-keeping gene expression in anoxia (see Ellefsen et al., 2008b).  

TPH1 dominated the mRNA expression of the different variants of TPH in all 

groups (Fig 2a,b). This came as a surprise since TPH2 is considered to be virtually the sole 

TPH variant expressed in brain in mammals (see Discussion). Thus, we found that TPH1B 

mRNA levels in crucian carp brain were almost 40 times higher than TPH2, while TPH1A 

were expressed at levels about 6 times that of TPH2. The mRNA levels of all variants of 

TPH appeared to be unaffected by hypoxia. 

 TH1i and ii mRNA levels decreased in both hypoxia and anoxia, while increasing 

to normoxic levels after reoxygenation (Fig. 2c). The one-way ANOVA performed with 

the TH2 mRNA level data showed a p-value of 0.045, but the following post-test did not 

identify any groups that were significantly different from each other (Fig. 2d).  
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Fig. 2. mRNA levels of TPH and TH in normoxia (N), 7 days of hypoxia(H), 1 - 5 days of anoxia (1-5dA), 
and subsequent reoxygenation (R) normalized to the external standard mw2060. Panel (a) shows that TPH1A 
and TPH1B mRNA levels were not significantly affected by hypoxia or anoxia. Similarly, panel (b) shows 
that the TPH2 mRNA level was not significantly changed by the treatments. Note the more than 10 fold 
difference in y-axis values between panel a and b. Panel c shows that TH1i and TH1ii mRNA levels were 
significantly decreased in hypoxia and anoxia compared to normoxia, while panel d shows that TH2 mRNA 
levels did not display a consistent change in response to hypoxia or anoxia, although an ANOVA suggested 
an effect of treatment (P = 0.045). n = 10 in N and A; n = 8 in H; n = 6 in R. The asterisks indicate statistical 
difference (P < 0.05) from the normoxic group. 
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TPH oxygen affinity 

To characterize the crucian carp TPH function at low oxygen levels, we measured the 

product of HTP enzyme activity, 5-HTP, at different pO2 in brain homogenates (Fig. 3). 

Because of relatively large individual (or day-to-day) variations, we present the 5-HTP 

levels as percentage of 5-HTP levels in the normoxic sample (which was run for each 

individual). Non-linear regression was used to fit the data to the Michaelis-Menten 

equation: v = vmax[S]/(Km + [S]), where v is the reaction rate (y-axis), vmax is maximum 

rate of the reaction, [S] is the substrate concentration (pO2 = x-axis), and Km is the 

Michaelis constant (the substrate concentration giving half vmax). This gave an estimated 

vmax of 121 ± 25% and Km to 26 ± 18 mmHg (mean ± s.d.). 

The data was also inversed and plotted in a Lineweaver-Burk plot (Fig. 3b), which 

is a traditional method of estimating the Km using linear regression, and where the x-

intercept equals �1/Km (Fig. 3b). Also this method indicated a Km of approximately 25 

mmHg.  

 

 
Fig. 3. TPH activity in crucian carp brain homogenate at different pO2, estimated by HPLC measurements of 
5-HTP levels after 20 minutes at 21 °C. Panel (a) shows the reaction rate (v) at different pO2. The data were 
fitted to the Michaelis-Menten equation using the program Hyper32. Panel (b) shows the same data in a 
Lineweaver-Burk plot, where the X-intercept corresponds to -1/Km. Both methods gave a Km at about 25 
mmHg (see text). Each point represents measurements from one fish, given as percent of normoxic activity.  
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Discussion 

The data revealed at least four variants of TPH mRNA (TPH1A, TPH1Bi, TPH1Bii and 

TPH2), and three variants of TH mRNA (TH1i, TH1ii and TH2) in crucian carp. A major 

finding was that the TPH1 and TPH2 mRNA level differs from what is found in mammals, 

with TPH2 being expressed at very low in crucian carp brain, while it is considered as the 

‘central TPH’ in mammals, i.e. the dominating form in brain (Walther and Bader, 2003). In 

crucian carp, TPH1 mRNA levels were over 40 times higher than TPH2. Thus it seems that 

TPH1 is dominating serotonin synthesis in crucian carp brain, and since the relative 

expression of TPH variants has rarely been quantified in fish, it may be that TPH1 is the 

“central TPH” in many fish species.  

Furthermore, the data showed that the expression of these hydroxylases is generally 

maintained in hypoxia and anoxia, except for TH1 (both paralogs), which showed a 

moderate fall in expression during anoxic conditions.  

Finally, we found that the Km for brain TPH in crucian carp was approximately 25 

mmHg. This value seems to be quite similar to mammalian TPH, suggesting that hypoxic 

crucian carp cannot rely on de novo synthesis of the transmitter during hypoxia and has to 

resort to other means for maintaining a functioning serotonergic system.  

We will here discuss the implications of these findings in more detail. 

 

Crucian carp TPH and TH variants  

Genes related by duplication are called paralogs (Koonin, 2005). Due to several genome or 

large-scale gene duplication events in vertebrate history, genes in vertebrates often exist as 

paralogs (Meyer and Schartl, 1999; Kuraku et al., 2009). It has become clear that most 

vertebrates have two paralogs of both TPH and TH (Walther et al., 2003; Teraoka et al., 

2004; Candy and Collet, 2005; Cao et al., 2010). All groups of vertebrates studied so far 

have two TPH paralogs (TPH1 and 2), indicating that these are a result of one of the 

genome duplication events early in the vertebrate lineage (Cao et al., 2010). For TH, the 

situation is different, as placental mammals have only one TH gene (TH1). Initially, this 

led to the belief that the other paralog (TH2) was fish-specific (Candy and Collet, 2005). 

However, a later study showed the presence of TH2 also in tetrapods, including birds and 

non-placental mammals, indicating that TH2 originates from one of the duplication events 

in early vertebrate history, but has subsequently been lost in placental mammals 

(Yamamoto et al., 2010).  
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Also in the beginning of the teleost lineage, a genome duplication took place, 

explaining why fish often have two variants of genes for which there are only one variant 

in other vertebrates (Amores et al., 1998; Postlethwait et al., 2004). This can be seen for 

the hydroxylases in the zebrafish, which has two genes for TPH1, named TPH1A and 

TPH1B (tphD1 and tphD2 in Bellipanni et al. (2002), respectively). Only one variant of 

TPH2 can be found for zebrafish in GeneBank and Ensembl, indicating that the paralog of 

this gene has been lost.  

In crucian carp, additional variants of genes found in zebrafish are usually found 

(Ellefsen et al., 2008a; Ellefsen and Stensløkken, 2010; Stensløkken et al., 2010), resulting 

from yet another genome duplication in a relatively recent ancestor of the crucian carp 

(David et al., 2003; Leggatt and Iwama, 2003; Evans et al., 2008). Consequently, in 

addition to the variants found in zebrafish, we found two paralogs of TPH1B, which we 

here name TPH1Bi and TPH1Bii, and two paralogs of TH1 that we denote TH1i and TH1ii 

(Fig. 1 and Table 2). For the other TH and TPH genes, we identified the same number of 

variants as in zebrafish, indicating that the later paralogs of these genes have been lost, or 

that they are not expressed in the brain under the present conditions. Another possibility is 

that we did not manage to amplify these variants with our primers, even if we used low 

annealing temperature to amplify as many variants as possible.  

All TPH and TH variants identified in the present study were similar to their 

zebrafish homolog (Table 2). However, since only parts of the mRNAs were sequenced, 

more extensive differences may be found in other parts of the genes.  

 

TPH mRNA levels in hypoxia and anoxia 

In mammals, the expression of TPH1 and TPH2 mRNA show clear tissue differences, with 

TPH1 mRNA being present mainly in the periphery and the pineal body, with weak 

expression in the brainstem, whereas TPH2 mRNA is found in raphe in the brainstem and 

midbrain (Walther et al., 2003; Patel et al., 2004). This has led to the alternative names 

‘peripheral TPH’ for TPH1 and the ‘central TPH’ for TPH2. However, the present study 

and previous studies performed on TPH mRNA in fish reveal that this may not apply to all 

groups of vertebrates (Bellipanni et al., 2002; Rahman and Thomas, 2009; Lillesaar, 2011; 

Raghuveer et al., 2011). In contrast to mammals, TPH1 mRNA is found in all areas in the 

zebrafish brain where serotonin immunoreactivity is detected, except for the raphe 

(Bellipanni et al., 2002). Also in Atlantic croaker (Micropogonias undulatus), TPH1 

mRNA is found in many brain parts (Rahman and Thomas, 2009). The expression of TPH2 
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is high in the zebrafish raphe (Teraoka et al., 2004), but are in addition found in a pretectal 

area of the diencephalon (Lillesaar et al., 2007). In Atlantic croaker, TPH2 mRNA and 

immunoreactivity were found in virtually all parts of the brain and in numerous peripheral 

tissues (Rahman and Thomas, 2009). Also in catfish (Clarias gariepinus) TPH2 expression 

is found in many peripheral tissues (Raghuveer et al., 2011). In sharp contrast to mammals, 

the present study shows that TPH1B mRNA is the most abundant of the TPH mRNAs in 

whole brain of crucian carp (Fig. 2a,b). TPH1A mRNA was approximately one fourth of 

the TPH1B level, and TPH2 was only 1/40 of TPH1B. Rahman and Thomas (2009) 

compared both TPH1 and 2 in fish (Atlantic croaker) in the same study, and they found 3 

times more TPH2 mRNA than TPH1. However, this was done only in one brain part 

(probably including pretectal area) making the results difficult to compare with the present 

results. The present results indicate that TPH2 is not the ‘central TPH’ in crucian carp, and 

TPH1 should be included in future studies of serotonin function in fish brain.  

We found that TPH1A, TPH1B and TPH2 mRNA levels were unaffected by 

hypoxia, and even anoxia (Fig. 2a,b). In contrast, mRNA levels of both TPH1 paralogs 

were found to decrease in hypoxic Atlantic croaker hypothalamus after 7 days (pO2  � 40 

mmHg), and after 14 days both TPH1 and TPH2 mRNA levels were to decreased in this 

fish (Rahman and Thomas, 2009; Rahman et al., 2011). Note that this study used a 4 times 

higher oxygen level that we used for the hypoxic group in the present study. Maintaining 

TPH mRNA levels in severe hypoxia is likely to be important for the crucian carp, 

enabling serotonin synthesis as long as possible, when the oxygen concentration decreases 

as ice forms on the pond, and allowing for de novo synthesis of serotonin as soon as 

oxygen returns to the water in the spring. 

  

TH mRNA levels in hypoxia and anoxia 

To our knowledge there are no published data on tetrapod TH2 mRNA expression, which 

is probably related to the fact that placental mammals do not possess a TH2 variant (see 

above). In fish, both TH1 and TH2 are expressed in brain of zebrafish and barramundi 

(Lates calcarifer), but the expression patterns are different between the two variants 

(Candy and Collet, 2005; Chen et al., 2009; Filippi et al., 2010; Yamamoto et al., 2010; 

Pavlidis et al., 2011; Steele et al., 2011). In the present study, the sum of TH1i and TH1ii 

mRNA level was approximately twice that of TH2 in normoxic crucian carp (Fig. 2 c,d). 

This pattern is supported by data from the zebrafish, where TH1 mRNA is more abundant 

in brain than TH2 mRNA (Chen et al., 2009; Steele et al., 2011). Furthermore, we showed 



 17 

that both TH1i and TH1ii mRNA levels decreased in response to hypoxia and anoxia (Fig. 

2c), while TH2 mRNA levels were maintained (Fig. 2d). Still, the falls in TH1i and TH1ii 

mRNA were only around 25% and the mRNA levels stabilized during anoxia with no 

further decrease after 1 day of anoxia. In zebrafish, TH mRNA levels are also maintained 

after 4 days of hypoxia (pO2 = 30 mmHg)  (Steele et al., 2011), however, this was 

approximately 3 times higher oxygen levels than we used in the present study. Taken 

together, the present data suggest that TH mRNA levels are relatively well maintained in 

crucian carp exposed to hypoxia or anoxia. Like for serotonin synthesis, it is likely that this 

is important for maintaining central catecholamine levels in the autumn and for recovery 

from anoxia in the spring.  

 

TPH activity in hypoxia 

In light of the reported maintenance of serotonin levels (Nilsson, 1989b; Nilsson, 1990a) 

and unchanged mRNA levels of TPH (this study) in anoxic crucian carp, we examined if 

the crucian carp TPH enzyme could function at very low levels of oxygen. Several studies 

on TPH activity in hypoxia has been conducted, mostly in rat brain in vivo (Davis and 

Carlsson, 1973b; Davis and Carlsson, 1973a; Davis et al., 1973; Hedner et al., 1978; 

Hedner and Lundborg, 1979; Poncet et al., 1997), but also in vitro in rat synaptosome 

preparations (Katz, 1980) and in a partially purified enzyme (Friedman et al., 1972). One 

study reports in vitro TPH activity measurements in hypoxic fish (Rahman and Thomas, 

2009). All these studies show that TPH activity decrease in hypoxia, however, at what pO2 

level this decrease is seen is not consistent. The problem with in vivo studies is to control 

the pO2 where the reaction takes place. Atmospheric hypoxia triggers homeostatic 

responses in the animal, and therefore it is not a linear relationship between atmospheric 

pO2 and pO2 in arterial blood and tissues.  

In vitro studies also show large variations in the reported Km of TPH for oxygen. 

Using a rat synaptosome preparation, Katz (1980) found a Km of 3-4 mmHg, while 

Friedman et al. (1972) found a Km of 40 mmHg with a partially purified TPH enzyme. 

Compared to these values, the crucian carp TPH enzyme, with a Km for O2 of ~25 mmHg 

does not suggest a particular adaptation to low oxygen levels.  

Thus, the ability of the crucian carp to maintain serotonin levels in anoxia probably 

relies on other mechanisms. The most important could be to re-use the serotonin as long as 

possible, allowing for a very slow turnover of serotonin. Indeed, it has been shown that the 

turnover for serotonin in crucian carp is slow even under normoxic conditions (up to 3 
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days at 8 °C compared to around 1 h in mammals) (Nilsson, 1990b). A depressed neuronal 

activity combined with effective serotonin reuptake mechanisms, could enable the crucian 

carp to recycle the serotonin for a long time in anoxia. 

 

Concluding remarks 

In this study, we found that the mRNA level of TPH1 to be more than 40 times that of 

TPH2, indicating that TPH1 is more important for brain serotonin synthesis than TPH2 in 

crucian carp, which is opposite to the situation in mammals. Thus, TPH1 should also be 

included in future analyses of TPH in fish.  

 We also found that the mRNA levels of both TPH and TH are well maintained in 

hypoxia and anoxia, which allows for serotonin and dopamine synthesis in hypoxic 

conditions in the autumn, and also immediately when the oxygen reappears in the spring.  

 Finally, we found a Km for O2 of TPH activity in brain tissue to be 25 mmHg, 

which is comparable to that found in mammals, and does not indicate an adaptation to low 

oxygen levels. Consequently, other adaptations than a high O2 affinity of TPH must 

underlie the ability of the crucian carp to maintain serotonin levels in hypoxia and anoxia. 

This could include extensive recycling of the serotonin combined with depression of 

neuronal activity.  
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