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Abstract

This thesis presents an overall performance comparison between the Btrfs and
Ext4 filesystems by using both synthetic and real world application bench-
marking tools. It also compares Btrfs’s transparent compression and logical
volume management features with Ext4 in combination with Linux LVM and
compression software, respectively. In addition to this,the Btrfs defragmen-
tation tool is also evaluated in terms of space reduction and time required to
perform the defragmentaion process. The results obtained from the Iozone
benchmarking tool show a large difference between Btrfs and Ext4. However,
the results of real application tests are much more similar. The results from
the compression tests show that utilizing Btrfs’s default compression feature
brings performance improvements only for large files while the LZO compres-
sion option shows performance improvements for both small and large files.
File and directory compression test results shows that bzip2 compression soft-
ware is capable of providing the highest space savings but with the cost of
time. On the other hand, Btrfs transparent compression with the compress-
force option provides a good deal of space saving coupled with lesser time.
The Btrfs defragmentation tool results show that the tool is efficient both in
terms of reducing file fragmentation and its speed while performing the de-
fragmentation process.
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Chapter 1

Introduction

1.1 Motivation

A filesystem is the method and data structure that an operating system uses
to keep track of files on a disk or partition [1]. The desire to develop a better
performing filesystem is an issue that has been significant for decades. Cur-
rently, the advent of high performance storage devices makes it an even more
crucial topic that needs due consideration. In general, having a filesystem that
can provide scalability, excellent performance and reliability is a requirement
for modern computer systems.

Over the years, the Linux operating system has provided different kinds of
filesystems, beginning with the well known ext2, as its default base file sys-
tem. More recent ones have added a variety of features and functionality hav-
ing their own strengths and shortcomings.

The ext4 and Btrfs filesystems are two recently developed filesystems designed
by focusing on performance and scalability. The Ext4 filesystem was devel-
oped to addressing scalability, performance, and reliability issues faced by
ext3[4]. It provides support for large size filesystems and advanced features
such as implementation of extents, delayed and multi-block allocations (in or-
der to prevent file fragmentation), and persistent preallocation.

The Btrfs filestem was developed beginning in the year 2007. It provides ad-
ditional features over those in the ext4 filesystem. Btrfs was is designed to
deliver significant improvements in scalability, reliability, and ease of manage-
ment [2]. The Btrfs filesystem has built-in support for software RAID, includ-
ing balancing multiple devices and recovering from corruption. It also sup-
ports live resizing and device addition and removal [3], as well as transparent
compression, creation of snapshots and support for subvolumes.

Even though current technology is able to provide huge capacity storage de-
vices at affordable prices, the demand for more storage space is never satisfied.
Often, the most appropriate solution for providing the desired storage space is

8



1.2. PROBLEM STATEMENT

by utilizing multiple disks that can integrate and function as one huge storage
device. This in return requires a means of efficiently managing these devices
without creating a negative impact on overall system or I/O performance.
Logical volume management is typically used to handle the management of
such storage devices.

File fragmentation is another factor that affects I/O performance. Different
filesystems provide different mechanisms for preventing fragmentation. Nev-
ertheless, it is not entirely possible to entirely eliminate the occurrence of frag-
mentation. The ageing process of filesystems and the addition and deletion
of files will end up creating fragmentation, affecting the overall I/O perfor-
mance. Defragmentation is a solution that is used to tackle the unpreventable
occurrence of fragmentation in files. Both filesystms provide online defrag-
mentation functionality as a solution for the occurrence of fragmentation.

The aim of this research is to undertake an I/O performance comparison be-
tween Btrfs and ext4 filesystem. It will examine their general performance for
a variety of tasks. It will also determine if there is a performance impact associ-
ated with the added features of compression and logical volume management
which are part of Btrfs and available via separate software for ext4.

1.2 Problem Statement

The research described in this thesis compares the Btrfs and ext4 filesystems,
focusing on the following questions:

• How does the performance of the two filesystems compare for a single
partition (i.e., used without volume management features)?

• How does Btrfs perform while using its built-in logical volume manage-
ment system as compared with ext4 filesystem with the Linux Logical
Volume Manager (LVM)?

• What is the performance impact on Btrfs while using its compression
feature?

• How effective is Btrfs built in compression feature as compared with ext4
with compression software?

• How much efficient is the defragmentation feature of Btrfs?

For this discussion, the term performance refers primarily to I/O throughput
of the filesystem, and the term efficient refers to the ability to perform defrag-
mentation faster and reduce fragmentation to a lower level.

9



1.3. THESIS OUTLINE

1.3 Thesis Outline

This paper is organized in the following manner:-

The first chapter provides the motivation of the research peaper and specify
reasearch questions that needs to be addressed in this research paper.

The second chapter provides background information about filesystems in
general, detailed feature design and structure of Btrfs and Ext4 filesystems
and also related works that have been done on Btrfs and Ext4 filesystems.

The third chapter explains the experimental setup , hardware and software
specification as well as about the selected benchmarking tools.

The fourth chapter present results obtained form different benchmaking tools
used for this project.

The fifth chapter present analysis and discussion based on the result obtained
form the fourth chapter.

The sixth chapter is dedicated for conclusion and suggestion for future works.
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Chapter 2

Background and Literature

This chapter will discuss background information about fileystems, logical
volume management, block allocation methods and compression. Sections 2.2
and 2.3 will provide detailed discussions of the features and design of the Btrfs
and Ext4 filesystems, and the last section will describe related works.

2.1 Filesystem

Filesystems determine the way that the storage of data is organized on a disk.
Linux operating systems have different kinds of filesystems with features that
differentiate them from one another. Each type of filesystem has its own set
of rules for controlling the allocation of disk space to files and for associating
related data about each file (known as metadata) with that file. Metadata in-
cludes its filename, the directory in which it is located, its permissions and its
creation and modification dates[1].

The flexibility of the Linux operating system in supporting multiple filesys-
tems arises from its implantation of abstraction in its low-level filesystem in-
terface. This is possible because the Virtual Filesystem Switch (VFS), a special
kernel interface level, defines a common, low-level model that can be used to
represent any particular filesystem’s features and operation[14]. In addition to
this abstraction of the lowest-level file operation from the underlying filesys-
tem, the VFS also connects physical (block) devices to the actual filesystems
that are in use[13].
The following figure shows the components of Linux filesystems.

11



2.1. FILESYSTEM

Figure 2.1: Architecture of Linux filesystem components

User space contains the user applications and the GNU C Library (glibc),
which provides the user interface for the filesystem calls, namely open, read,
write and close. The system call interface, which is acting as a switch, redi-
rects system calls from user space to the appropriate locations in kernel space
within the VFS. The VFS is the primary interface of the underlying filesystem.
It in turn exports a set of interfaces to the individual filesystems. Each individ-
ual filesystem must implement the common set of interfaces that is required
by the VFS [14].

The Linux filesystem support includes some caching features. The Inode and
dentry caches contain recently used filesytem objects for fast access and im-
proved performance. The other type of cache is the buffer cache that is used to
buffer requests between the block devices and filesystems[12].

2.1.1 Linux Filesystem Data Structures

Linux views all filesystems as a common set of objects, which are categorized
into four major parts. The first one is the superblock that describes the struc-
ture and maintains the state of filesystems. The second major object is the
Inode (short for index node) which contains metadata that is used to manage
objects and specify which operations are permitted on those objects. The third
object type is the directory entry (dentry), which represents a directory entry
as a single component of a path. The final major object is the file object, which
represents an open file associated with a process[14].

Superblock

The Superblock is a structure that represents a filesystem as a whole, together
with all required information that is necessary to manage the filesystem. This
information includes the name, size and state of the filesystem, a reference to
the underlying block device and filesystem metadata information.
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Inode

An Inode is the data structure on disk that describes and stores a file’s at-
tributes, including its physical location on disk. Inodes are created at the ini-
tial stage of filesystem creation. Historically, the number of Inodes equals the
maximum number of files of all types that can exist in a filesystem[15]. Inodes
hold information such as the type of file, its access permissions, its user and
group owner ids, the time of the most recent modification done to the file, the
size of the file and the disk address of the file’s data blocks. In general, Inodes
store all information about the file except the name. The filename is stored in
the directory where the file is located, together with the Inode number of the
file.

2.1.2 Traditional filesystems

The Berkeley Standard Distribution (BSD) fast filesystem is the traditional filesys-
tem used all but the earliest Unix systems. It was designed to address the per-
formance limitations of the original System V filesystem[15]. The BSD filesys-
tem supports filesystem block sizes of up to 64KB. Even though the increased
block size over System V improves performance, it will also creates internal
fragmentation as a result of wasted space. In order to tackle this problem, the
BSD filesystem additionally divides a single filesytem block into fragments,
and each block can be broken down in to two, four or eight fragments, which
can be addressed separately [15].

The BSD filesystem divides the filesystem partitions into cylinders groups,
which are comprised of one or more consecutive cylinders. Each cylinder
groups will have a copy of the Superblock, a fraction of the Inodes for the
filesystem and data blocks, and the block map that describes available blocks
in the cylinder group[15]. The Superblock is replicated in each cylinder group
for the purpose of redundancy. Since each cylinder group contains a free block
map, Inodes and blocks, together with the copy of Superblock, the occurrence
of data loss on some part of the disk will not affect other cylinder groups that
do not belong to the affected cylinder group. The BSD filesystem directory
structure is a linear list which contains a length field and the file name whose
length can be up to 255 bytes.[19]

The major drawback of the BSD filesystem is its demand to perform filesystem
checking at every boot, which takes a long time. This slowness is intolerable,
especially with the huge storage devices of the current era.

The default Linux filesystem for many years was the Ext2 filesystem. Ext2
inherits most characteristics from BSD filesystem and makes changes to three
basic features. The first change is the elimination of fragments. The increase
in disk space and file size makes the demand of partitioning blocks into frag-
ments less important[19]. As a result, the Ext2 filesystem provides a single
allocation unit, the block size, for all allocations. The second change made by
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Ext2 is its usage of fixed size blocks instead of cylinder groups to divide the
filesystem partition, since block size is more meaningful for newer hard disk
types. The third and basic change made with Ext2 is utilization of buffer cache
to store metadata until it is flushed to disk, in contrast to the BSD filesystem
which writes out metadata immediately to disk[19].

2.1.3 Allocation Methods

Filesystems use different kinds of allocation methods to allocate disk blocks
for file storage. The type of allocation method selected and implemented in a
filesystem is one of the determining factors for its overall performance since
effective disk space utilization and quick access to a file depends on the space
allocation technique used by the filesystem[10]. In general, there are three
widely used allocation methods.

Contiguous Allocation

The contiguous allocation method requires a file to occupy a set of contiguous
blocks on the disk[10]. The location of a file is defined by the disk address of
the first block and the size of the file. Since all records are placed next to each
other, sequential access of a file is fast. Moreover, random access is also fast as
it only requires getting the starting block and size of a file, which is stored in
the directory entry, to locate it.

The difficulty encountered with this allocation method is finding space for new
file. Two common strategies, namely first fit and best fit, are used to select an
unallocated segment for the requested space of the new file [10]. The former
searches for a space until it finds one that is big enough to fulfil the require-
ment, while the latter searches for the smallest possible unallocated segment
or hole that is big enough to hold the required size. Even though these strate-
gies may help in locating the total amount of space needed for the new file,
preallocation is still a major issue. Since a file can grow from time to time,
the currently allocated space might end up being unable to fulfil the new size
requirement, causing the file to require relocation. This is detrimental to per-
formance and causes filesystem fragmentation.

Extent-based allocation maintains all the advantages of contiguous allocation
techniques while at the same time provides a solution to prevent this problem.
Instead of allocating a single block, this technique initially allocate a contigu-
ous chunk of space (an extent) that can be enlarged by adding another chunk
of contiguous space as the demand arises. In extent based allocation, the loca-
tion of a file’s block is recorded as a location and a block count, plus a link to
the first block[10].
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Linked Allocation

The linked allocation technique uses a linked list of disk blocks for each file.
The directory entry for a file contains pointers to the first and last file blocks[10].
Each data block uses 4 bytes of its space for a pointer to the next block of
the file. The the last block specifies an end-of-file value in this location. This
scheme is effective for sequential file access, but it does not support direct ac-
cess for a single block. Direct access is only possible if implemented with a
table which stores all pointers to a file.

This technique also has the advantage that it eliminates external fragmenta-
tion and allows files to increase size easily. Its greatest shortcoming is relia-
bility. Since disk blocks are linked by pointers, a problem occurring within a
single pointer can make all the remaining blocks in the chain inaccessible with-
out rebuilding the filesystem metadata.

Indexed Allocation

In this allocation method, an index block is allocated for each file that is cre-
ated. The index block of a file contains pointers to all of the data blocks for
that file, essentially an array of disk block addresses[10]. The directory entry
for the file contains a pointer to this index block. Indexed allocation supports
both sequential and direct access. It eliminates the occurrence of external frag-
mentation and also the problem of file growth exhibited by the contiguous
block allocation technique.

However, one of the shortcomings associated with this technique is the oc-
currence of internal fragmentation as a result of a free space wastage on index
blocks. The other issue is the the overhead associated with having an index
block, which is most significant for small files.

2.1.4 Logical Volume Management

The Linux Logical Volume Manager version 2 (LVM2) provides a higher-level
view of the disk storage on a computer system than the traditional view of
disks and partitions. It can combine multiple physical block devices to create
a single large logical block device that overcomes the storage limitation im-
posed on a single device. This logical device, often called a volume group,
can be subdivided into logical entities known as logical volumes or simply
volumes. Creating filesystems using logical volumes eliminates the adminis-
tration overhead by providing greater flexibility in storage space allocation.
Since volumes can be resized or relocated while a filesysstem is mounted on
top of them, it offers more flexibility on adjusting the required amount of stor-
age space[5].
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Internally, LVM2 is divided in to two major parts. The first part is a device
mapper, which is a kernel space program that is responsible creating virtual
block devices and mapping their content in other block devices. It establishes
a mapping between logical blocks (i.e., logical volumes) and physical devices.
The second part is a user space tool that is comprised of different commands
which are used to manage logical volumes[17].

In LVM2, extents are used as a common measurement of block size used for
mapping physical volumes in to logical volumes. The default size of an extent
is 4 MB and there is no limit to the number of extents per physical or logical
volume. The extent size that is selected at initial stage is used for shrinking or
extending logical volumes accordingly. The size of extents are required to be
of the same size within a single volume[17].

2.1.5 Transparent compression

Transparent compression is a way of providing automatic, on-the-fly data com-
pression for an entire filesystem without any user knowledge or intervention.
The major advantage of compression is saving disk space but it also can pro-
vide reduced disk I/O operations, which in turn leads to improvement in the
filesystem’s overall performance compared[11].

2.1.6 Fragmentation

Modern filesystems have implemented different ways to eradicate fragmenta-
tion. Even if using delayed and multiblock allocation methods used by mod-
ern filesystems minimize the occurrence of fragmentation in files, they don’t
entirely eradicate it. Over time, fragmentation will still occur within a filesys-
tem[7]. Fragmentation can be categorized into internal and external fragmen-
tation. Internal fragmentation occurs when a file does not fill up a block allo-
cated to it completely and results in a wastage of space that can not be used
for any other purpose. The second type of fragmentation which is external
fragmentation. This occurs when the logical blocks that make up a file are
scattered all over the disk. This type of fragmentation has a negative impact
on performance.

2.2 The Btrfs filesystem

Btrfs (the name stand for b-tree filesystem) is a copy-on-write (COW) Linux
filesystem which is intended to address the lack of pooling, snapshots, check-
sums and integrated multi-device spanning in traditional Linux filesystems[3].
It has many features such as its support for snapshots of a live system, includ-
ing rollback to a previous state, its capability to perform offline conversion of
Ext3 and Ext4 filesystems, online block device addition and removal, and on-
line volume growth and shrinking. Btrfs is designed to solve the problem of
scalability that often occurs with large and fast storage[8].
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2.2.1 Btrfs Design and Data Structure

Btrfs uses b-trees to store generic objects of varying data types in a single, uni-
fied data structure. A b-tree is a tree data structure that allows tree nodes (also
known as leaves) to have more than 2 child nodes. B-trees are designed for
performance, and perform operations like searching, insertion and deletion in
logarithmic time.

Inside the b-tree, root nodes consists of two fields: the key, which holds infor-
mation about the item contained in the leaves of a tree, and the block pointer,
which provides information about the disk location of the next node or leaf in
the b-tree[2].

Btrfs uses three types of on-disk structures, namely block headers, keys and
items. The block header contains information about the block, including a
checksum for the block contents, the universal unique identification (UUID)
of the filesystem that owns the block, the level of the block in the tree, and the
block number where this block is supposed to live.

Leaves of the tree hold the item and data fields, they grow toward one an-
other. Items are combinations of keys and data, where the offset and size field
of the item indicates the location of the item in the leaf. This way of storing the
key with the data makes efficient use of space compared to the usual way of
storing of only one kind of data in any given filesystem block[20].

Items are sorted by their 136-bit key, which groups related items together via
a shared key prefix (and thus automatically optimizes the filesystem for large
read and write operations). Small files can be stored directly in the tree leaves,
while large files are allocated by extents. This technique both lowers the over-
head and reduces fragmentation.[2]

A key is divided into three chunks, which are the object id, type and offset
fields. Each object in the filesystem has an object id, which is allocated dynam-
ically on creation. The object id field allows all items for a given filesystem
object to be logically grouped together in the b-tree. The offset field of the key
stores the byte offset for a particular item in the object. The type field indicates
the type of data stored in the item[20].

Btrfs component b-trees

A newly-created Btrfs filesystem contains five types of b-trees[12], as illus-
trated in Figure 2.2:

• The tree of root trees b-tree keeps track of the location of all the roots of
the filesystem b-trees. It serves as a directory for all other tree roots.

17



2.2. THE BTRFS FILESYSTEM

• The extent tree holds information about extents allocated for the filesys-
tem.

• The filesystem tree which contains the files and directory information.

• The chunk tree holds information about chunks of the device that are
allocated and the type of data they hold.

• The checksum tree checksums of all data extents within the filesystem.

The Btrfs filesystem Superblock contains two pointers. The first pointer
points to the tree of root trees, and the second pointer points to the chunk tree,
which is responsible for device management[20].

Btrfs Inodes are stored in struct Btrfs Inode item. The Btrfs Inodes store the
traditional Inode data for files and directories (as returned by the stat system
call). The Btrfs Inode structure is relatively small, and does not contain any
embedded file data or extended attribute data[2].

Figure 2.2: Btrfs Btree

2.2.2 Large filesystem support

As a 64-bit filesystem, Btrfs addresses up to 16 exabytes (16,384 petabytes),
both in terms of the maximum volume size and the maximum file size[12].

2.2.3 Dynamic Inode allocation

When creating the filesystem, only a few Inodes are established, rather than
creating all Inodes that will ever exist at the very beginning. Based on the
actual filesystem use, additional Inodes are created and allocated, which is
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suitable for data de-/compression in real-time. This means favoring speed
over the best possible compression ratio.

2.2.4 Compression

Btrfs implements transparent compression with two kinds of compression schemes,
LZo and Zlib, with Zlib being the default method[11]. This feature can be
turned on at the mount option, and any new writes will be compressed. More-
over, Btrfs automatically identifies what should and should not be compressed
to make this feature more efficient[11]. Both LZo and Zlib are of a lossless
compression technique, i.e the original data can be recovered exactly from its
compressed data counterpart.

• Lempel-Ziv-Oberhumer (LZO) compression is a data compression library
that is suitable for data de-/compression in real time, and it which favours
speed over compression ratio. It is a block compression algorithm that
compresses a block of data into matches (using a sliding dictionary) and
runs of non-matching literals[25]. Unlike Zlib, LZo supports a number
of algorithms.

• The Zlib compression library provides in-memory compression and de-
compression functions, including integrity checks of the uncompressed
data. It supports DEFLATE algorithm that provides good compression
on a wide variety of data with minimal use of system resources[26].

2.2.5 Built in volume management and RAID support

Btrfs implements software RAID as part of the filesystem. Currently it sup-
ports RAID 0 (disk striping), RAID 1 (disk mirroring) and RAID 10[12]. The
built-in logical volume management feature of Btrfs eliminates some compli-
cations that can arise while using LVM2[11].

2.2.6 Subvolumes

Btrfs has the capability of taking parts of a filesystem and remounting them as
the root for another filesystem. This is useful it you want to limit user access to
a certain potion of a directory structure. For example, if there is a subdirectory
that users need to access without being allowed access to other parts of the
main directory, then the user subdirectory can be mounted as a subvolume. To
the user, it appears as the root (top level) directory for that directory tree[12].

2.2.7 Snapshots

Btrfs is capable of creating snapshots of a filesystem or sections of filesys-
tem[11]. This is advantageous since snapshots can be used for backup op-
erations or for any other purpose as required. Moreover, Btrfs allows creation
of writeable snapshots and is capable of taking a snapshot of a snapshot[12].
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2.2.8 Delayed Allocation

Like many other modern filesystems, Btrfs uses delayed allocation to allow for
better disk allocation. This means that Btrfs will only allocate space on the disk
when the kernel decides it needs to get rid of dirty pages in memory. This tech-
nique results in much larger allocations being made and much larger chunks
of sequential data, which in turn makes reading the data back faster[11].

2.2.9 Online defragmentation

Even though efficient allocation mechanisms are used to prevent fragmenta-
tion, fragmentation happens anyway over time, and it can severely impact
performance. To address this problem, Btrfs implements an online defragme-
nation tool that operates while the filesystem is mounted and in use[12].

2.2.10 Checksumming

Btrfs checksums all data and metadata for detecting errors and providing filesys-
tem integrity.

2.3 The Ext4 filesystem

The Ext4 filesystem, which is also known as the fourth extended filesystem, is
a journalled filesystem. As a successor of the well known Ext3 filesystem, it
maintains some of its features and is capable of maintaining backward compa-
rability. Moreover, it also makes possible the online migration of Ext3 filesys-
tem to Ext4[7]. Ext4 achieved various improvement in terms of scalability,
reliability and overall performance when compared with its predecessor[7].

The Ext4 filesystem has a default Inode size of 256 bytes, a larger size that its
predecessor. The additional space is required in order to store additional fields
such as extended attributes, timestamps (with time measurements in terms of
nanoseconds) and file checksums. The on-disk structure of the Ext4 Inode is
similar with that of its predecessor except for the addition these new fields.

2.3.1 Large filesystem support

Ext4 supports a larger filesystem and file sizes, and subdirectory limits. It
supports filesystems of up to 1 exabyte and files up to 16TB in size (when using
4KB blocks). Moreover, the subdirectory limit is virtually unlimited. Directory
indexing was also optimized to a hashed b-tree-like structure, so although the
size limits were much increased, Ext4 nevertheless supports very fast lookup
times[7].
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2.3.2 Extents

Ext4 allows blocks for a particular file to be stored as an extent, a contiguous
sequence of physical blocks, unlike its predecessor that implements an indirect
block map. Using this feature eliminates the performance problems present
with the Ext2 and Ext3 filesystems while also allowing the efficient mapping
of very large files to disk blocks. Ext4 is capable of mapping up to 128 MB of
contiguous space in a single extent (assuming a 4KB block size).

In addition, this feature reduces the occurrence of file fragmentation and im-
proves performance by supporting an efficient storage structure. Extents in
Ext4 provide a layered approach to efficiently representing small files, as well
as extent trees to efficiently represent large files[7]. A single Ext4 Inode can
reference up to four extents. For large files that require more than 512 MB,
Ext4 uses an extent tree. The extent tree contains two type of nodes: leaf nodes
and an index node. An extent header is found in both index and tree nodes,
and it contains the number of entries, the depth of the tree and the maximum
capacity. The following figure compares traditional indirect mapping and the
extent-based mapping of Ext4.

Figure 2.3: Indirect block map [15]

2.3.3 Delayed Allocation

Ext4 implements an optimization technique that delays allocation of physi-
cal blocks on the disk until the data is ready to be written on the disk. The
major benefit of this technique is that delaying allocation provides the oppor-
tunity to combine multiple block allocation requests into a single request and
also avoids unnecessary block allocations for files that have a short life span.
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Figure 2.4: Ext4 extent map [15]

Moreover, this scheme avoids fragmentation by allocate a contiguous space on
disk and writing to disk in contiguous chunks.[7]

2.3.4 Multi-block Allocation

Ext4 uses a block allocator that allocates multiple blocks at a time, making
them much more likely to be contiguous on disk (which will result in faster
sequential read operations). Moreover, allocating multiple blocks at a time re-
quires many fewer calls to the block allocator, resulting in faster allocation and
reduced processing time.[7]

2.3.5 Flexible block groups

Ext4 implements a feature called flexible block groups (flex bg) that combines
several block groups in to one logical block group. The first block group of the
flex bg holds data block bitmaps, Inode bitmaps and Inode tables of all other
block groups in the flex bg. The effect of this is to group the block metadata
close together for faster loading and to enable large files to be continuous on
disk by creating a large logical block group.

2.3.6 Journal checksumming

Journalling is a mechanism used to make sure that a filesystem remains in a
consistent state in the case of a failure such as a system crash. But even with
journaling, corruption is still possible if erroneous entries find their way into
the journal. To combat this, ext4 implements checksumming of the journal to
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ensure that only valid changes are ultimately written to underlying file sys-
tem[7].

Ext4 supports multiple modes of journalling, including writeback mode, or-
dered mode and journalled mode. In writeback mode, only metadata is jour-
nalled, which ensure consistency of the metadata but not consistency of the
data itself. Ordered mode maintains the consistency on both data and meta-
data by forcing the data blocks to be written out before the metadata blocks are
committed. The last type, journalled mode, maintains both data and metadata
consistency by logging both metadata and data and only writing the journalled
data after the transaction is committed. Even though journalled mode is the
most reliable of all in ensuring consistency it is not recommended because of
its large performance requirements[7].

2.3.7 Online defragmentation

Although Ext4 incorporates features to reduce fragmentation within the file
system (for example, extents for sequential block allocation), some amount of
fragmentation will occur over time. For this reason, an online defragmentation
tool exists to defragment both the file system and individual files for improved
performance. The online defragmenter is a simple tool that copies files into a
new Ext4 Inode that uses contiguous extents for storing the file’s data[7]. Un-
fortunately, the defragmentation tool not yet ready to be used in a production
environment and so will not be considered in this research.

2.4 Filesystem Benchmarks

Filesystem benchmarking demands careful consideration in order to properly
measure the performance of filesystems and accurately measure their perfor-
mance under different work environment. Since different filesystems are de-
veloped with different intentions, one filesystem is not expected not be the best
for all kinds of workloads.

According to Traeger Avishay et al[30] filesystem benchmarks can be catego-
rized into three types: macro-benchmarks, trace replays and micro-benchmarks[30].

• Macro-benchmarks exercise multiple file system operations, and are usu-
ally good for an overall view of the system’s performance, though the
workload may not be realistic.

• Trace-Based benchmarks consist of replaying traces. They can also pro-
vide an overall view of the filesystem performance. Traces are designed
to be a representative real-world workload. However, it is vital that the
trace be in fact representative of that workload (e.g., the trace should
capture a large enough sample), and that the method used to replay the
trace does not alter its features.
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• Micro-benchmarks exercise only a few (usually one or two) operations.
These are useful if one is measuring a very small change to better under-
stand the results of a macro-benchmark, to isolate the effects of specific
parts of the system, or to show worst-case behaviour. In general, these
benchmarks are more meaningful when presented together with other
benchmarks.

2.5 Related work

Jan Kara and co-workers[31] undertook a comparative study of the Btrfs, Ext4,
XFS and Ext3 filesystems. The experiment was performed on a two-core CPU
in a single SATA drive running the 2.6.29 Kernel and with a RAID system.
They made the performance comparison without including any of the features
that makes Btrfs unique except that of the copy-on-write feature. One of the
results of the test performed on a single SATA drive shows that Btrfs takes
10% less time than Ext4 to perform the task of creating 30 kernel trees. An-
other test on similar setup, reading 6400 files within a directory, Btrfs shows
better results than that of Ext4, although it was not as good as XFS. The third
test done on the single disk setup shows that Btrfs outperforms Ext4 in a 100
thread synchronous writing of 100 files. They also reported that, in the RAID
setup experiment, turning on the copy-on-write feature of Btrfs causes the per-
formance to degrade; with a test of random writes using 16 threads using the
default copy-on-write feature of Btrfs, Ext4 outperformed Btrfs

Dominique A. Heger[32] made a performance comparison among the Btrfs,
ZFS and Ext4 filesystems by using the Flexible FileSystem Benchmark(FFSB)
IO benchmarking set. The experiment was done on both a single disk and a
RAID setup consisting of 8 Seagate driver with (Linux kernel 2.6.30). One of
the major findings was that the Ext4 filesystem outperforms the others on the
sequential read and mixed workloads for the single disk. Ext4 showed sim-
ilar performance results with that of Btrfs for the sequential read, sequential
write, random read/write and mixed tests conducted. The paper also stated
that conducting the test with the nodatacow and nodatasum features of Btrfs,
which turn off COW and data checksums, gained only a small improvement
on the achieved throughput.
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Chapter 3

Approach and Methodology

The problem statement for this project requires comparison of Btrfs and Ext4
filesystems on a single disk as well as Btrfs logical volumes with Ext4 and the
Linux LVM. In addition, it will also compare the efficiency of the Btrfs filesys-
tem compression tool with that of the Ext4 filesystem with compression soft-
ware (i.e. bzip2) and also the efficiency of the Btrfs filesystem defragmentation
tool.

To perform the I/O throughput performance comparison, one should use a
filesystem benchmarking tool that is capable of showing how both filesystems
perform under different work load. Basically there are two options: using real
application and/or synthetic benchmarking tools. Real applications are more
advantageous to use, especially if it is the type of application that is intended
to be used with the filesystem since this will imitate the exact situation in the
real environment. However, the problem associated with this type of bench-
marking is the difficulty of finding such a representative real application[30].

The second alternative is using synthetic benchmark tools that are designed
to simulate different workloads. Synthetic benchmarks are mostly flexible and
have different parameters that can be adjusted for specific requirements. How-
ever, the problem with synthetic benchmarks is that they do not measure any
real work. For example, the synthetic benchmark might add overhead that
does not exist in a real application. On the other hand, a real application might
incur overhead not modelled in the benchmark[30]. Wasim Ahmad Bhat et
al.[27] specify that the ideal benchmark for file and storage systems combines
the ease of use of synthetic benchmarks with the representativeness of real
workloads.

Combining both Synthetic and real application benchmarking for filesystem
I/O throughput measurements will produce a more representative result rather
than solely depending on either of the two types of benchmarking tools. This
project implements both synthetic benchmarking tool Iozone as well as real
application tests by file and Directory read/write tests as well as using the
Gaussian 09 application.
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3.1 Experimental Setup

The experiments were conducted on a Dell Optiplex 745 system with an In-
tel(R) Core(TM)2 CPU 6600 with a clock speed of 2.40GHz. The Debian 6.0
Operating system was used with kernel 2.6.32. The system contains three 80GB
hard disks. The first hard disk (sda) is used only to host the operating system
while the other two hard disks (sdb) and (sdc) are used entirely for the ex-
periment. The following table shows details about the hardware and software
environments used for the experimental setup.

Component Model
Computer Dell Optiplex 745
CPU Intel(R) Core(TM)2 CPU 6600 @ 2.40GHz
Memory 4GB
System HDD WDC WD800ADFS-75SLR2 ATA Device (80GB)
Benchmarked HDD WDC WD800ADFS-75SLR2 ATA Device (80GB)
Benchmarked HDD WDC WD800ADFS-75SLR2 ATA Device (80GB)

Table 3.1: Hardware Specifications

Name Version
Debian Linux 6.0 Kernel 2.6.32.5

Kernel 2.6.38 1

Ubuntu 10.04 Kernel 2.6.32-38 2

Iozone 3.308
Seekwatcher 0.12
Gaussian 09 09
btrfs-tools 0.19+20100601-3

Table 3.2: Software Specifications

Both of the experimental disks are divided into 3 equal sized partitions.
Care was taken to ensure that all partitions have exactly the same boundaries
on the two disks. One partition on each disk is used to create a Btrfs and
an Ext4 filesystem while the remaining two partitions on both disks are used
to create an Ext4 filesystem with Linux logical volume and a Btrfs volume
respectively.

The following table displays the partition layout of the experimental hard
disks.

1This kernel version is used only for Btrfs Lzo Compression option
2This OS is used only for Btrfs defrag test
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Disk Partition Partition Size Filesystem
sdb1 25G Ext4
sdc1 25G Btrfs
sdb2 + sdc2 50G Ext4 + LVM
sdb3 + sdc3 50G Btrfs + Volume

Table 3.3: Experimental Hard Disk Partition Layout

3.1.1 Benchmarking Tools

The following subsections discuss the selected benchmarking tools for this
project in detail.

1. Iozone is used test the I/O throughput for sequential read, sequential
write and re-write, random read, random write and strided read test
types. All of the selected test types are executed with record sizes rang-
ing from 64K to 16384K and file sizes ranging from 8192K to 8388608K.
These tests are done for a single partition as well as for volumes of both
filesystems. Moreover, the I/O throughput of Btrf’s compression mount
options are also tested using this tool.

2. File and Directory Copy operations are used to perform sequential read
and write test by reading and writing an 11GB file and a directory tree
having a size of 499MB and 2254 subdirectories.

3. Compression efficiency testing is performed on files with a sizes of 15GB,
6GB and 200MB and also with a directory trees having sizes of 1019MB
and 489MB. Compression is performed with the bzip2 software in the
Ext4 filesystem. Btrfs transparent compression option efficiency is tested
by enabling its compression feature.

4. The Gaussian 09 computational chemistry package is used to benchmark
the I/O throughput of both filesystems by executing a task that demands
a very large amount of sequential disk I/O, and the achieved input and
output levels as well as elapsed time to perform the task are compared
for both filesystems.

5. A Perl script is designed to create fragmentation on a freshly created Btrfs
file system by randomly creating and deleting files of varied sizes. The
number of fragmented files and their percentage out of the total number
of files created in the disk partition is recorded, and the Btrfs defragmen-
tation tool is used to defragment the partition. The number of executions
of the defragmentation tool and the percentage reduction achieved on
each run are recorded until the files in the filesystem is totally defrag-
mented.
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Iozone Benchmarking Tool

The Iozone benchmarking tool is used to measure filesystem performance us-
ing different test types. It tests file I/O performance for various operations:
read, write, re-read, re-write, read backwards, read strided, fread, fwrite, ran-
dom read, random write, pread, and specialized tests like mmap, aio read,
aio write operations [22]. Iozone is a widely-used filesystem benchmarking
tool that has been used in a variety of systems. One of its benefit is the number
of available options to select metrics that are most appropriate for the specific
type of application to be used on the filesystem.

The following are the major metrics that needs to be adjusted while perform-
ing the different test types. More information about available parameters and
usage can be found by executing the command: man iozone.

• Minimum and maximum file size used for the test

• Minimum and maximum record size used for the test

• Type of test (i.e., random read/write, sequential read/write etc.)

The basic idea behind the Iozone benchmarking tool is breaking up the given
file size into chunks of a given record size so that records are written or read in
some manner until the given file size is reached. One of the options provided
by Iozone is its ability to store the output of the performed test in Microsoft
Excel file format which is suitable for performing further analysis on the ac-
quired data. The resulting file contains a tabular form of data where the rows
represent the record size (transfer size) and columns indicates size of the file
to be tested. The data within each cell is the I/O throughput in Kbytes/sec
achieved in performing the specified test type with the corresponding record
and file size combination. The following partial output is an example execu-
tion of Iozone:-

Iozone sequential read test output

1 # iozone -a -i 0 -i 1 -y 64 -q 16384 -n 8192 -g 8G -b /mnt/parb1/seqred.xls
2 64 128 256 512 1024 2048 4096 8192 16384
3

4 8192 3737270 3688723 3782110 3653812 3229054 2394606 1893744 1762507
5

6 16384 3766316 3794181 3806792 3738857 3192571 2393255 1849445 1667268 1653786
7

8 32768 3807088 3844682 3856008 3782986 3264443 2373819 1816514 1622085 1601314
9

10 65536 3864617 3895838 3901866 3825782 3303391 2385889 1815048 1605015 1580968
11 ........

The above partial output of the Iozone benchmarking tool displays the achieved
I/O throughput for all combinations of record sizes of 64K to 1024K and file
sizes of 8192K to 8388608K (8GB). This test is intended to perform sequential
read test type on the a selected filesystem. The options -i 0 -i 1 specify the type
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of test to be performed. In this example the selected test type is sequential read
(-i 1). The option (-i 0) needs to be provided for every test types since Iozone
first creates its own file and makes it available for other test types to use it.
The other options, -y and -q, allow one to specify the minimum and maximum
record size (transfer size). Options -n and -g will enables one to specify the
minimum and maximum file sizes to be used for the test.

After acquiring the resulting output file, one can compare the achieved through-
put for different record and file size combination for the two filesystems in or-
der to identify the better performer (i.e., which one provides higher through-
put per Kbyte).

The test types selected for this project are random read, random write, sequen-
tial read, sequential write/re-write and read strided. These tests are selected
because they are general file operations that are performed by any application
utilizing any kind of filesystem.

• Write: This test measures the performance of writing a new file sequen-
tially.

• Re-write: This test measures the performance of sequentially writing a
file that already exists.

• Read: This test measures the performance of sequentially reading an ex-
isting file.

• Random Read: This test measures the performance of reading a file with
accesses being made to random locations within the file.

• Random Write: This test measures the performance of writing a file with
accesses being made to random locations within the file.

• Strided Read: This test measures the performance of reading a file with
a Strided access behaviour. An example would be: read at offset x for a
length of y Kbytes, then seek n Kbytes, and then read for a length of y
Kbytes, then seek n Kbytes and so on. Here the pattern used in this test
was to read 4 Kbytes and then seek 200 Kbytes, repeating this pattern
thereafter.

Blktrace and SeekWatcher

Blktrace is a block layer I/O tracing mechanism which provides detailed in-
formation about request queue operations up to user space. It contains three
major components: the kernel patch (only required with kernel versions prior
to of 2.6.17) and the blktrace and blkparse utilities. The blktrace utility is re-
sponsible for transferring event traces from the kernel and store the results in
to a file for further processing or direct formatted output. The second utility,
blkparse, is used to format events stored in a file or events that are captured
from a live run of blktrace[21].
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The following is an example blktrace command:
Blktrace command option

1 blktrace -o Ext4.trace -d /dev/sdbx

The command line arguments -o and -d specify the name of the output file that
stores the events and the device that is going to be traced, respectively.

Blktrace produced detailed block layer information for individual I/O. As a
result of this, it is very cumbersome and time consuming to thoroughly anal-
yse its output directly. Seekwatcher is an analysis tool that is capable of graph-
ing the result of blktrace output and help one visualize the I/O patterns and
performance easily.

The following is an example seekwatcher command:

Seekwatcher command option

1 seekwatcher -t Ext4.trace -o Ext4-Trace.png

The command line arguments -t and -o specify the name of the blktrace out-
put file and the name of the graph constructed from the specified event trace
output, respectively.

3.1.2 Real Application Benchmarking

Even though synthetic benchmarking tools like Iozone are generally good in
providing an overview of the performance of the filesystem under different
workloads, the results might not totally reflect the real world scenario. In order
to find out how both filesystems perform under a real world situations, large
file and directory read/write operations and the Gaussian 09 application are
used.

Large File and Directory Read/Write Tests

Files of four different sizes and two directories of different sizes and number
of subfolders are used. The test will be performed writing to and reading from
both filesystems, in the single disk and volume configurations. The Linux time
command is used to report the elapsed time, system time and user time taken
to perform the read and write operations.

File copy test

1 time cp bigfile /mnt/Btrsing
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Gaussian 09

Gaussian 09 is an electronic structure programs used by chemists and other
scientists worldwide. Starting from the fundamental laws of quantum me-
chanics, Gaussian 09 predicts the energies, molecular structures, vibrational
frequencies and molecular properties of molecules and reactions [24]. This ap-
plication is used for benchmarking because of its capability in creating tasks
that require a lot of disk I/O activity, enabling the performance of a filesystem
to be measured in a real life situation. The following is a sample command
used to execute a job with this application.

Gaussian 09 task execution

1 /usr/bin/time -f ”%e %S %U %I %O” g09 test.gjf

The above command computes the task named test.gif and displays the elapsed
time, system time, user time, and the number of input an output operations
acquired while performing the given task by Gaussian. Having the amount
of disk I/O operations under both filesystems makes one identify how both
filesystms function under a real life situation.

The specific task chosen for this work is a calculation which predicts the total
energy for benzene, using the coupled cluster method with single and double
substitutions (CCSD) and a large, triple zeta basis with two additional polar-
ization functions on both heavy atoms and hydrogens. A full integral trans-
formation is performed and molecular symmetry is not taken into account.
Memory use is limited to 1GB. The scratch files for this calculation will total
nearly 20GB, and the I/O access patterns will be sequential.

“%Mem=1GB
CCSD/6-311G(df,pd) Trans=Full NoSymmetry

3.1.3 Custom made fragmentation tool

As mentioned in the problem statement, one of the research questions that is
going to be investigated is the effectiveness of the Btrfs defragmentation tool.
In order to examine its effectiveness, one needs to have a file system that is al-
ready fragmented. Since the experiment is done on a newly created filesystem,
a way to age the filesystem needed to be found in order to be able to measure
the performance of Btrfs’s defragmentation tool.

For this purpose, a Perl script was prepared to create fragmentation on the
filesystem. It operates by filling up the entire partition by creating files with
different sizes, deleting some of the newly created files and replacing those
files with ones having the same name but a different size. This repeated proce-
dure of creation and deletion of files will result in a fragmented filesystem. The
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next stage should be finding out the number of fragmented files and the per-
centage of fragmented files out of the total number of created files. Therefore,
the script provides a percentage of file fragmentation by executing filefrag (a
Linux command that will display the number of extents of a file by using the
FIEMAP ioctl) for each file created by the script, and then summing up the
number of files that have more than one extent.

The second stage of this procedure is executing the Btrfs defrag command and
finding out how much effective it is in reducing the percentage of fragmen-
tation that was created by the first stage. By recording the amount of time
required by the defrag command to defragment the specified partition and
finding out the achieved level of reduction in fragmentation percentage of the
file, one can identify the effectiveness of Btrfs’s defragmentation tool.

The script requires the starting size of the file which will be used to fill up
the partition (the actual file size is varied automatically during the operation)
and also the unit of measurement (GB, MB or KB). The file size and units are
an optional command line arguments in order to make the script adjustable to
different partition sizes.

Here is an example of how this script is run:
script task execution

1 ./autofrag -s 32 -u m

The -s file specifies the size of the initial file to be created, and -u specifies the
unit of measurement of the file to be created. This command specifies an initial
file size of 32MB.

3.1.4 Compression test

As it has been specified in the problem statement, Btrfs’s built in compression
facility will be compared against Ext4 together with the bzip2 compression
software. For this test, two metrics have used to measure the compression
efficiency: by using space Saving formula[33] (i.e 100 - compressedsize∗100

Orginalsize ) and
execution time. Different sized text files and directories having a number of
subdirectories and a variety of sizes are tested.

Size Type
15360MB File
6144MB File
200MB File
1019MB Directory
489MB Directory

Table 3.4: Compression Test Files and Directories
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The above listed test file sizes are selected to measure the efficiency of the
compression technique from large size to small size, relative to the size of the
partition, which is 25GB. In addition, the directories also varied in size of sub-
directory and file size.

3.2 Benchmarking Environment and Repetition of Ex-
periment

The state of the system during the benchmarking process can have a signifi-
cant impact on the obtained result of the benchmark. Traeger et al[30] states
that some of the major factors that can affect results are cache state, filesystem
ageing and non-essential processes running during the benchmarking process.

To avoid cache impact of filestems in the Iozone benchmark test, mounting
and unmounting of the tested filesystem is done for every consecutive tests.
Similarly for file and directory read/write tests and also for the compression
tests, a reboot is performed. Both filesystems are mounted by their respective
default mount option except for compression tests, which require enabling
Btrfs’s compression feature. Moreover, all non-essential process are stopped
during the test.

It is also recommended that performing the test with an aged filesystem will
results in a representative setting of the real world and produce a better re-
sult for the performance evaluation. The best way to age filesystems is run-
ning a workload based on system snapshots[30]. This process has two major
implementation difficulties for this project experiment. First of all, ageing a
filesystem by this method is a time consuming process[30]. More significantly,
finding a working system that has been using Btrfs filesystem in a production
environment in order to take a snapshot for filesystem aging was not attain-
able, even though the filesystem is declared as production ready. Since the test
environment for both filesystems must be similar, performing the benchmark-
ing on a newly created filesystm is the only possible and optimal option for
this particular moment.

Repetitions for the various test were performed as follows:

1. The selected test types of Iozone are repeated 10 times on both single
disk and volumes and the average is taken.

2. The Directory and File copy test is repeated 10 times on both single disk
and volumes and the average is taken.

3. The Directory and File compression test is repeated 5 times on both sin-
gle disk and volume and the average time taken to perform the test is
taken.

4. Blktrace is run independently for both Iozone and the Directory and File
copy tests.
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3.3 Package Installation

Btrfs-tools user-space utility package installation

Btrfs is supported in the Linux 2.6.32.5 kernel/ Using only requires loading the
btrfs module into the kernel through the modprobe btrfs command. Btrfs has
a user space utility package called btrfs-tools that is required to work with it.
In addition, this package also contains the btrfs-convert utility which is used
to convert an Ext filesystem into a Btrfs filesystem. One can install this utility
package by using package manager.

Btrfs utility package installation

1 apt-get install btrfs-tools

seekwatcher installation

Seekwatcher can be installed by extracting it from the archive and making the
file executable. Seekwatcher requires additional package which are needed
to generate graphs from the block traces created by the blktrace command on
devices. In addition to this, the python and numpy modules are also required.
The package and modules can be installed as follows.

Installation of packages required by seekwatcher

1 apt-get install python python-matplotlib python-numpy

Gaussian 09 installation

Installation of Gaussian 09 requires the C shell(tcsh), a directory to copy the
binary files and also editing the .baschrc file under the home directory of the
user that will be using the Gaussian application to set the relevant environ-
ment variables g09user and GAUSS SCRDIR. The final step is to run the install
script: $g09dir/g09/bsd/install.

The GAUSS SCRDIR environment variable specifies the location of the scratch
directory. It should be located on the single partition corresponding to each
filesystem when the benchmark job is run.
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Chapter 4

Results

This chapter describes the results obtained from the experiment explained in
the previous chapter.

4.1 Iozone Benchmarking Tool Test Results

The following sections present the results obtained from the random read/write,
sequential read/write, sequential re-write and strided read test types of Io-
zone. The first part shows the performance of Ext4 as compared to Btrfs with
its default options. The second part shows the comparison of the Btrfs default
mount options against Btrfs with its compression feature turned on. The de-
fault setting results are the averages of 10 runs and are plotted with error bars
equal to twice the standard deviation (in each direction).

4.1.1 Single Disk Sequential Read Test Results

The graphs below show a sequential read operation performance of a single
disk on Btrfs and Ext4 filesystems. The performance of both filestems are
very much similar, and there is no significant difference on the achieved I/O
throughput.

Figure 4.1: Btrfs sequential read I/O throughput
(single disk)

Figure 4.2: Ext4 sequential read I/O throughput
(single disk)
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4.1.2 Volume Sequential Read Test Results

As can be seen from the graph below, the performance of sequential read op-
erations for both filesystems are very much similar. The difference shown is
very an insignificant until the size of the file reached at 4GB, which is the RAM
size of the experimental machine.

As can be seen for the graph below and table 4.1 beginning from a file size
of 4GB, the attained I/O throughput of the sequential read test on the Btrfs
volume shows better performance, nearly double the achieved I/O through-
put of the Ext4 volume for the same operation.

Size FS 64K 128K 256K 512K 1024K 2048K 4096 8192K 16384K
4GB Btrfs 140953 140451 140889 139651 141917 141150 142120 142189 141681
4GB Ext4 87154 84065 80521 84285 89092 87829 86299 84336 82526
8GB Btrfs 121709 121653 122640 122268 121538 121333 122504 121492 122858
8GB Ext4 79232 77510 73849 80037 77383 73517 80666 77033 74014

Table 4.1: Sequential Read test results for 4GB and 8GB file sizes

Figure 4.3: Btrfs sequential read I/O throughput
(volume)

Figure 4.4: Ext4 sequential read I/O throughput
(volume)
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4.1.3 Single Disk Random Read Test Results

The graphs below depict the achieved throughput of reading a file randomly
from a single disk. As it can be seen in the graphs, both filesystems show sim-
ilar performance for most of file size and record size combinations for this test
type. However, when the file size reaches at 4GB, the Ext4 filesystem shows
a slight performance improvement over Btrfs . AS it can be seen form Table
4.2 Ext4 performs better for record size ≤512K for 4GB and for all record sizes
with 8GB files respectively.

File
size

FS 64K 128K 256K 512K 1024K 2048K 4096 8192K 16384K

4GB Btrfs 29862 45610 67587 89618 133351 164270 202062 232706 231864
4GB Ext4 30583 49100 73035 102941 126021 155998 179979 205764 203142
8GB Btrfs 8631 13631 19656 23912 33530 46125 63576 66354 79425
8GB Ext4 10306 17276 26392 41478 46583 57771 72394 80282 86715

Table 4.2: Random Read test results for 4GB and 8GB file sizes(single)

Figure 4.5: Btrfs random read I/O throughput (sin-
gle disk)

Figure 4.6: Ext4 random read I/O throughput (sin-
gle disk)

4.1.4 Volume Random Read Test Results

The random read test done on the volume for both filesystems shows similar
performance for file sizes less than 4GB. However the performance of Btrfs
gets better for the random read test made on the volume with the larger file
sizes. Table 4.3 displays that Btrfs performs better for 8GB file as well as for
4GB files with record size ≥ 1MB.
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File
size

FS 64K 128K 256K 512K 1024K 2048K 4096 8192K 16384K

4GB Btrfs 39367 55799 78822 111113 151220 218362 253405 298121 305337
4GB Ext4 31000 48682 70946 99353 124468 151550 173513 197291 183999
8GB Btrfs 10015 15552 23220 31252 39419 62318 81400 92535 113700
8GB Ext4 10107 16930 25303 40212 44314 53063 68993 73787 76715

Table 4.3: Random Read test results for 4GB and 8GB file sizes(volume)

Figure 4.7: Btrfs random read I/O throughput (vol-
ume)

Figure 4.8: Ext4 random read I/O throughput (vol-
ume)

4.1.5 Single Strided Read Test Results

The achieved performance of reading smaller files – up to a size of 1GB – in a
strided manner is similar to the previously shown sequential read/write and
random read/write test results done on a single disk. But when it comes
to large file sizes, a different pattern is observed here. For large files with
smaller record sizes, Ext4 shows better performance while Btrfs shows im-
proved performance for large file size and record size combinations for the
strided read test. As it can be seen from Table 4.4 Btrfs performs better with
record size ≥1024KB 4GB and 8GB files while Ext4 performs better with record
sizes ≤512KB for similar file sizes.

File
size

FS 64KB 128KB 256KB 512KB 1024KB 2048KB 4096KB 8192KB 16384KB

4GB Btrfs 45371 51451 59735 62330 114580 158647 181844 208213 229828
4GB Ext4 60075 62315 87374 110684 168142 142959 167379 185675 199292
8GB Btrfs 9072 11238 14437 16859 29392 76865 78055 81562 85743
8GB Ext4 31517 30557 36699 43059 63465 55643 70473 79384 84386

Table 4.4: Strided Read test results for 4GB and 8GB file sizes(single)
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Figure 4.9: Btrfs strided read I/O throughput (sin-
gle disk)

Figure 4.10: Ext4 strided read I/O throughput (sin-
gle disk)

4.1.6 Volume Strided Read Test Results

The graphs below show the resulting I/O throughput of reading a file in a
strided way between the Btrfs and Ext4 Volumes. The achieved performance
of test on volumes is similar with that of single disk strided read operation. As
it can be seen from the same increment in throughput is shown, with similar
patterns exhibited to the single disk strided read test.

File
size

FS 64KB 128KB 256KB 512KB 1024KB 2048KB 4096KB 8192KB 16384KB

4GB Btrfs 58906 58954 68568 82905 154625 208030 231065 277642 311984
4GB Ext4 57244 82771 92109 103861 159064 139070 157257 177757 181235
8GB Btrfs 12616 14300 16832 22188 37736 85904 92907 106928 116400
8GB Ext4 30055 34404 37162 39650 63276 52170 67618 74213 74659

Table 4.5: Strided Read test results for 4GB and 8GB file sizes(volume)

Figure 4.11: Btrfs strided read I/O throughput (vol-
ume)

Figure 4.12: Ext4 strided read I/O throughput (vol-
ume)
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4.1.7 Single Disk Sequential Write Test Results

The graphs below show the achieved throughput of sequentially writing to a
file test done on a single disk. For file size less than 1GB Btrfs shows a higher
performance as compared with Ext4. In the contrary Ext4 shows better per-
formance with files greater than 1GB. While Ext4 shows a smooth decline of
I/O throughput with the increase of file size, Btrfs shows a dramatic decline of
performance starting from files with size of 512MB. The effect of buffer cache
is exhibited differently for Btrfs and Ext4 i.e 512MB for Btrfs and 1GB for Ext4.

Figure 4.13: Btrfs sequential write I/O throughput
(single disk)

Figure 4.14: Ext4 sequential write I/O throughput
(single disk)

4.1.8 Volume Sequential Write Test Results

As it can be seen from the graphs below, Btrfs outperforms Ext4 while writing
sequentially writing in to a volume. For Btrfs, better performance is exhibited
for all record and file size combinations. However, the error bars on this graph
are very large, and so Btrfs performance for any individual test run is quite
uncertain.

Figure 4.15: Btrfs sequential write I/O throughput
(volume)

Figure 4.16: Ext4 sequential write I/O throughput
(volume)
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4.1.9 Single Disk Random Write Test Results

The figure 4.17 and 4.18 below shows the performance of writing to a file in a
random manner. Btrfs outperforms Ext4 for all record and file size tests per-
formed. Moreover the gap between the attained throughput of the two filesys-
tems widens with the increase in file size. buffer cache effect comes in to play
in the exactly with random write operations, as it has been observed with se-
quential write operation.

Figure 4.17: Btrfs random write I/O throughput
(single disk)

Figure 4.18: Ext4 random write I/O throughput
(single disk)

4.1.10 Volume Random Write Test Results

The graph below illustrates that Btrfs performs better for all record and file size
combinations in the same way as writing randomly to a single disk. Especially
with the increase in file size, the performance gap between two filesytems be-
comes larger as it has been similarly observed with similar test on a single disk.

Figure 4.19: Btrfs random write I/O throughput
(volume)

Figure 4.20: Ext4 random write I/O throughput
(volume)
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4.1.11 Single Disk Sequential Re-write Test Results

As can be seen in the graphs below, Btrfs performs better for small files while
Ext4 slightly performs better with large file sizes. The difference exhibited
with re-writing sequentially is small compared with the difference that has
been observed in the case of writing sequentially.

Figure 4.21: Btrfs sequential re-write throughput
(single disk)

Figure 4.22: Ext4 sequential re-write throughput
(single disk)

4.1.12 Volume Sequential Re-write Test Results

The graphs below illustrate the achieved throughput for sequential re-write
operations performed on volumes. It shows that Btrfs performs better in all
record and file size combinations. Moreover, the difference in the achieved
throughput gets larger with the increase in the size of file.

As it can be seen from Table 4.6 the difference on the achived throughput is
around 80% on the average for file sizes of 4GB and 8GB.

File
size

FS 64KB 128KB 256KB 512KB 1024KB 2048KB 4096KB 8192KB 16384KB

4GB Btrfs 147347 147428 147484 147093 147249 146794 146682 146680 146714
4GB Ext4 80464 78050 76596 82690 83147 86126 77368 77898 75972
8GB Btrfs 133835 133022 133357 133220 132953 132981 132979 132955 132918
8GB Ext4 76972 75494 71143 76773 75111 71828 77012 73671 72082

Table 4.6: sequential re-write test results for 4GB and 8GB file sizes(Volume)
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Figure 4.23: Btrfs sequential re-write throughput
(volume)

Figure 4.24: Ext4 sequential re-write throughput
(volume)

4.2 Iozone Test Results for the Btrfs Compression Fea-
ture

For the results presented in this section, results are limited to two record sizes:
128KB and 8192KB.

4.2.1 Compressed vs Default Random Read Performance

As it can be seen from the figure below, the throughput achieved in randomly
reading a file wafter enabling the compression feature does not show better
performance as compared to the default option for smaller file sizes. But for
file sizes that are bigger than 4GB, reading randomly with compression en-
abled exhibits better performance.

In the same way, enabling the compression feature with Btrfs volumes shows
a slight increase in throughput for smaller files and similar higher increases in
throughput for the largest file sizes.

Figure 4.25: Random write I/O throughput (single
disk)

Figure 4.26: Random write I/O throughput (vol-
ume)
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4.2.2 Compressed vs Default Sequential Read Performance

As it can be seen from the graphs below, the performance of Btrfs with its com-
pression feature starts to outshine the performance of Btrfs with the default
options for larger sized files, as it has been similarly shown with randomly
reading a file.
However, sequentially reading a file from a Btrfs volume while enabling the
compression feature does not show any significant difference in the attained
throughput.

Figure 4.27: Sequential read throughput (single
disk)

Figure 4.28: Sequential read I/O throughput (vol-
ume)

4.2.3 Compressed vs Default Strided Read Performance

Reading a file in a strided manner shows a similar performance difference as
has been exhibited with both sequentially and randomly reading a file on a
single disk. The figure below shows that the compression feature makes the
achieved throughput higher for larger file sizes.
The performance exhibited with Btrfs volume after enabling compression pro-
vides higher throughput, as it has been similarly observed for the single disk
strided read operations.

Figure 4.29: Strided Read I/O Throughput (single
disk)

Figure 4.30: Strided Read I/O Throughput (vol-
ume)
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4.2.4 Compressed vs Default Random Write Performance

As it can be seen in the graphs below, Btrfs without the compression feature
enabled shows slightly better throughput for smaller file sizes. However, for
bigger file sizes, Btrfs with compression enabled shows better throughput for
the single disk random write operation.
Randomly writing to a file after enabling compression feature on Btrfs volume
shows much a larger performance improvement for all record and file size
combinations.

Figure 4.31: Random write I/O throughput (single
disk)

Figure 4.32: Random write I/O throughput (vol-
ume)

4.2.5 Compressed vs Default Sequential Write Performance

The graphs below show that sequentially writing to a file in a single disk with
compression enabled provides a better performance starting from files of size
1GB. Moreover, the attained throughput difference becomes more bigger with
the increment of file sizes.
The difference in throughput for Btrfs volumes with compression feature en-
abled is not as big as with the one that has been observed with the single disk
sequential write operation.

File
size

Option 64KB 128KB 256KB 512KB 1024KB 2048KB 4096KB 8192KB 16384KB

4GB Compress220350 221315 219533 220631 218369 216508 216710 215677 216657
4GB Default 90485 91890 91958 92009 91902 92071 91746 91951 92218
8GB Compress204102 203502 203828 203489 201853 200304 199714 199648 199794
8GB Default 83465 85658 85676 85500 85706 85495 85582 85510 85625

Table 4.7: sequential write test results with compression for 4GB and 8GB file
sizes(single)

45



4.3. DIRECTORY AND FILE READ/WRITE TEST RESULTS

Figure 4.33: Sequential write I/O throughput (sin-
gle disk)

Figure 4.34: Sequential write I/O throughput (vol-
ume)

4.2.6 Compressed vs Default Sequential Re-write Performance

The graphs below depict the results for sequentially re-writing to a file. En-
abling compression results in better performance for file sizes that are greater
than 512MB on a single disk test, while for files with smaller sizes, there is no
difference between the compression-enabled and the default performance on
this operation.
Sequentially re-writing to a compression enabled Btrfs volume provides better
throughput for file sizes greater than 1GB. Similarly, as it has been observed
with single disk test results, there is no performance gain in enabling the com-
pression feature on for files with sizes less than 1GB.

Figure 4.35: Sequential re-write I/O throughput
(single disk)

Figure 4.36: Sequential re-write I/O throughput
(volume)

4.3 Directory and File Read/Write Test Results

The following section presents the results of performing tests of reading and
writing a large file and directory tree. The test is done for Btrfs and Ext4 LVM
single disk filesystems and volumes. The tests were performed both with the
Btrfs compression option and with the default mount option.
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4.3.1 Directory Read and Write Test Results

Figure 4.37 shows the elapsed time required to perform the directory read op-
eration, and it clearly shows that Btrfs performs better in both the single disk
and volume environments. In contrast, Ext4 outperforms Btrfs in writing a
directory for both the single disk and the volume.

Figure 4.37: Directory Read Average Elapsed Time Figure 4.38: Directory Write Average Elapsed Time

4.3.2 File Read and Write Test Results

As can be seen in the graphs below, Btrfs performs better for reading a file from
a single disk. However, the performance of reading a file from a volume differs
little from the Ext4 LVM volume. For the test of writing a file into a volume,
Btrfs outperforms Ext4 whereas for a single disk, Ext4 performs better than
Btrfs.

Figure 4.39: File Read Write Average Elapsed Time Figure 4.40: File Write Average Elapsed Time

4.3.3 Directory and File Read/Write with the Btrfs Compression Fea-
ture

The following section shows the results obtained from file and directory read/write
tests while enabling the Btrfs compression option. Since the kernel that comes
with Debian Squeeze 6.0 does not support the LZO compression option of
Btrfs, the results shown below are obtained from the default compression op-
tion (i.e., Zlib).
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Compressed vs Default Directory Read/Write Test Results

As it can be seen in the graphs below, enabling the compression option for the
directory read test on a single disk results in higher performance compared
with the default. However, when the test was performed on the Btrfs volume,
this difference did not appear.

In contrast, the test results from reading a directory (Figure 4.41) shows that
the performance of writing a directory is much better with the default than
with Btrfs compression feature enabled for both single disk and volume.

Figure 4.41: Compressed vs Default Directory Read Figure 4.42: Compressed vs Default Directory write

Compressed vs Default File Read/Write Test Results

Figure 4.43 illustrates the file read test results from the compression enabled
and default options of Btrfs. Enabling the compression feature worsens the
performance of file reading from a single disk as compared with the default.
However, the result obtained from file read operation with a volume doesn’t
show any significant difference from the default option.

In contrast, compression provides higher performance when writing to a file
for a single disk. However, the performance of writing to a volume does not
show any significant difference as compared to the default one.

Figure 4.43: Compressed vs Default File Read Figure 4.44: Compressed vs Default File Write
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4.4 Seekwatcher Test Results

The following sections present the Seekwatcher graphs that are obtained from
the block layer tracing done by the blktrace facility. The block I/O traces
were taken simultaneously the Iozone tests as well as with directory and file
read/write tests.

4.4.1 Iozone Single Disk and Volume Sequential Read

As it can be seen in the graph in Figure 4.45 below, the throughput of Btrfs
shows consistency throughout the whole run while Ext4 achieves higher through-
put initially and starts to decline after a while. It also shows that the number
of seeks performed by Btrfs is much higher than that of Ext4 filesystem for the
Iozone sequential read tests performed on a single disk.

Figure 4.45: Single Disk Sequential Read

For sequential read operations performed on volumes, Ext4 shows higher through-
put, and similarly making fewer seeks during the initial stages but increases
the rate as the benchmark continues. At the start of the run Ext4, shows lesser
throughput performance, but it catches up with Btrs after a little while.
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Figure 4.46: Volume Sequential Read

4.4.2 Iozone Single Disk and Volume Strided Read

The results shown in Figure 4.47 displays that both filesystems exhibited simi-
lar throughput and disk seek patterns while running this benchmark. Initially
Ext4 performs fewer seeks, but after abut 60 seconds, its rate gets higher and
appears in a similar state with that of Btrfs.

For strided reading to a volume, Ext4 shows higher throughput and performs
fewer seeks than the Btrfs volume.

Figure 4.47: Single Disk Strided Read
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Figure 4.48: Volume Strided Read

4.4.3 Iozone Single Disk and Volume Random Read/Write

As it can be seen in the graph in Figure 4.49 below, even though Ext4 shows
better performance initially and at the end of the run, both filesystems shows
very much similar throughput most of the benchmarking test run on a single
disk. In contrast to the similarity between the achieved throughput, Btrfs per-
foms a much larger amount of seeks as compared to Ext4.

Figure 4.49: Single Disk Random Read/Write

Similarly, in the tests on volumes, Ext4 achieved higher throughput and per-
formed fewer seeks. However, this changes towards the end of the benchmark,
and the disk head movement suddenly gets higher and there is an increase in
the number of seeks.
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Figure 4.50: Volume Random Read/Write

4.4.4 Iozone Single Disk and Volume Sequential Write

For the sequential write benchmarking test run done on a single disk, Ext4
attained similar throughput with Btrfs but with fewer seeks than Btrfs. In
contrast, for the case of volumes, Ext4 shows better throughput and a much
smaller number of seeks. However, as has been observed with the single disk
run of the random read/write test, the number of seek gets higher towards the
end of the run for Ext4 LVM volume sequential write operations.

Figure 4.51: Single Disk Sequential Write
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Figure 4.52: Volume Sequential Write

4.4.5 Directory Tree Read/Write Test Results

Figure 4.53 illustrates that Btrfs exhibits a much higher throughput and smaller
seek rate in the directory read test run done on a single disk. As can also be
seen in Figure 4.54, the number of seeks made by Btrfs is similarly smaller and
its achieved throughput is higher for the case of volume.
Although the disk seek rate of Ext4 is much higher for both the volume and
single disk cases, Ext4 shows a higher rate of throughput at some stages of the
benchmark run.

Figure 4.53: Single Disk Directory Read

The figure below shows that the Btrfs seek rate for the directory write oper-
ation is too insignificant to be seen in the graph whereas Ext4 displays a higher
disk seek pattern. Similarly, the Btrfs throughput is much higher than Ext4, al-
though the performance degrades at one point but then returns to its initial
level of high throughput.
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Figure 4.54: Volume Directory Read

In the same way, the throughput achieved for the directory write test run per-
formed on volumes shows that Btrfs achieved higher throughput as compared
to the Ext4 filesystem performance, again with almost no seeks.

Figure 4.55: Single Disk Directory Write
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Figure 4.56: Volume Directory Write

4.4.6 11GB File Read/Write Test Results

Figure 4.57 shows that Ext4 achieves similar throughput and fewer seeks in
the file read test benchmark run as compared to Btrfs. The disk seeks made by
Btrfs are very much more numerous than for Ext4.
For the similar benchmark made on volumes, Figure 4.58 shows that the disk
seek rate is similar with the one that is seen with the single disk runs. On the
other hand, the achieved throughput for Btrfs is very much lower than the one
exhibited on a single disk. Ext4 shows similar higher performance and lower
disk seeks for the file read test runs made on volumes.

Figure 4.57: Single Disk File Read
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Figure 4.58: Volume File Read

The figure below illustrates that for the file write benchmark, both filesystems
show similar disk seek rates and throughput, although Btrfs shows a bit higher
throughput at some stage. The similar run made on volumes, shown in Figure
4.60, Ext4 moves the disk head all over the platter. In contrast Btrfs makes only
very minimal disk seeks for most of the benchmark run.

Figure 4.59: Single Disk File Write

56



4.5. COMPUTATIONAL CHEMISTRY TEST RESULTS

Figure 4.60: Volume File Write

4.5 Computational Chemistry Test Results

Figure 4.61 shows the elapsed and CPU time obtained from Gaussian 09 while
performing the same calculation with its scratch files on the two filesystems, in
the single disk experimental setup. The graph shows that the Ext4 filesystem
has only slightly higher CPU usage – 0.5% – as compared to Btrfs. Never-
theless, the total elapsed time to perform the calculation in Btrfs filesystem is
much more higher than the the time taken by Ext4.
As it can be seen in Figure 4.62, Btrfs performs a higher number of I/O op-
erations while executing the Gaussian calculation as compared to the same
operation done on Ext4 filesystem.

Figure 4.61: Total Elapsed and CPU Time Figure 4.62: Total Number of I/O Operations

4.6 Compression Test Results

The following section shows the test results of file and directory compression
with LZO and Zlib compression options of Btrfs and with the bzip2 software
with Ext4 filesystem. Since the LZO mount option is not supported with the
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default kernel that shipped with Debian Squeeze 6.0, the compression option
of LZO is tested with a kernel 2.2.6.38 with the same OS. In addition, the Btrfs
compression option was also tested with compress-force mount option.

4.6.1 Compression Times for Files and Directories

As it can be seen from Figure 4.63 and 4.64, the time taken to compress both
files and directories is much longer for bzip2 compared with both LZO and
Zlib compression features of Btrfs. When comparing the time taken to com-
press a file between Zlib and LZO, LZO takes lesser time than Zlib to compress
a file with a size of 15GB. Similarly LZO takes less time to compress the direc-
tory as compared with Zlib.

Figure 4.63: File Compression Time Figure 4.64: Directory Compression Time

4.6.2 Space Reduction Ratios for Files and Directories

Figure 4.67 shows the space reduction gained by the compression mechanisms
in compressing files. bzip2 shows more than 90% space reduction while LZO
compression shows more than 70% space reduction on compressed files. How-
ever, Btrfs Zlib compression only shows a very minimal space reduction for file
compression.

For directory compression, bzip2 shows a higher space reduction ration for
a directory of size 1019MB containing different file types. In contrast, Zlib
shows higher space reduction for directory of 499MB which only contains text
files. LZO shows a smaller space reduction for directory compression.
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Figure 4.65: Space reduction for file Figure 4.66: Space reduction for directory

4.6.3 Compression Results with compress-force

Using Btrfs’s compress-force option forces Btrfs to compress the data no matter
how it looks after compression. As it can be seen from Figures 4.67 and 4.68,
using this option makes the time taken to compress a bit longer than when
the plain compress mount option is given, for both file and directory com-
pressions. However, compress-force results in a big difference on the achieved
percentage reduction in size.

Figure 4.67: File Compression Time with force-
compress

Figure 4.68: Directory Compression Time with
force-compress

The reduction of space achieved by the compression option together with compress-
force provides a space reduction of more than 80% for both Zlib and LZO file
compression. Similarly, it achieves a more than 70% space reduction for the
directory with text only files and more than 40% space reduction for the direc-
tory containing different file types.
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Figure 4.69: Space reduction of files with force-
compress

Figure 4.70: Space reduction of directories with
force-compress

4.7 Btrfs Defragmentation Tool Results

As it can be seen in Figure 4.71, the time taken by the Btrfs defrag command to
defragment a file is very minimal as compared with the total number of frag-
mentations in the filesystem. The time taken by the defrag command shows a
very large time reduction as the number of execution runs of the tool increases.

It can be easily seen that, after the first run, the time required to correct the
fragmentation as well as the reduction in the percentage of fragmented file is
very dramatic. Moreover, the raw data shows that the time taken to defrag-
ment and also the achieved reduction in fragmentation percentage are very
consistent across runs.

Figure 4.71: Average time for defragmentation Figure 4.72: Percentage of file fragmentation
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Chapter 5

Analysis and Discussion

This chapter presents the results of the various tests described in the previous
chapter, and well as discussions of their implications.

5.1 I/O Performance Results

Tables 5.1 and 5.2 summarize the performance differences between the Ext4
and Btrfs filesystems for the single disk and volume tests (respectively). The
noted differences in Iozone performance run across all record sizes unless ex-
plicitly stated otherwise. Mean performance increases are given with the stan-
dard deviation in parentheses.

Significant Performance Differences for Single Disk Tests

Test Iozone Perf. Advantage Throughput Seeks
Sequential Read no difference similar Btrfs many more
Random Read Ext4: 7.5% (4.3%) for files≥4GB with

record size< 512KB
similar Btrfs many more

Btrfs: 17% (10.7%) for files ≥4GB with
record size>512KB

Strided Read Ext4 with record size ≤512KB: 45.9%
(6.3%) for files=4GB; 53-71% for
files=8GB

similar similar

Btrfs with record size>512KB: 12.5%
(11.3%) for files≥4GB

Sequential Write Btrfs: 55.3% (9.5%) for files <512MB;
20.6% (3.8%) for 512MB files

similar similar

Sequential Re-
write

Btrfs: 11.6% (3.3%) for files≤256MB

Ext4: 11.6% (1.8%) for files=1GB
Random Write Btrfs: 11.7% (3.1%) for files ≤512MB;

30.3% (33.7%) for files≥2GB
similar Btrfs many more

Ext4: 9.7% (3.8%) for files=1GB

Table 5.1: Single disk performance differences

61



5.2. READ VS WRITE OPERATIONS

Significant Performance Differences for Volume Tests

Test Iozone Perf. Advantage Throughput Seeks
Sequential Read Btrfs: 62.3% (6.5%) for files ≥4GB Btrfs ∼33% lower similar
Random Read Btrfs: 30.9% (18.1%) for files=4GB

and 8GB with record size≥1MB
Btrfs many more

Strided Read Ext4 with record size up to 1MB:
19.3% (0.1%) for files=4GB; 51.1%
(0.1%) or files=8GB

Btrfs ∼25% lower Btrfs slightly more
seeks during the first
half

Btrfs with record size≥2MB: 53.4%
(11.3%) for files≥4GB

Sequential Write e Btrfs: 54.0% (14.6%) for
files≤256MB; 21.7% (4.4%) for
files=512MB; 85.2% (7.6%) for
files≥1GB

Btrfs ∼33% lower Btrfs many more
seeks (∼3x)

Sequential Re-write Btrfs: 12.4% (3.7%) for files≤256MB;
83.0% (21.1%) for files≥1GB
Ext4: 7.8% (4.4%) for files=512MB

Random Write Btrfs: 159.7% (66.7%) for files ≥4GB Btrfs ∼33% lower Btrfs many more

Table 5.2: Volume performance differences

5.2 Read vs Write operations

As can be recalled from the results section, Ext4 provides better throughput
on random read operations with large files in general, where as Btrfs achieved
higher throughput on random write operations for most of file and record size
combinations performed done on a single disk. As similarly seen with random
write operations, Btrfs also performs better for random read operations with
volumes. However, Ext4 perfoms better with 1G and 2GB file sizes.

Similarly, for random write operations Btrfs performs better with smaller and
larger file sizes while Ext4 performs better in the middle of the file size range.

In the copy-based sequential I/O read tests, both filesystems perform simi-
larly. In the sequential write test, Btrfs performs better for smaller files while
Ext4 performs better for larger files. For similar operations done on volumes,
Btrfs performs better for writes operation in general as well as for large files in
read operations.

Figure 5.1 shows the overall results of file read/write operations done on a
single disk as well as volumes. It can be seen that Btrfs performs better for
read operations while Ext4 performs better for file write operations in general.
However, as it has been exhibited with Iozone random write test result, Btrfs
performs differently when working with a single disk and with volumes. It
shows higher performance as compared with Ext4 LVM volumes for the same
write operation. On the other hand, read operations done on volumes are very
much similar for both filesystems.
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Figure 5.1: File Read/Write Elapsed Time

In addition to the differences exhibited with synthetic workloads as well
as the file/directory read/write tests, in the real world application test of the
computational chemistry simulation with large sequential I/O operations, Ext4
performs 3.7% faster than that Btrfs while using almost identical amounts of
CPU (only a 0.6% usage difference). This is a small but significant difference.

The following subsections discuss these performance results from a variety
of perspectives.

5.2.1 Single Disk vs Volume

Using volumes to perform any of the Iozone operations results in higher over-
head as compared to the same operation with a single disk for most of the
read operations. For example, a random read operation made to a single disk
shows a 53% increment on the achieved throughput for Btrfs as compared with
the volume. Similarly, the single disk random read operation done on Ext4 on
average provides 57% higher performance as compared to using a Linux LVM
volume.

The performance overhead of working with volumes increases with the in-
crease of file sizes in general for the Ext4 filesystem. In contrast, Btrfs write
tests with Iozone mostly show that, rather than a performance penalty, there
is performance gain, especially for large files, while working with volumes.

The directory and file read/write tests indicate that reading a file from a single
disk is faster than reading a file from a volume for Btrfs. In contrast, for Ext4
there is no significant difference reading from a single disk or from Linux LVM
volumes. In contrast to file reading, directory tree read test results displayed
that reading from a volume is faster for Btrfs, whereas reading a file from an
Ext4 volume takes almost twice the time needed for doing the same operation
on single disk.
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Directory tree read tests do not show any significant difference for working
with Ext4 single disks or LVM volumes. In contrast, for Btrfs performing direc-
tory reads is faster when working with volumes as compared with the single
disk. Directory write results do not show any difference when done with both
single disk and volumes for Btrfs filesystem. However directory tree writing
perfoms better when done with the single disk for Ext4.

Even though there is a difference on performance when working with vol-
umes, especially for the Iozone tests, the block layer I/O tracing results do
not show that much difference in disk seeks between single disk and volume.
Moreover, the Seekwatcher graphs clearly show that there is not a large differ-
ence on the achieved throughput, especially for Ext4. Btrfs shows minimally
lower value for the achieved throughput for all tests except for strided read.
The difference in performance shows that there is a large performance penalty
of about ∼30% when with working with Btrfs Volumes.

In contrast to the results of the Iozone test block tracing , both the directory tree
and file read/write operations exhibit a high performance degradation while
working with volumes. For the file read operation, Btrfs achieved a through-
put of up to 80 MB/s; on the other hand, it can only reach up to 20 MB/s for
the same task with volumes. Moreover, Btfs shows a higher throughput of up
to 70 MB/s for the single disk whereas it achieves 45 MB/s for volumes in the
file write operations.

The performance difference exhibited for file read/write operations for Ext4
is small compared with that of Btrfs. Ext4 shows that file read operations re-
sults in a ∼10% difference while write operation results in ∼20% difference of
achieved throughput. In contrast, sequential read operation tests don’t show
any difference on either filesystem when doing the same operations on sin-
gle disk and volumes for file sizes up to 4G. But for files with size of 8GB, a
performance improvement of 9% is exhibited on average for Ext4 filesystems.
Strangely, Btrfs shows that for 8GB files, sequential operation done on volumes
are 45% better than doing the same operation on a single test.

Strided read tests of Iozone tests made on a single disk do not show any per-
formance gain as compared to volumes in general. However, a similar to the
strange result that was exhibited with the sequential read operation for the file
size of 8GB also happen for strided read tests. Btrfs shows that for files that
are greater than 4GB, volumes have better performance, 27% on the average.

For random write operation done on the single disk, there is no difference ex-
hibited for either filesystem other than Ext4 showing a 5% performance gain
on the average for file sizes from 512MB to 1GB.
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5.3 Large vs Small File Size

In most cases, Btrfs performs better with large file write operations whereas
Ext4 is better for large file read operations. In the random read operation, Ext4
shows higher throughput with 8GB file in combination eith all record sizes for
tests made on a single disk. However, the performance with 4GB is a mix,
and Ext4 performs better with record size ≤256KB while Btrfs performs better
with record size ≥512KB. The higher performance of Ext4 for large file size is
different when reading is made from volumes. Btrfs performs better with file
sizes of 4GB and 8GB in combination of record size ≥1MB.

In contrast, Btrfs performs better for file with sizes of 4GB and 8GB for ran-
dom write operations on a single disk. Ext4 performs better with files of 1GB
and 2GB in a similar setting. Similarly, for random write done on volumes,
Btrfs performs better for both small and large file sizes, except for the file size
of 512MB, where Ext4 exhibits better performance.

For sequential read operations, Ext4 outperforms Btrfs for both small and larger
file sizes for tests done on a single disk, while Btrfs performs better with larger
file sizes for the similar tests done on a volume. Moreover, the results ob-
tained from sequential write operations done on a singe disk shows that Ext4
performs better for large file sizes while Btrfs performs better for small files.
However, for the same test type done on volumes, Btrfs shows higher perfor-
mance with large file sizes.

The results obtained from the sequential re-write test is exactly the same as
for the sequential write, for both single disk and volume. However, with the
strided read test Btrfs performs better for large file sizes for record size ≤512
whereas Ext4 performs better for similar file sizes but with record size ≥1MB.

5.4 Strange and Unexpected Results

Tests done with the Iozone benchmarking tool shows some kinds of variation
and some results that are difficult to explain. Some of the observed strange
scenarios are as follows:

• At times, Btrfs shows very large error bars, for both single disk and vol-
ume, for both sequential and random write operations, with and without
compression. These occur primarily with file sizes in the range 512MB-
1GB.

• Ext4 shows higher performance than Btrfs for the single file size of 512MB
in random write,random read and sequential re-write operation done on
volumes.

• Ext4 shows higher performance than Btrfs for the single file size of 1GB
in random write test done on the single disk.
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• Btrfs shows a very large performance difference with write operations
done in a volume for large sized files, as compared to the difference
shown between Btrfs and Ext4 for a single disk with similar operation.

5.5 Compression feature efficiency

Table 5.3 shows total time taken for compressing files and directories of vari-
ous different sizes. bzip2 used with Ext4 requires a very long compression time
for both the file and the directory While Zlib and LZO took less than 5 minutes
and 2 minutes for file and directory compression (respectively), bzip2 took 169
minutes and 3 minutes for file and directory compression (respectively). The
difference on the time taken to make compression becomes narrower when
compressing the directory. Turning on the forced compression feature does
not show a large difference on the time taken to perform the compression as
compared with using only the compress mount option, for both Zlib and LZO.

Compression Time in Minutes
File/Directory size

Compression Tool 200 6144 15360 489 1019
Zlib 0.05 1.80 2.43 0.58 1.27
Zlib compress-force 0.05 1.58 4.08 0.59 1.70
LZO 0.04 1.26 3.10 0.66 1.32
LZO compress-force 0.04 1.59 3.82 0.67 1.35
bzip2 0.73 84.77 169.73 1.36 3.68

Table 5.3: Compression Time

As shown in Table 5.4, bzip2 shows a very large space reduction percent-
age for both file and directory compression. However turning compress-force
mount option of of Btrfs allows dramatic space reduction with a very minimal
increment on the time required to perform compression. Even though LZO
performs better than Zlib for file space reduction, Zlib performs better when
compressing directories.
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Space Saving Percentage
File/Directory size

Compression Tool 200 6144 15360 489 1019
Zlib 11% 10% 5% 71% 45%
Zlib compress-force 87% 87% 88% 71% 46%
LZO 77% 77% 78% 58% 37%
LZO compress-force 87% 87% 88% 71% 46%
bzip2 95% 97% 97% 84% 53%

Table 5.4: Space Saving Percentage

5.5.1 LZO Compression Test Results of Iozone

For the main Btrfs compression tests described in Chapter 3 and reported in
Chapter 4, only the Zlib compression was available for automatic compression
and the LZO tests were performed manually. Since then, a new kernel version
(2.6.38) was release which includes support for both compression methods in
Btrfs, and additional tests have been made with Iozone with LZO compression
enabled. This Test results are from the same OS but with the updated kernel.

As can be seen from the graphs below, the LZO compression features provides
higher throughput for all types of write operations. However the performance
achieved for read operations is not significantly better than for the Zlib com-
pression Option.

LZO compression shows a minimal improvement in throughput for sequential
read operations for files with size of 1GB and 2GB, with all given record sizes.
However, for file sizes of 4G and 8GB there is no significant improvement on
the achieved throughput gain with LZO as compared with Zlib compression
feature. Representative results form the full I/O test file size-record size com-
binaiton range are plotted in Figure 5.2.
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Figure 5.2: LZO and Zlib sequential read I/O throughput

Figure 5.3 shows representative results from the Iozone random read test
(single disk). There is no significant difference in achieved throughput be-
tween using LZO and Zlib compression features for random read operations
although the difference seen on the attained throughput between LZO and
Zlib is a bit higher than for the sequential read operation.

Figure 5.3: LZO and Zlib random read I/O throughput
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As similarly seen with sequential and random read operations, the perfor-
mance improvement gained through using LZO compression is quite small
compared with that of the Zlib compression feature for the strided read test,
as shown in Figure 5.4.

Figure 5.4: Strided read I/O throughput with LZO compression

Turning on the LZO compression feature for sequential write operations
results in higher throughput of more than twice that exhibited while using
Zlib compression for all record sizes and file sizes of 1GB to 8GB. Figure 5.5
shows representative results.

Figure 5.5: LZO and Zlib sequential Write I/O throughput
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As can be seen in Figure 5.6, LZO shows higher throughput, more than
double that for Zlib, for random write operations with file sizes of 1GB to 2GB.
Moreover, the performance gain obtained from LZO compression becomes
three times higher for files of size 4GB and 8GB.

Figure 5.6: Random Write I/O throughput

The performance improvement gained from the LZO compression feature
for the sequential re-write test is quite similar to the performance shown with
sequential write operation. As it is shown below in figure 5.7 the achieved
throughput is doubled with record sizes up to 512KB . More over with record
sizes grater than 1MB with file sizes in the range from 1GB to 8GB the achieved
throughput goes as higher as three times when compared with that of Zlib.

Figure 5.7: LZO and Zlib sequential re-write I/O throughput
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5.6. EFFICIENCY OF THE BTRFS DEFRAGMENTATION TOOL

5.6 Efficiency of the Btrfs Defragmentation Tool

Measuring the efficiency of the Btrfs defrag utility is performed by using a
qualitative measurement, since there is no similar tool with a similar objective
for the Ext4 filesystem that is ready for production use. The time required by
the defrag tool to achieve defragmentation relative to the level of file fragmen-
tation in the filesystem, and the number of fragmented files in the filesystem,
are used as a metrics to evaluate its efficiency.

Table 5.5 reports the time taken to defragment, the fragmentation percentage
for the filesystem after the defrag run, and the percentage reduction in frag-
ments achieved during that run (with respect to fragmentation level before
the run). Fragmentation decreases dramatically with each defrag run. In its
first run, the defragmentation tool corrects an average of 170 fragments out of
a total number of 415 initially present, with a standard deviation of 16.6.

defrag run time
(sec)

FS fragmenta-
tion %

% Reduction

defrag run 1 166 34% 16%
defrag run 2 153 2% 96%
defrag run 3 5 0% 100%

Table 5.5: Defragmentation tool efficiency
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Chapter 6

Conclusion and Future Work

6.1 Summary of main findings

The overall performance analysis made between Ext4 and Btrfs shows differ-
ences in the performance results obtained with the synthetic benchmarking
tool and real world application tests. The results obtained from the Iozone
benchmarking tool show that the Btrfs filesystem provides better performance
for read operations with large sized files in general, with sequential read oper-
ations being an exception. Similarly, Btrfs provides higher performance with
large file sizes for read operation performed with volumes.

In contrast to read operations, Btrfs provides higher performance for most
write operations to small sized files. For random write operations, the results
show higher performance with large sized files, as seen with read operations
to a single disk.

The results of Seekwatcher show that Ext4 provides similar performance when
while working with both read and write operations to a single file. In contrast
to the result obtained from Iozone, Seekwatcher shows that Ext4 performs bet-
ter while working with volumes. In addition to the difference in the achieved
throughput between the filesystems, Seekwatcher also shows that Btrfs per-
forms many more seeks, which is one of the factors that can have a large im-
pact on filesystem performance.

Directory tree and large file read/write tests results indicate that Btrfs provides
better performance for these operations, whereas Ext4 provides higher perfor-
mance for both directory and file write operations on a single disk. On the
other hand, there is no performance difference exhibited between the filesys-
tems for file reads operation done on a volume. Btrfs provides higher perfor-
mance for writing a very large file, while Ext4 displays higher perfrmance for
writing a directory tree.
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6.2. EVALUATION AND FUTURE WORK

The computational chemistry test results indicates that Ext4 provides higher
throughout while making fewer I/O operations for this I/O intensive applica-
tion.

Enabling the default Zlib compression option for Btrfs doesn’t result in a large
difference when working with small files. However, it provides a higher per-
formance improvement for large files. On the other hand, using the LZO com-
pression feature results in a performance improvement for both small and
large file sizes with write operations, but no noticeable difference with read
operations.

File and directory compression results shows that bzip2 compression is ca-
pable of providing the highest space saving but with the longest compression
time. Btrfs transparent compression with compress-force option provides a
good amount of space saving with tolerable compression time.

The Btrfs defragmentation tool results shows that the tool is efficient, both
in terms of its ability to reduce file fragmentation to a high degree, as well as
with its speed in performing the defragmentaion process.

6.2 Evaluation and Future Work

The research in this thesis performed as many possible tests of filesystem func-
tionality as feasible given the timeframe of the work. The following observa-
tions can be made about ways that this research could be strengthened even
more.

• The Iozone benchmaking tool is good in providing an overall assessment
of filesystem performance. However, it sometimes shows discrepancies
in the results obtained over multiple runs, most significantly in its write
operation tests. This causes its reliability in providing true write perfor-
mance differences to be somewhat uncertain.

• Implementing tests with both macro and micro benchmarking tools would
be helpful in understanding the differences between the filesystems.

• Files used for compression tests were only of one type. The result will
be more comprehensive if different file types are tested, since this would
help to identify the interactions of file types with compression algorithms

• The Btrfs LZO compression option is tested only in the single disk envi-
ronment. It should also be tested with volumes.

• Block tracing was not done with the LZO compression tests. It should be
performed in order to find out the performance impact of this effective
compression feature.
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6.2. EVALUATION AND FUTURE WORK

• Experiments should be performed with much larger volumes than were
examine here in order to determine to extent to which Btrfs has accom-
plished its major development goal as a scalable filesystem.

• Btrfs has many additional features that are worth investigating, includ-
ing such as RAID support and snapshots.

• The two filesystems’ performance could also be investigated in a net-
work environment to see if one has an advantage as a file server.

• Virtualization has been implemented widely in most computing envi-
ronments and investigating how Btrfs performs while used in a virtual-
ized environment would also be interesting and useful.

In conclusion, this thesis has achieved its goal of performing a thorough
comparison of the Btrfs and Ext4 filesystems in terms of performance and with
respect to some of Btrfs’ unique features (compression and defragmentation).
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Appendix A

Average Results of Iozone
Benchmarking Tool

A.1 Random Read Single Disk and Volume

Results of Btrfs single and Volume
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A.1. RANDOM READ SINGLE DISK AND VOLUME

Results of Ext4 single and Volume
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A.2. SEQUENTIAL READ SINGLE DISK AND VOLUME

A.2 Sequential Read Single Disk and Volume

Results of Btrfs single and Volume

Results of Ext4 single and Volume
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A.3. STRIDED READ SINGLE DISK AND VOLUME

A.3 Strided Read Single Disk and Volume

Results of Btrfs single and Volume
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A.3. STRIDED READ SINGLE DISK AND VOLUME

Results of Ext4 single and Volume
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A.4. SEQUENTIAL WRITE SINGLE DISK AND VOLUME

A.4 Sequential Write Single Disk and Volume

Results of Btrfs single and Volume

Results of Ext4 single and Volume
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A.5. SEQUENTIAL RE-WRITE SINGLE DISK AND VOLUME

A.5 Sequential Re-write Single Disk and Volume

Results of Btrfs single and Volume
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A.5. SEQUENTIAL RE-WRITE SINGLE DISK AND VOLUME

Results of Ext4 single and Volume
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A.6. RANDOM READ SINGLE DISK AND VOLUME WITH
COMPRESSION

A.6 Random Read Single Disk and Volume with Com-
pression

A.7 Sequential Read Single Disk and Volume with Com-
pression
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A.8. STRIDED READ SINGLE DISK AND VOLUME WITH COMPRESSION

A.8 Strided Read Single Disk and Volume with Com-
pression
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A.9. RANDOM WRITE SINGLE DISK AND VOLUME WITH
COMPRESSION

A.9 Random Write Single Disk and Volume with Com-
pression

A.10 Sequential Write Single Disk and Volume with Com-
pression

88



A.11. SEQUENTIAL RE-WRITE SINGLE DISK AND VOLUME WITH
COMPRESSION

A.11 Sequential Re-write Single Disk and Volume with
Compression
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A.12. RANDOM READ SINGLE DISK WITH LZO COMPRESSION

A.12 Random Read Single Disk with LZO Compression

A.13 Sequential Read Single Disk with LZO Compres-
sion
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A.14. STRIDED READ SINGLE DISK WITH LZO COMPRESSION

A.14 Strided Read Single Disk with LZO Compression

A.15 Random Write Single Disk with LZO Compression

A.16 Sequential Write Single Disk with LZO Compres-
sion Test Result
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A.17. SEQUENTIAL RE-WRITE SINGLE DISK WITH LZO COMPRESSION
TEST RESULT

A.17 Sequential Re-write Single Disk with LZO Com-
pression Test Result
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Appendix B

Results of defrag tool run
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Appendix C

Script

C.1 Fragmentaion Tool Script

#!/usr/bin/perl

use Getopt::Std;

use strict "vars";

use feature ":5.10";

my $opt_string =’hs:m:’;

getopts("$opt_string",\my %opt) or usage() and exit 1;

my @disk_free;

my @df_out;

my @size_list;

my $nb_fl;

my $path_dir;

my $bs_sz;

my $avl_spc;

my @fl_to_del;

my %seen;

my @crt_file;

my $numeric_val;

my $unit_val;

my $debug=1;

# show help message if -h option is given

if ($opt{’h’}){

usage();

exit 0;

}

my $fl_sz = $opt{’s’};

my $ms_unit = $opt{’m’};

die " File size to be created is not provided\n" unless $fl_sz;

die " Measurement unit of file to be created is not provided\n" unless $ms_unit;

# convert user input to upper case

$ms_unit = uc($ms_unit);
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C.1. FRAGMENTAION TOOL SCRIPT

# check the measurement unit entered is correct for this case k or m or g only

if (($ms_unit ne "K") && ($ms_unit ne "M") && ($ms_unit ne "G")){

print "measurement unit in terms of K or M or G\n";

exit 1;

}

# express block size of given file in terms of k , m or g

if (($fl_sz) && ($ms_unit)){

if ($ms_unit eq "K"){

$bs_sz = 1 ."K";

}elsif($ms_unit eq "M"){

$bs_sz = 1 ."M";

}elsif ($ms_unit eq "G"){

$bs_sz = 1 ."G";

}

}

# get the amount of available space on the given partition to fill it up

$path_dir = ‘pwd‘;

@disk_free = ‘df -h $path_dir‘;

# get the row that specifies avialble disk space from btrfs fi df command

foreach my $vals (@disk_free){

@df_out = split(/\s+/,$vals);

}

$avl_spc = $df_out[3];

if ($avl_spc =~/(\d+)(\w+)/){

$numeric_val = $1;

$unit_val = $2;

}

# Convert given file measurement unit into measurement unit of disk partion

if(($ms_unit eq "k") && ($unit_val eq "M" || $unit_val eq "MB")){

$numeric_val = $numeric_val * 1024;

}elsif(($ms_unit eq "k") && ($unit_val eq "G" || $unit_val eq "GB")){

$numeric_val = $numeric_val * 1048576;

}elsif(($ms_unit eq "M") && ($unit_val eq "K" || $unit_val eq "KB")){

$fl_sz = $fl_sz * 1024;

}elsif(($ms_unit eq "M") && ($unit_val eq "G" || $unit_val eq "GB")){

$numeric_val = $numeric_val * 1024;

}elsif(($ms_unit eq "G") && ($unit_val eq "K" || $unit_val eq "KB")){

$fl_sz = $fl_sz * 1048576;

}

# check if there is enough space to create the required file

if ($fl_sz > $numeric_val){

print " There is no enough to create the requested file size\n";

exit 1;

}

# get the total disk size and subtract some value reverser working space

$nb_fl = int(($numeric_val - 128)/$fl_sz);

# create a file with various size based on given size and
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C.1. FRAGMENTAION TOOL SCRIPT

@size_list = (($fl_sz - 2),($fl_sz - 1),$fl_sz,($fl_sz - 2),$fl_sz);

# create the required files with varying size

for(my $val = 0; $val < ($#size_list +1); $val++){

if(@fl_to_del){

for (my $i = 0; $i < ($#fl_to_del +1); $i++){

my $nm = $fl_to_del[$i];

system("dd if=/dev/zero of=$nm bs=$bs_sz count=$size_list[$val]");

push(@crt_file,$nm);

}

}else{

for (my $i = 1; $i <= $nb_fl; $i++){

system("dd if=/dev/zero of=$i bs=$bs_sz count=$size_list[$val]");

push(@crt_file,$i);

}

}

# generate random file names to delete

@fl_to_del=();

%seen =();

my $haf_fl = int($nb_fl/2);

print " files are going to be selected \n";

for (1..$haf_fl){

my $rn_gen = int (rand($nb_fl)) +1;

redo if $seen{$rn_gen}++;

push(@fl_to_del,$rn_gen);

}

# delete selected files

for (my $dl =0; $dl < ($#fl_to_del +1); $dl++){

my $delfle = $fl_to_del[$dl];

system("rm $delfle");

}

# update the list of created file to only hold remaining files in the partition

@crt_file =();

open(FL,"ls $path_dir |");

while ( my $line =<FL>){

chomp($line);

if($line =~ /^\d+$/){

push (@crt_file,$line) ;

}

}

close(FL);

}

sub usage {

print " Usage:\n";

print "-s size of file to be created\n";

print "-m measurement unit of file to be created\n";

print "./Script [-s][-m]\n";

}
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C.2. FRAGMENTAION PERCENTAGE REPORT

C.2 Fragmentaion percentage report

#!/usr/bin/perl

use strict;

my $tot_no_fl = 0;

my $tot_no_ext = 0;

my $no_frag_fl = 0;

my $path = ‘pwd‘;

chomp($path);

open (FL, "ls $path |");

foreach my $file (<FL>)

{

my $flfrg_com = ‘filefrag $file‘;

if ($flfrg_com =~/.*:\s+(\d+).*/)

{

my $no_ext = $1;

$tot_no_ext += $no_ext;

if ($no_ext > 1)

{

$no_frag_fl++;

}

$tot_no_fl++;

}

}

close (FL);

my $frag_perc = sprintf("%.2f",(($no_frag_fl/$tot_no_fl) * 100));

print " $no_frag_fl non contigious files $frag_perc"."% \n";
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C.3. DEFRAG TOOL AUTOMATION SCRIPT

C.3 defrag tool automation script

#!/usr/bin/perl

use strict;

my $tot_no_fl = 0;

my $tot_no_ext = 0;

my $no_frag_fl = 0;

my $path = ‘pwd‘;

chomp($path);

open (FL, "ls $path |");

foreach my $file (<FL>)

{

if ($file =~ /^\d+$/)

{

my $flfrg_com = ‘filefrag $file‘;

if ($flfrg_com =~/.*:\s+(\d+).*/)

{

my $no_ext = $1;

if ($no_ext > 1)

{

system("btrfs fi defrag $file");

}

}

}

}

close (FL);

system("sync");
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Appendix D

Computational Chemistry Test
Input File

g09 application input file

1 %nproc=1
2 %mem=1gb
3 # ccsd/6-311G(df,pd) tran=full test nosymm
4

5 BENZENE d6h, rhf/6-31g* structure
6

7 0,1
8 C
9 H,1,RCH

10 C,1,RCC,2,120.00000
11 H,3,RCH,1,120.00000,2,0.00000,0
12 C,3,RCC,1,120.00000,4,180.00000,0
13 H,5,RCH,3,120.00000,4,0.00000,0
14 C,5,RCC,3,120.00000,6,180.00000,0
15 H,7,RCH,5,120.00000,6,0.00000,0
16 C,7,RCC,5,120.00000,8,180.00000,0
17 H,9,RCH,7,120.00000,8,0.00000,0
18 C,9,RCC,7,120.00000,10,180.00000,0
19 H,11,RCH,9,120.00000,10,0.00000,0
20

21 RCH=1.07560
22 RCC=1.38618
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