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Abstract

The principal aim of this study was to investigate vegetation-environment relationships and 

examine patterns of changes in forest understorey vegetation in five Chinese subtropical 

forests. Furthermore, an Ecological Field Theory (EFT) model for single-tree influence on 

understorey vegetation was applied to assess the relative contributions of tree influence to 

variation in understorey species composition.   

In focus are five study areas, located in the southern and southwestern parts of China 

and consisting of subtropical mixed coniferous and broadleaved forests. In each study area, 

fifty sample plots 1 m2 in size were randomly placed within each of ten 10×10 m 

macro-plots. Plant species composition was recorded in all 250 1-m2 plots, using frequency 

in sub-plots as a measure of species abundance. A total of 33 environmental variables were 

recorded for the 1-m2 plots as well as the 10×10 m macro-plots. All trees in all macro-plots 

were mapped and measured.   

The three ordination methods – DCA, LNMDS and GNMDS – were used in parallel 

to find corresponding (consensus) ordination axes, which were likely to represent true 

gradients in species composition. Three dimensions (axes, gradients) were needed to 

describe the variation in vegetation in two areas, two dimensions in the other three areas. 

GNMDS was finally chosen for interpretation and presentation of vegetation–environment 

relationships.

Environmental interpretation of ordinations was made by split-plot GLM and 

non-parametric correlation analysis. Four major underlying complex environmental 

gradients were correlated with the species composition gradients: (1) A litter-related 

compositional gradient, reflected in favourability for bryophytes, was found in four areas 

(TSP, LCG, CJT and LXH). (2) A topography-related compositional gradient, reflected in 

variation both in vascular plant and bryophyte species composition, was found in four 

areas (TSP, LGS, CJT and LXH). Relationship with inclination was found in three areas 

(TSP, CJT and LXH) and with aspect favourability and heat index in two areas (LGS and 

CJT). (3) A soil acidity/soil mineral nutrients-related compositional gradient, reflected in 

variation in vascular plant species composition, was found in three areas (LCG, LGS and 

CJT). This was related to soil mineral nutrients concentrations in one of these areas (LGS). 

Finally, (4) a tree density-related compositional gradient with variation mainly at the 
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macro-plot scale was observed as the first axis (GNMDS 1) in two areas (LCG and LXH). 

These four gradients will be referred to as the litter-layer depth, topography (inclination 

and aspect favourability), soil acidity/soil mineral nutrient concentrations, and tree density 

ecoclines (i.e. gradients in environmental conditions and species composition). Four out of 

twelve consensus ordination axes could not be interpreted ecologically by the 

environmental variables available. 

Changes in understorey vegetation (single-species abundances, species number and 

species composition) in the 1-m2 sample plots were studied in four areas during a first 

two-year, a consecutive three-year and a full five-year period. The results showed that: (1) 

a larger number of vascular plant species than expected by chance decreased and increased 

significantly in abundance in two and two areas, respectively; (2) the number of vascular 

plant species per plot increased significantly in two areas; (3) a larger number of bryophyte 

species than expected by chance decreased and increased significantly in abundance in 

three and two areas, respectively; (4) the number of bryophyte species number per plot 

decreased significantly in two areas but increased significantly in one other area. Finally, 

(5) significant plot displacement along gradients in species composition (interpreted 

GNMDS ordination axes) was observed in two areas for the main gradient (GNMDS 1) 

and one area for the second gradient (GNMDS 2).  

The patterns of change observed for bryophytes are attributed to climatic fluctuations. 

The increase in the abundances and numbers of vascular plant species is most likely due to 

seasonal variation and more favourable climatic growth conditions during specific years. 

No clear indications were found of changes for vascular plant species that may be linked to 

soil acidification or direct effects of air pollutants. 

An EFT model for single-tree influence on ground species composition was 

developed for each of the five study areas. Optimal model parameters were found by 

maximizing the eigenvalue of one constrained ordination axis (RDA), obtained by use of 

the tree influence index as the only constraining variable. Results showed that: (1) the 

eigenvalue of the first RDA axes varied between the five study areas, generally accounting 

for only a small part of the variation in species composition; and (2) the relative amount of 

compositional turnover attributable to tree influence differed between study areas and 

between species groups, but was generally low. We concluded that in Chinese subtropical 

forests, trees influence the understorey more in a collective manner than through the effect 

of single trees. 
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Introduction 

The identification of major gradients in species composition and the complex-gradients 

responsible for them is a fundamental task of vegetation ecological research (R. Økland & 

Eilertsen 1993, Antoine & Niklaus 2000). Knowledge of these gradients also constitutes a 

baseline for interpretation of temporal changes of vegetation. Considerable research efforts 

have been made to describe and explain the relationships between environmental variables 

and vegetation and the patterns of vegetation dynamics in temperate and boreal forests 

(Golley et al. 1978, Alban 1982, Gartlan et al. 1986, Haase 1990, R. Økland & Eilertsen 

1993, T. Økland 1996, Lawesson et al. 2000). Unfortunately, the nature of relationships 

between the distribution of vegetation and environmental variables, and vegetation changes, 

is still insufficiently known and poorly understood in (sub)tropical forests, especially in 

developing countries (see e.g. Douglas 1993, Benzing 1998). 

Chinese subtropical regions are mainly concentrated in the south, southwestern and 

southeastern regions, with a northern limit close to the Huaihe river–Qingling mountain 

lines at 40° N and a southern limit towards the Tropic of Cancer. Eastwards the subtropics 

extend to the coastlands and islands of the East China Sea, the South China Sea and 

Taiwan; the westward limit is the Chinese national border, from the eastern slope of the 

Tibetan Plateau southwards to southern Yunnan province. The subtropical zone thus spans 

11–12° from north to south, 28° from east to west, and covers more than 2,400,000 km2

(Wu 1980). The forests in these regions are diverse and represent species-rich ecosystems 

with many rare species (e.g. Ginkgo biloba, Metasequoia glyptostroboides, Davidia 

involucrata, etc.). The forests are also important as a resource (e.g. for food, building 

material, etc.) for the local people and thus for local and national economy (Tang et al.

2004).

The understorey vegetation is the most diverse and least understood component of 

Chinese subtropical plant communities (Wu 1980). Understorey vegetation acts as a forest 

ecosystem driver (Nilsson & Wardle, 2005), affecting canopy succession (Zackrisson et al.

1996, Messier et al. 1998), nutrient cycling (Weber & Van Cleve 1981, Brumelis & 

Carleton 1989, Knops et al. 1996) and wildlife (R. Økland & Eilertsen 1996, Gunnarsson 

et al. 2004). The complicated nature of water and thermal factors in subtropical forests, 

combined with strong geographic variation, variation in atmospheric circumfluence 
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conditions, altitude and regional history, gives rise to extreme variability in vegetation 

communities over moderate distances. As a result, understorey communities form a diverse 

composition across the subtropical forest contributing to both temporal and spatial 

diversity (Wu 1980). 

Understorey vegetation communities are dynamic (Chipman & Johnson 2002, Rees & 

Juday 2002). They change considerably with overstorey structure and composition, soil 

substrate status (de Grandpré et al. 1993, Klinka et al. 1996, Qian et al. 2003, Chen et al.

2004, Hart & Chen 2006), climatic change (R. Økland 1995, 1997, T. Økland et al. 2004, 

Zhao & Fang 2006) and air pollution (Gough et al. 2000, Aarssen & Jordan 2001, Tanner 

2001, T. Økland et al. 2004). Forest management considerations have, however, tended to 

include overstorey structure and composition, while often ignoring potential changes to 

understorey vegetation communities, which can result in long-term shifts in forest 

communities and have long-lasting effects on the forest landscape (Rees & Juday 2002, 

Chaping et al. 2004). There are strong reasons to expect that the forest understorey 

vegetation is more sensitive than trees to environmental change (R. Økland & Eilertsen 

1993), which in turn means that the early stages of damage to the forest ecosystem caused 

by air pollution are likely to be reflected in the forest ground vegetation (T. Økland 1990). 

Monitoring results from boreal forest ecosystems have revealed vegetation changes that 

may be related to acid deposition (Falkengren-Grerup 1986, R. Økland & Eilertsen 1996, T. 

Økland et al. 2004). However, for most parts of the world, including the Chinese 

subtropical forests, knowledge about vegetation dynamics and the drivers of such changes 

is lacking due to the absence of relevant monitoring programmes.   

It is well documented that southern, southwestern and southeastern China have 

suffered, and still suffer, from serious air pollution and acid rain problems (Zhao et al.

1994, Larssen et al. 1999, Larssen et al. 2006). In recent years, forest degradation caused 

by acid rain and climate change has been documented for these regions (Larssen et al.

2006). However, no detailed data sets have previously been analysed to detect quantitative 

changes in vegetation with climatic change and air pollution, and our basic knowledge of 

vegetation-environment relationships is still rather poor. In order to control acidification 

and manage the ecosystems of subtropical forests, a better understanding of the 

relationships between environmental variables and species composition and corresponding 

vegetation changes in the region is urgently needed. 

The Integrated Monitoring Program on Acidification of Chinese Terrestrial System 
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(IMPACTS), a five-year Sino-Norwegian co-operative project, was launched in 1999 

(Larssen et al. 2006) with the aim of establishing high-quality monitoring systems that will 

allow quantification of air quality and deposition, acidification rates of soils and soil waters, 

forest vitality and biodiversity of ground vegetation. The IMPACTS project includes five 

forest monitoring areas that receive significant amounts of long-distance airborne 

acidifying compounds, although no area is situated in the immediate vicinity of large 

emission sources. Ground vegetation monitoring in the IMPACTS project is based upon 

the basic principles of monitoring developed for use in Norway, highlighting detailed 

studies of ground vegetation and environmental conditions in permanent plots, in ways that 

facilitate statistical analysis (R. Økland & Eilertsen 1993, T. Økland 1996, Lawesson et al.

2000).

This thesis focuses on the vegetation-environment relationships and dynamics of 

understorey vegetation of China’s southern and southwestern subtropical forests. Of 

particular interest are the main ecoclines in these forests; patterns of changes in abundance, 

richness and composition, and the environmental factors that drive these changes. The 

basic part of this thesis is an exploratory study of relationships between understorey 

vegetation and environmental variables which forms the basis for the second part: analyses 

of the understorey vegetation dynamics, undertaken over a five-year period. The third and 

final part of the study is a detailed modelling study of single-tree influence on ground 

species composition. The thesis concludes by summarizing the major aspects of vegetation 

structure and dynamics in Chinese subtropical forests, with some recommendations for 

future research.
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Purpose and objectives 

The research carried out in connection with this thesis was designed to explore the 

vegetation–environment relationships, vegetation dynamics and single-tree influence on 

understorey vegetation in Chinese subtropical forests. Three groups of research questions 

were posed: 

 What are the main patterns of variation in understorey vegetation composition, 

and how are they related to variation in important environmental factors? (Paper I) 

 What are the patterns of variation in species abundances, species richness and 

species composition over a first two-year, a consecutive three-year and the full five-year 

period? What are the main ecological mechanisms behind the patterns observed? (Paper II) 

 Can EFT (ecological field theory) models for single-tree influence be relevant for 

Chinese subtropical forests? Do single trees influence understorey vegetation? (Paper III) 
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Study area 

The five study areas were chosen in well-defined watersheds in subtropical forests in 

southern and southwestern China. These were Tie Shan Ping in Chongqing municipality, 

TSP; Liu Chong Guan in Guizhou province, LCG; Lei Gong Shan in Guizhou Province, 

LGS; Cai Jia Tang in Hunan Province, CJT; Liu Xi He in Guangdong Province, LXH (see 

Fig. 1). The area is in the range 4.2–261 ha, with elevations ranging from 240 m to 1720 

m.a.s.l (Paper I, Figs 2–6). The climate is monsoonal, with dry winters and wet summers. 

The prevailing wind direction is from northeast in the winter and southwest in the summer. 

Relative humidity varies, with typical values around 80%. Estimated annual mean 

temperature and annual mean precipitation at the meteorological stations situated nearest to 

the study areas were, for the period 1971–2002, in the ranges of 15.3–22.0°C and 

1,105–1,736 mm, respectively (Paper I: Tab.1)  

Two soil types predominate, Haplic Alisol and Acrisol. These are typical of southern 

and southwestern China (Tang et al. 2004). The parent material of the soil is sedimentary 

bedrock, except LXH, which is dominated by granites. Regions with sedimentary bedrock 

have considerable geological heterogeneity on fine scales, with limestone in the vicinity of 

the watersheds. 

Tree stands were about 40–45 years old. One area, LGS, has older forests (personal 

field observation and interviews with local people). Many of the forests were planted in the 

1960s, after most of China’s forests had been logged during ‘the Great Leap Forward’ 

(1958–1962) (Tang et al. 2004). At the time this study was carried out, four of the five 

study areas (TSP, LCG, LGS, and LXH) were protected by law. Three areas (TSP, LCG and 

LXH) have been exposed to tourism pressures in recent years. However, there is no 

evidence of recent large-scale, human-induced disturbances in any study area. 

All the forests studied were mixed coniferous and broadleaved forests. In TSP and 

LCG, they were dominated by Masson pine (Pinus massoniana) and Chinese fir 

(Cunninghamia lanceolata); in LGS by Armand pine (Pinus armandii) and Chinese fir; in 

CJT by Masson pine and sweet gum (Liquidambar formosana); and in LXH by 

short-flowered machilus (Machilus breviflora) and itea (Itea chinensis). Fieldwork for the 

present study was carried out in 2000, 2002 and 2005 in TSP and LCG; in 2001, 2003 and 

2006 in LGS and CJT; and in 2002 and 2004 in LXH. 
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All five study areas were located within the target zones for acid rain control in China 

(Tang et al. 2004, Fig. 1). Sulphur dioxide (SO2) and sulphuric acid (H2SO4) have for 

decades been major long-distance airborne pollutants, whereas nitrogen oxides (NOx) and 

nitric acid (HNO3) are becoming increasingly important. Both South and North are 

supplied both by dry and wet deposition containing significant amounts of ammonium 

(NH4), calcium (Ca) and magnesium (Mg) (Paper I: Tab. 1). 

Fig. 1. Map of China showing the five IMPACTS study areas, isolines for precipitation pH and 

area of the official acid-rain control zone. IMPACTS study areas are indicated by a three-letter 

acronym: Cai Jia Tang (CJT), Liu Chong Guan (LCG), Lei Gong Shan (LGS), Liu Xi He (LXH) 

and Tie Shan Ping (TSP). The acid-rain control zone is highlighted in orange.
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Materials and methods  

More detailed description of the sampling procedures is provided in Paper I. Detailed 

descriptions of statistical methods are given in the respective papers. 

Approach 

Monitoring of vegetation and the environment was established in the IMPACTS forest 

study areas as far as possible according to the basic principles of the Norwegian concept 

for ground vegetation monitoring (T. Økland 1996, Lawesson et al. 2000). The key 

principles are summarized below:  

(1) Study areas should be selected to represent the regional variation within the entire 

area of interest, the intensity of impact factors, as well as climatic and other broad-scaled 

environmental gradients.  

(2) Similar ranges of variation along all presumably important vegetation and 

environmental gradients within the pre-selected habitat type should be sampled from each 

study area, in similar ways.  

(3) Ground vegetation, tree variables, soil variables and other local environmental 

conditions of importance for the vegetation should be recorded in the same, permanently 

marked plots. 

(4) The identification and understanding of the complex relationships between species 

distributions, total species composition and environmental conditions in each study area 

form a necessary basis for interpreting changes in ground vegetation, and for hypothesizing 

relationships between vegetation change and changes in the environment. 

(5) Observed changes in nature caused by anthropogenic factors not of primary 

interest for the monitoring study may interfere with and obscure trends related to the 

factors of primary interest. The influence of such factors should be kept to a minimum, for 

example by selecting areas existing in their near-natural state.  

(6) The sampling scheme must take into consideration the purpose of the monitoring 

and meet the requirements for data analyses set by relevant statistical methods; this implies 

constraints on plot placement, plot number and plot size.  

(7) All plots should be re-analysed regularly. For most forest ecosystems, yearly 

re-analyses will impose too much trampling impact etc. to be consistent with the purpose 

of monitoring. The optimal time interval between re-analyses in different ecosystems may 
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vary among ecosystems. 

Selection of study areas and placement of plots within each study area 

The study areas were selected to span regional gradients, in deposition of airborne 

pollutants and climatic conditions (Tang et al. 2004). All five study areas are located in the 

southern and southwestern parts of China and consist of subtropical forests. 

In each of the five study areas, ‘randomization within selected blocks’ was used (T. 

Økland 1990): ten macro-plots, each 10×10 m, were placed subjectively in order to 

represent the variation along presumably important ecological gradients (see T. Økland 

1996). Each 10×10 m macro-plot was positioned in the centre of one 30×30 m extended 

macro-plot. Five 1m2 plots were placed at random within each macro-plot, resulting in 50 

1m2 plots from each study area within ten 10×10 m macro-plots.  

Positions for 1m2 plots were rejected if they (1) included trees and shrubs or other 

plants that physically prevented placement of the aluminium frame used for vegetation 

analysis over the plot; (2) had been physically disturbed by man; (3) had been disturbed by 

landslides; or (4) were covered by stones for more than 20% of their area. In case of 

rejection, a new position for the 1m2 plot was selected randomly according to a predefined 

set of criteria. All plots were permanently marked by subterranean aluminium tubes as well 

as visible plastic sticks. 

Recording of environmental variables 

Of a total of 70 environmental variables recorded or calculated in or just outside each 1m2

plot or in the 10×10 m macro-plots, 33 were used for interpretation of the main ecological 

complex gradients responsible for variation in species composition. The recorded variables 

of possible importance for the differentiation of vegetation within each study area fell into 

six groups: (1) topography; (2) soil depth; (3) organic-layer depth and litter-layer depth; (4) 

soil moisture; (5) tree influence variables; and (6) other soil chemical/physical variables. 

Detailed information on the environmental variables, including the methods used to record 

and calculate them, is given in Paper I: Tab. 2. 

Recording of species composition and abundance 

The presence or absence of all vascular plants and bryophytes that were rooted in or 

growing over humus was recorded in each of 16 contiguous sub-plots, each 0.0625 m2

within each 1m2 plot. Species abundance in 1m2 plots was used: frequency in sub-plots, i.e. 
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the number of sub-plots in which a species was recorded as present (T. Økland 1988). 

Recording of tree variables 

All trees in all macro-plots that were higher than 2 m were mapped with respect to stem 

and crown perimeter. Tree number (both coniferous tree and broadleaved tree), height (h), 

diameter at breast height (dbh), crown cover, crown area, litter index (relative amounts of 

litter-fall over the 1m2 plot) and crown radius (k) were measured. Litter indexes were 

calculated as the sum of index values obtained for each tree with phytomass covering the 

plot. Crown cover indexes were calculated as the sum-product of canopy cover and crown 

area for all trees within a 25-m2 plot with the 1m2 plot in the centre. Crown radius was 

calculated as the mean of eight measurements in the cardinal directions of the distance 

from the stem centre to the crown perimeter (Paper I and Paper III). 

Statistical analyses 

All environmental variables recorded on a continuous scale were transformed to zero 

skewness in line with R. Økland et al. (2001). R freeware (Anonymous 2004a, 2004b), 

packages vegan (Oksanen 2007, Oksanen et al. 2007) and MASS, were used for all 

gradient and multivariate analyses. Environmental variables were not down-weighted 

(Paper I and Papers II–III). 

Detrended Correspondence Analysis (DCA; Hill 1979, Hill & Gauch 1980), Local 

Non-metric Multi-dimensional Scaling (LNMDS; Kruskal et al. 1973, Minchin 1987) and 

Global Non-metric Multidimensional Scaling (GNMDS; Kruskal 1964) were applied in 

parallel (R. Økland 1996) to corroborate gradient patterns. In each group of corresponding 

axes, GNMDS was subjected to environmental interpretation. The numbers of ordination 

axes verified by high resemblance to axes obtained by other ordinations were three for two 

areas and two for the other three areas (Paper I).  

GNMDS ordination axes were interpreted by split-plot GLM analysis (Crawley 2002) 

combined with Kendall’s rank correlation coefficients  calculated between plot scores 

along GNMDS axes and environmental variables (Kendall 1938) (Paper I). 

Environmentally interpreted GNMDS axes were used as a baseline for analysing changes 

in species composition. For each study area, sub-plot frequencies for all species in all plots 

the year of establishment and each year of re-analysis were organized into re-analysis data 

matrices. Each re-analysis matrix was subjected to GNMDS ordination with all 

plot-by-time combinations as active samples (Paper II). 
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For each study area the following variables were tested by Wilcoxon’s one-sample test 

(Sokal & Rohlf 1995) to identify changes during the full five-year period and the two-year 

and consecutive three-year periods (T. Økland et al. 2004): (1) change in species 

abundances, tested for species with abundance change in more than five plots in a given 

study area; (2) change in species number for different species groups and in total; and (3) 

change in species composition as given by plot displacement along an environmentally 

interpreted GNMDS ordination axis of re-analysis data. Furthermore, an exact test based 

upon the binomial distribution (Sokal & Rohlf 1995) was used, separately for each study 

area, plant group and area, to test if the number of species with significant negative and 

positive abundance change, respectively, was higher than in a random sample (Paper II). 

In accordance with the principles of Ecological Field Theory (EFT; Wu et al. 1985), 

we developed one model for single-tree influence on understorey vegetation for each of the 

five study areas. The model-fitting procedure was in accordance with that used by R. 

Økland et al. (1999) for boreal forests: optimal model parameters were found by 

maximizing the eigenvalue of one constrained ordination axis, obtained by use of the 

EFT-based tree influence index as the only constraining variable in Redundancy Analysis 

(RDA; Rao 1964, ter Braak 1986, 1987) (Paper III). 
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Abstracts of Papers I – III 

Paper I 

Monitoring of ground vegetation and environmental variables in subtropical forests in 

China was initiated in 1999 as part of the Integrated Monitoring Programme of 

Acidification of Chinese Terrestrial Systems jointly funded by the State Environmental 

Protection Agency (SEPA) of China and the Norwegian Agency for Development 

Cooperation (NORAD). The study areas were selected to span regional gradients, in 

deposition of airborne pollutants and climatic conditions. All five study areas are located in 

the southern and southwestern parts of China and consist of subtropical forests. In each 

study area, 50 1m2 plots were randomly chosen within each of ten 10×10 m macro-plots, 

each in turn positioned in the centre of 30×30 m extended macro-plots. All 250 1m2 plots 

were subjected to vegetation analysis, using frequency in sub-plots as the measure of 

species abundance. A total of 33 environmental variables were recorded for the 1m2 plots 

as well as the 10×10 m macro-plots. A major objective of the study has been to identify the 

environmental variables most strongly related to the species composition of ground 

vegetation in the subtropical forests of southern and southwestern China, as a basis for 

future monitoring. 

Comparison among DCA, LNMDS and GNMDS ordination methods, an additional 

objective of the study, was achieved by using a set of different techniques: calculation of 

pair-wise correlation coefficients between corresponding ordination axes, Procrustes 

comparison, assessment of outlier influence, and split-plot GLM analysis between 

environmental variables and ordination axes. LNMDS and GNMDS consistently produce 

very similar ordinations. GNMDS ordinations are generally more similar to DCA than 

LNMDS. In most cases DCA, LNMDS and GNMDS extract the same main 

ground-vegetation compositional gradients; thus the choice of LNMDS or GNMDS is 

therefore hardly decisive for the results obtained. GNMDS was selected for interpretation 

and presentation of vegetation–environment relationships. The dimensionality of GNMDS 

(number of reliable axes) was decided by demanding high correspondence of all axes with 

DCA and LNMDS axes. Three dimensions were needed to describe the variation in 

vegetation in two of the areas (TSP and LXH), and two dimensions in the other three areas 

(LCG, LGS and CJT). Based on the results of the analyses mentioned above the relative 
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performances of DCA, LNMDS and GNMDS ordination methods are discussed.  

Environmental interpretation of ordinations (identification of ecoclines; gradients in 

species composition and the environment) was made by split-plot GLM analysis and 

non-parametric correlation analysis. Plexus diagrams and PCA ordination were used to 

visualize correlations between environmental variables. Several graphical means were used 

to aid interpretation.  

Complex gradients in litter-layer depth, topography, soil pH/soil nutrient, and tree 

density/crown cover were found to be most strongly related to vegetation gradients. 

However, the five study areas differed somewhat with respect to which of the 

environmental variables were most strongly related to the vegetation gradients (ordination 

axes). Litter-layer depth was found to be related to vegetation gradients in four study areas 

(TSP, LCG, CJT and LXH); topography in four study areas (TSP, LGS, CJT and LXH); soil 

pH in three areas (LCG, LGS and CJT); soil nutrients in one area (LGS); and tree 

density/crown cover in two areas (LCG and LXH). 

The ecological processes involved in relationships between vegetation and main 

complex-gradients in litter-layer depth, topography, soil pH/soil nutrient, and tree 

density/crown cover are discussed. The gradient relationships of subtropical forests are 

complex, and heavy pollution may increase this complexity. In fact, considerable variation 

is found among Chinese subtropical forests, due to the great variation in biodiversity in 

China as well as to the geographical distance between the study areas. Furthermore, the 

results of this study indicate that better knowledge of vegetation–environment relationships 

has the potential to enhance our understanding of the subtropical forests that occupy vast 

areas of southern and southwestern China.  

Paper II 

The main aim here is to identify changes in forest ground vegetation in four study areas in 

southern and southwestern Chinese forests, based on 199 1m2 vegetation plots analysed 

three times – at establishment and then two and five years later. Two-year, three-year and 

five-year changes in single-species abundances, species number and species composition 

were analysed by univariate and multivariate statistical methods. During the five-year 

period, vascular plant species were found to decrease significantly in abundance in two 

areas and increase significantly in two areas, whereas bryophyte species decreased 

significantly in abundance in three areas and increased significantly in two areas. The 

number of bryophyte species decreased significantly in two areas and increased 
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significantly in one area, whereas the number of vascular plant species increased 

significantly in two areas. Significant change in species composition along the first 

vegetation gradient (GNMDS 1) was observed in two areas, and along the second gradient 

(GNMDS 2) in one area.  

During a first two-year, a consecutive three-year, and the full five-year period, 

consistent decreases in bryophyte species abundances and bryophyte species number were 

observed in two areas, and consistent increase in vascular plants species abundances and 

vascular plants species number in one area. The patterns of changes in bryophytes can be 

explained by climatic fluctuations, substantiating that the bryophytes are good indicators of 

the biotic effects of climatic change. The increase in the abundance and numbers of 

vascular plant species in two areas is most likely due to seasonal variation and more 

favourable climatic growth conditions during the intermediate years, compared with the 

first year of analysis. No clear indications have been found of changes in vascular plant 

species that may be linked to soil acidification or direct effects of air pollutants. 

Paper III 

Single-tree influence on understorey vegetation in five Chinese subtropical forests was 

studied by fitting a single-tree influence model, developed according to the principles of 

Ecological Field Theory (EFT), to each study area. The study was based on data for all 

understorey plant species in each of 50 1m2 plots, randomly placed within 10 macro-plots, 

each 100 m2, and maps and measurements of all trees in all macro-plots. Optimal model 

parameters were found by maximizing the eigenvalue of one constrained ordination axis, 

obtained by use of the EFT-based tree influence index as the only constraining variable in 

Redundancy Analysis (RDA). Optimal EFT tree influence models generally accounted for 

only a small part of the variation in species composition (the eigenvalues of RDA axes 

were low). Compositional turnover associated with tree influence indices was also 

generally low, although somewhat variable among study areas. Thus it was concluded that 

in Chinese subtropical forests trees influence the understorey more in a collective manner 

than through the influence of single trees. 
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Discussion of main results and general conclusions 

Gradient structure of vegetation and the environmental variables 

The most important result of the basic study was that gradients in litter supply and litter 

depth, topography, soil pH/mineral nutrient concentrations, and tree density/crown cover 

conditions, were shown to be the main environmental complex gradients controlling 

understorey vegetation patterns in the Chinese subtropical forests studied (Paper I).  

Our analyses identify litter-layer depth as the major factor structuring bryophyte 

species richness and composition of the investigated forests, generally expressed at the 

between and within macro-plot scales. High abundance/high species number for 

bryophytes is mainly restricted to steep plots in which litter fails to accumulate (cf. T. 

Økland 1988). The high importance of an ecocline (gradient in the environment and 

species composition) related to litter-layer depth is in accordance with observations in 

subtropical forests (Chen et al. 1997), temperate forests (Madritch & Cardinale 2007) and 

boreal forests (T. Økland 1988) that increasing amounts of litter from overstorey trees 

negatively impact bryophytes. Contrasting patterns – i.e. that herbaceous litter has a 

positive effect on bryophyte growth (Rincon 1988, Grime et al. 1990) have, however, been 

observed in grasslands, probably because nutrient availability increases with increasing 

litter supply (Bates 1994) and because the amounts of litter are generally smaller than 

encountered in forests. However, also Tarkhova & Ipatov (1975) identified both positive 

and negative effects of coniferous needle litter on five common boreal forest-floor 

bryophytes. These observations indicate that, in different ecosystems, litter-layer depth 

may influence bryophytes in different ways. Details and probable mechanisms are further 

discussed in Paper I (pp. 177-178).   

Topographic factors emerge as the second most important factor complex for 

explaining vegetation gradients at macro-plot and plot scales, mainly reflected in variation 

in both vascular plant and bryophyte species composition. The topography factor complex 

includes inclination: higher inclination often brings about a thinner litter layer, which is 

favourable to bryophytes. Other topography-related variation is attributable to variation in 

aspect. In the subtropical forests studied, southeast-facing low-radiation slopes are richer in 

species and have higher soil moisture than sunny southerly and westerly slopes. Vegetation 

patterns related to soil surface topography may actually arise through the action of many 
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alternative causal factors that operate on non-uniform soil surfaces: drainage, water 

availability, leaching, supply of mineral nutrients, and acidity (Austin 1980, Foster 1988, 

Hunter & Parker 1993). Topography thus plays an important role in the variation of stand 

structure of mountain forests (e.g. Schimel et al. 1985, Zak et al. 1991, Brubaker 1993, 

Enoki et al. 1997). Our findings show that topography-dependent variation is omnipresent 

in subtropical forests, although with considerable variation between and within study areas 

with respect to which single topographical factors are most strongly related to variation in 

species composition. This (these) topography-related ecocline(s) is (are) in accordance 

with the view that topography is a main determinant of gradients in species richness and 

composition on scales from the global to the local, along with properties like the (regional) 

species pool, the fertility of the site and regional spatial heterogeneity (Taylor et al. 1990, 

Zobel 1997, Grace 2001a, 2001b). 

Variation in species composition related to soil acidity was observed in three areas, 

and related to soil mineral nutrient in one of these three areas. This variation was mostly 

expressed at between macro-plot scales. The mechanisms responsible for a relationship 

between soil acidity/soil mineral nutrients and vegetation are still not fully understood for 

Chinese subtropical forests, because of the complex and multivariate nature of mineral 

soils and humus forms. Vegetation gradients related to soil acidity and nutrient 

concentrations have been reported from several boreal ecosystems (R. Økland & Eilertsen 

1993, T. Økland 1996), from subtropical rain forests (Chen et al. 1997) and from mixed 

mesophytic forests. The present study demonstrates similar ecoclines in Chinese 

subtropical forests, which may suggest this as a strong candidate for a universally 

important ecocline in forests. 

A compositional gradient related to tree density/crown cover was observed in two 

areas LCG and LXH, with variation at the macro-plot scale. No observations indicated that 

the spatial pattern of single trees affect the distribution of understorey species as observed 

in boreal (R. Økland et al. 1999) and temperate forests (Rozas 2006). The low importance 

of a single-tree related ecocline in our study thus fails to confirm the prediction that one of 

the two or three most important vegetation gradients in (sub) tropical forest vegetation 

relates to the gap structure of the tree layer, running from below trees to openings between 

trees (Tuomistu et al. 1995, Chen et al. 1997, Svenning 1999, Enoki & Abe 2004, Zhao et

al. 2005). The reason for the difference with respect to the importance of single-tree 

influence gradients between forests may be that different (sub)tropical ecosystems differ in 
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tree-layer characteristics (composition, density, crown cover, litter-fall, etc.), by which 

light, throughfall precipitation and canopy leachates are redistributed on the ground in 

differing ways. This hypothesis needs further investigation.  

Changes in forest understorey vegetation and underlying reasons 

The important result of paper II is to identify bryophytes as good indicators of biotic 

effects of climatic fluctuations and climatic change: single-species abundance and numbers 

of bryophyte species increase when growth conditions are favourable (Paper II). This is a 

pattern shared with boreal forests (R. Økland 1995, 1997; T. Økland et al. 2004). 

Consistent change patterns for bryophyte species are observed in three areas. A major 

characteristic of this pattern is that bryophytes decline more strongly in unfavourable 

(litter-rich) than favourable (litter-poor) sites in two areas, and increase proportionally 

more in litter-poor than in unfavourable sites in one area. A possible cause of this pattern is 

climatic conditions in the study period, which are related to the ongoing climatic change. 

Therefore, climatic change may act on littershed so that litterfall may be the medium 

responsible for the change observed. Our results give support to the view that bryophytes 

species in the forest understorey are good indicators of biotic effects of climatic 

fluctuations and climate change (R. Økland 1995, 1997; T. Økland et al. 2004)  

Change patterns for understorey vascular plant species differed between the 

subtropical forest areas studied. This may be due to differences between these forest 

ecosystems with respect to: (1) climatic factors; (2) habitat heterogeneity (O’Brien et al.

2000, Rahbek & Graves 2001); (3) historical/regional differences based on different 

speciation or extinction rates, coupled with unique events in the history of the earth 

(McGlone 1996, Ricklefs et al. 2004); or (4) specific historical events that are still 

reflected in area-specific successional patterns (R. Økland 2000). Several of the 

investigated forests may, at least partly, have been logged during ‘The Great Leap Forward’ 

(1958–1962), re-planted in the 1960s, and therefore to some extent still be successional 

(Paper I). 

This study did not reveal consistent decrease of vascular plant abundances or vascular 

plant richness linked to soil acidification or to direct effects of air pollutants, as observed in 

other parts of the world (Gough et al. 2000, Aarssen & Jordan 2001, Tanner 2001, T. 

Økland et al. 2004). This was surprising, because the study areas are situated in a heavily 

polluted part of China. Likely reasons include: (1) the effects of soil acidification are 

overshadowed by rapid vegetation dynamics in this favourable climate, or by fluctuations 
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of climatic conditions; (2) the buffering capacity of the soils; and (3) that five years is too 

short an interval for significant changes in the acidity status and availability of essential 

elements from soils to take place, and for influences on ground species composition to be 

observed (Ewald 2000, Qian et al. 2003, T. Økland et al. 2004).  

Although no unifying explanation seems to apply to our results for vegetation change, 

the change patterns of vascular plant species appear to accord with the climatic records for 

the study areas in the period from establishment to re-analysis: there was more rapid 

growth of some vascular plant species under more favourable (wetter) climatic conditions, 

while the converse seemingly applied to periods with drier climate. These underlying 

relationships are in accordance with other observations from subtropical forests, indicating 

that the main factor responsible for vascular plant species abundance on the forest floor is 

climate – annual precipitation in particular (Zhao & Fang 2006). 

In addition, soils differ greatly in buffering capacity, due to differences in soil acidity 

and other soil properties. Soils rich in nutrients and with high pH are resistant to 

acidification effects, whereas soils poor in nutrients are already so acid that large inputs are 

needed to make a difference. Vegetation change has been observed related to acidification 

mostly in intermediately rich sites with low buffer capacity in Norwegian boreal forests (R. 

Økland & Eilertsen 1993, T. Økland 1996, T. Økland et al. 2004). In this study, all five 

areas are located within the target zones for acid rain control in China (Tang et al. 2004). 

However, due to regional differences, soil acidity and soil properties differ between areas: 

e.g. two areas are considered as more polluted (than the others), one area is considered 

more pristine, one area has more inputs of alkaline dust, and one has relatively low loads of 

acid rain. These differences may, at least in part, explain the area-specific patterns 

observed.

EFT models for single-tree influence on understorey vegetation 

The important finding of Paper III is that the optimal EFT models for single-tree influence 

on understorey vegetation, developed for each area, accounted for only a small part of the 

variation in species composition, and that the best model in terms of variation in species 

composition explained tends to have parameters outside what is ecologically meaningful. 

This indicates that single-tree influence is not a main gradient for understorey vegetation 

composition in Chinese subtropical forests and also that single-tree EFT models may have 

limited suitability for subtropical forest ecosystems. This may also suggest that in 

subtropical forests trees influence the understorey more in a collective manner, e.g. via 
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properties such as canopy cover (Sterck et al. 1999, Felton et al. 2006), throughfall light 

(Denslow et al. 1998, Francois et al. 2006) etc., than through the influence of single trees. 

The reason for this may be that (sub)tropical forests generally have a closed canopy layer 

with less distinct and smaller canopy gaps than is the case in temperate and boreal forests 

(Ehleringer et al. 1986, Takyu & Ohsawa 1997), by which light, throughfall precipitation 

and canopy leachates are redistributed on the ground level in ways generally unrelated to 

the positions of individual trees. Also this hypothesis needs further investigation.  

Conclusions and recommendations 

Litter, topography, soil pH/mineral nutrients and tree density/crown cover conditions are 

important determinants of understorey vegetation patterns in Chinese subtropical forests 

(Paper I). However, four of twelve main vegetation gradients (ordination axes) axes could 

not be explained by our (very) large set of recorded environmental variables. Thus a search 

should be started for factors of potential importance for compositional variation in these 

forests, other than those included in the present study. Furthermore, one should also be 

open for the possibility that subtropical forests are less strongly structured by 

environmental complex gradients than are forests in colder climates.  

The importance of different environmental variables for the variation in vegetation 

emerges as clearly scale-dependent. Variation in vascular plant species composition and 

species number is related to soil pH/mineral nutrients on broader scales (> ca. 25 m); 

whereas variation in bryophyte species composition and species number related to litter 

and topography takes place on a variety of scales. Furthermore, we find strong variation in 

species composition also at even broader scales: the five areas studied differ considerably 

with respect to species composition. There are at least two likely explanations: that the 

areas differ with respect to local environmental gradients, and that they are geographically 

separated and thus partly contain different pools of regional species.  

It is increasingly acknowledged that traditional statistical tests have severe limitations 

when ecological patterns are scale-dependent (Legendre 1993, R. Økland 2007). This study 

demonstrates that split-plot GLM allows flexible handling of nested data over two (or 

more), hierarchical levels, thus improving our understanding of relationships across scales.  

Plot-based nested sampling of vegetation and data analysis by ordination techniques 

provides a firm basis for understanding vegetation–environment relationships, in 

subtropical forests as well as in other ecosystems. This study demonstrates that analyses of 

static vegetation–environment relationships also provide a good foundation for studies of 
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vegetation change, by repeated analysis of the permanently marked plots (R. Økland & 

Eilertsen 1996, Lawesson et al. 2000, T. Økland et al. 2004).  

Five study areas, as in the present study, are obviously too few to establish consistent 

regional trends of vegetation change in regions which, like China, comprise a broad range 

of forest ecosystem types, have an extremely species-rich flora (e.g. ca. 30,000 vascular 

plants), and display considerable variation along regional climatic and deposition gradients. 

This is clearly shown by the tendencies toward individualistic behaviour of the study areas 

covered in the present study. 

The study shows that patterns of change observed for bryophytes can be explained by 

climatic fluctuations, thus substantiating that bryophytes are good indicators of biotic 

effects of climatic change.  

The observed increase in abundance and numbers of vascular plant species is most 

likely due to seasonal variation and more favourable climatic growth conditions in 

intermediate years. No clear indications have been found of changes in vascular plant 

species that may be linked to soil acidification or direct effects of air pollutants. 

Five years seem too short an interval for significant changes of vascular plants to 

emerge in subtropical forests, at least given the strength of impacts faced by China’s 

subtropical forests today. Even though findings from other parts of the world indicate that 

vascular plants are good indicators of long-term effects of airborne pollutants (Gough et al.

2000, Aarssen & Jordán 2001, T. Økland et al. 2004), such possible effects in the forests 

studied here are likely to be masked by large local ecological variations, rapid dynamics of 

the vegetation caused by high growth rates, and by short-term climatic fluctuations. 

Monitoring over longer periods will be needed to observe significant changes and to shed 

light on the eco-physiological mechanisms behind the changes observed (R. Økland & 

Eilertsen 1996). 

Optimal EFT tree influence models generally account for only a small part of the 

variation in species composition. This implies that, in subtropical forests, trees influence 

the understorey more in a collective manner than through the effects exerted by single trees. 

This hypothesis should, however, be investigated further. 

This study may serve as a starting point for building knowledge about variation in 

space and time in subtropical forest understoreys and the ecological factors governing this 

variation. Some questions have been answered: e.g. the major underlying complex 

environmental gradients in litter-layer depth, topography, soil acidity/soil mineral nutrient 
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concentrations and tree density have been revealed; bryophytes have been identified as 

good indicators of biotic effects of climatic change; and the spatial patterns of single trees 

have been found not to affect the distribution of understorey species significantly. However, 

many new questions and issues have arisen. For instance, four out of twelve consensus 

ordination axes could not be interpreted ecologically by the available environmental 

variables, and the optimal time period between re-analyses to enable identification of 

bryophyte (as well as vascular plant) changes remains unsettled. All of these points add up 

to strong and urgent needs for long-term, extensive studies in which traditional research 

boundries are transgressed. 
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