Proteininntak og atferd

Mulig sammenheng mellom opptak av peptider til sirkulasjonen og deres påvirkning på sentralnervesystemet.

Hanne Isaksen

Prosjektoppgave ved Det Medisinske Fakultet

UNIVERSITETET I OSLO

09.03.2012
Proteininntak og atferd

Mulig sammenheng mellom opptak av peptider til sirkulasjonen og deres påvirkning på sentralnervesystemet.

Hanne Isaksen

Prosjektoppgave ved Det Medisinske Fakultet

UNIVERSITETET I OSLO

09.03.2012
© Forfatter: Hanne Isaksen

År: 2012

Tittel: Proteininntak og atferd

http://www.duo.uio.no/

Trykk: Reprosentralen, Universitetet i Oslo
Abstract

During the last decades it has become more and more focus on what we eat and how that may affect our body and mind. Many studies suggest that some groups of people have a more permeable gut, and a state where the tight junction in the intestinal epithelium is down-regulated. With a leaky gut undigested peptides can reach the circulation. It is claimed by some researchers that people with autism and schizophrenia have an increased permeability of the intestine, and an increased incidence of peptides derived from gluten and casein, and antibodies against these peptides, in the circulation. Much research supports this, but it's also done some studies where an increase in incidence is not found. With an increased occurrence of peptides in the circulation it is hypothesized that these may have a biological effect. It is known that β-casomorphin 7 and β-casomorphin 8, which are peptides derived from casein, and glutenexorphin A5, which is a peptide derived from gluten, has an opioid effect. However, it is not yet fully understood how these opioid peptides affects the central nervous system. The theory is that many of the symptoms of people with autism or schizophrenia is due to such opioid effects. There have been some studies on how a diet without gluten and / or casein may affect the symptoms in people with these conditions. However, these studies provide no simple answer. It is found significant improvement in one group of individuals with autism who have started the gluten-and casein diet, but no change of symptoms in another study. In the case of schizophrenia, we find different results. There is found some improvement in some studies, but no change in others. Alternative hypothesis is that there are antibodies to gluten and casein that cross-react with tissues in the brain. It is in this context, revealed several conditions with neuropathies in people with celiac disease, for example. There is much evidence to suggest a link between gut and brain. However, the exact explanation for this link is not yet fully mapped.
Forord

Helt siden jeg oppdaget at mine to barn ikke tåler melk har jeg vært interessert i hva som skjer ved forskjellige typer matintoleranser. Etter å ha vært hos ulike leger med mange spørsmål og få svar ønsket jeg å selv se litt på problemstillingen. Det finnes få diagnostiske tester for matintoleranser og mye av både diagnostisering og oppfølging er overlatt til foreldrene selv. Jeg oppdaget også at mange leger var veldig skeptiske til hva foreldre selv opplever at barna reagerer på. Mange leger har kanske opplevd ekstreme foreldre som setter barna sine på ekstrem dietter og de er derfor bekymret for at barn skal bli feilnærte. En ting er i alle fall sikkert, norske leger trenger mer kunnskap omkring denne problemstillingen.

Jeg vil rette en stor takk til Jan Oxholm Gordeladze for god veiledning på denne oppgaven.
Innholdsfortegnelse

1 Bakgrunn ... 1

2 Metode.. 2

3 Fra munn til hjerne .. 4
 3.1 Lekk tarm: .. 4
 3.2 Kasein- og glutenpeptider ... 7
 3.3 Peptidanalyse av urin ... 9
 3.4 Transport over blod-hjerne barrieren ... 10
 3.5 Kasein- og gluten peptiders strukturlighet med endogene peptider 11
 3.5.1 Somatotropin .. 11
 3.5.2 Neuromedin (neurotensin) .. 12
 3.5.3 ACTH .. 13
 3.5.4 Substance P .. 13

4 Fenomener ... 14
 4.1.1 Autism ... 14
 4.1.2 Schizofreni ... 16

5 Diskusjon ... 20

6 Konklusjon .. 25

7 Vedlegg ... 26
 7.1 Strukturlikheter med beta-casomorphin 4: ... 26
 7.2 Strukturlikheter med beta-casomorphin 5: ... 27
 7.3 Strukturlikheter med beta-casomorphin 7: ... 29
 7.4 Strukturlikheter med Gliadophorin (43-49) ... 31
 7.5 Strukturlikheter med Gluteneksorfin A5 (Exorphin A5): ... 34

Litteraturliste .. 36
1 Bakgrunn

Mange personer mener i dag at det finnes sammenhnger mellom inntak av ulike matvarer og atferden hos enkelte mennesker. I den vestlige verden er det stadig mer fokus på hva vi spiser og hva dette gjør med kroppen vår. Nye teorier på hva som er skadelig å tilføre kroppen dukker opp i nyhetene nesten daglig. En av disse teoriene er at matvarer som inneholder gluten fra ulike melsorter eller kasein fra melk kan gi enkelte personer en såkalt proteinintoleranse. På Norsk proteinintoleranseforenings hjemmeside, skriver man at disse matvarene kan gi symptomer som dårlig sosial fungering, økt eller redusert aktivitetsnivå, konsentrasjonsproblemer, aggresjon, depresjon, overømflintlighet og sengevætning, hos mennesker som ikke klarer å bryte ned disse proteinene tilstrekkelig. Mange enkeltindivider påstår at de har fått et helt nytt liv etter oppstart på glutenfrie og melkefrie ditter.

Teorien bak proteinintoleranse er at gluten- og melkeproteinene ikke fordøyes tilstrekkelig i tarmen før det tas opp i kroppen. Gluten- og kaseinproteinene brytes bare delvis ned og danner peptider som kalles casomorfiner og gluteneksorfiner og som består av 3-8 aminosyrer. Hos noen personer, som av ulike årsaker har en permeabel tarmslimhinne, tas disse peptidene opp i sirkulasjonen. Tanken er så at casomorfinene og gluteneksorfinene vil kunne virke på sentralnervesystemet som kroppens egne nevropeptider, hormoner eller andre signalmolekyler.

I denne oppgaven ønsker jeg å se på hvordan disse peptidene kan tas opp i kroppen, om det er en mulighet for at de krysser blod hjernebarrieren, hvordan strukturen av disse peptidene er, og sammenligne disse peptidene med kroppens egne nevropeptider og hormoner. Jeg vil også diskutere forskning som er gjort på området vedrørende gastrointestinalne plager og atferd. Spesielt hos personer med autisme og schizofreni har det vært forsket på sammenhenger mellom GI problemer og symptomene som er karakteristiske for disse tilstandene. Det er også beskrevet en del ulike nevrologiske funn hos personer som lider av cøliaki. Hva er så sammenhengen mellom tarm og hjerne?
2 Metode

Søkerord artikler;

1. autism treatment evidence based
2. schizofreni and treatment evidence based
3. schizophrenia and proteinintoleranse
4. leaky gut
5. leaky gut syndrome
6. beta casomorphines
7. opioid receptor ligands derived from food proteins
8. autisme and gastrointestinal symtoms
9. autism and diet
10. autism and food and RCT
11. autism review
12. transport of peptides across the blood-brain barrier
13. urinary compounds and autism

Søkerord på peptider ved søk etter lignende strukturer.

1. β-Casomorfin 4
2. β-Casomorfin 5
3. β-Casomorfin 7
4. Gliadophorin (43-49)
5. Exorphin A5

Jeg valgte ut disse kasein- og glutenpeptidene da det var disse jeg fant i ChemIDplus Advanced sin database og dermed disse det var mulig å bruke for å finne peptider med lignende struktur.

En svakhet ved metoden min er at temaet jeg skriver om er veldig stort. Søkene i de ulike databasene fanger derfor bare opp små mengder av de artiklene som foreligger på området. For å få en mest mulig balansert oppgave har jeg derfor forsøkt å finne og bruke mest mulig oppsummeringsartikler hvor mye kunnskap er samlet på et sted.

Søket i databasene over strukturlighet er heller ikke bevis for noen felles biologisk virkning. Det blir mer som et redskap for finne mulige sammenhenger mellom peptider og deres virkning og hvor videre forskning på området må vise om dette faktisk er tilfelle.
3 Fra munn til hjerne

3.1 Lekk tarm:

Tarmslimhinne er en av kroppens viktige barriere mot inntrengning av uønskede mikroorganismer. I tarmen er det kun et lag med epitelceller som skiller innholdet i tarmen fra lamina propria og immuncellene i peyerske plakk. For å kunne holde seg frisk og for å hindre opptak av toksiner eller uønskede antigener, kan starte utviklingen av immunreaksjoner, er en intakt barriere nødvendig. Ved en del sykdommer ser man at epitete ikke lenger er kontinuerlig. Det viser seg at dette kan gjelde flere tilstander som irritable tarm syndrom, celiaki, ulcerös colitt og morbus crohn. Men, også ved allergier, astma, diabetes type 1, og autisme tror man det kan finnes sammenhenger med en økt permabilitet i tarmslimhinne og utviklingen av sykdom (4).

Figur 1

Illustrasjon av et Tight junction protein mellom to plasmamembraner. De tre proteinene occludin, claudin og JAM-1 utgjør barrieren mellom cellene. Figuren er hentet fra Journal of Investigative Dermatology (3).

Lekk tarm er et begrep som blir brukt om en tilstand der man har hatt en nedbrytning av tight junctions mellom epitelcellene i tarmen og fått en økt tarmpermabilitet. Med en nedbrytning av denne barrieren er det kort vei for potensielle patogene komponenter inn til kroppens interne miljø og immunforsvar. Molekyler og ioner kan passere gjennom tarmslimhinne ved at de diffunderer paracellulært. Dette i motsetning til det normale som er passasje transcellulært i form av aktiv transport, passiv transport eller diffusjon. I en normal tarm finnes det altså en type transmembrane proteiner i tarmslimhinne, kalt tight junctions. Disse proteinene danner bånd rundt hele cellen og virker som en barriere mot diffusjon av molekyler og ioner. I flere typer sykdommer har man funnet en tilstand der tight junction proteineene er nedregulert og man har en økt tarmpermabilitet hvor større peptider og molekyler lettere kan tas opp i sirkulasjonen. En hypotese er at personer med celiaki i oppstart

Hos noen personer kan man altså få en nedregulering av tight junction proteinet i tarmen. I en studie av Lammer og co er det funnet at gliadin binder seg til et protein kalt CXCR3 og fører til et MyD88 avhengig zonulin utslipp (6). CXCR3 er et protein som er til stede i epitel i tarmslimhinnen og i lamina propria. Det humane proteinet zonulin virker som en regulator av barrieren mellom epitelcellene ved å demontere molekylene som danner tight junctions. Det er vist at ved noen autoimmune sykdommer som, cøliaki, diabetes type 1 og MS, har man kunne finne økte mengder av zonulin i serum (4). Lammer og co har også funnet at gliadin, hos pasienter med cøliaki, induserer og øker permeabiliteten i tarmen ved en økt utskillelsen av zonulin (6). Det er her også beskrevet at det hos personer med cøliaki finnes større mengder av CXCR3 proteinet når de har gluten i kosten. Etter en periode med glutenfri diet viser det seg at mengden av CXCR3 proteinet reduseres kraftig (6).

Figur 2
Illustrasjon av glutens nedbryting av tight junctions og avflating av tarmepitelet (1).
I andre studier tror man økt permabilitet i tarmen har sammenheng med en inflammatorisk prosess der transcellulær transport av antigener presenteres for Th-celler som deretter gir en utskillelse av cytokiner. T hjelpeceller er lymfocyter som hjelper B celle til å dele seg, differensiere og produsere antistoffer. Th celler kan deles inn i undergrupper Th1 og Th2 ut i fra hvilke typer cytokiner de skiller ut. Th1 cellene er involvert i forsvaret mot intracellulære patogener og produserer pro-inflammatoriske cytokiner som IL-2 og IFN-γ. Det har vist seg at INF-γ har egenskapen til å opplofte tight junction komplekset og skape økt tarm permabilitet (8). INF-γ øker også den transcellulære transporten av antigener ved oppregulering av MHC I og MHC II molekylene som igjen gir økt inflammasjon og utskillelse av INF-γ og TNF-α. Det hevdes også at Th1 celler er involvert i flere typer kroniske inflammatoriske sykdommer som multiple sklerose, diabetes og rheumatoid artritt. Th2 cellene er hovedsakelig involvert i forsvar mot ekstracellulære parasitter og de utskiller IL-4, IL-5, IL-6, IL-10 og IL-13. Man tenker seg at allergi og atopi hovedsakelig er en Th2 dominert tilstand. Man vet også at tarmens utallige bakterier fungerer i et tett samspill med tarmslimhinnens epitelceller. Nye forskning tyder på at bakterier er direkte involvert i moduleringen av menneskers immunsystem og hjelper til å hindre dysregulering av cytokiner og opprettholder balansen mellom Th1 celler og Th2 celler (9).

En annen teori er at mikroorganismer produserer toksiner som i seg selv kan gi økt utskillelse av inflammationsparametere og som dermed øker inflammasjonen i tarmen. Toksiner fra ulike bakterier vet man også virker direkte på tight junction komplekset og bryter dette ned. Et eksempel er her Escherichia coli som bryter ned tight junction ved å flytte occludin molekylet inn i cytosol (4).

Omega-3, EPA og gammalinolensyre er kjent for å virke anti-inflammatoriske. Studier tyder også på at disse fettsyrene er med på å oppregulere tight junctions og dermed hindre nedbryting av den intestinale barrieren (10). Mekanismene bak en såkalt lekk tarm er ikke helt klarlagt og synes å kunne ha ulike forklaringer. Den kan skyldes både maten vi spiser, tilstedevarsel av bakteriene vi har i tarmen og hvilken genetisk disposisjon vi har for immunologisk sykdom.
3.2 Kasein- og glutenpeptider

De opioide reseptorene er alle G-protein koblede reseptorer og en aktivering fører til en hemming av adenylat cyclase der man får en komping av K+ kanalen eller en inaktivering Ca++ kanalen (11). De opioide reseptorene befinner seg hovedsakelig i sentralnervesystemet, det perifere nervesystemet, i det endokrine systemet og i immunsystemet. De har en rekke ulike funksjoner der den mest kjente er nociseption, men også respirasjon og kardiovaskulær regulering. Forskning viser også at man finner opioide reseptorer involvert i nevroendokrin og nevroimmun regulering, stresshåndtering og angst (12).

Kroppens egne opioider kalles endorfiner. Det finnes flere grupper med ulik utbredelse i sentralnervesystemet og de springer ut fra tre hovedgrupper, proenkephaliner, proopiomelanocortiner og prodynorphiner og danner henholdsvis enkephaliner, endorphiner og dynorphiner.

Tabell 1. Kaseinpeptider

<table>
<thead>
<tr>
<th>GRUPPE</th>
<th>STRUKTUR</th>
<th>KJEMISK FORMEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>β-Casomorfin 1-3</td>
<td>H-Tyr-Pro-Phe-OH (YPF)</td>
<td>C_{23}H_{27}N_{3}O_{5}</td>
</tr>
<tr>
<td>β-Casomorfin 4</td>
<td>H-Tyr-Pro-Phe-Pro-OH (YPFP)</td>
<td>C_{28}H_{34}N_{4}O_{6}</td>
</tr>
<tr>
<td>β-Casomorfin 1-4</td>
<td>H-Tyr-Pro-Phe-Pro-NH_{2}</td>
<td>C_{25}H_{30}N_{5}O_{7}</td>
</tr>
</tbody>
</table>
amid

<table>
<thead>
<tr>
<th>β-Casomorfin 5</th>
<th>H-Tyr-Pro-Phe-Pro-Gly-OH (YPFG)</th>
<th>C_{30}H_{71}N_{5}O_{7}</th>
</tr>
</thead>
<tbody>
<tr>
<td>β-Casomorfin 7</td>
<td>H-Tyr-Pro-Phe-Pro-Gly-Pro-Ile-OH (YPFPGPI)</td>
<td>C_{41}H_{53}N_{5}O_{9}</td>
</tr>
<tr>
<td>β-Casomorfin 8</td>
<td>Tyr-Pro-Phe-Pro-Gly-Pro-Ile-Pro-OH (YPFPGPIP)</td>
<td>C_{46}H_{62}N_{8}O_{10}</td>
</tr>
<tr>
<td>Neocasomorphin-6</td>
<td>Tyr-Pro-Val-Glu-Pro-Phe</td>
<td></td>
</tr>
</tbody>
</table>

Tabell 2. Glutenpeptider

<table>
<thead>
<tr>
<th>GRUPPE</th>
<th>STRUKTUR</th>
<th>KJEMISK FORMEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gluteneksorfin A4</td>
<td>H-Gly-Tyr-Tyr-Pro-OH (GYYP)</td>
<td>C_{25}H_{30}N_{4}O_{7}</td>
</tr>
<tr>
<td>Gluteneksorfin A5</td>
<td>H-Gly-Tyr-Tyr-Pro-Thr-OH (GYYPT)</td>
<td>C_{29}H_{37}N_{5}O_{9}</td>
</tr>
<tr>
<td>Gluteneksorfin B4</td>
<td>H-Tyr-Gly-Gly-Trp-OH (YGGW)</td>
<td>C_{29}H_{57}N_{5}O_{6}</td>
</tr>
<tr>
<td>Gluteneksorfin B5</td>
<td>H-Tyr-Gly-Gly-Trp-Leu-OH (YGGWL)</td>
<td>C_{30}H_{38}N_{6}O_{7}</td>
</tr>
<tr>
<td>Gluteneksorfin C</td>
<td>H-Tyr-Pro-Ile-Ser-Leu-OH (YPISL)</td>
<td>C_{25}H_{43}N_{5}O_{8}</td>
</tr>
<tr>
<td>Gliadophorin (43-49)</td>
<td>H-Tyr-Pro-Gln-Pro-Gln-Pro-Phe-OH (YPQPQPF)</td>
<td>C_{43}H_{57}N_{9}O_{11}</td>
</tr>
</tbody>
</table>

Foruten opioid virkning kan man tenke seg at peptider tatt opp gjennom mukosa også kan ha en autoimmun påvirkning som for eksempel ved cøliaki. Cøliaki forekommer hovedsakelig blant personer som innehar et helt spesielt MHC II molekyl henholdsvis HLA DQ2 eller HLA DQ8. Det er dette MHC II molekylet som presenterer gliadinet for T-cellene (13). Det er hevdet at personer med cøliaki også er disponert for å utvikle ulike typer nevropatier. Blant de mest vanlige er aksonal nevropati og cerebellar ataxi. Man tenker seg her at man har en kryssreaksjon hvor antistoffene som dannes oppfører seg som antigener og reagerer med nervevev. Det er funnet at anti-gliadin antistoffer binder seg til et protein synapsin I som befinner seg i cellenes cytosol i både det perifere og sentrale nervesystem. Synapsin I er medlem av en familie av phosphproteiner og er involvert i regulering av utslipp av
nevrotransmittere (13). Hvilken eksakt virkning denne bindingen gir har man ikke helt klarlagt, og man kan bare spekulere på om den er med å påvirke nevrotransmitteres naturlige funksjon.

3.3 Peptidanalyse av urin

ved Rikshospitalet, har funnet økt forekomst av peptider i urinen hos enkelte grupper personer. Dette ser ikke alltid ut til å kunne verifiseres i de nyeste studiene jeg har funnet.

3.4 Transport over blod-hjerne barrieren

For at peptider som casomorfiner, gliadorfin og gluteneksorfiner skal kunne ha en innvirkning på sentralnervesystemet, så er det nødvendig at de kan passere blod-hjerne barrieren. Blod-hjerne barrieren er en barriere som skiller det sirkulerende blodet fra cerebrospinalvæsken i hjernen. Hjernens kapillærer har sammenhengende okludenskontakter mellom endotelcellene. Og alle stoffer som passerer blod-hjerne barrieren går gjennom endotelcellenes membraner og cytoplasma. Fettløselige stoffer diffunderer lett gjennom membranene mens hydrofile molekyler bruker reseptorformidledene transportere.

Normalt foregår det kun en begrenset transport av makromolekyler over blod-hjerne barrieren (21). Men, blod-hjerne barrieren kan svekkes under ulike forhold. Man har blant annet vist at barrieren blir mer lekk ved infeksjoner i sentralnervesystemet og ved ulike degenerative sykdommer som multippel sklerose, parkinsons sykdom og alzheimer (21). Hva er det så som gir en økt permabilitet i blod-hjerne barrieren? I følge en artikkel i Nature så er det en rekke stoffer som øker permabiliteten til blod-hjerne barrieren. Eksempler på slike stoffer er TNF,
IL-1, IL-6 og C5a komponenten til komplementkaskaden, adrenalin, kokain, nikotin og kronisk hypertensjon. Omega-3, EPA, gamma-linolensyre er alle faktorer som redeuserer permabiliteten til barrieren (2). Enkelte studier tyder også på at endotel i hjernen uttrykker NMDA reseptorer som binder til seg glutamat og gjennom denne bindingen reduserer hjernens barriere. Faktorer som opprettholder barrieren i hjernen er kortikosteroider og IFNα og IFNβ (2).

Under fosterutviklingen har fosteret ennå ikke utviklet en tett blod-hjerne barriere. Man kan da tenke seg at antistoffer fra mor som kan krysse placenta også har direkte tilgang til fosterets nervesystem og muligheten til påvirke utviklingen av fosterets hjerne (2). Leboyer og co har publisert en artikkel hvor de finner forhøyede verdier av β-endorfin protein immunreaktivitet hos halvparten av mødre med autistiske barn (22).

3.5 Kasein- og gluten peptiders strukturlikhet med endogene peptider

3.5.1 Somatotropin

I søket etter strukturlikheter med kasein- og gliadinpeptider dukket deler av somatotropinpeptidet opp en rekke ganger. Somatotropin (32-38) hadde en 82,61 % strukturlikhet med beta-casomorphin 4. Somatotropin (32-46) hadde en 81,74 % strukturlikhet med beta-casomorphin 5. Somatotropin (32-46) hadde en 89,19 % strukturlikhet med beta-casomorphin 7. Somatotropin (32-38) hadde en 88,01 % strukturlikhet med Gliodophorin (43-

3.5.2 Neuromedin (neurotensin)

3.5.3 ACTH

Når det gjelder ACTH så fant jeg 87,26 % strukturlighet mellom ACTH(19-24) og beta-casomorphin 4. Jeg fant 88,59 % strukturlighet med beta-casomorphin 5, 89,14 % strukturlighet med gliadophorin (43-49) og 83,82 % strukturlighet med gluteneksortin A5. ACTH (adrenocorticotropida hormone) produseres i hypofysens forlapp og slippes ut som en respons på sekresjon av CRH (corticotropin realising hormone) fra hypotalamus. ACTH virker hovedsakelig ved å stimulere ACTH-reseptorene i binyrebarken. Den er koblet til stressresponser og stimulering av reseptoren fører til en syntese og utslipp av glucocorticoider, mineralcorticoider og androgene steroider.

3.5.4 Substance P

4 Fenomener

4.1.1 Autisme

Autisme regnes i dag som en av de gjennomgripende utviklingsforstyrrelserne hos barn og beskrives av fagmiljøet som en nevropsykiatrisk tilstand med både nevrobiologiske-nevrokjemiske- og nevroanatomiske forandringer. Tilstanden kjennetegnes ved at barnet viser avvikende atferdsmønster, nedsatt sosial interaksjon og avvik i språk og kommunikasjon. Tistranden oppdages som regel før barnet er 3 år gammelt og barnet kan ofte ha en stagnasjon eller regresjon av utviklingen fra 1,5 års alder.

Barn med autisme har ofte avvik i sosiale ferdigheter. Dette kan vise seg ved at barnet unngår øye kontakt, motsetter seg fysisk kontakt, ikke reagerer på sitt eget navn, ønsker og leke alene og ikke reagerer på andres følelser. Når det gjelder språket så har barn med autisme ofte en forsinket språkutvikling, de kan snu om på pronomener og gjenstand setninger uten å forstå meningen med dem. Atferden kan avvike med sære vaner og ritualer, repeterende bevegelse, selvskading som å stange hodet i veggen og hyperaktivitet. Ca. 75 % av autistiske barn er også mentalt tilbakestående (27).

Prevalensen av autisme i befolkningen varierer sterkt fra ulike typer studier, men i en review fra H. V. Ratajczak angis den å ligge på 1/110 barn i USA og 1/64 barn i U.K (28).

Årsaken til autisme synes å ha en arvelig komponent. Man finner også en del nevrobiologiske forandringer som utviklingsforsinkelse, mental retardasjon, epilepsi, obstretiske komplikasjoner. Gutter er 3-4 ganger hyppigere rammet enn jenter. Forskning har vist at man også finner færre nevroner og redusert antall dendritiske kontakter i visse områder av hjernen. Dette gjelder områder i det limbiske system- i amygdala, i septum og fremre cingula- og i cerebellum og hippocampus (29). Et av de mest uavhengige tegn hos barn med autisme er økt hjernestørrelse. Det har vist seg at hjernen hos barn med autisme, vokser mye raskere frem til 5 års alder og kan være 2-10 % større i denne perioden enn hos normale barn (30).

Årsaken til autisme er ennå et mysterium for forskere og praktiserende klinikere. Kanskje er det ikke ett hendelsesforløp som munner ut i sykdommen. Trolig så er det heller mange forskjellige årsaker som gir lignende symptombilder. I en review av H. V. Ratajczak mener hun det er dokumentert at autisme skyldes en genetisk defekt og/eller en inflammasjon i
hjernen som kan være forårsaket av en rekke ulike hendelser som f.eks. virusinfeksjoner, miljøtoxinsiner, forhold under svangerskapet eller en genetisk tilbøyelighet for utviklingsforstyrrelse (28).

Et søk i «Best practice» med søkerord «autism treatment evidence based» ga meg et treff på en oversiktssartikkel fra The Chocrane library som er relevant i forhold til denne oppgaven. Tittelen på artikken er «Gluten- and casein-free diets for autistic spectrum disorders» og er en oppsummering av randomiserte kontrollerte studier der glutenfri, kaseinfri eller glutenfri og kaseinfri dieter ble innført hos barn med autisme spekter forstyrrelser (33).

I denne artikken var det gjort søk i CENTRAL, MEDLINE, EMBASE, CINAHL,ERIC, LILACS og the National Research register frem til år 2007. Det ble kun funnet to RTC studier, Knivsberg 2002 og Elder 2006, som tilfredsstilet inklusjonskriteriene. Begge studiene var små studier hvor Knivsberg og co hadde 20 deltagere og Elder og co hadde femten. I studiene ble det målt på utfall som; konsentrasjoner av peptider i urinen, observasjoner av atferd og standardiserte vurderinger av autistisk atferd, kommunikasjon og språklig evner, kognitiv funksjon, motoriske evner, ulemper, skader, kostnader og konsekvenser for livskvalitet. Resultatene i de to studiene viste at Knivsberg studien hadde en forbedring av autistiske symptomer i forhold til atferd, kommunikasjon og språkferdigheter etter diettbehandling mens Elder ikke kunne vise til noen signifikant bedring hos diettgruppen i forhold til kontrollgruppen. Hos Knivsberg og co ble det brukt et dansk verktøy, DIPAB, for å måle utfallet på autistiske symptomer. Områdene det ble målet på var ulemper mot kommunikasjon, sær oppførsel, mellommenneskelig kommunikasjon og interaksjon og sosial isolasjon. Med bakgrunn i DIPAB ble det regnet ut en verdi for autistiske symptomer basert på skår fra sosial isolasjon og sær oppførsel. Etter intervension hadde diettgruppen en gjennomsnittskår på 5,60 (SD=2,41) og kontrollgruppen hadde en skår på 11,20 (SD=5,00). Gjennomsnittlig forskjell er her 5,60 (95 % KI-9,02 til -2,18), z=3,21, p=0,001. Det vil si en

En av svakhetene ved disse to studiene er at de kun består av 20 og femten deltagere. Ved et så lite utvalg vil det lett kunne oppstå tilfeldig feil. Hos Elder og co varte studien bare i tolv uker med en «cross over» etter seks uker og uten en «wash out» periode i mellom. Pga. usikkerheten for et behov for en ”wash out” periode, så ble bare resultatene for de første seks ukene tatt med i oversiktsartikkelen. Hos Knivsberg og co varte studien i tolv måneder, noe som etter min mening gir et mye mer troverdig resultat.

4.1.2 Schizofreni

Schizofreni er en tilstand som rammer 7-15 per 100 000 innbyggere i Norge hvert år. Det er en krevende og kostbar tilstand for samfunnet og alle involverte, der 25 % av de med diagnosen schizofreni blir kronisk syke. Schizofreni er alvorlig psykisk lidelse. Tilstanden har ingen eksakt forklaringsmodell og utarter seg som et syndrom med en rekke ulike manifestasjoner. Syndromet diagnostiseres etter kriterier i følge ICD-10 eller DSM-VI og preges av psykotiske symptomer, sosial tilbakerekning og svekket sosial fungering (35). Schizofrene personer har ofte en kognetiv dysfunksjon med en grunnleggende endring av tenkning, persepsjon og affekt. De vanligste symptomene deles ofte inn i positive symptomer
med vrangforestillinger, tankeforstyrrelser og hallusinasjoner. Negative symptomer som tap av motivasjon, tap av ansiktsmimikk, tap av intonasjon, tap av evnen til å glede seg og tap av interessen for sosial interaksjon. Og kognitive symptomer som konsentrasjonsvansker, hukommelse, språklige forstyrrelser, nedsatt utøvende funksjon og affektive symptomer som depresjon, angst og bisarre responser.

Arveligheten til schizofreni anslås til over 70% (36). Og innen den ledende forskningen forklares schizofreni i dag, med at det foreligger en arvelig predisposisjon for sykdom som kan utløses av ulike miljøfaktorer. Mange forslag på miljøfaktorer har vært foreslått, og det er beskrevet forklaringsmodeller som vanskelige oppvekstvilkår, infeksjoner og underernæring under svangerskapet, fødselskomplikasjoner, det å bo i urbane strøk og cannabisbruk (35). Reichelt og co hevder også at utviklingen av schizofreni hos enkelte kan skyldes genetikk kombinert med intoleranser for gluten og kasein.

Når det gjelder komorbiditet så ser man en økt forekomst av cøliaki hos personer med schizofreni. Personer med schizofreni har også målt en høyere konsentrasjon av antistoffer
forbundet med cøliaki og glutenintoleranse (36). Det er gjort mange studier på schizofreni og effekten av glutenfrie dietter og dens mulige påvirkning på symptomene ved schizofreni. Jeg har gått gjennom en review, “The gluten connection: the association between schizophrenia and celiac disease”, skrevet av Kalaydjian og co 2006 (39). I denne artikkelen ønsker Kalaydjian og co å se på forskning som underbygger hypotesen om at det er sammenhenger mellem glutenintoleranse og schizofreni. I denne artikkelen beskrives det blant annet hvordan forekomsten av schizofreni gikk ned i perioder hvor mat med gluten ikke lenger var tilgjengelig i like stor grad, som under 2. verdenskrig, og at prevalensen av schizofreni er lavere i land med mindre bruk av kornprodukter (39). Kalaydjian og co har også søkt etter studier som ser på effekten av glutenfrie dietter hos personer med schizofreni se tabell 3.

Table 3. Review of clinical trials on the effect of gluten withdrawal on schizophrenics (39).

<table>
<thead>
<tr>
<th>Author</th>
<th>Date</th>
<th>Subjects</th>
<th>Trial results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dohan et al. (37)</td>
<td>1969</td>
<td>102 acutely relapsed male schizophrenics</td>
<td>62% discharged to non-locked ward within 7 days vs. 36% of controls</td>
</tr>
<tr>
<td>Dohan and Grasberger (38)</td>
<td>1973</td>
<td>115 acutely relapsed male schizophrenics</td>
<td>37% discharged to open ward within 90 days of admission vs. 16% of controls</td>
</tr>
<tr>
<td>Singh and Kay (39)</td>
<td>1976</td>
<td>14 male chronic in-patients</td>
<td>Improvement on 30 of 39 measures of psychopathology</td>
</tr>
<tr>
<td>Rice et al. (40)</td>
<td>1978</td>
<td>16 chronic cases</td>
<td>Two patients improved in functioning during withdrawal, and one severely regressed during gluten challenge</td>
</tr>
<tr>
<td>Potkin et al. (42)</td>
<td>1981</td>
<td>8 chronic in-patients</td>
<td>No reported change in functioning</td>
</tr>
<tr>
<td>Storms et al. (43)</td>
<td>1982</td>
<td>26 chronic in-patients</td>
<td>No reported change in functioning</td>
</tr>
<tr>
<td>Osborne et al. (44)</td>
<td>1982</td>
<td>4 chronic cases</td>
<td>No reported change in functioning</td>
</tr>
<tr>
<td>Vlissides et al. (41)</td>
<td>1986</td>
<td>24 chronic in-patients</td>
<td>Improvement on five dimensions of psychotic in-patient profile for the group and two patients improved during withdrawal</td>
</tr>
</tbody>
</table>

Ut i fra sine funn i litteraturen på daværende tidspunkt, konkluderer Kalaydjian og co i denne oversiktsartikkelen med at det kan være hensiktsmessig med en glutenfri diett hos noen undergrupper av schizofrene. Svakheten i litteraturen er at mye av forskningen kommer fra de samme forskningsgruppene (39). Nye randomiserte kontrollerte studier må til for å kunne si noe mer sikkert om sammenhengen mellom schizofreni og glutenintoleranse er tilstede.

En lang rekke forskning indikerer også at glutenintoleranse og cøliaki er med på å forverre eller utløse psykiatrisk sykdom eller ulike nevrologiske tilstander. Eksempel på dette er studiene av Hadjivassiliou og co hvor han ser på pasienter med perifer nevropati. Han fant
sensorisk ganglionpati ved biopsi hos tre av pasientene med nevropati, og foreslår basert på forsøk, at dette bør kunne bedres ved glutenfri diett (40). Andre tilstander Hadjivassiliou har sett på er cerebellær ataksi, myopati, myelopati, stiff-man syndrom, corea og nevromyeopati (41). Her har han basert sammenhengen, mellom glutenintoleranse og nevrogene tilstander, på måling av antigliadin antistoffer hos personer med disse tilstandene og funn av økt forekomst av antistoffer hos disse i forhold til normalbefolkningen.
5 Diskusjon

Gjennom en årrekke har det vært forsket på ulike teorier for en mulig sammenheng mellom hva man spiser og hvordan man oppfører seg. Gjennom denne oppgaven har jeg sett på en modell som forsøker å forklare dette.

![Diagram](image)

Figur 4. Modell av oppgavens hypotese.
At noen mennesker ser ut til å ha en mer permeabel tarm er en av forklaringene på at noen mennesker har større andel av peptider i sirkulasjonen enn andre. Andre teorier kan være at man har en nedsatt enzymaktivitet hvor man ikke bryter peptidene tilstrekkelig ned før de tas opp, eller at man har en redusert utskillelse av disse peptidene etter at de har nådd sirkulasjonen. Mange studier støtter teorien om at enkelte personer har en økt tarmpermabilitet (4, 6, 10, 42). Hva er det da som gjør barrieren i tarmslimhinnen mer permeabel? Her legges det også frem ulike forklaringsmodeller. Vi kan ha en økt permabilitet pga. av en direkte reaksjon med peptider fra mat, som ved gliadin indusert permabilitet, gjennom en inflammationsprosess med utskillelse av cytokiner eller ved påvirkning på tarmslimhinnen av toksiner fra bakterier. Forskning antyder også at det foreligger bevis for at en riktig sammensetning av bakteriene i tarmen kan regulere permeabiliteten i tarmen gjennom en modulering av immunsystemet (9).

cøliaki, hvor man har observert en rekke nevrologiske tilstander deriblant cerebellær ataksi og aksonal nevropati (13).

Forskningen på sammenhengen mellom tarmproblematikk og ulike psykisiriske tilstander sprker mye. I en del artikler så har man beskrevet at visse grupper med mennesker har sirkulerende antistoffer i blodet. For eksempel Hadjivassiliou og co viser til at personer med ulike uforklarlige nevropatier har økt forekomst av antistoffer fra antigliadin (41). Det påstås også at barn med autisme og schizofrene har økt forekomst av slike antistoffer i sirkulasjonen. Hva da med alle friske som har slike antistoffer. Hvorfor blir ikke disse syke? I en artikkel fra Nature viser de her til at det ikke bare krever at antistoffet er til stede, men man må også ha en defekt i blod-hjerne barrieren for at disse antistoffene skal kunne nå sentralnervesystemet (2). Kan dette være forklaringen på at mange studier gir så ulike svar? Er det slik at kun noen av de med lekk tarm også har en permeabel blod-hjerne barriere og dermed en økt risiko for påvirkning av sentralnervesystemet?

Hva kan vi så gjøre for å hindre at peptider som ikke brytes ned får påvirket sentralnervesystemet? En måte man kan hindre peptidene å nå sirkulasjonen på er ved å opprettholde barrieren i tarmen. Dette kan man gjøre rett og slett ved å unngå å spise gluten og/eller kasein. Men, dette er et kosthold som krever ganske mye kunnskap både i forhold til det å få i seg riktig sammensetning av næringsstoffer, men også kunnskap om hva ulike matprodukter inneholder. I det norske kostholdet bruker vi enormt mye brød, og melk tilsettes i nesten alt av ferdigprodukter fra pølser, sauser, kaker til fiskeretter og pålegg som leverpostei og servelat. Man blir nødt til å lage det meste av maten sin fra grunn. Man må bake sitt eget brød og erstatte melk med andre produkter som soymelk eller rismelk. Dette kostholdet koster både i tid og penger. Og ved et kosthold uten melk mister man ikke bare en god kilde til kalsium, men man mister også melks positive virkning på blodtrykket. Forskning har vist at kaseideriverte tripeptider som Ile-Pro-Pro og Val-Pro-Pro virker inn på angiotensinsystemet og reduserer blodtrykket hos personer med mild form for hypertensjon (43). Likevel tror jeg at et kosthold uten melk og mel vil kunne være et overkommelig tiltak for mange dersom alternativet ville være å bli nødt til å starte på medikamenter, som f.eks. antipsykotika.

Et annet tiltak for å opprettholde tarmbarrieren kan være bruk av probiotika. Nyere forskning viser nå god effekt ved bruk av probiotika mot ulike inflammasjonstilstander i tarmen som f.eks. ulserøs colitt og morbus crohn, men også ved tilstander som luftveisinfeksjoner,
gastrointestinale infeksjoner og ved profylaksje og behandling av allergiske symptomer har man sett gode effekter av probiotika (44). Probiotika er levende bakterier som man kan tilsette tarmen enten ved å svelge en kapsel eller ved at de er tilsatt i forskjellige melkeprodukter som blant annet Biola og ulike typer yoghurt. Disse bakteriene hører til den naturlige tarmfloraen og de hindrer patogene bakerier i å kolonisere seg i tarmen ved økt konkurranse om næringen og ved at de skiller ut en kortkjedet fettsyre som gjør tarmen ugjestmild for de patogene bakteriene. Studier tyder også på at den naturlige tarmbakteriefloraen spiller en stor rolle i utviklingen av immunologisk toleranse i forhold til antigener som når tarmen gjennom maten (44). Og det ser også ut til at bakteriene kan virke direkte på epitelcellen i tarmen og stimulere disse til oppretholdelse av barrieren i epitelet. Det er observert at makrofager som eksponeres for probiotika skiller ut store mengder cytokiner. To viktige cytokiner i denne forbindelse er IL-12 og IL10. IL-12 komplementerer cellulærmunkeimmunitet og IL-10 er med på å nedregulere inflammations prosesser. Probiotika er også med på å hemme sekresjonen av IL-6 og IL-8 som begge er inflammationsfremmende cytokiner. Som nevnt tidligere i oppgaven så er IL-6 med på å gjøre blod-hjerne barrieren mer permeabel. Ved å hindre en slik cytokinsekresjon vil også probiotika kunne hjelpe til med å oppretholde blod-hjerne barrieren og hindre eventuelle antistoffer eller opløse peptider å nå sentralnervesystemet. For å oppretholde en tett blod-hjerne barriere kan man også øke inntaket av Omega-3, EPA og gamma-linolensyre. Som nevnt tidligere i oppgaven, så er disse fettsyrene med på å oppretholde blod-hjerne barrieren og de virker antiinflammatoriske.

Når det gjelder peptidene jeg har funnet med strukturlikehet opp i mot en del gluten og kaseinpeptider, så er det vanskelig å komme med noen konklusjon. Jeg har kun ønsket å se på den teoretiske muligheten for at det kan finnes en felles biologisk virkning. Om det foreligger en felles biologisk virkning gjenstår å se, men jeg synes likevel det er interessant å se at neuropeptider som f.eks. nevrotensin har en strukturlikehet mellom flere av gluten og kaseinpeptidene. Spesielt med tanke på at det er funnet nedsatt nevrotensininnvåer i spinalvesken til schizofrene og en antagelsen om at nevrotensin er koblet til en antipsykotisk virkning (38). Jeg fant også en strukturlikhet mellom gluten- og kaseinpeptider med substance P. Dette er interessant med tanke på hvordan substance P er koblet til stress-responsen, affektive lidelser og angst. Både affektive lidelser og angst er knyttet opp til tilstander som schizofreni og autisme. Og mye forskning er gjort i forhold til gluten- og kaseinpeptiders påvirkning til depresjon, bipolar lidelse og ADHD uten at jeg har valgt å gå nærmere inn på det i denne oppgaven her.
Genene våre moduleres hele tiden under påvirkning av miljøet rundt oss. Om det er toksiner i naturen, stråling eller en dårlig oppvekst, så har dette mye å si for hvem som utvikler forskjellige sykdommer. Tanken på at det vi spiser også kan ha mye å si for vår utvikling står for meg nesten som en selvfølge. Det er forsket veldig mye på hvordan dette kan henge sammen, men jeg kan ikke se at vi på nåværende tidspunkt har bevis for en enkel teori. Mye tyder på at sammenhengen mellom tarm og hjerne er tilstede, men det gjenstår en del forskning for at man skal kunne si dette med sikkerhet.
6 Konklusjon

7 Vedlegg

7.1 Strukturlikheter med beta-casomorphin 4:

<table>
<thead>
<tr>
<th>GRUPPE</th>
<th>STRUKTUR</th>
<th>KJEMISK FORMEL</th>
<th>LIKHET</th>
<th>VIRKNING/OPPRINNELSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acth (19-24)</td>
<td></td>
<td></td>
<td>87,26%</td>
<td>Regulerer sekresjon av binyrebarkhormoner.</td>
</tr>
<tr>
<td>Neuromedin N</td>
<td>H - Lys - Ile - Pro - Tyr - Ile - Leu - OH</td>
<td></td>
<td>83,65%</td>
<td>Et peptid fra svineryggmarg med lik aminosyresekvens som den terminal COOH-sekvensen til neurotensin</td>
</tr>
<tr>
<td>Somatotropin (32-38)</td>
<td>Glu-Glu-Ala-Tyr-Ile-Pro-Lys-COOH</td>
<td></td>
<td>82,61%</td>
<td>Somatotropin syntetisert vekst hormon(GH), regulerer vekst og IGF-I sekresjon.</td>
</tr>
<tr>
<td>Fibroblast growth factor (1-10)</td>
<td>Pro-Ala-Leu-Pro-Glu-Asp-Gly-Gjy-Ser-Tyr-COOH</td>
<td></td>
<td>82,37%</td>
<td>Fibroblast growth factor er involvert i proliferasjonen og differensieringen av rekke ulike celler og vev.</td>
</tr>
<tr>
<td>Phorphin</td>
<td></td>
<td>C_{36}-H_{50}-N_{6}-O_{8}-S</td>
<td>80,14%</td>
<td>Phorphin er det fjerde repeterende peptid i prodinorphin som er et opioid involvert i celletransduksjon celle kommunikasjon. Det er også en forløper til hjernens endorphiner.</td>
</tr>
</tbody>
</table>
7.2 Strukturlikheter med beta-casomorphin 5:

<table>
<thead>
<tr>
<th>GRUPPE</th>
<th>STRUKTUR</th>
<th>Kjemisk formel</th>
<th>Likhet</th>
<th>Virknings/opprinnelse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha-gliadin</td>
<td>Tyr-pro-gln-pro-gln</td>
<td></td>
<td>95,88%</td>
<td>En sekvens avgliadinpeptidet biologisk aktivt og blokkert av naloxone.</td>
</tr>
<tr>
<td>Alpha-gliadin</td>
<td>Tyr-pro-gln-pro-gln-pro-phe</td>
<td>C43-H57-N-O11</td>
<td>95,56%</td>
<td>En sekvens avgliadinpeptidet som induserer inhibisasjon av leukocyttmigrasjonen, kan blokkeres av naloxone.</td>
</tr>
<tr>
<td>Enkephalin, ala(2)-pronh2(5)-</td>
<td></td>
<td>C28-H36-N6-O6</td>
<td>91,48%</td>
<td>Enkephalin er et endogent pentapeptid lokaliseret i hypofysen, hjernen, og ryggmargen. Har smertestillende opiat aktivitet.</td>
</tr>
<tr>
<td>Acth (19-24)</td>
<td>Pro-Val-Lys-Tyr-Pro-COOH</td>
<td></td>
<td>88,59%</td>
<td>Regulerer sekresjon av binyrebarkhormoner.</td>
</tr>
<tr>
<td>p2Ca Peptide</td>
<td></td>
<td>C47-H66-N8-O12</td>
<td>87,71%</td>
<td>Et peptid som dannes av enzymet alpha-ketoglutarat-dehydrogenase</td>
</tr>
<tr>
<td>Dermorphin</td>
<td>H-Tyr-D-ala-phe-gly-tyr-pro-ser-NH2</td>
<td></td>
<td>86,87%</td>
<td>Et opioid klassifisert som analgetic, CNS-aktivator/hemmer, virker i det perifere nervesystem og i det sensoriske systemet.</td>
</tr>
<tr>
<td>Somatotropin - Human growth hormone</td>
<td>Glu-Glu-Ala-Tyr-Ile-Pro-Lys-COOH</td>
<td></td>
<td>85,33%</td>
<td>Somatotropin syntetisert vekst hormon(GH), regulerer vekst og IGF-I sekresjon.</td>
</tr>
<tr>
<td>Fibroblast growth factor</td>
<td>Pro-Ala-Leu-Pro-Glu-Asp-Gly-Gly-Ser-Tyr-</td>
<td></td>
<td></td>
<td>Fibroblast growth factor er involvert i proliferasjonen og differensieringen</td>
</tr>
<tr>
<td>(1-10)</td>
<td>COOH</td>
<td>av rekke ulike celler og vev.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>-----------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myelopeptides</td>
<td></td>
<td>84.66% Peptid fra benmarginen, involvert i immunesystemet virker analgetic og immunregulerende.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Substance P (1-7)</td>
<td>H-Arg-Pro-Lys-Pro-Gln-Gln-Phe-NH2</td>
<td>C41-H66-N14-P9</td>
<td>80.09% Et nevropeptid med virkning som nevrotannører og nevrotransmitter. Er involvert i smerte- og inflammatoriske prosesser.</td>
<td></td>
</tr>
</tbody>
</table>
7.3 Strukturlikheter med beta-casomorphin 7:

<table>
<thead>
<tr>
<th>GRUPPE</th>
<th>STRUKTUR</th>
<th>KYMISK FORMEL</th>
<th>LIKHET</th>
<th>VIRKNING/OPPRINNELSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neuromedin N</td>
<td>H - Lys - Ile - Pro - Tyr - Ile - Leu - OH</td>
<td></td>
<td>92,29%</td>
<td>Et peptid fra svineryggmarg med lik aminosyresekvens som den terminal COOH-sekvens til neurotensin</td>
</tr>
<tr>
<td>Fibroblast growth factor (1-10)</td>
<td>C44-H64-N10-O17</td>
<td></td>
<td>85,74%</td>
<td>Fibroblast growth factor er involvert i proliferasjonen og differensieringen av rekke ulike celler og vev.</td>
</tr>
<tr>
<td>Myelopeptide 1</td>
<td>C35-H48-N6-O8</td>
<td></td>
<td>84,84%</td>
<td>Peptid fra benmargen, involvert i immunesystemet virker analgetic og immunregulerende.</td>
</tr>
<tr>
<td>Dermorphin</td>
<td>C40-H50-N8-O10</td>
<td></td>
<td>84,09%</td>
<td>Et opioid klassifisert som analgetic, CNS-aktivator/hemmer, virker i det perifere nervesystem og i det sensoriske systemet.</td>
</tr>
<tr>
<td>Neurotensin (8-13)</td>
<td>C38-H64-N12-O8</td>
<td></td>
<td>82,42%</td>
<td>Binder seg til same område i hjernen hos mennesker som neurotensin bare med større affinitet. Fører til en økt striatal og pallidal GABA sekresjon</td>
</tr>
<tr>
<td>Parathyroid hormone (68-84)</td>
<td>C78-H133-N21-O27</td>
<td>82,11%</td>
<td>Paratroideahormonet regulerer kalsium- og fosfatmetabolismen.</td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------------</td>
<td>--------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>C-Peptide</td>
<td>C129-H211-N35-O48</td>
<td>81,99%</td>
<td>Produseres sammen med insulin i proinsulinmolekylet. Har egen bioaktiv effekt på mikrovaskulær blodstrøm og reduserer sannsynligvis insulinindusert nevropati.</td>
<td></td>
</tr>
<tr>
<td>Relaxin C-peptide</td>
<td>C75-H118-N20-O24</td>
<td>81,66%</td>
<td>Syntetisk aminosyrepeptid man finner i desidua og placenta hos mennesker. Er deler av det humane relaxin peptidet.</td>
<td></td>
</tr>
<tr>
<td>Angiotensin II (4-8)</td>
<td>H - Tyr - Ile - His - Pro - Phe - OH</td>
<td>80,87%</td>
<td>Angiotensin øker blodtrykket ved kontrakjon av efferente arterioler.</td>
<td></td>
</tr>
<tr>
<td>Acetylneurotensin (8-13)</td>
<td>H - Arg - Arg - Pro - Tyr - Ile - Leu - OH</td>
<td>80,78%</td>
<td>Binder seg til same område i hjernen hos mennesker som neurotensin bare med større affinitet. Fører til en økt striatal og pallidal GABA sekresjon (45).</td>
<td></td>
</tr>
<tr>
<td>Sperm acrosomal peptide P23</td>
<td>Val-Ala-Lys-Lys-Pro-Lys</td>
<td>80,68%</td>
<td>P23 setter i gang prosessen i egget som klargjør egget til fertilisering (46).</td>
<td></td>
</tr>
<tr>
<td>Corticotropin-like intermediate lobe peptide (human)</td>
<td>C112-H165-N27-O36</td>
<td>80,67%</td>
<td>Er en del av ACTH molekyletACTH(18-39), er bioaktivt i den basale del av hypotalamus, trolig involvert i autonome og fysiologiske funksjoner (47).</td>
<td></td>
</tr>
</tbody>
</table>
7.4 Strukturlikheter med Gliadophorin (43-49)

<table>
<thead>
<tr>
<th>GRUPPE</th>
<th>STRUKTUR</th>
<th>KJEMISK FORMEL</th>
<th>LIKHET</th>
<th>VIRKNING/OPPRINNELSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enkephalin-leu, gly-pro-(lys-pro-pro-pro)2-ome-</td>
<td></td>
<td></td>
<td>91,15%</td>
<td>Leu-enkephalin er en endogen agonist som virker på reseptorer stimulert av opiate alkaloider. Har flere effekter på CNS, deriblant hypothalamus.</td>
</tr>
<tr>
<td>Acth(19-24)</td>
<td>Pro-Val-Lys-Val-Tyr-Pro-COOH</td>
<td>C47-H66-N8-O12</td>
<td>89,14%</td>
<td>Regulerer sekresjon av binyrebarkhormoner.</td>
</tr>
<tr>
<td>p2Ca Peptide</td>
<td></td>
<td></td>
<td>89,1%</td>
<td>Et peptid som dannes av enzymet alpha-ketoglutarat-dehydrogenase</td>
</tr>
<tr>
<td>Enkephalin, ala(2)-pronh(5)-</td>
<td>Glu-Glu-Ala-Tyr-Ile-Pro-Lys-COOH</td>
<td>C28-H36-N6-O6</td>
<td>88,66%</td>
<td></td>
</tr>
<tr>
<td>Somatotropin (32-38)</td>
<td>Pro-Ala-Leu-Pro-Gly-Gly-Ser-Tyr-COOH</td>
<td>C44-H64-N10-O17</td>
<td>88,01%</td>
<td>Somatotropin syntetisert vekst hormon(GH), regulerer vekst og IGF-I sekresjon.</td>
</tr>
<tr>
<td>Fibroblast growth factor (1-10)</td>
<td>H-Lys - Ile - Pro - Tyr - Ile - Leu - OH</td>
<td>C40-H50-N8-O10</td>
<td>86,3%</td>
<td>Fibroblast growth factor er involvert i proliferasjonen og differensieringen av rekke ulike celler og vev.</td>
</tr>
<tr>
<td>Neuromedin N</td>
<td></td>
<td></td>
<td>86,69%</td>
<td>Et peptid fra svineryggmarg med lik aminosyresekvens som den terminal COOH-sekvensen til neurotensin</td>
</tr>
<tr>
<td>Dermorphin</td>
<td></td>
<td>C87-H129-N19-O27</td>
<td>84,82%</td>
<td>Et opioid klassifisert som analgetic, CNS-aktivator/hemmer, virker i det perifere nervesystem og i det sensoriske systemet.</td>
</tr>
<tr>
<td>Somatotropin (32-46)</td>
<td></td>
<td></td>
<td>84,49%</td>
<td>Somatotropin syntetisert vekst hormon(GH), regulerer vekst og IGF-I sekresjon.</td>
</tr>
<tr>
<td>Insulin-like growth factor 1 (57-70)</td>
<td></td>
<td>C71-H119-N17-O19-S</td>
<td>84,49%</td>
<td>Insulin-like growth factor I Stimulerer cellevekst og</td>
</tr>
<tr>
<td>Substance</td>
<td>Formula</td>
<td>Percentage</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>Substance P (1-9)</td>
<td>C36-H50-N6-O8-S</td>
<td>83,01%</td>
<td>Phorphin er det fjerde repeterende peptid i prodinorphin som er et opioid involvert i celletransduksjon celle kommunikasjon. Det er også en forløper til hjernens endorphiner.</td>
<td></td>
</tr>
<tr>
<td>Substance P (1-7)</td>
<td>C41-H66-N14-P9</td>
<td>82,63%</td>
<td>Et neuropeptid med virkning som nevrotransmitter og nevromodulator. Er involvert i smerte- og inflammatoriske prosesser.</td>
<td></td>
</tr>
<tr>
<td>Acth (11-24)</td>
<td>C77-H134-N24-O16</td>
<td>82,66%</td>
<td>Regulerer sekresjon av binyrebarkhormoner.</td>
<td></td>
</tr>
<tr>
<td>Acth (15-24)</td>
<td>C59-H103-N19-O12</td>
<td>81,43%</td>
<td>Regulerer sekresjon av binyrebarkhormoner.</td>
<td></td>
</tr>
<tr>
<td>Dopamine, N-benzylxycarboxyl-lys-pro-amide-</td>
<td>C27-H34-N4-O7</td>
<td>80,65%</td>
<td>Dopamine r en nevrotransmitter involvert i hjernens læring og belønningsystem.</td>
<td></td>
</tr>
<tr>
<td>alpha-Endorphin</td>
<td></td>
<td>80,54%</td>
<td>Klassifiseres som nevrotransmitter og et opioid peptid.</td>
<td></td>
</tr>
<tr>
<td>alpha-Endorphin</td>
<td></td>
<td>80,54%</td>
<td>Klassifiseres som nevrotransmitter og et opioid peptid.</td>
<td></td>
</tr>
<tr>
<td>Relaxin C-peptide</td>
<td>C75-H118-N20-O24</td>
<td>80,39%</td>
<td>Syntetisk aminosyrepeptid man finner i desidua og placenta hos mennesker. Er deler av det humane</td>
<td></td>
</tr>
</tbody>
</table>
7.5 Strukturlikheter med Glutenekskorfin A5 (Exorphin A5):

<table>
<thead>
<tr>
<th>GRUPPE</th>
<th>STRUKTUR</th>
<th>KJEMISK FORMEL</th>
<th>LIKHET</th>
<th>VIRKNING/OPPRINNELSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myelopeptides</td>
<td></td>
<td>C35-H48-N6-O8</td>
<td>94,62%</td>
<td>Peptid fra benmargen, involvert i immunsystemet virker analgetic og immunregulerende.</td>
</tr>
<tr>
<td>Enkephalin, ala(2)-pronh2(5)-</td>
<td></td>
<td>C28-H36-N6-O6</td>
<td>92,32%</td>
<td></td>
</tr>
<tr>
<td>Fibroblast growth factor (1-10)</td>
<td>Pro-Ala-Leu-Pro-Gly-Gly-Ser-Tyr-COOH</td>
<td>C44-H64-N10-O17</td>
<td>86,85%</td>
<td>Fibroblast growth factor er involvert i proliferasjonen og differensieringen av rekke ulike celler og vev.</td>
</tr>
<tr>
<td>p2Ca Peptide</td>
<td></td>
<td>C47-H66-N8-O12</td>
<td>86,45%</td>
<td>Et peptid som dannes av enzymet alpha-ketoglutarat-dehydrogenase</td>
</tr>
<tr>
<td>Enkephalin, met(2)-pro(5)-</td>
<td></td>
<td></td>
<td>85,88%</td>
<td>En av to enkephaliner, involvert i fenomener assosiert med hukommelse, regulere smerte, følelser, matinntak og regulering av immunsystemet.</td>
</tr>
<tr>
<td>Somatotropin (32-38)</td>
<td></td>
<td></td>
<td>85,49%</td>
<td>Somatotropin syntetisert vekst hormon(GH), regulerer vekst og IGF-I sekresjon.</td>
</tr>
<tr>
<td>Enkephalin, met(2)-pronh2(5)-</td>
<td></td>
<td>C30-H40-N6-O6-S</td>
<td>84,98%</td>
<td>En av to enkephaliner, involvert i fenomener assosiert med hukommelse, regulere smerte, følelser, matinntak og regulering av immunsystemet.</td>
</tr>
<tr>
<td>Neuromedin N</td>
<td>Lys-ile-pro-tyr-ile-leu</td>
<td></td>
<td>84,46%</td>
<td>Et peptid fra svineryggmarg med lik aminosyresekvens som den terminal COOH-sekvensen til neurotensin</td>
</tr>
<tr>
<td>Peptid</td>
<td>Sekvens/agens</td>
<td>Funksjon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>---------------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phorphin</td>
<td>C36-H50-N6-O8-S</td>
<td>Phorphin er det fjerde repeterende peptid i prodinorphin som er et opioid involvert i celletransduksjon celle kommunikasjon. Det er også en forløper til hjernens endorphiner.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acth (19-24)</td>
<td>Pro-Val-Lys-Tyr-Pro-COOH</td>
<td>83,82% Regulerer sekresjon av binyrebarkhormoner.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>alpha-Endorphin</td>
<td></td>
<td>83,77% Klassifiseres som nevrotransmitter og et opioid peptid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>alpha-Endorphin</td>
<td></td>
<td>83,77% Klassifiseres som nevrotransmitter og et opioid peptid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enkephalin-leu, gly-pro-(lys-pro-pro-pro)2-ome-</td>
<td></td>
<td>73,7% Leu-enkephalin er en endogen agonist som virker på reseptorer stimulert av opiate alkaloider. Har flere effekter påCNS, deriblant hypothalamus.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amidorphin</td>
<td>C131-H200-N30-O43-S2</td>
<td>82,25% Er et delprodukt av proenkephalin, finnes i hele den humane hjerne.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulin B (22-30)</td>
<td></td>
<td>82,2% Insulin regulerer glukosemetabolismen.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulin-like growth factor I (57-70)</td>
<td>C71-H119-N17-O19-S</td>
<td>81,94% Insulin-like growth factor I Stimulerer cellevekst og celleoverlevelse.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulin B (20-30)</td>
<td></td>
<td>81,81% Insulin regulerer glukosemetabolismen.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>beta-Endorphin</td>
<td></td>
<td>81,34% Et 31 aminosyrer langt peptid som er den terminale delen av et fragment av beta-lipotropin. Virker på opioide reseptorer og har analgetic virkning.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

