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Abstract 
 

Highly active antiretroviral therapy successfully suppresses viral replication and increases 

CD4+ T cell counts in most patients with HIV infection. However, there is a group of patients 

which exhibits discordant treatment responses, with poor CD4 reconstitution despite 

successful viral suppression. The clinical consequences of such immunological failure are 

significant, including both AIDS-related and non-AIDS-related pathology, yet the group is 

poorly characterised. Little is known about why certain patients do not gain the full benefit of 

HAART, and there are consequently few therapeutic options currently available to improve 

their care. 

To investigate relevant aspects of the immunopathology of HIV infection in patients on 

HAART, we have 124 selected patients with persistent viral suppression after 3-9 months of 

HAART and degrees of CD4 reconstitution ranging from no gains at all to normal CD4 

levels. A range of soluble markers of inflammation and apoptosis will be quantified by 

ELISA technique, in serum samples from each patient from before HAART initiation, and at 

6, 12, 24 and 36 months of HAART.  

We will seek correlates between rates of CD4 gain and measured levels of cytokines and 

soluble membrane proteins, during the first 36 months of HAART. Hopefully, the discovery 

of such relationships may further elucidate the mechanisms underlying discordant treatment 

responses in HIV patients, and contribute to improved disease management.



 

Introduction 
 

In most HIV patients, highly active antiretroviral therapy (HAART) successfully counters 

disease progression by suppressing viral replication and raising CD4+ T cell numbers.
1
 Thus, 

in clinical practice, plasma HIV RNA levels and CD4+ T cell counts are the key parameters 

in monitoring treatment efficacy. However, some patients exhibit therapy responses in which 

one parameter improves and the other does not, termed discordant. Considering the 

complexity of the interplay between antiretroviral agents, the virus and the immune system, 

such variability in treatment outcomes is unsurprising. Nonetheless, the discordant responders 

clearly warrant further study, as they constitute two as yet poorly characterised groups whose 

therapeutic needs are not sufficiently met. 

 

An indication of the relative neglect of discordant responders is the fact that there are no 

universally accepted definitions for virological and immunological success or failure. 

Consequently, estimates of the frequency of discordant responses vary considerably. A review 

of the limited literature on the subject described frequencies in the range of 20-30% of 

patients between 6 and 24 months after starting therapy.
2-4

 Definitions of virologic success in 

included studies ranged from HIV RNA below 50-1000 copies/mL, while definitions of 

immunologic success included both CD4 gains after a given time and the maintenance of CD4 

levels above a given threshold. 

 

The clinical consequences for patients exhibiting discordant responses have been studied to 

varying degrees. Concerning virologic nonresponders, the evidence is inconclusive,
5
 but many 

studies have established the importance of complete virological suppression for CD4 

reconstitution and long term treatment response.
6-8

 It is therefore fair to assume that improved 

virological response would be beneficial this group. 

 

Incomplete CD4 reconstitution, on the other hand, is clearly of negative prognostic 

significance, associated with an increase in morbidity and mortality due both to AIDS-related 

events and non-AIDS-related events (these include cardio-vascular disease, liver disease and 

cancer).
9-15

 Increased clinical risk has been shown throughout the suboptimal CD4 range, with 

a patient’s overall prognosis only approaching that of an HIV-negative individual at CD4 

levels persistently above 500 cells/mL.
14 

 

A greater understanding of the immunologic characteristics of discordant responders can 

likely contribute to improving the care and thus the prognosis of these patients. An 

opportunity to pursue this goal is afforded us by an extensive HIV patient database at the 

department of Infectious Medicine at Ullevål University Hospital, Oslo. Having treated HIV 

patients since 1983, the department has accumulated clinical data for over 2000 HIV-positive 

individuals, and maintains a bank of frozen serum and plasma samples spanning more than a 

decade.  

 

Utilising these resources, we intend to conduct a study focusing on the discordant group 

apparently representing the most significant clinical problem, those with varying degrees of 

immunologic failure concurrent with good virological responses under HAART. We will 

investigate possible correlates between immune reconstitution in these patients and soluble 

factors, quantified in serum by ELISA technique, representing various aspects of immune 

function and dysfunction in HIV pathogenesis.  

 

 



 

Human Immunodeficiency Virus
16 

 
To contextualise terms and ideas relevant to our study, this section introduces some 

fundamental aspects of HIV virology and infection. 

 
HIV is in fact two retroviruses of the lentivirus class, HIV-1 and HIV-2, sharing a genetic 

similarity of 40-50%. Both viruses cause AIDS, but HIV-1 is both more pathogenic in the 

individual and is more easily spread between individuals than HIV-2. HIV-1 is the virus 

responsible for the global epidemic of the last three decades, whereas HIV-2 is mostly 

confined to areas of West Africa. HIV-1 is thus the better-studied of the two, and the subject 

of the study to be conducted.  

 

Genome 

The genome is a single stranded molecule of RNA, 9.4 kb (9400 base pairs) in length, present 

in two copies in each virion. When converted to DNA by reverse transcriptase (a hallmark of 

retroviruses), it encodes nine genes. 

 

Proteins 

The nine genes of HIV-1 encode 15 proteins. The three genes gag, pol and env, shared by all 

retroviruses, each give rise to a polyprotein, which after translation are cleaved by proteases 

(gag and pol by the virus’ own protease, env by a cellular protease) to form functional 

proteins: 

 

Gag: p17, p24, p9 (structural proteins) and p6 (budding protein) 

Pol: reverse transcriptase, integrase and protease (enzymes) 

Env: gp120 and gp41 (envelope glycoproteins) 

 

Other HIV proteins are: Tat, Rev, Nef, Vpr, Vpu and Vif (various regulatory functions) 

 

Structure 

The virus particle consists of a core and an envelope. The core consists of the two copies of 

genome associated with a few molecules of RT and integrase along with the viral protease and 

the nucleocapsid protein p9, inside a capsid consisting of p24, which is itself within a 

spherical matrix consisting of p17. The matrix forms a structural scaffolding for the envelope, 

a phospholipid bilayer acquired as the newly created virus buds off from the membrane of an 

infected cell. Anchored in the bilayer is the envelope spike, a structure made up of three 

copies of a gp120/41 heterodimer. 

 



 

 
                         HIV virion structure               © 2006 Elsevier, Inc 

 

 

The main cellular targets of HIV are CD4-expressing T-lymphocytes, dendritic cells (DCs) 

and macrophages. In addition to the cell surface glycoprotein CD4, a coreceptor is generally 

required for successful viral entry. Chemokine receptors CCR5 and CXCR4 are considered 

the most significant (although the use of several other coreceptors has been observed in vitro), 

and various strains of HIV are classified by their use of one or both as coreceptor.  

 

Viral entry 

The first step is the binding of HIV gp120 to CD4, which induces a conformational change in 

gp120, exposing a binding site for the chemokine receptor. (See (1), figure 2) The binding to 

this coreceptor causes a further change in conformation of gp120, bringing the viral envelope 

into contact with the cell membrane. The gp41 component of the envelope spike induces 

fusion of the two phospholipid bilayers, and the viral capsid is released into the cell 

cytoplasm. (2) 

 

Replication 

On exposure to the cytoplasm, the capsid is removed by host cell proteases, its contents 

forming a preintegration complex, which heads for the nucleus. (3) Inside the complex, the 

viral RNA genome is reverse-transcribed to complementary DNA. (4) The HIV protein Vpr is 

thought to be particularly important in facilitating the transport of the preintegration complex 

into the nucleus. (5) Once inside, integrase inserts the viral cDNA into a random part of the 

host cell genome to form the provirus. (6) 

 

The rate at which the provirus is transcribed depends on whether the infected cell is in a state 

of activation or resting. In a resting T-cell or unactivated DC, the HIV promoter region is 

inhibited by cellular regulators, and only a very limited number of viral mRNAs are 

generated. The number of progeny virions produced in this state of preactivation is negligible. 

However, when the cell is stimulated to activation either by engagement of its T-cell receptor 



 

or by proinflammatory cytokines, it initiates the transcription of many of its own genes, 

mediated by cell transcription factors which also bind to the HIV promoter. Viral genes are 

then expressed, including, vitally, the regulatory Tat and Rev. Tat, interacting with several 

host cell factors, counters the aforementioned inhibition of HIV transcription, increasing the 

production of viral mRNAs by a factor of several hundred. (7) Rev is essential for the export 

out of the nucleus of mRNAs encoding viral structural proteins and full-length copies of the 

viral genome. (8),(9) 

 

When mRNAs for the structural, enzymatic and accessory proteins have been translated on 

cellular ribosomes and the resulting polyproteins cleaved by proteases (10), all the elements 

of new virions are ready to be assembled. P24 forms the capsid around the RNA genome and 

core proteins (11) before reaching the cell membrane, budding through it to acquire its 

envelope as the progeny virion leaves the cell. (12) 

 

HIV is cytopathic through a range of mechanisms, and infected cells in which the virus is 

actively replicating can only survive for a short time before undergoing apoptosis. 

 

 

 

 
           HIV life cycle                        © 2006 Elsevier, Inc. 

 

 

 

 



 

Clinical course of HIV infection 

 

HIV typically enters the body either through sexual contact or directly via intravenous 

injection. The first cells to be infected if the virus penetrates the rectal or vaginal mucosa are 

usually DCs, macrophages and CD4+ T-lymphocytes in the underlying lamina propria. They 

carry the virus to local lymph nodes, where it finds its way into other resting CD4+ T-cells. 

Over the following weeks, viral replication increases exponentially, as the infection spreads 

through the body’s lymphoid tissues. 2-4 weeks after infection, a significant number of 

patients experience a primary illness, exhibiting symptoms that often include fever, 

lymphadenopathy, fatigue, rash, diarrhoea, headaches and muscular pain. 

 

A vigorous immune response is elicited by the virus, and CD8+ cytotoxic T-cells (CTLs) 

specific for HIV attack the infected cells. This protective response, along with the cytotoxic 

effects of the virus, kills an enormous number of CD4+ T-cells during the acute phase of 

infection, which lasts about 2 months. After this time, viremia subsides, and the chronic phase 

has begun. Concurrently, circulating HIV-neutralising antibodies are detectable in the 

patient’s serum, and he/she is classified as seropositive.  

 

Despite an intense effort on the part of the immune system, HIV is not completely cleared 

from the body in this early phase, and lies dormant as provirus in macrophages and resting T-

cells. A period of chronic infection but clinical latency follows, in which the immune system 

is under perpetual strain. CD4+ T-cells continue to die en masse despite the relative success 

of CTLs and antibodies in suppressing viral levels. Hematopoietic tissues churn out 

replacements at a prodigious rate, but eventually this regenerative capacity becomes 

exhausted, and CD4-levels fall to the point (usually defined as <200 cells/ml blood) where 

they no longer provide a sufficient contribution to the defence against microbial pathogens. 

The opportunistic infections that follow mark the onset of clinical AIDS.  

 

The latency period in HIV infection may last from a few months to over two decades. A host 

of factors predicting progression to AIDS have been documented, relating to characteristics of 

both the patient and the virus involved, and patients on each end of the scale have been 

studied particularly. Those who in the absence of anti-retroviral treatment stay AIDS-free for 

over 10 years are referred to as long-term non-progressors (LTNP), while those who develop 

clinical disease within two years of infection are called rapid progressors (RP). 

 



 

HAART 

 

Whether disease progression is slow or rapid, HIV infection without treatment is, eventually, 

almost invariably fatal. While the first HIV drug, zidovudine/azt, was introduced in 1987, it 

was not until 1996 and the advent of combination anti-retroviral therapy that HIV’s assault on 

the immune system could be combated to any significant extent. By combining several anti-

retroviral drugs with different mechanisms of action, viral replication can be reduced in most 

patients to a point at which the body is able to reconstitute its CD4-levels and thus immune 

function. 

 

The drugs currently licensed for use can be divided into four groups by mechanism of action: 

 

Nucleoside RT inhibitors (NRTIs): competitively inhibit the deoxynucleosides being strung 

together to form viral DNA by reverse transcriptase, prematurely terminating the chain. 

 

Non-nucleoside RT inhibitors (NNRTIs): induce conformational changes in RT, inactivating 

it. 

 

Protease inhibitors (PIs): competitively bind to the active site of viral protease, hindering 

post-translational cleavage of the gag and pol polyproteins. 

 

Fusion inhibitors: enfuvirtide, the only molecule in use to date, binds to gp41, blocking the 

conformational change which otherwise occurs after gp120 binds to CD4. This prevents the 

viral envelope from fusing with the cell membrane. 

 

Highly active anti-retroviral therapy (HAART), as it is commonly referred to today, has 

turned HIV infection into a chronic but relatively stable condition, though only in the 

countries that can afford to offer it to patients. In addition to a price which is prohibitive in 

those parts of the world where the treatment is most desperately needed, HAART is 

demanding of the recipient, requiring near-perfect compliance to effectively suppress viral 

replication and avoid resistance development. The complicated daily regimens and large 

numbers of pills involved, along with the significant short and long-term side-effects of the 

drugs severely test a patient’s motivation. 

Clearly, the ideal solution, and one which has been pursued intensely since the discovery of 

the virus, is a vaccine. The goal of bestowing protective immunity against HIV has, however, 

proved elusive.  

 

Immunopathology 

 

Our study aims to further elucidate aspects of the interplay between HIV and the immune 

system. This section briefly presents some fundamental elements of the immunopathology of 

the virus, including some recently established key insights. 

 

T-helper cells (Th cells) are required for the orchestration of an effective immune response, 

through cytokine production and direct interaction with and activation of CTLs. The 

preferential infection and killing of this cell population by HIV eventually cripples the 

defense against microbial infections and many tumours, and is the main marker of disease 

progression. A phenomenon of key importance, however, is that the loss of Th cells extends 

far beyond those actually infected by virus. Several mechanisms have been suggested to 

explain this loss, including upregulation of several pro-apoptotic membrane proteins on 

infected cells and interference with T cell maturation. An observation which has proved 



 

highly significant is that the majority of Th cells lost through all phases of HIV infection are 

from the gastrointestinal tract. This has been linked to the persistent immune activation of 

chronic HIV infection.  

 

HIV-specific CTLs kill infected CD4+ cells by perforin/granzyme-mediated cytolysis and 

release soluble factors which inhibit viral replication, such as RANTES (CCL5), along with a 

range of other cytokines. In the acute phase of infection, the CTL response is vigorous, but as 

the disease progresses and Th function is lost, CTL response suffers accordingly. An 

additional pressure on the CTL population is the frequent generation throughout the disease 

course of so-called genetic escape mutants, HIV viruses displaying new epitopes. This is a 

result of the high error rate of viral reverse transcriptase along with the frequently high rate of 

replication of HIV. Consequently, ever new CTL clones are activated, over time causing 

clonal exhaustion. 

 

A new concept in relation to T-cell responses is that of polyfunctionality and response quality. 

It was discovered that HIV non-progressors had T cells which exhibited the ability to perform 

many functions at once (i.e. release many different cytokines and perform cytolysis), 

compared to progressors. This response quality has correlated better with viral suppression 

than T cell quantity. The induction of such polyfunctional T cell responses has become a goal 

in vaccine development. 

 

Another consequence of the high mutation rate of HIV is the relative inefficacy of the 

humoral immune response, that mediated by antibodies. The virus is present in so many 

antigenic varieties that a neutralising antibody response becomes impossible. In addition, it is 

thought that key epitopes in the proteins of the viral envelope are sterically obscured, 

hindering those antibodies that would bind the virions between cells from doing so. Finally, 

multiple clones of B cells are activated by gp120 acting as superantigen, producing antibodies 

which have no effect against the virus. As with CTLs, this is thought to cause clonal 

exhaustion, constituting yet another immune defect in advanced disease. 

 

Chronic immune activation is a fundamental feature of progressive HIV infection, and has 

numerous deleterious consequences. Already mentioned is the polyclonal activation of both B 

and T cells, putting strain on their homeostatic mechanisms. Over time elevated levels of 

proinflammatory cytokines damage lymphoid tissues, including the thymus, site of T cell 

maturation. Most detrimental is probably the fact that the large numbers of T cells being 

activated throughout the disease are prime targets for the virus to infect. 

 

The reason for this immune activation has recently been linked to the clinically apparent 

enteropathy that has long been recognised in HIV infection. The GI tract normally houses the 

majority of the body’s lymphocytes, but it has been found that during acute HIV infection, 

most of the CD4+ cells there are killed directly by viral infection. This local depletion 

continues throughout the disease course. At the same time, there is increased apoptosis of 

enterocytes and increased intestinal permeability. Recently, increased levels of 

lipopolysaccharide have been found in the blood of HIV-infected individuals, indicating a 

translocation of microbial products across the damaged intestinal mucosa. While the 

immunostimulatory effect of LPS is mediated first and foremost via Toll-like receptor 4, it is 

assumed that other microbial products similarly enter the blood-stream, activating the immune 

system through other means. 

 

 



 

Methods 
 

Subject of investigation 

Our study question can be summarised as follows: Is there a correlation between CD4 

reconstitution in patients on HAART with undetectable HIV-1 viral loads and soluble markers 

of inflammation and apoptosis? 

 

Patients 

We have selected patients from the HIV database at the Department of Infectious Medicine at 

Ullevål Hospital who meet the following inclusion criteria:  

- initiated HAART after 01.01.2000 

- achieved viral suppression to undetectable levels (<50 copies/mL) within 3-9 months 

of HAART initiation 

- maintained viral loads under the limit of detection throughout the study period, 

allowing for single blips. 

- no AIDS-defining events before or during the study period 

 

Time period 

Serum samples have been selected, where available, at baseline (last available sample before 

initiation of HAART) and at 6, 12, 24 and 36 months after HAART initiation. No samples 

dating after November 2007 are available, as serum/plasma storage for research purposes at 

the department ended at that time. The number of samples available for each patient varies 

from 2 to all 5 points in time. 

 

Soluble factors 

At the time of writing, the final decision about which soluble factors are to be investigated is 

yet to be made. Several issues influence this choice. 

 

Firstly, we are fortunate enough to be working with a laboratory which performs ELISA 

analyses with a high degree of automation, handling large volumes of samples 

simultaneously. This reduces analysis time and cost, enabling us to choose several soluble 

factors to analyse. 

 

On the other hand, the number and variety of analyses is limited by the amount of sample 

material available, 2 vials of frozen serum for each patient from any given time point. 

 

Additionally, we are limited in our choice by the time and likely suboptimal temperature at 

which the samples have been frozen. For the results of the ELISA analysis to be reliable, we 

must choose soluble markers known to be robust when frozen over long time periods. 

 

Many molecules are of interest:
17 

 

RANTES (Regulated upon Activation Normal T-cell Expressed, and presumably 

Secreted): also known as CCL5, this chemokine is secreted by activated T lymphocytes and 

is chemotactic for other T cells, eosinophils and basophils. Along with MIP-1-α and -β, it is a 

ligand for the CCR5 chemokine receptor, and thus functions as an HIV inhibitory factor by 

preventing viral entry into cells. 

 

MIP-1-α and MIP-1-β: also known as CCL3 and 4, respectively, these two chemokines are 

produced by macrophages when stimulated by bacterial lipopolysaccharide. They contribute 



 

to local inflammatory responses by activating granulocytes, and together with RANTES 

inhibit HIV entry into cells. 

 

TNF (Tumor Necrosis Factor): Secreted by monocytes, macrophages, neutrophils, NK cells 

and certain T cells upon stimulation by LPS and a range of cytokines, including interferons 

and interleukin 2. This key inflammatory cytokine has specific receptors on nearly all cells in 

the body, and a wide range of biological effects. Chronically raised levels of TNF play a role 

in the chronic immune activation of HIV infection. Also of interest would be measuring 

circulating levels of soluble TNF receptor, or TNF-BF (TNF-Blocking Factor), believed to 

regulate TNF effects by preventing the cytokine’s interaction with cell receptors. 

 

TRAIL (TNF-Related Apoptosis-Inducing Ligand): Part of the TNF ligand superfamily, 

this cytokine can induce apoptosis by binding to Death Receptors 4 and 5. There is evidence 

to suggest that HIV-induced expression of TRAIL by antigen-presenting cells contributes to 

the extensive apoptosis of uninfected CD4+ T cells.
18 

 

sFas/sFasL: Fas is an important component of the extrinsic pathway of programmed cell 

death. HIV-infected cells upregulate their expression of Fas ligand, inducing apoptosis of 

their uninfected neighbours.
16

 Soluble Fas and Fas ligand are often elevated in HIV infection, 

possibly evidence of Fas-mediated depletion of CD4+ T cells.
19 

 

IL (interleukin)-17: Contributing to enterocyte homeostasis, this cytokine is expressed by a 

population of Th cells (Th17) which is preferentially lost from the GI mucosa in HIV 

infection.
20

 This may contribute to the increased permeability to microbial products such as 

LPS which is implicated in chronic immune activation and HIV disease progression. 

 

IL-18: Expressed in a variety of immune cells, this proinflammatory cytokine induces the 

expression of IFN-γ, which in turn promotes so-called Th1 responses as well as upregulating 

Fas-expression. 

 

IL-7: Synthesised by stromal cells in the bone marrow and thymus, IL-7 has been identified 

as an important growth factor for T cells. IL-7 levels tend to be elevated in HIV patients and 

inversely correlated with CD4 counts,
 21

 indicating the existence of a direct feedback loop that 

may be critical to CD4 reconstitution under HAART. 

 

 



 

ELISA 

 

The soluble factors under investigation will be quantified in the serum samples by ELISA, at 

the laboratory of the Research Institute for Internal Medicine at Rikshospitalet, Oslo. 

 

ELISA, or enzyme-linked immunosorbent assay, is a powerful and widely used method to 

detect and measure concentrations of specific proteins in complex mixtures. Developed in the 

1970s as an immunological tool, it has also found use in medical diagnostics, toxicology and 

quality-control in various industries. 

 

While many variations on the method exist, the fundamental elements are:
 22 

 

1. Coating/capture: The antigen is immobilised in a well of a microtiter plate, either directly, 

that is, by passive adsorption (in a traditional ELISA), or by the use of a capture antibody (in 

“sandwich” ELISA). The capture antibody is specific for the antigen of interest, and promotes 

the preferential binding of this antigen in the well. This is useful where the antigen is in a 

complex solution with many other proteins(such as serum/plasma?) 

 

2. Plate blocking: To prevent non-specific binding of the detection antibody and/or 

secondary antibody (if used) to the well, all vacant binding sites are covered by an irrelevant 

protein or other molecule, often bovine albumin. 

 

3. Probing/detection: An antigen-specific detection antibody is added to the wells, forming a 

high-affinity bond to the antigen. In direct ELISA, the detection antibody is tagged with an 

enzyme which catalyses the colour change to be measured. In indirect ELISA, by contrast, the 

enzyme is attached to a secondary antibody which binds the Fc-fragment of the detection 

antibody. This enables an amplification of the signal, improving the sensitivity of the assay. 

Then a solution of a chromogen substrate for the enzyme is added, and a coloured product is 

generated, in an amount proportional to the concentration of antigen present in the sample. 

 

4. Signal measurement: The intensity of the colour change is measured by a 

spectrophotometric plate reader, and the concentration of antigen extrapolated from a standard 

curve for the assay. 

 

 
Some typical ELISA configurations         © 2010 Thermo Fisher Scientific 

 

 



 

In our study, samples will be analysed by sandwich ELISA, using Horse Radish Peroxidase 

(HRP) as the enzyme tag. For each assay, antibodies and antigens standards need to be 

purchased. The quantitation of certain soluble markers, such as IL-7, may require the use of 

specific, high-sensitivity kits, with special signal amplification. 

 

For each assay, a standard curve will be generated by analysing serial dilutions of a known 

concentration of reconbinant antigen, to which the sample signals may be compared and 

antigen concentations extrapolated. 

 

 

 
Example of an ELISA standard curve      © 2006 Elsevier, Inc. 

 

 

 

Statistical analysis 

 

The possible correlation between ΔCD4 (CD4 reconstitution from baseline) and the quantities 

of soluble factors at each time point will be investigated using parametric statistical methods. 

The main prerequisite for using parametric methods is that we can assume that the sample is 

normally distributed, which depends upon the types of variables in our data set and n, the size 

of our sample.  

 

If the necessary assumptions about normal distribution can be made, parametric statistical 

methods are preferable to non-parametric methods because they are more sensitive in 

uncovering statistical relations between the variables.  

 

 



 

Progress 
 

149 patients conformed to the selection criteria, but 25 had to be eliminated from the study 

due to missing samples. Thus, at the time of writing, a total of 520 serum samples from 124 

patients have been selected, and are to be sent to Rikshospitalet for analysis as soon as the 

final decision has been made regarding the markers to be investigated. 

 

 

Remaining work 
 

A sample size of 124 patients is most likely large enough to allow the use of parametric 

statistical methods to explore the data from the ELISA (marker concentrations) analyses and 

the HIV database (CD4 counts and time periods). 

 

We will seek statistically significant differences in levels of soluble factors between patients 

exhibiting different levels of immunological response to HAART. Combined with existing 

knowledge about the roles of these signalling molecules and receptors in normal immune 

function and HIV pathogenesis, such correlates may hopefully contribute to improved care for 

immunologically discordant patients in the future. 
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