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complex 
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INTRODUCTION 
Type 1 diabetes (T1D) is a chronic and irreversible condition of insulin deficiency that 

affects about 0.3% of Caucasian populations, with onset most commonly occurring at a 

young age. Until the 1930’s, when insulin was first isolated from animal pancreases and 

successfully used for treatment of human patients, the T1D diagnosis was a death sentence. 

Today, approximately 70% of the insulin is produced by genetically engineered bacteria, 

representing one of the first and largest success stories of modern biotechnology, and most 

patients live relatively normal lives. However, T1D still represents enormous health 

challenges, as insulin dysregulation frequently causes vascular complications that increase 

risk for severe, secondary diseases; including, but not limited to, kidney damage (nephropa-

thy), blindness (retinopathy), nerve damage (neuropathy) and myocardial infarction.1 

Moreover, the incidence rate of T1D is increasing at an alarming rate worldwide,2 installing 

an escalating need for determining its causes. 

T1D develops as a result of an autoimmune process where the patient’s own immune system 

specifically attacks and eventually completely destroys the insulin-producing islet �-cells of 

the pancreas. This process is characterised by lymphocytic infiltration of the islets (“insu-

litis”),3 most likely involving autoreactive CD4+ and CD8+ T-cells as key players (4; 5; 

reviewed in 6; 7) and presence of autoantibodies to islet cells, glutamate decarboxylase 2 

(GAD65), protein tyrosine phosphatase receptor type N (islet antigen 2; IA2) and/or insulin 

(reviewed in 8). Moreover, as determined by the presence and predictive power of multiple 

autoantibodies in prediabetic patients, the autoimmune process may extend over several 

years before the disease becomes overt.9 Little is known about the initiating factors and 

details of progression to T1D, although it has become clear that both genetic and environ-

mental factors must be involved. Twin studies have identified concordance rates of 21-70% 

between monozygotic twins (depending on sampling approaches and time frames), whereas 

the rate in dizygotic twins is 0-13%, with a similar rate of about 6% in non-twin siblings.10; 

11 Thus, although T1D has a strong genetic component, the fact that a high number of 

monozygotic twins are discordant means that environmental factors, such as infections by 

certain viruses (reviewed in 12; 13), must play a significant role. Whatever the causes, genetic 

studies are an integral part of any endeavour to unravel the aetiology of this disease. Direct 

benefits include more accurate diagnostic procedures and identification of individuals at 

high risk, but more importantly, mapping the genetic contribution to T1D provides strong 
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clues about key biological players. Together with complementary approaches, such as 

immunological experiments in cells or animal models and epidemiological surveys, this is 

vital to understand the mechanisms that trigger this disease, and ultimately, how to prevent 

the disease from developing. This thesis contains several papers with different angles to this 

problem, with a major focus on the major histocompatibility complex (MHC), the first and 

still the most important region of the human genome linked with this disease.  

Genetics of complex diseases 

In common with most autoimmune diseases (AIDs) and other common diseases, T1D is a 

complex trait that is believed to be caused by multiple genetic factors that increase vulner-

ability to one or more environmental factors. Hence, unlike rare and “simple” genetic 

diseases such as Huntington’s disease, where mutations in a single gene have been identified 

as the necessary and sufficient causative factor (reviewed in 14) the presence of risk alleles at 

a given T1D risk locus is only predictive of an increased risk compared to individuals 

carrying neutral or protective alleles. Although most genetic factors in complex diseases are 

believed to confer moderate to small individual effects, the sum and possible interaction 

between these factors may have a large impact on disease status, and are thus nonetheless 

important.15  

Genetic signposts and aids: Linkage, linkage disequilibrium and 
association 

Genetic studies of complex diseases commonly use two different approaches: linkage and 

association (Figure 1). Linkage is a classical genetic concept that refers to the co-

segregation of marker alleles on the same chromosome, or haplotype, through meiosis. As 

recombination events effectively break up such haplotypes, linkage is a function of the 

recombination rate between loci, and therefore also of genetic distance (i.e., as measured in 

centimorgans). In the context of complex diseases, linkage commonly involves following 

the inheritance of parental alleles at a marker in two or more children within the same 

family; when siblings have inherited copies of the same parental allele (these are said to be 

“identical by descent”), the parental haplotype on which they are located must also be 

shared. When such haplotypes are shared between affected siblings more often than 

expected by chance, this implies that the investigated allele co-segregates with a disease 
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locus nearby.16 “Nearby” in this context is relative, and typically involves distances ranging 

from 100 to several thousand kilobases (kb).17 Hence, linkage does not measure the effect of 

a trait locus directly. In contrast, association is the over- or underrepresentation of a 

particular genetic variant in a population of patients relative to healthy controls, and can 

therefore provide a direct measure of the effect of a trait locus when the locus itself is 

genotyped (“direct” association in Figure 1). However, making a priori predictions about 

the location of such loci are difficult, and genotyping of all the genetic variation in a region 

is rarely feasible with current methods. Therefore, association studies aiming to identify 

novel susceptibility loci mostly rely on linkage disequilibrium (LD), the non-random 

association between alleles at two or more loci in a population. This makes it possible to 

detect association even when the responsible variant itself is not genotyped, given that the 

LD with neighbouring (genotyped) markers is strong enough (“indirect” association in 

Figure 1). 

 

Figure 1: Concepts of linkage and association. D: disease; G: genetic susceptibility locus; M: marker. 
Dashed lines represent linkage or association signals, while unidirectional arrows indicate causation. Adapted 
from 16. 

LD is related to linkage, in that it (usually) involves a tendency for alleles at proximal 

markers to be inherited together on the same haplotype. Therefore, LD also depends partly 

on the recombination rate between loci. For instance, for the commonly used LD measures 

D’ and r2 (uni- and bidirectional measures between two markers, ranging from -1 to 1 and 

from 0 to 1, respectively; |1| represents complete LD, 0 no LD), values are based on 

comparison of observed versus expected haplotype frequencies, where the expected 

haplotype frequency is given as the product of the frequencies of the involved alleles at each 

of the loci; that is, the haplotype frequency you would expect if there was non-restricted 

recombination betweeen the loci (and thus, no LD). Unlike linkage, however, LD and 
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association are measured at a population level, which means that LD is additionally 

governed by forces such as genetic drift, selection, migration, population admixture and the 

number of generations since the original mutation event that gave rise to a particular genetic 

variant.16 Whereas linkage involves only a single generation when measured by identical by 

descent alleles in siblings, association studies of complex traits typically involve haplotypes 

that have been shaped over thousands of generations (so-called ancestral haplotypes).18 

Therefore, LD usually decays very rapidly with physical distance. This results in a substan-

tially shorter range for detection of association due to LD compared to linkage, with one 

estimate setting the average upper limit at about 3 kb in the human genome.18 This usually 

makes association better suited for fine-mapping studies than linkage (especially if the 

underlying susceptibility variant is common, see below), as increased proximity reduces the 

number of markers that can possibly constitute the primary locus. However, due to the many 

possible variables that govern LD patterns and strengths, LD is notoriously difficult to 

predict. As demonstrated in the first three papers in this thesis, and as shown by others,19 LD 

in certain regions of the genome may be much stronger and of longer range than the 

average, which can substantially complicate such fine-mapping efforts.  

Tag SNPs and assumptions of association screens 

Despite the unpredictable nature of LD, remarkably conserved patterns are often observed in 

different human populations, as demonstrated by the Haplotype Map (HapMap) project.20 

These patterns have been used for generating subsets of tag single nucleotide polymor-

phisms (SNPs) that convey most of the genetic information offered by the original SNP set 

genotyped. This is a central concept in the current wave of genome-wide association studies 

(GWAS), as reducing the number of SNPs under study has been crucial to keep genotyping 

costs at affordable levels. However, certain assumptions underlie the use of tag SNPs and 

screening approaches. One is the common-variant/common-disease hypothesis (e.g. 21-24), 

which states that most of the genetic variants involved in common diseases are likely to be 

present at substantial frequencies also in the normal population. Both the HapMap project 

and most screening studies operate with a minor allele frequency limit of 5% for inclusion 

of markers in further analyses (in the papers of this thesis the limit was 1% or below), thus 

excluding rare variants present at lower frequencies. Another, related assumption is that 

there is only one or very few disease conferring variants at a particular locus. If instead there 

is high “allelic heterogeneity”, i.e. multiple alleles or multiple polymorphic sites in a 
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particular gene that are all directly involved in disease risk (commonly observed for rare 

variants), the power of detecting indirect association by LD may be substantially diminished 

(25; 26). Moreover, most tag SNPs are currently being selected on the basis of only a small 

share of the total number of common SNPs in the genome, and local variations in LD in 

different populations is bound to leave some polymorphisms unmarked. This has also been 

demonstrated by studies where complete resequencing has been performed (e.g.,27; 28). 

Despite these concerns, however, the GWAS approach has already proven its power to 

detect novel susceptibility loci.29-34 

Design and scale of genetic studies of complex disease 

GWAS represent a new approach that only has become possible with the introduction of 

high-throughput, array-based technologies where a large number of SNPs (currently up to 1 

million) are genotyped in each sample simultaneously. However, genome-wide screening 

approaches were introduced as early as the 1980’s, using linkage rather than association. As 

the physical range for detecting significant signals generally is much larger for linkage, and 

linkage screens often have used multiallelic microsatellites that are more informative than 

biallelic SNPs, only a small fraction of the total number of markers necessary in GWAS is 

needed to cover the genome. However, genome-wide linkage screens did not meet the initial 

expectations, as results were prone to false-positives, and conversely, the power to detect 

signals with genome-wide significance levels were unexpectedly low.16 A much more 

successful approach has been to focus on candidate genes, chosen for their functional 

characteristics and hypothesised involvement in disease. This approach has lead to, e.g., the 

identification of polymorphisms associated with T1D and multiple other AIDs in the MHC 

(discussed in the next section), in the cytotoxic T-lymphocyte-associated protein 4 (CTLA4) 

and protein tyrosine phosphatase non-receptor type 22 (PTPN22) genes, and the discovery 

of the T1D involvement of a polymorphism in the insulin (INS) gene (reviewed in 35). In 

fact, until the beginning of the GWAS era, the candidate gene approach was the only 

successful approach for identification of novel genetic variants involved in T1D.  

MHC: a major T1D susceptibility region 

The first genetic association with T1D was reported with a locus in the MHC in 1973,36 

representing a radical turn in our understanding of this disease.37 Thirty-five years later, the 
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MHC is still regarded as the most important genetic region for T1D, with estimates that this 

region alone accounts for about 40-50% of the familial clustering in T1D.38; 39. An illustra-

tive example of this role is the result of a recent genome-wide linkage screen in 1435 T1D 

families, where the MHC yielded a nominal P-value of 2.0x10-52, whereas none of the other 

identified regions reached significance below 1.0x10-5.40 This remarkable region, in humans 

also termed the human leukocyte antigen (HLA) complex, occupies about 3.5 megabases 

(Mb) on the short arm of chromosome 6 and harbours over a hundred expressed genes. Of 

these, an estimated 40% are involved in immune responses,41 with a tendency for clustering 

by function (Figure 2).  

 

Figure 2: Overview of important immune-system genes in the classical MHC. Main functional class is 
indicated with colour code. MHC region class is indicated below the figure (only the class I, II and III regions 
are regarded as part of the classical MHC); exI and exII: extended class I and II regions, respectively 
(extending beyond the figure in both directions). Positions are along chromosome 6 (build 36). Source: 41 

The genes that gave the complex its original name, the HLA genes in the class I and II 

regions, are highly polymorphic, each with up to several hundred alleles identified to date 

(http://www.anthonynolan.org.uk/research/hlainformaticsgroup/). In addition, the class II 

molecules are dimers of � and � chains encoded by separate loci (e.g., HLA-DQA1 and -

DQB1 for the DQ molecule), further increasing the potential number of different molecules. 

Both classes of genes are central in the adaptive immune response. Class I molecules 

present peptide-fragments of antigens from the endogenous environment to CD8+ T-cells, 

and are present in most nucleated cells. In contrast, class II molecules are found mostly on 

professional antigen presenting cells, where they present peptide-fragments from exogenous 

antigens to CD4+ T-cells. The peptide-binding grooves are encoded by exons 2 and 3 in 

class I genes and exon 2 of the � and � genes of the class II loci. These sequences account 

for most of the polymorphism in these genes and also form the basis for assignment of 

alleles. The class I molecules are in addition involved in innate immune responses by 
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operating as ligands for natural killer (NK) cell receptors, similar to the molecules encoded 

by the MHC class I polypeptide-related sequence genes (MICA and MICB). The immune-

response genes in the class III region are also mostly part of the innate system, encoding 

inflammatory cytokines, stress response proteins and complement factors. In total, the class 

III region contains about 60 expressed genes, making it the most gene-dense region in the 

human genome.42 Notably, the tumour necrosis factor (TNF) gene in this region is a target 

for immunosuppressive treatments of several AIDs. 

Considering the high concentration of immune-system genes, it is not surprising that not 

only T1D, but also a great number of other diseases with a heritable component - including 

most AIDs - map to this complex.43; 44 Consequently, the MHC is one of the most intensely 

studied regions of the human genome.  

The DRB1-DQA1-DQB1 association in T1D 

Soon after the first discovery of a T1D-associated locus in the MHC it became clear that the 

major part - although not all - of the T1D association in this region could be attributed to 

variants in the MHC class II loci HLA-DRB1, -DQA1 and -DQB1. This characteristic is 

shared with a number of other AIDs (p. 18). T1D associations with these loci have been 

connected with particular haplotypes spanning all three loci rather than individual genes. 

These haplotypes follow a risk-continuum from the highest risk DRB1*03-DQA1*0501-

DQB1*0201 and DRB1*0401-DQA1*0301-DQB1*0302 haplotypes to the almost domi-

nantly protective DRB1*15-DQA1*0102-DQB1*0602 haplotype in all populations studied 

(e.g. 45; 46). An even higher risk is observed in heterozygous individuals carrying both of the 

two highest risk haplotypes, compared to individuals homozygous for either haplotype (e.g. 
45-47). This may stem from a particularly high-risk configuration of the peptide-binding 

groove of the DQ � and � chains encoded in these heterozygotes, allowing more efficient 

binding of auto-antigens when dimers are formed in trans (i.e. DQA1*0501 with 

DQB1*0302 and DQA1*0301with DQB1*0201 as opposed to the cis-encoded dimers 

DQA1*0501-DQB1-0201 and DQA1*0301-DQB1*0302). Although the primary auto-

antigen in T1D remains unidentified, this possibility is supported by efficient presentation of 

gluten peptides by the same trans-dimers in celiac patients.48 Observations such as these 

could suggest that the HLA-DQA1 and -DQB1 genes are the strongest primary contenders 

among the three. These are also better functionally characterised, and comparisons of crystal 
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structures and binding affinities with orthologues in the non-obese diabetic (NOD) mouse 

model of T1D have revealed striking similarities of predisposing or protective alleles (49; 

reviewed in 50). However, it is also well-known that the risk conferred by the DQ encoding 

genes is strongly modified by the HLA-DRB1 gene, particularly by DRB1*04 subtypes. For 

instance, DQA1*0301-DQB1*0302 haplotypes carrying DRB1*0401 or DRB1*0405 confer 

high risk across all populations studied, whereas the risk conferred by the same DQA1-

DQB1 haplotype carrying DRB1*0404 is much lower, and with DRB1*0403 strongly 

protective (e.g. 45; 46; 51). Thus, genetic studies involving these genes usually operate with 

haplotypes of all three loci, or at the very least, HLA-DRB1 and HLA-DQB1 (as these genes 

effectively convey most of the information of the HLA-DQA1 gene due to strong LD). 

Additional susceptibility loci in the MHC: the problem of hitchhikers 

Although the risk impact of the DRB1-DQA1-DQB1 loci outconquers any other T1D-

associated locus in the genome, many studies have strongly implicated the existence of at 

least one, and probably more, risk loci in addition to these genes within the MHC (see 

Paper III; reviewed in 52) Perhaps the most compelling evidence for this comes from a 

prospective study of healthy siblings of T1D patients, all carrying the highest-risk 

DRB1*03-DQA1*0501-DQB1*0201/DRB1*0401-DQA1*0301-DQB1*0302 heterozygous 

genotype: of the healthy children that in addition to this genotype shared both haplotypes 

identical by descent (see p. 10) with their diagnosed siblings, 55% were at high risk for 

developing T1D by the age of 12. In contrast, only 7% of those that shared zero or one 

haplotype identical by descent (but still the same genotype) were in this high-risk group 

(34% and 5%, respectively, had already developed the disease at the time the study was 

published).53 This extreme risk of T1D cannot be ascribed to the DRB1-DQA1-DQB1 loci 

alone, as all siblings shared the same high-risk genotype. Rather, some locus, or loci, linked 

with these haplotypes is needed as an additional explanatory factor.  

Despite substantial efforts, however, the identification of these loci has proven difficult, 

owing to several unusual characteristics of this region. One is that the strong immunogenetic 

role and high density of genes in the MHC makes for an abundance of good candidate 

genes, making a priori predictions difficult. Another is the high number of functional 

polymorphisms in the HLA genes, as well as the MICA/B genes, which has made genotyping 

a demanding task and often has resulted in incomplete characterisation. More seriously, the 
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haplotype structure of the MHC partly consists of highly conserved, ancestral haplotypes, 

present at high frequencies in the population and only separated by defined hotspots of 

recombination, which results in unusually strong and extensive LD.54; 55 This makes fine-

mapping of disease-associated variants difficult, as allelic variants may “hitchhike” on 

haplotypes carrying primary (directly involved) variants at other loci, resulting in detection 

of indirect associations over large distances. An illustrative example of this effect is that the 

first discovered T1D-associated genetic variants were the B*08 and B*15 alleles (originally 

termed HL-A8 and W15) of the HLA-B gene;36; 56; 57 only later did it became clear that most, 

if not all, of the association of these alleles could be explained by LD with the high-risk 

DRB1*03-DQA1*0501-DQB1*0201 and DRB1*0401-DQA1*0301-DQB1*0302 haplo-

types, respectively. These loci are located over 1.2 Mb apart, exceeding the average 

estimates of useful LD range for association studies by a factor of more than 400.  

The B*08 and DRB1*03-DQA1*0501-DQB1*0201 alleles are present on a haplotype 

known as the 8.1 ancestral haplotype (AH), which also includes, among others, the A*01 

and C*07 alleles of the HLA-A and -C genes, respectively. This haplotype is quite frequent, 

present at about 10% in Caucasian populations (7.7% in the Norwegian population), and has 

been shown to be completely conserved for as long as 9 Mb in some individuals.58; 59 AH8.1 

has been strongly associated with numerous diseases, including T1D and other AIDs (60; 61; 

reviewed in 62). Another AH that has attracted considerable attention is the AH18.2, which 

carries the same DRB1-DQA1-DQB1 alleles as the AH8.1, but extends to, among others, 

B*18 and C*05, and with less conservation telomeric of the HLA-B gene. This haplotype 

shows a higher T1D risk than that conferred by AH8.1 and other DRB1*03-DQA1*0501-

DQB1*0201 extended haplotypes.63; 64 This implies that some additional locus or loci on the 

AH18.2 and AH8.1 modify the high risk of the DRB1*03-DQA1*0501-DQB1*0201 

haplotype, in predisposing and possibly protective directions, respectively. 

Similar to other, non-MHC loci that have been identified in T1D, additional susceptibility 

loci in the MHC are believed to confer small individual effects relative to the DRB1-DQA1-

DQB1 genes. This adds to the difficulties of genetic studies in the MHC, as indirect 

associations due to LD with these genes will also tend to be strong, effectively masking or 

confounding the effects of other loci. These characteristics basically render conventional 

association strategies useless, as any association detected within the MHC by all probabili-

ties is attributable to LD with the DRB1-DQA1-DQB1 loci. However, several conditional 
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approaches have been developed, representing different ways of “peeling off” the LD effects 

of the DRB1-DQA1-DQB1 loci to identify independent effects (p. 30). 

The T1DGC MHC fine-mapping project 

A problem with conditional approaches is that they often involve a large number of parame-

ters, in particular when controlling for multiallelic loci such as DRB1-DQA1-DQB1, 

resulting in small strata or high degrees of freedom when testing for independent effects. In 

combination with small expected effect sizes, this can quickly result in insufficient statisti-

cal power. One approach to this problem is to include as many individuals as possible 

through collaborative efforts involving multiple research centres. This is what has been done 

in the Type 1 Diabetes Genetics Consortium (T1DGC) MHC fine-mapping project, which 

has generated genotypes for almost 3000 markers covering the entire classical MHC region, 

in over 2300 T1D families (the T1DGC MHC dataset). The T1DGC is a large collaborative 

effort aiming to collect a large multiplex (at least two affected siblings) family material, 

with a stated goal of achieving enough power to perform a definite genome-wide linkage 

screen in T1D. In addition, the T1DGC provides characterised samples and cell lines for 

researchers worldwide, and several large-scale, collaborative projects are under way. The 

MHC fine-mapping project is the first major project under the auspices of the T1DGC, 

where ten independent research groups have been allowed early access to this data. Along 

with colleagues from Sweden, Germany and Norway, I am part of one of these groups, 

resulting in Paper I and II in this thesis, as well as the replication study in Paper III. 

Autoimmune diseases: common factors? 

T1D is only one among many diseases believed to have an autoimmune cause. Examples of 

such diseases are rheumatic diseases such as rheumatoid arthritis (RA), juvenile idiopathic 

arthritis (JIA) and ankylosing spondylitis; diseases of the digestive system such as celiac 

disease, Crohn’s disease (CD) and ulcerative colitis (UC); systemic diseases such as 

systemic lupus erythematosus (SLE), myasthenia gravis, sarcoidosis and multiple sclerosis; 

and organ-specific diseases such as primary sclerosing cholangitis (PSC), autoimmune 

thyroid disease and psoriasis. Although the variation in clinical manifestations of these 

diseases is large, there are certain common characteristics; the most frequent being the 

presence of one or more types of autoantibodies.65 Moreover, familial clustering of different 
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AIDs is known to occur,66 and co-occurrence of AIDs in the same patient is observed more 

often than expected by chance, e.g. RA and T1D with autoimmune thyroid disease,67 and 

PSC with CD and UC, celiac disease and autoimmune hepatitis.68; 69 This indicates that there 

may be shared genetic factors among these diseases, and indeed, several genetic variants 

have been reported associated with more than AID. Most notably, all of the above men-

tioned diseases map with variable strength to the MHC, and many with the genes in the 

class II region encoding antigen-presenting molecules. In fact, this is often used as one of 

the arguments for assigning an autoimmune status to a particular disease. In addition, 

genome-wide linkage studies have revealed several regions with overlapping linkage signals 

for more than one AID,70 and the T1D-associated variants of the CTLA4 and PTPN22 genes 

have also been reported associated with multiple other AIDs.35 In this thesis, a recently 

proposed variant common to AIDs is investigated in Paper IV. 



 

AIMS 
The overall aim of the work presented in this thesis was to dissect the genetic predisposition 

to T1D in the MHC, with an added goal of investigating possible factors common to AIDs. 

Specifically, we wanted to address the following issues:   

1. Which loci other than the DRB1-DQA1-DQB1 loci are responsible for the T1D risk 

conferred by the MHC (addressed particularly in Paper I and II)? 

2. Can previously reported associations with T1D and other AIDs in the MHC be 

explained by LD with other loci, or do they represent primary associations (addressed 

particularly in Paper III)? 

3.  Is the Fc receptor-like 3 (FCRL3) -169T>C SNP a risk factor in T1D and the other 

AIDs RA, JIA, SLE, UC, CD and PSC (Paper IV)? 
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METHODOLOGICAL CONSIDERATIONS 
The use of families or case-controls represents two fundamentally different designs of 

association studies, each having strengths and weaknesses. As will be discussed in this 

section, however, some issues relating to the quality of a study pertains to all association 

studies, regardless of design. In the papers of this thesis, all investigations of T1D (Paper I-

IV) involved families, whereas the other investigated AIDs in Paper IV involved case-

control designs.  

Issues of clinical heterogeneity 

The presence of atypical patients in an otherwise homogenous patient material can reduce 

power to detect associations. An important issue in genetic studies is therefore how the 

patient materials under study were selected and diagnosed. Such issues are particularly 

pertinent when considering combined materials collected at different locations, such as the 

T1DGC family material. The T1DGC MHC dataset, used in Paper I, II and III, consists of 

two main collections (~50% of samples each): families collected for the explicit purpose of 

the T1DGC and families collected previously under the auspices of various institutes, most 

notably the Human Biological Data Interchange (HBDI) and British Diabetic Association 

(BDA) Warren I cohorts. For the former collection, diagnostic criteria and information 

gathered was uniform and subject to consortium guidelines. For the latter collection, some 

patients lacked certain information, such as autoantibody status and ethnic origin, and 

diagnostic criteria may have been subject to differing guidelines. Thus, the latter collection 

is likely more heterogeneous than the first. Similarly, although the Norwegian families and 

Scandinavian patients investigated in Paper III and IV were collected under standardised 

guidelines, diagnosis may still vary depending on the admitting physician or medical centre. 

However, such issues are difficult to avoid in studies involving many patients, and some 

heterogeneity is therefore bound to exist. A possible solution would be to examine different 

cohorts separately, but such procedures may well reduce statistical power more than the 

presence of heterogeneous samples. Also, repeated testing in different parts of the dataset 

introduces issues of multiple testing, which may inflate the type I error (false positive) rate 

(see p. 29). Therefore, in the papers of this thesis, this strategy was limited to a particular 

issue of ethnic stratification (p. 33) and one instance of clinical heterogeneity, described in 

the next section. 
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Testing in clinical subgroups 

Even if the same diagnostic criteria are applied to all patients, some diseases display varying 

incidences of clinical subcategories. In this thesis, this particularly applied to the RA, JIA 

and PSC patients included in Paper IV. For such diseases, a common strategy is to test 

genetic variants in defined clinical subcategories of the patients. This may reveal whether 

there are specific disease traits involved, which are valuable for inferring underlying 

biological mechanisms. In addition, associations may be detected that are not visible in the 

total patient material, due to involvement of biological mechanisms not present in other 

subgroups. However, due to issues related to multiple testing, this strategy should be used 

with caution. In general, such testing is not warranted unless 1) there is a significant 

association in the total patient material, or 2) if there are reasons to believe that specific 

subcategories are more likely to be involved. Tests performed in clinical subgroups of JIA in 

Paper IV abided by the second of these rules; although the association in the total JIA 

material was not significant (P=0.062), there was a tendency for an association comparable 

to that observed for the significant association in RA patients. Moreover, the polyarthritis 

subgroup of JIA have several clinical characteristics in common with adult RA that could 

indicate shared aetiological factors.71 

Age at T1D onset and LADA 

Onset of T1D can occur at any age, but is most frequently observed in the younger popula-

tion. In the T1DGC MHC dataset, the mean age of onset was 11.75 [sd 8.71] years, but 16% 

of patients had an age of onset greater than 20 years (in comparison, all patients in the 

Norwegian family material was diagnosed before the age of 15). This may have introduced 

some heterogeneity, as an atypical, slowly progressing manifestation of T1D more common 

in older patients, termed latent autoimmune diabetes in adults (LADA; about 5–10% of 

newly diagnosed non-insulin-requiring diabetes), may have different underlying causes (72; 

reviewed in 73; 74). One of the discriminating factors of LADA is infrequent presence of IA2 

autoantibodies.73 However, among T1DGC patients characterised for IA2, 61% (n = 143) of 

patients with age of onset >20 years were IA2 positive, compared to 52% (n = 1061) of 

patients with age of onset 20 years or younger. Although this difference was significant 

(P=0.011), the higher frequency of IA2 autoantibodies in the older age of onset group 

indicates that the incidence of LADA among the T1DGC patients was rare. Therefore, 
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heterogeneity due to presence of LADA was not likely to have had a major impact on our 

analyses. 

Quality controls in association studies 

In addition to clinical heterogeneity, other, more adverse sources of heterogeneity in 

association studies relate to genotyping errors and presence of substructures in control 

populations. Such problems do not only reduce statistical power, but may also create false 

positive results. Therefore, several measures are commonly employed to reduce their 

impact. 

Abiding genetic laws of inheritance 

Genotyping errors can arise for a multitude of reasons, e.g. poor DNA sample quality, 

incomplete reference sequence information such as duplicate sequences or unidentified 

polymorphisms in a probe or primer target, unforeseen interactions between primers or 

probes in a multiplex assay, poorly designed reaction conditions, or just plain human error. 

Family studies have the advantage that such errors may be identified through violations of 

Mendelian inheritance, as only certain combinations of alleles in offspring are possible 

given the genotypes of the parents. Although Mendelian errors can account for only a 

portion of the total genotyping errors in a study (depending in part on marker polymorphy; 

e.g., for biallelic markers the rate may be as low as 25%75), such errors still can provide 

strong clues about presence and specific problems with the genotyping procedure. Com-

monly, violating genotypes are simply removed before performing statistical tests. This 

strategy may introduce some bias, particularly for multiallelic markers: as the power to 

detect Mendelian errors relies partly on allele frequencies, such removal may involve some 

alleles more often than others, resulting in disproportionate frequencies in the edited dataset. 

Therefore, alternative association tests that allow for inclusion of such errors have been 

proposed.76; 77 However, as such methods seem somewhat immature and in little current use, 

we instead removed genotypes for the affected marker in the entire family in which a 

Mendelian inconsistency was encountered (this was only necessary in the Norwegian 

families, as the T1DGC MHC dataset was already “cleaned” before being made available to 

the research groups).  
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Mendelian tests are not possible for the unrelated individuals in case-control studies, which 

instead often rely on the possibility for detecting genotyping errors by deviations from 

Hardy-Weinberg equilibrium (HWE).78 HWE is the constant proportion of genotype 

frequencies of a non-mutant marker under no selection in a homogenous population that is 

under random mating, i.e. the genotype proportions you would expect to find in a properly 

sampled control population. Genotyping errors can create distortions in allele frequency 

distributions, which, given sufficient statistical power, may be detected by such tests. 

Testing for HWE is also possible in family materials, usually by examination of genotypes 

in parents.79 However, families are selected on the basis of at least one diseased family 

member, and therefore are not likely to be representative of the population as a whole. 

Therefore, the requirement of HWE in family studies is often not applied as stringently as 

for control populations in case-control studies, except when the validity of the statistical 

procedure is contingent on such equilibrium (e.g. the AFBAC procedure described below). 

Association and population stratification 

Association tests in a case-control study involve the simple null hypothesis H0: no associa-

tion between the marker and the disease. However, this is under the assumption that cases 

and controls are sampled at random from the same, genetically homogenous and randomly 

mating population, i.e. strongly related to HWE. Consequently, spurious associations may 

arise when a population is stratified, e.g. due to admixture of ethnically diverse populations. 

Partly for this reason, family-based tests were devised where transmitted (T) and non-

transmitted (NT) alleles to affected offspring act as cases and controls, respectively (re-

viewed in 80). This leads to an efficient matching of the test populations, as each pair of T 

and NT alleles share genetic background, with the added benefit that environmental 

exposure tend to be more homogenous within families. The most widely used of these tests 

is the transmission-disequilibrium test (TDT),81 involving T/NT from heterozygous parents, 

or one of its many extensions such as the extended TDT (ETDT),82 which tests for transmis-

sion distortion of multiple alleles simultaneously. Alternative designs include the affected 

family-based control (AFBAC) design, where the controls are formed by NT parental alleles 

also from homozygous parents (never-transmitted in mulitplex families),83 and designs that 

consider relative risks conferred by specific genotypes conditional on parental genotypes 

(e.g. 84; 85). The latter approach involves conditional logistic regression, which allows for 

inclusion of other parameters such as accounting for missing parents, 86 parent-of-origin or 
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epistatic effects,87; 88 or the effects of other markers in LD with the investigated marker 

(described in detail on p. 31). In common for all of these approaches is that they are based 

on testing within families, thereby reducing or even eliminating the impact of population 

structure. Significant findings in a family-based test most often also implies linkage (in 

addition to association),80; 89 which unlike LD is not influenced by population genetics (p. 

10). Moreover, even in cases where population stratification is an issue (e.g., see p. 34), 

unlike case-control designs, the use of families represents a matched design, which in the 

face of an unmatched test caused by stratification is likely to lead to reduced power rather 

than false positives.90 Therefore, family-based designs are generally considered more robust 

to population stratification than case-control designs, which continues to be one of the key 

arguments for their use.  

For case-control designs, an alternative solution is to test, once again, for compliance with 

HWE. In the absence of genotyping errors, deviations from HWE in patients can be a sign 

of disease involvement of a marker.91 In contrast, deviations in a healthy control population 

can arise when these consist of subpopulations with different ancestral origin and population 

history, which often exhibit differences in genotype frequencies; i.e., in the presence of 

population stratification.92 As the following case will show, HWE deviations may also arise 

for no identifiable reason, but may still reveal important issues.  

The importance of HWE in control populations 

An illustrative example of the importance of HWE in controls was encountered in the work 

behind Paper IV in this thesis, where the Fc receptor-like 3 (FCRL3) -169T>C SNP was 

examined using TaqMan technology (Applied Biosystems). Initially, we genotyped a control 

material recruited from the Norwegian Bone Marrow Donor Registry (NBMDR; n = 650). 

These controls were in marked deviation from expected HWE frequencies for this SNP 

(P<0.01), similar to a deviation observed in parents from the T1D families. To test for the 

possibility of genotyping errors, we retyped a representative subset of these controls (12%; 

16 CC, 30 CT and 28 TT) by DNA sequencing. However, this revealed no discrepancies. 

The TaqMan genotyping assay performed well with no signs of clustering anomalies (see p. 

28), and was the same as that used in the original report for this SNP (Applied Biosystems, 

personal communication), where no deviation from HWE was observed.93 Moreover, there 

was no evidence of additional polymorphisms within the sequences covered by the assay 
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primers and probe (ibid.), and our sequencing results did not reveal any unknown SNPs in 

the 459 basepair region amplified by our primers. Finally, only two Mendelian inconsisten-

cies were observed in our 425 T1D families, with an implied error rate much too low to 

explain the observed deviation (<0.7% for a 25% discovery rate). Hence, genotyping error 

could be excluded as a possible cause of the observed deviation from HWE.  

An alternative explanation could be population stratification, but the Norwegian population 

is generally considered genetically homogeneous, and HLA genotype profiles in these 

controls matched those of the total NBMDR material (consisting of ~20000 individuals), 

making ascertainment bias unlikely. Also, parts of the NBMDR control material and the 

T1D family material used in this study were previously genotyped for a number of other 

polymorphisms without showing deviation from HWE.94-101 

Hence, none of the usual explanations for HWE deviation seemed to apply to our study. We 

therefore at first interpreted this as a sign that this SNP simply was not in HWE in the 

Norwegian population. However, considering that a marker under no selection pressure and 

no mating bias (which there was no reason to suspect in this case) is expected to reach HWE 

after a single generation, this notion is highly unlikely. In addition, the select status of the 

T1D families means that the deviation observed here may not be considered as independent 

evidence for such a deviation in the normal population. Therefore, another, independent 

control material was genotyped (Paper IV). This time, the controls were in HWE, and in 

addition showed more similar genotype frequencies to those reported in other Caucasian 

populations. This also resulted in striking changes in the results of the study, from initial 

significantly increased risk of the FCRL3 -169 CC genotype for the UC, PSC and SLE 

patient populations and reduced risk for the RA population, to significantly increased risk 

for the CC genotype in the RA population only (Table 1). 

Hosking et al. (2004)104 performed a detailed investigation of 36 SNPs deviating from HWE 

(from a panel of 313 assays with minor allele frequency [MAF] >0.05). However, the 

deviations for 10 of these SNPs could apparently not be explained by either genotyping 

errors or population stratification. This shows that deviations from HWE may occur quite 

frequently, even when conditions for proper study design and accurate genotyping are met. 

The cause of such deviations are unclear, but may be purely stochastic in nature, such that 

for any given study population, some markers will not be in HWE by pure chance. To date, 

such problems have either been ignored78; 105 or resulted in markers being omitted from 
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Table 1: Comparison of association results for the FCRL3 -169T>C SNP depending on HWE in controls. 

Material n Genotype frequency CC vs. CT + TT with 
Controls #1 (not in HWE) 

CC vs. CT + TT with 
Controls #2 (in HWE) 

CC CT TT OR (95% CI) P-value OR (95% CI) P-value 

RA 713 0.21 0.50 0.29 0.78 (0.60-1.00) 0.052 1.30 (1.01-1.67) 0.040 
JIA 320 0.20 0.49 0.31 0.74 (0.54-1.03) 0.075 1.30 (0.99-1.70) 0.062 
SLE 163 0.15 0.57 0.28 0.50 (0.32-0.81) 0.0037 0.87 (0.55-1.38) 0.55 
UC 326 0.15 0.53 0.32 0.52 (0.36-0.73) 0.0002 0.89 (0.63-1.26) 0.51 
CD 142 0.19 0.51 0.30 0.69 (0.43-1.08) 0.10 1.18 (0.75-1.85) 0.47 
PSC 360 0.18 0.49 0.33 0.64 (0.47-0.89) 0.0071 1.11 (0.81-1.52) 0.53 
Controls #1 631 0.26 0.43 0.31 - - - - 
Controls #2 982 0.17 0.51 0.32 - - - - 

n: number of genotyped individuals. RA: rheumatoid arthritis; JIA: juvenile idiopathic arthritis; SLE: systemic 
lupus erythematosus; UC: ulcerative colitis; CD: Crohn’s disease; PSC: primary sclerosing cholangitis; 
Controls #1: NBMDR, not in HWE (P<0.01); Controls #2: Norwegian blood donors (used in Paper IV). �2 
tests applied to allelic counts assumes HWE102; 103 and are therefore not shown. 

further analyses (e.g. 20). Our results demonstrate that the former strategy is dangerous, as it 

may lead to false results. The latter strategy seems to be a far better alternative, although 

genotyping of an independent control material is preferable in cases where the SNP is of 

particular interest. 

Additional measures of quality 

In addition to investigating Mendelian errors and HWE deviations, most genetic studies 

involve additional measures to correct for potential errors. The T1DGC MHC dataset used 

in Paper I-III had already been subject to a range of methods relating to genotyping quality 

(most notably at the well-renowned deCODE and Sanger institutes for the microsatellites 

and SNPs, respectively) and identification of potential errors in family structure before 

being made available to the research groups. In addition, we implemented a procedure to 

evaluate the number of recombinations between loci; when estimates of haplotypes show 

unusually high numbers of apparent recombinations within a single family, this is likely to 

point to errors in pedigree structure, e.g. the inclusion of genetically unrelated individuals or 

misspecification of parents and children. Similarly, family structures in the Norwegian T1D 

families were evaluated by examining a large number of genotyped markers simultaneously, 

and identifying those families where Mendelian errors appeared to be overrepresented. In 

some cases, such procedures can point to a sample-switch, which is easily corrected by 

applying the correct sample number. In other cases, the offending sample or the entire 

family (when the former is ambiguous) must be removed from analysis altogether.  
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For genotyping quality, a common measure is to examine genotyping success rates, both in 

relation to samples and markers. In the first case, removing samples that perform poorly is 

not only likely to remove genotyping errors relating directly to these samples, but can also 

significantly improve the genotype quality of other samples: many assays, such as TaqMan, 

SNPlex and array-based methods rely on clustering of genotypes from many individuals 

simultaneously, and low-quality samples will tend to contribute towards poorly defined 

borders between these clusters. In the second case, removing genotypes for markers with 

low success rates will tend to improve overall genotype quality, as poorly performing assays 

are usually prone to genotyping errors.  

Another important measure is to check the integrity of the reference sequence on which the 

assays were originally designed. The human genome reference sequence is constantly being 

updated, and each update can reveal inconsistencies in previous builds. Similarly, the 

National Center for Biotechnology Information (NCBI) SNP database (dbSNP; 

http://www.ncbi.nlm.nih.gov/SNP/) contains information about most of the SNPs discov-

ered to date, with frequent updates. Control searches in this database for SNPs included in a 

study may, only months after the study was initiated, reveal newly discovered alleles or 

multiple hits at different loci in the genome. Such characteristics can introduce errors in 

genotyping, and may therefore reveal errors that otherwise had gone unnoticed. 

Probabilities and statistical power 

Association tests involve the null hypothesis H0: no association between a marker and a 

disease. Rejection of the null is determined by the significance threshold, which is com-

monly set at P=0.05 for single tests. However, in complex studies involving multiple 

parameters, the suitability of a significance threshold is contingent on probabilities for two 

main classes of statistical errors: the type I error rate, which is the probability of rejecting 

the null when there is no true association (false positive), and the type II error rate, which is 

the probability of not rejecting the null when there in fact is a true association (false 

negative). The probabilities for such errors are heavily influenced by the size of the study 

population and of the risk effect, and the allele frequency of the risk conferring variant 

(lower probabilities for large populations, high risk effects and frequencies closer to 

50%).106 Depending on these parameters, the threshold significance level can adjust the 
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balance for these two types of errors; lower thresholds will reduce the type I error rate, but 

increase the probability for type II errors. 

Type I errors and study designs 

An added complexity of type I errors is that they also are influenced by the design of a 

study: investigating a large number of markers without a prior evaluation of the likely 

involvement of these markers with disease (e.g. genome-wide screens) is more likely to 

yield false positives than investigation of a single marker that has been implicated through 

functional studies, biological role or prior reports of association (i.e., candidate studies). 

This is due to mainly two issues: differences in the prior odds of “hitting the right spot” 

among the millions of common variants that are present in the genome, and issues when 

testing multiple markers at the same time for a single hypothesis.  

The prior odds are, obviously, not possible to calculate accurately, but testing different 

models has shown that the odds in a candidate approach can be as much as a 100 times 

better than in a hypothesis-free screening approach.106 As such, the studies in Paper III and 

IV in this thesis were closest to the mark, as polymorphisms in these studies were selected 

on the basis of earlier reports involving both functional and genetic studies. In contrast, 

Paper I and II describe screens of the entire MHC using a high-density SNP panel or 

microsatellite markers. Although the prior odds in these studies is much better than in 

genome-wide approaches, due to limiting the focus to a region that already has a high 

likelihood of containing T1D risk factors, they will be significantly worse than for the 

candidate studies in Paper III and IV.  

A similar, but separate issue influencing type I error rates relates to the testing of multiple 

markers for a single hypothesis, e.g. the existence of an additional T1D susceptibility locus 

within the MHC (relates to Paper I and II, and to a lesser degree to Paper III). In contrast 

to a single test, where a significance level of P<0.05 may be adequate, each added test of the 

same hypothesis (represented by each of the tested markers) increases the likelihood of 

observing associations at this level by pure chance. A widely used measure to reduce the 

impact of these issues is to apply Bonferroni correction, which is the simple division of a 

significance value (e.g. P=0.05) with the number of tests performed to arrive at a new 

threshold. Although Bonferroni correction does not consider dependencies between markers 

due to LD and therefore is considered conservative, particularly when the number of tests is 
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large, it is computationally simple and generally considered to be sensitive.107 Moreover, in 

the context of the studies conducted in Paper I and II, which involved parameter- and work 

intensive methods, these procedures helped to reduce the workload, but still leaving a 

substantial number of significant markers. 

Type II errors and statistical power 

Statistical power is the probability that a study will detect a true association with the 

markers studied, and is therefore inversely related to the type II error rate. Power calcula-

tions are often applied prior to performing a study (e.g. in Paper IV), to determine if the 

available study population is large enough to detect associations of a marker with an 

expected risk impact. In the studies of Paper I-III, such calculations were difficult, as the 

use of conditional approaches and the unusual LD characteristics of the MHC can influence 

these estimates in unpredictable ways. However, an estimate by Nejentsev et al. (2008), 

using 850 of the T1DGC families in a similar study to ours showed a 98% power to detect a 

relative risk of 2.0 at �=1.0x10-5 and MAF=0.10, 60% for MAF=0.05 and 32% for a relative 

risk of 1.5 at MAF=0.10.108 As our studies included over 2300 families and higher threshold 

P-values (conditional main effects tests; �=2.2x10-5 for the SNPs in Paper I and �=8.5x10-4 

for the microsatellites in Paper II), we should have had ample power to detect loci with 

moderate risk sizes. 

Conditional analyses: controlling for LD 

The unusual LD characteristics of the MHC (p. 17) demands special measures to identify 

independent effects, particularly of LD with the DRB1-DQA1-DQB1 loci. Several ap-

proaches to this problem have been proposed, mainly divided into methods based on logistic 

regression and methods based on estimates of extended haplotypes (described further 

below).  

Defining the primary locus 

Irrespective of method chosen, a first and essential step is how to define the risk conferred 

by the HLA-DRB1, -DQA1 and -DQB1 loci. A problem with analyses conditional on these 

loci is the large number of alleles at each locus, which, if each locus is treated separately, 

can rapidly result in very high numbers of variables. Although this strategy has been in 
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common use (albeit usually ignoring the HLA-DQA1 locus), it requires some form of 

grouping of alleles to reduce complexity. This may be done by function (e.g. similar to the 

“shared epitope” hypothesis in RA109), by broad risk categories (e.g. high, low, interme-

diate), or under a certain frequency threshold. However, these strategies may be difficult due 

to incomplete information, too inaccurate given the complex risk of the DRB1-DQA1-DQB1 

loci, or result in grouping of alleles with differential risk. Still other methods do not consider 

all DRB1-DQA1-DQB1 haplotypes, but only those with very high risk impact (e.g. the 

homozygous parent TDT, p. 33). 

Our approach to this problem, applied in Paper I-III, was to take advantage of the high LD 

between the DRB1-DQA1-DQB1 loci by constructing phased haplotypes (i.e. assigning each 

allele to one of the two chromosome copies) covering all three loci and using these haplo-

types as alleles at one “super-locus”. This simplified the analyses substantially (leaving one 

instead of two/three conditional loci), while keeping most of the information of the individ-

ual loci intact. Moreover, due to the known haplotype-specific and modifying effects 

between these loci (p. 15), considering the haplotypes rather than individual loci should 

capture the risk more accurately. When also considering that LD patterns from alleles of the 

individual loci are likely to vary from those of haplotypes spanning all three, the use of 

haplotypes more effectively addressed the main task in our analyses: to control for secon-

dary association due to LD with the DRB1-DQA1-DQB1 loci. This approach, and its 

possible shortcomings, is described in detail in Supplementary methods of Paper I. 

Main effects tests 

Logistic regression is a flexible framework that allows for incorporation of a multitude of 

variables. The approach used in this thesis (Paper I-III), described by Cordell & Clayton 

(2002),110 considers the overall combination of genotypes at two or more loci, allowing for 

testing of effects at an additional locus while controlling for confounding (i.e., due to LD) at 

a primary locus. Specifically, this involves comparison of a regression model that includes 

the effects of both loci with a model where only the effects of the primary locus is included; 

when the effect of the first model is significantly different from that of the second, this 

implies that the additional locus confers an effect that is independent of the primary locus. 

This is the “main effects” test, which was used as a first step in the analyses in Paper I-III.  
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This method can be used both in case-control and family materials, with the difference that 

the first involves unconditional whereas the second involves conditional logistic regression. 

In particular, when applied to families, as in this thesis, the incidence of particular genotypes 

or alleles (depending on model) in affected children is compared with the incidence in 

“pseudo-controls”, by conditioning on parental genotypes and affection status (similar to the 

genotype relative risk approach 84; 85). The pseudo-controls are constructed from the possible 

parental genotypes not transmitted to affected children, resulting in a matched design that, 

similar to many other family-based designs, is robust to population stratification. Moreover, 

this design means that each case allows for up to three pseudo-controls from the three other 

possible combinations of haplotypes from the parents. However, this requires parental phase 

to be known, otherwise only one pseudo-control is possible. Although phase assignment in 

the parents can be improved by including unaffected siblings, as was possible with the 

T1DGC families, this procedure partly depends on the number of alleles at the test locus: 

because biallelic markers (e.g. SNPs) contain less information and are more likely to be 

homozygous than multiallelic markers (e.g. HLA loci and microsatellites), this usually 

results in more pseudo-controls for multiallelic markers. 

Regression modelling 

Due to the possible existence of more than one additional T1D susceptibility locus in the 

MHC, adjusting only for the known effects of the DRB1-DQA1-DQB1 loci may not be 

sufficient, as each additional locus may add its own confounding factor. When, as in this 

case, the additional loci are unknown, a multistep approach may offer a solution: adjustment 

is first made for the primary disease locus, and secondly for all loci identified with signifi-

cant results in the first step. This way, even if the additional risk loci are not genotyped 

and/or are unknown, the sum of markers included in the second step should nonetheless pick 

up a large part of the confounding effects of these loci. The method used in Paper I-III in 

this thesis, also described in Cordell and Clayton (2002),110 is a simple extension of the 

main effects test procedure above, where testing of a set of loci is performed in a stepwise 

manner. This involves adding additional loci, one at a time, to a model already including 

DRB1-DQA1-DQB1 (forward stepwise selection), or similarly subtracting loci from the 

model including all of the loci (backward stepwise selection). For each of the steps, changes 

in the observed effect are considered, such that in the final model (the “best” model), adding 

additional markers does not add significantly to the effect, or conversely, removing any of 
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the markers already in the model results in a significantly worse fit of the model. Thus, the 

final model represents a minimum set of markers needed to explain the observed association 

of all the markers initially tested. 

Haplotype-based tests 

In contrast to the regression approaches described above, which consider overall marker 

effects, haplotypes provide information about the LD background in a region. This can be 

used for mapping of alleles at the test loci on the different DRB1-DQA1-DQB1 haplotypes, 

and, by applying conditional tests, also for determining which particular alleles that are 

likely to be responsible for the independent effects observed in the regression analyses.  

A common strategy in haplotype-based analyses is to evaluate additional effects of a marker 

on individual conditional haplotypes. An example is the homozygous parent TDT,111 where 

only families with parents that are homozygous for a particular allele at a primary risk locus, 

e.g. the DRB1*03-DQA1*0501-DQB1*0201 haplotype, are included. This results in an 

efficient control for associations secondary to LD on this haplotype, meaning that any 

association observed at a test locus is indicative of an additional effect. However, both the 

limitation of homozygous parents and the further demand that the tested marker must be 

heterozygous for the TDT to be informative can quickly result in small datasets. The method 

used in this thesis (Paper I-III) is reminiscent of this strategy, but with consideration of all 

individual DRB1-DQA1-DQB1 haplotypes irrespective of risk impact. Ours is a variant of 

the haplotype method (HM),112; 113 which involves comparison of relative frequencies of 

alleles at a test locus on haplotypes that are identical at a primary locus. For example, in a 

simple case involving two biallelic markers A and B in LD, where A is a known primary 

locus with predisposing allele A1 and protective allele A2 and B has the alleles B1 and B2, 

then under the null that A defines all the risk: 
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�  

where f T (.) and f NT (.) represent T and NT frequencies, respectively (“_” represents the 

haplotype connection). That is, although the predisposing risk conferred by A1 means that 

the transmitted haplotypes carrying A1 will be more frequent than the non-transmitted 

haplotypes, there should be no difference in the ratios of T/NT haplotypes depending on the 
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allele of B (the protective allele A2 will give the same result, but with opposite risk). 

Conversely, deviations from these expected ratios imply that an additional effect is marked 

by B (i.e. additional risk is conferred by B itself or a marker in high LD with B).  

A generalised formula as it applies to multiallelic loci and details of our method are given in 

Supplementary methods to Paper I. Briefly, phasing of haplotypes prior to performing 

these tests were done using the program FAMHAP,114 which allows for separating T and NT 

haplotypes from heterozygous parents. An important note is that assignment of haplotypes 

within a family is weighted on haplotype frequency estimates across all parents,114; 115 which 

therefore assumes random mating and HWE in the founder population. Hence, unlike the 

conventional TDT (p. 24) but similar to other variants of the HM,113; 116 the results of this 

procedure may be influenced by population stratification. Although, as previously noted (p. 

25), a stratified population is more likely to result in reduced power than in false positives in 

family-based designs, analyses should therefore be performed in as homogenous popula-

tions as possible (e.g. for the T1DGC MHC dataset, tests were performed in subpopulations 

defined by areas of European ancestry, in addition to the whole dataset; Paper I and II).  

Complementarity: regression and haplotype methods 

None of the above conditional methods is perfect, but using them both can reduce some of 

the shortcomings inherent in each method. In general, the haplotype method we used was 

generally laborious, with frequent demand of manual inspection. This was particularly the 

case for analyses of more than one additional locus, which, although can reveal important 

information about connections between allelic associations between separate loci on the 

same DRB1-DQA1-DQB1 haplotype, generally result in small strata with limited power. In 

comparison, incorporation of multiple loci in a regression model is relatively unproblematic. 

Therefore, the regression approach was better suited for initial screening of the datasets to 

narrow down a set of candidate markers, which proved particularly useful for the large 

number of markers in the T1DGC MHC dataset.  

A more specific issue is that the main effects test does not consider haplotype effects. For 

instance, for two biallelic loci with alleles A/a and B/b, respectively, the two genotype 

combinations ab/AB and aB/Ab are considered equivalent. If these loci are not real aetio-

logical loci, but merely act as proxies due to LD (which is always a likely situation in 

screening studies), these combinations may influence the results in different ways.110 A full 
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genotype model would allow for this distinction to be included, but this results in tests with 

much higher degrees of freedom.110 As the number of parameters already represented a 

problem with the main effects test in our analyses, this was not attempted. Therefore, the use 

of the haplotype method described above was important to validate the results from the 

regression analyses.  

A related issue is that the regression approach is limited when it comes to handling rare 

alleles; although multiallelic markers can improve phase assignment and thus increase 

power, the increased information of these markers also results in a higher number of 

parameters and degrees of freedom, which can affect statistical power in the other direction. 

Many parameters can also introduce problems in the analyses, especially in large datasets 

where the incidence of unique, rare alleles may be higher than in smaller datasets. This was 

also demonstrated in the analyses of the HLA loci and microsatellites in the T1DGC MHC 

dataset (Paper I and II, respectively), where initial analyses using the original set of 

families produced unreliable results. This was particularly evident for the test needed to 

account for dependency between multiple affected siblings (the Wald test) in this dataset. 

Therefore, the dataset was recoded for analyses of the multiallelic markers to contain only 

one affected child per family (the “proband” dataset), to allow for an alternative (likelihood 

ratio) test. This did not solve all of the problems with rare alleles, however, resulting in 

grouping of alleles with frequencies less than 1% (0.1% for the microsatellites) for all 

multiallelic markers, including the DRB1-DQA1-DQB1 haplotype code. To keep analyses 

comparable, this was also done equally for the DRB1-DQA1-DQB1 haplotypes in the 

dataset used for analyses of the SNPs (the “all affecteds” dataset). As noted in the section 

above, such grouping is not unproblematic, as the grouped alleles may not confer the same 

risk, and is therefore likely to result in a heterogeneous group. Therefore, appropriate 

measures must be applied to ensure validity of results. In our case, the haplotype method 

proved a valuable asset also in this respect, due to its capability for revealing the particular 

alleles and DRB1-DQA1-DQB1 haplotypes involved. In some of these cases, the association 

primarily mapped to the grouped alleles, which is likely to have resulted in artefacts in the 

regression analyses. Therefore, these results were discarded. This issue, particularly as it 

pertains to the grouping of rare DRB1-DQA1-DQB1 haplotypes, is discussed further in 

Supplementary methods of Paper I. 



 

SUMMARY OF PAPERS 

Paper I: Conditional analyses on the T1DGC MHC dataset: novel associations with type 1 
diabetes around HLA-G and confirmation of HLA-B. 

In this first and major paper of this thesis, we used the data on SNPs and HLA loci from the 

large T1DGC MHC dataset in a comprehensive scan for additional T1D risk factors in the 

MHC. Our approach employed two complementary conditional methods, involving 

conditional logistic regression and allelic tests conditional on haplotypes, and consisted of 

stepwise identification of increasingly smaller subsets of markers that could explain all of 

the observed association in the previous steps. All steps included adjustment for LD effects 

with the DRB1-DQA1-DQB1 loci, but in addition, the later steps also included adjustment 

for LD effects with significantly associated loci from the previous steps. Thereby, we were 

able to identify a subset of markers with associations that were not only independent of LD 

with DRB1-DQA1-DQB1 haplotypes, but also likely to be independent of other, additional 

T1D risk factors in the MHC. This subset contained polymorphisms concentrated in three 

separate, demarcated regions of the MHC and pointed to T1D risk factors involving 

polymorphisms in or around the HLA-G, -B and -DPB1 genes, respectively. In particular, the 

evidence for the B*39 and B*18 alleles of the HLA-B gene strongly suggested that these are 

primary T1D risk factors. Still, our results suggested that these HLA-B alleles are not the 

only risk factors in this particular region of the MHC, and that HLA-C or neighbouring loci 

might also be involved. For the regions in the vicinity of the HLA-G and -DPB1 genes, the 

complexity of the observed associations suggested that the primary risk factors remain 

unidentified. As many of our findings also are novel, this means that further fine-mapping 

and replication in independent datasets are needed before results may be considered 

conclusive.  

Paper II: Three microsatellites from the T1DGC MHC dataset show highly significant 
association with type 1 diabetes, independently of the HLA-DRB1, -DQA1 and -DQB1 
genes.  

The T1DGC MHC dataset also included genotype data for 66 microsatellites throughout the 

MHC. The relatively high polymorphy of these markers (e.g. compared to SNPs) results in 

increased numbers of parameters, in particular in conditional analyses involving other loci 

with high polymorphy. Therefore, we treated the microsatellites separately from the other 

markers. The analyses in this paper followed a similar strategy to that of Paper I, using two 
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complementary conditional approaches adjusting for LD with DRB1-DQA1-DQB1, but with 

no adjusting for LD between the identified markers. Due to problems imposed by the high 

number of variables, especially when involving rare alleles, these results were throuroughly 

validated using different input variables. Three markers in two regions emerged from these 

analyses. One of these, D6S2773, is located close to HLA-G, thus strengthening the results 

from Paper I for this region. The two other microsatellites, DG6S398 and D6S2989, are 

located close to each other and within the same gene, C6orf10. However, especially 

conisdering the results from Paper I, further analyses are needed to rule out LD with other 

candidate markers. 

Paper III: Genetic variants of HLA-A, HLA-B and AIF1 show independent MHC associa-
tion with type 1 diabetes in Norwegian families.  

Numerous studies have suggested genetic risk factors shared between more AIDs, despite a 

large variety of clinical manifestations. A strong candidate region for such common factors 

is the MHC, where many AIDs show strong disease associations, often with indications of 

multiple susceptibility loci as in T1D. Therefore, we investigated a selection of markers in 

genes that previously have been implicated in T1D and/or other AIDs in a Norwegian T1D 

family material. The conditional strategy we used in this paper is similar to that used in the 

Paper I. By these means, we confirmed the independent association of HLA-B alleles B*18 

and B*39 with T1D, thus further consolidating the status of these alleles as primary T1D 

risk factors. Moreover, we found evidence of independent T1D association of HLA-A alleles 

A*01, A*24 and A*31, which overlaps with findings in earlier reports, but contrasts with a 

negative finding in Paper I. In addition, we found a novel association with the SNP 

rs2259571 in the AIF1 gene that could not be explained by LD with any of the other 

investigated markers. Although this association could not be confirmed in a replication 

attempt in the T1DGC MHC dataset, we did demonstrate common haplotypic associations, 

which may indicate that alleles at an unidentified locus in high LD with this SNP in both 

datasets were responsible for the association. The results of this study also demonstrated the 

importance of adjusting for LD effects across the entire MHC region, as none of the other 

previously suggested associations were confirmed, most notably promoter polymorphisms 

of the TNF gene. 
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Paper IV: The FCRL3 -169T>C polymorphism is associated with rheumatoid arthritis and 
shows suggestive evidence of involvement with juvenile idiopathic arthritis in a Scandina-
vian panel of autoimmune diseases. 

In addition to the MHC, several loci in other regions of the genome have been suggested as 

common AID risk factors. One of the more recently suggested loci is the FCRL3 -169T>C 

SNP, which has been reported associated with RA, SLE, autoimmune thyroid diseases, 

Addison’s disease and multiple sclerosis. However, results have been conflicting, also for 

RA, despite a very strong association in the initial Japanese report. We therefore investi-

gated this SNP in a Scandinavian panel of AIDs, which included patients with RA, JIA, 

SLE, UC, PSC and CD, in addition to the T1D families investigated in Paper III. This 

resulted in positive findings for the RA patients and novel evidence of suggestive associa-

tion for the JIA patients, the latter of which appeared to be connected to the polyarticular 

subgroup. Notably, this is also the clinical subgroup of JIA that has the most characteristics 

in common with RA, and therefore may point to common disease mechanisms. However, no 

evidence for association was found for the other investigated diseases, and we could not 

confirm a previously reported interaction with the PTPN22 1858C>T SNP, another sug-

gested common AID risk factor. Therefore, our results did not support the notion that the 

FCRL3 -169T>C SNP is a risk factor common to all AIDs. However, in combination with 

recent meta-analyses, our results also indicated that the risk conferred by this SNP in RA is 

much smaller than initially suggested. This means that many studies may have been 

underpowered, potentially explaining the conflicting results. 



 

DISCUSSION 
The major part of this thesis concern dissection of the genetic susceptibility to T1D in the 

MHC (Paper I-III). This has been a long-standing issue in the field of T1D genetics, but 

only in recent years have the size of patient materials and genotyping techniques allowed for 

comprehensive investigations of this region. This is especially apparent in the T1DGC MHC 

fine-mapping project, which involves a high-density screen of markers spread throughout 

the MHC in an unprecedented large number of families. 

Marker density and coverage of the MHC 

The purpose of the T1DGC MHC project was to fine-map the entire 3.5 Mb of the classical 

MHC (p. 18). In addition, a number of markers were included that extended as far as 1.9 Mb 

and 2.9 Mb into the extended class I and II regions, respectively, but with high-density 

coverage limited to 0.3 Mb and 0.4 Mb (Figure 3); thus being far from covering the entire 

added 4.1 Mb these regions of the extended MHC represent.41  

 

Figure 3: Overview of SNPs, microsatellites and HLA genes used in papers I-III. The upper panel shows 
the SNP spacing in the T1DGC MHC dataset (Paper I). Spacing for each SNP was calculated with the closest 
centromeric SNP. Positions of microsatellites (Paper II), genotyped HLA genes in the T1DGC (Paper I) and 
Norwegian (Paper III) datasets, genotyped SNPs (excluding monomorphic SNPs) in the Norwegian dataset 
(Paper III), some important genes, hypervariable regions, and MHC regions are indicated for reference. 
Microsatellites located outside the region covered by the SNPs (n = 8, including the D6S2223 marker) were 
excluded from the figure. Numbers above the graph indicate spacing for SNPs that were outside the scale. Avg: 
average spacing for all SNPs. 
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In the core region, however, the coverage was good, with an average SNP spacing less than 

2 kb - well within the genome average limit of about 3 kb estimated as useful for detecting 

indirect association.18 Moreover, this limit it likely to be substantially larger in the MHC, 

considering the unusually strong LD compared to the rest of the genome. Adding to this are 

the microsatellites (dispersed at an average interval of 159 kb) and the genotyping of many 

of the classical HLA genes, for which the large number of alleles gives a high level of 

information. However, some regions were less well covered. In particular, two regions 

known to contain variable number of gene copies, RCCX (class III region; including the 

C4A/B, CYP21A1P, and TNXA genes)117 and the DR hypervariable region (class II region; 

including the (pseudo)genes HLA-DRB2 through -DRB8)118 contained very few genotyped 

SNPs (Figure 3), probably due to the fact that copy-number variations create unpredictable 

results with standard genotyping methods. In addition, a large stretch of 32 kb between the 

HLA-G and -A genes and another of 24 kb between HLA-C and -B, respectively, were 

devoid of genetic markers. These regions contained several SNPs in the original dataset, but 

were excluded in quality controls due to low minor allele frequencies, high failure rates 

and/or departures from HWE. The latter two characteristics may indicate problems with the 

genotyping procedure, for instance due to copy-number variations, regions with high 

homology to other areas of the genome, or repetitive sequences, all of which make genotyp-

ing difficult.  

Of the excluded regions and genes, particularly the C4A/B genes have attracted a lot of 

attention, with several reports of associations with T1D (e.g.,119) and SLE (e.g.,120), in 

particular with the C4A*Q0 and C4B*Q0 null (deletion) alleles. However, these alleles 

show strong ties to the AH8.1 and AH18.2 haplotypes (e.g.,121; 122), respectively, extending 

from the DRB1*03-DQA1*0501-DQB1*0201 haplotype that is also strongly associated 

with both of these diseases (p. 17). Therefore, as adjustment for LD effects seems absent in 

these studies of C4A/B (e.g. see 120 for a recent example), these associations are most likely 

not primary. A mention should also be given to the MICA and MICB genes, which have been 

proposed as candidate genes for T1D and/or other AIDs by several studies (e.g.,61; 123; 124). 

Although a number of SNPs in and around these genes were genotyped, the high polymor-

phy of these genes means that they must be considered poorly characterised with the present 

marker set. Although a recent, well-powered study using sequence-based typing of these 

genes was not able to find a T1D association independent of the HLA-DRB1 and -DQB1 

genes,125 an interesting proposition may be to analyse these genes in terms of their role as 

 40



 

ligands for receptors on NK cells (NKG2D receptors), suggested by findings in other AIDs 

and in studies of NOD mice, the mouse model for T1D (reviewed in 126). 

In sum, although the coverage of the classical MHC by the markers in the T1DGC MHC 

dataset was not complete, excluded regions do not seem critical. 

Conventional association tests: LD in the MHC 

Due to the known confounding effects of LD in the MHC, results of conventional associa-

tion analyses of the markers in this region were only treated in a summary manner in Paper 

I-III. However, the overall picture of these results is useful for making several points about 

a recurring theme in this thesis (and especially in Paper III): the importance of adjusting for 

LD when searching for disease associated variants in the MHC.  

Dependent associations 

Figure 4 depicts conventional (E)TDT results for the SNPs, microsatellites and HLA loci 

genotyped in the T1DGC MHC dataset (a similar plot of the results in Norwegian families is 

given in Figure 1a of Paper III). 

 

Figure 4: Conventional association results of markers in the T1DGC MHC dataset. Data was analysed in 
the proband dataset (cf. Paper I) using the TDT implemented in PLINK127 for the SNPs and the ETDT 
implemented in UNPHASED90 for the microsatellites and HLA loci. Positions of genes mentioned especially 
in the text and MHC regions are indicated for reference. Association results for DRB1-DQA1-DQB1 were too 
strong for a P-value to be generated. 

Note the extreme significance levels in these results: given the threshold set in a recent 

GWAS,30 an astounding 784 markers, or 33% of all studied markers, would have been 
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considered highly significant at a genome-wide level (P<5x10-7). The main cause of these 

results is quite clearly demonstrated by the location of the peak of association; in fact, the P-

value for the DRB1-DQA1-DQB1 loci was unattainable, as the significance level exceeded 

the limit of the analysis program. However, a rough guess would be that it would be in the 

order of <10-200 in this dataset (comparative results in the Norwegian dataset, Paper III, 

was P=5.8x10-101 for DRB1-DQA1-DQB1 and P=3.7x10-26 for HLA-B). Note also the slopes 

from this peak, with a steeper descent in the centromeric than in the telomeric direction, but 

with a marked drop in significance telomeric of HLA-B. This picture matches well with the 

known haplotype architecture of the MHC, with particularly long-range LD and high 

conservation in the telomeric direction, and known recombination hotspots telomeric of 

HLA-B and centromeric of HLA-DPB1.55; 128 In addition, the extreme conservation and high 

frequency of the high-risk AH8.1 (p. 17) is likely to have made a large impact on these 

results. 

A notable observation is that the P-value of the HLA-B locus was almost as strong as the 

markers surrounding DRB1-DQA1-DQB1, and many orders of magnitude stronger than 

other markers in its own region. It is tempting to speculate that this reflects the likely 

primary status of alleles at this gene, as shown in Paper I and III. However, the unusually 

strong LD observed between the HLA-B allele B*08 and the DRB1*03-DQA1*0501-

DQB1*0201 haplotype (D’=0.76, r2=0.45 in the T1DGC dataset; e.g. compared to D’=0.55, 

r2=0.13 for the HLA-C allele C*07, which is also located on the AH8.1 haplotype) may have 

boosted the results more than for surrounding markers. 

Masking of independent association 

Perhaps somewhat counter-intuitive, given the highly significant associations in the tests 

adjusted for LD with DRB1-DQA1-DQB1, seven of the nine best SNPs identified in the 

T1DGC MHC screen were actually only marginally significant or non-significant by 

conventional TDT, even by lenient standards (values close to or exceeding P=0.05; 

rs4122198, rs1619379, rs1611133 and rs2394186 close to HLA-G; rs3130695 close to HLA-

C; rs4713468 in MICB and rs439121 close to RING1). This serves to show how LD with the 

DRB1-DQA1-DQB1 loci not only can cause “dependent” associations, but can also lead to a 

masking of real effects (as noted previously by others; e.g.,52). To illustrate, given a marker 

B that represents a real, independent effect of a (primary) locus A, and LD between A and B: 
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if predisposing alleles at locus A are located on haplotypes with protective alleles at locus B, 

then the indirect association of B due to LD with A can potentially mask the direct associa-

tion at the B locus (cf. Figure 1, p. 11). That is, overrepresentation in patients of predispos-

ing alleles at the B locus will be counter-weighted by LD between the protective alleles at 

locus B and the predisposing alleles (that are also overrepresented in patients) at locus A. In 

the case of the MHC, with the presence of conserved ancestral haplotypes and the complex, 

multi-haplotype T1D association of the DRB1-DQA1-DQB1 loci, such effects are unlikely 

to be evident from global LD values (which are the most commonly used, with estimates 

across all alleles). For instance, for the above mentioned SNPs around HLA-G, global D’ 

with DRB1-DQA1-DQB1 was <0.32, but all of the SNPs were in stronger LD with the high-

risk, high-frequent haplotype DRB1*03-DQA1*0501-DQB1*0201. Crucially, the alleles in 

positive LD with this haplotype were all protective (D’=0.36 to D’=0.63), thus matching 

well with the above hypothetical situation. Moreover, when the effect at the primary locus A 

is disproportionately large, as is evidently the case for the DRB1-DQA1-DQB1 effect in the 

MHC, the LD does not even have to be very strong for such masking to occur. 

A take-home message 

The above discussion sums up to two important points. Firstly, results of conventional 

association methods in the MHC are likely to provide no other information that an indirect 

confirmation the DRB1-DQA1-DQB1 association with T1D, an association that has been 

known for over three decades. Secondly, exclusive use of such methods is also likely to lead 

to an inadvertent exclusion of markers with a real involvement in T1D. Although the picture 

in other diseases with a primary association in the MHC will vary from that in T1D 

depending on the strength of this association, neither the extreme LD in this region nor the 

consequent problems with confounding are unique to T1D. Even so, conventional associa-

tion studies are still being published, also in high-ranking journals, with little or no regard to 

this problem. Some of these studies are elaborate, with sophisticated genotyping techniques 

and/or analysis methods, but with surprisingly primitive handling of the LD problem. The 

perhaps most persistent of the associations reported in this way is the TNF -308 SNP (cf. 

Paper III), which is known to be located on the high-risk haplotype AH8.1. A more recent 

example is a large MHC screen showing an unconditional association between a variant in 

the ITPR3 gene (at the centromeric end in Figure 4) and T1D,129 which later was shown to 

be due to LD with the DRB1-DQA1-DQB1 loci.130 It is only to hope that the gravity of this 
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problem will seep through to the outside of the “inner circle” of researchers devoted to 

MHC genetics, eventually diminishing the rate at which such reports are published. 

“Peeling off” the effects of LD: conditional MHC analyses 

Compared to the unadjusted association 

results, the conditional main effects tests 

yielded relatively modest P-values. 

However, associations were still quite 

strong, in particular in the large T1DGC 

dataset (Paper I and II). Overall, the 

results of the initial main effects test of 

the SNPs in the T1DGC dataset 

(adjusted for DRB1-DQA1-DQB1) very 

clearly demonstrated the presence of 

additional T1D susceptibility loci within 

the MHC; plotting these results in an 

overall quantile-quantile plot showed a marked deviation from the 45-degree line represent-

ing the null hypothesis of no DRB1-DQA1-DQB1 independent association (Figure 5). As 

presented in Paper I, these results clustered in what appeared to be (at least) four separate 

regions of the MHC, a picture that was roughly maintained also when adding consideration 

of the results for the microsatellites from the same dataset (Paper II) and the candidate 

markers in the Norwegian families (Paper III). Figure 6 gives a summary of the positions 

 

Figure 5: Quantile-quantile plot of DRB1-DQA1-
DQB1 independent associations of SNPs in the 
T1DGC MHC dataset (cf. Paper I). 

 

Figure 6: Positions of and possible dependencies between DRB1-DQA1-DQB1 independent associations 
(best markers) from Paper I, II and III. Markers with signs of artefacts were excluded. Positions of closest 
genes, MHC region class and regions from Paper I are indicated for reference. Arrows indicate direction of 
explanatory power.  
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of the best DRB1-DQA1-DQB1 independent associations from all three papers, with 

indications of possible dependencies between the reported associations. 

Telomeric class I region - unresolved questions 

In both Paper I and II, we identified novel DRB1-DQA1-DQB1 independent associations 

for four SNPs and a microsatellite located in the vicinity of the HLA-G gene in the telomeric 

part of the MHC class I region (region 1; Figure 6), which also appeared to be intercon-

nected. In addition, in Paper III, a significant association was found for HLA-A, which is 

located relatively close to HLA-G (0.1 Mb) in the same region. Although interpreting 

proximal distance as a sign that associations represent the same effect can be dangerous in 

the MHC, distance is still a factor to consider, as demonstrated by the association “slope” 

from DRB1-DQA1-DQB1 in Figure 4. For the associations in and around the HLA-A and 

HLA-G genes, the notion that they represent the same effect was further supported by the 

observation of strong LD between associated alleles showing the same risk directions of all 

of the SNPs and HLA-A (Paper I). Moreover, the same appeared to be the case for HLA-A 

and the microsatellite D6S2773 close to HLA-G (identified in Paper II), especially between 

the predisposing alleles A*24 and D6S2773*227 (D’=0.99; r2=0.67) and the protective 

alleles A*01 or A*31 and D6S2773*212 (D’=0.99; r2=0.03 and D’=1; r2<0.01, respec-

tively). Taking into account that the HLA-A gene was no longer significantly associated in 

the T1DGC MHC dataset once the effects of the other HLA genes or the best SNP markers 

had been adjusted for (Paper I; no markers telomeric of HLA-A were genotyped in the 

Norwegian dataset, thus not allowing this hypothesis to be tested), the combined evidence 

presented in this thesis is in favour of a location of an aetiological locus closer to HLA-G 

than to HLA-A.  

Previous findings for HLA-A 

In contrast to our results, results clearly in favour of the HLA-A as the aetiological locus in 

this region were presented in a recent, well-powered study by Nejentsev et al. (2007),108 

including replication in two independent case-control materials. There are several differ-

ences between this and our studies that may have influenced the results:  

First, although the case-control materials in Nejentsev’s study were large (up to almost 2000 

cases and 3000 controls), the power was likely significantly less than in the 2321 multiplex 
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families (having at least two affected and one unaffected sibling in each family, in addition 

to parents) of the T1DGC dataset, which had a potential of over 2300 cases (more than 

doubled when all affected siblings were considered) and 7000 pseudo-controls. 

Second, there were several differences in how the conditional analyses were performed. 

Nejentsev et al. employed a recursive partitioning procedure for defining a subset of risk 

strata at the HLA-DRB1 and -DQB1 loci (excluding HLA-DQA1), with subsequent treatment 

of these loci independently in the regression procedures. Although these procedures were 

likely to accurately capture the risk at each individual locus, it is questionable if the full risk 

spectrum of these loci can be captured if not also considering the information that is 

contained in specific combinations of alleles at these loci (pp. 15 and 30; Supplementary 

methods of Paper I). In any case, differences in this procedure and ours could potentially 

have introduced differences in the regression models. Similarly, the regression modelling 

analyses performed in Paper I included a number of markers from all of the regions 

identified, thus involving a larger number of parameters than the analyses in Nejentsev et 

al., which adjusted only for HLA-DRB1, -DQB1 and HLA-B. Whereas our strategy is likely 

to have resulted in better control for additional confounding by loci other than the DRB1-

DQA1-DQB1 genes, a drawback is that there were likely more loci included in the models 

than strictly necessary, and some of these loci were later also identified as artefacts. Exactly 

how and to what degree this could have influenced the results is difficult to predict, but it is 

likely that these choices have made some kind of impact, at least on statistical power. 

Third, the marker spacing in the study by Nejentsev et al. was higher than in the T1DGC 

MHC dataset (1475 SNPs covering a total of 10 Mb; average spacing >6 kb compared to <2 

kb in the latter dataset). Adding that none of the eight significant region 1 SNPs in the 

T1DGC MHC dataset was included in Nejentsev’s study, this means that the association in 

this region could possibly have been missed in the latter study. Moreover, in Nejentsev’s 

study, the DRB1-DQB1 independent SNP associations in the telomeric class I region peaked 

telomeric of HLA-A, in an area that overlaps with the narrower region 1 identified in the 

T1DGC dataset, and several of the SNPs in this region showed significance levels 

P<1.0x10-4 in Nejentsev’s study once also the effects of HLA-B had been accounted for. 

Hence, it is possible that a weaker effect in this region was detected also in Nejentsev’s 

study.  
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Finally, there may be differences between the sampled populations, as also Nejentsev et al. 

arrived at a non-significant result for HLA-A in the subset of T1DGC families included in 

their study (n = 850). One possibility includes population specific effects to British cases, 

alternatively that subtle forms of population stratification was present in the case-control 

populations used in Nejentsev’s study; although the T1DGC families are likely much more 

stratified than these, the family-design of our studies should be robust to these issues (pp. 24 

and 32). 

In summary, both studies present strengths and weaknesses. In addition, there is a definite 

possibility that the aetiological locus remains unidentified, and that both studies are actually 

picking up the same effect, but but on slightly different haplotype backgrounds. Therefore, it 

is apparent that a resolution to this question must involve further fine-mapping and replica-

tion studies in independent datasets. 

Associations in the extended class I region 

In addition to the HLA-A and HLA-G genes, several previous reports have indicated T1D 

susceptibility loci in the extended class I region, telomeric of HLA-G; most notably, the 

D6S2223 microsatellite marker (2.1 Mb from HLA-G),63; 111; 131-133 and two SNPs in the 

UBD/MAS1L gene region (~0.3 Mb from HLA-G).58 However, although a marginally 

significant DRB1-DQA1-DQB1 independent effect of D6S2223 was seen in the Northern 

European subpopulation of the T1DGC MHC dataset, possibly indicating a population 

specific effect or haplotype with a nearby aetiological locus, no association was detected in 

the total dataset (Paper II). Moreover, a recent screen in this region indicates that the 

variant responsible for the originally identified D6S2223 association is located telomeric of 

this microsatellite (Viken, MK, Blomhoff, A, Olsson, M, Akselsen, HE, Pociot, F, et al.; 

unpublished). Therefore, these effects are unlikely to be responsible for the effects observed 

around the HLA-G locus in the T1DGC dataset. 

The two SNPs in the UBD/MAS1L gene region identified in a recent study by Aly et al. 

(2008) were not replicated in either Nejentsev’s study or ours, even if some of same families 

were involved (Paper I). Also, the results presented by Aly et al. may be questioned: Firstly, 

the starting point was a conventional association screen, with further focus on the region 

including these two SNPs based solely on distance to the DRB1-DQA1-DQB1 loci. Sec-

ondly, the subsequent conditional analyses treated the HLA-DRB1 and -DQB1 loci sepa-
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rately, as in Nejentsev’s study, but used grouping of alleles under a certain frequency 

threshold instead of recursive partitioning. As noted in both our studies (particularly in 

Supplementary methods of Paper I; see also p. 35) and by Nejentsev et al., this can 

introduce artefacts in the regression analyses, which should therefore be validated using 

alternative methods. A more serious concern is that Aly et al. apparently made no distinction 

between DRB1*04 subtypes, which are known to confer very different risks and display 

dissimilar LD patterns.128 Especially the DRB1*0401 and DRB1*0404 alleles are quite 

common (22% and 6% in their dataset, respectively), potentially having a large impact on 

their analyses. Adding to this is the observation that two of the SNPs we identified in region 

1, as well as the D6S2773 microsatellite marker, mapped to the DRB1*0401-DQA1*0301-

DQB1*0302 haplotype, and that the SNPs showed strong LD with one of the SNPs 

identified by Aly et al. (Paper I). Therefore, it seems likely that the associations identified 

by Aly et al. were not primary, and possibly an artefact of their DRB1-DQB1 grouping 

procedure. 

The 8.1 and 18.2 ancestral haplotypes and T1D risk 

The AH8.1 and AH18.2 have been strongly associated with increased risk for T1D in 

numerous reports (p. 17), with an apparent higher risk for the latter relative to the former. As 

the DRB1*03-DQA1*0501-DQB1*0201 haplotype is shared between these two, this 

implies that differential risk, independent of DRB1-DQA1-DQB1, is conferred by one or 

more loci located on these haplotypes. From the work presented in this thesis and that of 

others, it is tempting to speculate that the B*18 allele at the HLA-B locus that gave this 

haplotype its name is itself the second primary variant on the AH18.2 haplotype, as the 

evidence for an independent association of this allele was compelling, both in the T1DGC 

MHC dataset (Paper I) and in the Norwegian families (Paper III). In contrast, the B*08 

allele on the AH8.1 haplotype does not seem to be involved with T1D in a primary way, as 

no evidence for independent association was detected in the Norwegian families. Moreover, 

although the results in the T1DGC MHC dataset showed a significantly decreased risk for 

B*08 on the DRB1*03-DQA1*0501-DQB1*0201 haplotype, tendencies for associations in 

the opposite direction were also observed on some of the other DRB1-DQA1-DQB1 

haplotypes. Rather, it seems that the A*01 allele of HLA-A or a variant in high LD with this 

allele is a better marker than B*08 for the decreased risk relative to DRB1*03-DQA1*0501-

DQB1*0201 on this haplotype. For example, in the Norwegian T1D families, although 
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A*01 was mostly located together with B*08 on the DRB1*03-DQA1*0501-DQB1*0201 

haplotype (124 informative transmissions vs. only 7 with other HLA-B alleles), B*08 was 

also located with other HLA-A alleles (75 informative transmissions), and only A*01 yielded 

a significant transmission distortion on this haplotype (P=7.4x10-3 vs. P=0.62 for B*08). In 

the T1DGC families, B*08 reached significance on this haplotype (OR 0.77; P=1.0x10-3), 

but again, A*01 was mostly located together with B*08 but not vice versa (61 and 593 

informative transmissions with other alleles, respectively, vs. 1282 with both), and the 

association with HLA-A was much stronger (OR 0.69; P=1.5x10-6). Two of the SNPs in 

region 1 (close to HLA-G) that showed association on this haplotype, rs1619379 and 

rs1611133, both showed a stronger association than both A*01 and B*08 on this haplotype 

(OR 0.67 P=9.0x10-7 and OR 0.63 P=1.0x10-8 for the protective alleles). However, this 

picture was complicated by the apparent dependence of B*18 for the predisposing alleles of 

these two SNPs. In contrast, the third SNP in this region with an association on this 

haplotype, rs4122198, appeared to be associated independently of B*18, but showed a 

weaker association (although stronger effect) than A*01 (OR 0.53 P=3.7x10-3). Interest-

ingly, though, a significant amount of DRB1*03-DQA1*0501-DQB1*0201 haplotypes with 

the protective rs4122198*A allele also carried B*18 (16%; 92% of B*18-DRB1*03-

DQA1*0501-DQB1*0201 haplotypes), which is in stark contrast to A*01 (<1% with B*18) 

and the protective alleles of the other two SNPs (4%/20% and 1%/6% for rs1619379 and 

rs1611133, respectively). Thus, the effect of B*18 on this haplotype is therefore likely to 

have masked some of the statistical effect for rs4122198, even if there is no functional 

relationship between the alleles. In sum therefore, the apparently less predisposing effect of 

the AH8.1 haplotype compared to other DRB1*03-DQA1*0501-DQB1*0201 haplotypes 

could be explained by A*01, but more likely by some locus telomeric of HLA-A, marked by 

rs4122198*A. 

HLA-B: a strong candidate for a primary locus  

The results presented for the HLA-B locus in Paper I and III are the most robust of any of 

the results in this thesis, with consistent independence demonstrated both of DRB1-DQA1-

DQB1 and of a number of other MHC markers, in two independent datasets. Moreover, the 

evidence in particular for the B*18 and B*39 alleles seem consistent across different 

studies.58; 108; 134-136 Other alleles, such as the B*13 allele identified in Paper I, could also be 

involved, but present evidence does not seem conclusive. It is notable that the identified 
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effects appear to be relatively rare; the B*18 allele was present in only 8.0% and 3.6% of 

the parents in the T1DGC MHC dataset (Paper I) and the Norwegian families (Paper III), 

respectively, whereas the B*39 allele was even more uncommon, only 2.9% and 2.8%. 

Hence, both alleles partly fall beneath the 5% limit that is often used in genetic association 

studies involving SNPs. The increased presence of the B*18 allele in the T1DGC MHC 

dataset compared to the Norwegain dataset is most probably due to the inclusion of families 

from Southern Europe (especially Sardinia), where this allele is more common than in 

Caucasians in general.64  

It is somewhat ironic that after over three decades of research that started with identification 

of HLA-B as a T1D-associated locus, this gene is once again identified as a strong candidate 

for a primary involvement in T1D, although the alleles most probably involved have 

changed. It is important to stress, though, that although the genetic evidence for this locus is 

very compelling, firm establishment of this locus as a primary risk locus can only come 

after further functional characterisation and establishment of disease mechanisms. 

Does the central MHC contain unidentified T1D susceptibility factors? 

In addition to HLA-B, several signs of independent associations were found for the HLA-C 

gene in the T1DGC MHC dataset, in addition to the SNP rs3130695 located in the vicinity 

of this gene (Paper I). Both of these markers appeared to be at least partly independent of 

the HLA-B gene, in addition to the DRB1-DQA1-DQB1 genes. The function of the HLA-C 

gene is similar to the HLA-B gene, and so it would not be a big surprise if this gene was also 

involved in T1D. However, any effect of this gene appears to be smaller than for the HLA-B 

locus. Moreover, inconsistent results across different studies have been reported with 

regards to the specific alleles involved. Although our study indicated an independent role for 

the C*01, C*02 and C*04 alleles, these results will have to be confirmed in replication 

studies.  

An interesting possibility is to analyse the HLA genes in terms of their role as ligands for 

NK cell receptors, in this case so-called killer-cell immunoglobulin-like receptors (KIRs). 

These receptors govern inhibition or activation of NK cells, which could have an important 

role in the autoimmune-mediated destruction of �-cells. For instance, an association was 

found between aggressive insulitis and presence of NK cells in the infiltrate of NOD 

mice.137 Unlike the highly polymorphous variation in the HLA genes in terms of their 
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interaction with T-cells, only two alleles for each of the HLA-A, -C and -B genes have been 

identified when defined in terms of interaction with KIRs. As the HLA-C gene showed a 

much more complex haplotype association pattern than the HLA-B gene in the T1DGC 

MHC dataset, we actually performed such analyses for HLA-C, but this classification did 

not appear to explain the global association better than the classical coding of HLA-C alleles 

(data not shown). However, the possibility still remains that analyses of interactions with 

specific KIRs could reveal processes relevant for T1D, as has already been suggested by 

others.138; 139 

In Paper III, a SNP in the AIF1 gene of the MHC class III region, centromeric of HLA-B, 

was identified as independently associated with T1D in Norwegian families, both of DRB1-

DQA1-DQB1 and of HLA-B, but no association was found in the T1DGC MHC dataset. 

However, haplotype analyses revealed similar association patterns on the different DRB1-

DQA1-DQB1 haplotypes, indicating that this SNP marked the same effect in both datasets. 

Although this indicates that this SNP is not a primary locus, other variants in the vicinity 

could be involved. The class III region is extremely gene-dense, and many of the genes in 

this region are strong candidates for T1D involvement. Although associations of the 

promoter polymorphisms in the TNF gene (e.g. TNF -308), which are among the most 

intensely studied variants in this region, have yet to demonstrate convincing, independent 

association with T1D, other variants in this region could still be involved. However, from 

the results and discussion presented in Paper III, it seems clear that earlier reports of 

associations in this region should be treated with caution, as few have performed proper 

adjustment for known risk factors elsewhere in the MHC. Moreover, the close proximity to 

the HLA-B gene makes it likely that future T1D studies in this region should, at the very 

least, adjust for LD effects of both DRB1-DQA1-DQB1 and HLA-B. The importance of this 

procedure was clearly demonstrated in the case of the two SNPs (rs4713468 and rs2246626) 

identified in the MICB gene in the T1DGC MHC dataset, which, although appeared 

independent in the regression analyses showed clear signs of connections with associated 

alleles of the HLA-B gene.  

A similar effect was seen as far away as the C6orf10 gene, located on the telomeric border 

of the class II region (0.9 Mb centromeric of HLA-B); this gene seems an unlikely candidate 

for T1D involvement, but still three of the best identified markers with DRB1-DQA1-DQB1 

independent associations mapped to this gene (rs3132959 in Paper I and DG6S398 and 
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D6S2889 in Paper II; in addition, six more SNPs in this gene showed significant DRB1-

DQA1-DQB1 independent association in the first main effects tests of Paper I). The SNP 

association in this gene was, as already suggested, determined to be dependent on HLA-B, 

but investigations of possible relationships with HLA-B were not done for the microsatellites 

(Paper II). However, the latter markers are much more polymorphic than the SNP, and 

showed associations on more independent DRB1-DQA1-DQB1 haplotypes in the haplotype 

analyses. Therefore, the possibility remains that an aetiological locus independent of HLA-B 

is located in the vicinity of these microsatellites. However, this can only be determined by 

investigation of, first, the relationship with HLA-B, and second, by further fine-mapping of 

the surrounding region. Of note, a SNP in the BTNL2 gene, which has been reported 

associated with the autoimmune disease sarcoidosis and is located in the vicinity of the 

C6orf10 gene,140; 141 does not seem a likely candidate, as neither we (Paper III, also, no 

association was seen in the T1DGC MHC dataset; unpublished) nor others have found 

independent association of this SNP in T1D,142 or in other AIDs.142-144  

HLA-DPB1 or additional/alternative factors? 

In Paper I, the DRB1-DQA1-DQB1 independent associations identified for alleles at the 

HLA-DPB1 locus and two SNPs just inside the border of the extended class II region 

appeared to be partly redundant. This could indicate that neither of these markers are 

primary loci, but rather that all mark a primary locus in the vicinity. The COL11A2 and 

RING1 genes closest to the two SNPs do not seem to be good candidates for T1D-

involvement, as functional characterisation suggests that they encode a minor fibrillar 

collagen [GeneID: 1302] and a transcriptional repression relevant for developmental 

processes involving polycomb-group genes [GeneID: 6015], respectively. However the 

retinoic acid receptor beta (RXRB) gene located between these two genes, which also 

demonstrated suggestive evidence in a recent study,145 could be a promising candidate; the 

rs2076310 located in intron 3 of this gene was also among the 76 SNPs identified with 

DRB1-DQA1-DQB1 independent association in the first main effects test in Paper I 

(P=5.6x10-6).  
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FCRL3 and AID: small effects and statistical power 

In contrast to the results for the MHC, no evidence for association was detected between 

T1D and the FCRL3 -169T>C SNP, which is in concordance with the negative findings in 

four recent studies.146-149 Moreover, the additional negative results for SLE, UC, CD and 

PSC, also in concordance with recent results reported by others (except PSC for which ours 

is the only report so far),150-152 indicated that this SNP is not common to all AIDs. However, 

the risk conferred by this locus in RA also appears to be much smaller than initially 

suggested, opening up the possibility that negative findings may be type II errors. This can 

be a variant of the “winner’s curse” phenomenon, originally coined for competitive 

situations such as auctions when a successful buyer finds that he or she has paid too much 

for a commodity of uncertain value (e.g. 153): in genetics, the term is applied to the tendency 

for first reports of novel disease associated variants to overestimate the risk effect of this 

variant.24 Hence, much larger study populations may be needed than what was included in 

our study to get definitive results. A good example of this are the variants in the CTLA4 

gene, which were only definitely confirmed as associated with T1D after performing a large 

study that included 3671 T1D families, with odds ratios only around 1.15.100 

Conclusions 

In conclusion, the work presented in this thesis clearly demonstrate the importance of 

adjusting for LD effects in association studies in the MHC, and provides a strategy for how 

this can be done. Using this strategy, the first three papers of this thesis present novel 

evidence for T1D-associated factors in the MHC, and either confirmation or demonstration 

of the likely non-involvement in T1D of previously suggested variants. Moreover, the good 

statistical power and coverage of the classical MHC offered by the T1DGC MHC dataset 

makes it likely that most of the T1D-associated variants in this complex have been, at least 

indirectly, identified with this dataset. However, determining the exact location of the 

aetiological loci, with a probable exception for the HLA-B locus, will depend on further 

fine-mapping in the suggested regions. In addition, we confirmed the association with RA 

for a SNP in the promoter region of the FCRL3 gene, but the sum of our results and those of 

others suggest that this is not a risk variant common to all AIDs. 
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Future perspectives 

In the wake of GWAS and other elaborate screens such as the T1DGC MHC fine-mapping 

project, involving simultaneous characterisation of a large number of genetic markers, it 

seems clear that follow-up studies focused on smaller regions pinpointed by these studies 

are needed. Even if the marker density is good as in the T1DGC MHC dataset, these 

represent only a fraction of the total genetic variation, leaving ample possibilities for 

missing the true aetiological locus. In addition, problems caused by strong LD in identifying 

the true aetiological variants are not limited to the MHC. In such situations, methods similar 

to what we have used in the first three papers of this thesis are highly relevant. 

For future genetic fine-mapping for T1D susceptibility factors in the MHC, the need for 

proper adjustment for LD effects is increasingly acknowledged. With the results presented 

in Paper I, II and III in this thesis, as well as the work of others, a picture is emerging of 

narrow, defined regions that should be targeted for further fine-mapping. This represents a 

huge improvement compared to the patchy and uncertain picture of associations in this 

region that has been the case before. The process further is likely to be stepwise, with 

increasing confidence in the true disease involvement of identified risk factors. In turn, the 

process of adjusting for LD confounding is likely to become more accurate, as the precise 

risk alleles may be included in the analyses instead of proximal factors. Hence, the power to 

detect true associations is also likely to increase with subsequent studies. Already, the 

evidence for HLA-B is so compelling that possible LD effects from this locus, in particular 

the B*18 and B*39 alleles, should be investigated in all analyses of additional effects in the 

MHC, and at the least in the regions closest to this locus (i.e. the class III and centromeric 

class I region). Moreover, the T1DGC is already well on its way in efforts to phase alleles of 

most of the major HLA loci across the MHC in the individuals of the T1DGC MHC dataset, 

which will lead to a deeper knowledge of the haplotype patterns in this population. As 

demonstrated by the comparatively simple haplotype analyses presented in this thesis, such 

knowledge will be an invaluable complement to other methods, such as conditional 

regression analyses. With further narrowing down of genetic susceptibility regions, the 

employment of targeted and disease-specific functional studies also becomes feasible, which 

will be a necessity for firm establishment of the disease involvement of proposed loci. 
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