Genetics of type 1 diabetes with particular focus on the major histocompatibility complex

Doctoral thesis by
Morten Christoph Eike

Institute of Immunology
Faculty Division Rikshospitalet,
University of Oslo,
Oslo, Norway
2008
© Morten Christoph Eike, 2008

Series of dissertations submitted to the
Faculty of Medicine, University of Oslo
No. 711

ISBN 978-82-8072-775-6

All rights reserved. No part of this publication may be
reproduced or transmitted, in any form or by any means, without permission.

Cover: Inger Sandved Anfinsen.

Produced in co-operation with Unipub AS.
The thesis is produced by Unipub AS merely in connection with the
thesis defence. Kindly direct all inquiries regarding the thesis to the copyright
holder or the unit which grants the doctorate.

Unipub AS is owned by
The University Foundation for Student Life (SiO)
TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. 5

COMMONLY USED ABBREVIATIONS .. 6

LIST OF PUBLICATIONS ... 7

INTRODUCTION .. 9

- Genetics of complex diseases .. 10
 - Genetic signposts and aids: Linkage, linkage disequilibrium and association .. 10
 - Tag SNPs and assumptions of association screens ... 12
 - Design and scale of genetic studies of complex disease .. 13
- MHC: a major T1D susceptibility region ... 13
 - The DRB1-DQA1-DQB1 association in T1D .. 15
 - Additional susceptibility loci in the MHC: the problem of hitchhikers .. 16
 - The T1DGC MHC fine-mapping project ... 18
- Autoimmune diseases: common factors? .. 18

AIMS ... 20

METHODOLOGICAL CONSIDERATIONS .. 21

- Issues of clinical heterogeneity ... 21
 - Testing in clinical subgroups ... 22
 - Age at T1D onset and LADA ... 22
- Quality controls in association studies ... 23
 - Abiding genetic laws of inheritance .. 23
 - Association and population stratification .. 24
 - The importance of HWE in control populations ... 25
 - Additional measures of quality .. 27
- Probabilities and statistical power .. 28
 - Type I errors and study designs .. 29
 - Type II errors and statistical power .. 30
- Conditional analyses: controlling for LD ... 30
 - Defining the primary locus .. 30
 - Main effects tests ... 31
 - Regression modelling .. 32
 - Haplotype-based tests .. 33
 - Complementarity: regression and haplotype methods .. 34

SUMMARY OF PAPERS .. 36
ACKNOWLEDGEMENTS

This thesis is mainly based on work performed at the Institute of Immunology (IMMI), Faculty Division Rikshospitalet, University of Oslo and Rikshospitalet University Hospital, Oslo, Norway, in the period September 2004 to August 2008. Part of the work was also performed at CIGENE, Ås, Norway. Main financial support was obtained from the Juvenile Diabetes Research Foundation (grant 1-2004-793), with additional funds received from the NovoNordisk foundation and the Norwegian Diabetes Association. In addition, this thesis (in particular, Paper I, II and III) utilizes resources provided by the Type 1 Diabetes Genetics Consortium (T1DGC), a collaborative clinical study sponsored by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institute of Allergy and Infectious Diseases (NIAID), National Human Genome Research Institute (NHGRI), National Institute of Child Health and Human Development (NICHD), and Juvenile Diabetes Research Foundation International (JDRF) and supported by U01 DK062418.

A special thank you to Benedicte A. Lie, my supervisor, mentor and discussion partner. Your integrity, leadership, cleverness, open mind and good humour are forever an inspiration, and I could not wish for any better. Thank you also to my other supervisors; Erik Thorsby, for excellent advice and inspiration for greatness; Dag E. Undlien, for your thorough comments and for giving me a lesson about HWE.

To my colleagues on the T1DGC project; Marita Olsson, Keith Humphreys and Tim Becker: thank you for all our inspirational discussions and patience with a non-statistician; without you, this would never have been possible. A big thank you to Linda Haugse for all the hard work you put into the HLA genotyping, always as a perfectionist, and to Paul R. Berg at CIGENE and Beate Skinningsrud and Kristina Gervin at Ullevål for all your assistance. To all my other colleagues at IMMI and in particular in the Immgen group: thank you for all your enthusiasm, giving discussions, warm spirit and for making IMMI a good place to be.

Finally, I would like to thank my family and friends, including the wonderful crowd that is Oslo kammerorkester, for all the support and for taking care of my other selves. To Elisabet, my free spirit: thank you for all your understanding, patience and love, and for giving me a shoulder to lean on to.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFBAC</td>
<td>affected family-based controls</td>
</tr>
<tr>
<td>AH</td>
<td>ancestral haplotype</td>
</tr>
<tr>
<td>AID</td>
<td>autoimmune disease</td>
</tr>
<tr>
<td>AIF1</td>
<td>allograft inflammatory factor 1</td>
</tr>
<tr>
<td>CD</td>
<td>Crohn’s disease</td>
</tr>
<tr>
<td>CNV</td>
<td>copy number variant</td>
</tr>
<tr>
<td>COL11A2</td>
<td>collagen type XI alpha 2</td>
</tr>
<tr>
<td>CTLA4</td>
<td>cytotoxic T-lymphocyte-associated protein 4</td>
</tr>
<tr>
<td>FCRL3</td>
<td>Fc receptor-like 3</td>
</tr>
<tr>
<td>GAD65</td>
<td>glutamate decarboxylase 2 (GAD2)</td>
</tr>
<tr>
<td>GWAS</td>
<td>genome-wide association study</td>
</tr>
<tr>
<td>HLA</td>
<td>human leukocyte antigen</td>
</tr>
<tr>
<td>HM</td>
<td>haplotype method</td>
</tr>
<tr>
<td>HWE</td>
<td>Hardy-Weinberg equilibrium</td>
</tr>
<tr>
<td>IA2</td>
<td>protein tyrosine phosphatase receptor type N (PTPRN)</td>
</tr>
<tr>
<td>IBD</td>
<td>inflammatory bowel disease indel</td>
</tr>
<tr>
<td>INS</td>
<td>insulin</td>
</tr>
<tr>
<td>JIA</td>
<td>juvenile idiopathic arthritis</td>
</tr>
<tr>
<td>kb</td>
<td>kilobases</td>
</tr>
<tr>
<td>KIR</td>
<td>killer-cell immunoglobulin-like receptor</td>
</tr>
<tr>
<td>LADA</td>
<td>latent autoimmune diabetes in adults</td>
</tr>
<tr>
<td>LD</td>
<td>linkage disequilibrium</td>
</tr>
<tr>
<td>MAF</td>
<td>minor allele frequency</td>
</tr>
<tr>
<td>MAS1L</td>
<td>MAS1 oncogene-like</td>
</tr>
<tr>
<td>Mb</td>
<td>megabase</td>
</tr>
<tr>
<td>MHC</td>
<td>major histocompatibility complex</td>
</tr>
<tr>
<td>NBMDR</td>
<td>Norwegian Bone Marrow Donor Registry</td>
</tr>
<tr>
<td>NK</td>
<td>natural killer</td>
</tr>
<tr>
<td>NOD</td>
<td>non-obese diabetic</td>
</tr>
<tr>
<td>NT</td>
<td>non-transmitted</td>
</tr>
<tr>
<td>PSC</td>
<td>primary sclerosing cholangitis</td>
</tr>
<tr>
<td>PTPN22</td>
<td>protein tyrosine phosphatase non-receptor type 22</td>
</tr>
<tr>
<td>RA</td>
<td>rheumatoid arthritis</td>
</tr>
<tr>
<td>RING1</td>
<td>RING [really interesting new gene] finger protein 1</td>
</tr>
<tr>
<td>SLE</td>
<td>systemic lupus erythematosus</td>
</tr>
<tr>
<td>SNP</td>
<td>single nucleotide polymorphism</td>
</tr>
<tr>
<td>T</td>
<td>transmitted</td>
</tr>
<tr>
<td>T1D</td>
<td>type 1 diabetes</td>
</tr>
<tr>
<td>T1DGC</td>
<td>T1D genetics consortium</td>
</tr>
<tr>
<td>TDT</td>
<td>transmission-disequilibrium test</td>
</tr>
<tr>
<td>TNF</td>
<td>tumour necrosis factor</td>
</tr>
<tr>
<td>UBD</td>
<td>ubiquitin b</td>
</tr>
<tr>
<td>UC</td>
<td>ulcerative colitis</td>
</tr>
</tbody>
</table>
LIST OF PUBLICATIONS

I. **Eike MC**, Becker T, Humphreys K, Olsson M, and Lie BA. Conditional analyses on the T1DGC MHC dataset: novel associations with type 1 diabetes around HLA-G and confirmation of HLA-B. *Genes Immun In press*.

II. **Eike MC**, Humphreys K, Becker T, Olsson M, Lie BA, and the T1DGC. Three microsatellites from the T1DGC MHC dataset show highly significant association with type 1 diabetes, independently of the HLA-DRB1, -DQA1 and -DQB1 genes. *Manuscript (submitted)*.

INTRODUCTION

Type 1 diabetes (T1D) is a chronic and irreversible condition of insulin deficiency that affects about 0.3% of Caucasian populations, with onset most commonly occurring at a young age. Until the 1930’s, when insulin was first isolated from animal pancreases and successfully used for treatment of human patients, the T1D diagnosis was a death sentence. Today, approximately 70% of the insulin is produced by genetically engineered bacteria, representing one of the first and largest success stories of modern biotechnology, and most patients live relatively normal lives. However, T1D still represents enormous health challenges, as insulin dysregulation frequently causes vascular complications that increase risk for severe, secondary diseases; including, but not limited to, kidney damage (nephropathy), blindness (retinopathy), nerve damage (neuropathy) and myocardial infarction. Moreover, the incidence rate of T1D is increasing at an alarming rate worldwide, installing an escalating need for determining its causes.

T1D develops as a result of an autoimmune process where the patient’s own immune system specifically attacks and eventually completely destroys the insulin-producing islet β-cells of the pancreas. This process is characterised by lymphocytic infiltration of the islets (“insulitis”), most likely involving autoreactive CD4+ and CD8+ T-cells as key players (reviewed in 6; 7) and presence of autoantibodies to islet cells, glutamate decarboxylase 2 (GAD65), protein tyrosine phosphatase receptor type N (islet antigen 2; IA2) and/or insulin (reviewed in 8). Moreover, as determined by the presence and predictive power of multiple autoantibodies in prediabetic patients, the autoimmune process may extend over several years before the disease becomes overt. Little is known about the initiating factors and details of progression to T1D, although it has become clear that both genetic and environmental factors must be involved. Twin studies have identified concordance rates of 21-70% between monozygotic twins (depending on sampling approaches and time frames), whereas the rate in dizygotic twins is 0-13%, with a similar rate of about 6% in non-twin siblings. Thus, although T1D has a strong genetic component, the fact that a high number of monozygotic twins are discordant means that environmental factors, such as infections by certain viruses (reviewed in 12; 13), must play a significant role. Whatever the causes, genetic studies are an integral part of any endeavour to unravel the aetiology of this disease. Direct benefits include more accurate diagnostic procedures and identification of individuals at high risk, but more importantly, mapping the genetic contribution to T1D provides strong
clues about key biological players. Together with complementary approaches, such as immunological experiments in cells or animal models and epidemiological surveys, this is vital to understand the mechanisms that trigger this disease, and ultimately, how to prevent the disease from developing. This thesis contains several papers with different angles to this problem, with a major focus on the major histocompatibility complex (MHC), the first and still the most important region of the human genome linked with this disease.

Genetics of complex diseases

In common with most autoimmune diseases (AIDs) and other common diseases, T1D is a complex trait that is believed to be caused by multiple genetic factors that increase vulnerability to one or more environmental factors. Hence, unlike rare and “simple” genetic diseases such as Huntington’s disease, where mutations in a single gene have been identified as the necessary and sufficient causative factor (reviewed in 14) the presence of risk alleles at a given T1D risk locus is only predictive of an increased risk compared to individuals carrying neutral or protective alleles. Although most genetic factors in complex diseases are believed to confer moderate to small individual effects, the sum and possible interaction between these factors may have a large impact on disease status, and are thus nonetheless important.15

Genetic signposts and aids: Linkage, linkage disequilibrium and association

Genetic studies of complex diseases commonly use two different approaches: linkage and association (Figure 1). Linkage is a classical genetic concept that refers to the co-segregation of marker alleles on the same chromosome, or haplotype, through meiosis. As recombination events effectively break up such haplotypes, linkage is a function of the recombination rate between loci, and therefore also of genetic distance (i.e., as measured in centimorgans). In the context of complex diseases, linkage commonly involves following the inheritance of parental alleles at a marker in two or more children within the same family; when siblings have inherited copies of the same parental allele (these are said to be “identical by descent”), the parental haplotype on which they are located must also be shared. When such haplotypes are shared between affected siblings more often than expected by chance, this implies that the investigated allele co-segregates with a disease
“Nearby” in this context is relative, and typically involves distances ranging from 100 to several thousand kilobases (kb). Hence, linkage does not measure the effect of a trait locus directly. In contrast, association is the over- or underrepresentation of a particular genetic variant in a population of patients relative to healthy controls, and can therefore provide a direct measure of the effect of a trait locus when the locus itself is genotyped (“direct” association in Figure 1). However, making a priori predictions about the location of such loci are difficult, and genotyping of all the genetic variation in a region is rarely feasible with current methods. Therefore, association studies aiming to identify novel susceptibility loci mostly rely on linkage disequilibrium (LD), the non-random association between alleles at two or more loci in a population. This makes it possible to detect association even when the responsible variant itself is not genotyped, given that the LD with neighbouring (genotyped) markers is strong enough (“indirect” association in Figure 1).

Figure 1: Concepts of linkage and association. D: disease; G: genetic susceptibility locus; M: marker. Dashed lines represent linkage or association signals, while unidirectional arrows indicate causation. Adapted from [16].

LD is related to linkage, in that it (usually) involves a tendency for alleles at proximal markers to be inherited together on the same haplotype. Therefore, LD also depends partly on the recombination rate between loci. For instance, for the commonly used LD measures D’ and r² (uni- and bidirectional measures between two markers, ranging from -1 to 1 and from 0 to 1, respectively; |1| represents complete LD, 0 no LD), values are based on comparison of observed versus expected haplotype frequencies, where the expected haplotype frequency is given as the product of the frequencies of the involved alleles at each of the loci; that is, the haplotype frequency you would expect if there was non-restricted recombination between the loci (and thus, no LD). Unlike linkage, however, LD and
association are measured at a population level, which means that LD is additionally
governed by forces such as genetic drift, selection, migration, population admixture and the
number of generations since the original mutation event that gave rise to a particular genetic
variant. Whereas linkage involves only a single generation when measured by identical by
descent alleles in siblings, association studies of complex traits typically involve haplotypes
that have been shaped over thousands of generations (so-called ancestral haplotypes).
Therefore, LD usually decays very rapidly with physical distance. This results in a substan-
tially shorter range for detection of association due to LD compared to linkage, with one
estimate setting the average upper limit at about 3 kb in the human genome. This usually
makes association better suited for fine-mapping studies than linkage (especially if the
underlying susceptibility variant is common, see below), as increased proximity reduces the
number of markers that can possibly constitute the primary locus. However, due to the many
possible variables that govern LD patterns and strengths, LD is notoriously difficult to
predict. As demonstrated in the first three papers in this thesis, and as shown by others, LD
in certain regions of the genome may be much stronger and of longer range than the
average, which can substantially complicate such fine-mapping efforts.

Tag SNPs and assumptions of association screens

Despite the unpredictable nature of LD, remarkably conserved patterns are often observed in
different human populations, as demonstrated by the Haplotype Map (HapMap) project.
These patterns have been used for generating subsets of tag single nucleotide polymor-
phisms (SNPs) that convey most of the genetic information offered by the original SNP set
genotyped. This is a central concept in the current wave of genome-wide association studies
(GWAS), as reducing the number of SNPs under study has been crucial to keep genotyping
costs at affordable levels. However, certain assumptions underlie the use of tag SNPs and
screening approaches. One is the common-variant/common-disease hypothesis (e.g.),
which states that most of the genetic variants involved in common diseases are likely to be
present at substantial frequencies also in the normal population. Both the HapMap project
and most screening studies operate with a minor allele frequency limit of 5% for inclusion
of markers in further analyses (in the papers of this thesis the limit was 1% or below), thus
excluding rare variants present at lower frequencies. Another, related assumption is that
there is only one or very few disease conferring variants at a particular locus. If instead there
is high “allelic heterogeneity”, i.e. multiple alleles or multiple polymorphic sites in a
particular gene that are all directly involved in disease risk (commonly observed for rare variants), the power of detecting indirect association by LD may be substantially diminished (25; 26). Moreover, most tag SNPs are currently being selected on the basis of only a small share of the total number of common SNPs in the genome, and local variations in LD in different populations is bound to leave some polymorphisms unmarked. This has also been demonstrated by studies where complete resequencing has been performed (e.g., 27; 28). Despite these concerns, however, the GWAS approach has already proven its power to detect novel susceptibility loci.29-34

Design and scale of genetic studies of complex disease

GWAS represent a new approach that only has become possible with the introduction of high-throughput, array-based technologies where a large number of SNPs (currently up to 1 million) are genotyped in each sample simultaneously. However, genome-wide screening approaches were introduced as early as the 1980’s, using linkage rather than association. As the physical range for detecting significant signals generally is much larger for linkage, and linkage screens often have used multiallelic microsatellites that are more informative than biallelic SNPs, only a small fraction of the total number of markers necessary in GWAS is needed to cover the genome. However, genome-wide linkage screens did not meet the initial expectations, as results were prone to false-positives, and conversely, the power to detect signals with genome-wide significance levels were unexpectedly low.16 A much more successful approach has been to focus on candidate genes, chosen for their functional characteristics and hypothesised involvement in disease. This approach has lead to, e.g., the identification of polymorphisms associated with T1D and multiple other AIDs in the MHC (discussed in the next section), in the cytotoxic T-lymphocyte-associated protein 4 (CTLA4) and protein tyrosine phosphatase non-receptor type 22 (PTPN22) genes, and the discovery of the T1D involvement of a polymorphism in the insulin (INS) gene (reviewed in 35). In fact, until the beginning of the GWAS era, the candidate gene approach was the only successful approach for identification of novel genetic variants involved in T1D.

MHC: a major T1D susceptibility region

The first genetic association with T1D was reported with a locus in the MHC in 1973,36 representing a radical turn in our understanding of this disease.37 Thirty-five years later, the
MHC is still regarded as the most important genetic region for T1D, with estimates that this region alone accounts for about 40-50% of the familial clustering in T1D. An illustrative example of this role is the result of a recent genome-wide linkage screen in 1435 T1D families, where the MHC yielded a nominal P-value of 2.0×10^{-52}, whereas none of the other identified regions reached significance below 1.0×10^{-5}. This remarkable region, in humans also termed the human leukocyte antigen (HLA) complex, occupies about 3.5 megabases (Mb) on the short arm of chromosome 6 and harbours over a hundred expressed genes. Of these, an estimated 40% are involved in immune responses, with a tendency for clustering by function (Figure 2).

The genes that gave the complex its original name, the HLA genes in the class I and II regions, are highly polymorphic, each with up to several hundred alleles identified to date (http://www.anthonynolan.org.uk/research/hlainformaticsgroup/). In addition, the class II molecules are dimers of α and β chains encoded by separate loci (e.g., HLA-DQA1 and -DQB1 for the DQ molecule), further increasing the potential number of different molecules. Both classes of genes are central in the adaptive immune response. Class I molecules present peptide-fragments of antigens from the endogenous environment to CD8$^+$ T-cells, and are present in most nucleated cells. In contrast, class II molecules are found mostly on professional antigen presenting cells, where they present peptide-fragments from exogenous antigens to CD4$^+$ T-cells. The peptide-binding grooves are encoded by exons 2 and 3 in class I genes and exon 2 of the α and β genes of the class II loci. These sequences account for most of the polymorphism in these genes and also form the basis for assignment of alleles. The class I molecules are in addition involved in innate immune responses by
operating as ligands for natural killer (NK) cell receptors, similar to the molecules encoded by the MHC class I polypeptide-related sequence genes (*MICA* and *MICB*). The immune-response genes in the class III region are also mostly part of the innate system, encoding inflammatory cytokines, stress response proteins and complement factors. In total, the class III region contains about 60 expressed genes, making it the most gene-dense region in the human genome.\(^42\) Notably, the tumour necrosis factor (*TNF*) gene in this region is a target for immunosuppressive treatments of several AIDs.

Considering the high concentration of immune-system genes, it is not surprising that not only T1D, but also a great number of other diseases with a heritable component - including most AIDs - map to this complex.\(^43\); \(^44\) Consequently, the MHC is one of the most intensely studied regions of the human genome.

The DRB1-DQA1-DQB1 association in T1D

Soon after the first discovery of a T1D-associated locus in the MHC it became clear that the major part - although not all - of the T1D association in this region could be attributed to variants in the MHC class II loci *HLA-DRB1*, *-DQA1* and *-DQB1*. This characteristic is shared with a number of other AIDs (p. 18). T1D associations with these loci have been connected with particular haplotypes spanning all three loci rather than individual genes. These haplotypes follow a risk-continuum from the highest risk DRB1*03-DQA1*0501-DQB1*0201 and DRB1*0401-DQA1*0301-DQB1*0302 haplotypes to the almost dominantly protective DRB1*15-DQA1*0102-DQB1*0602 haplotype in all populations studied (\textit{e.g.} \(^45\); \(^46\)). An even higher risk is observed in heterozygous individuals carrying both of the two highest risk haplotypes, compared to individuals homozygous for either haplotype (\textit{e.g.} \(^45\)-\(^47\)). This may stem from a particularly high-risk configuration of the peptide-binding groove of the DQ α and β chains encoded in these heterozygotes, allowing more efficient binding of auto-antigens when dimers are formed \textit{in trans} \textit{(i.e.} DQA1*0501 with DQB1*0302 and DQA1*0301 with DQB1*0201 as opposed to the \textit{cis}-encoded dimers DQA1*0501-DQB1-0201 and DQA1*0301-DQB1*0302). Although the primary auto-antigen in T1D remains unidentified, this possibility is supported by efficient presentation of gluten peptides by the same \textit{trans}-dimers in celiac patients.\(^48\) Observations such as these could suggest that the *HLA-DQA1* and *-DQB1* genes are the strongest primary contenders among the three. These are also better functionally characterised, and comparisons of crystal
structures and binding affinities with orthologues in the non-obese diabetic (NOD) mouse model of T1D have revealed striking similarities of predisposing or protective alleles (49; reviewed in 50). However, it is also well-known that the risk conferred by the DQ encoding genes is strongly modified by the \textit{HLA-DRB1} gene, particularly by DRB1*04 subtypes. For instance, DQA1*0301-DQB1*0302 haplotypes carrying DRB1*0401 or DRB1*0405 confer high risk across all populations studied, whereas the risk conferred by the same DQA1-DQB1 haplotype carrying DRB1*0404 is much lower, and with DRB1*0403 strongly protective (e.g. 45; 46; 51). Thus, genetic studies involving these genes usually operate with haplotypes of all three loci, or at the very least, \textit{HLA-DRB1} and \textit{HLA-DQB1} (as these genes effectively convey most of the information of the \textit{HLA-DQA1} gene due to strong LD).

\textbf{Additional susceptibility loci in the MHC: the problem of hitchhikers}

Although the risk impact of the \textit{DRB1-DQA1-DQB1} loci outconquers any other T1D-associated locus in the genome, many studies have strongly implicated the existence of at least one, and probably more, risk loci in addition to these genes within the MHC (see \textbf{Paper III}; reviewed in 52) Perhaps the most compelling evidence for this comes from a prospective study of healthy siblings of T1D patients, all carrying the highest-risk DRB1*03-DQA1*0501-DQB1*0201/DRB1*0401-DQA1*0301-DQB1*0302 heterozygous genotype: of the healthy children that in addition to this genotype shared both haplotypes identical by descent (see p. 10) with their diagnosed siblings, 55\% were at high risk for developing T1D by the age of 12. In contrast, only 7\% of those that shared zero or one haplotype identical by descent (but still the same genotype) were in this high-risk group (34\% and 5\%, respectively, had already developed the disease at the time the study was published).53 This extreme risk of T1D cannot be ascribed to the \textit{DRB1-DQA1-DQB1} loci alone, as all siblings shared the same high-risk genotype. Rather, some locus, or loci, linked with these haplotypes is needed as an additional explanatory factor.

Despite substantial efforts, however, the identification of these loci has proven difficult, owing to several unusual characteristics of this region. One is that the strong immunogenetic role and high density of genes in the MHC makes for an abundance of good candidate genes, making \textit{a priori} predictions difficult. Another is the high number of functional polymorphisms in the \textit{HLA} genes, as well as the \textit{MICA/B} genes, which has made genotyping a demanding task and often has resulted in incomplete characterisation. More seriously, the
haplotype structure of the MHC partly consists of highly conserved, ancestral haplotypes, present at high frequencies in the population and only separated by defined hotspots of recombination, which results in unusually strong and extensive LD.54; 55 This makes fine-mapping of disease-associated variants difficult, as allelic variants may “hitchhike” on haplotypes carrying primary (directly involved) variants at other loci, resulting in detection of indirect associations over large distances. An illustrative example of this effect is that the first discovered T1D-associated genetic variants were the B*08 and B*15 alleles (originally termed HL-A8 and W15) of the HLA-B gene;36; 56; 57 only later did it became clear that most, if not all, of the association of these alleles could be explained by LD with the high-risk DRB1*03-DQA1*0501-DQB1*0201 and DRB1*0401-DQA1*0301-DQB1*0302 haplotypes, respectively. These loci are located over 1.2 Mb apart, exceeding the average estimates of useful LD range for association studies by a factor of more than 400.

The B*08 and DRB1*03-DQA1*0501-DQB1*0201 alleles are present on a haplotype known as the 8.1 ancestral haplotype (AH), which also includes, among others, the A*01 and C*07 alleles of the HLA-A and -C genes, respectively. This haplotype is quite frequent, present at about 10% in Caucasian populations (7.7% in the Norwegian population), and has been shown to be completely conserved for as long as 9 Mb in some individuals.58; 59 AH8.1 has been strongly associated with numerous diseases, including T1D and other AIDs (60; 61; reviewed in 62). Another AH that has attracted considerable attention is the AH18.2, which carries the same DRB1-DQA1-DQB1 alleles as the AH8.1, but extends to, among others, B*18 and C*05, and with less conservation telomeric of the HLA-B gene. This haplotype shows a higher T1D risk than that conferred by AH8.1 and other DRB1*03-DQA1*0501-DQB1*0201 extended haplotypes.63; 64 This implies that some additional locus or loci on the AH18.2 and AH8.1 modify the high risk of the DRB1*03-DQA1*0501-DQB1*0201 haplotype, in predisposing and possibly protective directions, respectively.

Similar to other, non-MHC loci that have been identified in T1D, additional susceptibility loci in the MHC are believed to confer small individual effects relative to the DRB1-DQA1-DQB1 genes. This adds to the difficulties of genetic studies in the MHC, as indirect associations due to LD with these genes will also tend to be strong, effectively masking or confounding the effects of other loci. These characteristics basically render conventional association strategies useless, as any association detected within the MHC by all probabilities is attributable to LD with the DRB1-DQA1-DQB1 loci. However, several conditional
approaches have been developed, representing different ways of “peeling off” the LD effects of the \(DRB1-DQA1-DQB1\) loci to identify independent effects (p. 30).

The T1DGC MHC fine-mapping project

A problem with conditional approaches is that they often involve a large number of parameters, in particular when controlling for multiallelic loci such as \(DRB1-DQA1-DQB1\), resulting in small strata or high degrees of freedom when testing for independent effects. In combination with small expected effect sizes, this can quickly result in insufficient statistical power. One approach to this problem is to include as many individuals as possible through collaborative efforts involving multiple research centres. This is what has been done in the Type 1 Diabetes Genetics Consortium (T1DGC) MHC fine-mapping project, which has generated genotypes for almost 3000 markers covering the entire classical MHC region, in over 2300 T1D families (the T1DGC MHC dataset). The T1DGC is a large collaborative effort aiming to collect a large multiplex (at least two affected siblings) family material, with a stated goal of achieving enough power to perform a definite genome-wide linkage screen in T1D. In addition, the T1DGC provides characterised samples and cell lines for researchers worldwide, and several large-scale, collaborative projects are under way. The MHC fine-mapping project is the first major project under the auspices of the T1DGC, where ten independent research groups have been allowed early access to this data. Along with colleagues from Sweden, Germany and Norway, I am part of one of these groups, resulting in **Paper I** and **II** in this thesis, as well as the replication study in **Paper III**.

Autoimmune diseases: common factors?

T1D is only one among many diseases believed to have an autoimmune cause. Examples of such diseases are rheumatic diseases such as rheumatoid arthritis (RA), juvenile idiopathic arthritis (JIA) and ankylosing spondylitis; diseases of the digestive system such as celiac disease, Crohn’s disease (CD) and ulcerative colitis (UC); systemic diseases such as systemic lupus erythematosus (SLE), myasthenia gravis, sarcoidosis and multiple sclerosis; and organ-specific diseases such as primary sclerosing cholangitis (PSC), autoimmune thyroid disease and psoriasis. Although the variation in clinical manifestations of these diseases is large, there are certain common characteristics; the most frequent being the presence of one or more types of autoantibodies.\(^{65}\) Moreover, familial clustering of different
AIDs is known to occur, and co-occurrence of AIDs in the same patient is observed more often than expected by chance, e.g. RA and T1D with autoimmune thyroid disease, and PSC with CD and UC, celiac disease and autoimmune hepatitis. This indicates that there may be shared genetic factors among these diseases, and indeed, several genetic variants have been reported associated with more than AID. Most notably, all of the above mentioned diseases map with variable strength to the MHC, and many with the genes in the class II region encoding antigen-presenting molecules. In fact, this is often used as one of the arguments for assigning an autoimmune status to a particular disease. In addition, genome-wide linkage studies have revealed several regions with overlapping linkage signals for more than one AID, and the T1D-associated variants of the *CTLA4* and *PTPN22* genes have also been reported associated with multiple other AIDs. In this thesis, a recently proposed variant common to AIDs is investigated in Paper IV.
AIMS

The overall aim of the work presented in this thesis was to dissect the genetic predisposition to T1D in the MHC, with an added goal of investigating possible factors common to AIDs. Specifically, we wanted to address the following issues:

1. Which loci other than the DRB1-DQA1-DQB1 loci are responsible for the T1D risk conferred by the MHC (addressed particularly in Paper I and II)?

2. Can previously reported associations with T1D and other AIDs in the MHC be explained by LD with other loci, or do they represent primary associations (addressed particularly in Paper III)?

3. Is the Fc receptor-like 3 (FCRL3) -169T>C SNP a risk factor in T1D and the other AIDs RA, JIA, SLE, UC, CD and PSC (Paper IV)?
METHODOLOGICAL CONSIDERATIONS

The use of families or case-controls represents two fundamentally different designs of association studies, each having strengths and weaknesses. As will be discussed in this section, however, some issues relating to the quality of a study pertains to all association studies, regardless of design. In the papers of this thesis, all investigations of T1D (Paper I-IV) involved families, whereas the other investigated AIDs in Paper IV involved case-control designs.

Issues of clinical heterogeneity

The presence of atypical patients in an otherwise homogenous patient material can reduce power to detect associations. An important issue in genetic studies is therefore how the patient materials under study were selected and diagnosed. Such issues are particularly pertinent when considering combined materials collected at different locations, such as the T1DGC family material. The T1DGC MHC dataset, used in Paper I, II and III, consists of two main collections (~50% of samples each): families collected for the explicit purpose of the T1DGC and families collected previously under the auspices of various institutes, most notably the Human Biological Data Interchange (HBDI) and British Diabetic Association (BDA) Warren I cohorts. For the former collection, diagnostic criteria and information gathered was uniform and subject to consortium guidelines. For the latter collection, some patients lacked certain information, such as autoantibody status and ethnic origin, and diagnostic criteria may have been subject to differing guidelines. Thus, the latter collection is likely more heterogeneous than the first. Similarly, although the Norwegian families and Scandinavian patients investigated in Paper III and IV were collected under standardised guidelines, diagnosis may still vary depending on the admitting physician or medical centre. However, such issues are difficult to avoid in studies involving many patients, and some heterogeneity is therefore bound to exist. A possible solution would be to examine different cohorts separately, but such procedures may well reduce statistical power more than the presence of heterogeneous samples. Also, repeated testing in different parts of the dataset introduces issues of multiple testing, which may inflate the type I error (false positive) rate (see p. 29). Therefore, in the papers of this thesis, this strategy was limited to a particular issue of ethnic stratification (p. 33) and one instance of clinical heterogeneity, described in the next section.
Testing in clinical subgroups

Even if the same diagnostic criteria are applied to all patients, some diseases display varying incidences of clinical subcategories. In this thesis, this particularly applied to the RA, JIA and PSC patients included in Paper IV. For such diseases, a common strategy is to test genetic variants in defined clinical subcategories of the patients. This may reveal whether there are specific disease traits involved, which are valuable for inferring underlying biological mechanisms. In addition, associations may be detected that are not visible in the total patient material, due to involvement of biological mechanisms not present in other subgroups. However, due to issues related to multiple testing, this strategy should be used with caution. In general, such testing is not warranted unless 1) there is a significant association in the total patient material, or 2) if there are reasons to believe that specific subcategories are more likely to be involved. Tests performed in clinical subgroups of JIA in Paper IV abided by the second of these rules; although the association in the total JIA material was not significant ($P=0.062$), there was a tendency for an association comparable to that observed for the significant association in RA patients. Moreover, the polyarthritis subgroup of JIA have several clinical characteristics in common with adult RA that could indicate shared aetiological factors.71

Age at T1D onset and LADA

Onset of T1D can occur at any age, but is most frequently observed in the younger population. In the T1DGC MHC dataset, the mean age of onset was 11.75 [sd 8.71] years, but 16% of patients had an age of onset greater than 20 years (in comparison, all patients in the Norwegian family material was diagnosed before the age of 15). This may have introduced some heterogeneity, as an atypical, slowly progressing manifestation of T1D more common in older patients, termed latent autoimmune diabetes in adults (LADA; about 5–10% of newly diagnosed non-insulin-requiring diabetes), may have different underlying causes (72; reviewed in 73; 74). One of the discriminating factors of LADA is infrequent presence of IA2 autoantibodies.73 However, among T1DGC patients characterised for IA2, 61% ($n = 143$) of patients with age of onset >20 years were IA2 positive, compared to 52% ($n = 1061$) of patients with age of onset 20 years or younger. Although this difference was significant ($P=0.011$), the higher frequency of IA2 autoantibodies in the older age of onset group indicates that the incidence of LADA among the T1DGC patients was rare. Therefore,
heterogeneity due to presence of LADA was not likely to have had a major impact on our analyses.

Quality controls in association studies

In addition to clinical heterogeneity, other, more adverse sources of heterogeneity in association studies relate to genotyping errors and presence of substructures in control populations. Such problems do not only reduce statistical power, but may also create false positive results. Therefore, several measures are commonly employed to reduce their impact.

Abiding genetic laws of inheritance

Genotyping errors can arise for a multitude of reasons, e.g. poor DNA sample quality, incomplete reference sequence information such as duplicate sequences or unidentified polymorphisms in a probe or primer target, unforeseen interactions between primers or probes in a multiplex assay, poorly designed reaction conditions, or just plain human error. Family studies have the advantage that such errors may be identified through violations of Mendelian inheritance, as only certain combinations of alleles in offspring are possible given the genotypes of the parents. Although Mendelian errors can account for only a portion of the total genotyping errors in a study (depending in part on marker polymorphy; e.g., for biallelic markers the rate may be as low as 25%75), such errors still can provide strong clues about presence and specific problems with the genotyping procedure. Commonly, violating genotypes are simply removed before performing statistical tests. This strategy may introduce some bias, particularly for multiallelic markers: as the power to detect Mendelian errors relies partly on allele frequencies, such removal may involve some alleles more often than others, resulting in disproportionate frequencies in the edited dataset. Therefore, alternative association tests that allow for inclusion of such errors have been proposed.76; 77 However, as such methods seem somewhat immature and in little current use, we instead removed genotypes for the affected marker in the entire family in which a Mendelian inconsistency was encountered (this was only necessary in the Norwegian families, as the T1DGC MHC dataset was already “cleaned” before being made available to the research groups).
Mendelian tests are not possible for the unrelated individuals in case-control studies, which instead often rely on the possibility for detecting genotyping errors by deviations from Hardy-Weinberg equilibrium (HWE).78 HWE is the constant proportion of genotype frequencies of a non-mutant marker under no selection in a homogenous population that is under random mating, \textit{i.e.} the genotype proportions you would expect to find in a properly sampled control population. Genotyping errors can create distortions in allele frequency distributions, which, given sufficient statistical power, may be detected by such tests. Testing for HWE is also possible in family materials, usually by examination of genotypes in parents.79 However, families are selected on the basis of at least one diseased family member, and therefore are not likely to be representative of the population as a whole. Therefore, the requirement of HWE in family studies is often not applied as stringently as for control populations in case-control studies, except when the validity of the statistical procedure is contingent on such equilibrium (\textit{e.g.} the AFBAC procedure described below).

\textbf{Association and population stratification}

Association tests in a case-control study involve the simple null hypothesis H_0: no association between the marker and the disease. However, this is under the assumption that cases and controls are sampled at random from the same, genetically homogenous and randomly mating population, \textit{i.e.} strongly related to HWE. Consequently, spurious associations may arise when a population is stratified, \textit{e.g.} due to admixture of ethnically diverse populations. Partly for this reason, family-based tests were devised where transmitted (T) and non-transmitted (NT) alleles to affected offspring act as cases and controls, respectively (reviewed in 80). This leads to an efficient matching of the test populations, as each pair of T and NT alleles share genetic background, with the added benefit that environmental exposure tend to be more homogenous within families. The most widely used of these tests is the transmission-disequilibrium test (TDT),81 involving T/NT from heterozygous parents, or one of its many extensions such as the extended TDT (ETDT),82 which tests for transmission distortion of multiple alleles simultaneously. Alternative designs include the affected family-based control (AFBAC) design, where the controls are formed by NT parental alleles also from homozygous parents (\textit{never}-transmitted in multplex families),83 and designs that consider relative risks conferred by specific genotypes conditional on parental genotypes (\textit{e.g.} 84; 85). The latter approach involves conditional logistic regression, which allows for inclusion of other parameters such as accounting for missing parents, 86 parent-of-origin or
epistatic effects, or the effects of other markers in LD with the investigated marker (described in detail on p. 31). In common for all of these approaches is that they are based on testing within families, thereby reducing or even eliminating the impact of population structure. Significant findings in a family-based test most often also implies linkage (in addition to association), which unlike LD is not influenced by population genetics (p. 10). Moreover, even in cases where population stratification is an issue (e.g., see p. 34), unlike case-control designs, the use of families represents a matched design, which in the face of an unmatched test caused by stratification is likely to lead to reduced power rather than false positives. Therefore, family-based designs are generally considered more robust to population stratification than case-control designs, which continues to be one of the key arguments for their use.

For case-control designs, an alternative solution is to test, once again, for compliance with HWE. In the absence of genotyping errors, deviations from HWE in patients can be a sign of disease involvement of a marker. In contrast, deviations in a healthy control population can arise when these consist of subpopulations with different ancestral origin and population history, which often exhibit differences in genotype frequencies; i.e., in the presence of population stratification. As the following case will show, HWE deviations may also arise for no identifiable reason, but may still reveal important issues.

The importance of HWE in control populations

An illustrative example of the importance of HWE in controls was encountered in the work behind Paper IV in this thesis, where the Fc receptor-like 3 (FCRL3) -169T>C SNP was examined using TaqMan technology (Applied Biosystems). Initially, we genotyped a control material recruited from the Norwegian Bone Marrow Donor Registry (NBMDR; n = 650). These controls were in marked deviation from expected HWE frequencies for this SNP (P<0.01), similar to a deviation observed in parents from the T1D families. To test for the possibility of genotyping errors, we retyped a representative subset of these controls (12%; 16 CC, 30 CT and 28 TT) by DNA sequencing. However, this revealed no discrepancies. The TaqMan genotyping assay performed well with no signs of clustering anomalies (see p. 28), and was the same as that used in the original report for this SNP (Applied Biosystems, personal communication), where no deviation from HWE was observed. Moreover, there was no evidence of additional polymorphisms within the sequences covered by the assay.
primers and probe (*ibid*.), and our sequencing results did not reveal any unknown SNPs in the 459 basepair region amplified by our primers. Finally, only two Mendelian inconsistencies were observed in our 425 T1D families, with an implied error rate much too low to explain the observed deviation (<0.7% for a 25% discovery rate). Hence, genotyping error could be excluded as a possible cause of the observed deviation from HWE.

An alternative explanation could be population stratification, but the Norwegian population is generally considered genetically homogeneous, and *HLA* genotype profiles in these controls matched those of the total NBMDR material (consisting of ~20000 individuals), making ascertainment bias unlikely. Also, parts of the NBMDR control material and the T1D family material used in this study were previously genotyped for a number of other polymorphisms without showing deviation from HWE.

Hence, none of the usual explanations for HWE deviation seemed to apply to our study. We therefore at first interpreted this as a sign that this SNP simply was not in HWE in the Norwegian population. However, considering that a marker under no selection pressure and no mating bias (which there was no reason to suspect in this case) is expected to reach HWE after a single generation, this notion is highly unlikely. In addition, the select status of the T1D families means that the deviation observed here may not be considered as independent evidence for such a deviation in the normal population. Therefore, another, independent control material was genotyped (*Paper IV*). This time, the controls were in HWE, and in addition showed more similar genotype frequencies to those reported in other Caucasian populations. This also resulted in striking changes in the results of the study, from initial significantly increased risk of the *FCRL3* -169 CC genotype for the UC, PSC and SLE patient populations and reduced risk for the RA population, to significantly increased risk for the CC genotype in the RA population only (*Table 1*).

Hosking *et al.* (2004)\(^{104}\) performed a detailed investigation of 36 SNPs deviating from HWE (from a panel of 313 assays with minor allele frequency [MAF] >0.05). However, the deviations for 10 of these SNPs could apparently not be explained by either genotyping errors or population stratification. This shows that deviations from HWE may occur quite frequently, even when conditions for proper study design and accurate genotyping are met. The cause of such deviations are unclear, but may be purely stochastic in nature, such that for any given study population, some markers will not be in HWE by pure chance. To date, such problems have either been ignored\(^{78;105}\) or resulted in markers being omitted from
Table 1: Comparison of association results for the *FCRL3*-169T>C SNP depending on HWE in controls.

<table>
<thead>
<tr>
<th>Material</th>
<th>n</th>
<th>Genotype frequency</th>
<th>CC vs. CT + TT with Controls #1 (not in HWE)</th>
<th>CC vs. CT + TT with Controls #2 (in HWE)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CC</td>
<td>CT</td>
<td>TT</td>
</tr>
<tr>
<td>RA</td>
<td>713</td>
<td>0.21</td>
<td>0.50</td>
<td>0.29</td>
</tr>
<tr>
<td>JIA</td>
<td>320</td>
<td>0.20</td>
<td>0.49</td>
<td>0.31</td>
</tr>
<tr>
<td>SLE</td>
<td>163</td>
<td>0.15</td>
<td>0.57</td>
<td>0.28</td>
</tr>
<tr>
<td>UC</td>
<td>326</td>
<td>0.15</td>
<td>0.53</td>
<td>0.32</td>
</tr>
<tr>
<td>CD</td>
<td>142</td>
<td>0.19</td>
<td>0.51</td>
<td>0.30</td>
</tr>
<tr>
<td>PSC</td>
<td>360</td>
<td>0.18</td>
<td>0.49</td>
<td>0.33</td>
</tr>
<tr>
<td>Controls #1</td>
<td>631</td>
<td>0.26</td>
<td>0.43</td>
<td>0.31</td>
</tr>
<tr>
<td>Controls #2</td>
<td>982</td>
<td>0.17</td>
<td>0.51</td>
<td>0.32</td>
</tr>
</tbody>
</table>

n: number of genotyped individuals. RA: rheumatoid arthritis; JIA: juvenile idiopathic arthritis; SLE: systemic lupus erythematosus; UC: ulcerative colitis; CD: Crohn’s disease; PSC: primary sclerosing cholangitis; Controls #1: NBMDR, not in HWE (P<0.01); Controls #2: Norwegian blood donors (used in Paper IV). χ² tests applied to allelic counts assumes HWE and are therefore not shown.

Our results demonstrate that the former strategy is dangerous, as it may lead to false results. The latter strategy seems to be a far better alternative, although genotyping of an independent control material is preferable in cases where the SNP is of particular interest.

Additional measures of quality

In addition to investigating Mendelian errors and HWE deviations, most genetic studies involve additional measures to correct for potential errors. The T1DGC MHC dataset used in Paper I-III had already been subject to a range of methods relating to genotyping quality (most notably at the well-renowned deCODE and Sanger institutes for the microsatellites and SNPs, respectively) and identification of potential errors in family structure before being made available to the research groups. In addition, we implemented a procedure to evaluate the number of recombinations between loci; when estimates of haplotypes show unusually high numbers of apparent recombinations within a single family, this is likely to point to errors in pedigree structure, e.g. the inclusion of genetically unrelated individuals or misspecification of parents and children. Similarly, family structures in the Norwegian T1D families were evaluated by examining a large number of genotyped markers simultaneously, and identifying those families where Mendelian errors appeared to be overrepresented. In some cases, such procedures can point to a sample-switch, which is easily corrected by applying the correct sample number. In other cases, the offending sample or the entire family (when the former is ambiguous) must be removed from analysis altogether.
For genotyping quality, a common measure is to examine genotyping success rates, both in relation to samples and markers. In the first case, removing samples that perform poorly is not only likely to remove genotyping errors relating directly to these samples, but can also significantly improve the genotype quality of other samples: many assays, such as TaqMan, SNPlex and array-based methods rely on clustering of genotypes from many individuals simultaneously, and low-quality samples will tend to contribute towards poorly defined borders between these clusters. In the second case, removing genotypes for markers with low success rates will tend to improve overall genotype quality, as poorly performing assays are usually prone to genotyping errors.

Another important measure is to check the integrity of the reference sequence on which the assays were originally designed. The human genome reference sequence is constantly being updated, and each update can reveal inconsistencies in previous builds. Similarly, the National Center for Biotechnology Information (NCBI) SNP database (dbSNP; http://www.ncbi.nlm.nih.gov/SNP/) contains information about most of the SNPs discovered to date, with frequent updates. Control searches in this database for SNPs included in a study may, only months after the study was initiated, reveal newly discovered alleles or multiple hits at different loci in the genome. Such characteristics can introduce errors in genotyping, and may therefore reveal errors that otherwise had gone unnoticed.

Probabilities and statistical power

Association tests involve the null hypothesis H0: no association between a marker and a disease. Rejection of the null is determined by the significance threshold, which is commonly set at $P=0.05$ for single tests. However, in complex studies involving multiple parameters, the suitability of a significance threshold is contingent on probabilities for two main classes of statistical errors: the type I error rate, which is the probability of rejecting the null when there is no true association (false positive), and the type II error rate, which is the probability of not rejecting the null when there in fact is a true association (false negative). The probabilities for such errors are heavily influenced by the size of the study population and of the risk effect, and the allele frequency of the risk conferring variant (lower probabilities for large populations, high risk effects and frequencies closer to 50%). Depending on these parameters, the threshold significance level can adjust the
balance for these two types of errors; lower thresholds will reduce the type I error rate, but increase the probability for type II errors.

Type I errors and study designs

An added complexity of type I errors is that they also are influenced by the design of a study: investigating a large number of markers without a prior evaluation of the likely involvement of these markers with disease (e.g. genome-wide screens) is more likely to yield false positives than investigation of a single marker that has been implicated through functional studies, biological role or prior reports of association (i.e., candidate studies). This is due to mainly two issues: differences in the prior odds of “hitting the right spot” among the millions of common variants that are present in the genome, and issues when testing multiple markers at the same time for a single hypothesis.

The prior odds are, obviously, not possible to calculate accurately, but testing different models has shown that the odds in a candidate approach can be as much as a 100 times better than in a hypothesis-free screening approach. As such, the studies in Paper III and IV in this thesis were closest to the mark, as polymorphisms in these studies were selected on the basis of earlier reports involving both functional and genetic studies. In contrast, Paper I and II describe screens of the entire MHC using a high-density SNP panel or microsatellite markers. Although the prior odds in these studies is much better than in genome-wide approaches, due to limiting the focus to a region that already has a high likelihood of containing T1D risk factors, they will be significantly worse than for the candidate studies in Paper III and IV.

A similar, but separate issue influencing type I error rates relates to the testing of multiple markers for a single hypothesis, e.g. the existence of an additional T1D susceptibility locus within the MHC (relates to Paper I and II, and to a lesser degree to Paper III). In contrast to a single test, where a significance level of $P<0.05$ may be adequate, each added test of the same hypothesis (represented by each of the tested markers) increases the likelihood of observing associations at this level by pure chance. A widely used measure to reduce the impact of these issues is to apply Bonferroni correction, which is the simple division of a significance value (e.g. $P=0.05$) with the number of tests performed to arrive at a new threshold. Although Bonferroni correction does not consider dependencies between markers due to LD and therefore is considered conservative, particularly when the number of tests is
large, it is computationally simple and generally considered to be sensitive. Moreover, in the context of the studies conducted in **Paper I** and **II**, which involved parameter- and work intensive methods, these procedures helped to reduce the workload, but still leaving a substantial number of significant markers.

Type II errors and statistical power

Statistical power is the probability that a study will detect a true association with the markers studied, and is therefore inversely related to the type II error rate. Power calculations are often applied prior to performing a study (e.g. in **Paper IV**), to determine if the available study population is large enough to detect associations of a marker with an expected risk impact. In the studies of **Paper I-III**, such calculations were difficult, as the use of conditional approaches and the unusual LD characteristics of the MHC can influence these estimates in unpredictable ways. However, an estimate by Nejentsev *et al.* (2008), using 850 of the T1DGC families in a similar study to ours showed a 98% power to detect a relative risk of 2.0 at $\alpha=1.0\times10^{-5}$ and MAF=0.10, 60% for MAF=0.05 and 32% for a relative risk of 1.5 at MAF=0.10. As our studies included over 2300 families and higher threshold P-values (conditional main effects tests; $\alpha=2.2\times10^{-5}$ for the SNPs in **Paper I** and $\alpha=8.5\times10^{-4}$ for the microsatellites in **Paper II**), we should have had ample power to detect loci with moderate risk sizes.

Conditional analyses: controlling for LD

The unusual LD characteristics of the MHC (p. 17) demands special measures to identify independent effects, particularly of LD with the **DRB1-DQA1-DQB1** loci. Several approaches to this problem have been proposed, mainly divided into methods based on logistic regression and methods based on estimates of extended haplotypes (described further below).

Defining the primary locus

Irrespective of method chosen, a first and essential step is how to define the risk conferred by the **HLA-DRB1, -DQA1 and -DQB1** loci. A problem with analyses conditional on these loci is the large number of alleles at each locus, which, if each locus is treated separately, can rapidly result in very high numbers of variables. Although this strategy has been in
common use (albeit usually ignoring the HLA-DQA1 locus), it requires some form of grouping of alleles to reduce complexity. This may be done by function (e.g. similar to the “shared epitope” hypothesis in RA109), by broad risk categories (e.g. high, low, intermediate), or under a certain frequency threshold. However, these strategies may be difficult due to incomplete information, too inaccurate given the complex risk of the DRB1-DQA1-DQB1 loci, or result in grouping of alleles with differential risk. Still other methods do not consider all DRB1-DQA1-DQB1 haplotypes, but only those with very high risk impact (e.g. the homozygous parent TDT, p. 33).

Our approach to this problem, applied in Paper I-III, was to take advantage of the high LD between the DRB1-DQA1-DQB1 loci by constructing phased haplotypes (i.e. assigning each allele to one of the two chromosome copies) covering all three loci and using these haplotypes as alleles at one “super-locus”. This simplified the analyses substantially (leaving one instead of two/three conditional loci), while keeping most of the information of the individual loci intact. Moreover, due to the known haplotype-specific and modifying effects between these loci (p. 15), considering the haplotypes rather than individual loci should capture the risk more accurately. When also considering that LD patterns from alleles of the individual loci are likely to vary from those of haplotypes spanning all three, the use of haplotypes more effectively addressed the main task in our analyses: to control for secondary association due to LD with the DRB1-DQA1-DQB1 loci. This approach, and its possible shortcomings, is described in detail in Supplementary methods of Paper I.

Main effects tests

Logistic regression is a flexible framework that allows for incorporation of a multitude of variables. The approach used in this thesis (Paper I-III), described by Cordell & Clayton (2002),110 considers the overall combination of genotypes at two or more loci, allowing for testing of effects at an additional locus while controlling for confounding (i.e., due to LD) at a primary locus. Specifically, this involves comparison of a regression model that includes the effects of both loci with a model where only the effects of the primary locus is included; when the effect of the first model is significantly different from that of the second, this implies that the additional locus confers an effect that is independent of the primary locus. This is the “main effects” test, which was used as a first step in the analyses in Paper I-III.
This method can be used both in case-control and family materials, with the difference that the first involves **unconditional** whereas the second involves **conditional** logistic regression. In particular, when applied to families, as in this thesis, the incidence of particular genotypes or alleles (depending on model) in affected children is compared with the incidence in “pseudo-controls”, by conditioning on parental genotypes and affection status (similar to the genotype relative risk approach [84; 85]). The pseudo-controls are constructed from the possible parental genotypes *not* transmitted to affected children, resulting in a matched design that, similar to many other family-based designs, is robust to population stratification. Moreover, this design means that each case allows for up to three pseudo-controls from the three other possible combinations of haplotypes from the parents. However, this requires parental phase to be known, otherwise only one pseudo-control is possible. Although phase assignment in the parents can be improved by including unaffected siblings, as was possible with the T1DGC families, this procedure partly depends on the number of alleles at the test locus: because biallelic markers (e.g. SNPs) contain less information and are more likely to be homozygous than multiallelic markers (e.g. HLA loci and microsatellites), this usually results in more pseudo-controls for multiallelic markers.

Regression modelling

Due to the possible existence of more than one additional T1D susceptibility locus in the MHC, adjusting only for the known effects of the *DRB1-DQA1-DQB1* loci may not be sufficient, as each additional locus may add its own confounding factor. When, as in this case, the additional loci are unknown, a multistep approach may offer a solution: adjustment is first made for the primary disease locus, and secondly for all loci identified with significant results in the first step. This way, even if the additional risk loci are not genotyped and/or are unknown, the sum of markers included in the second step should nonetheless pick up a large part of the confounding effects of these loci. The method used in **Paper I-III** in this thesis, also described in Cordell and Clayton (2002), [110] is a simple extension of the main effects test procedure above, where testing of a set of loci is performed in a stepwise manner. This involves adding additional loci, one at a time, to a model already including *DRB1-DQA1-DQB1* (forward stepwise selection), or similarly subtracting loci from the model including all of the loci (backward stepwise selection). For each of the steps, changes in the observed effect are considered, such that in the final model (the “best” model), adding additional markers does not add significantly to the effect, or conversely, removing any of
the markers already in the model results in a significantly worse fit of the model. Thus, the final model represents a minimum set of markers needed to explain the observed association of all the markers initially tested.

Haplotype-based tests

In contrast to the regression approaches described above, which consider overall marker effects, haplotypes provide information about the LD background in a region. This can be used for mapping of alleles at the test loci on the different DRB1-DQA1-DQB1 haplotypes, and, by applying conditional tests, also for determining which particular alleles that are likely to be responsible for the independent effects observed in the regression analyses.

A common strategy in haplotype-based analyses is to evaluate additional effects of a marker on individual conditional haplotypes. An example is the homozygous parent TDT,111 where only families with parents that are homozygous for a particular allele at a primary risk locus, e.g. the DRB1*03-DQA1*0501-DQB1*0201 haplotype, are included. This results in an efficient control for associations secondary to LD on this haplotype, meaning that any association observed at a test locus is indicative of an additional effect. However, both the limitation of homozygous parents and the further demand that the tested marker must be heterozygous for the TDT to be informative can quickly result in small datasets. The method used in this thesis (Paper I-III) is reminiscent of this strategy, but with consideration of all individual DRB1-DQA1-DQB1 haplotypes irrespective of risk impact. Ours is a variant of the haplotype method (HM),112; 113 which involves comparison of relative frequencies of alleles at a test locus on haplotypes that are identical at a primary locus. For example, in a simple case involving two biallelic markers A and B in LD, where A is a known primary locus with predisposing allele A_1 and protective allele A_2 and B has the alleles B_1 and B_2, then under the null that A defines all the risk:

\[
\frac{f_T(A_1B_1)}{f_{NT}(A_1B_1)} = \frac{f_T(A_1B_2)}{f_{NT}(A_1B_2)}
\]

where $f_T(\cdot)$ and $f_{NT}(\cdot)$ represent T and NT frequencies, respectively (“_” represents the haplotype connection). That is, although the predisposing risk conferred by A_1 means that the transmitted haplotypes carrying A_1 will be more frequent than the non-transmitted haplotypes, there should be no difference in the ratios of T/NT haplotypes depending on the
allele of B (the protective allele A_2 will give the same result, but with opposite risk). Conversely, deviations from these expected ratios imply that an additional effect is marked by B (i.e. additional risk is conferred by B itself or a marker in high LD with B).

A generalised formula as it applies to multiallelic loci and details of our method are given in **Supplementary methods** to Paper I. Briefly, phasing of haplotypes prior to performing these tests were done using the program FAMHAP,114 which allows for separating T and NT haplotypes from heterozygous parents. An important note is that assignment of haplotypes within a family is weighted on haplotype frequency estimates across all parents,114,115 which therefore assumes random mating and HWE in the founder population. Hence, unlike the conventional TDT (p. 24) but similar to other variants of the HM,113,116 the results of this procedure may be influenced by population stratification. Although, as previously noted (p. 25), a stratified population is more likely to result in reduced power than in false positives in family-based designs, analyses should therefore be performed in as homogenous populations as possible (e.g. for the T1DGC MHC dataset, tests were performed in subpopulations defined by areas of European ancestry, in addition to the whole dataset; **Paper I and II**).

Complementarity: regression and haplotype methods

None of the above conditional methods is perfect, but using them both can reduce some of the shortcomings inherent in each method. In general, the haplotype method we used was generally laborious, with frequent demand of manual inspection. This was particularly the case for analyses of more than one additional locus, which, although can reveal important information about connections between allelic associations between separate loci on the same $DRB1$-$DQA1$-$DQB1$ haplotype, generally result in small strata with limited power. In comparison, incorporation of multiple loci in a regression model is relatively unproblematic. Therefore, the regression approach was better suited for initial screening of the datasets to narrow down a set of candidate markers, which proved particularly useful for the large number of markers in the T1DGC MHC dataset.

A more specific issue is that the main effects test does not consider haplotype effects. For instance, for two biallelic loci with alleles A/a and B/b, respectively, the two genotype combinations ab/AB and aB/Ab are considered equivalent. If these loci are not real aetiological loci, but merely act as proxies due to LD (which is always a likely situation in screening studies), these combinations may influence the results in different ways.110 A full
A related issue is that the regression approach is limited when it comes to handling rare alleles; although multiallelic markers can improve phase assignment and thus increase power, the increased information of these markers also results in a higher number of parameters and degrees of freedom, which can affect statistical power in the other direction. Many parameters can also introduce problems in the analyses, especially in large datasets where the incidence of unique, rare alleles may be higher than in smaller datasets. This was also demonstrated in the analyses of the HLA loci and microsatellites in the T1DGC MHC dataset (Paper I and II, respectively), where initial analyses using the original set of families produced unreliable results. This was particularly evident for the test needed to account for dependency between multiple affected siblings (the Wald test) in this dataset. Therefore, the dataset was recoded for analyses of the multiallelic markers to contain only one affected child per family (the “proband” dataset), to allow for an alternative (likelihood ratio) test. This did not solve all of the problems with rare alleles, however, resulting in grouping of alleles with frequencies less than 1% (0.1% for the microsatellites) for all multiallelic markers, including the \textit{DRB1-DQA1-DQB1} haplotype code. To keep analyses comparable, this was also done equally for the \textit{DRB1-DQA1-DQB1} haplotypes in the dataset used for analyses of the SNPs (the “all affecteds” dataset). As noted in the section above, such grouping is not unproblematic, as the grouped alleles may not confer the same risk, and is therefore likely to result in a heterogeneous group. Therefore, appropriate measures must be applied to ensure validity of results. In our case, the haplotype method proved a valuable asset also in this respect, due to its capability for revealing the particular alleles and \textit{DRB1-DQA1-DQB1} haplotypes involved. In some of these cases, the association primarily mapped to the grouped alleles, which is likely to have resulted in artefacts in the regression analyses. Therefore, these results were discarded. This issue, particularly as it pertains to the grouping of rare \textit{DRB1-DQA1-DQB1} haplotypes, is discussed further in Supplementary methods of Paper I.
SUMMARY OF PAPERS

Paper I: Conditional analyses on the T1DGC MHC dataset: novel associations with type 1 diabetes around HLA-G and confirmation of HLA-B.

In this first and major paper of this thesis, we used the data on SNPs and HLA loci from the large T1DGC MHC dataset in a comprehensive scan for additional T1D risk factors in the MHC. Our approach employed two complementary conditional methods, involving conditional logistic regression and allelic tests conditional on haplotypes, and consisted of stepwise identification of increasingly smaller subsets of markers that could explain all of the observed association in the previous steps. All steps included adjustment for LD effects with the DRB1-DQA1-DQB1 loci, but in addition, the later steps also included adjustment for LD effects with significantly associated loci from the previous steps. Thereby, we were able to identify a subset of markers with associations that were not only independent of LD with DRB1-DQA1-DQB1 haplotypes, but also likely to be independent of other, additional T1D risk factors in the MHC. This subset contained polymorphisms concentrated in three separate, demarcated regions of the MHC and pointed to T1D risk factors involving polymorphisms in or around the HLA-G, -B and -DPB1 genes, respectively. In particular, the evidence for the B*39 and B*18 alleles of the HLA-B gene strongly suggested that these are primary T1D risk factors. Still, our results suggested that these HLA-B alleles are not the only risk factors in this particular region of the MHC, and that HLA-C or neighbouring loci might also be involved. For the regions in the vicinity of the HLA-G and -DPB1 genes, the complexity of the observed associations suggested that the primary risk factors remain unidentified. As many of our findings also are novel, this means that further fine-mapping and replication in independent datasets are needed before results may be considered conclusive.

Paper II: Three microsatellites from the T1DGC MHC dataset show highly significant association with type 1 diabetes, independently of the HLA-DRB1, -DQA1 and -DQB1 genes.

The T1DGC MHC dataset also included genotype data for 66 microsatellites throughout the MHC. The relatively high polymorphy of these markers (e.g. compared to SNPs) results in increased numbers of parameters, in particular in conditional analyses involving other loci with high polymorphy. Therefore, we treated the microsatellites separately from the other markers. The analyses in this paper followed a similar strategy to that of **Paper I**, using two
complementary conditional approaches adjusting for LD with \textit{DRB1-DQA1-DQB1}, but with no adjusting for LD between the identified markers. Due to problems imposed by the high number of variables, especially when involving rare alleles, these results were thoroughly validated using different input variables. Three markers in two regions emerged from these analyses. One of these, \textit{D6S2773}, is located close to \textit{HLA-G}, thus strengthening the results from \textbf{Paper I} for this region. The two other microsatellites, \textit{DG6S398} and \textit{D6S2989}, are located close to each other and within the same gene, \textit{C6orf10}. However, especially considering the results from \textbf{Paper I}, further analyses are needed to rule out LD with other candidate markers.

\textbf{Paper III}: \textit{Genetic variants of HLA-A, HLA-B and AIF1 show independent MHC association with type 1 diabetes in Norwegian families.}

Numerous studies have suggested genetic risk factors shared between more AIDs, despite a large variety of clinical manifestations. A strong candidate region for such common factors is the MHC, where many AIDs show strong disease associations, often with indications of multiple susceptibility loci as in T1D. Therefore, we investigated a selection of markers in genes that previously have been implicated in T1D and/or other AIDs in a Norwegian T1D family material. The conditional strategy we used in this paper is similar to that used in the \textbf{Paper I}. By these means, we confirmed the independent association of \textit{HLA-B} alleles B*18 and B*39 with T1D, thus further consolidating the status of these alleles as primary T1D risk factors. Moreover, we found evidence of independent T1D association of \textit{HLA-A} alleles A*01, A*24 and A*31, which overlaps with findings in earlier reports, but contrasts with a negative finding in \textbf{Paper I}. In addition, we found a novel association with the SNP rs2259571 in the \textit{AIF1} gene that could not be explained by LD with any of the other investigated markers. Although this association could not be confirmed in a replication attempt in the T1DGC MHC dataset, we did demonstrate common haplotypic associations, which may indicate that alleles at an unidentified locus in high LD with this SNP in both datasets were responsible for the association. The results of this study also demonstrated the importance of adjusting for LD effects across the entire MHC region, as none of the other previously suggested associations were confirmed, most notably promoter polymorphisms of the \textit{TNF} gene.
Paper IV: The FCRL3 -169T>C polymorphism is associated with rheumatoid arthritis and shows suggestive evidence of involvement with juvenile idiopathic arthritis in a Scandinavian panel of autoimmune diseases.

In addition to the MHC, several loci in other regions of the genome have been suggested as common AID risk factors. One of the more recently suggested loci is the FCRL3 -169T>C SNP, which has been reported associated with RA, SLE, autoimmune thyroid diseases, Addison’s disease and multiple sclerosis. However, results have been conflicting, also for RA, despite a very strong association in the initial Japanese report. We therefore investigated this SNP in a Scandinavian panel of AIDs, which included patients with RA, JIA, SLE, UC, PSC and CD, in addition to the T1D families investigated in **Paper III.** This resulted in positive findings for the RA patients and novel evidence of suggestive association for the JIA patients, the latter of which appeared to be connected to the polyarticular subgroup. Notably, this is also the clinical subgroup of JIA that has the most characteristics in common with RA, and therefore may point to common disease mechanisms. However, no evidence for association was found for the other investigated diseases, and we could not confirm a previously reported interaction with the PTPN22 1858C>T SNP, another suggested common AID risk factor. Therefore, our results did not support the notion that the FCRL3 -169T>C SNP is a risk factor common to all AIDs. However, in combination with recent meta-analyses, our results also indicated that the risk conferred by this SNP in RA is much smaller than initially suggested. This means that many studies may have been underpowered, potentially explaining the conflicting results.
DISCUSSION

The major part of this thesis concern dissection of the genetic susceptibility to T1D in the MHC (Paper I-III). This has been a long-standing issue in the field of T1D genetics, but only in recent years have the size of patient materials and genotyping techniques allowed for comprehensive investigations of this region. This is especially apparent in the T1DGC MHC fine-mapping project, which involves a high-density screen of markers spread throughout the MHC in an unprecedented large number of families.

Marker density and coverage of the MHC

The purpose of the T1DGC MHC project was to fine-map the entire 3.5 Mb of the classical MHC (p. 18). In addition, a number of markers were included that extended as far as 1.9 Mb and 2.9 Mb into the extended class I and II regions, respectively, but with high-density coverage limited to 0.3 Mb and 0.4 Mb (Figure 3); thus being far from covering the entire added 4.1 Mb these regions of the extended MHC represent.

Figure 3: Overview of SNPs, microsatellites and HLA genes used in papers I-III. The upper panel shows the SNP spacing in the T1DGC MHC dataset (Paper I). Spacing for each SNP was calculated with the closest centromeric SNP. Positions of microsatellites (Paper II), genotyped HLA genes in the T1DGC (Paper I) and Norwegian (Paper III) datasets, genotyped SNPs (excluding monomorphic SNPs) in the Norwegian dataset (Paper III), some important genes, hypervariable regions, and MHC regions are indicated for reference. Microsatellites located outside the region covered by the SNPs (n = 8, including the D6S2223 marker) were excluded from the figure. Numbers above the graph indicate spacing for SNPs that were outside the scale. Avg: average spacing for all SNPs.
In the core region, however, the coverage was good, with an average SNP spacing less than 2 kb - well within the genome average limit of about 3 kb estimated as useful for detecting indirect association.18 Moreover, this limit it likely to be substantially larger in the MHC, considering the unusually strong LD compared to the rest of the genome. Adding to this are the microsatellites (dispersed at an average interval of 159 kb) and the genotyping of many of the classical HLA genes, for which the large number of alleles gives a high level of information. However, some regions were less well covered. In particular, two regions known to contain variable number of gene copies, RCCX (class III region; including the \textit{C4A}/\textit{B}, \textit{CYP21A1P}, and \textit{TNX4} genes)117 and the DR hypervariable region (class II region; including the (pseudo)genes \textit{HLA-DRB2} through \textit{-DRB8})118 contained very few genotyped SNPs (Figure 3), probably due to the fact that copy-number variations create unpredictable results with standard genotyping methods. In addition, a large stretch of 32 kb between the \textit{HLA-G} and \textit{-A} genes and another of 24 kb between \textit{HLA-C} and \textit{-B}, respectively, were devoid of genetic markers. These regions contained several SNPs in the original dataset, but were excluded in quality controls due to low minor allele frequencies, high failure rates and/or departures from HWE. The latter two characteristics may indicate problems with the genotyping procedure, for instance due to copy-number variations, regions with high homology to other areas of the genome, or repetitive sequences, all of which make genotyping difficult.

Of the excluded regions and genes, particularly the \textit{C4A}/\textit{B} genes have attracted a lot of attention, with several reports of associations with T1D (e.g.,119) and SLE (e.g.,120), in particular with the \textit{C4A}*Q0 and \textit{C4B}*Q0 null (deletion) alleles. However, these alleles show strong ties to the AH8.1 and AH18.2 haplotypes (e.g.,121; 122), respectively, extending from the DRB1*03-DQA1*0501-DQB1*0201 haplotype that is also strongly associated with both of these diseases (p. 17). Therefore, as adjustment for LD effects seems absent in these studies of \textit{C4A}/\textit{B} (e.g. see 120 for a recent example), these associations are most likely not primary. A mention should also be given to the \textit{MICA} and \textit{MICB} genes, which have been proposed as candidate genes for T1D and/or other AIDs by several studies (e.g.,61; 123; 124). Although a number of SNPs in and around these genes were genotyped, the high polymorphy of these genes means that they must be considered poorly characterised with the present marker set. Although a recent, well-powered study using sequence-based typing of these genes was not able to find a T1D association independent of the \textit{HLA-DRB1} and \textit{-DQB1} genes,125 an interesting proposition may be to analyse these genes in terms of their role as
ligands for receptors on NK cells (NKG2D receptors), suggested by findings in other AIDs and in studies of NOD mice, the mouse model for T1D (reviewed in 126).

In sum, although the coverage of the classical MHC by the markers in the T1DGC MHC dataset was not complete, excluded regions do not seem critical.

Conventional association tests: LD in the MHC

Due to the known confounding effects of LD in the MHC, results of conventional association analyses of the markers in this region were only treated in a summary manner in Paper I-III. However, the overall picture of these results is useful for making several points about a recurring theme in this thesis (and especially in Paper III): the importance of adjusting for LD when searching for disease associated variants in the MHC.

Dependent associations

Figure 4 depicts conventional (E)TDT results for the SNPs, microsatellites and HLA loci genotyped in the T1DGC MHC dataset (a similar plot of the results in Norwegian families is given in Figure 1a of Paper III).

Figure 4: Conventional association results of markers in the T1DGC MHC dataset. Data was analysed in the proband dataset (cf. Paper I) using the TDT implemented in PLINK127 for the SNPs and the ETDT implemented in UNPHASED50 for the microsatellites and HLA loci. Positions of genes mentioned especially in the text and MHC regions are indicated for reference. Association results for DRB1-DQA1-DQB1 were too strong for a P-value to be generated.

Note the extreme significance levels in these results: given the threshold set in a recent GWAS,30 an astounding 784 markers, or 33% of all studied markers, would have been
considered highly significant at a genome-wide level \((P<5\times10^{-7})\). The main cause of these results is quite clearly demonstrated by the location of the peak of association; in fact, the \(P\)-value for the \(DRB1-DQA1-DQB1\) loci was unattainable, as the significance level exceeded the limit of the analysis program. However, a rough guess would be that it would be in the order of \(<10^{-200}\) in this dataset (comparative results in the Norwegian dataset, Paper III, was \(P=5.8\times10^{-101}\) for \(DRB1-DQA1-DQB1\) and \(P=3.7\times10^{-26}\) for \(HLA-B\)). Note also the slopes from this peak, with a steeper descent in the centromeric than in the telomeric direction, but with a marked drop in significance telomeric of \(HLA-B\). This picture matches well with the known haplotype architecture of the MHC, with particularly long-range LD and high conservation in the telomeric direction, and known recombination hotspots telomeric of \(HLA-B\) and centromeric of \(HLA-DPB1\).\(^{55,128}\) In addition, the extreme conservation and high frequency of the high-risk AH8.1 (p. 17) is likely to have made a large impact on these results.

A notable observation is that the \(P\)-value of the \(HLA-B\) locus was almost as strong as the markers surrounding \(DRB1-DQA1-DQB1\), and many orders of magnitude stronger than other markers in its own region. It is tempting to speculate that this reflects the likely primary status of alleles at this gene, as shown in Paper I and III. However, the unusually strong LD observed between the \(HLA-B\) allele \(B*08\) and the \(DRB1*03-DQA1*0501-DQB1*0201\) haplotype \((D'=0.76, r^2=0.45\) in the T1DGC dataset; \(e.g.\) compared to \(D'=0.55, r^2=0.13\) for the \(HLA-C\) allele \(C*07\), which is also located on the AH8.1 haplotype) may have boosted the results more than for surrounding markers.

Masking of independent association

Perhaps somewhat counter-intuitive, given the highly significant associations in the tests adjusted for LD with \(DRB1-DQA1-DQB1\), seven of the nine best SNPs identified in the T1DGC MHC screen were actually only marginally significant or non-significant by conventional TDT, even by lenient standards (values close to or exceeding \(P=0.05\); rs4122198, rs1619379, rs1611133 and rs2394186 close to \(HLA-G\); rs3130695 close to \(HLA-C\); rs4713468 in \(MICB\) and rs439121 close to \(RING1\)). This serves to show how LD with the \(DRB1-DQA1-DQB1\) loci not only can cause “dependent” associations, but can also lead to a masking of real effects (as noted previously by others; \(e.g.\),\(^{52}\)). To illustrate, given a marker \(B\) that represents a real, independent effect of a (primary) locus \(A\), and LD between \(A\) and \(B\):
if predisposing alleles at locus A are located on haplotypes with protective alleles at locus B, then the indirect association of B due to LD with A can potentially mask the direct association at the B locus (cf. Figure 1, p. 11). That is, overrepresentation in patients of predisposing alleles at the B locus will be counter-weighted by LD between the protective alleles at locus B and the predisposing alleles (that are also overrepresented in patients) at locus A. In the case of the MHC, with the presence of conserved ancestral haplotypes and the complex, multi-haplotype T1D association of the $DRB1-DQA1-DQB1$ loci, such effects are unlikely to be evident from global LD values (which are the most commonly used, with estimates across all alleles). For instance, for the above mentioned SNPs around $HLA-G$, global D’ with $DRB1-DQA1-DQB1$ was <0.32, but all of the SNPs were in stronger LD with the high-risk, high-frequent haplotype DRB1*03-DQA1*0501-DQB1*0201. Crucially, the alleles in positive LD with this haplotype were all protective (D’=0.36 to D’=0.63), thus matching well with the above hypothetical situation. Moreover, when the effect at the primary locus A is disproportionately large, as is evidently the case for the $DRB1-DQA1-DQB1$ effect in the MHC, the LD does not even have to be very strong for such masking to occur.

A take-home message

The above discussion sums up to two important points. Firstly, results of conventional association methods in the MHC are likely to provide no other information than indirect confirmation the $DRB1-DQA1-DQB1$ association with T1D, an association that has been known for over three decades. Secondly, exclusive use of such methods is also likely to lead to an inadvertent exclusion of markers with a real involvement in T1D. Although the picture in other diseases with a primary association in the MHC will vary from that in T1D depending on the strength of this association, neither the extreme LD in this region nor the consequent problems with confounding are unique to T1D. Even so, conventional association studies are still being published, also in high-ranking journals, with little or no regard to this problem. Some of these studies are elaborate, with sophisticated genotyping techniques and/or analysis methods, but with surprisingly primitive handling of the LD problem. The perhaps most persistent of the associations reported in this way is the TNF -308 SNP (cf. Paper III), which is known to be located on the high-risk haplotype AH8.1. A more recent example is a large MHC screen showing an unconditional association between a variant in the $ITPR3$ gene (at the centromeric end in Figure 4) and T1D, which later was shown to be due to LD with the $DRB1-DQA1-DQB1$ loci. It is only to hope that the gravity of this
problem will seep through to the outside of the “inner circle” of researchers devoted to MHC genetics, eventually diminishing the rate at which such reports are published.

“Peeling off” the effects of LD: conditional MHC analyses

Compared to the unadjusted association results, the conditional main effects tests yielded relatively modest P-values. However, associations were still quite strong, in particular in the large T1DGC dataset (Paper I and II). Overall, the results of the initial main effects test of the SNPs in the T1DGC dataset (adjusted for DRB1-DQA1-DQB1) very clearly demonstrated the presence of additional T1D susceptibility loci within the MHC; plotting these results in an overall quantile-quantile plot showed a marked deviation from the 45-degree line representing the null hypothesis of no DRB1-DQA1-DQB1 independent association (Figure 5). As presented in Paper I, these results clustered in what appeared to be (at least) four separate regions of the MHC, a picture that was roughly maintained also when adding consideration of the results for the microsatellites from the same dataset (Paper II) and the candidate markers in the Norwegian families (Paper III). Figure 6 gives a summary of the positions

![Figure 5: Quantile-quantile plot of DRB1-DQA1-DQB1 independent associations of SNPs in the T1DGC MHC dataset (cf. Paper I).](image)

![Figure 6: Positions of and possible dependencies between DRB1-DQA1-DQB1 independent associations (best markers) from Paper I, II and III. Markers with signs of artefacts were excluded. Positions of closest genes, MHC region class and regions from Paper I are indicated for reference. Arrows indicate direction of explanatory power.](image)
of the best DRB1-DQA1-DQB1 independent associations from all three papers, with indications of possible dependencies between the reported associations.

Telomeric class I region - unresolved questions

In both Paper I and II, we identified novel DRB1-DQA1-DQB1 independent associations for four SNPs and a microsatellite located in the vicinity of the HLA-G gene in the telomeric part of the MHC class I region (region 1; **Figure 6**), which also appeared to be interconnected. In addition, in Paper III, a significant association was found for HLA-A, which is located relatively close to HLA-G (0.1 Mb) in the same region. Although interpreting proximal distance as a sign that associations represent the same effect can be dangerous in the MHC, distance is still a factor to consider, as demonstrated by the association “slope” from DRB1-DQA1-DQB1 in **Figure 4**. For the associations in and around the HLA-A and HLA-G genes, the notion that they represent the same effect was further supported by the observation of strong LD between associated alleles showing the same risk directions of all of the SNPs and HLA-A (Paper I). Moreover, the same appeared to be the case for HLA-A and the microsatellite D6S2773 close to HLA-G (identified in Paper II), especially between the predisposing alleles A*24 and D6S2773*227 (D’=0.99; r²=0.67) and the protective alleles A*01 or A*31 and D6S2773*212 (D’=0.99; r²=0.03 and D’=1; r²<0.01, respectively). Taking into account that the HLA-A gene was no longer significantly associated in the T1DGC MHC dataset once the effects of the other HLA genes or the best SNP markers had been adjusted for (Paper I; no markers telomeric of HLA-A were genotyped in the Norwegian dataset, thus not allowing this hypothesis to be tested), the combined evidence presented in this thesis is in favour of a location of an aetiological locus closer to HLA-G than to HLA-A.

Previous findings for HLA-A

In contrast to our results, results clearly in favour of the HLA-A as the aetiological locus in this region were presented in a recent, well-powered study by Nejentsev et al. (2007), including replication in two independent case-control materials. There are several differences between this and our studies that may have influenced the results:

First, although the case-control materials in Nejentsev’s study were large (up to almost 2000 cases and 3000 controls), the power was likely significantly less than in the 2321 multiplex
families (having at least two affected and one unaffected sibling in each family, in addition to parents) of the T1DGC dataset, which had a potential of over 2300 cases (more than doubled when all affected siblings were considered) and 7000 pseudo-controls.

Second, there were several differences in how the conditional analyses were performed. Nejentsev et al. employed a recursive partitioning procedure for defining a subset of risk strata at the HLA-DRB1 and -DQB1 loci (excluding HLA-DQA1), with subsequent treatment of these loci independently in the regression procedures. Although these procedures were likely to accurately capture the risk at each individual locus, it is questionable if the full risk spectrum of these loci can be captured if not also considering the information that is contained in specific combinations of alleles at these loci (pp. 15 and 30; Supplementary methods of Paper I). In any case, differences in this procedure and ours could potentially have introduced differences in the regression models. Similarly, the regression modelling analyses performed in Paper I included a number of markers from all of the regions identified, thus involving a larger number of parameters than the analyses in Nejentsev et al., which adjusted only for HLA-DRB1, -DQB1 and HLA-B. Whereas our strategy is likely to have resulted in better control for additional confounding by loci other than the DRB1-DQA1-DQB1 genes, a drawback is that there were likely more loci included in the models than strictly necessary, and some of these loci were later also identified as artefacts. Exactly how and to what degree this could have influenced the results is difficult to predict, but it is likely that these choices have made some kind of impact, at least on statistical power.

Third, the marker spacing in the study by Nejentsev et al. was higher than in the T1DGC MHC dataset (1475 SNPs covering a total of 10 Mb; average spacing >6 kb compared to <2 kb in the latter dataset). Adding that none of the eight significant region 1 SNPs in the T1DGC MHC dataset was included in Nejentsev’s study, this means that the association in this region could possibly have been missed in the latter study. Moreover, in Nejentsev’s study, the DRB1-DQB1 independent SNP associations in the telomeric class I region peaked telomeric of HLA-A, in an area that overlaps with the narrower region 1 identified in the T1DGC dataset, and several of the SNPs in this region showed significance levels $P<1.0\times10^{-4}$ in Nejentsev’s study once also the effects of HLA-B had been accounted for. Hence, it is possible that a weaker effect in this region was detected also in Nejentsev’s study.
Finally, there may be differences between the sampled populations, as also Nejentsev et al. arrived at a non-significant result for \textit{HLA-A} in the subset of T1DGC families included in their study ($n = 850$). One possibility includes population specific effects to British cases, alternatively that subtle forms of population stratification was present in the case-control populations used in Nejentsev’s study; although the T1DGC families are likely much more stratified than these, the family-design of our studies should be robust to these issues (pp. 24 and 32).

In summary, both studies present strengths and weaknesses. In addition, there is a definite possibility that the aetiological locus remains unidentified, and that both studies are actually picking up the same effect, but but on slightly different haplotype backgrounds. Therefore, it is apparent that a resolution to this question must involve further fine-mapping and replication studies in independent datasets.

\textbf{Associations in the extended class I region}

In addition to the \textit{HLA-A} and \textit{HLA-G} genes, several previous reports have indicated T1D susceptibility loci in the extended class I region, telomeric of \textit{HLA-G}; most notably, the \textit{D6S2223} microsatellite marker (2.1 Mb from \textit{HLA-G}),63; 111; 131-133 and two SNPs in the \textit{UBD/MASIL} gene region (~0.3 Mb from \textit{HLA-G}).58 However, although a marginally significant \textit{DRB1-DQA1-DQB1} independent effect of \textit{D6S2223} was seen in the Northern European subpopulation of the T1DGC MHC dataset, possibly indicating a population specific effect or haplotype with a nearby aetiological locus, no association was detected in the total dataset (\textbf{Paper II}). Moreover, a recent screen in this region indicates that the variant responsible for the originally identified \textit{D6S2223} association is located telomeric of this microsatellite (Viken, MK, Blomhoff, A, Olsson, M, Akselsen, HE, Pociot, F, \textit{et al.}; unpublished). Therefore, these effects are unlikely to be responsible for the effects observed around the \textit{HLA-G} locus in the T1DGC dataset.

The two SNPs in the \textit{UBD/MASIL} gene region identified in a recent study by Aly \textit{et al.} (2008) were not replicated in either Nejentsev’s study or ours, even if some of same families were involved (\textbf{Paper I}). Also, the results presented by Aly \textit{et al.} may be questioned: Firstly, the starting point was a conventional association screen, with further focus on the region including these two SNPs based solely on distance to the \textit{DRB1-DQA1-DQB1} loci. Secondly, the subsequent conditional analyses treated the \textit{HLA-DRB1} and \textit{-DQB1} loci sepa-
rately, as in Nejentsev’s study, but used grouping of alleles under a certain frequency threshold instead of recursive partitioning. As noted in both our studies (particularly in Supplementary methods of Paper I; see also p. 35) and by Nejentsev et al., this can introduce artefacts in the regression analyses, which should therefore be validated using alternative methods. A more serious concern is that Aly et al. apparently made no distinction between DRB1*04 subtypes, which are known to confer very different risks and display dissimilar LD patterns. Especially the DRB1*0401 and DRB1*0404 alleles are quite common (22% and 6% in their dataset, respectively), potentially having a large impact on their analyses. Adding to this is the observation that two of the SNPs we identified in region 1, as well as the D6S2773 microsatellite marker, mapped to the DRB1*0401-DQA1*0301-DQB1*0302 haplotype, and that the SNPs showed strong LD with one of the SNPs identified by Aly et al. (Paper I). Therefore, it seems likely that the associations identified by Aly et al. were not primary, and possibly an artefact of their DRB1-DQB1 grouping procedure.

The 8.1 and 18.2 ancestral haplotypes and T1D risk

The AH8.1 and AH18.2 have been strongly associated with increased risk for T1D in numerous reports (p. 17), with an apparent higher risk for the latter relative to the former. As the DRB1*03-DQA1*0501-DQB1*0201 haplotype is shared between these two, this implies that differential risk, independent of DRB1-DQA1-DQB1, is conferred by one or more loci located on these haplotypes. From the work presented in this thesis and that of others, it is tempting to speculate that the B*18 allele at the HLA-B locus that gave this haplotype its name is itself the second primary variant on the AH18.2 haplotype, as the evidence for an independent association of this allele was compelling, both in the T1DGC MHC dataset (Paper I) and in the Norwegian families (Paper III). In contrast, the B*08 allele on the AH8.1 haplotype does not seem to be involved with T1D in a primary way, as no evidence for independent association was detected in the Norwegian families. Moreover, although the results in the T1DGC MHC dataset showed a significantly decreased risk for B*08 on the DRB1*03-DQA1*0501-DQB1*0201 haplotype, tendencies for associations in the opposite direction were also observed on some of the other DRB1-DQA1-DQB1 haplotypes. Rather, it seems that the A*01 allele of HLA-A or a variant in high LD with this allele is a better marker than B*08 for the decreased risk relative to DRB1*03-DQA1*0501-DQB1*0201 on this haplotype. For example, in the Norwegian T1D families, although
A*01 was mostly located together with B*08 on the DRB1*03-DQA1*0501-DQB1*0201 haplotype (124 informative transmissions vs. only 7 with other HLA-B alleles), B*08 was also located with other HLA-A alleles (75 informative transmissions), and only A*01 yielded a significant transmission distortion on this haplotype ($P=7.4\times10^{-3}$ vs. $P=0.62$ for B*08). In the T1DGC families, B*08 reached significance on this haplotype (OR 0.77; $P=1.0\times10^{-3}$), but again, A*01 was mostly located together with B*08 but not vice versa (61 and 593 informative transmissions with other alleles, respectively, vs. 1282 with both), and the association with HLA-A was much stronger (OR 0.69; $P=1.5\times10^{-6}$). Two of the SNPs in region 1 (close to HLA-G) that showed association on this haplotype, rs1619379 and rs1611133, both showed a stronger association than both A*01 and B*08 on this haplotype (OR 0.67 $P=9.0\times10^{-7}$ and OR 0.63 $P=1.0\times10^{-8}$ for the protective alleles). However, this picture was complicated by the apparent dependence of B*18 for the predisposing alleles of these two SNPs. In contrast, the third SNP in this region with an association on this haplotype, rs4122198, appeared to be associated independently of B*18, but showed a weaker association (although strong effect) than A*01 (OR 0.53 $P=3.7\times10^{-3}$). Interestingly, though, a significant amount of DRB1*03-DQA1*0501-DQB1*0201 haplotypes with the protective rs4122198*A allele also carried B*18 (16%; 92% of B*18-DRB1*03-DQA1*0501-DQB1*0201 haplotypes), which is in stark contrast to A*01 (<1% with B*18) and the protective alleles of the other two SNPs (4%/20% and 1%/6% for rs1619379 and rs1611133, respectively). Thus, the effect of B*18 on this haplotype is therefore likely to have masked some of the statistical effect for rs4122198, even if there is no functional relationship between the alleles. In sum therefore, the apparently less predisposing effect of the AH8.1 haplotype compared to other DRB1*03-DQA1*0501-DQB1*0201 haplotypes could be explained by A*01, but more likely by some locus telomeric of HLA-A, marked by rs4122198*A.

HLA-B: a strong candidate for a primary locus

The results presented for the HLA-B locus in Paper I and III are the most robust of any of the results in this thesis, with consistent independence demonstrated both of DRB1-DQA1-DQB1 and of a number of other MHC markers, in two independent datasets. Moreover, the evidence in particular for the B*18 and B*39 alleles seem consistent across different studies.58; 108; 134-136 Other alleles, such as the B*13 allele identified in Paper I, could also be involved, but present evidence does not seem conclusive. It is notable that the identified
effects appear to be relatively rare; the B*18 allele was present in only 8.0% and 3.6% of the parents in the T1DGC MHC dataset (Paper I) and the Norwegian families (Paper III), respectively, whereas the B*39 allele was even more uncommon, only 2.9% and 2.8%. Hence, both alleles partly fall beneath the 5% limit that is often used in genetic association studies involving SNPs. The increased presence of the B*18 allele in the T1DGC MHC dataset compared to the Norwegain dataset is most probably due to the inclusion of families from Southern Europe (especially Sardinia), where this allele is more common than in Caucasians in general.64

It is somewhat ironic that after over three decades of research that started with identification of HLA-B as a T1D-associated locus, this gene is once again identified as a strong candidate for a primary involvement in T1D, although the alleles most probably involved have changed. It is important to stress, though, that although the genetic evidence for this locus is very compelling, firm establishment of this locus as a primary risk locus can only come after further functional characterisation and establishment of disease mechanisms.

Does the central MHC contain unidentified T1D susceptibility factors?

In addition to HLA-B, several signs of independent associations were found for the HLA-C gene in the T1DGC MHC dataset, in addition to the SNP rs3130695 located in the vicinity of this gene (Paper I). Both of these markers appeared to be at least partly independent of the HLA-B gene, in addition to the DRB1-DQA1-DQB1 genes. The function of the HLA-C gene is similar to the HLA-B gene, and so it would not be a big surprise if this gene was also involved in T1D. However, any effect of this gene appears to be smaller than for the HLA-B locus. Moreover, inconsistent results across different studies have been reported with regards to the specific alleles involved. Although our study indicated an independent role for the C*01, C*02 and C*04 alleles, these results will have to be confirmed in replication studies.

An interesting possibility is to analyse the HLA genes in terms of their role as ligands for NK cell receptors, in this case so-called killer-cell immunoglobulin-like receptors (KIRs). These receptors govern inhibition or activation of NK cells, which could have an important role in the autoimmune-mediated destruction of β-cells. For instance, an association was found between aggressive insulitis and presence of NK cells in the infiltrate of NOD mice.137 Unlike the highly polymorphous variation in the HLA genes in terms of their
interaction with T-cells, only two alleles for each of the HLA-A, -C and -B genes have been identified when defined in terms of interaction with KIRs. As the HLA-C gene showed a much more complex haplotype association pattern than the HLA-B gene in the T1DGC MHC dataset, we actually performed such analyses for HLA-C, but this classification did not appear to explain the global association better than the classical coding of HLA-C alleles (data not shown). However, the possibility still remains that analyses of interactions with specific KIRs could reveal processes relevant for T1D, as has already been suggested by others.138, 139

In \textbf{Paper III}, a SNP in the \textit{AIF1} gene of the MHC class III region, centromeric of HLA-B, was identified as independently associated with T1D in Norwegian families, both of DRB1-DQA1-DQB1 and of HLA-B, but no association was found in the T1DGC MHC dataset. However, haplotype analyses revealed similar association patterns on the different DRB1-DQA1-DQB1 haplotypes, indicating that this SNP marked the same effect in both datasets. Although this indicates that this SNP is not a primary locus, other variants in the vicinity could be involved. The class III region is extremely gene-dense, and many of the genes in this region are strong candidates for T1D involvement. Although associations of the promoter polymorphisms in the \textit{TNF} gene (\textit{e.g.} TNF -308), which are among the most intensely studied variants in this region, have yet to demonstrate convincing, independent association with T1D, other variants in this region could still be involved. However, from the results and discussion presented in \textbf{Paper III}, it seems clear that earlier reports of associations in this region should be treated with caution, as few have performed proper adjustment for known risk factors elsewhere in the MHC. Moreover, the close proximity to the HLA-B gene makes it likely that future T1D studies in this region should, at the very least, adjust for LD effects of both DRB1-DQA1-DQB1 and HLA-B. The importance of this procedure was clearly demonstrated in the case of the two SNPs (rs4713468 and rs2246626) identified in the \textit{MICB} gene in the T1DGC MHC dataset, which, although appeared independent in the regression analyses showed clear signs of connections with associated alleles of the HLA-B gene.

A similar effect was seen as far away as the \textit{C6orf10} gene, located on the telomeric border of the class II region (0.9 Mb centromeric of HLA-B); this gene seems an unlikely candidate for T1D involvement, but still three of the best identified markers with DRB1-DQA1-DQB1 independent associations mapped to this gene (rs3132959 in \textbf{Paper I} and DG6S398 and
in Paper II; in addition, six more SNPs in this gene showed significant DRB1-DQA1-DQB1 independent association in the first main effects tests of Paper I. The SNP association in this gene was, as already suggested, determined to be dependent on HLA-B, but investigations of possible relationships with HLA-B were not done for the microsatellites (Paper II). However, the latter markers are much more polymorphic than the SNP, and showed associations on more independent DRB1-DQA1-DQB1 haplotypes in the haplotype analyses. Therefore, the possibility remains that an aetiological locus independent of HLA-B is located in the vicinity of these microsatellites. However, this can only be determined by investigation of, first, the relationship with HLA-B, and second, by further fine-mapping of the surrounding region. Of note, a SNP in the BTN2 gene, which has been reported associated with the autoimmune disease sarcoidosis and is located in the vicinity of the C6orf10 gene, does not seem a likely candidate, as neither we (Paper III, also, no association was seen in the T1DGC MHC dataset; unpublished) nor others have found independent association of this SNP in T1D, or in other AIDs.

HLA-DPB1 or additional/alternative factors?

In Paper I, the DRB1-DQA1-DQB1 independent associations identified for alleles at the HLA-DPB1 locus and two SNPs just inside the border of the extended class II region appeared to be partly redundant. This could indicate that neither of these markers are primary loci, but rather that all mark a primary locus in the vicinity. The COL11A2 and RING1 genes closest to the two SNPs do not seem to be good candidates for T1D-involvement, as functional characterisation suggests that they encode a minor fibrillar collagen [GeneID: 1302] and a transcriptional repression relevant for developmental processes involving polycomb-group genes [GeneID: 6015], respectively. However the retinoic acid receptor beta (RXRB) gene located between these two genes, which also demonstrated suggestive evidence in a recent study, could be a promising candidate; the rs2076310 located in intron 3 of this gene was also among the 76 SNPs identified with DRB1-DQA1-DQB1 independent association in the first main effects test in Paper I (P=5.6x10^-6).
FCRL3 and AID: small effects and statistical power

In contrast to the results for the MHC, no evidence for association was detected between T1D and the **FCRL3** -169T>C SNP, which is in concordance with the negative findings in four recent studies.\(^{146-149}\) Moreover, the additional negative results for SLE, UC, CD and PSC, also in concordance with recent results reported by others (except PSC for which ours is the only report so far),\(^{150-152}\) indicated that this SNP is not common to all AIDs. However, the risk conferred by this locus in RA also appears to be much smaller than initially suggested, opening up the possibility that negative findings may be type II errors. This can be a variant of the “winner’s curse” phenomenon, originally coined for competitive situations such as auctions when a successful buyer finds that he or she has paid too much for a commodity of uncertain value (e.g.\(^{153}\)): in genetics, the term is applied to the tendency for first reports of novel disease associated variants to overestimate the risk effect of this variant.\(^{24}\) Hence, much larger study populations may be needed than what was included in our study to get definitive results. A good example of this are the variants in the **CTLA4** gene, which were only definitely confirmed as associated with T1D after performing a large study that included 3671 T1D families, with odds ratios only around 1.15.\(^{100}\)

Conclusions

In conclusion, the work presented in this thesis clearly demonstrate the importance of adjusting for LD effects in association studies in the MHC, and provides a strategy for how this can be done. Using this strategy, the first three papers of this thesis present novel evidence for T1D-associated factors in the MHC, and either confirmation or demonstration of the likely non-involvement in T1D of previously suggested variants. Moreover, the good statistical power and coverage of the classical MHC offered by the T1DGC MHC dataset makes it likely that most of the T1D-associated variants in this complex have been, at least indirectly, identified with this dataset. However, determining the exact location of the aetiological loci, with a probable exception for the **HLA-B** locus, will depend on further fine-mapping in the suggested regions. In addition, we confirmed the association with RA for a SNP in the promoter region of the **FCRL3** gene, but the sum of our results and those of others suggest that this is not a risk variant common to all AIDs.
Future perspectives

In the wake of GWAS and other elaborate screens such as the T1DGC MHC fine-mapping project, involving simultaneous characterisation of a large number of genetic markers, it seems clear that follow-up studies focused on smaller regions pinpointed by these studies are needed. Even if the marker density is good as in the T1DGC MHC dataset, these represent only a fraction of the total genetic variation, leaving ample possibilities for missing the true aetiological locus. In addition, problems caused by strong LD in identifying the true aetiological variants are not limited to the MHC. In such situations, methods similar to what we have used in the first three papers of this thesis are highly relevant.

For future genetic fine-mapping for T1D susceptibility factors in the MHC, the need for proper adjustment for LD effects is increasingly acknowledged. With the results presented in Paper I, II and III in this thesis, as well as the work of others, a picture is emerging of narrow, defined regions that should be targeted for further fine-mapping. This represents a huge improvement compared to the patchy and uncertain picture of associations in this region that has been the case before. The process further is likely to be stepwise, with increasing confidence in the true disease involvement of identified risk factors. In turn, the process of adjusting for LD confounding is likely to become more accurate, as the precise risk alleles may be included in the analyses instead of proximal factors. Hence, the power to detect true associations is also likely to increase with subsequent studies. Already, the evidence for HLA-B is so compelling that possible LD effects from this locus, in particular the B*18 and B*39 alleles, should be investigated in all analyses of additional effects in the MHC, and at the least in the regions closest to this locus (i.e. the class III and centromeric class I region). Moreover, the T1DGC is already well on its way in efforts to phase alleles of most of the major HLA loci across the MHC in the individuals of the T1DGC MHC dataset, which will lead to a deeper knowledge of the haplotype patterns in this population. As demonstrated by the comparatively simple haplotype analyses presented in this thesis, such knowledge will be an invaluable complement to other methods, such as conditional regression analyses. With further narrowing down of genetic susceptibility regions, the employment of targeted and disease-specific functional studies also becomes feasible, which will be a necessity for firm establishment of the disease involvement of proposed loci.
REFERENCES

25. Terwilliger JD & Hiekkalinna T. An utter refutation of the "Fundamental Theorem of the HapMap".
29. Todd JA, Walker NM, Cooper JD, Smyth DJ, Plagnol V et al. Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes.
30. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls.
34. The International Multiple Sclerosis Genetics Consortium. Risk Alleles for Multiple Sclerosis Identified by a Genomewide Study.
35. Risch N. Assessing the role of HLA-linked and unlinked determinants of disease.

