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  If the human brain were so simple that we could understand   
   it, we would be so simple that we couldn’t. 
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SELECTED ABBREVIATIONS 

In order of appearance 
 
CNS: Central nervous system AC II: low grade astrocytoma 

AHNSCs: Adult human neural stem cells GBM: Glioblastoma Multiforme 

TSCs: Tumour stem cells VEGF: Vascular derived endothelial 
growth factor 

SVZ: Subventricular zone EGFR: Epidermal growth factor receptor 

SGZ: Subgranular zone PDGFR: Platelet derived growth factor 
Receptor 

ECM: Extra cellular matrix ABCG: ATP-binding cassette transporter 
protein, subfamily G 

GFAP: Glial fibrillary acidic protein Sox2: Sex determining region Y-box 2 

PSA–NCAM: Polysialylated neural cell 
adhesion molecule 

MAP-2: Microtubule-associated protein 2 

EGF: Epidermal growth factor DCX: Doublecortin 

bFGF: Basic fibroblast growth factor O4: Anti-oligodendrocyte marker 

TGF�: Transforming growth factor-alpha CNPase: 2`, 3`-cyclic nucleotide 3-
phosphodiesterase 

Shh: Sonic hedgehog qPCR: Quantitative polymerase chain 
reaction 

LIF: Leukemia inhibitory factor FACS: Fluorescence-activated cell sorting 

Wnt: Wingless SCID: Severe immunocompromised 
immunodeficient 

BDNF: Brain-derived neurotrophic factor FTNPs: Filum terminale neural progenitors 

DNA: Deoxyribonucleic acid iPS: Induced pluripotent stem cells 

eGFP: Enhanced Green fluorescent protein  

 



INTRODUCTION

Stem Cells 

Stem cells were first isolated from embryos in the early 80s (1, 2). A decade later, they 

were isolated from the adult central nervous system (CNS) of mice (3) and humans (4-8). 

Based on origin, stem cells can be classified as embryonic, foetal or adult (Fig. 1). Stem 

cells can also be classified based on their ability to generate daughter cells i.e. pluripotent 

(cells that can give rise to all the cell types of the human body e.g. embryonic stem cells) 

(9, 10), or multipotent cells (cells with a more restricted potential, giving rise to progeny 

characteristic of a particular organ system e.g. haematopoietic stem cells) (11-13). 

 

Though the hallmarks of stem cells are contentious, the prevailing view is that bona fide 

stem cells are capable of (1) self-renewal, with an unlimited ability to produce progeny 

indistinguishable from themselves (14), (2) proliferation and (3) multipotent 

differentiation, dividing asymmetrically to generate all the cell types of the tissue from 

which they are derived (15, 16). By applying the aforementioned criteria to cells 

harvested from the adult CNS, stem cells have been prospectively isolated from the 

striatum (3), lateral wall of the lateral ventricles and the spinal cord of rodents (17). In 

adult humans, stem cells have been isolated from the ventricular wall and hippocampal 

zone (4, 7, 8, 18), and are called adult human neural stem cells (AHNSCs). Similar neural 

stem cells have been isolated from other mammalian CNS regions including cortex (5, 

19), substantia nigra (20), white matter (6) and spinal cord (21, 22).  
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Figure 1. Classification of Stem Cells

Recently, stem cells have also been isolated from solid tumours, including brain tumours 

(23-25). These cells are called tumour stem cells (TSCs) and are similar to AHNSCs. The 

operational definition of a TSC is the ability to self-renew, proliferate and divide 

asymmetrically giving rise to progeny with the varied morphological features, cell 

specific antigens and functional properties characteristic for the tumour (23, 25-28). 

Implicit in this definition, TSCs can recapitulate the parent tumour upon transplantation 

(27, 29, 30).  
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The emerging hypothesis is that TSCs from brain tumours may be derived from neural 

stem cells in the subventricular zone (SVZ) (29, 31). This intimate association between 

the two populations underscores the importance of studying the two populations.   

 

Identity of the Adult Mammalian Neural Stem Cell 

The prevailing view regarding the identity of the adult mammalian neural stem cell is that 

either (1) astrocytes, including radial glia (32, 33) or (2) multi-ciliated ependymal cells 

(17, 34) are the putative resident neural stem cells. Presently, there are two centres in the 

adult human CNS that generate new neurons; the subgranular zone (SGZ) of the dentate 

gyrus of the adult hippocampus and the SVZ (35, 36). In the SVZ, there are three 

different cell types; the migrating neuroblasts (type A cells), the slowly proliferating SVZ 

astrocytes (type B cells) and the clusters of rapidly dividing immature precursors (type C 

cells) (32). Based on elegant experiments using pulse labelling with 3H-thymidine it was 

shown that type B cells are the resident neural stem cells (37); Type B cells incorporated 

3H-thymidine (labels proliferating cells) and gave rise to both type C and A cells (Fig. 2). 

Type B cells are identified as SVZ astrocytes (38) based on their antigenic marker 

expression and ultrastructural characteristics, namely bundles of intermediate filaments, 

gap junctions and multiple processes (32, 39). 
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Figure 2. The SVZ niche, cell types and stem cell lineage. (a) Frontal schematic of the 
adult mouse brain showing the location of the SVZ in orange between the lateral ventricle 
(LV) and the striatum. The corpus callosum is depicted in dark grey. The box in (a) is 
expanded in (b) and it shows blood vessels (BV) are a likely source of signals for adult 
neurogenesis. A specialized basal lamina (BL) extends from blood vessels into the SVZ 
and terminates adjacent to the ependymal cells (E). (c) Crosssectional schematic showing 
the cell types and their organization in the SVZ. Multi-ciliated ependymal cells (E, grey) 
line the lateral ventricle; chains of neuroblasts (A, red), SVZ astrocytes (B, blue) and 
rapidly dividing Type C cells (C, green) are shown. An ECM-rich basal lamina (BL, 
black) makes extensive contact with all SVZ cell types and forms an essential part of the 
SVZ stem cell niche. SVZ astrocytes (GFAP+) act as stem cells in this region and divide 
to generate transit-amplifying Type C cells (GFAP–/Dlx2+), which in turn divide to 
generate the neuroblasts (GFAP–Dlx2+PSA–NCAM+) that migrate to the olfactory bulb. 
(Reproduced after permission from Doetsch et al., (40))
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Unlike the SVZ and SGZ, the spinal cord is not known to be a site of de novo neuron 

generation. Yet, a quiescent population of cells, fulfilling stem cell hallmarks, has been 

isolated from the spinal cord and cultured as neurospheres in vitro (22, 41, 42). The 

presumed location of the stem cells is around the central canal (33, 41, 43), where mitotic 

activity has been shown in the ependymal cells (44). Indeed, it has already been 

demonstrated that ependymal cells may represent putative neural stem cells (17, 45). 

Interestingly, the ependyma-lined central canal continues into the tail end of the spinal 

cord also known as filum terminale (46-50). The filum terminale also shows strong 

reactivity for neural cell adhesion molecule (N-CAM) (51), a neural progenitor cell 

marker. Given this, the filum terminale may represent a hitherto unknown source of 

neural stem cells. 

The Stem Cell Niche and it’s Factors 

The stem cell niche is the microenvironment consisting of cells, extracellular substrates 

and vasculature that regulates stem cell maintenance, repair and tissue participation, i.e. 

the function of the niche is to regulate self-renewal and fate of the stem cells (52) (Fig. 

2). The central element in the niche is the capillaries, and stem cells are placed in close 

proximity to it (Fig. 2). The niche also safeguards the stem cells from excessive cell 

production which may lead to cancer (12). The molecular components characterizing the 

neural stem cell niche include epidermal growth factor (EGF) and sonic hedgehog (Shh). 

Indeed, in the SVZ infusion of EGF or bFGF increases cell proliferation (53), whereas 

knocking out transforming growth factor-alpha (TGF �), a ligand for the EGF receptor, 

leads to a significant decrease in cell proliferation (54). This suggests that members of the 
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FGF and EGF growth factor families may play an important role in the maintenance of 

adult neural stem cells (55). Recently, Shh was shown to promote proliferation of adult 

neural stem cells both in vitro and in vivo (56-59). Several other signalling pathways are 

also involved in proliferation and differentiation, including LIF (60-62), Wnt (63, 64), 

Notch (65-67) and BDNF (68, 69). Understanding the factors that regulate neural stem 

cells and their niche will help lead to insights into brain repair and maybe even the origin 

of pathological processes e.g. cancer. 

 

Neurogenesis

Neurogenesis is defined as the ability to produce new neurons from stem cells. Evidence 

for this is unambiguous for non-mammalian vertebrates; examples include, (1) 

regeneration of the medial cerebral cortex (which resembles the mammalian hippocampal 

dentate gyrus) in lizards in response to injury (70) and (2) regeneration of newts’ tails, 

limbs, jaws, and ocular tissues including neurons of these regions (71). In mammals, 

however, evidence for neurogenesis was ambiguous (72). In fact, in 1913 Ramon y Cajal 

stated “in the adult centres, nerve paths are something fixed, ended and immutable. 

Everything may die, nothing may be regenerated” (73).  

 

It was in 1961 that adult mammalian neurogenesis was first reported in rodents by Smart 

et al., (74). Later, Altman et al., combined light microscopy with thymidine labelling 

(used to mark cells that are synthesizing DNA in preparation for division), and reported 

ongoing neurogenesis (75) in the hippocampus (76), neocortex (77) and olfactory bulb 
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(78) of rodents. These results were corroborated by Kaplan et al., in the 1980s (79, 80). 

Rakic, however, did not find any such evidence for neurogenesis in the adult brain (81).  

New momentum in the field of neurogenesis came with advances that allowed 

identification of specific cell types by immunocytochemical methods. Using such 

techniques, Nottebohm and his colleagues demonstrated adult neurogenesis in the lining 

of ventricles of songbirds (82, 83). Evidence for adult neurogenesis in the hippocampus 

of the tree shrew, marmoset and macaque (84-87) followed. The most convincing 

evidence, however, was provided using combined retroviral-based lineage tracing and 

electrophysiological studies (88, 89). These studies showed that the newly generated 

neurons were functional i.e. they fired action potentials and exhibited well developed 

voltage-gated sodium and potassium channels. In addition, the neurons exhibited 

functional synaptic contacts; the first synapses were GABAergic and these were followed 

weeks later by glutamatergic synapses (90-92). Such evidence regarding the functional 

phenotype of new neurons was restricted to neural stem cells isolated from rodents. 

 

The first report of neurogenesis in humans was demonstrated by Eriksson and colleagues 

(93). They examined brains of cancer patients who had received BrdU (used to label 

proliferating cells in tumours). Combining BrdU labelling with neuron-specific markers, 

Eriksson et al., demonstrated that new neurons (positive for BrdU and neuronal marker 

NeuN) were generated from dividing progenitor cells in the dentate gyrus. Recently, this 

group has also demonstrated robust neurogenesis in the olfactory bulb of humans, 

comparable in magnitude to that of rodents (94). The above findings of neurogenesis in 
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humans are supported by in vivo brain imaging studies by Manganas et al., (95), who 

have demonstrated the presence of AHNSCs in the human hippocampus using magnetic 

resonance imaging.  

 

Following the initial report of neurogenesis in humans (93), several groups have isolated 

and cultured AHNSCs in vitro (4-8, 18, 96, 97). However, the ability of AHNSCs to 

differentiate into mature, functional neurons capable of firing action potentials and 

synaptic communication (98) has not been tested.  

 

Implications of Neurogenesis 

After the initial discovery of neurogenesis in the postnatal rat hippocampus, several 

studies linked adult-generated neurons in the rodent hippocampus to learning and 

memory (99-101). Van Praag and colleagues showed that mice that run several 

kilometers daily showed a significantly higher percentage of BrdU-positive cells that co-

labelled for the neuronal marker NeuN in the dentate gyrus of the hippocampus (102), 

demonstrating that exercise increases cell proliferation and neuronal differentiation in the 

hippocampus of adult mice. In fact, it has been shown that exercise facilitates recovery 

from brain injury such as stroke (103) and enhances cognitive function in patients (104, 

105). At the cellular level, the newly generated neurons have a striking ability to migrate, 

integrate (106) and extend axons and dendrites in an environment which is largely 

inhibitory for mature neurons (107). This may be due to the exclusively depolarizing 

GABAergic synaptic input (108) the early neurons receive, akin to early neuronal 

development (109, 110). 
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Aberrant neurogenesis in the hippocampus is postulated to be linked to the 

pathophysiology of a variety of CNS-related diseases including mood disorders e.g. 

depression. As the major pharmacological and non-pharmacological treatments for 

depression increase hippocampal neurogenesis, it is proposed that antidepressant 

treatments may exert their therapeutic effects by reversing or blocking the reduced 

hippocampal neurogenesis (111, 112). Similarly, impaired hippocampal neurogenesis has 

also been implicated in rodent models of Alzheimer's disease (113, 114). Whether this is 

true in humans is not clear, though it has been shown that factors that positively affect 

hippocampal neurogenesis, including stimulating activities such as reading books and 

playing games, such as crosswords, may reduce the risk of Alzheimer's disease (115).  

 

Aberrant neurogenesis is also seen in patients with seizures. It has been shown that 

seizures increase hippocampal neurogenesis in children under the age of 4 years (116). 

This suggests that seizure-induced neurogenesis in children may contribute to aberrant 

network integration and seizure progression (116). In contrast, older patients with chronic 

seizures do not show similar increases in neurogenesis (117). This may reflect either a 

depletion or exhaustion of the precursor cell pool (116), a phenomenon seen with 

increasing age (53, 118). Imaging studies using magnetic spectroscopy have for the first 

time confirmed the above-mentioned phenomenon, namely that in humans neurogenesis 

decreases with age (95). Such imaging techniques may be used to monitor neurogenesis 

in humans in a wide range of neuro-psychiatric disorders. Also, the efficiency of 

therapeutic interventions may be assessed.  
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Stem Cell Therapy 

The aim of stem cell therapy is to treat neurodegenerative diseases including Parkinson’s 

disease. The clinical usefulness of neural stem cells will be determined by their ability to 

provide patients suffering from neurological disorders with safe, long-lasting and 

substantial improvements to their quality of life. Neural stem cells may improve and 

restore function by differentiating and integrating appropriately into regions where 

neurological function is lost. Alternatively, they may exert a neuroprotective effect by 

releasing neurotransmitters or neurotrophic factors that could improve function by 

supporting the survival or regeneration of the existing neurons (119-121).  

 

Understanding the cellular and molecular cues exerted by the microenvironment over 

stem cell differentiation in the adult CNS is important. Transplanting stem cells into 

neurogenic regions (regions that produce or recruit new neurons under normal 

conditions) results in differentiation in a region-specific manner (122, 123); for instance, 

SVZ precursors generate hippocampal neurons when transplanted into the hippocampus 

(124), and SGZ precursors generate olfactory interneurons when transplanted into the 

rostral migratory stream (122). Similarly, multipotent neural precursors from the spinal 

cord (22) produce neurons after implantation into the hippocampus (21). In contrast, 

transplantations into the spinal cord, a non-neurogenic region (a region that does not 

produce or recruit new neurons) (125), only generate glia (21). This highlights the 

significance of the milieu as well as the transplanted cells in determining the outcome of 

transplantations.  

 

 17



The traditional concept of stem cell therapy involves isolation of stem cells, propagation 

in vitro and subsequent re-injection into the patient. Human embryonic and foetal stem 

cell use is restricted due to political and ethical controversies. Moreover, large amounts 

of human foetal tissue are needed for therapeutic effects (two to five aborted foetuses per 

side per Parkinson’s patient) (126) and clinical benefit is equivocal (127, 128). An 

alternative is to use immortalized cells. However, as many of these are transformed using 

oncogenes, tumour formation upon transplantation is a genuine risk. Consequently, 

AHNSCs present an attractive alternative to the aforementioned sources; they can be 

obtained from the patient herself, either from ventricular wall biopsies obtained 

endoscopically (129) or from temporal lobe surgeries due to refractory epilepsy (4, 18). 

Recently, it was shown that AHNSCs may also be isolated from the olfactory mucosa 

(130). The AHNSCs can then be propagated in vitro to sufficient numbers and 

subsequently transplanted autologously into the patient (96). To achieve clinical effect in 

Parkinson's disease, it is estimated that approximately 80,000 cells are needed (131). As 

the total number of AHNSCs that can be produced from one biopsy is far beyond this 

number (18, 96, 129), it seems likely that sufficient AHNSCs for treating 

neurodegenerative diseases may be obtained by in vitro propagation.  

 

Attracting endogenous neural stem cells and precursor cells to the site of injury may 

represent an appealing alternative to the above-mentioned transplantation paradigm 

(132), as it bypasses in vitro cell propagation and the complications associated with it. 

However, the effect of endogenous precursors in brain repair is extremely limited (133). 

This probably reflects a limited number of neural stem cells or an unfavourable 
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microenvironment (133). Several factors can increase recruitment of endogenous stem 

cells to the site of injury including, neurotrophins BDNF (134) and stromal cell-derived 

factor-1 (SDF-1) (134, 135). More research, however, is needed before such therapy 

becomes clinically available.  
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Recently, stem cells have also been shown to play an important role in brain tumours (28, 

31). These so called TSCs, have been shown to be brain tumour-initiating cells (23, 25, 

26, 136) and are similar to neural stem cells. If TSCs are crucial for tumour initiation and 

propagation, then treatments designed to target them could prove highly effective. Thus, 

given the intimate association between neural stem cells and TSCs, the second part of my 

thesis describes brain tumours and the role TSCs play in such tumours. 

 

Hallmarks of Cancer 

There are several hallmarks that characterize the cells that develop cancer. Cancer cells 

disregard internal and external growth-inhibition signals and display unlimited mitosis; 

they are self-sufficient and have limitless replicative potential; they bypass mechanisms 

that detect mutation and apoptosis, allowing accumulation of mutations and genetic 

instability; angiogenesis and the ability to invade surrounding normal tissue as well as to 

metastasize to distant sites are also characteristic (137, 138). 

The Stochastic Model of Cancer 

According to the stochastic model of cancer, any somatic cell can give rise to tumours 

when exposed to the right conditions, though the probability of this is very low (30). 

Thus, serial acquisition of genetic alterations in somatic cells (139), results in induction 

of genes promoting proliferation, silencing of genes inhibiting proliferation and 

bypassing of genes involved in programmed cell death. Based on this model, glioma 

heterogeneity may result from continuing mutations in cells of different phenotypes or 
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from cells being trapped within the tumour matrix. Unfortunately, the model fails to 

adequately explain the origin of some gliomas, such as the mixed oligoastrocytoma. 

Classification of Gliomas 

The term glioma was first coined by Virchow in 1846, and he postulated that the tumours 

arose from glial cells (140). Then in 1875, Golgi showed that some brain tumours 

contained distinctive star-shaped neuroglial cells (141). The basis of modern-day neuro-

oncology, however, is attributed to Bailey and Cushing who in 1926 wrote the book, A

Classification of the Tumours of the Glioma Group on a Histogenetic Basis with a 

Correlated Study of Prognosis (142). They classified brain tumours based on the 

predominant cell type and its similarity to the normal brain cell type i.e. neuron, astrocyte 

or oligodendrocyte. Thus, the classification of primary brain tumours is based on cellular 

origin as well as histological appearance (143, 144). Hence, astrocytomas, the most 

common type of glioma, are so called as they resemble astrocytes. Further, based on 

grade of differentiation, astrocytomas are divided into four groups; low grade pilocytic 

astrocytomas (Grade I), well differentiated diffuse astrocytomas (AC II), malignant 

anaplastic astrocytomas (Grade III) and high grade glioblastoma multiforme (Grade IV, 

GBM) (145). The hallmark of malignant astrocytic gliomas is invasion into brain tissue 

(146). The classification of tumours predicts malignancy, invasive potential and thereby 

clinical prognosis and choice of therapy; low grade astrocytomas have a better prognosis 

and are more likely to respond to present treatment modalities compared to high grade 

astrocytomas (147).  
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Epidemiology of Gliomas 

Malignant gliomas are the most common primary CNS tumours in adults, accounting for 

78% of all primary malignant CNS tumours (148). The overall incidence of brain 

tumours in Norway has recently been reported to be ranging from 7.2 to 13.8 per 100,000 

person-years (149). These rates are on the rise both in children (150-152) and adults 

(153-155). Whilst the increase in tumour incidence is attributed mainly to improved 

diagnosis (156, 157), including an increasing willingness on the part of the physician to 

pursue a diagnosis for older patients (158), some reports ascribe the change in incidence 

to be a real increase (152, 159). 

 

Treatment Options for Gliomas 

The current standard treatment includes surgical resection, radiation therapy and 

chemotherapy. The role of surgery is two-fold; firstly, it helps in establishing a diagnosis 

(160, 161) and secondly, it allows for the removal of as much tumour tissue as is possible 

while preserving the patients’ neurological functions. Extensive tumour resection leads to 

increased survival (162-164). Regarding low grade gliomas, the role of surgery is 

controversial (165-168), however, a recent study by Sanai et al., suggests that more 

extensive surgical resection is associated with longer life expectancy also for these 

gliomas (162).  

 

Adjuvant postoperative radiation therapy is a standard-of-care for the management of 

high grade gliomas (169). Prospective clinical trials have shown that survival increases 

linearly as radiation dose is increased (170), though the use of such treatment is 
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controversial regarding low grade gliomas (171). Adjuvant chemotherapy is also well 

established in glioma therapy especially for GBMs. Studies have shown a survival benefit 

for patients receiving chemotherapy and radiation therapy when compared with patients 

receiving radiation therapy alone (172, 173). In fact, recently it was shown that when 

chemotherapy with Temozolomide was combined with radiotherapy, it resulted in a 

statistically significant survival benefit for GBM patients with a median survival of 14.6 

months (174). However, not all patients benefited (175). 

 

Despite the aforementioned therapeutic paradigms, the prognosis for GBMs has remained 

unchanged for three decades (147, 148). Given the dismal prognosis of high grade 

astrocytomas, several novel drugs are presently being clinically tested; (1) A humanized 

neutralizing monoclonal antibody Bevacizumab (Avastin; Genentech, South San 

Francisco, Calif) against VEGF, a growth factor needed for new blood vessel formation 

in gliomas (148). Bevacizumab has been shown to have significant anti-tumour effect in a 

phase 2 trial (176, 177). (2) A monoclonal antibody against EGFR cetuximab (Erbitux; 

ImClone Systems, New York, NY) is being clinically evaluated (178) as it has been 

shown to exhibit anti-tumour effect (179). EGFR amplification is seen in around 50 % of 

GBMs (180). (3) A kinase inhibitor of PDGFR imatinib mesylate (Gleevec; Novartis) 

(181) has been shown to be important in high-grade glioma growth and angiogenesis 

(148) is also being tested. 

 

Despite the multi-modal treatment of gliomas available today, clinical recurrence is 

universal and it most often occurs within 2 cm of the resection margin (182). The 
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prognosis for patients with GBM has changed little in the past three decades and survival 

averages ~1 year (147, 148). Our paramount inability to treat this disease may reflect our 

lack of understanding of glioma biology.  

 

Gliomas, the Stem Cell Model and the Tumour Niche 

In contrast to the stochastic model of cancer, where any cell is capable of giving rise to a 

tumour, the stem cell model of cancer, states that cancer can be viewed as an abnormal 

organ (30), derived by a small fraction of cells capable of self-renewal and proliferation 

known as TSCs (30, 183, 184). Based on this model, gliomas are thought to be initiated 

and propagated by TSCs (27). Indeed, TSCs were first isolated from brain tumours by 

Ignatova et al., (24) and similar cells have been isolated from both paediatric GBM (23, 

26) and adult GBM (25). The TSCs can generate a phenocopy of the parent tumour upon 

transplantation in mice and maintain the ability to produce tumours upon serial 

transplantation in mice – a gold standard assay for TSCs (27).  

 

The stem cell hypothesis evolved because of the similarities between normal neural stem 

cells and TSCs, including nestin expression (185-187), cell signalling pathways 

governing self-renewal and proliferation, including Shh (56, 188) and Notch (189-192) 

and cell surface molecules such as CD 133 (23) and A2B5 (193). Microarray studies have 

revealed an overlap between the molecular signatures of GBMs and progenitors from the 

developing forebrain (194). These similarities suggest that TSCs may arise from neural 

stem cells that have acquired mutations making them tumourigenic. Indeed, upon 

transplacental administration of a potent neurocarcinogen N-ethyl-N-nitrosourea (ENU) 
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(195, 196), many gliomas started out in the SVZ, a site harbouring neural stem cells (197, 

198). As the gliomas grew, however, they moved away from the site of initiation and this 

may explain their seeming discontinuity from the SVZ (199). Similarly, deletion of 

tumour suppressor gene p53 in neural stem cells initiates gliomagenesis in the SVZ (200). 

Recently, it was shown that even the origin of medulloblastoma, an aggressive childhood 

brain tumour, could be traced to neural stem cells (201, 202). 

 

Similar to the neural stem cell niche, it has been suggested that TSCs exist in aberrant 

stem cell niches (203) and deregulation of extrinsic factors within the niche might lead to 

uncontrolled proliferation of stem cells and hence tumourigenesis. A hallmark of GBMs 

is the disorganized blood vessel formation (203) and it was recently shown that CD 133+ 

TSCs produced high levels of VEGF which may contribute to tumour initiation (204). 

Indeed, TSCs within GBMs are located in close proximity to tumour capillaries which 

promote the formation and maintenance of TSCs within these vascular niches (205). The 

tumour niche may also protect the TSCs from chemotherapy (206) and radiotherapy 

(207). If this is the case, targeting these microenvironments may prove a highly effective 

treatment of cancer.  

  

Implications of the Stem Cell Model of Gliomas 

Given the similarities between neural stem cells and TSCs, applying the principles of 

stem cell biology to gliomas changes the way we study, diagnose and treat such tumours.  
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Traditionally, treatments have focussed on removing the bulk of the tumour tissue 

surgically and then non-discriminately killing the proliferating cells using radiotherapy 

and chemotherapy. However, this does not translate into clinically significant increases in 

patient survival (147). The lack of effect of chemotherapy may be explained by the high 

levels of ATP-binding cassette transporter protein (ABCG) (208-210) and enhanced 

DNA repair mechanisms (211) that TSCs possess. This highlights that effective treatment 

may depend on differential drug sensitivity assays discriminating TSCs from the tumour 

bulk. Similarly, assays identifying and discriminating TSCs from neural stem cells may 

help in designing new therapies aimed at destroying the former and preserving the latter. 

Given that TSCs are tumour-initiating cells, eradicating TSCs could prove highly 

effective.  

 

Current prognosis of patients with brain tumours depends on tumour characteristics 

(histology, grade of differentiation, extent of resection, etc.) and patient characteristics 

(age, etc.). As apparently identical tumours behave differently, it is difficult to predict 

prognosis. Interestingly, it was recently shown that the putative TSC marker CD 133 may 

predict patient survival and risk for tumour re-growth (212). This suggests that prognostic 

models based on TSC populations may be useful, provided that TSCs are specifically 

being identified and characterized.  

 

Considering that cellular therapies are being developed for neurodegenerative diseases 

and given that activation of stem cell pathways may lead to tumour initiation, one has to 

be cautious before such therapies can be translated into the clinics. In fact, it was shown 
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that even modified embryonic stem cells-generated cells could be potentially 

tumourigenic (213).  

 

The stem cell model of cancer may also help in establishing appropriate rodent cancer 

models which resemble human cancers more closely. Using a stem cell virus, Welm et

al., showed that expression of c-Met and c-Myc in primitive cells produced mammary 

carcinomas (214) similar to those found in humans. Similarly, Kim et al., have developed 

an animal model that targets normal lung stem cells to produce adenocarcinomas that 

resemble those found in human lung cancers (215). Having representative rodent models 

that correctly reflect tumour pathogenesis gives more relevance to the results obtained 

from such models. This is important when new therapeutic paradigms tested in rodent 

models are translated into the clinics. 
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AIMS

 

1. To isolate and propagate putative neural stem cells from adult human ventricular 

wall biopsies and to examine the ability of the cells to develop into functional 

neurons, including their ability to fire action potentials as well as to communicate 

through synapses (98). (Paper I). 

2. After confirming the neurogenic potential of AHNSCs, the next step was to 

characterize the temporal profile of the electrophysiological development of the 

neurons differentiated from AHNSCs. (Paper II).

3. To isolate putative neural stem cells from adult human filum terminale and 

examine the potential of the cells to differentiate into functional neurons in vitro 

and in vivo. (Paper III).

4. To systematically compare putative neural stem cells isolated from ventricular 

wall biopsies to TSCs isolated from low grade and high grade gliomas in vitro and

in vivo. (Paper IV).
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MATERIALS AND METHODS 

In vitro 

Cell Culture 

Ventricular wall biopsies were obtained (1) from patients undergoing surgery due to 

intractable temporal lobe epilepsy (papers I and II) and (2) endoscopically using a 

Channel neuroendoscope (Medtronic PS Medical, Goleta, CA) during routine 

neurosurgical procedures to treat hydrocephalus (paper I). Filum terminale biopsies were 

obtained from patients undergoing surgery for spinal cord pathology (paper III). 

Biopsies from both AC II and GBM were harvested from patients undergoing tumour 

resections (paper IV). Tissue harvesting was approved by the Norwegian National 

Committee for Medical Research Ethics and the Ethical Committee at the Karolinska 

Hospital (Dnr 01-294) and written consent was obtained from each patient. Radiology 

and histopathology was used to confirm diagnosis in the aforementioned patient groups.  

 

The samples were transported from the operating theatre to the lab in Leibowitz-15 

medium (L15) (Invitrogen Corp., Carlsbad, CA) at 4°C. The tissue was mechanically 

dissociated with a scalpel and placed in 500 μl trypsin-ethylenediamine tetra-acetic acid 

(trypsin-EDTA; Sigma, St Louis, MO) and 200 μl deoxyribonuclease (4000 U/ml; 

Sigma) (paper I), papain 13.2 U/ml (Sigma) and deoxyribonuclease (200 U/ml; Sigma) 

(paper II) and trypsin-EDTA (×1; Invitrogen) (papers III and IV). The dissociated 

suspension was passed through a 70 μm strainer (BD Biosciences, San Jose, CA), and 

resuspended as single cells at clonal density in neurosphere medium (216), DMEM/F12 

(Invitrogen) supplemented with B27 (x1; Invitrogen), 10 ng/ml bFGF (R&D Inc, 
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Minneapolis) and 20 ng/ml EGF (R&D Inc). Cells were cultured at 37°C in 6% CO2 and 

20% O2. The cultures were supplemented with 10 ng/ml bFGF and 20 ng/ml EGF twice a 

week, and additional 1 % of the final volume of DMEM/F12 was added once a week. The 

neurospheres were enzymatically dissociated, as referred to earlier, before their centres 

became necrotic, and resuspended in neurosphere medium. The time taken for 

neurospheres to reform and the size of the neurospheres was measured. To ensure strict 

clonal conditions, single cells were manually isolated with a micromanipulator 

(Eppendorf, Westbury, NY) and cultured further. Differentiation of cells from 

neurospheres was induced by adding 2 % foetal calf serum (FCS, PAA Laboratories, 

Pasching, Austria), removal of mitogens and plating on 20 ng/ml poly-L-ornithine-coated 

(Sigma) or 20 ng/ml laminin-coated glass bottom dishes (WillCo Wells BV, Amsterdam, 

The Netherlands) or 4-well glass slides (Nunc, Roskilde, Denmark).   

 

Co-Culture of Neural Stem Cells and Tumour Stem Cells

Spheres resulting from AHNSCs and TSCs were stained using the fluorescent Cell-

Tracker dye 2μM CFDA-SE (carboxy fluorescein diacetate succinimidyl ester - 

excitation 492 nm, emission 517 nm - Molecular Probes, Eugene, OR) or the fluorescent 

lipophilic tracer 0.1% DiI (1,1�-Dioctadecyl-3,3,3�,3�-tetramethylindocarboxcyanine - 

excitation 492 nm, emission 517 nm - Molecular Probes) respectively, according to the 

manufacturer’s protocol. The labelled spheres were washed, centrifuged, and suspended 

in a 1:1 ratio, and followed on a Leica DM 4000 B fluorescence microscope or a Leica 

TCS SP2 confocal microscope (Leica Inc, Kista, Sweden).   
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Immunocytochemistry 

Immunostaining was performed as previously described (17, 216, 217), with the 

following primary antibodies and dilutions (rb: rabbit, ms: mouse, gp: guinea pig, gt: 

goat); stem cell markers, human specific nestin (HuNest, ms, 1:1000; R&D Inc) and 

Sox2 (rb, 1:500; Chemicon, Temecula, CA); neuronal markers, microtubule-associated 

protein 2 (MAP-2, rb, 1:500; Chemicon), doublecortin (DCX, gt, 1:100; Santa Cruz 

Biotechnology, Santa Cruz, CA), �-III-tubulin (ms, 1:1000; Sigma) and neuronal 

nuclear marker NeuN (ms, 1:1000; Chemicon); glial markers, GFAP (rb, 1:1000; Dako, 

Carpinteria, CA), O4 (ms, 1:100; Chemicon), 2`, 3`-cyclic nucleotide 3-

phosphodiesterase (CNPase, ms, 1:500; Chemicon) and RIP (ms, 1:1000; Chemicon). 

Neurotransmitters were stained with glutamate receptor-1, 2 and 4 (GluR-1, rb, 1:100; 

GluR-2 and 4, ms, 1:100; Chemicon), vesicular glutamate transporter-1 (VGlut-1, gp, 

1:10,000; Chemicon) and glutamic acid decarboxylase (GAD-65, rb, 1:1000; Chemicon). 

In addition, a proliferation marker Ki-67 (rb, 1:100; Dako), human specific nuclei (HuN, 

ms, 1:200; Chemicon), inflammation/microglial marker OX42 (ms, 1:1600; Harlan 

SERA-LAB, Loughborough, U.K.), synaptophysin (rb, 1:1000; Binding Site, 

Birmingham, England) and laminin (rb, 1:200; Sigma) were used. Either TO-PRO-3 

(1:10 000; Molecular Probes) or Hoechst (1:200; Invitrogen) was used for nuclear 

staining. For secondary antibodies the fluorescent conjugate markers Cy3 (1:1000; 

Jackson, West Grove, PA), Cy5 (1:1000; Jackson), Alexa Fluor 488 (1:500; Molecular 

Probes), Alexa Fluor 594 (1:250; Molecular Probes), fluorescein isothiocyanate (1:150; 

Jackson), or an avidin-biotin complex (ABC-elite, 1:50; Vector, Burlingame, 

CA)/diaminobenzidine (DAB; 50 mg/100 ml, Sigma) were used.  
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Quantitative Polymerase Chain Reaction (qPCR) 

Total RNA was isolated from tissue samples, stem cells and differentiated cells from 

AHNSCs and TSCs using RNAeasy Mini Kit (Qiagen GmbH, Hilden, Germany) and 

subsequently treated with RNase-free DNase I (RQ1 DNase I, Promega GmbH, 

Mannheim, Germany). Reverse transcription and quantitative real time PCR of each 

sample were run in triplicates using the TaqMan PCR Core Reagent Kit and the ABI 

Prism 7900 Sequence Detection System and software (Applied Biosystems, Foster City, 

CA) according to the manufacturer’s instructions. The oligonucleotide primers and 

probes for nestin, �-III-tubulin and GFAP were bought from TaqMan Applied 

Biosystems. As an endogenous control, 18S rRNA (TaqMan rRNA control reagents, 

Applied Biosystems) was used. Data acquired were analyzed with the Sequence Detector 

software (version 1.6.3, Applied Biosystems). A standard curve was obtained by 

amplifications of cDNA obtained from serial dilutions of total RNA. Gene expression 

was presented relative to the levels of 18S rRNA.  

Telomeric Repeat Amplification Assay 

Telomerase protein was extracted from AHNSCs and TSCs in CHAPS lysis buffer and 

the activity was detected using PCR-based TRAPeze® XL Telomerase Detection kit 

(Chemicon) according to the manufacturer’s instructions. The assay is based on the test 

samples capacity to add telomeric repeats onto the 3’ end of a substrate oligonucleotide 

(TS). Telomerase activity was measured as TPG/�g protein (Total Product Generated/ �g 

protein). TPG corresponds to the number of TS primers extended with at least 3 telomeric 

repeats by telomerase in the extract in a 30 minute incubation at 30°C.  
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Retroviral Enhanced Green Fluorescent Protein Transduction 

A moloney murine leukemia based retroviral system was used to generate amphotropic 

replication incompetent viruses. The PhoenixTM amphotropic packaging cell line (218) 

(generously provided by Dr. M. J. T. Veuger, LIIPAT, Institute of Pathology, 

Rikshospitalet, Oslo) was grown in Iscove's Modified Dulbecco's Medium (IMDM, 

Gibco, Pailsy, UK) supplemented with 10% foetal calf serum (PAA Laboratories) and 

antibiotics. Helper-free recombinant retrovirus was produced after transfection with the 

retroviral vector pLZRS-IRES (internal ribosomal entry site)–EGFP (enhanced green 

fluorescent protein) (218) (generously provided by Dr. M. J. T Veuger) into the Phoenix 

cells using a calcium-phosphate transfection kit (Invitrogen). Positive cells were selected 

using 2μg/ml puromycin (Sigma), then grown in IMDM and supernatants containing 

viral particles were collected at 24 hours post-transfection, passed through 0.45 �m 

Millex GP filters (Millipore Co., Bedford, MA) and stored at �80 °C.  

 

Untreated T25 tissue culture flasks (BD Biosciences) were coated with 10 �g/cm2 rFN 

(Retronectin, Takara Shuzo Co., Shiga, Japan) according to the manufacturer's 

instructions. Retrofibronectin-coated flasks were pre-loaded with retroviral supernatants 

for 4 hrs at 37 °C. The supernatant was then removed, and the plates washed with 

phosphate buffered saline (PBS). Single cell suspensions, AHNSCs or TSCs, were added 

to the virus loaded rFN-coated flasks. The cells were then incubated at 37 °C in an 

atmosphere of 5% CO2 in air for 24-48 hours before the medium was changed to fresh 

complete culture medium. 
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Fluorescence-Activated Cell Sorter Analysis 

For fluorescence-activated cell sorting (FACS), a single-cell suspension of AHNSCs or 

TSCs, was prepared by incubating EGFP+-spheres in trypsin-EDTA at 37°C for 5 

minutes. The EGFP fluorescence was measured using a FACSAria Flow cytometer 

(Becton-Dickinson, San Jose, CA) (219) with a 488 nm argon laser and FL-1 530 nm BP 

emission filter. Highly fluorescent cells were sorted and thereafter transplanted into Fox 

Chase severe combined immunodeficient (SCID, Taconic, Lille Skensved, Denmark). 

 

Electrophysiology

The whole-cell patch-clamp technique was used to examine the neurophysiological 

properties of individual cells. Cells grown in culture dishes were placed in a recording 

chamber on the stage of an inverted microscope (Nikon, Tokyo, Japan). The cultures were 

perfused with DMEM/F12 between 28 and 32°C and bubbled with 95% air and 5% CO2. 

A Multiclamp 700A amplifier and pClamp 8 software (Axon Instruments, Union City, 

CA) was used to control pipette potentials and to inject current during recordings. Patch 

pipettes were pulled from thick-walled borosilicate glass capillaries to resistances of 4–6 

M  and were filled with pipette solution containing (in mM) K-gluconate 125, HEPES 

10, EGTA 10, KCl 5, Mg–ATP 2 and CaCl  0.22
 (pH = 7.3) Lucifer Yellow 0.1% 

(Molecular Probes) was added to the pipette solution to retrospectively identify 

immunocytochemical markers of the cells tested with electrophysiology. In addition, all 

cells tested were photographed, and the exact position in the culture dish was marked 

with a thin water resistant pen to facilitate cell identification. Cells tested 

electrophysiologically and those that were positive for the neuronal markers MAP-2 or ß-
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III-tubulin were defined as neuron-like cells and included in analysis. The membrane time 

constant ( in) and input resistance (R ) werein
 estimated in current-clamp by the voltage 

responses of the cells to small injected rectangular hyperpolarizing current pulses of –10 

to –30 pA depending on the R  of the cell.in
 R  was derived from the linear portion of the 

current-voltage

in

 plot, and in was calculated by minimizing the squared deviation between 

the function and the data between 5 and 25 ms of the pulse. The function used was f(t) = 

V  – [V ·exp(t/ss ss in)], where V  is the steady-state response (220). The voltage-clamp 

protocol for testing active membrane properties

ss

 consisted of a 100 ms hyperpolarizing 

pulse from a holding potential of –70 to –90 mV that preceded each of the depolarizing 

steps to remove inactivation, followed by 200 ms depolarizing steps with 10 mV 

increments at 0.5 Hz, taking the membrane potential from –90 to 60 mV. In the current-

clamp protocol, current pulses (0–0.1 nA, 0.5 Hz) were injected through the patch pipette 

to examine whether the cells were capable of producing action potentials.  

 

During dual patch-clamp recordings, a whole-cell recording was first obtained from one 

cell with morphological and electrical membrane properties characteristic of neuron-like 

development. Subsequently, the second whole-cell recording was made from another 

neighboring and seemingly connected neuron-like cell. The presynaptic cell was recorded 

in current-clamp mode, and a single action potential was evoked by current injection (0.1 

nA). Postsynaptic currents (PSCs) were recorded in voltage-clamp mode. 

 

Spontaneous synaptic events were recorded during single whole-cell patch-clamp 

experiments in voltage-clamp at different holding potentials. GABAergic currents were 
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blocked using 10 μM of bicuculline, while the glutamate-mediated currents were blocked 

by 20 μM of 6-cyano-7-nitroquinoxaline-2, 3-dione (CNQX, blocks AMPA/kainate 

receptors) and 15 μM of D-2-amino-5-phosphonovaleric acid (MK-801, blocks NMDA 

receptors). Solutions were brought from Sigma. Neurons were stimulated with 1 mmol/L 

glutamate from a micropipette positioned close to the cells and the response was blocked 

by glutamate-receptor antagonists 20 μM CNQX and 15 μM of MK-801. The responses 

were recorded using whole-cell voltage-clamp recordings.  

 

Spike threshold was defined as the membrane potential at which the slope of the voltage 

trace increased abruptly during current injection. Spike width was calculated as spike 

duration at 50% of maximum spike amplitude. 

 

Confocal Microscopy 

For confocal imaging an inverted microscope (Nikon) with a confocal imaging system 

(MRC 600, Bio-Rad, Hertfordshire, UK), equipped with an argon ion laser was used. 

Intracellular Ca2+ ([Ca2+]i) was measured using the acetoxymethyl ester of the two Ca2+-

sensitive fluorochromes fluo-3 (fluo-2 AM) and fura red (fura red AM) (221) (Molecular 

Probes). The cells were incubated in DMEM/F12 containing 0.2 μM fluo-3 and 1.8 μM 

fura red for 20 min before the superfluous dye was washed out. Emitted fluorescent light 

was detected using two separate photomultiplier tubes at the wavelengths 525–555 nm 

(fluo-3) and >600 nm (fura red), respectively. Neurons were stimulated by pressure puff 

application of 60 mM of potassium chloride (KCl) for 10 s and one image was acquired 
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every 2 s, and the fluorescence ratio was calculated using the Time Course/Ratiometric 

Software Module (TCSM, Bio-Rad).  

External Test Solutions 

External test solutions included 0.5 μM of tetrodotoxin (TTX) to block voltage-dependent 

sodium channels, 500 μM of nickel chloride (NiCl) to block the voltage-gated Ca2+-

channels, 500 μM of 4-aminopyridine (4-AP) and 5 mM of tetraethylammonium (TEA) to 

block potassium currents. All the solutions were from Sigma.  

 

In vivo 

All animal procedures were approved by the Ethical Committee of Animal Research in 

Northern Stockholm and the National Animal Research Authority in Norway 

 

Transplantation of AHNSCs from Filum Terminale into Adult Rats Exposed to Global 

Ischemia Using a Two-vessel Occlusion Model 

Global ischemia was induced in accordance with a previously published protocol (217, 

222) Adult male Sprague-Dawley rats (270 ± 10 g, Taconic) were anesthetized with 

halothane (Fluothane; AstraZeneca, Södertälje, Sweden), endotracheally intubated, and 

artificially ventilated. The common carotid arteries were exposed bilaterally by means of 

a ventral midline incision and occluded with non-traumatic microvascular clips for 11 

minutes, while keeping the blood pressure below 45 mmHg by increasing the 

concentration of halothane to minimize compensatory flow in the vertebral arteries. 
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Physiological parameters monitored throughout the procedure were rectal temperature 

(37.5 ± 1°C), mean arterial blood pressure, and cerebral blood flow recorded by a laser 

Doppler probe attached to the skull. Control rats did not undergo any surgery. Seven days 

post-injury, rats were anesthetized with an intramuscular injection of Hypnorm (10 

mg/ml fluanisone and 0.2 mg/ml fentanyl; Janssen Pharmaceutica, Beerse, Belgium) and 

Dormicum (1 mg/ml midazolam; Roche, Stockholm, Sweden), and placed in a 

stereotactic frame (David Kopf Instruments, Tujunga, CA, USA). A 2 �l cell suspension 

containing 10,000 cells/�l was slowly injected, using a cannula (Plastics One, Roanoke, 

VA) attached to a Hamilton syringe (Hamilton Bonaduz, Bonaduz, Switzerland) into 

posterior periventricular region just above the hippocampus (coordinates: anteroposterior, 

-2.8; mediolateral, 2.0; ventrolateral, -2.6 from bregma, with the nose bar set at -2.0. The 

needle was left in situ for 2 min postinjection before being removed slowly. The Sprague-

Dawley rats received immunosuppression with cyclosporine A subcutaneously (4 mg/kg 

every Monday and Wednesday and 8 mg/kg every Friday and the day before 

transplantation) (Sandimmun, Norvartis Sverige AB, Stockholm, Sweden), in accordance 

with a previously published protocol (223). The transplanted rats were lethally 

anesthetized after 10 weeks.    

    

Transplantation of AHNSCs or TSCs into the CNS of Adult SCID Mice 

Fox Chase SCID mice (7 – 9 week old, Taconic) were anesthetized subcutaneously with 

previously described drugs (217), and placed in a stereotactic frame (David Kopf 

Instruments, Tujunga, CA). Immediately prior to transplantation, suspensions of 

AHNSCs or TSCs, native and GFP-tagged, were prepared in L-15 medium, and a 2 �l 
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suspension containing 100,000 cells was injected into the right striatum just below the 

corpus callosum using a cannula (Plastics One, Roanoke, VA) attached to a Hamilton 

syringe (Hamilton Bonaduz, Bonaduz, Switzerland). The needle was left in situ for 2 min 

postinjection before being removed slowly. The implanted mice were killed after 14 

weeks or sooner if symptoms including weight loss or poor appetite developed.  

 

Brain and Tissue Processing

The transplanted rodents were killed by deep anaesthesia with Hypnorm/Dormicum and 

transcardial perfusion with 0.9 % NaCl followed by 4 % buffered formaldehyde. The 

fixed brains were cryo-protected in 17% sucrose for 48 hours, cut into 14 μm sections on 

a freezing microtome (Leica), thawed onto Super Frost/Plus slides (Menzel-Gläser, 

Braunschweig, Germany) and stored at -20� C. 

 

Brain sections were stained with (1) haematoxylin and eosin (H & E), (2) 

immunohistochemistry and (3) avidin-biotin complex method. Immunohistochemistry on 

sections was performed as previously described (217, 224). Briefly, sections were 

incubated in primary antibody overnight at 4°C, rinsed 3 times with PBS, incubated in 

secondary antibody at 4°C for an hour, followed by rinsing thrice with PBS. After 

nuclear staining the sections were mounted with PBS/glycerol 1:1.  

 

For avidin-biotin complex staining method, sections were incubated with an avidin block 

solution (Blocking kit, Vector Laboratories, Burlingame, CA) for 1 hour at room 

temperature, followed by washing in PBS. A biotin block solution was added to the 
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primary antibody solution containing HuN and sections were incubated overnight at 4� C. 

The sections were then incubated at room temperature with biotinylated secondary 

antibody (1:200, horse �-mouse IgG, Vector Laboratories) for 1 hour and in avidin and 

biotinylated horseradish peroxidase macromolecular complex (Vectastain® Elite® ABC 

kit, Vector Laboratories) for 1 hour, followed by rinses. The signal was visualized using 

diaminobenzidine (DAB, substrate kit for peroxidase, Vector Laboratories). Double-

labeled sections were treated in the same manner with OX42 and the stain was developed 

using the Nova red substrate kit (Vector Laboratories). Slides were air-dried and mounted 

with PBS/glycerol 1:1 (paper III). 

 

Light microscopy slides were analyzed using a Zeiss Axioskop 2 microscope (Zeiss, 

Munich, Germany) and immunolabelled sections were studied using Olympus BX61W1 

FluoView confocal microscope (Olympus, Hamburg, Germany).  

 

Statistics 

The results are presented as mean � S.E.M. Differences were tested with independent-

sample t-tests (Student's t-test), and considered significant when p < 0.05. 
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RESULTS

PAPER I 

In paper I we showed that AHNSCs could be isolated from ventricular wall biopsies 

obtained (1) endoscopically during routine neurosurgical procedures to treat 

hydrocephalus or, (2) during surgery for refractory temporal lobe epilepsy. The AHNSCs 

developed into neurospheres when grown in a defined sphere-promoting medium. They 

were capable of self-renewal and proliferation even after repeated enzymatic dissociation. 

Under differentiating conditions, AHNSCs developed into astrocytes, neurons and 

oligodendrocytes proportionate to their in vivo organization. Importantly, the neurons 

matured over time and developed functional activity. Specifically, after four weeks in 

culture neurons fired low-threshold, overshooting, repetitive action potentials and 

exhibited voltage-gated sodium and potassium ion channels. Furthermore, the neurons 

possessed presynaptic terminals with functional glutamate receptors. Using double patch-

clamp recordings, we showed that functional neurons communicated synaptically when 

integrated in a network.   

PAPER II 

Given that AHNSCs can be propagated as neurospheres in vitro and that they respond to 

differentiation cues developing into mature neurons (paper I), in paper II we 

characterized the stages of electrophysiological development of the neurons differentiated 

from AHNSCs. Early in development, neurons stained only for neuronal markers without 

exhibiting any functional activity. During the second week, ‘depolarizing potassium-
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dependant humps’ followed by calcium-dependant action potentials were seen. Next, 

broad high-threshold sodium-dependant action potentials which gradually developed into 

low-threshold repetitive action potentials by the fourth week were seen. Concomitant to 

electrophysiological maturity, the neurons developed a more polarized and arborized 

appearance with multiple dendrites (Fig. 3). Moreover, after 4 weeks the neurons 

communicated using GABAergic and glutamatergic synapses; post-synaptic currents 

were demonstrated using patch-clamp recordings.  

 

 

Figure 3. (A) Immunocytochemical staining for glial (GFAP, left panel) and neuronal 
(MAP-2, right panel) markers at different stages of development. (B) Whole-cell 
patch-clamp recordings showing responses to a 0.1 nA intracellular current pulse at 
different stages of differentiation. The pulse duration varied from 300 to 500 ms 
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depending on the maturation of membrane properties. Scale bars: 50 μm (A top 
panel); 20 μm (A lower panel); 15 mV and 50 ms (B).

PAPER III 

In paper III using the assays already established in papers I and II, we showed that 

neural progenitors isolated from filum terminale (FTNPs) could self-renew and 

proliferate into neurospheres. This ability to develop into neurospheres was maintained 

even after enzymatic dissociation (passaging). Furthermore, FTNPs exhibited tripotent 

differentiation into neurons, astrocytes and oligodendrocytes. Using patch-clamp 

recordings, we demonstrated that the neurons exhibited low-threshold, overshooting 

action potentials, displaying both the fast inactivating TTX-sensitive sodium current as 

well as 4-AP and TEA sensitive potassium currents. The FTNPs survived transplantation 

into adult CNS exposed to ischemia and no tumour formation was observed. The FTNPs 

were found not only in the graft, but also in the lesioned CA1 region displaying a 

tendency to migrate to areas of pathology. Interestingly, despite neuronal differentiation 

in vitro, FTNPS differentiated only into astrocytes in vivo.  

 

PAPER IV 

In paper IV, we compared AHNSCs isolated from ventricular wall samples to TSCs 

isolated from both AC II and GBM. Though TSCs have been isolated from paediatric low 

grade tumours (23), this is the first report of such cells being isolated from adult AC II. 

Both AHNSCs and TSCs proliferated into spheres, but TSCs showed significantly higher 

growth rate and self-renewal capacity (p < 0.05). This was reflected in their telomerase 
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expression which was high in TSCs and correlated to the malignancy grade (GBM>AC 

II) (p < 0.04). AHNSCs, however, had low telomerase expression. To investigate the 

tumour-forming capacity, TSCs and AHNSCs were transplanted into SCID mice. Only 

the TSCs from GBM formed tumours following orthotopic transplantation and the 

tumour-forming ability was retained upon serial transplantations. Upon differentiation in

vitro, (1) TSCs differentiated faster than AHNSCs; (2) There was a dramatic fall in the 

proliferation index (Ki-67) of TSCs (p < 0.05); (3) AHNSCs gave rise to astrocytes, 

oligodendrocytes and neurons, whereas morphologically aberrant bipotent cells often 

expressing both glial and neuronal antigens were seen in TSCs cultures. Whole-cell 

patch-clamp recordings of differentiated progeny uncovered distinct functional 

phenotypes; AHNSCs differentiated into neurons (high electrical membrane resistance, 

ability to generate action potentials) and astrocytes (low membrane resistance, no action 

potentials); in TSCs cultures, only one functional phenotype was seen - cells with high 

electrical resistance and active membrane properties capable of generating action 

potentials. 
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DISCUSSION 

Sources of Neural Stem Cells 

Adult human neural stem cells have been isolated from ventricular wall biopsies from 

patients undergoing surgery for intractable epilepsy (4, 18, 96, 225) or endoscopy due to 

hydrocephalus (129). Other CNS regions including hippocampus (7, 97), cortex (5, 19), 

white matter (6), spinal cord (21, 22) and olfactory bulb/mucosa (130, 226-229) also 

harbour AHNSCs. In fact, a recent report suggested that the CNS may be much more 

neurogenic than previously hypothesized (230). In keeping with this idea of a widely 

neurogenic CNS, we have isolated AHNSCs from a hitherto unknown source, namely 

filum terminale (paper III). Indeed, neural stem cells have been isolated and propagated 

from several non-neurogenic regions including the spinal cord  (22), suggesting that 

similar cells may be isolated from different CNS regions by customizing and optimizing 

isolation and culture protocols (230). Despite similarities between stem cells isolated 

from different regions, there are distinct differences; we show in paper III that despite 

neurogenic differentiation in vitro, FTNPs differentiated into glia in vivo, in contrast to a 

bipotent fate of AHNSCs in vivo (217).  

Non-neural cell types may serve as a source of neural stem cells/neurons e.g. cells from 

the placenta (231), mesenchymal cells (232-234) and adipocytes (231, 235). 

Alternatively, non-neural cells may modulate the local environment to increase neural 

proliferation and maturation of endogenous stem cells (236). It was recently shown that 

human somatic cell types e.g. fibroblasts, could be reprogrammed to undifferentiated 

pluripotent stem cells (237, 238). This is referred to as induced pluripotent stem cells 
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(iPS) (239). Similar reprogramming has been achieved in mice neural stem cells (239). 

Thus, using iPS technology it is possible to generate patient-specific iPS cell lines. 

However, the clinical applicability will depend on optimizing the protocol, eliminating 

the use of retroviral insertional mutagenesis and avoiding teratoma formation (239). 

Though the possibility of obtaining neurons from such sources is attractive, the ability of 

these cells to differentiate into functional neurons that communicate synaptically and 

integrate into a network has to be investigated before they can be considered as tools for 

regenerative therapy. 

Are Neural Stem Cells Isolated from Ventricular Wall Biopsies Obtained During 

Epilepsy Surgery Normal? 

Neural stem cells are usually obtained from ventricular wall biopsies from patients 

undergoing surgery for refractory temporal lobe epilepsy (4, 18, 96). Though epilepsy is 

shown to increase neurogenesis (240, 241), some reports suggest seizure activity to result 

from aberrant neurogenesis (242, 243), bringing into question the normality of the 

isolated AHNSCs. Interestingly, increased hippocampal neurogenesis has been shown in 

patients under the age of 4 years (116) and not in older patients (117). In our study the 

ventricular wall samples were obtained from patients that belonged to the latter group. 

Also, the karyotypic analysis of AHNSCs revealed no gross cytogenetic irregularities 

(18). 

 

In papers I, II and III we showed that differentiated AHNSCs exhibited two functional 

phenotypes; neurons with a high electrical membrane resistance with the ability to 
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generate action potentials and astrocytes with a low membrane resistance unable to 

generate action potentials, in keeping with the normal CNS. Moreover, transplanting 

AHNSCs into adult CNS resulted in differentiation into neurons and glia with no seizure 

activity seen in the recipient rodents (18, 217). Though the evidence presented here is in 

favour of AHNSCs isolated during epilepsy surgery as being normal, more research is 

needed to answer the question definitively.  

 

Bona Fide Neural Stem Cells or Neural Progenitors 

Adult human neurogenesis in vivo was first demonstrated by Eriksson and colleagues 

(93). Adult human neural stem cells were first isolated by Steindler et al., (4). Thus, by 

applying already established assays to AHNSCs from ventricular wall biopsies (papers I 

and II) and filum terminale biopsies (paper III), we showed that AHNSCs could 

proliferate and self-renew into neurospheres. Per definition, a bona fide stem cell is said 

to exhibit extended self-renewal i.e. more than five passages (14). In our hands, the cells 

displayed limited passage number, i.e. they exhibited limited self-renewal. Similar 

limited proliferation and self-renewal has been demonstrated by others (5, 6, 244), 

suggesting that AHNSCs are transitional cells with a limited self-renewal capacity. 

 

Given that the CNS may be more neurogenic than postulated previously (230) and reports 

showing that AHNSCs can be propagated and expanded in vitro for prolonged periods 

(18, 96), suggests that culture paradigms may have to be modified to realize the full 

potential of AHNSCs in vitro. For instance, addition of Shh, a growth factor lacking in 
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our culture conditions, has been shown to increase proliferation and self-renewal of adult 

neural stem cells in rodents (56-59). 

Though it would be advantageous to expand AHNSCs indefinitely and create cell banks, 

it has been shown that after prolonged culture in vitro, stem cells tend to prefer a 

gliogenic fate rather than a neurogenic one (245, 246). Furthermore, long-term cultures 

can per se increase the appearance of mutations and karyotypic changes (247, 248) and 

with it the concern for tumour formation. Given the aforementioned caveats, optimizing 

culture protocols as well as characterization of neural stem cells, over multiple passages 

with respect to tumour initiating ability, has to be documented before such cells can be 

used as therapeutic tools for neurodegenerative diseases. 

 

Significance of Electrically Active Neurons from Neural Stem Cells 

As mentioned earlier, AHNSCs have been isolated and propagated in vitro by several 

groups (4, 7, 96, 249). However, identification of the differentiated progeny has been 

confirmed using antigenic markers. Evidence regarding the functional status of neurons is 

available primarily for rodent neural stem cells (250). As shown in papers I and II 

despite neurons staining for neuronal specific antigens they do not necessarily exhibit 

typical neuronal activity. This underscores the need to test neurons for their functional 

phenotype. Both Nunes et al., (6) and Walton et al., (18) have demonstrated that 

AHNSCs exhibit single broad action potentials. Unfortunately, as such activity has also 

been demonstrated in developing glial cells (251), it is not conclusive evidence for the 

presence of mature functional neurons. In papers I and II, we show that AHNSCs 
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differentiate into cells possessing the hallmarks of neurons, including the ability to 

generate action potentials and communicate via synapses (98).  

 

The functional significance of voltage-gated ion channels underlying the electrical 

activity expressed by the differentiated progeny of the AHNSCs is manifold. Whilst 

potassium channels limit excitability of mature neurons, in immature cells it is 

responsible for migration (252). Calcium channels on the other hand, are important for 

neurite growth, axonal growth and path finding, as well as cell signalling and synaptic 

transmission (253, 254). While sodium channels are important in generating action 

potentials, their overactivity has been associated with epilepsy (255). Knowing that the 

clinical application of neural stem cells will be limited by their ability to develop into 

functional neurons, research optimizing the functional characteristics of neural stem cells 

is necessary.   

 

Using confocal microscopy, we showed that AHNSCs differentiated primarily into 

glutamatergic and GABAergic neurons. Both GABA and glutamate have important 

functions during development, including regulating proliferation and migration, synaptic 

integration and neuronal differentiation (256). Though not specifically tested in papers I,

II or III, AHNSCs are presently being investigated for their ability to generate other 

neuronal phenotypes, including dopaminergic neurons. Were this to be the case, it would 

be possible to transplant cells autologously into patients suffering from 

neurodegenerative diseases, including Parkinson’s disease. This would open a new 

avenue for the treatment of such diseases. 
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The Relationship Between Neural Stem Cells and Tumour Stem Cells

It has already been shown that neural stem cells and TSCs share several similarities (28, 

183), including surface expression of CD 133 (23, 34). This may be a consequence of the 

transformation of neural stem cells into TSCs. In fact, neural stem cells are considered 

the most likely candidates for such a transformation due to their long life span and 

increased propensity to accumulate mutations (28).  

 

Though several studies have alluded to an intimate association between neural stem cells 

and TSCs, studies have not compared these two populations. When conducting such a 

comparative study, it is important to look at cells isolated from fresh biopsies and not rely 

on cell lines as shown by Lee et al., (257). Several clinical correlates can be drawn from 

the results of paper IV; (1) The role of TSCs has been shown for GBMs but not for AC 

II in adults (23-26). Thus, identification of TSCs from AC II may present a new 

promising therapeutic alternative for these tumours, given that the role of surgery is 

controversial (165-168); (2) Spheres cultured from TSCs mirror several biological 

features of human brain tumours (258, 259) including growth rate. Such sphere assays 

can thus be regarded a representative model for glioma growth in vitro (259, 260). It can 

be used to study the kinetics of normal and tumour cell movement, as well as tumour 

progression (261-263) and therapy outcome (264, 265); (3) When exposed to 

differentiating conditions, there was a dramatic attenuation in the proliferation of TSCs. 

This suggests that TSCs which escape surgical resection and chemotherapy, would be 

unable to proliferate and thus incapable of giving rise to relapses were they to be 

subjected to differentiation therapy (25). 
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Significance of Voltage-Gated Ion Channels in Tumour Cells 

The presence of functional activity and voltage-gated ion channels has been shown in cell 

lines (266) as well as tumour tissue (267). Paper IV presents the first report of functional 

activity in differentiated progeny of TSCs derived from AC II and GBM. Voltage-gated 

ion channels influence several biological functions including, proliferation and metastasis 

of tumours; it is also well known that potassium channels inhibit apoptosis; in fact they 

may even enhance multidrug resistance in tumour cells (268, 269); indeed, sodium 

channels have been shown to be important for tumour invasiveness (270, 271). Moreover, 

the presence of seizures in patients with brain tumours (272) may be due to the action 

potential generating progeny of the differentiated TSCs. Given the manifold significance 

of voltage-gated ion channels, several channel blockers are being currently tested for 

their anti-tumour activity.  

Neurosurgeons, the Friendly Neighbour 

The studies conducted in this thesis were only possible due to a close collaboration 

between the neurosurgical departments and the research lab. This highlights the 

neurosurgeon’s role as a provider of both normal and tumour tissue from which stem 

cells can be isolated. Equally important, it is the neurosurgeons who will ultimately 

translate bench work to the bedside by offering patients the latest treatments, which often 

stem from basic research.   
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CONCLUSIONS 

The studies in this thesis have looked at neural stem cells isolated from adult human CNS 

and brain tumours. Specifically, AHNSCs were isolated from the ventricular wall and 

filum terminale, while TSCs were isolated from AC II and GBM.   

 

Adult human neural stem cells can be isolated from the ventricular wall, propagated as 

neurospheres in vitro and serially passaged. Upon differentiation, AHNSCs exhibit 

tripotent differentiation into neurons, astrocytes and oligodendrocytes. In fact, AHNSCs 

can respond to differentiation cues and develop into neurons capable of generating 

overshooting, repetitive action potentials and communicating synaptically using 

functional glutamatergic and GABAergic receptors, fulfilling the hallmarks of a neuron 

(98). In fact, cells capable of self-renewal, proliferation and multipotent differentiation 

can also be isolated from hitherto unknown sources, namely filum terminale. This 

supports the emerging hypothesis that the CNS may be more neurogenic than previously 

postulated (230). Despite the similarities between AHNSCs and FTNPs, there are distinct 

differences between the stem cells isolated from the aforementioned sources, e.g. while 

the former adopts a neurogenic fate in vivo, the latter adopts a gliogenic fate. Our results 

highlight the putative neurogenic potential of regions such as filum terminale. Given that 

neural stem cells are potentially invaluable as tools for regenerative therapy, further 

research looking into long-term maintenance and manipulation of in vivo fate need to be 

addressed before clinical applications can be assessed.  
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Neural stem cells and TSCs share several properties, including self-renewal and 

proliferation (183). Given that TSCs can be isolated from low grade and high grade 

astrocytomas opens numerous therapeutic alternatives for the treatment of such tumours 

by targeting TSCs. Notwithstanding the similarities, TSCs exhibit several key differences 

when compared to AHNSCs including increased rate of self-renewal, proliferation as 

well as generation of morphologically aberrant tumour cells in vitro and upon 

transplantation. Taken together, this suggests that by conducting comparative studies one 

may not only elucidate the stem cell hypothesis, but identify and target TSCs while 

preserving AHNSCs. 
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FUTURE PROSPECTS  

The battle for the perfect neural stem cell is still on. Research looking at standardizing 

and optimizing culture conditions for AHNSCs has to be intensified. Equally important, 

the presence of other sources of neural stem cells needs to be investigated. The potential 

of AHNSCs to develop into diverse phenotypes including dopaminergic neurons deserves 

attention. Additionally, the influence of the microenvironment on transplanted cells is a 

very exciting field that needs examination. The elucidation of the stem cell niche, both in

vivo and in vitro is a pressing issue in basic research and learning how the niche and 

niche-related factors control stem cell fate and direct differentiation into particular cell 

types may provide new therapies in the near future. Knowledge gained may also help 

understand the aberrant tumour niches. Furthermore, the advent of novel technologies 

such as RNA interference and genomic and proteomic analyses of stem cells and their 

progeny, are tools that will not only help elucidate the biology and function of neural 

stem cells but also realize the true potential of stem cells for therapy. 

 

Based on our studies and those of other groups, it is clear that in order to identify and 

target TSCs whilst preserving AHNSCs, comparative studies between the two 

populations are essential. Subsequently, the identified targets can be used to develop new 

treatments for gliomas. Comparative studies will also help elucidate the cell of origin of 

TSCs. Given that brain tumours are still diagnosed based on histological appearance, the 

stem cell model may herald in an era where diagnosis is based on the molecular signature 

of the TSCs. Indeed, it is possible that patient specific treatments may also be available 

with immunotherapy (using the body’s immune system to find and destroy TSCs e.g. 
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vaccines) (273, 274) and gene therapy (using either suicide genes to destroy TSCs, or 

enhancer genes to cause an immune response against the patient’s own tumour) (275-

277).  

 

Another tantalizing concept is the tumour niche, which includes the tumour vasculature 

(12). The niche has a protective role, harbouring the stem cells. It may also provide 

factors to regulate stem cell proliferation and stem cell fate (278). Thus, TSCs might be 

protected from conventional therapies by factors within this niche. In the future, it is 

highly possible that drugs that disrupt the stem cell niche may provide treatment 

alternatives for brain tumours, specifically GBMs.  
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