Novel approaches to the treatment of high-grade sarcoma

by

Christoph Rainer Müller

Department of Medical Oncology and Radiotherapy
&
Department of Tumour Biology
Institute of Cancer Research
Division of Surgery and Cancer Medicine

Oslo University Hospital
Norwegian Radium Hospital

&

Institute of Clinical Medicine
Faculty of Medicine

UiO • University of Oslo
Contents

Preface ... 4
Acknowledgements ... 4
Abbreviations ... 6
List of papers ... 8
Introduction .. 9
- Sarcomas .. 9
- Genetic alterations .. 10
- Prognostic factors for sarcoma survival ... 11
 - Malignancy grade .. 11
 - Histotype .. 12
 - Metastatic status .. 12
 - Site and size .. 12
 - Demographic factors ... 12
 - Treatment related factors: ... 12
- Treatment and outcome .. 13
 - Treatment of the primary tumour ... 13
 - Systemic treatment for patients at high risk of developing metastatic disease 13
 - Treatment of patients with overt metastases .. 14
- Current challenges in the treatment of sarcomas .. 15
 - Interferon .. 16
 - Immune-mediated effects .. 17
 - Angiostatic effects ... 18
 - Intrinsic tumour suppressor activity ... 18
 - MDM2 antagonists ... 18
 - Treatment rationale .. 19
- Aims of the present study ... 21
- Summary of publications ... 22
- Results and Discussion: .. 24
 - Can outcome in OS be improved by further refinement of current treatment approaches? 24
 - Single agent IFN-α as adjuvant treatment in OS ... 27
 - Antitumour effects of interferon in experimental models ... 30
 - Effect of mdm2 inhibition in OS and LS .. 33
- Conclusions and perspectives ... 35
- References ... 37
Preface

The work presented in this thesis originates from the Oncology Clinic and the Institute for Cancer Research at the Norwegian Radiumhospital (now part of Oslo University Hospital). Clinicians and scientists form the multidisciplinary sarcoma group at the Norwegian Radiumhospital, which is closely integrated with the Scandinavian Sarcoma Group (SSG1). Founded in 1979, SSG established a network of sarcoma specialists in research, diagnostics and clinical care facilitating translational research in the Nordic countries. Wider collaborations have been established through intergroup-projects with the Italian sarcoma group (ISG2) and in an extensive European-American study group on osteosarcoma (EURAMOS3). When working with rare tumours needing highly specialized care, centralization to expert centres and international collaboration is mandatory for improving the prospects for our patients.

Acknowledgements

This work was carried out at the Departments of Tumour Biology and Oncology, The Norwegian Radiumhospital from 2000-2005 and finished while I was employed as a clinical oncologist at the Cancer Centre of Sørlandet Hospital, Kristiansand. My research fellowship from the Norwegian Extra Foundation for Health and Rehabilitation and the Research foundation of the Norwegian Radiumhospital is greatly appreciated.

I wish to express my sincere gratitude to:
My supervisors, Gunnar Sæter and Ola Myklebost, for continuous encouragement, advice and enthusiasm. You have become family to me.
Sigbjørn Smeland for adopting a role as co-supervisor.
My colleagues, collaborators and co-authors:
Kirsten Sundby Hall, Øyvind Bruland and Jan Peter Poulsen, Gunnar Follerås and Sigmund Skjeldal, Ingeborg Taksdal, Bodil Bjerkehagen and Beth Stenwig,
Jeanne Marie Berner and Heidi Maria Namløs, Erik Paulsen and Paul Noordhuis,
Johan Bjerner, Ingrid Østensen and Florence Pedeutour,
Hans Strander, Henrik Bauer and Otte Brosjö,
Thor Alvegård, Tom Wiklund, Tomas Wiebe and Olle Björk, Helen Willen, Teddy
Holmström, Arne Kivioja, Kjell Jonsson and Odd Monge: for kind cooperation and
significant support.
Sophie Fosså, Eva Skovlund, Olav Kaalhus and Trond Stokke: for guidance.
Marita Martinsen, Thomas Halvorsen and Lena Kjempengren,
 Marwa Jalal, Kirsti Solberg Landverk,
 Liv Aagedal and Evy Nilsson: for excellent assistance.
Stine Kresse and Leonardo Meza-Zapeda, Anne Forus, Jørn Henriksen, Magne Skårn,
 Lise Ramberg, Diako Hamedi and Hege Oma Ohnstad, Kristin Andersen, Heidi
 Rasmussen, Karen-Marie Heintz, Skjalg Bruheim and Meng Yu Wang, among the
many tumour-biologists: for making the laboratory years most enjoyable.
The department head Øystein Fodstad for providing excellent facilities and Hanne
Høyfødt for their daily management.
Erlend Smeland for help with the faculty.
My colleagues at the Cancer Centre in Kristiansand for sharing the ups and downs of
 Deep South oncology and supporting my unresolved ambitions.
And finally my children Clemens, Clara and Conrad, for your love and impatience, and
my wife and best friend Christiane, for your love and patience:
Und am Ende, ganz am Ende, wird das Meer in der Erinnerung blau sein⁴.
Abbreviations

BAX Bcl-2-associated X protein
BCD combination chemotherapy of bleomycin, cyclophosphamide and
dactinomycin
BCL2 B-cell CLL/lymphoma 2
BS bone sarcoma
CDK4 cyclin-dependent kinase 4
CDKN2A cyclin-dependent kinase inhibitor 2A
CML chronic myelogenous leukaemia
COSS Cooperative Osteosarcoma Study Group
DDLS dedifferentiated liposarcoma
EBV Ebstein Barr virus
EFT Ewing family of tumours
EGFR endothelial growth factor receptor
EOI European Osteosarcoma Intergroup
EORTC European Organisation for Research and Treatment of Cancer
EURAMOS European American Osteosarcoma Study Group
FNCLCC Fédération Nationale des Centres de Lutte Contre le Cancer
GIST gastro intestinal stromal tumour
IFI16 interferon, gamma-inducible protein 16
IFITM1 interferon induced transmembrane protein 1 (9-27)
IFN interferon
IL-15 interleukin 15
IOR-OS2 Istituto ortopedico Rizzoli – osteosarcoma study 2
IRF9 interferon-regulatory factor 9
ISG Italian Sarcoma Group
ISGSSG1 Italian-Scandinavian Osteosarcoma Study 1
ISGSSG2 Italian-Scandinavian Osteosarcoma Study 2
JAK Janus kinase
KI Karolinska Institute
KS Karolinska Hospital
LS liposarcoma
MAP combination chemotherapy of methotrexate, doxorubicin and cisplatinum
MDM2 Mdm2 p53 binding protein homolog (mouse)
MDM4 Mdm4 p53 binding protein homolog (mouse)
MPNET malign peripheral neuroectodermal tumour
MTX Methotrexate
NCI National Cancer Institute
NF1 neurofibromin 1
OAS oligo adenylate synthetase
OS osteosarcoma
p53 tumour protein p53
PARP poly (ADP ribose) polymerase
PEG polyethylene glycol
RB1 retinoblastoma 1
SS18 synovial sarcoma translocation, chromosome 18
SSG Scandinavian Sarcoma Group
SSGII SSG study II (1. Scandinavian osteosarcoma study)
SSG VIII SSG study VIII (2. Scandinavian osteosarcoma study)
SSX synovial sarcoma, X breakpoint 1
STAT signal transducer and activator of transcription
STS soft tissue sarcoma
TP53 tumour protein p53
TUNEL terminal deoxynucleotidyl transferase dUTP nick end labelling
USP7 ubiquitin specific peptidase 7 (herpes virus-associated) (HAUSP)
VIG combination chemotherapy of etoposide, ifosfamide and granulocyte growth factor
WDLS well differentiated liposarcoma
XAF1 X-linked inhibitor of apoptosis (XIAP) - associated factor 1
List of papers

* contributed equally
Introduction

Sarcomas

The mesoderm gives rise to bone, cartilage, muscle, endothelium and blood cells. Non-haematological malignant tumours resembling these tissues are called sarcomas. The majority of sarcomas are thought to arise in pluripotent mesenchymal stem cells with the exception of a few neoplasms of probable neuroectodermal origin (Ewing family of tumours). Sarcomas are rare tumours with a stable incidence of 1% of all malignancies5, 6, but are relatively more common in childhood and adolescence where they constitute 6-7%7. Sarcomas are traditionally subdivided into two main groups, soft tissue sarcomas (STS) originating from soft tissues and bone sarcomas (BS) originating from bone or cartilage.

Among over 50 subtypes of STS8, the four most common adult subtypes are pleomorphic undifferentiated sarcoma constituting 20-70% of STS, liposarcoma 10-16%, fibrosarcoma <10-65% and leiomyosarcoma 5-10%. The ranges stated illustrate significant changes in the perception and definition of sarcoma histotypes over time and between pathologists9. Median age for STS as a group is 65 years8. The most common STS’ of childhood are rhabdomyosarcoma and fibrosarcoma7.

Bone sarcomas are divided into osteosarcoma (OS), chondrosarcoma and Ewing’s sarcoma, with a peak incidence in late childhood/adolescence for both OS and Ewing’s sarcoma, as opposed to chondrosarcoma, which is essentially a tumour of adulthood10.

The \textit{aetiology} of sarcomas is poorly understood. Risk factors include chemicals (phenoxyacetic acids and chlorophenols used as herbicides11; dioxin12, 13 vinyl chloride14, 15, previous radiotherapy16, 17, viral infections (human herpes virus 8 is the causative agent of Kaposi’s sarcoma)16, EBV in the development of smooth muscle tumours19 and acquired immunological defects. Some germ line mutations affecting tumour suppressor genes dispose for specific sarcomas (e.g. p53 in the Li Fraumeni syndrome20, Rb in retinoblastoma21, NF1 in neurofibromatosis related MPNET22 and c-kit in GIST23).
Sarcomas may originate at any anatomic site and the distribution varies greatly by histological subtype and within subtypes. Roughly half of STS are localized in the extremities\(^2^4\), and a similar distribution is found for bone sarcomas as a group. For OS approximately 90% are localized to the extremities\(^2^5\).

Genetic alterations

An estimated 15-20% of sarcomas harbour specific chromosomal translocations\(^2^6\) (table 1). The resulting chimeric proteins are important for the biology of these tumours, commonly acting as abnormal transcription factors deregulating downstream genes in critical signalling pathways. The strong relationship between specific translocations and distinct sarcoma types indicate that they represent early and tumour-driving events in tumour genesis\(^2^7\), perhaps at the level of the suggested sarcoma stem cells. Fusions genes have become an important part of modern sarcoma diagnostics and variants of fusion genes may be associated with differences in outcome (e.g. in Ewing’s sarcoma and synovial sarcoma\(^2^8\)). The fusion gene products or their downstream signalling pathways may represent potential targets for treatment\(^2^9\).

<table>
<thead>
<tr>
<th>Tumour</th>
<th>Chromosomal Aberration</th>
<th>Fusion Gene</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alveolar rhabdomyosarcoma</td>
<td>t(1;13)(p36;q14)</td>
<td>PAX7–FOXO1</td>
</tr>
<tr>
<td></td>
<td>t(2;13)(q36;q14)</td>
<td>PAX3–FOXO1</td>
</tr>
<tr>
<td>Alveolar soft part sarcoma</td>
<td>t(X;17)(p11;q25)</td>
<td>ASPSCR1–TFE3</td>
</tr>
<tr>
<td>Angiomatoid fibrous histiocytes</td>
<td>t(2;22)(q33;q12)</td>
<td>EWSR1–CREB1</td>
</tr>
<tr>
<td>Clear cell sarcoma</td>
<td>t(12;22)(q13;q12)</td>
<td>EWSR1–ATF1</td>
</tr>
<tr>
<td>Dermatofibrosarcoma protuberans</td>
<td>t(17;22)(q22;q13)</td>
<td>COL1A1–PDGFB</td>
</tr>
<tr>
<td>Desmoplastic small round-cell tumour</td>
<td>t(11;22)(p13;q12)</td>
<td>EWSR1–WT1</td>
</tr>
<tr>
<td>Endometrial stromal sarcoma</td>
<td>t(7;17)(p15;q11)</td>
<td>JAZF1–SUZ12</td>
</tr>
<tr>
<td>Ewing family of tumours</td>
<td>t(11;22)(q24;q12)</td>
<td>EWSR1–FLI1</td>
</tr>
<tr>
<td></td>
<td>ins(21;22)(q22;q12q12)</td>
<td>EWSR1–ERG</td>
</tr>
<tr>
<td>Fibromyxoid sarcoma</td>
<td>t(7;16)(p11;q11)</td>
<td>FUS–CREB3L2</td>
</tr>
<tr>
<td>Liposarcoma, myxoid</td>
<td>t(12;16)(q13;p11)</td>
<td>FUS–DDIT3</td>
</tr>
<tr>
<td>Synovial sarcoma</td>
<td>t(X;18)(p11;q11)</td>
<td>SS18–SSX</td>
</tr>
</tbody>
</table>

However, the majority of sarcomas have complex and variable genetic changes without balanced translocations. These sarcomas frequently have dysfunctional regulation of the cell cycle\(^3^0,3^1\), either by inactivating mutational events in central regulators (e.g. \(TP53, CDKN2A\) or \(RB1\)), or increased copy numbers of antagonists (e.g. \(MDM2\) or ...
CDK4). These and other yet unknown factors contribute to the genetic instability in these tumours.

Prognostic factors for sarcoma survival

At present, the treatment approach to sarcomas is based on the malignancy grade, tumour type, resectability and the presence or absence of overt metastases. Other patient, tumour or treatment specific factors have been proven to be of prognostic importance, and may guide treatment decisions to some extent, and several of these factors are common to most sarcoma entities (table 2).

<table>
<thead>
<tr>
<th>factor</th>
<th>STS</th>
<th>OS</th>
<th>EFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>tumour</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>low malignancy grade</td>
<td>yes</td>
<td>yes</td>
<td>n.a.**</td>
</tr>
<tr>
<td>non-metastatic</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Extremity localization</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>small tumour volume</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>treatment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>complete surgical resection</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>chemotherapy</td>
<td>no*</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>radiotherapy</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>initial treatment at expert centre</td>
<td>yes</td>
<td>yes***</td>
<td>yes***</td>
</tr>
</tbody>
</table>

yes: of proven importance; no: not of proven importance
*exception for STS in children
** not applicable, Ewing's family of tumours are always regarded of high malignancy grade
*** low patient volumes make statistics uncertain, very few patients are treated outside paediatric oncology centres

Malignancy grade: Malignancy grading is applied for the majority of STS and BS to improve the prediction of local aggressiveness and metastatic potential. The malignancy grade is usually based on the pathologist’s evaluation of intratumoural necrosis, mitotic rate and degree of cellular and architectural differentiation. The two most widely used systems are the FNCLCC33 and the NCI system34. However, the risk of metastasis varies within the group of tumours with high malignancy grade, and more recently prognostication systems have been developed by combining several tumour features. Engellau et al. proposed a stepwise model of
predicting risk of metastatic relapse for non-metastatic high grade STS defining two risk groups. High risk tumours showed vascular invasion or at least two of three other features: tumour size >8cm, tumour necrosis and peripheral infiltrative growth pattern. The high risk group had a cumulative incidence of metastasis at five years of 51% compared to 5% for the low risk group.

Histotype: Some sarcoma histotypes have a uniform behaviour and are thus independent of malignancy grading and prognostication systems. These include lipoma-like liposarcomas (relatively benign behaviour), myxoid round-cell liposarcomas (behaviour determined by the amount of round cells), dedifferentiated liposarcomas (highly malignant), synovial sarcoma (highly malignant), classical central OS (highly malignant), superficial (parosteal) OS (low malignancy) and EFT (highly malignant).

Metastatic status: The presence of overt metastatic disease is the most important adverse predictor of outcome for soft tissue and bone sarcomas (table2). The site and number of metastases has further importance as isolated pulmonary metastases carry significantly better prognosis in both bone sarcoma and STS. This is due to the resectability of macroscopic disease, and underscores that chemotherapy is an ineffective substitute for complete surgical resection.

Site and size: Extremity localization is a positive prognosticator due to the resectability of the tumour. Bone sarcomas localized to the axial skeleton carry a grave prognosis. Retroperitoneal liposarcomas present with larger tumour volumes and are more often resected with marginal or intralesional margins than appendicular liposarcomas. Small tumour volume is independently and positively related to outcome in the both STS and bone sarcomas.

Demographic factors: Young age is a positive predictor of survival in STS, OS and EFT. Gender has been an inconsistent marker weakly favouring female sex and occasionally reaching statistical significance.

Treatment related factors: Treatment at a sarcoma centre improves the outcome in STS and supposedly in bone sarcomas. Achieving a complete resection is of
central importance for the risk of relapse and survival for STS and bone sarcomas (table2)25, 41. The likelihood of chemotherapy response is not sufficiently predicted by the factors mentioned above. High dose regimes can improve tumour sensitivity to methotrexate in OS47, but a pre-treatment prediction of response to chemotherapeutic agents is not possible today. Recently described polymorphisms in folate metabolism modulating the response to methotrexate might prove useful48. Predictive impact of P-glycoprotein expression for chemotherapy resistance and survival has been shown in a prospective study but has so far not gained general acceptance or therapeutic impact49, 50, 51. Preoperative chemotherapy in OS and Ewing sarcoma allows evaluation of the degree of residual viable tumour tissue at the time of the surgery, and this factor has been shown to be strongly predictive of long term outcome25, 42, 52; The hypothesis that it may be possible to improve the prospects for patients with initially poor tumour response is a central issue in the study forming the basis for paper 1.

Treatment and outcome

Treatment of the primary tumour: In both BS and STS, surgery is required to achieve local control of the primary tumour, and only in EFT may radiotherapy alone be successful in gaining local control53, 54. The importance of a complete resection of all identifiable tumour tissue has been demonstrated also for metastatic sarcoma55-57. With high quality surgery in extremity localized OS a local relapse rate of only ~5% is reported in recent series25, 58, despite high rates of limb-salvage surgery. In unselected series of STS of the extremity and the trunk wall, a local relapse rate of 15-27% is observed41, 59. The commonly contaminated resection margins in retroperitoneal sarcomas are the main cause for a local relapse rate of 59-68\%60. Pre-operative radiotherapy may render some STS operable and post-operative radiotherapy can improve local control for STS subgroups and EFT with inadequate surgery61, 62.

Systemic treatment for patients at high risk of developing metastatic disease: Most sarcomas of childhood and adolescence are viewed as systemic diseases at the time of
diagnosis, and may be cured by adjuvant chemotherapy. In OS, four drugs are most active and have become the basis of modern combination treatment: methotrexate63, doxorubicin64, cisplatinum65 and Ifosfamide66, 67. Pre-operative chemotherapy for bone sarcomas was introduced in the late 1970ies68, 69 to allow for the construction of custom made prostheses, and to attack probable micrometastatic disease as early as possible. However, the addition of pre-operative systemic treatment has not given any proven survival benefit70. Introduction of aggressive chemotherapy three decades ago has resulted in a considerable increase of 5-year overall survival for localized osteosarcoma, Ewing family of tumours and rhabdomyosarcoma from 10-25% to 60-80%71-73.

Although high-grade adult STS carry a significant risk of distant metastases, the use of adjuvant chemotherapy remains controversial. According to a recent meta-analysis adjuvant doxorubicin improves local and distant control rates by 6% at ten years, and an update of this meta analysis in 2007 showed a significant survival benefit of 6%74, 75. However, the EORTC 62931 study randomizing adjuvant doxorubicin and ifosfamide vs. observation alone has reported no improved progression free survival or overall survival76. Thus, there is no definitive proven benefit of adjuvant chemotherapy in the broad group of adult STS. However, studies have commonly lumped together tumours with varying risk profiles and chemosensitivity, possibly masking effects in more chemosensitive subgroups like synovial sarcoma and myxoid liposarcoma77. The challenge lies in the small patient subgroups limiting the possibility for targeted subgroup studies.

For a mixed series of 1646 adult, resectable and nonmetastatic STS registered by the SSG, 5-year tumour related survival was over 70\%43. Survival rates of retroperitoneal sarcoma are reported from 37-60\%78 and vary by the histological subtype. One group found a 92\% 5-year survival rate for well differentiated liposarcoma compared to 36\% for dedifferentiated liposarcoma79.

Survival rates

Treatment of patients with overt metastases: A limited number of resectable metastases may be a curable situation in both OS and adult STS55, 57. Survival depends on whether a complete surgical remission can be achieved. 5-year overall survival for metastatic OS was reported with 29\%; when a complete remission could be achieved, survival exceeded the 40\% mark, whereas unresectable metastatic disease carried a very poor
prognosis with no survivors after 5 years57. Similarly for STS, patients selected for resectable pulmonary metastases achieved a 5-year overall survival of 38\%55 whereas survival remains poor for most patients with a primary metastatic STS. A Chochrane meta analysis of chemotherapy in metastatic STS80 reports response rates to single agent doxorubicin ranging from 16-27\% and median survival from 7.3 - 12.7 month with no additional benefit combining doxorubicin with additional agents. A combined analysis of 7 prospective EORTC studies including 2187 patients reported survival rates of 8\% at 5 years and 5.6\% at 8 years38,54. The most significant predictor for long-term survival was response to chemotherapy and survivors were observed even in the patients with unfavourable prognosis as liver metastasis and high grade tumours. Dose escalation trials in adult STS have not been successful81,82, and single agent doxorubicin remains the standard treatment for metastatic adult STS83,84 with the notable exception of imatinib in GIST85.

Current challenges in the treatment of sarcomas

Control of the primary tumour is not the main challenge, as the constant development of advanced surgical techniques and the combination with radiotherapy for selected patients in general gives low rates of local recurrence when performed by expert centres. Some tumour localizations remain problematic due to limited surgical access, e.g. in the head and neck, spine, thorax, retroperitoneum and pelvis. The main challenge is to develop more efficient systemic treatment for patients with overt metastatic disease or for patients at high risk for developing such metastases. In OS and EFT, where chemotherapy has improved outcome significantly, the challenge remains to increase event-free survival beyond 60-70\% for patients with localized disease and beyond 10-30\% for patients with initial metastases. To increase survival for poor histological responders after neo-adjuvant treatment is also imperative, as is the reduction of the current formidable toxicity.

For the heterogeneous group of STS the main challenges are to more accurately identify the patients at high risk of developing metastatic disease, to develop more effective systemic treatment and to adapt treatment to the tumour biology of the individual subgroups. In the majority of STS's the efficacy of existing systemic treatment
is poor; the role of adjuvant chemotherapy remains disputed and combination regimes have not clearly surpassed single agent doxorubicin as the standard of care.

Much progress has been made to elucidate the biological basis for some subtypes of sarcomas, and for a few of these, treatment success has been achieved by targeting key signalling pathways. This approach appears to be the most promising for all sarcomas. However, the low incidence, tumour heterogeneity and need for an expert multidisciplinary approach increase the challenges related to improving treatment results, and both centralization of patients to expert centres and large multicenter collaborations are important for further improvement. In fact it may be argued that a significant potential in improving particularly adult STS outcome remains unrealized by treating many patients at local hospitals without the necessary expertise. The effect of securing correct referral to expert centres without prior surgery for all patients may outweigh any novel research impact, at least in the short term.

New drug candidates investigated at The Norwegian Radium Hospital.

Our group has developed a specific interest in the possible role of interferon and mdm2 inhibitors. Interferon has the advantage of being a developed and well known drug for other conditions (table 3), and some data have suggested that interferon has activity in OS (paper 2). As for mdm2, our group’s long standing interest in the 12q13-14 amplicon was the background for our collaborative work with L. Vassilev on preclinical studies of mdm2 amplified sarcoma cell lines.

Before discussing the actual work performed in this study a short general background will be given for these two new candidate approaches in sarcoma treatment.

Interferon

Five decades after their discovery, interferons (IFNs) have clearly defined indications in virology, neurology and oncology (table 3), but many important questions remain unanswered. The only sarcoma evidently sensitive to IFN is Kaposi’s sarcoma, whereas a possible role in the treatment of Osteosarcomas is under investigation.
Table 3: clinical applications of type I interferons

<table>
<thead>
<tr>
<th>indication</th>
<th>non-malignant</th>
<th>malignant</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>chronic viral hepatitis</td>
<td>AIDS-related Kaposi’s sarcoma</td>
</tr>
<tr>
<td></td>
<td>papillomatosis and condylomata acuminta</td>
<td>chronic myeloid leukaemia</td>
</tr>
<tr>
<td></td>
<td>haemangioma of infancy</td>
<td>myelomatosis</td>
</tr>
<tr>
<td></td>
<td>multiple sclerosis</td>
<td>hairy cell leukaemia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>essential thrombocytopenia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>carcinoid tumours</td>
</tr>
<tr>
<td></td>
<td></td>
<td>malignant melanoma</td>
</tr>
<tr>
<td></td>
<td></td>
<td>renal cell carcinoma</td>
</tr>
</tbody>
</table>

Originally grouped according to the secreting cell type, IFNs are now classified into type I, II and III according to receptor specificity and sequence homology. The nine distinct type I IFNs bind to a common heterodimeric receptor. IFN-α (previously termed leukocyte IFN) consist of 13 different subtypes whereas IFN-β (previously fibroblast IFN) and other type I IFNs exist only in one form.

Antitumour activity of type I (α,β) IFNs was demonstrated in the late 1960ies. These effects can be separated into host dependent mechanisms (innate and adaptive immunity, angiostatic effect) and intrinsic tumour suppressor activity (mediated by expression of interferon stimulated genes).

Immune-mediated effects: IFNs exert a broad range of immunoregulatory effects and promote immune functions. For example, type 1 IFNs activate dendritic cells, increase the cytolytic activity of macrophages and NK cells, induce the production of IL-15, prime T-cells and increase survival of T-cells leading to tumour cell kill, although the relative physiological relevance of these functions remains unclear. Endogenous IFNs play a constitutive role in restricting emergence and development of tumours. Recently, both type 1 and 2 IFNs have been shown to be involved in the interactions between tumour and the immune system (immunoediting).
Angiostatic effects: IFN was the first recognized angiostatic agent with clinical efficacy in angioproliferative tumours like Kaposi’s sarcoma and life threatening haemangioma of infancy88, 94. This angiostatic effect is not related to the antiproliferative effects of interferons95 and dependent on frequent administration of an optimal biological dose and not the maximal tolerated dose in a bladder cancer model96.

Intrinsic tumour suppressor activity: IFNs exert direct tumour suppressor activity although the detailed mechanism is not yet known. Interaction with the p53 pathway has been demonstrated97. IFNs can halt cell cycle progression and this process is paralleled by OAS increase, inhibition of proto-oncogene expression and it may be related to cell differentiation98. IFN-α-mediated apoptosis in malignant cells is largely dependent on the activation of different caspases, and is also associated with the disruption of mitochondrial integrity and release of cytochrome c99. Recent genome wide profiling efforts have established several hundreds of IFN stimulated genes with largely undefined importance for the treatment response100-102.

MDM2 antagonists

The tumour suppressor protein p53, kept at very low levels in unstressed cells, is rapidly stabilized and activated in response to environmental and intracellular stress. p53 exerts its antitumour effects primarily by transcriptional activation leading to induction of cell cycle arrest, DNA repair, apoptosis or senescence103. In addition to transcriptional activation and probably less important, p53 exerts transcription independent pro-apoptotic function by BAX mediated stabilization of the mitochondrial membrane104.

p53 and MDM2 form an auto-regulatory feedback loop by which the two proteins mutually control each other's function. Targeting the MDM2 gene promoter, p53 increases cellular MDM2 levels. MDM2 inactivates p53 by blocking its transactivation domain105, promotes nuclear export of p53106 and p53 degradation107. Cellular stress signals release p53 from MDM2, a process thought to be mediated by specific
phosphorylation of both proteins108. More recent data indicate that MDM2 levels are critical for p53 control and that destabilisation of MDM2 is an important factor for initiating a p53 response109.

Approximately half of all malignancies including sarcomas carry a deletion or inactivating point mutation of \textit{TP53}, and a significant proportion of malignancies with wt \textit{TP53} have defects in the signalling network making the p53 response dysfunctional110. In OS, 22-39\% have been found to have p53 mutations111,112; a further 16\% of OS and 29\% of liposarcomas deactivate p53 by an \textit{MDM2} amplification113. MDM2 protein overexpression in the absence of gene amplification has been observed113. Investigating the \textit{MDM2} gene variant SNP309, even a modest 2-4 fold overexpression of MDM2 could be shown to promote cancer development114.

\textit{Treatment rationale}: as tumours with \textit{MDM2} gene amplification almost exclusively retain wild-type \textit{TP53} but loose p53 tumour suppressive function116,117, inhibiting MDM2 might reactivate p53 in cancer cells. Recently, the first potent and selective small-molecule MDM2 antagonists, the nutlins, were identified from a class of cis-imidazoline compounds. Nutlins bind to the p53 pocket of MDM2 and inhibit the p53–MDM2 interaction with a high degree of specificity. In vivo treatment with Nutlin 3a was well tolerated in several xenografts models. Proliferating cancer cells retaining wild type p53 were effectively blocked in G1 and G2 phases, and underwent apoptosis when exposed to low micromolar concentrations of nutlins87. No anti tumour effect was observed in cells carrying a mutant or deleted p53 indicating that an intact p53 pathway is necessary for this effect.
Aims of the present study

During the last decades multidisciplinary efforts have changed the prospects for many sarcoma patients considerably. Further improvements in the treatment of these rare tumours will depend on conquering the challenge of inherent and acquired chemotherapy resistance, in particular in patients with inoperable or overt metastatic disease.

The effect of systemic treatment may be improved by at least three general strategies:

1. Optimization of the administration of established agents and combination regimens
2. Further research into identified promising agents which appear to have effect in sarcoma, but where current evidence is insufficient. Aims should be both to demonstrate clear clinical efficacy and to increase the knowledge of mechanisms of action.
3. Development of entirely new drugs which may be efficacious alone or in combination with known agents. Currently the most promising approach is targeting the signalling networks of sarcoma cells and their microenvironment.

This thesis is based on projects illustrating each of these three strategic approaches, with the following aims:

1. To examine the effect of increased chemotherapy aggressiveness in osteosarcoma, and to use replacement salvage chemotherapy to increase survival in patients with poor histological tumour response to pre-operative treatment
2. To further assess interferon as an agent in osteosarcoma by
 - Analysing long-term effects after adjuvant treatment with single agent interferon in a clinical series and
 - Investigating its antitumour effect and effects on signalling in a xenograft model
3. To study the effects of a new compound, the small molecular MDM2 antagonist Nutlin, in soft tissue sarcoma cell lines selected for amplification of the MDM2 gene.
Summary of publications

Paper I:
Scandinavian Sarcoma Group Osteosarcoma Study SSG VIII: prognostic factors for outcome and the role of replacement salvage chemotherapy for poor histological responders.

SSG VIII applied a combination of the current most effective drugs for the treatment of osteosarcoma. The results with relapse-free and overall survival of 63% and 74% at 5 years represent an apparent improvement over the less intense preceding SSG II regimen, and the results are comparable to the best published series. The salvage chemotherapy approach with etoposide and ifosfamide failed to improve results for poor histological responders, as continued exposure to the conventional agents doxorubicin, cisplatinum and methotrexate appeared at least as effective as switching to a dose-intense regimen with the new drugs. Unexpectedly, the data showed an independent gender specific survival advantage for female patients which remains unexplained.

Paper II:
Interferon-α as the only adjuvant treatment in high grade osteosarcoma: Long term results of the Karolinska Hospital series.

The Karolinska series represents a unique treatment approach for nonmetastatic high-grade osteosarcoma with primary resection followed by single agent (semi-purified, leukocyte) interferon-α. This consecutive series was started before the introduction of aggressive combination chemotherapy in 1971 and continued through 1990, enrolling 89 patients. The toxicity was limited and comparable to other series using long-term adjuvant IFN. The observed 10-year metastases-free and sarcoma specific survival rates were 39% and 43%, respectively. The apparently improved outcome as compared to historical controls could not be explained by second line chemotherapy at relapse, as only one of seven survivors after relapse received

22
chemotherapy. These observations suggest activity of interferon-α as adjuvant treatment in high-grade osteosarcoma.

Paper III:

Characterization of Treatment Response to Interferon –α in Osteosarcoma Xenografts

We screened five osteosarcoma xenografts for specific growth delay to IFN-α and explored molecular mechanisms involved in response and resistance by analyzing the transcriptional response. Only one of five xenografts displayed growth inhibition and this was compared to two resistant xenografts. A common set of 79 genes was identified in response to IFN-treatment independent of the growth inhibiting effect, and the majority represented well characterized interferon stimulated genes. The expression of 121 unique genes changed only in the IFN-sensitive xenograft, and subsets of these genes are involved in cell adhesion and osteogenic tissue development. Combination treatment with interferon and doxorubicin showed improved growth control rates.

Paper IV:

Potential for treatment of liposarcomas with the MDM2 antagonist Nutlin-3A

We examined the response to Nutlin-3a in a panel of five osteosarcoma and four liposarcoma cell lines. Wild type p53 cell lines displayed a dose dependent inhibition of cell proliferation when treated with increasing concentrations of Nutlin 3A. In cells with MDM2 amplification, Nutlin efficiently stabilized p53 and induced downstream p53 dependent transcription and apoptosis. An antiproliferative effect of Nutlin was also observed in cell lines with wt TP53 but without amplified MDM2, but apoptosis was not induced. Inhibiting the MDM2-p53 interaction in these cell lines reactivates an otherwise intact p53 pathway.
Results and Discussion:

Can outcome in OS be improved by further refinement of current treatment approaches?

To improve on the results from SSG II52 two assumptions were made in the planning of SSG VIII. The first was that more aggressive pre-operative treatment would improve both histological response and survival. Thus pre-operative treatment was intensified by increasing the methotrexate dose and by adding doxorubicin and cisplatinum. In the postoperative phase supposedly less effective drugs (dactinomycin, bleomycin, and vincristine) were omitted to allow for continuation of the pre-operative agents at adequate dose intensity (in good responders). The second assumption was that in poor histological responders, postoperative replacement chemotherapy with other agents (etoposide and ifosfamide) would improve outcome. The rationale for this was that the persistence of viable primary tumour tissue indicated chemoresistance also at the micrometastatic level, and that the switch to an ifosfamide/etoposide combination could circumvent this resistance. Ifosfamide had shown considerable activity in second line OS treatment66, 67, and there was already a positive Italian experience with ifosfamide/etoposide in poor histological responders72.

SSGVIII was successful in increasing both histological response and survival as compared to the preceding SSG II, and the results were comparable to those of the best contemporary studies72, 115, 116. However, the gap in outcome between good and poor histological responders remained.

Histological response to pre-operative chemotherapy is recognized to be one of the most important predictors of outcome in high-grade OS, and several trials apart from SSGVIII have tried to adjust the post-operative treatment in poor responders to improve results. Poor response to preoperative methotrexate/BCD could not be compensated by postoperative addition of doxorubicin and cisplatinum117, 52, 118, 119. To our knowledge only one study72 has been able to close the survival gap between
poor and good responders, and that was by continuing the same drugs postoperatively and add ifosfamide and etoposide in the poor responders. Our later SSG VIII study, where the same drugs were introduced but replaced the pre-operative drugs did not succeed. It should be underlined that even in poor responders survival is clearly increased over patients treated by surgery alone (from ~20% to ~55%). Poor histological response does thus not indicate total chemoresistance at the micrometastatic level, only somewhat decreased sensitivity. This is supported by the observation in the relatively large group of grade II responders, who were treated differently in two separate phases of the SSG VIII study. Patients who were switched to etoposide/ifosfamide (VIG) actually had a trend towards poorer metastasis-free survival than those continuing methotrexate, doxorubicin and cisplatinum (MAP). Therefore, the collective data from SSG VIII and IOR-OS2 indicate that adding etoposide/ifosfamide to MAP is superior to replacing MAP with the same agents.

It could be argued that the intermediate dose of ifosfamide applied in SSGVIII (4,5g/m2) was insufficient to overcome chemoresistance in the salvage arm. In retrospect a higher ifosfamide dose would appear feasible when considering the relatively low rate of grade 4 haematological toxicity after VIG.

SSGVIII supports that modern chemotherapy for OS should start with a three drug combination of methotrexate, doxorubicin and cisplatinum (MAP), and that these drugs should be continued postoperatively regardless of histological response. Our data support that adding ifosfamide and etoposide to postoperative MAP in poor responders is a better strategy than replacing MAP, and the effect of this strategy is currently being tested in the EURAMOS1 study.

The Cox regressional analysis identified low tumour volume, high serum methotrexate at 24h and female gender as independent predictors of improved metastasis-free survival. Histological response was a significant factor at the univariate level (p=0,03), but fell short of significance in the multivariate analysis. This may be due to the relatively small size of this study (113 patients). However, the increase in the fraction of good responders compared to the T10-based SSGII was not reflected by a comparable survival benefit. In their last randomized study, the EOI found that increased dose intensity correlated to the degree of necrosis but not survival indicating that necrosis is likely to be a protocol dependant variable,
and that its relative importance as predictor of survival decreases with increasing treatment intensity120.

The strong predictive power of female gender in the Scandinavian OS population is unique in the literature, and so far remains unexplained. This effect of gender was not seen in historical controls treated by surgery alone121, and indicates that one explanation could be differences in the effect of chemotherapy, e.g. through differences in drug sensitivity, pharmacokinetics and/or drug metabolism. However, there was no indication of gender-specific differences in serum methotrexate levels in SSG VIII or SSG II. Interestingly, a positive prognostic impact of female gender was also found in the KS IFN experience (paper 2), and related to a difference in drug efficacy, the combined data indicate that this would be true for both IFN and combination chemotherapy.

Earlier reports suggest that increased dose and dose intensity, in particular of doxorubicin and methotrexate, are associated with a better outcome47. Several groups including SSG have found correlations between high serum levels of methotrexate and improved histological response and survival52. SSG VIII supports these findings and found a serum methotrexate level >4.5 µM at 24h to be an independent predictor of improved metastasis-free survival, and in the subsequent ISGSSG1 study methotrexate doses were modified per patient and per course to achieve a pre-set target for serum methotrexate.

However, the data regarding the importance of chemotherapy intensity are not consistent, and a large retrospective analysis from the German cooperative osteosarcoma group could not prove that higher then average dose intensity of conventional chemotherapy correlated with better outcome122. Prospective studies have examined different strategies of further dose intensification. The ISGSSG1 trial attempted to "maximize" chemotherapy by combining ifosfamide 15 g/m2 with cisplatinum, doxorubicin, methotrexate and mandatory granulocyte colony stimulating factor support. Furthermore methotrexate treatment was optimized by modifying dose according to serum methotrexate measurements. Toxicity was increased but survival was similar to SSGVIII123.

The concept of increasing the dose intensity by compressing the treatment interval (dose-dense chemotherapy) was tested by the last EOI randomized study. A dose dense schedule of the two drug regime of doxorubicin and cisplatinum was
compared to conventional intervals and did not show a survival benefit120. Dose escalation with peripheral blood stem cell support in primary metastatic or inoperable OS was addressed by the ISGSSG2 study. The toxicity was manageable but survival rates were discouraging124. Another trial following a similar strategy in bone sarcomas with unfavourable prognosis failed to show survival benefits and reported intolerable toxicity125. Similarly, high dose chemotherapy with stem cell support has not been shown to be superior to conventional relapse therapy in relapsed patients126, 127.

Collectively the data show that osteosarcoma survival has improved during the last three decades through gradual identification of the most active agents, and to some degree by intensification of their combined use. However, further intensification beyond the current standards for methotrexate, cisplatinum, doxorubicin and ifosfamide is probably not the way for further improvement. Current short and long term toxicity is significant and needs to be reduced128. Future strategies should focus on better individualized and risk-adapted treatment with the development of robust pre-treatment markers for the individual patient. These may include individual pharmacokinetic factors. Whereas a general increase in dose intensity was not successful, an individualized dose adjustment based on drug serum levels may be pertinent for more drugs than methotrexate. However, the need for the development of new effective drugs with low toxicity is apparent.

Finally, SSG VIII represents a relatively small phase II study with all consequent limitations that are attached to the interpretation of its data. In order to properly address the future challenges for all rare tumours including OS, intergroup collaborations allowing proper randomized trial designs are essential.

Single agent IFN-\(\alpha\) as adjuvant treatment in OS

During a twenty year period, patients with resectable non-metastatic osteosarcoma were offered adjuvant IFN at the Karolinska Hospital (KS) in Stockholm129, 130. The
series was initiated in 1971 before the international introduction of effective chemotherapy, in part based on the assumption that OS might be induced by an oncogenic virus. An early indication of an effect on relapse-free survival led to the continuation of this project129. Furthermore, evolving preclinical data from the Karolinska Institute (KI)131, 132 and other institutions133-135 confirming the antitumour effect of IFN-\(\alpha\) in vitro and in vivo combined with limited toxicity136, 137 was thought to strengthen the rationale for IFN use despite the internationally evolving combination chemotherapy. When a positive effect of IFN was indicated, the diagnosis of high grade OS in the first 28 patients was subjected to a confirmatory independent review in 1976129. Additional support for diagnostic accuracy in the IFN series is provided by the close cooperation between sarcoma pathologists within SSG, with regular slide reviews and a low rate of misclassification in later studies where KS has participated (SSGVIII, ISGSSG 1).

The 89 patients given adjuvant IFN represent a consecutive series from 1971 to 1990. The distribution of primary tumour sites, age and gender is comparable to other reports25, 138, but only 9/102 patients admitted to KS were diagnosed as having detectable metastases at diagnosis. This fraction was lower than in other reports (12-20\%)25, 139, and may represent an under-diagnosis of pulmonary metastases in the KS series. A small decline in the number of IFN-treated patients in the last years is probably explained by a remapping of the health care regions leaving the Karolinska Hospital a smaller geographical catchment area.

The analysis of potential prognostic factors showed that in this limited patient material large tumour diameter, male sex and intralesional surgical margins were predictors of inferior survival. The first two factors were also reported for Scandinavian patients treated with chemotherapy (see discussion of paper 1). Inadequate margins are closely associated with the risk of local recurrence in OS25, and the relatively high rate of intralesional surgery in this series (11\%) resulted in a high rate of local recurrence (22\%) and a 2.4-fold increased risk of sarcoma specific death. This may be related to the absence of pre-operative chemotherapy in parallel with a relatively high level of ambition as regards limb salvage surgery (42\%).

A small and retrospectively collected group of patients treated in the early seventies by surgery alone at other Swedish centres had a slightly better survival than a historical
control group at the KI140. These groups were both of small size and it is important to note that survival in the KI control group (17\% after 2.5 years) is comparable to both Scandinavian121 and international reports141, 142. Thus there is no evidence of a change in the natural history of OS which can explain the improved survival in the INF-treated patients143.

This long term follow-up study of the IFN-treated OS patients from KS shows that the percentage of survivors at 10 years (43\%) is considerably higher than for historical controls treated by surgery alone (11-18\%)121, 140-142, but still appears lower then for modern combination chemotherapy (55-75\%)25, 72, 120. The data allow no conclusion as to whether the IFN dose increase in the late series was more efficacious. The survival increase found can not be assigned to second line chemotherapy as the majority of survivors remain in their first remission, and only one of the long-term survivors has received chemotherapy at relapse.

An effect from adjuvant IFN is thus clearly suggested by this experience from KS. However, it should be emphasised that the data in the KS series are derived from a consecutive patient series rather than a formal clinical study, and that the results therefore must be interpreted with considerable caution. It should also be kept in mind that there are, to our knowledge, no reports indicating that IFN has effect in metastatic disease, which has traditionally been a pre-requisite for adjuvant treatment. Unpublished experiences from KS and the Rizzoli Institute (Hans Strander and Stefano Ferrari, personal communications) indicate that there is no effect of IFN on established metastatic disease.

Thus the effect of IFN in OS remains unclear and should to be put to the test in a well designed randomized controlled trial in combination with chemotherapy. This was attempted in the COSS 80 study where patients were randomized to receive IFN-\(\beta\) or not as maintenance treatment after completing chemotherapy118 – no effect was seen. However, this trial used a low IFN dose for a short period of time. For the subgroup of good responders to preoperative chemotherapy the addition of maintenance IFN is currently being tested in EURAMOS-1. The question whether poor responders would benefit from IFN maintenance treatment is not addressed in that trial.
Antitumour effects of interferon in experimental models

In OS and other malignancies, resistance to IFN-α is common but poorly understood. A better understanding of the molecular mechanisms of response and resistance is required to effectively utilize this agent. Furthermore, biomarkers are required to select treatment options and may help to define new cellular targets.

Human OS xenografts in immuno-incompetent mice have been widely used as disease models144. Subcutaneous xenografts offer certain advantages in the study of OS. They are relatively easy to establish, make it possible to transplant human tumour samples without the prior selection process in cell culture, and have been shown to be relatively stable genetically over long passage times145, 146, giving abundant access to fresh tumour tissue. Importantly, they give the opportunity to perform repetitive therapeutic experiments. These models have been shown to be important for the preclinical assessment of treatment response144. In our research group, OS xenografts have been used to profile the response to doxorubicin, cisplatinum, ifosfamide and methotrexate147, 148 and to experimental agents.

Disadvantages of this model include a necessary selection of aggressive tumours for growth to occur, and a low inherent tendency for metastasis, probably due to the rapid growth of the primary implant not leaving time for detectable metastases to develop. Furthermore, the immune deficiency of the host and the species specific action of IFN limit this model to the study of direct antitumour effects of human relevance. However, as regards the analysis of signalling and molecular effects secondary to IFN within the cancer cells, the model may be highly relevant.

Pegylation prolongs IFN half life and is expected to augment and prolong IFN signalling149. The unexpected low response rate in the reported xenograft panel (paper 3) when compared to an older series131 and the short-lived effect on expression profiles, prompted us to examine response to unpegylated IFN, but our xenografts appeared equally resistant. Interestingly, a high daily dose of unpegylated IFN was able to induce complete remission in one IFN-sensitive xenograft. Examination of the elimination rate of PEG-IFN by radioiodine-labelling indicated a shorter half life than expected, and
shortening the dose interval improved the response to PEG-IFN in the sensitive xenograft. Others have shown that recombinant IFN-α was less effective than natural IFN-α in an OS-xenograft model150 and that IFN-α subtypes have different efficacy in several other model systems151. The diversity of type I IFNs is further highlighted by superior efficacy of IFN-β over IFN−α in some cell lines152. Our findings may indicate that recombinant IFN α2b is not the optimal IFN for the treatment of OS, although there may be indirect effects through host stroma and immune system not detected in the xenogeneic models92, 153.

To explain the low response rate it may be relevant that three of our tumours (including the sensitive one) were exposed to chemotherapy before xenografting, whereas all the Karolinska tumours were chemotherapy naïve. The sensitive xenograft being the only one of metastatic origin is interesting taking into account the disappointing clinical experience with IFN in overt metastatic osteosarcoma. Furthermore, our xenograft lines were maintained over a longer time before the experiments. Although passage number did not impact on response to chemotherapy in a previous study on these xenografts148, we can not exclude that primary IFN resistance may be caused genetic or epigenetic alterations over time. However, interferon sensitivity was documented in all together three passages of the same xenograft. Finally, there were no apparent differences in the xenografting method between our and the Swedish xenograft series. Based on only one sensitive xenograft, no firm conclusions can be drawn and findings have to be viewed as preliminary.

For the sensitive xenograft, global transcription profiling did not indicate selective impact on cell cycle regulators or cell death genes at the mRNA level. Genes reported by others, e.g. IFITM1 (9-27)101, 154 and IFI16101 were expressed in all three cell lines without apparent relation to response. We describe IFN-induced changes in cellular adhesion genes and genes involved in differentiation and suggest that these pathways may be involved in the IFN response in this particular xenograft. Again, these findings have to be viewed with caution as they are based on one xenograft only, and because the fold changes are relatively low. However, IFN-a was shown to induce differentiation in an OS model155 and increased
differentiation capacity in CML cells156, and this mechanism may correlate or perhaps contribute to a reduced proliferation rate.

The global transcriptional response demonstrated activation of central IFN stimulated genes in all three xenografts independent of a growth inhibitory effect. The activation of genes related to the innate antiviral immune response and of the adaptive cellular immune response was not correlated with the growth inhibitory effect of IFN in our model system.

Resistance to IFN has been linked to defects in signal transduction. Others have described resistance due to circulating IFN receptors157, suppressed expression of JAK158 or STAT2159, or methylation of the proapoptotic genes (XAF1)152. In our model, transactivation of IFN-stimulated genes with ISRE in promoters indicate an intact signal transduction. The observation is supported by the expression of two genes involved in the classical JAK STAT signal transduction cascade, STAT1 and IRF9. The activation of the proapoptotic genes Trial and XAF1 makes at least a broad demethylation of their promoter regions of IFN stimulated genes unlikely. Selective demethylation, post-transcriptional silencing by miRNA or selective destruction by targeting for ubiquitinilation remain untested in our model.

An interesting observation was done in pilot experiments combining IFN and doxorubicin. The combination appeared to have at least additive effects. Doxorubicin has been shown to induce cell death genes in the treatment of hepatocellular carcinoma160, but we could not show a clear induction of these genes by doxorubicin after 24h in one xenograft. A number of potential predictors of responsiveness to doxorubicin have been described in our OS xenograft system147 but were not confirmed in our study.

Once confirmed, these finding supports a strategy to combine IFN with other agents. IFN has been shown to kill multidrug resistant OS cell lines161 and synergy with other agents has been shown in the treatment of non-Hodgkin lymphoma162 and recently in the treatment of renal cell carcinoma163. The sensitisation of p53 by IFN97 would be expected to make tumours with intact TP53 more prone to many types of chemotherapy. The notion is also supported by induction of a broad IFN response on
the molecular level even in our resistant xenografts. Finally, IFN was shown to mobilise stem cells in leukaemia rendering this tumour responsive to cytotoxic chemotherapy. It remains to be shown whether this effect can be exploited in solid tumours.

Effect of mdm2 inhibition in OS and LS

The in silico development of a class of small protein antagonists of MDM2, the Nutlins, represented a major breakthrough in molecular biochemistry. Targeting the MDM2-p53 regulatory circuit is expected to reactivate the p53 pathway in a large range of tumours. At the start of this work it had already been shown that Nutlin was effective in a single osteosarcoma in vitro cell line with MDM2 amplification both when grown in vitro and in vivo. We wanted to explore the therapeutic potential of this drug in both osteosarcoma and liposarcomas depending on their status of TP53 mutation and MDM2 amplification. An initial collaboration showed for the first time efficacy in a xenograft established directly from a patient’s osteosarcoma.

In paper 4, we showed that Nutlin-3a had a dose dependent anti-proliferative effect in wild type TP53 osteo- and liposarcoma cells. The p53 protein was stabilized and its level thus increased. In MDM2 amplified cell lines, we observed a Nutlin-induced transactivation of p53 targets MDM2, CDKN1 (encoding p21) and BAX, and down regulation of BCL2. Consistent with activation of p53 function, analysis of the cell cycle profile confirmed the activation of both G1 and G2 checkpoints. TUNEL labelling, Caspase 3 activation and PARP cleavage confirmed p53 dependent induction of apoptosis as the mechanism of cell death. Nutlin at the maximal tested dose did not arrest the growth of control cell lines harbouring a TP53 mutation. Wild type TP53 cell-lines without MDM2 amplification responded only with cell cycle arrest but not apoptosis.

These findings confirm that MDM2 amplified liposarcomas and osteosarcomas contain an otherwise intact p53 pathway. A similar observation was recently made in synovial sarcoma cell lines where the fusion-protein SS18-SSX stabilizes MDM2. Resistance to genotoxic stress by the topoisomerase II inhibitors
doxorubicin and etoposide is common in both liposarcoma and synovial sarcoma and it was shown that topoisomerase inhibitors did not disrupt the MDM2-p53 interaction and that p53 remained transcriptionally inactive. In these sarcomas, MDM2 antagonism targets the driving defect in the cancer genome and, in a parallel to inhibiting constitutively active tyrosine kinases in CML167 and GIST85, carries the promise of significant clinical efficacy.

Tumours with wild type p53 and normal or low level amplification of \textit{MDM2}, as exemplified by the cell line U2OS, may also respond to MDM2 antagonists, although only with cell cycle arrest and not with apoptosis. This differential response may be caused by different affinity of p53 to the promoters of cell cycle regulators compared to proapoptotic genes, or may be explained by the complementary roles of the homologues MDM2 and MDM4 in regulating p53. It has been shown that loss of MDM2 mainly stabilized p53 levels whereas loss of MDM4 function increased p53 transactivational activity168. Whereas the MDM4 protein could be detected in U2OS, it is undetectable in cells with high level amplifications of MDM2, possibly because of MDM2 mediated degradation of MDM4169. Nutlin selectively blocks MDM2 but not MDM4170. The blocked apoptotic p53 response could be rescued by cellular stress signals that phosphorylated MDM4 dissociating the MDM4 complex with the deubiquitinylating enzyme USP7 (HAUSP) leading to reduced cellular MDM4 levels171. This mechanism could explain the synergistic effect of the selective MDM2 antagonist Nutlin and genotoxic agents in some cases172 (Ohnstad et al., unpublished). Alternatively, another as yet undetected aberration in the p53 pathway could explain the differential block of p53 apoptotic functions.

The adverse effects of unspecific genotoxic agents, particularly induction of genetic instability and secondary malignancies are irreversible and often difficult to manage. With an increasing awareness of the quality of life of sarcoma survivors128, nongenotoxic activation of the p53 pathway would therefore be an attractive therapeutic strategy for cancers with intact p53-dependent signalling173. Trials with small molecular antagonists of MDM2 have now been initiated174.
Conclusions and perspectives

The present work has attempted to address different approaches to improve the systemic treatment in high-grade sarcoma, based on the three general strategies outlined on p. 21:

1a. Improve chemotherapy with established agents (combine more agents and increase dose levels).

This approach has been beneficial for childhood STS, but has been less effective in adult STS where single agent doxorubicin remains the standard of care. In OS some intensification has been beneficial, as illustrated by the apparently improved results in SSG VIII when compared to SSG II. However, subsequent studies as exemplified by ISGSSG1 showed that further intensification added considerable toxicity without further improvement in tumour-related outcome. Similar data have been reported for the Ewing family of tumours. Thus further dose intensification is probably not the right strategy for further improvement in survival.

1b. Switch to replacement salvage chemotherapy in poor responders to pre-operative chemotherapy in osteosarcoma.

Poor response to chemotherapy remains an important treatment related prognostic factor for survival. With one possible exception, salvage strategies have not been able to compensate for an initial poor response. In SSG VIII a total replacement strategy with new agents postoperatively was unsuccessful. The collective current data indicate that when faced with a poor histological response to pre-operative chemotherapy, the addition of agents is better than altogether replacing the previous ones. It is important to realise that limited chemosensitivity as evaluated by primary tumour necrosis does not imply chemotherapy resistance at the micrometastatic level. SSGVIII and other studies show that even in poor responders, survival is elevated well above historical controls treated without chemotherapy.
2. Further studies on promising agents in clinical use having inadequate documentation of efficacy.

By doing a long term follow-up study of the Karolinska series we have confirmed that adjuvant IFN appears to give benefit in OS, but proof of efficacy is still lacking. Our attempts to further explore mechanisms of IFN sensitivity and resistance were limited by the low sample size and lack of IFN sensitivity in the xenografts. In rare tumours with significant mortality there is a natural tendency for implementing new and promising drugs too early and outside well-designed clinical trials. This highlights the necessity for large cooperative efforts in the sarcoma field, as illustrated by the EURAMOS 1 trial, which to some degree addresses the IFN question in a randomized fashion.

3. The development of novel (targeted) agents.

Molecular profiling of sarcoma subtypes will probably have considerable impact in the future. Examples to date include the identification of GIST as a separate entity with a characteristic genetic alteration which has been targeted with successful treatment. Following the human cancer genome project a few critical signalling pathways have been identified. Blocking a malfunctioning signalling network at single or multiple points in the cascade appears to be the most promising way forward. Among many emerging new agents we have selected Nutlin-3a and strengthened the case for further exploration of this substance in MDM2 amplified sarcomas. Further improvement in sarcoma survival is dependent on this type of strategy, where targeted drug development follows identification of critical signals driving the malignant phenotype. However, the increasing complexity of small-volume sarcoma subtypes and the aim to develop specific treatments for single tumour entities requires cooperation in large networks of expert centres, as established in EURAMOS, EUROEWING, CONTICANET and EUROBONET.
References

Characterization of Treatment Response to Recombinant Interferon-α2b in Osteosarcoma Xenografts

Christoph R Müller, Heidi M Namløs, Johan Bjerner, Ingrid HG Østensen, Gunnar Sæter, Sigbjørn Smeland, Øyvind S Bruland, Ola Myklebost

1 Institute for Cancer research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.
2 Department of Medical Biochemistry, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
3 Norwegian Microarray Consortium, Department of Molecular Biosciences, University of Oslo, Norway
4 Department of Oncology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
5 Faculty of Medicine, University of Oslo, Norway

Address for Correspondence: Ola Myklebost, Institute for Cancer research, The Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway. Tel.: +47:22781779. Fax.: +47:22781795. E-Mail: olam@radium.uio.no

E-mail addresses

CRM: christoph.muller@sshf.no
HMN: heidina@rr-research.no
JB: jbjerner@furst.no
IHGØ: ingrid.ostensen@fhi.no
GS: gunnar_saeter@merck.com
SS: sigbjorn.smeland@radiumhospitalet.no
ØB: oyvind.bruland@medisin.uio.no
OM: ola.myklebost@imbv.uio.no

Current address:

CRM: Cancer Centre, Sørlandet Hospital HF, N-4604 Kristiansand, Norway
JB: Fürst Medical Laboratory, N-1051 Oslo, Norway
IHGØ: Public Health Institute, N-0403 Oslo, Norway
GS: MSD Norge, N-3002 Drammen, Norway
Abstract

Interferons (IFNs) may target cancer cells both through their regulation of the immune response, effect on angiogenesis and through direct effect on cancer cells. Treatment response has been demonstrated in osteosarcoma patients, but tumour resistance to IFN-α is common. Hence, understanding the molecular mechanisms involved in response and resistance is essential for improving therapeutic efficacy. Of five xenografts screened for specific growth delay in response to treatment with unconjugated and PEGylated IFN-α2b, one displayed growth inhibition and tumour shrinkage. Growth inhibition increased on a dosing schedule of PEGylated IFN every third day. Xenografts resistant to PEGylated IFN were similarly resistant to unconjugated IFN. Combination treatment with IFN-α2b and doxorubicin resulted in improved growth control rates. Transcriptional profiling analysis of the one sensitive and two resistant xenografts identified a common set of 79 genes significantly affected by IFN-α2b treatment independent of tumour growth inhibition. All but four of the 79 genes were upregulated. The majority of these genes were well characterized IFN-stimulated genes and core members of the IFN-α signalling pathway. The expression of a set of 128 unique genes changed only in the sensitive xenograft; 52/128 genes were up-regulated. The specific gene-expression pattern seen in the responsive xenograft identified possible pathways important for the antitumor effect of IFN-α in osteosarcoma, including subsets of genes involved in cell adhesion and osteogenic tissue development. The observed improved control rates of combined treatment with IFN and doxorubicin are encouraging and should be further explored.

Keywords:
Osteosarcoma, xenograft, interferon, gene expression profiling
Abbreviations

IFN – Interferon

ISG – interferon stimulated gene

ISRE- IFN-stimulated response elements

OS - osteosarcoma

PEGylation – conjugated to poly-ethylene-glycol
Background

Osteosarcoma (OS) is the most frequent primary malignant tumour of the skeletal system in children and young adolescents. Although a multidisciplinary approach with specialized surgery and combination chemotherapy has led to significant survival improvement during the last three decades, a relapse rate of 30-40% within five years remains (Souhami et al. 1997; Bacci et al. 2000; Bielack et al. 2002; Smeland et al. 2003; Ferrari et al. 2005). Further improved survival appears to depend on the optimal integration of novel drugs into the existing treatment protocols.

Interferons (IFN) are biological response modifiers that may inhibit cancer cell growth by regulation of the immune response, inhibition of angiogenesis and direct antitumour activity (Balkwill 1985; Gresser 1989). By interactions with their specific cell surface receptors IFNs activate signal transducer and activator of transcription (STAT) complexes and initiate the classical Janus kinase-STAT (JAK-STAT) signalling pathway (Fu et al. 1992; Schindler et al. 1992). Activated STATs form complexes that bind to specific IFN-stimulated response elements (ISRE) or IFN-γ-activated site (GAS) elements within promoters of interferon stimulated genes (ISGs) to initiate transcription. In addition, non-classical signalling (involving MAPK, PI3K and NF-κB) is necessary to explain the full extent of the transcriptional gene response (Platianias 2005; Du et al. 2007).

IFN-α subtypes differ in their binding affinities to the IFN receptor and also have variable efficacy on tumour growth (Balkwill 1985; Foster and Finter 1998; Yamaoka et al. 1999). Whereas the early studies were performed with mixtures of IFNs extracted from white blood cells, most clinical trials have been performed with single-species recombinant IFN-α, and
more recently with variants conjugated to poly-ethylene-glycol (PEGylation). PEGylation delays the elimination of IFN, allowing for once weekly treatment in humans (Glue et al. 2000), and carries a promise of higher efficacy and reduced toxicity (Eggermont et al. 2008).

Direct antitumour activity in osteosarcoma has been demonstrated *in vitro* (Strander and Einhorn 1977; Dannecker et al. 1985) and *in vivo* (Masuda et al. 1983; Hofmann et al. 1985; Brosjo 1989). Pioneering work at the Karolinska Hospital in Stockholm strongly indicated single agent activity of adjuvant human IFN-α in patients with non metastatic high-grade osteosarcoma (Muller et al. 2005; Strander 2007). No clear benefit of IFN-β was observed in the only completed randomized trial testing the additional effect of IFN following conventional chemotherapy (Winkler et al. 1984). EURAMOS1, a major randomized OS trial (EURAMOS) explores sequential maintenance treatment with PEGylated IFN-α2b for the favourable prognostic subgroup with good histologic response to neoadjuvant chemotherapy with cisplatinum, doxorubicin and high-dose methotrexate. Although IFN is in some clinical use in advanced osteosarcoma, the relative contributions of direct antitumour effects, inhibition of angiogenesis and indirect immune-mediated effects are not known. Resistance to IFN is frequently seen, and an understanding of the molecular mechanisms involved in response and resistance is essential for improving the therapeutic efficacy. Furthermore, IFN-α has been effective in the treatment of multidrug resistant osteosarcoma cell lines (Manara et al. 2004) and may be a way to overcome chemotherapy resistance. We therefore investigated the growth response of PEGylated IFN-α2b and unconjugated IFN-α2b treatment and the effect of PEGylated IFN-α2b on gene expression in osteosarcoma tissue using human xenograft models. Finally, aiming at integrated bio-chemotherapy, we extended our
experimental series by combining IFN treatment with doxorubicin, which is one of the four active drugs in OS treatment (Blaney et al. 1993).

Material and methods

Animals

Female athymic mice (Balb/c: nu/nu) were bred in our animal facility, weaned after 21 days and maintained in a pathogen-free environment at controlled temperature (21 +/- 0.5°C) and humidity (55-65%) on a 12 hour light cycle. Sentinels were tested according to FELASA’s health monitoring recommendations. Groups of up to eight mice were kept in transparent polycarbonate cages (Tecniplast Eurostandard type III, Scanbur BK, Nittedal, Norway) on aspen chip bedding (B&K Universal, Hull, UK) with pellet feed (RM3, Special Diets Services, Witham, UK) and acidified water supplied *ad libitum*. Morbidity was controlled for by daily inspections focusing on behaviour, posture or weight loss. Animals were sacrificed for ethical reasons in case of weight loss >10% or tumour diameter >20 mm. Before transplantation or sacrifice by cervical dislocation mice were anaesthetised with intraperitoneal injection of 0.1mg/kg fentanyl, 5 mg/kg fluanison (Janssen Pharmaceutica, Beerse, Belgium), and 2.5 mg/kg midazolam (Roche, Basel, Switzerland).

All procedures involving animals were performed according to protocols approved by the National Research Authority in compliance with the European Convention for the Protection of Vertebrates Used for Scientific Purposes.
Xenografts

Tumour fragments were sampled from adolescent high grade osteosarcomas, four from primary tumours (TSx, KPBx, OHSx, MPAx) and one from a pulmonary metachronous metastasis (HPBx). Tumour tissue was implanted in the flanks of nude mice and propagated by serial transplantation (Bruheim et al. 2004).

The mice were allocated to treatment groups when tumours reached 50-70 μl. Tumours were measured twice weekly and tumour volumes calculated as 0.5 x length x width^2. Relative tumour volume (RTV) was calculated for each individual tumour for a specific number of days after start of treatment: RTV = Volume_{day x} / Volume_{day 0}. Tumour doubling time (TD) was defined as the time from the start of treatment to the first doubling of the median RTV. The drug effect was expressed as specific growth delay SGD = (TD_{treated} − TD_{control})/TD_{control} and treated to control rate T/C (%) = RTV_{treated} / RTV_{control}. Based on earlier experience SGD of > 1.0 and T/C of < 50% were defined as antitumour activity (Bruheim et al. 2004).

Radio-labelling of PEGylated IFN

To estimate elimination half life in mouse serum, PEGylated IFN was radio-labelled with ^{125}\text{I}. For this analysis, PEGylated IFN was radio-labelled with ^{125}\text{I} at an equimolar ratio. An Iodogen tube (Pierce) was prewashed with 1 ml of a pH 7.5 iodination buffer (25 mM Tris, 0.4 M NaCl, all Sigma). 30 μl iodination buffer and 20 MBq ^{125}\text{I} dissolved in 7 μl water was added to the iodination tube and incubated for 5 min under continuous shaking, transferred to a tube containing 50 μg interferon-α in 50 μl water and incubated for another 5 min.
Iodination was terminated by adding 50 μl of iodination buffer with 10 mg/ml of tyrosine (Sigma). Finally free and bound iodine were separated on a column (Paus et al. 1982).

Eight mice were randomly assigned to two groups. Mice were pre-treated with potassium iodide 10 μg/day in the drinking water for 5 days before subcutaneous injection with 125I-labeled PEGylated interferon-α2b at 10 and 100 μg/kg (0.3 and 3 MBq). Each mouse was sampled daily for 20-40 μl blood with a heparinised microcapillary (capillary tubes for microhematokrit, art. Nr. 110690, Kebo-Lab Stockholm) (Hem et al. 1998). At the indicated time points (24 h, 7 days) mice were anesthetized, cardially aspirated and killed before sampling tumour-tissue and hind leg muscle. Serum was spun for 7 minutes at 12 800 rpm in a Hematokrit 24 centrifuge (Hettich Zentrifugen), diluted in PBS, and tissue samples were minced in PBS before filtration on a NAP-5 column (Pharmacia Biotech) equilibrated with PBS, and the radioactivity was counted in a Wallac automatic gamma counter (Perkin Elmer Life Science) together with samples of known activity. We found excellent correlation between the capillary plasma and cardial serum measurements (r = 0.99).

Drugs

Unconjugated IFN-α2b (Intron A, Schering Plough, Oslo, Norway, specific activity 2.6x10⁸ IU/mg protein) was administered using a prefilled injection pen. MonoPEGylated IFN-α2b (PEG-INTRON®, Schering Plough, specific activity 6.4x10⁷ IU/mg protein) was reconstituted in water. Stock solutions of diluted PEGylated IFN were stored for a maximum of 2 weeks at -80°C. Immediately before use the stock was diluted with PBS + BSA (Sanceau et al. 2002) to the final concentration in a volume of 0.1 ml. IFNs were injected subcutaneously (s.c.) to
the lower back of the mice. Control mice were treated with s.c. PBS + BSA. Doxorubicin (Adriamycin, Pharmacia Upjohn, Stockholm, Sweden) was dissolved in physiological saline and administered intravenously (i.v.).

Unconjugated IFN was administered at daily doses of 30,000, 300,000 or 1 million IU/mouse (equivalent to weekly doses of 40, 400 or 1350 µg/kg). PEGylated IFN was tested at weekly doses of 10, 100 or 300 µg/kg or every third day at an equivalent dose of 4.3, 43 or 129µg/kg. The total treatment interval for IFN was 3 weeks. Combined treatment with IFN and doxorubicin was started with 10 or 100 µg/kg/week PEGylated IFN followed 24 hours later by 8mg/kg doxorubicin equalling the maximal tolerated dose (Bruheim et al. 2004); the doxorubicin injection was repeated once after a week.

For microarray experiments mice were treated with 100 µg/kg PEGylated IFN-α2b and the tissue were sampled both 24 and 48 hours later. In the combination group, mice were treated with 100 µg/kg PEGylated IFN-α2b, followed 24 hours later by 8 mg/kg doxorubicin. Tissue was sampled 24 hours after the doxorubicin treatment.

Gene expression microarray analysis

RNA isolation, labelling and microarray hybridizations. Tissue samples were snap frozen on liquid nitrogen and stored at -80°C until use. Total RNA was extracted using TRIzol (Invitrogen, Carlsbad, CA, USA) and stored at -80°C. Samples were quantified on a NanoDrop spectrophotometer (NanoDrop Technologies Inc., Wilmington, DE, USA) and
RNA integrity was determined on Bioanalyzer 2100 (Agilent Technologies, Palo Alto, CA, USA). RNA from several animals was pooled. In the initial experiments hybridizations were done on cDNA arrays printed at the core facility of the Norwegian Microarray Consortium at the Norwegian Radium Hospital (Oslo, Norway) as described earlier (Prasmickaite et al. 2006). For the final experiments amplification and labelling of 500 ng RNA from treated and untreated TSx, MPAx and HPBx xenografts was performed using the Illumina TotalPrep RNA amplification kit (Illumina Inc., San Diego, CA, USA). The microarray experiments were done using the Whole-Genome Gene Expression Direct Hybridization Assay and Illumina Human-6 Expression BeadChips version 2 arrays (Illumina Inc.) consisting of >48,000 different probes represented with an average 30-fold redundancy across the array. Technical replicates were hybridized for all samples. All laboratory processing and hybridisations were performed according to manufacturer’s protocols.

Microarray pre-processing and analysis. The slides were scanned with the BeadArray Reader (Illumina, Inc.) and data extraction and initial quality control of the bead summary raw data were performed using BeadStudio (version 3.1.3.0) from Illumina and the Gene Expression module 3.2.6. Additional quality control before and after quantile normalization and pre-processing was performed with the R package (Du et al. 2007; Du et al. 2008; Lin et al. 2008) which is a part of the Bioconductor project (R-Development-Core-Team 2009) and the data was annotated using the HumanWG-6_V2_R4_11223189_A annotation file from Illumina. Changes in gene expression were detected at the probe level with one gene represented by one or several probes. To find probes that were differentially expressed between IFN treated and untreated samples for each of the xenografts, we applied linear models for microarray data (Limma) significance analysis with a moderated t-statistic using a
simple Bayesian model (Smyth 2004). The cut-off value for log2-fold-change was set to 0.57 (fold-change <1.5) and the p-value was adjusted for multiple testing by Benjamini and Hochberg’s method (Benjamini and Hochberg 1995) with restriction p <0.01. When identifying probes related to IFN resistance, the difference in expression levels between the sensitive and each of the resistant xenografts had to be at least 1.5 fold. The discriminatory gene lists were further analysed in the online Database for Annotation, Visualization and Integrated Discovery (DAVID, release 2008) (DAVID; Dennis et al. 2003) to organize the genes and identify enrichment based on common functional features in KEGG biochemical pathways and Panther ontologies Biological Process and Molecular Function. To measure the gene-enrichment in annotation terms the number of genes on the differentially expressed lists were compared to all the genes on the Illumina array. The significance of enrichment was indicated by p-values calculated as EASE score (Hosack et al. 2003), a modified Fisher Exact P-Value for gene enrichment analysis, and the cut-off was set to p <0.01. The data was submitted to ArrayExpress with accession E-TABM-707.

Interferome, a recently published database of ISGs and putative ISRE in the promoters of these genes (Interferome; Samarajiwa et al. 2008) was used to investigate IFN signatures in the gene lists of differentially expressed genes.
Results

Treatment response of the xenografts

Of a total of five osteosarcoma xenografts screened for growth inhibition in response to treatment with PEGylated IFN-α2b, only one (HPBx) was found to be sensitive (Figure 1). Xenografts resistant to PEGylated IFN were also resistant to treatment with unconjugated IFN (Figure 1; G, H). In the sensitive xenograft (HPBx), weekly administration of 100 µg/kg PEGylated IFN gave a weak response (specific growth delay of 0.25 and a treated to control rate of 69%) (Figure 1C). Due to strong growth inhibition of unpegylated IFN in the same xenograft (Figure 1A), we examined the half life PEGylated IFN in our model. Iodination of PEGylated IFN indicated a half-life of 15-16 hours in nude mice, compared to 27-39 hours in humans (Glue et al. 2000) (Figure 2). An adapted treatment schedule of PEGylated IFN every third day at a dose equivalent of 100 and 300 µg/kg/week improved efficacy compared to weekly administrations and strongly suppressed tumour growth (specific growth delay of 1.25 and 7.5; treated to control rate of 15% and 5%, Figure 1B). Daily treatment with unconjugated IFN at a dose equivalent of 40µg/kg/week (30,000 IU/mouse/day) was less effective (specific growth delay of 0.75 and a treated to control rate of 30%) whereas a dose of 400µg/kg/week (300,000 IU/mouse/day) for 21 days prevented any regrowth of the sensitive xenograft for a period of at least 90 days after end of treatment. We observed a dose-response relationship for both agents (Figure 1B).
Combined treatment with doxorubicin and PEGylated IFN. Pilot experiments were performed examining the potential of concomitant treatment of the sensitive xenograft (HPBx) with IFN and doxorubicin. When the IFN-sensitive xenograft HPBx was treated with 8 mg/kg doxorubicin as monotherapy a moderate growth delay was obtained (specific growth delay 1.25, treated to control rate 44%). Treatment with PEGylated IFN followed by doxorubicin 24 hours later was considerably more effective than monotherapy with either doxorubicin or IFN (specific growth delay up to 2.5, treated to control rate of 26%; Figure 1D).

Response in gene expression

Initial analyses of time course and dose response. Initial experiments were performed to investigate the time course and dose-dependence of the response to PEGylated IFN (Figure 3). Known ISGs were among the strongest induced, and showed highest expression levels with the highest dose and peaked within 12-24 hours. Based on these initial results we selected a dose of 100 μg/kg PEGylated IFN for 24 hours for further experiments with the three xenografts HPBx, TSx and MPAx, representing the one sensitive and two resistant xenografts, respectively.

Global changes in gene expression. Treatment with PEGylated IFN caused a significant change in the expression detected by 300 probes in HPBx, 325 in TSx and 1,777 in MPAx when comparing the treated and untreated xenografts pair-wise. The probe lists were filtered to identify probes that were specific for the sensitive and resistant xenografts (see Supplementary Tables 1, 2, 3) and were further classified according to biological and functional characteristics (Supplementary Table 4).
Genes affected by IFN in all xenografts. Ninety-nine of the probes detecting significant expression changes upon IFN treatment were common for all three xenografts. Five of these probes showed opposite effects in some of the three xenografts and were removed. This resulted in a set of 94 probes, representing 79 genes; 75 genes were up-regulated and only four were down-regulated in all xenografts. Mean fold change for these genes were 2.4, 6.6 and 3.9 in HPBx, TSx and MPAx, respectively (Supplementary Table 1).

This group contains several core members of the IFNα signalling pathway (*STAT1, ISGF3G, IRF7*) and central well characterized ISGs (*OAS1-3, MX1, EIF2AK2*, members of the *HLA* and *PARP* families, and *ISG15*) (Supplementary Table 1). As expected, these genes were enriched in immunity related gene ontology groups and pathways (Supplementary Table 4A).

Sixty-six of the 79 common genes were identified as known ISGs in the Interferome database (Interferome ; Samarajiwa et al. 2008). Thirty-six of these 66 genes were found to contain putative ISRE and 16 had a putative STAT1 binding site in the promoter. The high number of ISRE-containing genes illustrates the induction of a specific IFN response in all three xenografts examined. For the majority of genes, this effect of IFN treatment was more pronounced in the resistant xenografts.

Genes differentially expressed only in the sensitive xenograft. One hundred and twenty-eight probes identified genes that were differentially expressed upon treatment with PEGylated IFN-α only in the sensitive xenograft HPBx . 72 of these probes, representing 70 unique genes, had a fold-change difference of ≥ 1.5 between the sensitive and each of the two resistant xenografts. 24 of these genes were induced and 48 were repressed. Only seven of
these genes were identified as known ISGs by the Interferome database and only one of the seven had a putative ISRE in the promoter (Supplementary Table 2).

The 70 genes were significantly enriched for gene ontology annotations related to signalling (MF00016) and receptors (BP00108), extracellular matrix (MF00179) and actin binding protein (MF00262), development (BP00193) or cell adhesion (BP00124) and KEGG pathway calcium signalling pathway (hsa04020) (Supplementary Table 4B).

IFN down-regulated a number of genes related to the extracellular matrix of connective tissue and its maturation, including the collagens \textit{COL2A1}, \textit{COL9A1} and \textit{COL10A1}, osteomodulin (\textit{OMD}), matrilin 4 (\textit{MATN4}), and metallopeptidase 3 (\textit{MMP3}). The adhesion receptor galectin-7 \textit{(LGALS7)} and \textit{LOC728910} similar to galectin-7 is down-regulated whereas galectin-9 \textit{(LGALS9)} and the highly similar \textit{LGALS9C} are up-regulated.

Up-regulated genes related to developmental processes included chordin-like 2 (\textit{CHRDL2}) involved in osteo- and myoblast differentiation and \textit{T1560} involved in thyroid development.

Down-regulated genes included the Wnt pathway inhibitor dickkopf1 (\textit{DKK1}), chordin (\textit{CHRDL}) which is an inhibitor of bone morphogenetic proteins, SRY (sex determining region Y)-box 8 (\textit{SOX8}) involved in pro-osteoblast differentiation, secretoglobin (\textit{SCGB3A2}) involved in lung development, and the tyrosine kinase receptor ephrin-A1 (\textit{EFNA1}) involved in development, tumourigenesis and metastasis.

\textbf{Genes with similar IFN response in the two resistant xenografts.} Of the probes detecting significant expression changes, 58 were common only to the two resistant xenografts TSx and MPAx, but not significantly changed in the sensitive HPBx. Only 19 of these probes, representing 17 unique genes, were similarly regulated in both resistant xenografts and had a
fold-change above 1.5 when compared to the sensitive xenograft (Supplementary Table 3). Eight of these genes are known as ISGs in the Interferome database of which one had a putative ISRE and five a putative STAT1 promoter binding site. Functional annotation analysis yielded enrichment in the Panther ontology group MF00001: receptor.

Gene expression analysis of combination of doxorubicin and PEGylated IFN. Limma analyses revealed no significant differences in the gene expression patterns of the xenografts treated with IFN alone compared to the combination with doxorubicin at the time point investigated (data not shown).

Discussion

The effect of IFN on tumour growth

In an earlier series of 14 osteosarcoma xenografts in nude mice, natural buffy coat-derived IFN-α at a daily dose of 200,000 IU induced tumour regression or growth arrest in five, partial growth inhibition in eight whereas one tumour could only be arrested at a higher dose (Brosjo 1988). In contrast, in this report only one of five xenografts were sensitive to PEGylated IFN-α2b. This may be explained by differences in the tumour panels or the therapeutic agents. It may be relevant that three of our tumours (including the sensitive one) were exposed to chemotherapy before xenografting, whereas all the Karolinska tumours were chemotherapy naïve. The sensitive xenograft being the only one of metastatic origin is an observation of uncertain significance: small series with IFN in metastatic osteosarcoma did
not indicate clinically relevant efficacy. Furthermore, our xenograft lines were maintained over a longer time before the experiments. Although passage number did not seem to affect response to chemotherapy in a previous study on this panel (Bruheim et al. 2004), we can not exclude that primary IFN resistance may be caused by passage-related genetic or epigenetic alterations over time. As human IFNs are not thought to evoke a host response in mice (Balkwill 1985), it seems unlikely that a different immune status of our animals would explain the different treatment response.

The difference may also be due to the type of IFNs used. Natural IFN, as used in the Karolinska experiments, contains a mixture of α-interferon subtypes that have varying properties and anti-proliferative activity (Thomas and Balkwill 1991; Foster et al. 1996; Foster and Finter 1998; Yano et al. 2006). It is also possible that PEGylation may directly influence the antitumour effect. Natural α-IFNs have been shown to have higher anti-tumour activity in a small panel of osteosarcoma xenografts compared with recombinant IFN-α2c (Bauer et al. 1987), but have not been directly compared with PEGylated IFN-α. Unconjugated and PEGylated IFN-α2a induced similar growth inhibition and expression profiles in melanoma-xenografts (Certa et al. 2003; Krepler et al. 2004), whereas growth inhibition in hepatocellular carcinoma xenografts was stronger for PEGylated IFN-α2b (Yano et al. 2006). Significant variation in the IFN-related response depending on the targeted cell line and IFN–α subtype has been reported by others (Balkwill et al. 1985; Foster and Finter 1998; Yamaoka et al. 1999; Yanai et al. 2001). In our panel, xenografts resistant to PEGylated IFN were similarly resistant to unconjugated IFN. Complete growth arrest in the sensitive xenograft was only obtained by unconjugated IFN, but this could be due to the higher dose administered per week compared to the PEGylated moiety. Importantly, lack of
effect in our model system on tumour growth is only reflecting the absence of a direct antitumour effect of IFN and does not rule out clinically important effects mediated through immune- or angiogenesis-mediated mechanisms.

Changes in gene expression in response to IFN

With only one sensitive xenograft, we limited the microarray analysis to compare the one sensitive to two resistant xenografts. Obviously such a limited analysis cannot provide definite answers, but may indicate a list of candidate genes and pathways related to IFN treatment response. We restricted the investigation of the transcriptional response to stimulation with PEGylated IFN, as previous studies have shown that unconjugated and PEGylated IFN give indistinguishable transcriptional patterns and are equally potent activators of IFN gene expression (Certa et al. 2003; Krepler et al. 2004).

When comparing the sensitive and the resistant osteosarcoma xenografts we identified 79 genes with similarly altered expression after IFN treatment regardless of tumour response. A subset of 36 genes contained ISRE, indicating a functional JAK/STAT signalling pathway in all three xenografts. Genes exclusively induced in the sensitive xenograft rarely contained ISRE; a comparable group of genes was observed earlier in an IFN sensitive melanoma cell line and termed IFN secondary response genes (Certa et al. 2003). It was postulated that resistance to IFN is caused by abnormal secondary signalling rather than by primary defects in induction of JAK-STAT signalling pathway (Certa et al. 2003; Holko and Williams 2006).

LGALS9, and the similar *LGALS9C*, are among the ISGs induced by IFN in the sensitive xenograft. Galectins are evolutionary highly conserved β-galactoside-binding lectins involved
in basic cellular mechanisms (cell interaction, proliferation, migration, apoptosis, mRNA splicing) and modulation of immunity. LGALS9 expression is correlated with a better prognosis in malignant melanoma (Kageshita et al. 2002), and is possibly involved in IFN-induced apoptosis in the melanoma cell line WM9 (Leaman et al. 2003). Two other members of the galectin family, LGALS7 and LOC728910, were found to be down-regulated, and these proteins have previously been described both as a positive and negative regulatory factors in tumour development, involved in proapoptosis, neoangiogenesis and metastatic tendency through metastatic proteins such as MMP9 (Saussez and Kiss 2006).

IFN-α has been shown to induce bone differentiation in a xenotransplanted human osteosarcoma (Forster et al. 1988). Osteosarcomas are known to express several bone morphogenetic proteins (BMPs) (Bauer and Urist 1981; Gobbi et al. 2002; Khan et al. 2008), the central proteins in the fine-tuning of bone development. Both CHRD, a regulator of dorsoventral patterning in early embryogenesis, and CHRDL2, a structurally related protein expressed preferentially in chondrocytes of developing cartilage, are BMP binding inhibitors of bone differentiation (Zhang et al. 2007). In our sensitive xenograft, IFN induced up-regulation of CHRDL2 whereas CHRD was down-regulated, the significance of which is unclear.

Further, the transcription factor SOX8 was repressed as a response to IFN treatment. SOX8 is involved in early chondrogenesis and SOX8-deficient mice display an osteopenic phenotype. SOX8-deficient preosteoblasts proliferate slowly probably caused by RUNX2-induced exit from the cell cycle (Schmidt et al. 2005), and the reduced expression of SOX8 may thus be related to the tumour response.
Finally, *DKK1* was down-regulated following IFN treatment in the sensitive xenograft only. DKK1 inhibits Wnt signalling and impairs osteoblast function. DKK-1 has been shown to be expressed maximally at the periphery of the tumour and it is thought that DKK1 can contribute to tumour expansion by inhibiting repair of the surrounding bone (Lee et al. 2007). Osteosarcoma patients have elevated DKK1 serum levels and the surviving fraction of circulating osteosarcoma cells is proportional to DKK1 levels in a xenograft model (Lee et al. 2007); it has been suggested that DKK1 levels could be used to monitor the effect of osteosarcoma treatment, and this might be applicable also to interferon. However, our findings contrast *in vitro* data of interferon induced overexpression of DKK1 in a hepatoblastoma cell line (Qu et al. 2007).

In summary, several genes involved in cell adhesion and osteogenic tissue development were altered by IFN in the sensitive xenograft. However, the analysis of only one sensitive xenograft, and the fact that the magnitude of change in these genes appeared low, makes caution in the interpretation imperative.

Our observations that combined treatment with IFN and doxorubicin has an increased efficacy indicate that IFN may moderate response to other cytotoxic drugs. An exploratory analysis did not find transcriptional changes of combined IFN and doxorubicin as compared to IFN alone. Doxorubicin has been shown to induce both cell cycle regulators and death genes in hepatocellular cancer cell lines (Wang et al. 2009). The lack of specific mRNA changes in this report may point at a posttranscriptional regulation by the combination in the sensitive xenograft. Others have shown that one of the many genes induced by IFN is the tumour suppressor TP53 (Takaoka et al. 2003), and that IFN-related genes such as ISGF3G directly influence p53 expression (Munoz-Fontela et al. 2008). Doxorubicin can induce apoptosis
through p53 in osteosarcoma cells (Yuan et al. 2007; Yuan et al. 2008). In this study, no change in TP53 mRNA levels was observed between IFN treated and untreated osteosarcoma xenografts, but we cannot rule out effects at the protein level. Finally, it has been shown that IFN-α can mobilise quiescent leukemia stem cells, thus making them sensitive to chemotherapy (Essers et al. 2009). It remains to be seen if such mechanisms also can be exploited in non-haematological cancers.

Conclusions

We found a direct antitumour effect of IFN in one of five xenografts. At the doses tested, both types of IFN reduced the growth rate, but only unconjugated interferon induced growth arrest. Known ISGs were induced independent of tumour response. The antitumor response seen in one xenograft may be related to interference with genes involved in cell adhesion or osteogenic tissue development. Our preliminary data of combined treatment with IFN and doxorubicin are encouraging and should be further explored.

Competing interests

The authors declare that they have no competing interests.
Acknowledgements

The authors thank Marita Martinsen and Thomas Halvorsen for expert help with the animal work, Bjørn E. Kristiansen for production of cDNA arrays and Thea Charlotte Smedsrud for performing the Illumina microarray experiments, both at the Norwegian Microarray Consortium (www.microarray.no, FUGE Platform for Microarray Technology, supported by the Norwegian Research Council).

Schering Plough is gratefully acknowledged for the gift of PEGylated IFN-α2b. CRM received a scholarship by the Norwegian Foundation for Health and rehabilitation and further support by the Research Foundation at the Norwegian Radiumhospital. HMN received a scholarship by the Norwegian Cancer Society (Ragnvarda F. Sørvik and Håkon Starheims legacy).
References

Figure legends

Figure 1

Growth response of osteosarcoma xenografts to treatment with PEGylated IFN (PEG-IFN), unppegylated IFN (IFN), doxorubicin (DOX) or a combination of DOX-IFN compared to a control group (CTR). Doses are given in equivalents to μg/kg/week. IFN was always given daily. PEG-IFN was given weekly in Figure A, C, D, E and F and every third day in Figure B, G, H. Doxorubicin was given at the maximal tolerated dose of 8 mg/kg 24 hours after start of treatment with PEG-IFN 100 (DOX-IFN). Volume is annotated as median relative tumour volume (RTV).

Figure 2

Elimination half-life of PEGylated IFN in mouse serum.

Serum concentration of radiolabeled PEGylated IFN-α2b in NCR mice following a single treatment with a dose of 10 and 100 μg/kg.

Figure 3

Hierarchical clustering of gene expression patterns in initial time and dose response experiments. A. 369 differentially expressed probes in xenograft TSx treated with 100 μg/kg/week PEGylated IFN-α2b for 12, 24 and 48 hours. B. Expanded view of lower
subcluster (red) from A, showing induction of numerous interferon-regulated genes. 168 differentially expressed probes in xenograft TSx treated with 1, 10 or 100 μg/kg/week PEGylated IFN-α2b for 24 hours. An untreated control sample (TSx Ctrl) was also included. The signal of each probe is given as log2 of the ratio between the treated and untreated samples that was co-hybridized to the arrays, represented as mean value of two replicated assays. The probes presented in the clusters were at least 2 times up- or down-regulated in at.

Supplementary files

Supplementary table 1

Tab delimited textfile .txt

Differentially expressed probes common in three xenografts.

Relative intensity level of 94 probes (log2 ratios) that detected a common gene expression response in HPBx, TSx and MPAx following treatment with 100 μg/kg PEGylated IFN-α2b for 24 hours. The cut-off for the Limma analysis was set to p<0.01 and and fold-change <1.5 (log2 fold-change< 0.585). IFN-regulated genes (in bold) and putative ISRE and STAT1 binding sites in proximal promoter regions 1000 bp upstream of the transcription start site and the 5’UTR of the genes was identified in the Interferome database.

Supplementary table 2

31
Differentially expressed probes in the sensitive xenograft only.

Relative intensity level of 72 probes (log2 ratios) that detected differentially expressed genes in the sensitive xenograft HPBx, but not in the resistant xenografts TSx and MPAx following treatment with 100 μg/kg PEGylated IFN-α2b for 24 hours. The cut-off for the Limma analysis was set to p<0.01 and fold-change <1.5 (log2 fold-change< 0.585). In addition the difference in expression level between the sensitive and each of the resistant xenografts was at least 1.5 fold. IFN-regulated genes (in bold) and putative ISRE and STAT1 binding sites in proximal promoter regions 1000 bp upstream of the transcription start site and the 5’UTR of the genes was identified in the Interferome database.

Supplementary table 3

Differentially expressed probes in two resistant xenografts

Relative intensity levels (log2 ratios) of 19 probes representing genes that were differentially expressed in both of the resistant xenografts TSx and MPAx, but not in the sensitive xenograft HPBx following treatment with 100 μg/kg PEGylated interferon-α2b for 24 hours. The cut-off for the Limma analysis was set to p<0.01 and fold-change <1.5 (log2 fold-change< 0.585). In addition the difference in expression level between the sensitive and each of the resistant xenografts was at least 1.5 fold. IFN regulated genes (in bold) and putative ISRE and STAT1
binding sites in proximal promoter regions 1000 bp upstream of the transcription start site and the 5’UTR of the genes was identified in the Interferome database.

Supplementary table 4

Adobe Acrobat Document .pdf

Metabolic pathways representing genes overrepresented among those with altered expression. Pathways are shown that appeared enriched using ontologies from Panther Biological Process (BP), Molecular function (MF) and KEGG pathways. Enriched categories from analysis of **A:** 94 probes with similar IFN response in HPBx, TSx and MPAx. **B:** 70 probes differentially expressed in the sensitive xenograft HPBx only. **C:** 19 probes with similar IFN response in the resistant xenografts TSx and MPAx.
Figure 1 Growth response of osteosarcoma xenografts
Figure 2 Elimination half-life of PEGylated IFN in mouse serum

<table>
<thead>
<tr>
<th>dose/day</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>9.3 +/- 1.8</td>
<td>3.1 +/- 2</td>
<td>1.5 +/- 0.7</td>
<td>1.05 +/- 0.1</td>
<td>0.62 +/- 0.1</td>
<td>0.59 +/- 0.2</td>
</tr>
<tr>
<td>100</td>
<td>89.8 +/- 35</td>
<td>32.7 +/- 11</td>
<td>13.2 +/- 4</td>
<td>10.8 +/- 3.5</td>
<td>7.1 +/- 4.3</td>
<td>6.0 +/- 3.7</td>
</tr>
</tbody>
</table>
Figure 3 Hierarchical clustering of gene expression patterns in initial time and dose response experiments

A

B

Distance metrics: Euclidean
Linkage: WPGMA

C

Distance metrics: Euclidean
Linkage: WPGMA

TSx Ctrl
TSx 12h
TSx 24h
TSx 48h

TSx Ctrl
TSx PEG1
TSx PEG10
TSx PEG100

TSx Ctrl
TSx PEG1
TSx PEG10
TSx PEG100

Symbol
BST2
ISG15
C6orf85
IFI6
LGALS3BP
CREB3L1
FRZB
KLF1
NMI
206895
GMPR
LMO2
MSTP9
HLA-C
PARP9
ZNF516
HPCA
PMAIP1
128346
EIF2AK2
FLJ11286
LGP2
SP110
LOC129607
PARP14
NRF2
JUN
JUNB
GAS1
CDA2
KIC1
SDF30
SDF448
OC-B1
FOXN1
KDA0247
C3HC23
HTR2B
TRIM1
TRIM2443
TLE
ET1
ITGB1
ITGAM
ITGAV

Symbol
BST2
ISG15
C6orf85
IFI6
LGALS3BP
CREB3L1
FRZB
KLF1
NMI
206895
GMPR
LMO2
MSTP9
HLA-C
PARP9
ZNF516
HPCA
PMAIP1
128346
EIF2AK2
FLJ11286
LGP2
SP110
LOC129607
PARP14
NRF2
JUN
JUNB
GAS1
CDA2
KIC1
SDF30
SDF448
OC-B1
FOXN1
KDA0247
C3HC23
HTR2B
TRIM1
TRIM2443
TLE
ET1
ITGB1
ITGAM
ITGAV
| ILMN_Gene | Source_Reference_ID | Definition | log2FC | log2F...
<table>
<thead>
<tr>
<th>ILMN_Gene</th>
<th>Source_Reference_ID</th>
<th>Definition</th>
<th>log2FC HPBxHPX</th>
<th>log2FC 7x5/TSx5Calc</th>
<th>log2FC MPxNPxAncel</th>
<th>ISRE</th>
<th>STAT1</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIF1</td>
<td>NM_001623.3</td>
<td>alligator inflammatory factor 1</td>
<td>0.941</td>
<td>-0.044</td>
<td>-0.165</td>
<td>0.094</td>
<td>0.112</td>
</tr>
<tr>
<td>ATOH6</td>
<td>NM_028273.7</td>
<td>algal homologue IX (Drosophila)</td>
<td>0.734</td>
<td>-0.227</td>
<td>0.039</td>
<td>0.004</td>
<td>0.033</td>
</tr>
<tr>
<td>BEST4</td>
<td>NM_153274.1</td>
<td>vitelliform macular dysplasia 2-like 2</td>
<td>-0.839</td>
<td>-0.139</td>
<td>-0.043</td>
<td>0.004</td>
<td>0.033</td>
</tr>
<tr>
<td>BNP3</td>
<td>NM_004052.2</td>
<td>BCL2-like adenovirus E1B 19kDa interacting protein 3, nuclear gene encoding mitochondrial protein</td>
<td>-0.824</td>
<td>-0.175</td>
<td>-0.012</td>
<td>0.004</td>
<td>0.033</td>
</tr>
<tr>
<td>CD9</td>
<td>NM_001216.1</td>
<td>carbonic anhydrase IX</td>
<td>-1.073</td>
<td>0.009</td>
<td>0.028</td>
<td>0.009</td>
<td>0.033</td>
</tr>
<tr>
<td>CRLN4</td>
<td>NM_006171.4</td>
<td>cerebellin-4 precursor</td>
<td>-1.486</td>
<td>0.075</td>
<td>0.075</td>
<td>0.004</td>
<td>0.033</td>
</tr>
<tr>
<td>CCK</td>
<td>NM_007293.9</td>
<td>cholecystokinin</td>
<td>1.644</td>
<td>0.021</td>
<td>0.315</td>
<td>0.004</td>
<td>0.033</td>
</tr>
<tr>
<td>CFH</td>
<td>NM_00114097.1</td>
<td>complement factor H</td>
<td>1.242</td>
<td>0.257</td>
<td>-0.204</td>
<td>0.004</td>
<td>0.033</td>
</tr>
<tr>
<td>CHRD</td>
<td>NM_177978.1</td>
<td>chordin</td>
<td>-0.714</td>
<td>0.055</td>
<td>0.015</td>
<td>0.004</td>
<td>0.033</td>
</tr>
<tr>
<td>CHRD2</td>
<td>NM_015424.3</td>
<td>chordin-like 2</td>
<td>1.201</td>
<td>-0.103</td>
<td>0.391</td>
<td>0.004</td>
<td>0.033</td>
</tr>
<tr>
<td>COL1A1</td>
<td>NM_000493.2</td>
<td>collagen, type X, alpha 1 (Scoloid metaplasia chondrocytoplasia)</td>
<td>-1.072</td>
<td>-0.004</td>
<td>0.2</td>
<td>0.004</td>
<td>0.033</td>
</tr>
<tr>
<td>COL1A2</td>
<td>NM_001844.3</td>
<td>collagen, type I, alpha 1 (primary osteoarthrits, spondyloepiphyseal dysplasia, congenital)</td>
<td>-1.097</td>
<td>-0.06</td>
<td>-0.27</td>
<td>0.004</td>
<td>0.033</td>
</tr>
<tr>
<td>COL4A1</td>
<td>NM_001851.3</td>
<td>collagen, type IX, alpha 1</td>
<td>-1.423</td>
<td>0.072</td>
<td>0.018</td>
<td>0.004</td>
<td>0.033</td>
</tr>
<tr>
<td>CORT</td>
<td>NM_001302.3</td>
<td>cortilinin</td>
<td>0.719</td>
<td>0.005</td>
<td>-0.11</td>
<td>0.004</td>
<td>0.033</td>
</tr>
<tr>
<td>CRYB2A</td>
<td>NM_057093.1</td>
<td>crystalatin, beta A2</td>
<td>0.951</td>
<td>-0.028</td>
<td>0.158</td>
<td>0.004</td>
<td>0.033</td>
</tr>
<tr>
<td>CRYGS</td>
<td>NM_017541.2</td>
<td>crystalatin, gamma S</td>
<td>1.14</td>
<td>-0.057</td>
<td>-0.398</td>
<td>0.004</td>
<td>0.033</td>
</tr>
<tr>
<td>CTSC</td>
<td>NM_001814.2</td>
<td>cationic C</td>
<td>0.806</td>
<td>0.116</td>
<td>0.192</td>
<td>0.004</td>
<td>0.033</td>
</tr>
<tr>
<td>D2O</td>
<td>NM_001070023.1</td>
<td>desoxidas, ribodystonine, type II</td>
<td>1.181</td>
<td>0.159</td>
<td>0.007</td>
<td>0.004</td>
<td>0.033</td>
</tr>
<tr>
<td>DOX</td>
<td>NM_012242.2</td>
<td>diadividual homolog 1 (Xenopus laevis)</td>
<td>0.005</td>
<td>-0.005</td>
<td>0.262</td>
<td>0.004</td>
<td>0.033</td>
</tr>
<tr>
<td>EDNRA</td>
<td>NM_001957.1</td>
<td>endothelin receptor type A</td>
<td>0.586</td>
<td>-0.127</td>
<td>-0.119</td>
<td>0.004</td>
<td>0.033</td>
</tr>
<tr>
<td>EPH1A</td>
<td>NM_004342.8</td>
<td>ephrin-A1</td>
<td>0.5</td>
<td>0.096</td>
<td>0.133</td>
<td>0.004</td>
<td>0.033</td>
</tr>
<tr>
<td>ESR2</td>
<td>NM_001975.2</td>
<td>enolase 2 (gamma, neuronal)</td>
<td>-0.908</td>
<td>-0.053</td>
<td>0.53</td>
<td>0.004</td>
<td>0.033</td>
</tr>
<tr>
<td>FGFR2P2</td>
<td>NM_031950.2</td>
<td>fibroblast growth factor binding protein 2</td>
<td>-0.975</td>
<td>-0.105</td>
<td>-0.004</td>
<td>0.004</td>
<td>0.033</td>
</tr>
<tr>
<td>FGFR1</td>
<td>NM_023110.1</td>
<td>fibroblast growth factor receptor 1 (fms-related tyrosine kinase 2, Pfeiffer syndrome)</td>
<td>0.637</td>
<td>-0.131</td>
<td>-0.328</td>
<td>0.004</td>
<td>0.033</td>
</tr>
<tr>
<td>GASDL2</td>
<td>NM_130850.1</td>
<td>growth arrest specific 2-like 1</td>
<td>-0.594</td>
<td>0.056</td>
<td>0.105</td>
<td>0.004</td>
<td>0.033</td>
</tr>
<tr>
<td>GFP1C</td>
<td>NM_000281H1.1</td>
<td>glican 1</td>
<td>-0.882</td>
<td>-0.142</td>
<td>0.361</td>
<td>0.004</td>
<td>0.033</td>
</tr>
<tr>
<td>GRN2C</td>
<td>NM_008385.3</td>
<td>glucosamine receptor, immunotact, N-methyl D-asparate 2C</td>
<td>-0.693</td>
<td>-0.176</td>
<td>0.001</td>
<td>0.004</td>
<td>0.033</td>
</tr>
<tr>
<td>HS.436379</td>
<td>HS.436379</td>
<td>AGENCOURT, Hs.436379 NIH_MGC_119 cDNA clone IMAGE:5744832 5, mRNA sequence full-length cDNA clone</td>
<td>0.656</td>
<td>0.015</td>
<td>0.012</td>
<td>0.004</td>
<td>0.033</td>
</tr>
<tr>
<td>HS.436379</td>
<td>HS.436381</td>
<td>Hs.436381 i2c766t8+1 Human Fetal Pancreas 1B cDNA clone IMAGE:3, mRNA sequence</td>
<td>0.762</td>
<td>-0.368</td>
<td>0.108</td>
<td>0.004</td>
<td>0.033</td>
</tr>
<tr>
<td>HS.436379</td>
<td>HS.573729</td>
<td>Hs.573729 Ul-E-E01-a-13-0-3 Ul-E-E01-a Ul-E-E01-cDNA clone Ul-E-E01-a-13-0 Ul-E-3 Ul,E-3 mRNA sequence</td>
<td>0.728</td>
<td>-0.065</td>
<td>-0.406</td>
<td>0.004</td>
<td>0.033</td>
</tr>
<tr>
<td>HS.436379</td>
<td>HS.131773</td>
<td>Hs.131773 _B.1169195d H.papiope pipefus</td>
<td>0.065</td>
<td>0.015</td>
<td>0.012</td>
<td>0.004</td>
<td>0.033</td>
</tr>
<tr>
<td>HPBx/HPX</td>
<td>log2FC HPBxHPX</td>
<td>0.941</td>
<td>-0.044</td>
<td>-0.165</td>
<td>0.094</td>
<td>0.112</td>
<td>0.004</td>
</tr>
<tr>
<td>TSx/5Calc</td>
<td>log2FC 7x5/TSx5Calc</td>
<td>0.734</td>
<td>-0.227</td>
<td>0.039</td>
<td>0.004</td>
<td>0.033</td>
<td>0.004</td>
</tr>
<tr>
<td>MPxNPxAncel</td>
<td>log2FC MPxNPxAncel</td>
<td>-0.839</td>
<td>-0.139</td>
<td>-0.043</td>
<td>0.004</td>
<td>0.033</td>
<td>0.004</td>
</tr>
<tr>
<td>ISRE</td>
<td>ISRE</td>
<td>-0.824</td>
<td>-0.175</td>
<td>-0.012</td>
<td>0.004</td>
<td>0.033</td>
<td>0.004</td>
</tr>
<tr>
<td>STAT1</td>
<td>STAT1</td>
<td>-1.073</td>
<td>0.009</td>
<td>0.028</td>
<td>0.009</td>
<td>0.033</td>
<td>0.004</td>
</tr>
</tbody>
</table>
Supplementary Table 3. Differentially expressed probes in two resistant xenografts

<table>
<thead>
<tr>
<th>ILMN_Gene</th>
<th>Source_Reference_ID</th>
<th>Definition</th>
<th>log2FC HPBx/HPXCtrl</th>
<th>log2FC TSx/TSxCtrl</th>
<th>log2FC MPAx/MPAxCtrl</th>
<th>ISRE</th>
<th>STAT1</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGRN</td>
<td>NM_198576.2</td>
<td>agrin</td>
<td>0.31</td>
<td>1.30</td>
<td>-0.881</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIM2</td>
<td>NM_004653.1</td>
<td>absent in melanoma 2</td>
<td>0.17</td>
<td>1.61</td>
<td>1.738</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>APHGD2B</td>
<td>NM_001175.4</td>
<td>Rho GDP dissociation inhibitor (GDI) beta</td>
<td>0.05</td>
<td>-0.91</td>
<td>-0.568</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD97</td>
<td>NM_079481.1</td>
<td>CD97 molecule</td>
<td>0.02</td>
<td>0.70</td>
<td>1.003</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ELLS1</td>
<td>NM_152730.1</td>
<td>hypothetical protein Eli1</td>
<td>-0.48</td>
<td>-1.16</td>
<td>-1.174</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HST2H2AC</td>
<td>NM_002517.2</td>
<td>histone cluster 2, H2ac</td>
<td>0.02</td>
<td>0.73</td>
<td>0.608</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HS.145414</td>
<td>HS.145414</td>
<td></td>
<td>0.33</td>
<td>2.02</td>
<td>2.211</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HS.540458</td>
<td>HS.540458</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL4I1</td>
<td>NM_152895.1</td>
<td>interleukin 4 induced 1</td>
<td>0.12</td>
<td>1.18</td>
<td>-0.707</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOX1</td>
<td>NM_032692.2</td>
<td>lyp oxidase-like 3</td>
<td>0.06</td>
<td>0.65</td>
<td>0.78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MICAL1</td>
<td>NM_152849.1</td>
<td>mixed lineage kinase domain-like</td>
<td>0.17</td>
<td>0.74</td>
<td>0.823</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PABPC1</td>
<td>NM_002568.3</td>
<td>poly(A) binding protein, cytoplasmic 1</td>
<td>0.01</td>
<td>-0.75</td>
<td>-0.642</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>PDGFR3A</td>
<td>NM_006206.3</td>
<td>platelet-derived growth factor receptor, alpha polypeptide</td>
<td>0.02</td>
<td>-0.61</td>
<td>-1.102</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>PRRX2</td>
<td>NM_016307.2</td>
<td>paired related homeobox 2</td>
<td>0.05</td>
<td>0.64</td>
<td>1.732</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REC8L1</td>
<td>NM_005132.1</td>
<td>REC8-like 1 (yeast)</td>
<td>0.34</td>
<td>1.49</td>
<td>1.31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNFRSF11D</td>
<td>NM_003840.3</td>
<td>tumor necrosis factor receptor superfamily, member 10d, decay with truncated death domain</td>
<td>0.06</td>
<td>-0.85</td>
<td>-0.77</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>TNFRSF7</td>
<td>NM_001252.2</td>
<td>tumor necrosis factor (ligand) superfamily, member 7</td>
<td>0.04</td>
<td>0.60</td>
<td>0.757</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TXNDC12</td>
<td>NM_015913.2</td>
<td>threonine domain containing 12 (endoplasmic reticulum)</td>
<td>0.42</td>
<td>-1.46</td>
<td>-1.615</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZC3HAV1</td>
<td>NM_024625.3</td>
<td>zinc finger CCCH-type, antiviral 1</td>
<td>0.39</td>
<td>1.80</td>
<td>1.002</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
Supplementary table 4 Metabolic pathways representing genes overrepresented among those with altered expression

<table>
<thead>
<tr>
<th>Term</th>
<th>Gene Count</th>
<th>%</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Genes with similar IFN response in HPBx, TSx and MPAx</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panther BP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP00148: Immunity and defense</td>
<td>19</td>
<td>25.7</td>
<td>9.1E-08</td>
</tr>
<tr>
<td>BP00031: Nucleotide, nucleotide and nucleic acid metabolism</td>
<td>22</td>
<td>29.7</td>
<td>1.9E-03</td>
</tr>
<tr>
<td>BP00156: Interferon-mediated immunity</td>
<td>3</td>
<td>4.1</td>
<td>7.7E-03</td>
</tr>
<tr>
<td>BP00101: Sulfur metabolism</td>
<td>7</td>
<td>9.5</td>
<td>8.8E-03</td>
</tr>
<tr>
<td>BP00104: G-protein mediated signalling</td>
<td>21</td>
<td>28.4</td>
<td>1.4E-02</td>
</tr>
<tr>
<td>BP00049: mRNA polyadenylation</td>
<td>5</td>
<td>6.8</td>
<td>2.0E-02</td>
</tr>
<tr>
<td>BP00150: MHCI-mediated immunity</td>
<td>22</td>
<td>29.7</td>
<td>2.2E-02</td>
</tr>
<tr>
<td>BP00076: Electron transport</td>
<td>8</td>
<td>10.8</td>
<td>2.6E-02</td>
</tr>
<tr>
<td>BP00024: Acetyl-CoA metabolism</td>
<td>4</td>
<td>5.4</td>
<td>2.6E-02</td>
</tr>
<tr>
<td>BP00071: Proteolysis</td>
<td>24</td>
<td>32.4</td>
<td>3.0E-02</td>
</tr>
<tr>
<td>BP00060: Protein metabolism and modification</td>
<td>16</td>
<td>21.6</td>
<td>3.7E-02</td>
</tr>
<tr>
<td>BP00065: Protein methylation</td>
<td>4</td>
<td>5.4</td>
<td>4.9E-02</td>
</tr>
<tr>
<td>Panther MF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MF00197: Miscellaneous function</td>
<td>13</td>
<td>17.6</td>
<td>3.5E-05</td>
</tr>
<tr>
<td>MF00170: Ligase</td>
<td>10</td>
<td>13.5</td>
<td>6.9E-05</td>
</tr>
<tr>
<td>MF00042: Nucleic acid binding</td>
<td>41</td>
<td>55.4</td>
<td>1.0E-04</td>
</tr>
<tr>
<td>MF00007: Interferon receptor</td>
<td>4</td>
<td>5.4</td>
<td>1.2E-03</td>
</tr>
<tr>
<td>MF00006: Interleukin receptor</td>
<td>8</td>
<td>10.8</td>
<td>1.8E-03</td>
</tr>
<tr>
<td>MF00141: Hydrolase</td>
<td>11</td>
<td>14.8</td>
<td>2.2E-03</td>
</tr>
<tr>
<td>MF00252: Non-motor actin binding protein</td>
<td>21</td>
<td>28.4</td>
<td>3.0E-03</td>
</tr>
<tr>
<td>MF00035: Other ion channel</td>
<td>7</td>
<td>9.5</td>
<td>4.0E-03</td>
</tr>
<tr>
<td>MF00051: Helicase</td>
<td>8</td>
<td>10.8</td>
<td>5.0E-03</td>
</tr>
<tr>
<td>MF00067: mRNA polyadenylation factor</td>
<td>6</td>
<td>8.1</td>
<td>6.2E-03</td>
</tr>
<tr>
<td>MF00234: Other cytolysin</td>
<td>7</td>
<td>9.5</td>
<td>7.4E-03</td>
</tr>
<tr>
<td>MF00242: RNA helicase</td>
<td>12</td>
<td>16.2</td>
<td>8.8E-03</td>
</tr>
<tr>
<td>MF00275: Transcription cofactor</td>
<td>7</td>
<td>9.5</td>
<td>1.0E-02</td>
</tr>
<tr>
<td>MF00098: Large G-protein</td>
<td>8</td>
<td>10.8</td>
<td>1.3E-02</td>
</tr>
<tr>
<td>MF00146: Deacetylase</td>
<td>5</td>
<td>6.8</td>
<td>1.3E-02</td>
</tr>
<tr>
<td>MF00153: Protease</td>
<td>7</td>
<td>9.5</td>
<td>1.6E-02</td>
</tr>
<tr>
<td>MF00044: Nuclease</td>
<td>7</td>
<td>9.5</td>
<td>2.8E-02</td>
</tr>
<tr>
<td>MF00039: Other transcription factor</td>
<td>9</td>
<td>12.2</td>
<td>3.0E-02</td>
</tr>
<tr>
<td>KEGG Pathway</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hsa04612: Antigen processing and presentation</td>
<td>9</td>
<td>12.1</td>
<td>2.3E-09</td>
</tr>
<tr>
<td>hsa04940: Type I diabetes mellitus</td>
<td>4</td>
<td>5.4</td>
<td>9.9E-04</td>
</tr>
<tr>
<td>hsa04514: Cell adhesion molecules (CAMs)</td>
<td>4</td>
<td>5.4</td>
<td>2.5E-02</td>
</tr>
<tr>
<td>hsa04550: Natural killer cell mediated cytotoxicity</td>
<td>4</td>
<td>5.4</td>
<td>2.6E-02</td>
</tr>
<tr>
<td>B. Genes differentially expressed in HPBx only</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panther BP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP00124: Cell adhesion</td>
<td>9</td>
<td>13.6</td>
<td>4.9E-04</td>
</tr>
<tr>
<td>BP00193: Developmental processes</td>
<td>12</td>
<td>18.2</td>
<td>1.7E-02</td>
</tr>
<tr>
<td>BP00108: Receptor protein tyrosine kinase signaling pathway</td>
<td>5</td>
<td>7.6</td>
<td>3.9E-02</td>
</tr>
<tr>
<td>BP00289: Other metabolism</td>
<td>15</td>
<td>22.7</td>
<td>4.2E-02</td>
</tr>
<tr>
<td>Panther MF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MF00016: Signaling molecule</td>
<td>9</td>
<td>13.6</td>
<td>1.8E-03</td>
</tr>
<tr>
<td>MF00174: Complement component</td>
<td>6</td>
<td>9.1</td>
<td>3.7E-03</td>
</tr>
<tr>
<td>MF00179: Extracellular matrix structural protein</td>
<td>5</td>
<td>7.6</td>
<td>1.9E-02</td>
</tr>
<tr>
<td>MF00262: Non-motor actin binding protein</td>
<td>17</td>
<td>25.8</td>
<td>2.1E-02</td>
</tr>
<tr>
<td>MF00137: Glycosyltransferase</td>
<td>9</td>
<td>13.6</td>
<td>2.3E-02</td>
</tr>
<tr>
<td>MF00015: Other receptor</td>
<td>6</td>
<td>9.1</td>
<td>2.9E-02</td>
</tr>
<tr>
<td>MF00250: Serine protease inhibitor</td>
<td>11</td>
<td>16.7</td>
<td>4.7E-02</td>
</tr>
<tr>
<td>KEGG pathway</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hsa04202: Calcium signaling pathway</td>
<td>4</td>
<td>6.1</td>
<td>4.9E-02</td>
</tr>
<tr>
<td>C. Genes with similar IFN response in TSx and MPAx</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panther BP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP00196: Oogenesis</td>
<td>3</td>
<td>17.7</td>
<td>4.8E-02</td>
</tr>
<tr>
<td>Panther MF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MF00001: Receptor</td>
<td>5</td>
<td>29.4</td>
<td>2.4E-02</td>
</tr>
<tr>
<td>KEGG pathway</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MF00001: Receptor</td>
<td>5</td>
<td>29.4</td>
<td>2.4E-02</td>
</tr>
</tbody>
</table>
Supplementary table 4 Metabolic pathways representing genes overrepresented among those with altered expression

aBased on lists of probes with significantly changed expression following IFN treatment identified by Limma analysis with restriction p <0.01.
bTo avoid over-counting duplicated genes, the probe lists are converted to corresponding DAVID gene IDs by which all redundancy in original IDs are removed.
cThe gene-enrichment of functional categories and pathways was measured by determining the number of genes belonging to the functional group in the list, weighted against the total number of analyzed genes on arrays using Fisher Exact statistical test with restriction p <0.05.