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Preface  
 

A brief history of breast cancer treatment, diagnostics and research 
Tumors in the breast was described as early as on papyrus from ancient Egypt (3000-

2500 BC) but until the 19th century the only treatment offered women with breast 

carcinoma was high risk surgery. The 19th century reformed the diagnostics and treatment 

of cancer in general as both anesthetics and antiseptic surgery was introduced. In 1895 

Wilhelm von Roentgen discovers the x-rays, which in 1899 is reported to be used to cure 

a cancer patient. Marie and Pierre Curies discovery of the radioactive element Radium in 

1898 was later of major importance in cancer treatment. At both sides of the Atlantic, 

radical mastectomy was introduced and further developed by Charles Moore, William 

banks and William Halsted. There were debates concerning the type of surgery; some 

claimed that women’s ribs should be removed while others tried to minimize the surgery 

and instead combine the treatment with radiation. Other important debates were whether 

tumor cells spread through lymph- or blood vessels. The treatment of breast cancer made 

a shift during the fifties with the introduction of chemotherapy, and in the following 

decades both the combination strategy and adjuvant chemotherapy were major 

breakthroughs in breast cancer treatment. At the same time, as the results from 

independent randomized trials lead by Veronesi and Fisher were published, breast 

conserving surgical techniques were favored. The development of lymph node 

mapping/sentinel node biopsy technique led to less extensive axillary surgery, reducing 

the negative side effects of surgery for women without lymph node involvement. 

The pathologist Rudolph Virchow (1821-1902) was crucial in the development of 

microscopic examination of tissue and in defining cellular pathology as a medical 

discipline. He demonstrated that cancer rises from collections of diseased cells, and is 

known for his statement “omnis cellula e cellula” meaning that every cell has risen from 

another cell. Von Hansemann and Boveri were crucial for the discovery of chromosomes 

being the seats of cell hereditary and for describing the disruption of these highly 

organized structures in cancer cells. In 1925 Greenough proposed that breast cancer is 

more than one disease, and from survival data he deduce that there are three different 

classes of malignancy. In 1957 the Bloom and Richardson grading was published, a 
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modified form of this is the histological grading system used today. Steinthals division of 

tumors into stages (later developed by Denoix (the TNM classification) was a significant 

improvement in preoperative assessment, and a modified version is used today combining 

pathology and clinical information to guide treatment choices for the individual patient. 

A major contribution to the improved outcome of the disease is the introduction of 

systemic adjuvant treatment and radiotherapy.  The discovery of the effect of removing 

the ovaries on breast cancer growth was published in 1896 by George Beatson, but 

estrogen was first discovered in 1925 in urine from pregnant women, and estrogen 

receptor (ER) was frequently found in breast carcinomas. Tamoxifen (a drug proposed to 

have anti estrogen effect) was first used as a treatment for breast cancer in 1969, and the 

largest effect was seen in postmenopausale women. Brodie discovered in 1982 that a 

known aromataseinhibitor could stop tumor growth. In 1995 Gustafsson discovered a 

second estrogen receptor and the dual effect on hormone receptor therapy get more 

evident leading to the concept “SERMs”, selective estrogen receptor modulators. In 1965 

started Nissen Meyer the first multicentre trial with cyclophosfamide and showed an 

increased survival rate. This was followed by several studies showing a survival benefit 

for the combination regimen of cyclophosfamide, metotrexate and 5-fluorouracil (CMF). 

There have been performed several large scaled clinical trials addressing the effect of 

adjuvant systemic treatment on breast cancer. Furthermore, the results of these studies 

have also been registered in the European Breast Cancer Trialist Collaborative Group 

(EBCTCG). Analysis of these pooled data with a high number of individuals with long 

clinical follow up provide a strong basis for developing guidelines for evidence based 

clinical treatment of this complex and important patient population. Adjuvant treatment is 

now evolving rapidly with more drugs to choose from. Therapy targeted to a specific 

molecule is proposed to be the next revolution in cancer treatment; it makes it possible to 

tailor the choice of therapy for each woman aiming at getting maximum effect with a 

minimum of side effects. One example of this approach is Trastuzumab, the HER2 

receptor binding drug that has been introduced to women whose tumors have increased 

number of the receptor. The research focusing on molecular alterations in breast 

carcinomas have been enormous. In 1979 the tumor protein 53 (TP53) was identified by 

Levine, Lane and Old and the gene was cloned in 1983. One year later the human 
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epidermal growth factor receptor EGFR was discovered and in the following year human 

epidermal growth factor receptor 2 (HER2/neu/erbB2) by Weinberg. The breast cancer 

gene 1 and 2 (BRCA1 and BRCA2) was discovered by Skolnic in 1994 and by Stratton in 

1995 respectively, pinpointing genomic alterations explaining a fraction of hereditary 

breast cancer.  

Mammography used for early detection of breast cancer at an early phase was 

introduced a century ago, but was systemized first in 1963 by Shapiro and Strax. This 

was followed by several studies of mammography as screening of healthy individuals 

confirming the advantages in increased survival among patients detected by 

mammography. The official advice in Norway is now mammography screening of all 

females in the age group 50-69 years.  

The focus on women’s physical but also psychological condition after breast 

cancer diagnosis and treatment became more in focus during the 70’s and 80’s. It is 

fascinating to see the historical shift in the perception of this “common” disease. New 

knowledge and improved techniques have made it possible to move from the conception 

of breast cancer as “one disease-one treatment” to the more ominous view that both 

patient related factors such as age, tumor characteristics (such as molecular alterations) 

and clinical findings must all be taken into consideration to tailor the therapy. The last 

decade’s research performed on large national and international trials testing new drugs, 

combination of drugs or drugs tailored to selected groups of patients show promising 

results As will be discussed later in this thesis, the introduction of high resolution 

methods such as microarrays and more recently deep-sequencing has increased the 

knowledge of molecular alterations in breast cancer enormously. More detailed 

diagnostics are already making attribution to the clinical decision making, and this will 

continue resulting in better disease control and less side effect of treatment for the 

individual woman. 

 
(Sources; Brystkreft- diagnostikk og behandling; Novartisserien, faghefte nr. 12, 2007, The history of 

Breast Cancer; Breast Cancer Campaign, London 2009 and Weinberg RA, In retrospect: The chromosome 

trail, Nature 453, 725, 2008)  
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General Introduction  

 
Classification aims at defining groups of distinct entities and to specify a relationship 

between them. Scientific taxonomy is applied to several disciplines including cancer 

biology. To date the classification of breast carcinomas are based on morphological 

criteria and molecular analyses applied in breast cancer diagnostics have been of 

prognostic or predictive value. This study has been focusing on identifying robust 

subgroups of breast cancer by analyzing multiple different features in breast tumors. The 

conclusions from the four separate studies presented in this thesis add knowledge about 

breast cancer subtypes and tumor progression and are presented and discussed together 

with a review of other studies in the field. The advantages and limitations of the materials 

and methods used are discussed separately after a summary of each paper.  

 

Epidemiology 

 
Incidence and risk factors 

The incidence of female breast cancer varies worldwide and is markedly higher in high 

income countries such as North America and Western Europe1. Breast cancer is rarely 

diagnosed before age 30 but risk increases with age, and BC is the most frequent 

diagnosed cancer in women in Norway (2761 new cases in 2007) and has the highest 

cumulative risk with about 1:12 women diagnosed with breast cancer during lifetime2. 

The incidence has been and is still increasing, this is considered both as a result of 

demographic changes (population growth and ageing), increased ability to diagnose the 

disease and mass screening but also reflects a real increase in risk2, 3. 

Breast cancer is partly a hormone related disease, the most important risk factors 

being early menarche, low parity, late age at first pregnancy, late menopause and 

hormonal exposure4. More recently ageing is also considered a major risk factor1. Age 

specific incidence of breast cancer shows a plateau midlife termed Clemmesen’s hook, 

often attributed to menopause5. Another interpretation of this phenomenon is that the 
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incidence curve reflects two major types of breast cancer; one ER negative, early onset 

type and one ER positive with late onset.  

 
Figure 1: The barchart to the left illustrates that breast cancer has the highest incidence among Norwegian 

women (2003-2007). The graph to the right show the increase in incidence seen in the period 1953-

2007(From The Norwegian Cancer Registery2) 

 

Bilateral breast cancer is rare and accounts for approximately 5% of breast cancer 

cases, and women with bilateral disease have a higher mortality than women with 

unilateral disease6. The incidence of bilateral disease diagnosed at the same time or 

within a short time span (synchronous disease) is increasing, while the incidence of 

bilateral tumors with a longer time span (metachronous disease) is decreasing6. This is 

probably reflecting the effect of increased use of adjuvant therapy; it having a preventive 

effect on developing contralateral disease. Daughters of mothers with bilateral disease 

have a higher risk of breast cancer7 reflecting a hereditary component in bilateral disease. 



15 
 

Breast cancer in patients with either a strong family history of breast cancer or harboring 

a germline defect in high penetrance cancer susceptibility genes such as BRCA1, BRCA2, 

TP53, PTEN and ATM are defined as hereditary breast cancer and is estimated to be 

contributing up to 10% of all cases4.  

 

Mortality 

Breast cancer is the major cause of death among adult women in high income countries 

but in Norway, the risk of dying of the disease seems to decline3. Both the incidence and 

survival was found to be increasing rapidly in Norway during the 1990’s, partially 

because of the introduction of mass screening and increased use of adjuvant therapy 8. 

The 15 year survival is slightly above 70%, but markedly less for the lower and higher 

age groups (<30 and >75 years).  Survival increases to 90% given they survive 5 years, 

but the long term cumulative survival continues to decline many years after diagnosis3.  
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Anatomy and histology of the breast gland 

 
The breast gland 

The female breast, serving the important function of producing and providing milk to our 

offspring, has a dynamic response to the changing hormonal phases during a woman’s 

lifetime. Prepubertal breasts have rudimentary glandular structures, which during the 

extreme hormonal changes during puberty develops into 15-20 lobes that terminate into 

separate openings in the nipple (Fig. 2). Every lobe has a branching network of ducts 

draining smaller units called lobules, each composed of smaller secretory units called 

alveoli. This unit is called TDLU (terminal ductal-lobular unit) and is considered the 

functional unit of the breast. Both the amount of glandular structures and the surrounding 

fibro-adipose tissue are dependent on the hormonal status (menstrual cycle, pregnancy, 

lactating-, premenopausal- and postmenopausal state). The final differentiation stage is 

achieved during pregnancy and lactation by the formation of lobulo-acinar structures.  

The breast epithelium is two layered surrounded by a basement membrane. The 

outer layer is composed of contractile myoepithelial cells and the inner layer of polarized, 

luminal cells where some have exocrine properties (Fig. 3B). 

 

 

 

 

 

 

Figure 2:  
Left: The changes of the female breast during puberty with development of lobes with ducts and lobules. 

Middle:The branching network of ducts draining the lobules surrounded by tissue rich in fat. From 

Netter/Elsevier. 

Right: An illustration of the organization of the two main celltypes in a duct. 
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The hierarchy of breast epithelial cells 

In hematology, the knowledge about hierarchical relationship between stem cells and 

mature cells of different lineages have been acknowledge for some time9, but for the cell 

types in the breast such relationship has just started to emerge10. The hierarchical 

relationship was suspected more than a decade ago as cells with specific combinations of 

cytokeratins was found by IHC in fetal and infant breasts11. The dynamic properties of 

breast epithelium demand compartments of stem cells and progenitor cells; i.e. cells with 

high proliferation potential and ability to differentiate. They reside in a protective and 

highly controlled region called the stem cell niche, and it seems evident that this is 

located in the TDLU regions10, 12, 13. The main cell-types, luminal and myoepithelial cells, 

likely represent mature cells from separate lineages but originating from the same stem 

cell and bipotent progenitor as is illustrated in Figur 314-16. 

 
Figure 3: 

A: An illustration of the assumed hierarchy of breast epithelial cells reflecting the relationship between the 

stem cell, the various progeny and the major mature cells.  

B: The stem cell and the bipotent progenitors reside in the TDLU area while the more differentiated cells 

are residing either in the basal layer (myoepithelial cells) or the inner, duct-lining layer (luminal epithelial 

cells). From Polyak 200715. 
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A stem cell has the ability to self renew and to generate more specialized cells by 

differentiation. This is stepwise, where the first (and less differentiated) offspring are 

called progenitor cells. These cells have lost the capacity to self-renew, but are rapid 

proliferating cells capable to give rise to more differentiated cells needed as a response to 

external signals due to puberty, pregnancy or other demands. As indicated in Figure 3, 

several molecular markers seem to identify cells at different stages, but as the hierarchy 

probably is much more complex than the one exemplified, there are to be expected that 

this will change15. 
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Morphological classification of breast cancer 

 
Invasive carcinoma 

Microscopic examination of BC reveals heterogeneity both at the architectonical and the 

cellular level17. The compositions of carcinomas can range from stroma rich tumors with 

glandular structures of tumor cells with minimal atypia to solid growth of large, highly 

atypic carcinoma cells. Breast carcinomas are commonly classified according to the 

World Health Organization’s (WHO) recommendations17. The dominating growth pattern 

determines the type; this way a tumor with predominant tubular differentiation will be 

recognized as a distinct entity as will a tumor with either apocrine, lobular, cribriform, 

mucinous, medullary features etc. Such tumors are called ‘special types’, and WHO 

recognizes 18 different types (Fig. 4). Of the special types lobular carcinomas are most 

common (10-15%) while others are extremely rare (<1%). The most frequent histological 

type is ductal carcinomas (‘invasive ductal carcinoma not otherwise specified (NOS)’)17. 

Ductal carcinomas are a heterogeneous group of tumors that do not have sufficient 

characteristics of either of the special differentiation patterns to fall into any of those 

groups. Several of the rare subgroups have different clinical course and outcome17, 18. 

Mixed types are common and histological type has no major part in the Norwegian 

treatment guidelines to date.  

 
Figure 4: Left: Illustration of a of stroma rich ductal carcinoma with high differentiation, to the right a 

solid growing high grade invasive ductal carcinoma (HEx20) 
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Preinvasive neoplasia 

Among intraductal proliferative lesions, WHO recognizes usual ductal hyperplasia, flat 

epithelial atypia and atypical ductal hyperplasia in addition to ductal and lobular 

carcinoma in situ (DCIS and LCIS). The relationship between such lesions and invasive 

carcinoma is much debated and will be further discussed later in this thesis. The DCIS 

and LCIS are heterogeneous entities. This is reflected in the grading system used for 

DCIS; low grade DCIS have cells with only subtle atypia and distinct architectural 

features in contrast to high grade DCIS having highly atypic cells without orientation 

often with a solid growth pattern and necroses17.  

 

 

Prognostic and predictive markers in breast carcinomas 

 
A vast number of predictive and/or prognostic factors have been proposed for BC. Some 

factors are strictly prognostic (i.e. predicting the risk of recurrence and/or death from 

disease), predictive (predicts the likelihood of response to a given therapy) and others are 

both prognostic and predictive. The most established markers are histological grade, stage 

(size, lymph node involvement and metastases), steroid receptors, HER2, age at diagnosis 

and vascular invasion17, 19.  

 

Histological grade 

Various systems for grading aggressiveness based on histopathological assessment of 

differentiation pattern (luminal/glandular) and nuclear features have been developed. 

Bloom et al. presented one system in 195020, 21, this has been the fundament for the 

grading system used today; “the Nottingham modification of the Bloom and Richardson 

method” which was introduced in 199122. The degree of luminal differentiation, nuclear 

atypia/pleomorphism and mitotic index is combined in a single numerical score called 

histological grade. Each factor is assessed separately by examination of histological 

sections, given a numeric value (1-3) which is added into a score from 3-9. Tumors of 

grade 1 (score 3-5) have cells with tubular differentiation, few mitoses and lack of 

pleomorphia, this in contrast to grade 3 tumors (score 8-9) which are poorly 
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differentiated, have high mitotic index and are often highly pleoemorphic. Although 

histological grade is an independent prognostic index22, the major difference in outcome 

is seen by comparing Grade 1 to Grade 3 tumors.  This was the focus of the study by 

Sotiriou et al. defining genes able to subdivide grade 2 tumors into two groups with better 

and worse outcome23. That a binary grading of DCIS based on molecular observation 

improve the clinical evaluation is supported by others24. 

 

Staging of the disease 

Both the size of the tumor and nodal involvement (i.e. metastases in regional 

lymphnodes) has independent prognostic value25. These two factors are positively 

correlated, but tumors size is found to be more important in lymph node positive patients 

than in negative26. Both tumor size and lymphnode involvement are, in addition to 

metastases, used for staging a womans disease. Staging of breast cancer follow the 

guidelines from The European and the American cancer unions (UICC (Union Contre le 

Cancer) and AJCC (American Joint Committee on Cancer))27 and is based on the TNM 

classification28. The combined information of tumor size, nodal involvement and distant 

metastases will define the disease stage of each individual from, Stage I-Stage IV, each 

with different prognostic profiles (Fig. 5).   

A widely used system integrating size, lymph node metastases and grade is the 

Nottingham Prognostic Index (NPI), a numerical categorization stratifying patients into 

three prognostic groups29. The NPI is not in clinical use in Norway today. 

 
Figure 5: Breast cancer by stage. Left: trends in 5-year relative survival by stage show an increase in 

survival for patients with stage I, II and also II during the last two decades. Right: The long term relative 

survival by stage show a huge variation from stage I to IV. From Småstuen et al.3. 
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Other prognostic or predictive parameters 

The steroid receptors, ER and PgR, have predictive and a medium to weak prognostic 

value30-32. Stimulation of ER increase mitogen activity and induce expression of PgR33. 

The most widely used technique to measure ER and PgR protein expression is by 

immunohistochemistry (IHC). The advantage is that visual evaluation confirms that 

normal glandular epithelium in the biopsy do not cause false positive results, and the 

number and intensity of stained cells can be quantified in a semi-quantitative way. The 

major disadvantages are the use of different antibodies, detection systems and protocols 

causing inter-laboratory differences, so participation in quality assessment programs are 

of major importance. HER2/erbB2/neu is a protein with thyrosine kinase activity 

involved in regulation of cellular growth and is regarded as a prognostic and predictive 

factor in breast cancer (for review; 34). 

 

Gene expression signatures 

In the last decade several gene expression studies have defined groups of genes that 

subdivide breast carcinomas into different prognostic groups, regardless of 

histopathological classification, and several are commercialized (for review;35, 36). 

Among the first microarray based studies were the identification of ‘the intrinsic 

subtypes’37, ‘the 70-gene metastasis predictive signature’38, 39 and the ‘wound healing 

signature’40. Others have used PCR based techniques to identify responders and non 

responders to Tamoxifen 41. Two of the gene lists are forming the basis for large 

prospective studies (MINDACT and TAILORx). Such studies are useful to identify 

responders and non-responders to existing therapeutic regimen, but few have per se an 

approach aiming at classification of breast carcinomas. 
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Diagnosis and Treatment 

 
In Norway, NBCG defines and updates guidelines for diagnosis and treatment of breast 

cancer (Norsk Bryst Cancer Gruppe, NBCG; http://www.nbcg.no/nbcg.blaaboka.html). 

Tumors recognized as cancer will undergo histopathological examination including 

classification into histological type, histological grade and estimation of the size of the 

tumor. Lymphnodes will be carefully investigated to detect micro- or macro metastases. 

Only ER, PgR and HER2 status are molecular markers with predictive or prognostic 

value included in the national guidelines today.  

Breast cancer is today with a multi-disciplinary approach (NBCG guidelines). The 

cornerstone of all curative breast cancer management is surgical removal of the primary 

tumor with either breast conserving surgical technique or surgical removal of the whole 

breast and removal of lymph nodes, either by sentinel node biopsy or axillary lymph node 

dissection. Locally advanced-primarily inoperable tumors will often be offered neo-

adjuvant chemotherapy. Post operative radiation to the breast is offered all women with 

breast conserving surgery and no lymph node involvement and to women where 

histopathology showed positive or marginal distance to resection margin. Post operative 

radiation involving regional lymph node areas is offered individuals with positive lymph 

nodes depending on age and number of positive lymph nodes. Adjuvant systemic 

treatment is based on the use of both prognostic and predictive markers to all women with 

node positive disease and women with node negative disease depending on age, size, 

grade and HER2 and ER/PgR status. Women with hormone receptor positive disease will 

be offered 5 years of adjuvant endocrine treatment. The basis of adjuvant chemotherapy 

regimen is anthracyclins, and in Norway the standard regimen now is the FEC 

(Fluorouracil, epirubicin, cyclofosfamide) regimen. The benefit of taxanes has been 

studied the later years and the best effect is observed in lymph node positive disease and 

estrogen receptor negative disease. It is today standard treatment combined with FEC in 

these patients groups aged below 70.  HER2 positivity is usually associated with more 

aggressive clinical behavior. The monoclonal antibody Trastuzumab blocks the activity in 

the receptors tyrosine kinase and is now a part of the standard adjuvant treatment in 

individuals with HER2 positive tumors. For women with distant metastasis at the time of 
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diagnosis or distant disease relapse after primary treatment, the treatment will be 

palliative. Endocrine therapy, chemotherapy, Trastuzumab and local radiotherapy are all 

possible options to consider.  
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Why Classifiy? Review and discussion 

 
Grouping of tumors into classes or entities is of importance for several reasons. In 

clinical management, categorization of tumors is a tool to decide or standardize treatment 

and patients care. In a classification distinct entities should be recognizable in an 

objective way. The traditional way of constructing taxonomy in biology is by using a tree 

based approach where major classes can have smaller subgroups. A robust and objective 

classification is of importance when performing large clinical studies where clinical 

behavior and response to therapy are evaluated in order to standardize or tailor therapy. In 

haematopoietic and lymphoid neoplasia the classification has shifted from being 

descriptive to an integrative approach also including molecular alterations with features 

from the hierarchical relationship between mature haematopoietic cells, their progenity 

cells and stem cells. The knowledge about different lineages and molecular mechanisms 

determining the direction of differentiation have been the backbone for the modern 

classification of leukemias and lymphomas9, 42. As the hierarchical relationship between 

the epithelial cell-types of the breast have become more recognized, it is tempting to 

speculate that the same approach can be used to modernize breast cancer classification. In 

a Darwinian way of thinking, tree based taxonomy is not a static hierarchy. Offspring will 

show alterations in a progressive way leading to diversity. The time course of such 

progression has for mammals been millions of years, but a tumor with rapid growth will 

produce several levels of offspring during months or even weeks. If the daughter cells 

have acquired new characteristics compared to the parent cell, this can be defined as 

progression. Breast tumors in humans are recognized clinically at different stages of 

progression. One challenge in building a classification based on molecular alterations is 

that little is know about which lineages exist and at which stage or along which linage 

breast tumors develop. Whether tumors follow one path of progression or several, or 

which alterations characterize the different levels of progression still remains to be 

defined. To be able to relate findings of molecular subtypes to this, a review over tumor 

initiation and progression will be given.  
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Initiation and progression by successive genetic changes 

Cancer being caused by alterations in hereditary material was suspect before the 

discovery of DNA43, and genomic instability was shown decades ago to be a hallmark of 

cancer44. At that time it was acknowledge that transformation of cells into neoplasia 

required only a limited number of genomic changes45. This was also the main focus of the 

review by Hanahan and Weinberg46 defining different characteristics being essential for 

cancer development. Reflecting the enormous increase in knowledge in this field just in 

the last decade, a recent publication defines even more ‘hallmarks of cancers’47. The 

underlying defects of these hallmarks can prove to be important targets for treatment, but 

represent a complexity not captured by the standard classifications of today. As reviewed 

by Stratton et al., cancer can be considered an evolutionary process analogous to 

Darwinian evolution48. Two main processes are required; continuous acquisition of 

heritable genetic variation in individual cells and natural selection of cells with higher 

capability to proliferate and survive. If a single cell get sufficient advantageous 

alterations and reside in an environment providing ‘matching’ conditions, the result can 

be a tumor progressing into cancer. This is reflecting the heterotypic view on tumor 

formation and progression in contrast to the reductionist view46. The first focus on the 

fact that tumors are composed of other cell types such as endothelial cells, fibroblast, 

lymphatic cells etc. as well, but in the reductionist view the alterations in the tumor cells 

are the only ones considered. Normal development of the breast are dependent on stimuli 

from the environment and that tumor cells collaborate with or dictate other cells to 

provide an advantageous micro-environment is continuously more recognized49-51.  

Studies of rodent breast tumor development and progression as reviewed by 

Foulds in 1954 revealed some interesting features52. Spontaneous mammary tumors in 

rabbits begin either as adenomas in otherwise normal breast or in breast with cystic 

disease. The progression follows successive stages through non-invasive to invasive 

tumor and eventually to metastatic disease. Foulds concluded that cancer is the final step 

in a developmental process where the early neoplasia is not an invasive disease (i.e. 

cancer) either in structure or behavior. In studies of mice strain developing multiple 

tumors at the same time, the effect of host related factors on tumor progression could be 

studied. The breast tumors seemed to be of two types; ‘unresponsive’ tumors where 
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growth did not depend on hormonal related factors and ‘responsive’ tumors where the 

tumor growth was related to the hormonal state of the host. The studies showed that 

progression of one tumor was independent of other tumors and probably reflected a 

regulation by ‘intrinsic’ properties. Fould made six statements concerning tumor 

progression: 

 

These statements were based on observations from rodent experiments performed in the 

same decade the structure and composition of DNA were revealed, and therefore without 

any of the knowledge we have today about genomic related alterations in tumors. Much 

of the knowledge we have about molecular subclasses in breast carcinomas are based on 

clinical samples, and knowing that such samples are analyzed at individual progression 

levels, Foulds hypotheses can serve as a backbone for discussing the molecular types of  

breast carcinomas. 

 

Genomic data indicate at least two types of breast cancer 

Several studies analyzing genomewide DNA alterations have tried to identify groups of 

tumor with distinct features. Four different patterns of alterations were identified by 

Hicks et al. with high resolution aCGH analyses of two breast tumor cohorts53. The 

‘Simplex’ pattern had broad segments of duplications and deletions. Deletion of 16q, 8p 

and 22 as well as gain of 1q, 8q and 16p was dominating. ‘Complex I’ had either a 

“sawtooth” appearance with narrow segments of deletions and duplications affecting 

more or less all chromosomes. ‘Complex II’ resembled the ‘simplex’ but had at least one 

localized region of clustered peaks of amplifications called ‘firestorm’. The fourth pattern 

was called “flat” defining profiles with no clear gains or losses except from copy number 

1. Tumors progress independently 
2. Characters such as growth rate, responsiveness, invasiveness and the ability to 

disseminate are independent of each other. 
3. Progression is independent of growth rate 
4. Progression is continuous or discontinuous by gradual change or by abrupt 

steps 
5. Progression follows one of alternative paths of development, but can change 

course into a different path  
6. Progression does not always reach an end-point within the life-span of the host 



28 
 

polymorphism. Interestingly, all four patterns were found both in diploid and aneuploid 

tumors. The same groups have been identified in other datasets54. A study by Chin et al. 

using aCGH identified three subtypes of breast carcinomas that varied with respect to 

level of genomic instability55. The groups had overlapping characteristics with the classes 

in Hicks’ work. One group of tumors had few alterations and was dominated by 1q 

amplification and 16q deletion (the 1q/16q group), another group had more complex 

alterations (complex group), and the third displayed frequently high level amplifications 

(mixed amplifier group). Tumors with BRCA1 mutation had similar changes as the 

complex group. In this cohort it was also observed that shorter telomeres were associated 

with greater number of amplifications56, 57. Several studies have had quite divergent 

definitions on which genomic alterations characterize distinct subgroups of breast 

carcinomas, but that 1q and 16q alterations dominate in one type and multiple alterations 

on several arms dominate another are found by most58-64. 

 

Genomic changes in early stages of breast carcinogenesis 

The in situ breast carcinoma, DCIS, considered as a true precursor to invasive ductal 

carcinoma, is a heterogeneous group probably reflecting multiple types of breast 

tumors65-67. The loss of 16q is frequently found in DCIS, but also in proliferative and 

premalignant lesions such as usual ductal hyperplasia, columnar cell lesions, atypical 

ductal hyperplasia and in a substantial proportion of invasive carcinomas (ILC and also 

IDC), often in combination with 1q gain68-76. Low grade DCIS frequently display loss of 

16q and gain of 1q, while high grade DCIS have more alterations including high level 

amplifications of 6q22, 8q22, 11q13, 17q12 and 17q22-24 54, 65, 77, 78. The few CGH data 

that exists from LCIS are showing overall less gains than invasive carcinoma, and that the 

alterations partly overlap with grade I invasive carcinomas 66, 79, 80. In invasive tumors, 

deletion of 16q is more frequent a physical loss of the whole arm in grade I tumors, while 

alterations of 16q in grade II and grade III are more complex78, 81-83. Grade I tumors have 

fewer genomic alterations compared to grade III carcinomas that often have numerous 

genomic changes with chromosome arms 8q, 17q and/or 20q frequently altered84.  

Molecular studies of near-diploid invasive tumors probably give insight into early 

genomic changes in tumor progression. The most frequent rearrangements seen in such 
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cases by karyotyping are unbalanced translocations where a majority resulted in loss of 

one of the derivative chromosomes85, 86. Dutrillaux et al. reported that near diploid cases 

with less than four rearrangements almost always involved alterations of 1q and/or 16q 

while losses of chromosome segments were more prominent than gains in cases with 

more than four rearrangements85. This is in line with the findings from aCGH analyses of 

diploid tumors; some tumors were of the simplex type, other of the complex 1 or complex 

2 type87. A translocation resulting in a der(1;16)(10p;10p) is identified by karyotypic 

studies and considered an early event in mammary carcinogenesis88, 89. Another early 

event seems to be formation of isochromosome 1q, this gain is also seen in numerous 

studies using array comparative hybridization (aCGH), making 1q gain one of the most 

frequent alterations in breast carcinomas.  

 

Subgrouping breast cancer by ploidy measurements  

The prognostic value of measurements of DNA content in breast carcinomas have been 

debated for decades but it seem evident that breast tumors can be grouped by different 

levels of DNA content90, 91. Breast carcinomas display a wide range of modal values from 

less than 30 to more than 200 chromosomes per cell64. Kronenwett at al. subdivided a 

tumor set into diploid (modal value 1.8c-2.2c), tetraploid (3.8-4.2c) or aneuploid groups 

(one peak or more outside the diploid or tetraploid range)92. By adding a stemline scatter 

index (SSI), each of the three groups was subdivided into being stable or unstable. Their 

study showed that is was of minor importance where the stemline was situated, but the 

scatter indicating an unstable genome reflected a significantly worse prognosis. 

Aneuploid tumors had frequently a hypotetraploid modal value, but a minor group of 

aneuploid tumors were hypodiploid, hyperdiploid, triploid or hypertetraploid. Structural 

chromosomal aberrations and losses of entire chromosomes have been suggested to occur 

first during genetic evolution of breast tumors, and would lead to a transient hypodiploid 

cell clone85. A succeeding doubling of DNA by endoreduplication would result in a DNA 

content ranging from triploid to hypotetraploid tumor depending on the amount of initial 

losses. Alternatively the endoreduplication can occur early and additional rearrangements 

will result in a hypo or hypertetraploid tumor. Hypodiploid tumors have been considered 



30 
 

a distinct entity with both clinical and genomic characteristics dominated by losses on 

multiple chromosomes and is associated with a worse outcome93, 94. 

 

Subclasses defined by gene expression patterns 

The intrinsic subtypes 

The gene expression based classification defining five subtypes was the result of the 

works of Perou and Sorlie a decade ago95, 96 in neoadjuvant treated breast carcinomas. 

The expression of approximately 12000 genes was measured by cDNA arrays95. 

Thereafter, genes that had low variation in expression in samples taken before and after 

treatment for each patient and at the same time varied most between all patients were 

extracted. A total of more than 550 genes were thus identified and named the “intrinsic 

gene list” as they were thought to be reflecting the individual tumors phenotype. By 

hierarchical clustering, a pattern of two main clusters with a total of five subclusters 

emerged in several independent cohorts96-100. The largest cluster has frequently two 

groups dominated by ER positive and Luminal cell related genes, one having more 

proliferation related genes upregulated than the other (Luminal A and Luminal B 

respectively). The other main cluster had three groups. One related to myoepitel/basal 

epithelial cell gene expression (such as basal cytokeratins and thus called Basal-like), 

another were dominated by high expression of erbB2 related genes (called erbB2+ group) 

and the third had gene expression not very dissimilar from patterns found in normal 

breast tissue samples (called Normal-like).  

 

The robustness of the subtypes 

By calculated centroids for each of the five main subtypes (Luminal A, Luminal B, 

erbB2+, Basal-like and Normal-like), class prediction can be made for individual 

samples. When making class predictions for the cohort analyzed in paper II, III and IV, 

several of the samples correlated to more than one centroid100. A heat map generated by a 

cluster algorithm illustrates the heterogeneity of the centroid correlation in the sample set 

(Fig. 6).  
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Figure 6: Hierarcical clustering of 123 MicMa samples based on the calculated correlation to the centroid 

for each of the five subgroups. Red indicates positive correlation, green indicates negative (anti-) 

correlation. Dark color indicates correlation close to zero. The rows of the heat map indicate the centroid 

correlation values to Luminal B (1. row), followed by the Basal-like, the erbB2+,the Normal-like and 

Luminal A at the bottom. The clusters reflect the relationship between the different subtypes. .   

 

By using this approach two conclusions can be drawn: 

 

1: There are two main branches, one dominated by samples correlated to the Luminal A 

centroid, the other correlated to the ERBB2+ and/or Basal-like centroid. Samples do not 

have a strong correlation to both the Luminal A centroid and the Basal-like and/or 

erbB2+ centroid. The Basal-like samples have almost always a positive correlation to 

ERBB2+.  

 

2: Samples highly correlated to the Luminal B centroid are found in both main branches, 

some have additional correlation to the Luminal A centroid, others to the Basal-like or 

erbB2+ centroid. Samples highly correlated to the Normal-like centroid are also in both 

main branches, some have additional correlation to the luminal A centroid, others to the 

Basal-like or erbB2+ centroid.  
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An interesting notion is that samples with a high correlation to Normal-like are always 

anti correlated to Luminal B.  

 

From this we can hypothesize that Luminal A and Basal-like are phenotypically diverse 

with regard to intrinsic characteristics.  

 

Surrogate markers for the subtypes 

Immunohistochemical (IHC) staining of tumor sections has revealed that the Luminal A 

tumors are often ER and/or PgR positive while the Basal-like are not. The former have 

several proteins in common with the luminal cell type of the breast (such as ER, PgR, 

CK18, GATA3) while the latter resemble to some extent the myoepithelial cell type, such 

as CK5, 6, 14, 17 and SMA97, 101-103 (for review: 104). Basal-like tumors are often said yto 

be ‘triple negative’ (i.e. negative IHC for ER and PgR and negative IHC/FISH for 

HER2), but is known to be heterogeneous105. Another major difference between Luminal 

A and Basal-like tumors are the frequent finding of single base mutations in genes such 

as TP53 and BRCA1 in Basal-like tumors. Those genes are only rarely mutated in 

Luminal A tumors. Histological patterns of differentiation are linked to the subtypes. 

Carcinomas with lobular and tubular differentiation are almost always of Luminal A type 

while tumors with medullary, adenoid cystic or metaplastic differentiation are of Basal-

like type106, 107.  

Accepting that the phenotype of the tumor is influenced by extra-tumoral factors 

such as tumor microenvironment (stroma, inflammation, endothelium, fat) and 

endogenous and exogenous components such as hormones and other substances, the 

search for genomic alterations for each of the subtypes was important. Several groups 

have found genomic alterations by aCGH that seem to be more frequent in one or more of 

the intrinsic classes56, 57, 108. Bergamaschi showed, in an advance stage cohort, that the 

intrinsic subclasses harbored different genomic alterations108. The Basal-like had higher 

numbers of gains and losses than Luminal A and the Luminal B and erbB2+ had more 

frequent high-level amplifications. Chin and Fridlyand compared their aCGH groups to 

the expression subtypes, and found that Luminal A tumors were dominating the 1q/16q 

group, Luminal A and erbB2+ the mixed amplifier group and Basal-like and Luminal B 
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the complex group56, 57. Another study identified a group of tumors with low genomic 

instability, and found these tumors to be enriched by the Basal-like subtype109. Normal-

like samples are often too few to be studied, and Luminal B can be hard to identify in 

some datasets99. The erbB2+ group was dissolved when the erbB2 amplicon was 

removed from the data in one CGH based study110, but are more distinct as a subgroup in 

others111. 

 

Expression subtypes and epidemiology 

It seems evident that of the molecular expression subclasses, the Luminal A and the 

Basal-like group are regarded as distinct diseases with different genomic changes, 

expression patterns and clinical and histopathological profiles. By using IHC markers 

several epidemiological studies have been perform to identify differences in etiological 

factors101, 112-114. The distribution varies among different ethnical populations with Basal-

like tumors more frequent in African-American than in non African-American women101. 

It is also shown that increasing body mass index reduces the risk of Luminal tumors in 

premenopausal women, and that late menarche reduces the risk of Basal-like 

carcinomas113. Acknowledged risk factors for breast cancer in general seem to only be 

valid for Luminal A tumors; women with fewer children and high age at first full term 

pregnancy had a higher risk of Luminal A carcinomas  than Basal-like114. The increased 

risk of Basal-like carcinomas observed in women with young age at first full time 

pregnancy and in women with high parity and short duration of breast-feeding indicate 

the complementary nature of these two diseases114. Basal-like tumors are also known to 

have an earlier age distribution compared to the Luminal type112.  

 

Breast cancer progression from a molecular point of view 

Several observations of Foulds can now be viewed with the knowledge of molecular 

alterations as seen by multiple different methods investigating different characteristics of 

breast tumors. 
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Tumors progress independently 

The notion of this came from studies in mice, by having five to six pairs of breast glands 

the probability of having several tumors at the same time is much larger than in humans. 

An interesting aspect is that tumors in the same host can have different paths of 

progression. In a study we performed on bilateral human tumors we saw that the 

distribution of molecular subtypes followed some patterns (paper I). Women with a 

luminal tumor in one breast had almost always a luminal tumor in the other breast. 

Luminal tumors were defined as having either ER or PgR expression, and represent the 

tumor type dependent on the host for instance by hormonal influence (‘responsive 

tumors’). Interestingly, the triple negative tumors in this study had a more heterogeneous 

distribution and are probably of a more ‘unresponsive’ type. 

 

Progression follows alternative paths in luminal and basal related carcinomas 

The findings reviewed above about molecular types of breast carcinomas indicate that 

separate breast cancer tumor types exist and Luminal-A and Basal-like are the most 

acknowledged. 

One type of carcinomas evolves from hyperplasia through low grade pre-invasive 

tumors into invasive carcinoma (IDC/ILC) predominantly of low grade. It also seems 

evident that several tumors do not follow this path but have genome wide rearrangements 

already at the pre-invasive stage. They probably evolve from high grade DCIS into high 

grade invasive carcinomas115. The high grade tumors are frequently ER negative in 

contrast to the low grade tumors dominated by loss of 16q and gain of 1q78, 116, 117. In 

paper II we studied the genomic alterations in 595 tumors aiming at combining the 

knowledge supporting the existence of two main classes of tumors; 1) Luminal A/simplex 

type and 2) the Basal-like/erbB2+/complex type. As seen by others, the alterations 1q 

gain and/or 16q loss recognized a majority of Luminal A tumors (called A tumors) and 

tumors with genome wide alterations were dominated by Basal-like tumors (called B 

tumors).  

The frequent concordance of 1q gain and 16q losses is shown by karyotyping to 

represent centromere close translocations. As shown in Figure 7 multigene interphase 
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FISH identified this translocations in several of the A tumors included in paper II 

(unpublished data).  

 
Figure 7:  

Example of aCGH and FISH analyses from two Luminal A tumors. At the top is the aCGH profile with 1q 

gain and 16q loss in addition to some other alterations. The pictures show two cells from each tumor 

hybridized with five different FISH probes. The illustrations below illustrate the observed combinations of 

the FISH probes compared to the expected combination as it is seen in normal cells indicating a 

der(1;16)(10q;10p) in the tumors. 

 
The abundance of heterochromatin and segmental duplications close to the centromere on 

chromosome 1 might make this a vulnerable area for mitotic over-crossing and 
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subsequent translocation118. Interestingly, chromosome 16 has duplication rich 

centromeric regions with homologous sequences to several chromosomes including chr. 

1, this might also make chromosome 16 vulnerable for such changes 119.  

The data analyzed in paper II suggest that a progression occur in A tumors when 

the tumor genome are able to undergo complex rearrangements. As illustrated in paper II 

the tumors with complex rearrangements (A2 tumors) have overall more alterations than 

those without (A1 tumors) and the clinico-pathological data are in favor of A2 tumors 

representing more advanced progression levels of A tumors. This is in line with Foulds 

hypothesis; tumors can progress by a shift of path. Complex alterations of the firestorm 

type in aCGH profiles are showing high-level gains of regions with intermittent losses. 

Both karyotyping and advanced sequencing of such tumors has revealed that several 

different chromosomes can be involved in complex combinations120, 121. In contrast to 

karyotyping and sequencing, aCGH can only give indications of which arms are involved 

in such complex rearrangements. One mechanism explaining this type of rearrangements 

is the breakage-fusing-bonding principle (BFB cycles), where double strand DNA breaks 

in cells with repair defects can lead to either sister chromatin or non homologous end 

joining followed by a new break during the next mitosis creating amplifications and 

deletions122, 123.  The most frequent arms with complex rearrangements in A tumors were 

8p and 11q. Bautista et al. showed by FISH that alterations on these two chromosome 

arms can be rearranged together in a derivative chromosome, probably due to BFB 

cycles124, although other groups have shown that these events can occur unconnected as 

well125. In MCF7, a well characterized ER positive cell line with complex rearrangements 

on several chromosomes including 17q and 20q, the same phenomenon is seen, resulting 

in functional fusion genes from the two chromosomes121, 126, 127. The results from paired-

end sequencing from one of the A2 tumors reveal the same complex pattern of several 

chromosome arms being intermingled and causing fusion genes (Stephens at al. under 

review, Nature). Recurrent fusion genes rare in breast cancer128, but can be explained in 

wide range of breakpoints from tumor to tumor. High-level amplifications of selected 

regions like 8p11, 11q13, 12p13, 17q12 and/or 20q13 are strong predictors of reduced 

survival 110, 129.  
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Intra-tumor heterogeneity has been acknowledged in breast carcinomas130. One 

study by Navin et al (in press, Genome Research) different parts of tumors were sorted 

into cell fractions with regard to ploidy. This study showed two main types of 

progression; one monogenomic, stable type and one polygenomic more genomic unstable 

type. The latter type had one clone dominated by hypodiploid cells, but also additional 

clones with aneuploid DNA index (triploid area) indicating that a doubling of DNA 

content from a hypodiploid phase has occurred. This is in line with the findings of 

Dutrillaux at al.85. In paper IV the ploidy measurements of Basal-like tumors by ASCAT 

correspond to the distribution seen in the polygenomic group and the measurements for 

Luminal A the distribution of the monogenomic type. Coinciding with the 

aneuploidization of the polygenomic tumors, complex rearrangements occur, in line with 

our findings of B1 tumors being dominated by large regions of losses while the related 

group, B2 tumors, had more gains in addition to complex rearrangements (paper II). This 

switch can explain the close relationship between erbB2+/Luminal B and Basal-like 

tumors; complex rearrangements have frequently amplifications of growth promoting 

genes found, and this can shift the phenotypic pattern more towards the expression 

subtypes such as Luminal B and erbB2+.  As also seen by Chin et al.; if genes whose 

expression was correlating with amplification were removed, the erbB2+ cases did not 

cluster together. This can indicate erbB2+ tumors do not represent a separate path of 

progression but reflects a ‘side-path’ for the main types110. Data from paired-end 

sequencing revealed a very dissimilar rearrangement pattern compared to Luminal A 

tumors. Basal-like tumors had multiple segmental duplications genome wide (paper II). 

The mechanism behind is not known, but in the MicMa cohort we identified two tumors 

of the AB2 and C2 type with this pattern in addition to more complex rearrangements. 

One was Basal-like by expression, the other were erbB2+, again strengthening the 

suspicion of a close relationship between these groups. In addition, this latter case was by 

SNP analyses (paper IV) found to have allelic imbalance of the same type as seen for the 

Basal-like tumors. 
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Progression does not always reach an end-point  

This reflect a phenomenon widely known to be true for some types of prostate 

carcinomas, and when mammography was introduced, it was debated whether the 

increased incidence in the same time reflected tumors that never would have progressed 

to become a clinical detectable tumor during a woman lifetime. Breast tumors are 

estimated to have very different growth rate131. Highly differentiated tumors such as 

tubular carcinomas with only one or two genomic changes (such as 16q loss) might 

represent such tumors83, 131. As mentioned above, no data up to now have been able to 

identify which tumors have the propensity to have secondary changes and develop via 

another path into more aggressive disease.  

 

Epigenetic alterations in breast cancer 

Epigenetic modifications both at the chromatin and DNA level affect the structure and the 

expression of genes and is essential both for normal development but also for regulation 

of tissue specific processes. Several mechanisms are of importance, such as histone 

modification, DNA methylation, non-coding RNA’s and nucleosome position (for 

review; 132, 133. Probably the most widely studied epigenetic modification is the cytosine 

methylation in the context of the dinucleotide CpG. In embryonic stem cells such 

modifications is of major importance in regulating genes important for cell differentiation 

and function134. Altered regulation of CpG methylation is implicated in many diseases. 

Specifically, in cancer, methylation of CpG islands proximal to tumor suppressor genes 

such as p16, Rassf1a, and BRCA1, is a frequent event, and methylation of several gene 

are found to be linked to breast cancer135-138. Knowledge about different methylation 

states characterizing cells at different levels in the breast cell hierarchy is emerging139, 

and in paper III we found a correlation between subgroups of tumors and methylation 

patterns more common in the luminal lineage compared to myoepithelial lineage 

strengthening the relationship between the Luminal A and Basal-like carcinomas with the 

different levels in the hierarchy of normal breast epithelium.  
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Tumor stem cell models 

A key event in carcinogenesis are the acquisition of self renewal capacity46. Self renewal 

capacity is a hallmark of stem cells, and the discovery of subpopulations of cells with 

phenotypic resemblance with stem cells opened for a debate concerning the existence of 

‘cancer stem cells’140. The cancer stem cell theories can be viewed as two different 

models; the cancer stem cell model and  the clonal selection and evolution model (Fig. 

8)15, 141.  

 
Figure 8: The two main models of cancer stem cells; 

A: The cancer stem cell model and B: the clonal selection and evolution model. The dark red cells illustrate 

tumor cells with stem cell capacity, while the brighter cells represent more differentiated progeny causing 

tumor heterogeneity. From Polyak 200715. 

 

Tumor heterogeneity is explained differently in the two models, with programmed 

aberrant differentiation in the first or as a mixture of subclones with difference in the 

latter. The former hypothesis defines the cancer stem cells to be the driver of the 

progression, while the latter defines the clone with the most advantageous aberrations as 

the driver. Both models can explain treatment resistance; either is the stem cell resistant 

or a development of a resistant subclone will explain the progression of the disease. 

Although the models are different, they are not mutually exclusive. It is possible that 

some breast tumor types have a cell of origin with stem cell properties and can develop 

heterogeneous subclones if the ability to differentiate is intact. Others might origin from 

more mature and linage restricted progenitors and subclones with additional alterations 

can explain progression and resistance to treatment. In others and our data the Luminal 
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related tumors fit into clonal selection and evolution model, while Basal-related tumor 

progression can be explained by a stem cell model142, 143. It is of major importance to 

reveal more about the properties and relationship between mammary epithelial cells and 

their predecessors144. 
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Aims of the study 

 
The primary aim of this study was to explore breast carcinomas at the genomic, 

transcriptomic and epigenetic level to identify distinct molecular subgroups of tumors, 

and explore their different progression paths and the clinical impact.  

 

The secondary objectives were: 

 

• to define the relationship between host-related influence and the molecular 

expression subtypes by classifying bilateral synchronous and metachronous breast 

tumors using IHC surrogate markers. 

 

• to elucidate the relationship between genomic alterations, molecular expression 

subtypes, structural rearrangements, ploidy, pathology and clinical data by 

exploring genomic architectural alterations in high-resolution aCGH data from 

different breast cancer cohorts 

 

• To explore genome wide methylation patterns to identify subgroups and their 

relationship to molecular expression subtypes and clinical data.  

 

• To develop bioinformatical tools enabling objective measurements of genomic 

events. 

 

• To develop bioinformatical tools to elucidate the heterogeneity and ploidy in 

tumors in order to adjust genomic copy number values.  
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Material and methods 

 

Patient material 
This study has been analyzing several clinical breast cancer cohorts, but the main focus 

has been on the “MicMa” samples. Four other cohorts were used; one with bilateral 

tumors (“Russian”) and three cohorts with primary tumors (Sweden; “WZ”, Oslo; “Ull” 

and England; “ChinUC”). The details of these cohorts and analyzes performed for each 

study is given in Table 1. Demographic data for all cohorts are given in Paper II 

(Supplementary Table 1).  

As a part of the “micrometastasis” research group at the Norwegian 

Radiumhospital, a study concerning the implication of micrometastasis for breast 

carcinoma patients were launched in 1993 (The DNK study, supported by The Norwegian 

Cancer Association). A total of 921 breast carcinoma patients from five different 

hospitals were enrolled between 1995 and 1998 into the study. Blood, bone marrow, 

tumor tissue and lymph nodes were collected if possible, as well as clinical data including 

10 years follow up145. Fresh-frozen tumor tissue was available from 130 patients, and this 

sub cohort of the DNK study is referred to as the MicMa cohort. The cohort consists 

mainly of primary operable tumors of stage I-III where almost 40% received no adjuvant 

therapy100.  

The ChinUC cohort is selected from a clinical tissue bank to represent low stage 

tumors109. All tumors were primary operable invasive carcinomas collected from 1990-

1996.  

The WZ cohort was highly selected as it was drawn from a tissue bank to study 

diploid tumors with different outcome87. In addition to 100 diploid tumors, 41 aneuploid 

tumors were included.  

The Ull cohort was sequentially collected at a single Norwegian hospital between 

1990-1994 and was dominated by primary operable breast carcinomas of low to 

intermediate stage99.  

 The Russian cohort was collected retrospectively to include equal numbers of 

metachronous and synchronous breast carcinomas.  
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Methods 
 

As noted in Table 1, several different methods were used in this study. An overview of all 

methods is given in Table 2 at the end of this section. By combining data from different 

types of analyzes, we have been able to characterize breast tumor both at the phenotypic 

(Protein, RNA), epigenetic (methylation) and genomic (DNA) level.  

 

Immunohistochemistry 

Immunohistochemistry for protein detection was chosen as it is convenient on FFPE 

tissue and because it allows visually interpretation of which cell type express the chosen 

protein. The method is based on antibodies binding to the chosen antigen (protein) and 

thereafter visualized by different detection systems. The main detection system used in 

this study was Envision+ (DAKO) which has less background and is easier to interpret 

than the previously more common techniques such as the ABC (Avidin-Biotin-

Peroxidase) method 146, 147. The bound antibodies are recognized by a secondary antibody 

coupled to a dextran polymer with enzymes, and after biotin treatment it gives a strongly 

enhanced visual signal as illustrated in Figure 9. Antibody based assays with detection by 

Fluorochromes can also be used as demonstrated in Paper I. 

 
 Figure 9: The principle behind protein detection by polymer based IHC. Modified from Wiedorn et al. 

2001 148. 
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Gene expression microarray analysis 

Measurements of RNA levels of different genes were not a specific part of this study, but 

the classification by expression data are fundamental for all the four papers, so the 

methods will be reviewed briefly. The RNA levels of expressed genes can be made 

individually by quantitative RT-PCR (reverse transcriptase polymerase chain reaction), 

but microarray technology opened for expression analyses of thousands genes at the same 

time. The array type used for expression based classification in paper II and III were 

cDNA arrays consisting of 42 000 cDNA clones selected from expressed a sequence tags 

(EST) library and spotted on glass slides100, 149. Both sample and reference RNA were 

converted into cDNA, labeled by different fluorescent dyes mixed and hybridized to the 

array.  An optical reader measured fluorescent at both wavelengths to be able to calculate 

an intensity ratio (Fig. 10). The ratio reflects genes that are over-, under- or equally 

expressed compared to the reference cDNA.  

The molecular classification 

of breast carcinomas is based on 

previous studies of Sorlie and 

Perou37, 95, 96. Although some 

samples have almost equally high 

correlation to more than one, the 

most common way of classifying is 

to designate each sample to the 

centroid with  

highest correlation as illustrated in 

Figure 11. 
 

 

Figure 10: A schematic illustration of cDNA 

expression array  

hybridization. From Jeffrey et al.149. 

 



46 
 

 
Figure 11: The gene expression data from the intrinsic gene list is used for hierarchical clustering of the 

MicMa samples (top). The corresponding chart (bottom) illustrates the correlation value to all five 

centroids for each sample. The color of the bars in the cluster diagram show the centroid the given sample 

had the highest correlation to.  From Naume et al.100.  

 

 

Measurement of DNA content  

Measurement of DNA content of the MicMa samples was performed on imprints, made 

by lightly pressing frozen tumor tissue onto glass slides followed by fixation in formalin. 

The staining of DNA was performed by Feulgen reaction; hydrolysis of DNA followed 

by a color reaction (Schiff) as previous described150. The cells were identified visually as 

tumor cells or non-tumor cells (such as lymphocytes and fibroblasts). By image 

cytometry the DNA content was measured in approximately 200 tumor cells and in 

representative non-tumor cells. The optical density of each cell was compared to the 

density of the non-tumor cells and the result from each tumor was viewed in a histogram. 

The histograms in this study was interpreted visually where the mode value of each peak 

were selected as the ploidy value of the tumor. Tumors with mode values between 1.8 

and 2.2 were called diploid while tumors with mode values higher that 2.2 was called 
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aneuploid. Some tumors were purely diploid while others were aneuploid often 

displaying a broad specter of DNA content (Fig. 12).  

 
Figure 12: To the left a histogram from a diploid tumor (top) where almost all measured cells have DNA 

content equally to non-tumor cells (2c). To the right is an aneuploid tumor displaying a broad specter of 

cells with DNA content ranging from below 2c to more than 3c. 

 

Fluorescence In Situ Hybridization; FISH 

To visualize alterations of the DNA structure in more detail, FISH is a technique that can 

both show copy number alterations and structural rearrangements. The HER2 

copynumber was measured by FISH in the MicMa cohort on TMA (tissue micro arrays) 

by commercial probes hybridizing to the gene (Vysis)151. A fluorescent labeled DNA 

probe is designed to be complementary to the target DNA and after hybridization the 

signal will be detected by a fluorescent microscope. DAPI (4’,6-diamino-2-phenylindole) 

are frequently used to visualize the nuclei. Probes can be made in-house both by using 

BAC (bacterial artificial chromosomes) clones and by PCR based techniques. Absence of 

signals can be interpreted as genomic loss, while extra signals indicate gains (Fig. 13). By 

selecting probes close to each other, translocations can be detected either as split signals 

or fused signals. In paper II we designed BAC probes with different fluorescence to DNA 

loci on each side of the centromeres on chromosome 1 and 16 to visualize a translocation 

between the two chromosomes. In paper IV we used probes tailored to frequently 

amplified regions on chr. 8 for validating the copy number estimates made by ASCAT 

(Fig. 14) 
 
Figure 13: FISH analysis revealing copy numbers of  the HER2 gene (red) compared to 

centromere 17 (green) in tumor cells (the nuclei are blue by DAPI). On top is nuclei from 

a tumor with no increase in HER2 copy number, below is a tumor with two copies of the 

centromere 17 and >20 copies of HER2. 
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Figure14: Multigene FISH analyses with five probes targeting different genes on chromosome 8. The 

columns represents photographs taken from each specter, the last column are the superimposed image with 

all signals. The two first rows represent tumor cells, the third row is a lymphocyte serving as an internal 

control.  

 

Copy number microarray  analysis 

Measurement of genomic variations was traditionally performed by karyotyping. Later, 

comparative hybridization with reference DNA on metaphases improved the detection152. 

Almost a decade ago, the first maps of the sequences in the human genome was 

published153. This, together with the technical improvement of array analyses and 

bioinformatical methods, opened for high resolution DNA analyses such as aCGH (array 

comparative genomic hybridization). The first published work with aCGH used a 2400 

BAC array154. The most common type of aCGH is constructed by spotting DNA 

sequences (BAC, PCR fragments or synthetic oligonucleotides based) on glass slides (for 

Review;155). Sample DNA are compared to “standard” DNA (such as DNA from pooled 

blood cells from healthy individuals) marked with different fluorochromes and 



49 
 

hybridized to the array.  The arrays are scanned to measure the intensities of the two 

fluorochromes per spot, and the ratio indicate if it is more (gain), less (loss) or no 

difference (no alteration) between the sample DNA and the reference. The amount of 

information from such experiments is enormous and different types of bioinformatical 

algorithms are used for quality control, adjustment of variation and visualization of the 

results.  

As summarized in Table 2, data from three different types of aCGH platforms was 

analyzed in Paper II, and copy number variation deduced from SNP array was used in 

Paper IV. The Roma array (Representational Oligo Microarray Analysis) was developed 

at Cold Spring Harbor Laboratories (CSHL) to identify copy number polymorphisms and 

variations (CNP and CNV)156. In this method DNA was digested by BglII to reduce the 

complexity of the genome but still keep the analysis at a high resolution. The ROMA 

array is spotted with >83 000 DNA fragments distributed throughout the genome as 

illustrated in Figure 15. 

 
Figure 15: The ROMA platform. DNA is cut by BglII prior to adaptor ligation, DNA amplification, 

labeling, mixing with reference DNA and hybridization to the array. From Feuk et al.157. 

 

The Ull cohort was analyzed by an array designed total genomic DNA analyses without 

PCR amplification 158(Agilent). The array is spotted with 244 000 probes with a genome 

wide distribution. The data from the ChinUC cohort was from a custom made 

oligonucleotide based array with approximately 30 000 probes159. All three platforms are 

arrayed with oligonucleotides, but the Agilent and the custom made (ChinUC) are biased 

towards intragenic probes in contrast to the ROMA array. The Illumina SNP array used in 

Paper IV is based on a bead principle160 and measure both signal intensity and changes in 

allelic composition identifying both copy number change and copy number neutral events 

(LOH; loss of heterozygosity)161. Comparison of data obtained from the ROMA, Agilent 

(44K) and Illumina platform has shown only minor discrepancies162.   
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Methylation status analysis 

For study of genome wide methylation we used MOMA (Methylation Detection 

Oligonucleotide Microarray Analysis), also developed at CSHL163. MOMA allows for 

high throughput analysis of classical CpG islands of size 200-2000bp. As for ROMA, 

MOMA is based on representations of DNA. After cutting and ligation with adapters 

each sample is divided into two. One part is digested with McrBC (cleaving DNA at 

methylated cytosine residues), the other part is mock digested to serve as a reference for 

comparative hybridization on the array (Fig. 16).  

 

 
Figure 16: Schematic illustration of the 

principle behind MOMA. Genomic DNA 

is cleaved in CG rich areas, ligated to 

adaptors and split into two. One part is 

digested at methylated cytosine residues, 

the other not. After a balanced PCR 

reaction the two parts are mixed and 

hybridized to the array. From 

Kamalakaran et al.163. 

 

 

 

 

Paired-end sequencing 

In a separate study a minor subset of samples from the MicMa and Ull cohort were 

analyzed by Paired end sequencing (Stephens et al, resubmitted, Nature). In Paper II the 

results from five of the tumors are used to illustrate the differences between the 

subgroups defined by different genomic architecture. In this method, DNA is fragmented 

into 400bp fragments where each end of every fragment are ligated to adapters and then 

sequenced164. The first 37 bases are sequenced from each end of the strands, and then 

mapped to the genome. Ends that do not map as expected indicate a structural 

rearrangement, such as a translocation, duplication, inversion or amplification (Figure 
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17). By mapping several overlapping fragments both breakpoints and type of 

rearrangement can be identified. 

 

 
Figure 17: DNA fragments are sequenced only 

from each end and mapped to the genome. This 

illustrates the identification of a translocation 

between Chromosome 11 and 8, mapped by 

several overlapping fragments. Published with 

permission from P. Stephens. 

 

 

 

Bioinformatical and statistical methods 

Most of the bioinformatical based tools developed in paper II, III and IV are in Java, R or 

MATLAB codes. Statistical analyses were performed by SPSS 15.0 in paper I and II and 

by R in paper III and IV. In paper I and II, associations between categorical or continuous 

values were assessed by Pearson chi square, Fishers exact or Kruskal-Wallis tests165. 

Hierarchical cluster analyses and t-tests used to identify subgroups and altered loci of 

methylation in paper III were performed in R as were the Genetic Algorithm (GA) and 

the survival analyses. The survival analyses in paper II and III were based on the Cox’ 

proportional hazard method and log rank tests165. More detailed description of both the 

bioinformatical codes and statistical methods are given in the respective papers. 
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Summary of results 

 
Paper I: “Paired distribution of molecular subtypes in bilateral breast carcinomas” 
Hege G. Russnes, Ekatherina Sh. Kuligina, Evgeny N. Suspitsin, Ekaterina S. Jordanova, Cees J. 

Cornelisse, Anne-Lise Børresen-Dale, Evgeny N. Imyanitov 

Under review, Molecular Oncology 

 

Tumors arising in both breasts in a female are rare but represent a unique setting 

to explore the relationship between host-related factors and tumor phenotype. In this 

study, we analyzed 100 tumors from fifty women with bilateral disease. Of these, 23 had 

synchronous disease (tumor in the contralateral breast diagnosed within a year from the 

first) and 27 had metachronous disease (tumor in the contralateral breast diagnosed more 

than a year after the first). As the tumors had been preserved as FFPE tissue, we chose to 

classify them into molecular subtypes by IHC. Six antibodies were selected as surrogate 

IHC markers to identify tumors as Luminal (‘Luminal’), triple-negative Basal-like (‘TN-

Basal’), triple-negative unclassified (‘TN-UNC’) or heterogeneously (‘Heterogenous’) 

stained tumors. Clinico-pathological data as well as BRCA1 mutation status were 

available. We found that in bilateral disease, synchronous tumors showed a slightly 

higher rate of concordant pairs than metachronous tumors, and Luminal tumors were 

highly concordant regardless of being synchronous or metachronous. Metachronous cases 

had a higher degree of discordance if the time interval was more than 10 years, and this 

was especially pronounced when the first tumor was of the TN-Basal type. The TN-Basal 

tumors with a short time interval were all concordant, while those with a long time 

interval were highly discordant. These findings points to host related factors being 

important for the development of Luminal-like tumors. The TN-Basal tumors of 

synchronous and metachronous type with short time span were also highly concordant, 

pointing to host related factor in this type of carcinomas as well. In addition, the data 

reflect the acknowledged heterogeneity of Basal-like carcinomas. Metachronous TN-

Basal and TN-UNC tumors with longer time span than five years were highly discordant 
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and suggest that the second tumor arising in these women have different causes 

dominated by stronger environmental influences than genetic factors. 

This study provides additional evidence for the role of host factors determining 

the molecular subtypes of breast cancer disease, indicating that both germline variations 

and hormonal status are of importance. Such knowledge can provide important 

information about selection of treatment for the first cancer that would also provide as 

prevention for contralateral breast cancer. 

   

 

Paper II: “Genomic architecture characterizes tumor progression paths and fate in breast 

cancer patients” 

Hege G. Russnes, Hans Kristian Moen Vollan, Ole Christian Lingjærde, Alexander 

Krasnitz, Pär Lundin, Bjørn Naume, Therese Sørlie, Elin Borgen, Inga H. Rye, Anita 

Langerød, Suet-Feung Chin, Andrew E. Teschendorff, Philip J. Stephens, Susanne 

Månér, Ellen Schlichting, Lars O. Baumbusch, Rolf Kåresen, Michael P. Stratton, 

Michael Wigler, Carlos Caldas, Anders Zetterberg, James Hicks, Anne-Lise Børresen-

Dale 
Submitted Nature Medicine 

 

The era of genome-wide high resolution analyses have increased the amount of detailed 

knowledge about molecular alterations in breast cancer, but the physical distortion of the 

genome is seldom attributed. In breast carcinomas a variety of structural distortion 

patterns have been identified by karyotyping and this is now supported by detailed 

sequencing analyses. Karyotyping require viable tumor cells and is only appropriate for 

smaller studies, it is time consuming and does not reveal detailed information about 

rearrangements. Sequencing analyzes are costly and time consuming in contrast to aCGH 

analyses. The aim of this study was therefore to construct objective estimates of genomic 

architectural alterations in high-resolution aCGH data and to apply this to several breast 

cancer cohorts to increase sample size in order to be able to explore the relationship 

between genomic alterations, molecular expression subtypes, structural rearrangements, 

pathology and clinical data. By making platform independent scores to 1) identify either 
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gain or loss of whole chromosome arms (WAAI) and 2) identifying complex 

rearrangements of chromosome arms (CAAI), we were able to merge four different breast 

cancer cohorts analyzed on three different aCGH platforms and thus relate genomic 

architectural distortion to various types of data from a total of 595 breast cancer patients.  

By using WAAI, we sub-stratified the merged cohort into Luminal (A tumors) and 

non-luminal tumors (B tumors) based on selected genomic surrogate markers known to 

distinguish the Luminal A and Basal-like subtype. By doing this we also found a group 

with combination of Luminal A and Basal-like markers (AB tumors), and a group with 

none of the markers (C tumors). The selected markers for A tumors were either gain of 1q 

(whole arm) and/or loss of 16q (whole arm), while regional loss on 5q and/or gain of 10p 

were selected as markers for B tumors. The four groups showed that the A group was 

enriched in Luminal A tumors and the B group in Basal-like tumors. Interestingly, 

Luminal B, erbB2 and Normal-like tumors were found in all groups, but the latter two 

subtypes were more frequent in the C tumors. Complex rearrangements as defined by 

CAAI occurred in all subgroups, and were used to subdivide each of them making a total 

of eight different WAAI/CAAI defined groups (A1, B1, AB1, C1 with no/low CAAI and 

A2, B2, AB2, C2 with high CAAI). The groups displayed very different types of genomic 

distortion. The A tumors were dominated by gain or loss of whole chromosomes and 

chromosome arms and B tumors by genomic losses and more regional aberrations. This 

difference were also evident by the few samples selected for paired-end sequencing; the A 

tumor had only one alteration, compared to the B tumor having genome wide duplications 

and several translocations. The complex rearrangements measured by CAAI had distinct 

patterns, with chromosome arms 8p and 11q most frequently affected in A tumors in 

contrast to B tumors having 17q and 20q as frequent affected arms. The pattern of 

genomic distortion and the ploidy status of A and B tumors indicated that a progression 

from A1 to A2 probably occurs along a linear path. Such a progression was less clear for 

the B tumors. A resemblance between B, AB and groups of C tumors probably reflect a 

relationship between the non-Luminal tumors. The WAAI defined groups had significant 

differences in outcome (breast cancer specific death) and CAAI had a strong prognostic 

impact, reflecting that patients with tumors with complex rearrangements, even of only 

one chromosome arm, had a worse outcome independently of other factors. An 
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established prognostic index such as histological grad had a strong prognostic impact in A 

tumors but not in B and AB tumors, reflecting the importance of acknowledging the 

different properties of molecular subgroups. This study show how genomic architecture 

can be used to more robustly define molecular subtypes of breast carcinomas and that 

genomic distortion such as complex rearrangements constitute a new prognostic tool in 

breast cancer. 

 

 

Paper III: “Subtype dependent alterations of the DNA methylation landscape in breast 

cancer and implications for prognosis” 

Sitharthan Kamalakaran, Hege E. Giercksky Russnes, Vinay Varadan, Dan Levy, Jude 

Kendall, Angel Janevski, Michael Riggs, Nilanjana Banerjee, Marit Synnestvedt, Ellen 

Schlichting, Rolf Kåresen, Robert Lucito, Michael Wigler, Nevenka Dimitrova, Bjørn 

Naume, Anne-Lise Børresen-Dale, James B. Hicks 
Manuscript 

 

This study was designed to measure the levels of DNA methylation of breast carcinomas 

by performing high-throughput genome-wide scans of CpG methylation by the MOMA 

technology. By analyzing breast carcinomas (n=114) and normal breast tissue (n=11) we 

aimed at 1) identifying tumor specific methylation patterns, 2) subgroup tumors based on 

methylation patterns and 3) identifying loci with prognostic value. Unsupervised 

hierarchical clustering using the 500 most differentially methylated loci across all tumors 

and the 100 most significant altered loci between tumors and normal tissues clustered the 

tumors into 3 major clusters. As the cohort previously had been classified into the five 

gene expression subtypes, a comparison between the three groups and the molecular 

subtypes was performed. Cluster I, was enriched in luminal subtypes (Luminal A and 

Luminal B) in contrast to cluster II which were dominated by the Basal-like and erbB2+ 

subtypes. Cluster III did not show any expression subtype specific enrichment, the 

majority of the samples belonged to a group of tumors having inconclusive or only weak 

correlations to multiple expression subtypes. The three groups showed a high correlation 

to the DNA based WAAI/CAAI groups as well; cluster I was dominated by A tumors, 
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cluster II by B tumors and cluster III by C and A tumors. Interestingly, the latter cluster 

had only few samples with complex rearrangements. Methylation loci that contributed to 

this clustering were only infrequently localized to CpG islands upstream of genes, 

suggesting that there are subtype dependant genome-wide alterations in the methylation 

landscape in breast cancers. Of the loci mapped to known genes, more than half of them 

showed significant correlation to gene expression, implying possible functional effects of 

the methylation on gene expression. Additionally, distinct expression subtype specific 

patterns of methylation could be detected in known cancer associated genes. CpG islands 

in the HOXA gene cluster and many other homeobox genes were significantly more 

methylated in Luminal A tumors. Several of the loci discriminating between Basal-like 

and Luminal A are known to be differentially methylated in myoepithelial and luminal 

progenitor cells in the normal breast. The methylation patterns of genes characterizing 

Luminal A tumors resemble those identified in CD24+ luminal epithelial cells and the 

loci in Basal-like tumors resemble CD44+ breast progenitor cells indicating that Basal-

like and Luminal A tumors might originate from cells at different levels in the breast 

epithelial cell hierarchy. Furthermore, analysis of these tumors by using follow-up 

survival data allowed an identification of genes whose methylation state was associated 

to poor outcome. 

 

Paper IV: “Novel tool reveals copy number aberrations in tumors (ASCAT)” 

Peter Van Loo, Silje H. Nordgard, Ole Christian Lingjærde, Hege G. Russnes, Inga H. 

Rye, Wei Sun, Victor J. Weigman, Peter Marynen, Anders Zetterberg, Bjørn Naume, 

Charles M. Perou, Anne-Lise Børresen-Dale, Vessela N. Kristensen 
Submitted Nature Biotechnology 

 

In this study, SNP array data from the 102 breast carcinomas were used to deduce tumor 

ploidy, contaminating tissue involvement, intra-tumor heterogeneity and allele specific 

aberrations by a novel bioinformatics approach, ASCAT. SNP arrays measure both signal 

intensity and changes in allelic composition and, in contrast to aCGH, it is possible to 

identify both copy number change and copy number neutral events. ASCAT’s 

consistency and sensitivity to a lowering percentage of aberrant tumor cells was validated 
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by applying the algorithm to a dilution series of a tumor sample mixed with different 

proportions of its germline DNA. In addition, FISH analyses of selected, frequently 

amplified genomic regions were performed on 11 tumors. The ploidy estimations by 

ASCAT were validated by image DNA cytometry of 79 tumors. The copy number counts 

from FISH analyses were highly concordant with the copy number estimates by ASCAT 

in the selected loci, as were the ploidy estimates compared to the results from image 

DNA cytometry. Together, these validation experiments confirm that ASCAT accurately 

predicts allele-specific copy number profiles of tumors over a broad range of tumor 

ploidy and fraction of aberrant tumor cells. 

Furthermore, ASCAT revealed differences in non-aberrant cell infiltration, ploidy, 

gains, losses, LOH and copy number neutral events between the five molecular breast 

cancer subtypes.  Finally, ASCAT allowed a detection of allelic skewness and by this we 

identified several novel markers of breast cancer.  
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Methodological considerations 
 

All four studies included in this thesis were based upon analyzes of clinical tumor 

samples, either as frozen tumor biopsies or FFPE, in addition were matching blood 

samples used for SNP analyses.  An advantage in usingng clinical samples from different 

patient cohorts is that they a spectrum of the disease including different subtype and 

progression levels can be represented. This is in contrast to functional studies based on 

cell-lines and xenografts, where the diversity of a cohort is lost. The limitations are to be 

acknowledged. It would be unethical to study progression of individual tumors as not 

removing a tumor by surgery would be unethical. Clinical cohorts can have a selection 

bias related to many factors, a bias towards heavily treated patients with large tumors are 

not uncommon. In series such as the Ull cohort sequentially collected by surgeons, 

smaller tumors are often not included as the doctors will not dare to ruin the 

histopathological examination. The MicMa series is part of a larger cohort of patients 

collected at several different hospitals and not only on university hospitals (which can 

have an overrepresentation of large and rarer tumor types). In this cohort 130 tumors had 

fresh frozen tumor tissue available, and these seem to have a skewed distribution towards 

more advanced tumors than the rest of the cohort. Both the WZ and the ChinUC cohort 

was drawn from tissue banks, an advantage is that the tumor samples often are collected 

by a pathologist which can secure also pieces from minor tumors. In the merged cohort 

analyzed in paper II, the WZ tumors (selected for diploids) and the ChinUC tumors were 

important contributors to the descriptive analyses as the set got enrich in tumors probably 

at an early stage of progression. The WZ set was omitted from analyses regarding 

outcome; its selection criteria was to have equal distribution of survivors and non 

survivors. In addition the clinical information was not collected and secured by a 

clinician in contrast to the three other cohorts. 

 Frozen sections were analyzed by microscopy to secure tumor representativity of 

the biopsies, but the variations even in small tumor pieces can be huge. Some tumors 

have huge DCIS components and only minor areas with invasion. An example of tumor 

heterogeneity influencing the analyses was seen in a tumor classified as Basal-like by 

gene expression analyses. The part of the tumor investigated by image DNA cytometry 



60 
 

showed a clear diploid profile, while the DNA extracted from another part of the tumor 

showed by ASCAT an aneuploid profile. This is not misinterpretation of the analyses but 

reflect the heterogeneity in some carcinomas.  

 All methods in these four papers have advantages and disadvantages as 

summarized in table 2. The design and properties of each method vary enormously from 

analyzing one target (FISH/IHC) to multiple predefined targets (microarrays) or unknown 

targets (paired-end sequencing). As separate clinical cohorts often have tissue preserved 

differently and of limited amounts, applying the same method on several cohorts is in 

often impossible. In paper I, the state of the tissue made IHC analyses of TMA the 

method of choice to classify the tumors into the molecular subtypes. Selection of markers 

was, as reviewed in the paper, based on previous literature. Due to limitations in tissue 

availability and the work being performed as a collaboration between two laboratories, 

two different detection systems were used. The major problem in classifying this cohort 

was the sample size, and recognizing the major groups was therefore the focus. The 

HER2 marker was of that reason not used as a surrogate marker. It is also debatable if it 

was wise to split the triple negative cases into a ‘TN-Basal’ and a ‘TN-unclassified’, but 

this decision was based on the known heterogeneity of non-Luminal tumors.   

 FISH analyses is to date still difficult to score in an objectively way. A major 

advantage is the in situ visualization of signals in each nucleus. The size, shape and 

location of the signals are important to be able to avoid false interpretations. All counting 

of signals in paper IV was performed visually. To be representative, three to four 

different areas on the imprints were used, and the mean value from 20 cells were chosen 

to represent the copy number for a given gene/probe from each tumor. To identify 

translocations, the same combination of probes needed to be in close approximation to 

each other in several cells to be regarded as a translocation. This is easy to interpret in 

diploid tumors, but much more challenging in aneuploid tumors where the signals were 

more numerous. In such comprehensive FISH analyses using multiple probes it is 

important to keep in mind the few number of cells analyzed, and in heterogeneous tumors 

the findings can probably not be generalized.    

 Ploidy measurements performed by image DNA cytometry and are in this work 

scored visually by choosing the mode value as the DNA index. The histograms from 
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some tumors show broad distributions of DNA content, and a more dynamic type of 

measurements could have been advantageous. In paper II ploidy was used solely as a 

measure for progression and a rough estimate and categorization into diploid and 

aneuploid tumors were therefore used. In paper IV the mode values were compared to the 

ASCAT estimates. Interestingly, most of the tumors that ASCAT could not be applied to 

were highly aneuploid with a broad distribution probably reflecting multiple subclones. 

 Microarray analyses are designed to give information about numerous targets; in 

this thesis the patterns of aberrations have been the main focus and not single genes/loci 

or groups of genes. The use of expression array analyses to deduce the molecular 

subtypes have been discussed previously, but it is important to keep in mind that this 

classification is based on few genes extracted from analyzes on a small tumor set with 

advanced tumors. It is shown that by adding genes to the list, additional expression 

subtypes seem to emerge166. Microarrays measuring copy number variation have various 

types of design, but this thesis point to one major feature; the SNP arrays ability to 

deduce allele specific alterations, measure the influence of non-aberrant cells and deduce 

ploidy state compared to the CGH arrays. The differences between various types of CGH 

arrays can be overcome as illustrated by paper II. Construction of bioinformatical codes 

that easily can be tailored to each type of aCGH data (i.e. centering and PCF 

segmentation) gave data that could be the input to the WAAI and CAAI algorithm 

making these them platform independent. It has to be acknowledged that the probe 

selections on the three types of arrays are fundamentally different, the 32K customized 

array and Agilent being gene centered while ROMA were not.  The WAAI and CAAI 

scores were validated primarily in the ROMA data as HER2 FISH and paired-end 

sequencing was available for several of the tumors. CAAI and WAAI were carefully 

tailored to recognize complex rearrangements and whole arm alterations, and this was 

confirmed by visual inspection of all aCGH profiles. Visual inspection is a subjective 

estimate not good enough as validation, but it was important to do as a quality control of 

the estimates. Samples with whole arm alterations but with either a high standard 

deviation or low amplitude would not get an elevated WAAI score. Such samples are 

difficult to interpret and WAAI was designed to take this into account not to get too many 

false positive scores. This resulted in false negative samples (samples where visual 
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inspection indicated whole arm gain or loss of 1q and 16q but not classified as A tumors 

by WAAI classification). CAAI was designed to recognize the complex alterations 

defined as regions with high-level amplicons separated by short deletions (firestorms). 

Although the BFB mechanism can in theory explain such alterations, more detailed 

analyses by paired end sequencing indicate that several mechanisms are involved. It is to 

be mentioned that CAAI is not reflecting the complex type of rearrangements called 

‘saw-tooth’, and comparing the WAAI and CAAI distribution in B tumors with the 

frequency plots (Figure 3 and Supplementary Figure 5 in paper II) it is obvious that 

defining a third parameter to capture such rearrangements as well would be an advantage.  

The nature of genomic rearrangements is until now defined primarily by 

cytogenetics, and the transfer of concepts and definitions from karyotyping to detailed 

studies such as paired-end sequencing is difficult. The details about intra- and inter-

chromosomal rearrangements are starting to emerge, and alterations discovered can not 

be fully covered by the existing ‘nomenclature’ of cytogenetics. It is to be expected that 

the new level of resolution in genomic analyses will demand and define such a 

nomenclature, and will bring new insight into the mechanisms behind the different 

architectural distortion patterns we observe in breast carcinomas.   

The studies in this thesis combine information from different analyses in a 

pragmatic way based on established statistical methods. We are in an era where 

integrative approaches are being the main focus in a recently established science called 

‘systems biology’, and major achievements in statistics and bioinformatics are to be 

expected leading to new understanding in the complex field of cancer biology.   
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Main conclusions and future aspects 

 
The studies included in this thesis support the existence of at least two major types of 

breast carcinomas, one with features related to Luminal cells, the other to cells with 

stemcell/Basal-like properties. The tumors progressing along a luminal path are often ER 

and/or PgR positive and can have luminal differentiation as seen by histopathology. This 

phenotype is also reflected by gene expression. At the genomic level such tumors are 

often diploid but have characteristic gains and losses of whole chromosomes or 

chromosome arms, the latter can be explained by whole arm translocation frequently 

involving chromosome 1 or 16. The tumors have a good prognosis, but if luminal tumors 

get more complex rearrangements, the outcome is worse. Such tumors probably reflect a 

more advance stage in progression as they are frequently aneuploid and have high 

proliferation and are less differentiated. An established prognostic factor such as 

histological grade is important to identify patients with a worse prognosis, but this is only 

to be of benefit in luminal related tumors. At the genomic level luminal tumors rarely 

have mutations in TP53, and have few structural genomic rearrangements.  

 The tumors progressing along the Basal-like/stem cell path are typical ER and/or 

PgR negative; expression analyses and methylation patterns link this subtype to basal- 

and stem cells. They have a distinct ploidy pattern being diploid/hypodiploid in a early 

phase and aneuploid close to the triploid region in a later phase. Tumors in the first phase 

are dominated by genomic losses, while tumors in the aneuploid phase are showing 

genome wide complexity including complex rearrangements with high level amplicons. 

Basal-like tumors have minor genomic duplications scattered in the genome, and the 

more advanced tumors seem to have complex rearrangements in addition. This is also 

reflected by the expression pattern as a shift can be observed towards the erbB2+ and 

Luminal B centroid. The mechanism behind this unstable genome is unknown, but 

mutations in TP53 are a frequent alteration.  

 In paper II we found that several tumors could be grouped both as an A and a B 

tumor and were thus designated as AB tumors. By visual inspection they rarely belonged 

to the typical ‘simplex’ (luminal) pattern but had often rearrangements on almost all 

chromosomes, including loss and gain interpreted by WAAI, with whole arm alteration of 
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1q or 16q. Most of the additional analyzes on such samples support that they are related 

to the B/Basal-like type of tumors, but only functional studies can tell if a tumor can 

switch from a luminal path to a Basal-like or vice versa.  

 In addition to these entities minor groups have also emerged; in paper II we 

identify a group of tumors without any of the selected markers which frequently had 

complex rearrangements on 17q. This group was dominated by erbB2+ and normal-like 

samples, and two of the samples were DCIS. As shown in Fig.6 the clustering of the five 

centroid values revealed a group dominated by expression towards the same two 

centroids also indicating an independent type of tumors. 

 To get closer to defining distinct entities and their relationship, the next step will 

be functional studies. As a part of the OSLO2 study, fresh tumor samples are collected 

and disaggregated into single cells preserved in a viable state. Fluorescence Activated 

Cell Sorting (FACS) will be used to sort tumor cells into different fractions by applying 

different antibodies targeting various cell surface markers. The markers will identify cells 

representing different stages in differentiation (such as breast stem cells and more mature 

myoepithelial or luminal related cells) in addition to other cells in breast tissue such as 

fibroblasts, lymphocytes, adipocytes and endothelial cells. Sorted subpopulations will 

further be analyzed both at the genomic level (sequencing/SNP/copy number 

variation/methylation) and at the expression level (RNA/miRNA/protein)  

 If some of the collected tumor samples have viable cells that grow in culture, the 

level of environmental stimuli can be mimicked and varied. The level of differentiation 

can be measured both visually and by gene expression analyzes aiming at identifying 

subgroups of tumor cells that show more or less plasticity with regard to direction of 

differentiation and to investigate whether such changes imply genomic aberrations as 

well.  

 Molecular alterations characterizing a subclone of importance will be selected to 

be analyzed by technologies such as IHC and FISH using tissue sections and TMAs to be 

able to go back to the cohorts used in this thesis where so much additional information is 

available. Such in situ studies will serve as an important validation of findings; it also 

makes it possible to visually identify which cells have the alterations, and where they 

reside in a tissue architectonical context. Larger sample sets of breast carcinoma can thus 
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be analyzed, the clinical impact can be evaluated and the search for a robust molecular 

classification based on more knowledge from the hierarchical relationship can continue. 

If individualized therapy is to become a reality in the near future, a robust molecular 

based classification of breast cancer will be of major importance.   
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Abstract 
 
Distinct molecular subtypes of breast carcinomas have been identified, but translation into 
clinical use has been limited. We have developed two platform independent algorithms to 
explore genomic architectural distortion using aCGH data to measure 1) whole arm gains and 
losses (WAAI) and 2) complex rearrangements (CAAI). By applying CAAI and WAAI to data 
from 595 breast cancer patients we were able to separate the cases into eight subgroups with 
different distribution of genomic distortion. Within each subgroup data from expression 
analyses, sequencing and ploidy indicated that progression occurs along separate paths into 
more complex genotypes. Histological grade had prognostic impact only in the Luminal related 
groups while the complexity identified by CAAI had an overall independent prognostic power. 
This study emphasizes the relationship between structural genomic alterations, molecular 
subtype and clinical behavior, and provides a score of genomic complexity as a new tool for 
prognostication in breast cancer. 
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Breast cancer is a heterogeneous disease as reflected by histopathology, molecular alterations 
and clinical behavior. In order to relate cellular and sub-cellular features to clinical parameters 
and outcome, substantial effort has been exerted towards identifying tumor groups with distinct 
molecular features. Estrogen receptor (ER) status was early shown to be a major discriminating 
factor and is still of clinical importance1. The more recent gene expression based classification 
proposed by Perou et al. in 20002 identified five different subgroups where one was Luminal-
cell related (Luminal A) and another were myoepithelial-cell related group (Basal-like). Three 
additional groups were identified, but these are less characterized (erbB2+, Luminal B and 
Normal-like). Basal-like and Luminal A carcinomas have different etiologies and for most 
purposes may be considered as distinct diseases3-6. This is also reflected in the genomic 
portraits defined by aCGH (array Comparative Genomic Hybridization), and it seems evident 
that the history of molecular subgroups is written in the DNA alterations7-9.  

Despite the power of RNA and DNA based profiling, translating complex molecular 
classifications into clinical practice has proven challenging. Clinical cohorts are often selected 
to have tumors of a certain category, and might not include all subtypes or outcome groups. 
The size of sample sets available for microarray studies has so far been limited, and combining 
sets to increase size has been challenging since various types of array platforms have been 
used. 

Array CGH does not reveal the chromosomal pattern associated with copy number 
alterations; however much can be inferred from cytogenetic studies. The genomic architectural 
changes in breast tumors revealed by karyotyping follow some main traits. One type of events 
seen early in tumor progression is loss or gain of whole chromosome arms10. Another type is 
more complex rearrangements, often involving several different chromosomes with inversions, 
deletions and amplifications10. Previously we found that invasive breast tumors had different 
patterns of aCGH aberrations11. Tumors of the simplex type had few alterations with loss or 
gain of whole arms dominating, while tumors of the complex type had either many 
chromosomes altered with multiple regions with low level loss and gain (sawtooth pattern) or 
had a few selected regions with high copy number gains with intermittent losses (firestorms). 
We hypothesized that distinct molecular mechanisms underlie such patterns of aberrations.  

In this paper, we have developed objective estimates of genome-wide architectural 
distortion. For each chromosome arm, two platform independent scores were defined: one 
measures the deviation from normal copy number (Whole Arm Aberration Index; WAAI) and 
the other the degree of local distortion (Complex Arm Aberration Index; CAAI). The clinical 
impact of WAAI and CAAI was studied using aCGH data from 595 breast carcinomas 
belonging to four clinical cohorts profiled by three different aCGH platforms (30K-244K 
resolution). This revealed patterns of genomic architectural distortion recognizing Luminal and 
Basal related tumors with distinct subgroups and outcome. The study illustrates the importance 
of dividing breast cancer into molecularly defined subgroups as they have independent 
progression paths and clinical outcome.  
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Results 
 
Genomic architecture characterized by CAAI and WAAI 
Two novel algorithms were constructed; one to identify complex architectural distortions 
characterized by physically tight clusters of break points with large changes of amplitude, and 
another to recognize gains and loss of whole chromosome arms (CAAI: Complex Arm 
Aberration Index and WAAI: Whole Arm Aberration Index, respectively). Segmented data 
from one tumor with corresponding CAAI values are illustrated for selected chromosome arms 
in Figure 1a. The circos plot from Paired End Sequencing of the same sample (Fig. 1b) shows 
that CAAI recognizes regions with structural complexity (Stephens et al., resubmitted). Areas 
of complex rearrangements were found by selecting chromosome arms with CAAI � 0.5. 
Comparison in one cohort of HER2 copy number gains estimated by FISH and the CAAI score 
showed that all but one sample with high CAAI had more than four copies of HER2 
(Supplementary Fig. 1).  

For most chromosome arms, the distribution of WAAI is approximately symmetric 
around zero (Supplemental Figure 2). For some arms however, WAAI is skewed towards 
positive values (1q, 8q and 16p) and for others towards negative values (16q and 17q), 
reflecting a bias towards gain or loss. This pattern was seen in all cohorts, independent of 
platform. Arms with WAAI � 0.8 were defined as whole arm gains and arms with WAAI � -
0.8 as whole arm losses. An example of a tumor with whole arm gain of 1q and whole arm loss 
of 16q is shown in Supplementary Figure 3a. FISH analyses of this case identified a 
combination of probes indicating a centromere-close translocation t(1q;16p) (Supplementary 
Fig. 3b).  

Demographic data for the four cohorts are presented in Supplementary Table 1 and 
overall aberration frequencies are found in Supplementary Fig. 4. The four cohorts were 
merged for the analysis of association to clinico-pathological information, and the frequency 
plot in Figure 2 shows an aberration pattern typical for breast cancer. Several of the most 
frequent events such as gain of 1q and loss of 16q/17q are whole arm events, while the 
majority of gains on 17q and losses on 11q have CAAI � 0.5 and are likely caused by complex 
rearrangements (Fig. 2b). A few alterations such as gain on 8q and 20q displayed both whole 
arm gain and high CAAI. 

 
Defining subgroups based on genomic architecture 
Several studies have shown that the number of genomic alterations and the regions 
preferentially altered differ between the molecular expression subtypes7, 8, 12, 13. Luminal A/ER 
positive tumors often have few alterations with gain of 1q and loss of 16q dominating7, 8, 12-14 
while Basal-like have many alterations affecting most of the chromosomes. Loss on 5q and 
gain on 10p have been proposed as specific Basal-like alterations7, 8, 12, 15, similar to findings in 
breast carcinomas from BRCA1 carriers16, 17. Based on this, we distinguish between four 
“WAAI groups” of tumors: those with whole arm gain of 1q and/or loss of 16q (group A), 
those with regional loss on 5q and/or gain on 10p (group B), those with both (group AB), and 
those with neither (group C) (see M&M). To further characterize these groups we split each 
into two “CAAI subgroups” depending on the level of complex rearrangement: those with 
CAAI < 0.5 for all arms (A1, B1, AB1, C1) and those with CAAI � 0.5 for at least one arm (A2, 
B2, AB2, C2). The group distribution was similar for all four cohorts, except for the WZ which 
had more samples of type C and less samples with elevated CAAI, most likely due to selection 
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of diploid tumors (Supplementary Table 2)11. The sample size of the eight groups and the arm-
wise distribution of WAAI and CAAI for all 595 samples are shown in Figure 3a. 
 
Patterns of genomic architecture in the WAAI/CAAI groups 
WAAI and CAAI characteristics 
WAAI and CAAI revealed different chromosomal event distributions in the eight subgroups 
(Fig. 3a). This is also reflected in the frequency plots of individual subgroups (Supplementary 
Fig. 5). The subgroups displayed pronounced differences with respect to the number of whole 
chromosome arm loss or gain events (Fig. 3a and Supplementary Fig. 6). For each of the four 
WAAI groups, the tumors with complex rearrangements (i.e. A2, B2, AB2 and C2) had more 
whole arms affected, mostly by gains (WAAI � 0.8), than the corresponding group without 
complex rearrangements. 

Tumors of type A were frequently ER positive, of low or intermediate grade, diploid 
and included a majority of the invasive lobular carcinomas (Supplementary Table 3). Group A 
was the only group with frequent alterations of whole chromosomes; particularly prominent 
were gain of 5, 7, 8 and 20 and loss of 18 (Fig. 3a), in line with previous cytogenetic findings18, 

19. Supplementary Fig. 7 illustrates that A1 and A2 tumors had the same distributions of altered 
arms, and the increased number of gains seen in A2 tumors were mainly affecting 8q, 16p, 20p 
and 20q. In tumors of type A2, complex rearrangements were most frequent on 11q and 8p, 
followed by 17q and 8q (Supplementary Fig. 8). The high level amplifications on 8p and 11q 
includes genes of interest such as FGFR1 and CCND1, loci known to be frequently amplified 
in ER positive breast carcinomas20-22.  

Tumors of type B were more frequently of high grade, aneuploid and TP53 mutated 
than tumors of type A (Supplementary Table 3). Tumors of type B1 were dominated by whole 
arm losses, most frequently of 17p, 4p, 4q and 5q, while tumors of type B2 had complex 
alterations often affecting many arms, most frequently 17q, followed by 8p and 20q (Fig. 3a 
and Supplementary Figs. 6, 7 and 8). The overall frequencies of aberrations were quite similar 
in B1 and B2 (Supplementary Fig. 5).  

AB tumors had elements of both A and B tumors, were dominated by aneuploid tumors 
of intermediate or high grade, and had the highest frequency of whole arm alterations (both 
gains and losses) (Supplementary Table 3, Supplementary Fig. 6 and 7). The AB tumors with 
complex rearrangements had a heterogeneous distribution pattern of arms with high CAAI 
(Fig. 3a, Supplementary Fig. 8).  

C tumors had the fewest numbers of whole arm alterations with 8q and 16p gain and 
17p and 22 loss as the most frequent (Fig. 3a and Supplementary Fig. 6 and 7). This was seen 
both in C1 and C2 carcinomas, with 17p being more frequently lost in C2 than in C1. High 
CAAI was frequent on 17q but rare on 11q (Fig. 3a and Supplementary Fig. 8). The clinico-
pathological parameters had similarities with the A group, but with fewer ER positive and 
more TP53 mutated tumors (Supplementary Table 3). Interestingly almost half of all tumors 
with histological grade 1 and most carcinomas of a special histological type such as lobular, 
tubulolobular and mucinous were grouped as C1.  
 
Paired-end sequencing 
Paired-end sequencing was performed on a few selected samples (Stephens et al., resubmitted 
and Fig. 3b). The analyzed A1 tumor showed a single rearrangement, in contrast to the A2 
tumor which had a larger number of complex inter- and intra-chromosomal rearrangements, in 
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line with the high CAAI score. The 1q/16q translocation in the A1 tumor is missed as the 
paired-end sequencing method does not detect alterations involving centromere-close 
heterochromatin. The B1 tumor showed numerous smaller structural rearrangements (“mutator 
phenotype”) in contrast to the pattern seen in the A1 and A2 tumors. The AB2 tumor showed a 
mutator phenotype pattern, but with more inter-chromosomal rearrangements than the B1 
tumor. The C2 tumor had some segmental duplications/inversions in addition to complex 
rearrangements involving chromosome arm 17q.  
 
Gene expression classification 
For the 298 tumors with available gene expression data, the correlation to the five intrinsic 
subtype centroids was calculated5. Both A1 and A2 tumors showed strong correlation to the 
Luminal A subtype (Fig. 3c). Luminal B tumors were more frequent in the A2 group, 
indicating that A2 tumors represent more advanced tumors with high proliferation and 
increased growth factor signaling than A123 (Supplementary Table 4). This was also supported 
by ploidy data as the A2 group had a higher fraction of aneuploid tumors (Supplementary Fig. 
9). The B1 tumors were dominated by the Basal-like subtype. The subtype correlation patterns 
of B2 and AB1/AB2 were quite similar, dominated by negative correlation to the Luminal A 
subtype, and overall had a closer resemblance to B1 than to A1/A2. A majority of erbB2+ and 
Normal-like tumors were classified as C tumors. Normal-like tumors are rare and often omitted 
from breast cancer expression classification studies, but Normal-like cell lines have shown an 
enrichment in stem-cell related features24. Almost 30% of all Basal-like tumors were classified 
as C tumors, in line with a previous study identifying a subgroup of Basal-like having low 
genomic instability13.  
 
WAAI and CAAI groups as prognostic markers 
DCIS patients and the WZ cohort were omitted from survival and risk analyses to avoid bias as 
they were highly selected, leaving 451 cases. Both WAAI and CAAI classification identified 
subgroups with significant difference in breast cancer related death (p=0.009 and p<0.001 
respectively; see Fig. 4a and b). Bivariate Cox regression analysis showed that CAAI 
classification had predictive power independently of age, lymph node status, tumor size, 
histological grade, ER status, TP53 mutation status, vascular invasion, intrinsic subtype and 
adjuvant treatment (Supplementary File 1). Furthermore, the increased risk of breast cancer 
specific death in patients with high CAAI was independent of known risk factors (multivariate 
Cox analysis; HR:1.92, 95% CI [1.33-2.78], p<0.001) (Table 1a). 

For the WAAI classification, patients with B tumors had an almost twofold risk of 
death from breast cancer compared to patients with A tumors (Supplementary File 1). Bivariate 
Cox analysis showed that this was independent of age, tumor size, lymph node status, vascular 
invasion and adjuvant treatment (Supplementary File 1). High histological grade, large tumor 
size and positive node status indicated increased risk for breast cancer specific death for 
patients with A tumors, as opposed to B tumor patients (Supplementary File 1). Interestingly, 
histological grade was non-informative for patients with B and AB tumors but of high 
importance for patients belonging to the A and C groups (p=0.58, p=0.68, p=0.02 and p=0.03; 
Figure 4e-h). TP53 mutation status and high CAAI were the only factors having prognostic 
value (though borderline) in patients with B tumors, while histological grade, tumor size, 
lymph node status all were of importance in the C group patients (Supplementary File 1).  
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The classification obtained by combining WAAI and CAAI also revealed distinct 
patterns of clinical behavior; the worst clinical outcome was seen in the B2/AB2 groups with a 
2.6 fold increase in breast cancer death risk compared to the groups without high CAAI 
(p<0.001) (Fig. 4c and Table 1b). The same trend in survival was seen for patients with lymph 
node negative disease (Fig. 4d).  
 
 
Discussion 
Genome-wide, high resolution analyses of both DNA and RNA have brought novel insights 
into breast carcinoma classification8, 13, 25, but conclusions have been limited by small samples 
sizes. By developing platform independent algorithms, we could merge aCGH data from 
several clinical cohorts and perform DNA based grouping of breast carcinomas, utilizing 
previous DNA and RNA classifications.  Defining surrogate markers for Luminal and Basal-
like breast cancer, we observed several distinct patterns of aberrant genomic architecture. 
Tumors of type A are dominated by ER positive, Luminal A tumors with large WAAI 
magnitude (both gains and losses), and by concomitant 1q gain and 16q loss caused by 
unbalanced centromere-close translocations between the two chromosomes26. The same 
mechanism affecting other arms might explain the frequent losses and gains of whole 
chromosome arms in group A. Several studies have indicated that Luminal tumors have a 
distinct progression path27-30. This is reflected in our study by A2 tumors having more arms 
with high WAAI magnitude, being more frequently aneuploid, of high grade and with worse 
outcome than A1 tumors (Fig. 3a). Amplification is found to precede aneuploidization in breast 
cancer cell lines31, and our study indicates that the same switch also occurs in vivo. Progression 
from A1 to A2 seems to induce a shift in gene expression pattern with increased correlation to 
the Luminal B centroid and worse outcome (Figs. 3c and 4c). 
The B tumors had a completely different and more heterogeneous genomic pattern. Group B1 
tumors were dominated by losses, and the single B1 case investigated by paired-end 
sequencing had in addition the typical mutator phenotype pattern reflecting multiple segmental 
duplications. In two separate studies we have found that a subgroup of Basal-like tumors are 
characterized by losses and progress from hypodiploid to aneuploid, often with complex 
rearrangements (Navin N. et al., in press Genome Research, van Loo P. et al., submitted), in 
line with the B1 group being dominated by losses. Both AB and some C tumors had an 
expression pattern pointing towards a Basal-like relationship (Fig. 3c), In addition, both AB2 
and some C2 tumors had the highest genomic distortion, were often aneuploid and had short 
survival, and we hypothesize that B2, AB2 and some C2 cases reflect more advanced Basal 
related tumors. Interestingly, the ER status cannot be used as a surrogate marker for these 
groups as a large number is ER positive.  

We find that A and B tumors are different both at the genomic, transcriptomic and 
clinical level. It has been shown that amplifications on 8p/11q and 8q/17q occurs preferentially 
in two phenotypically diverse groups of breast cancer32, consistent with the different CAAI 
distribution in A and B tumors. In a study using high resolution methylation arrays on one of 
the cohorts, we found patterns of methylation in A tumors pointing towards CD24+/luminal 
cell relationship and likewise a connection between B tumors and CD44+/progenitor cell 
methylation patterns (Kamalakaran et al., manuscript). There are several indicators that 
molecular subgroups of breast cancer reflect transformation of different breast epithelial cell 
progenitors33-35. Our study indicates that molecular subgroups can be recognized by differences 
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in genomic architecture. This is probably reflecting underlying subgroup-specific defects 
linked to different cell of origin. As illustrated in Figure 5, we hypothesize that the genomic 
architectural pattern reflects tumor subgroups related to different cell of origin. Tumors of type 
A originate from Luminal-committed progenitors and are prone to whole arm translocations. 
They have a linear progression path with complex rearrangements with more arms affected. 
Tumors of type B, AB and C have a much more complex progression path, possibly originating 
from less differentiated progenitors.  Basal-like carcinomas are composed of several 
subtypes36-38, and recent work indicates that a Luminal progenitor on a background of BRCA1 
deficiency may be the cell of origin of such Basal-like tumors39. We suggest that the 
heterogeneity seen in groups B, AB and C with respect to the distribution of WAAI and CAAI, 
indicates that tumors of these types descend from different but related early progenitors, and 
that alternative combination of repair defects defines several progression paths as illustrated in 
Figure 5.  

Complex rearrangements as defined by CAAI occurred in all subgroups, and CAAI had 
a strong prognostic impact independent of other factors, even if it only occurred on one 
chromosome arm. The mechanisms behind complex rearrangements are not completely 
understood, but one type is breakage-fusion-bridge cycles due to double strand repair defects40, 

41 resulting in high level amplicons with intermittent deletions. As high level amplicons are 
seen even in DCIS42 and in diploid tumors11, this opens the possibility for a distinct subtype of 
carcinomas having complex alterations at an early stage of progression (“de novo 
complexity”). As illustrated in Figure 5, we speculate that the C group might have a subset of 
tumors with a non-A, non-B relationship.  

The present study indicates that the type of architectural distortion is of major 
importance in determining the tumor phenotype and can be used to group tumors into Luminal 
and Basal-related tumors. This is of major importance, since the value of established 
prognostic markers is subgroup dependent. We also find that even in biological distinct 
subtypes of breast cancer, the addition of complex rearrangements seem to be of major 
importance for patient outcome. A strong hierarchical relationship between subtypes of breast 
carcinomas is yet to be defined, but our findings provide a background for further functional 
studies aiming to elucidate the relationship between genomic architecture, phenotypic traits 
and the cell of origin in breast cancer. Our study demonstrates that the patterns of genomic 
architecture described here constitute a new prognostic tool in breast cancer. 
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Figure legends 
 
Figure 1: CAAI pattern compared to structural rearrangements identified by paired-end 
sequencing  
a: Raw (dots) and segmented (line) data for chromosome arms 7p and 8p and chr.15 from 
sample 595. Red segments correspond to the 20 Mb window with highest CAAI; the 
corresponding CAAI was 7.04, 1.04 and 4.74 respectively. Chromosome arms 7p had an 
additional region with elevated CAAI, but as this score was lower than 7.04 it was neglected. 
b: Structural sequence alterations identified by genome wide paired-end sequencing for the 
same sample. Outer circle show the cytobands for each chromosome, followed by a plot 
indicating the copy number variation. The green bars in the centre refer to smaller intra-
chromosomal changes such as duplications and inversions while pink lines indicate inter-
chromosomal translocations. In this sample 13 chromosome arms had CAAI>0, six of these 
had CAAI�0.5, these are in bold and marked with *. The two regions with most 
rearrangements showed the highest CAAI (chromosome arm 7p and chr.15). Areas with few 
rearrangements had low or zero CAAI. 
 
Figure 2: Genome wide distribution of genomic loss and gain compared to frequencies of 
WAAI and CAAI in 595 breast carcinomas 
a: Frequency plot illustrating  the percentage of samples with gain and loss genome wide (red: 
gain, green: loss).   
b: The frequency of samples scored with whole arm changes identified by WAAI and complex 
rearrangements scored by CAAI are shown in the heatmap. The color indicates the percentage 
arms with WAAI over and under the chosen threshold and the percentage of arms with CAAI 
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higher than the threshold for each chromosome arm with: WAAI�0.8 (red, top row), WAAI�-
0.8 (green, middle row) and CAAI�0.5 (blue, bottom row). 
          
Figure 3: Genome wide distribution of WAAI and CAAI for all samples sorted into 
WAAI and CAAI groups, examples of identified structural aberrations and 
corresponding gene expression patterns. 
a: The heat map illustrate the WAAI and CAAI score for all 595 samples sorted into A, B, AB 
and C tumors and thereafter into groups of tumors with and without high CAAI on one 
chromosome arm or more. Each row in the heatmap corresponds to one sample, and each 
column to a chromosome arm (from 1p to 22). The left panel indicate WAAI alterations for 
each chromosome arm (red: WAAI�0.8, green; WAAI�-0.8, black: 0.8>WAAI<-0.8). The 
right panel indicate the corresponding CAAI score for each chromosome arm for the same 
samples (no rearrangements=white. The CAAI scale is indicated below the figure).  
b: Structural sequence alterations identified by genome wide paired-end sequencing for 
selected samples from the various WAAI groups. Outer circle show the cytobands for each 
chromosome, followed by the copy number variation. The green bars in the center indicate 
smaller intra chromosomal changes while pink lines indicate inter chromosomal translocations. 
The lines indicate the position of the selected samples in the WAAI/CAAI groups. 
c: Correlation to each of the five intrinsic subtypes for a total of 185 cases sorted into 
WAAI/CAAI groups.  
 
Figure 4: WAAI and CAAI groups and breast cancer specific survival in the merged 
clinical dataset (n=454 cases) 
The Kaplan Meier plots illustrate that breast cancer patients with tumors with high or low 
CAAI (a) had significant difference in survival (p<0.001). A difference was also found 
between patients with A, B, AB and C tumors (the WAAI groups) (b) and between patients 
subdivided into the combined WAAI/CAAI groups (c). The Kaplan Meier curves showed that 
B2 and AB2 had the worst survival; in a multivariate Cox regression model these patients had 
an increased hazard of 2.6 of dying from breast cancer compared to the A1, B1, AB1 and C1 
patients with a 95% CI: [1.66-4.16] and p<0.001 (Table 1b). 
Patients with lymph node negative disease (n=231) showed the same trend in survival for the 
different WAAI/CAAI subclasses, with B2 and AB2 having a worse prognosis and the A2 and 
C2 having better compared to the whole cohort (p=0.057).   
In e-f, the different impact of histological grade is illustrated. Patients with an A or C tumor 
were stratified into good, intermediate and bad prognosis by histological grade (p=0.02 and 
p=0.03) in contrast to patients with B and AB tumors where we could not show any difference 
in breast cancer specific survival according to histological grade.  
 
Figure 5: A hypothetical relationship between observed patterns of genomic architecture, 
expression subtype and cell of origin in breast carcinomas 
We hypothesize here that a luminal developmental pathway originates from a dedicated 
luminal progenitor cell.  Tumors of the A1 type have ‘simplex’ aCGH profiles with whole 
chromosome or chromosome arm rearrangements dominating. In an early phase a Normal-like 
or Luminal A expression pattern dominates. This in contrast to A2 tumors that are more 
advanced with increased numbers of chromosome arms affected in addition to complex 
rearrangements in preferential regions such as 8p and 11q. These tumors have frequent 
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expression correlation to Luminal B in addition to Luminal A but rarely to the erbB2+ 
centroid. The simplicity of A1 tumors are illustrated by the circos plot with only one structural 
rearrangement and the histology illustrating the frequent finding of high luminal differentiation 
in this group. In the A2 group the circos plot show more inter- and intra chromosomal 
rearrangements, and the histology show the more frequent low differentiation pattern.  
Likewise we observe that B1 tumors are different from A1/A2 tumors and hypothesize that they 
originate from a less dedicated or a myoepithelial progenitor. They are dominated by ‘sawtooth 
pattern’ and genomic losses in an early phase and with a high correlation to the Basal-like 
expression subtype. Related groups are B2, AB2 and C2 representing tumors with numerous 
aberrations genome wide including complex rearrangements such as firestorms. This is 
supported by the circos plots from a B1, AB2 and C2 tumor, all having segmental duplications 
genome wide. The histology rarely showed any luminal differentiation and had a solid growth 
pattern with and without lymphoid infiltration. These tumors have correlation towards the 
erbB2+ and Luminal B expression centroids in addition to the Basal-like. The B1, B2, AB2 and 
C2 tumors might represent different stages in a non-linear progression. We also speculate that a 
subgroup of C2 represent tumors with complexity present already in an early phase (‘de novo 
complexity’).  
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Table 1: Multivariate Cox regression analysis, breast cancer specific death 
a)     
 Multivariate Cox regression 
Variable p value HR 95% CI 
n=398     Lower Upper 
     
CAAI (high vs. low) 0.001 1.92 1.31 2.81 
     
Lymph node status (pos. vs. 
neg.) 0.002 1.81 1.24 2.63 
     
Tumor size      
pT2 (vs. pT1) 0.055 1.47 0.99 2.17 
pT3 and pT4 (vs. pT1) <0.001 3.08 1.70 5.60 
     
Histological grade     
Grade 2 (vs. Grade 1) 0.100 1.95 0.88 4.34 
Grade 3 (vs. Grade 1) 0.007 2.98 1.34 6.63 
          
ER status and WAAI classes were also in the model but did not reach  
statistical significance.      
     
b)     
 Multivariate Cox regression 
Variable p value HR 95% CI 
n=398     Lower Upper 
     
aCGH/CAAI grouped into three:     
A2, C2 (vs. A1, B1, AB1, C1) 0.033 1.59 1.04 2.44 
B2, AB2 (vs. A1, B1, AB1, C1) <0.001 2.63 1.66 4.16 
     
Lymph node status (pos. vs. 
neg.) 0.003 1.79 1.23 2.61 
     
Tumor size     
pT2 (vs. pT1) 0.122 1.37 0.92 2.04 
pT3 and pT4 (vs. pT1) <0.001 3.02 1.66 5.48 
     
Histological grade     
Grade 2 (vs. Grade 1) 0.105 1.94 0.87 4.31 
Grade 3 (vs. Grade 1) 0.010 2.88 1.29 6.43 
          
ER status was also in the model but did not reach statistical significance.  
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Methods 
 
Patient samples and gene expression data 
Two cohorts from Norway (MicMa and Ull), one from Sweden (WZ) and one from England 
(ChinUC) were included in this study and the clinical and pathological descriptions are 
available in Supplemental Table 1. Gene expression data, ploidy, sequencing and clinical data 
are previously published 13, 43, 44(ploidy: van Loo P. et al., submitted, sequencing: Stephens et 
al., resubmitted). 
The ethical boards of all institutions involved for the different cohorts have approved the study. 
 
aCGH platforms and preprocessing of raw copy number data 
DNA from the MicMa cohort were hybridized to the ROMA (Representational Oligonucleotide 
Microarray Analysis) 85k microarray, developed at Cold Spring Harbor Laboratory45. The method is 
based on oligonucleotide probes designed after the restriction fragments from digestion with Bgl II. The 
platform is manufactured by NimbleGen, and the experiments followed the ROMA/NimbleGen protocol 
as previously described11. Probe intensities were read with the GenePix Pro 4.0 software and used for 
ratio calculation. The data from both the MicMa and WZ cohort were normalized using an intensity-
based lowess curve fitting algorithm. The aCGH data from WZ is also published11 and accessible from 
http://roma.cshl.edu. 

DNA from the Ull samples was analyzed using 244k CGH microarrays (Hu-244A, Agilent 
technologies, Santa Clara, California, USA). This platform contains over 236.000 mapped in-situ 
synthesized oligonucleotide probes representing coding and non-coding sequences of the genome46. The 
standard Agilent protocol was used, without pre-labeling amplification of input genomic DNA. Scanned 
microarray images were read and analyzed with Feature Extraction v9.5 (Agilent Technologies), using 
protocols (CGH-v4_95_Feb07 and CGH-v4 91 2) for aCGH-preprocessing which included linear 
normalization.  

DNA from the Caldas cohort were as previously described13 analyzed with a customized 
oligonucleotide microarray containing 30k 60-mer oligonucleotide probes representing 27800 mapped 
sequences of the human genome47. Signal intensities and fluorescent ratios were obtained with BlueFuse 
version 3.2 (Bluegnome). Raw data were preprocessed using the R48 with the bioconductor package 
limma49. 

The raw data and preprocessed data can be accessed from NCBI’s GEO 
(http://www/ncbi.nlm.nih.gov/geo/ ) with accession number GSE8757 (ChinUC), GSE…. 
(Ull), GSE…. (MicMa) and GSE…. (WZ). 

 
Statistical methods and analytical tools 
Segmentation into regions of constant copy number 
We fit for each sample a piecewise constant regression function to the log-transformed aCGH 
data, using the PCF algorithm (9,43). For each probe a fitted value (“PCF-value”) is thus 
obtained. The user controls the sensitivity of the method (via a “penalty parameter” gamma) 
and the least allowed number of probes in a segment (kmin).  In our case, segmentation was to 
be performed on data from three different platforms with relative probe densities (average 
number of probes per unit distance) 0.12 (ChinUC), 0.34 (MicMa/WZ) and 1.00 (244k Ull). As 
we aimed to pool all the segmented aCGH profiles, we scaled the parameters gamma and kmin 
to obtain roughly equal segmentation resolutions in the three platforms (thus essentially 
favoring variance reduction over bias reduction in the estimated copy number profiles for 
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increasing probe densities). The chosen values for (gamma,kmin) were (100, 20) for Ull,  (34, 
7) for MicMa/WZ and (12, 3) for ChinUC and are consistent with this. 
 
Centering of copy number estimates 
To center the segmented data, we find the density of the PCF-values using a kernel smoother 
with an Epanechnikov kernel and a window size of 0.03.  Consider the three tallest peaks P1 , 
P2 , P3  in the density, in decreasing order of height (if there are less than three peaks, we 
replicate the highest one to obtain three peaks). For each, we find the location and relative 
height (i.e. the absolute height of the peak divided by the sum of the heights of the three 
highest peaks).  Select among P1, P2 the peak P with location closest to the median of the PCF-
values.  If the relative height of P is at least 0.2, then the PCF-values are centered by 
subtracting the location of P; otherwise, the PCF-values are centered by subtracting the 
location of the tallest of all the three peaks.    
  
Whole Arm Aberration Index (WAAI) 
WAAI is found separately for each arm and sample. Define normalized PCF (NPCF) values as 
centered PCF-values divided by the residual standard deviation. Average NPCF over all probes 
on the arm to obtain s.  If s>0, WAAI is the 5% quantile of NPCF; if s�0, WAAI is the 95% 
quantile of NPCF (in practice constrained to a predefined grid). Arms with WAAI�0.8 are 
called as whole-arm gains, and arms with WAAI�-0.8 are called as whole arm losses. See 
Supplemental Figure 3 for an example.  
 
Complex Armwise Aberration Index (CAAI) 
CAAI is found separately for each arm and sample. For each break point found by PCF, we 
calculate three scores P, Q and W reflecting the proximity to neighboring break points, the 
magnitude of change and a weight of importance: 

 
where � is a constant,  L1, L2 are the number of probes and H1, H2 the PCF-values for the 
segments joined at the break point.  For any genomic subregion R we may define 
 

, 
 
summing over all break points in R. Define CAAI as the maximal value of SR across all 
subregions R of a predefined size (in this paper: 20 Mb). 
 
The software used in this paper is partially written in Java and partially in Matlab, and is 
available at http://www.ifi.uio.no/bioinf/Projects/GenomeArchitecture. For statistical analysis 
SPSS 15.0 was used. The clinical data and WAAI and CAAI estimates are available in 
Supplementary File 2.  
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Supplementary Table 1: Demographic data for the four cohorts 
 

  MicMa WZ Ull Caldas 
  no=125 no=141 no=167 n=162 

    
cases (% of 

available cases) 
cases (% of 

available cases) 
cases (% of 

available cases) 
cases (% of 

available cases) 
   
Age (mean, min-max) 61 (33-93) 53 (31-82) 63 (28-90) 57 (32-71)
   
Histologic type   
 IDC 98 (78%) 124 (88%) 110 (67%) 
 ILC 24 (19%) 11 (8%) 40 (25%) 
 Others 2 (2%) 4 (3%) 11 (7%) 
 DCIS 1 (1%) 2 (1%) 2 (1%) 
 Not available 0 0 4/167 (2%) 162/162 (100%)
   
Histologic grade   
 Grade I 14 (12%) 11 (11%) 11 (7%) 37 (23%)
 Grade II 60 (50%) 23 (22%) 110 (67%) 55 (34%)
 Grade III 47 (39%) 70 (67%) 43 (26%) 68 (43%)
 Not available 4/125 (3%) 37/141 (26%) 3/167 (2%) 2/162 (1%)
   
ER status    
 Positive 75 (60%) 92 (79%) 86 (57%) 107 (66%)
 Negative 49 (40%) 25 (21%) 65 (43%) 54 (34%)
 Not available 1/125 (1%) 24/141 (17%) 16/167 (10%) 1/162 (1%)

PgR status    
 Positive 58 (48%) 98 (59%) 
 Negative 64 (52%) 66 (40%) 
 Not available 1/125 (1%) 141/141 (100%) 3/167 (2%) 162/162 (100%)

HER2 FISH status    

 
HER2/cent17 
�2 84 (82%)  

 
HER2/cent17 
>2 19 (18%)  

 Not available 22/125 (18%) 141/141 (100%) 167/167(100%) 162/162 (100%)

TP53 status    
 TP53 wt 83 (66%) 124 (74%) 
 TP53 mut 42 (34%) 43 (26%) 
 Not available 0/125 (0%) 141/141 (100%) 0/167 (0%) 162/162 (100%)
   
Tumor size   
 T1 52 (43%) 71 (51%) 57 (35%) 113 (71%)
 T2 57 (47%) 65 (47%) 86 (53%) 47 (29%)
 T3 8 (7%) 2 (2%) 12 (8%) 0



 T4 4 (3%) 0 6 (4%) 0
 Not available 4/125 (3%) 3/141 (2%) 6/167 (3%) 2/162 (1%)
   
Node status   
 Node negative 51 (44%) 69 (49%) 73 (51%) 109 (69%)
 Node positive 64 (56%) 71 (51%) 70 (49%) 49 (31%)
 Not available 10/125 (8%) 1/141 (1%) 24/167 (14%) 4/162 (3%)

Ploidy 
Diploid 41 (41%) 100 (71%)
Aneuploid 60 (59%) 41 (29%)

 Not available 24/125 (19%) 0/141 (0%) 167/167 (100%) 162/162 (100%)
   
Expression class   
 Luminal A 49 (43%) 34 (47%) 54 (48%)
 Luminal B 14 (12%) 6 (8%) 13 (12%)
 erbB2+ 19 (17%) 12 (16%) 14 (13%)
 Basal-like 14 (12%) 13 (18%) 19 (17%)
 Normal-like 14 (12%) 8 (11%) 12 (11%)
 Unclassified 3 (3%) 0 0
 Not available 12/125 (10%) 141/141 (100%) 94/167 (56%) 50/162 (31%)

Treatment, 
chemotherapy  

No 
Chemotherapy 48 (40%) 139 (84%) 154 (96%)
Chemotherapy 71 (60%) 26 (16%) 6 (4%)

 Not available 6/125 (5%) 141/141 (100%) 2/167 (1%) 2/162 (1%)

Treatment, 
Tamoxifen  

No Tamoxifen 63 (53%) 125 (75%) 82 (51%)
Tamoxifen 55 (47%) 41 (25%) 78 (49%)

 Not available 7/125 (6%) 141/141 (100%) 2/167 (1%) 2/162 (1%)

Adjuvant, general  
No adjuvant 48 (40%) 108 (65%) 75 (47%)
Adjuvant 71 (60%) 58 (35%) 86 (53%)

 Not available 6 (5%) 141/141 (100%) 1/167 (1%) 1/162 (1%)
   
   

 



Supplementary Table 2: Distribution between the WAAI groups and CAAI groups in the four cohorts.   
 

 All four cohorts MicMa WZ Ull Caldas
 n=595 n=125 n=141 n=167 n=162 

            
   
WAAI groups¥   
A 204/595 (34%) 49/125 (39%) 38/141 (27%) 66/167 (39%) 51/162 (31%)
B 76/595 (13%) 16/125 (13%) 13/141 (9%) 25/167 (15%) 22/162 (14%)
AB 60/595 (10%) 16/125 (13%) 6/141 (4%) 26/167 (16%) 12/162 (7%)
C 255/595 (43%) 44/125 (35%) 84/141 (60%) 50/167 (30%) 77/162 (48%)
   
CAAI*   
No CAAI 323/595 (54%) 68/125 (54%) 103/141 (73%) 64/167 (38%) 88/162 (54%)
High CAAI 272/595 (46%) 57/125 (46%) 38/141 (27%) 103/167 (62%) 74/162 (46%)
         

 ¥WAAI groups: A: WAAI�0.8 on 1q and/or WAAI� -0.8 on 16q 
              B: Regional loss of 5q and/or gain of 10p 
              AB: Samples scored by the criteria for both A and B 
              C: Samples scored by neither of the criteria for A and B 
*High CAAI is defined as CAAI�0.5. 
 
 
 



Supplementary Table 3: Clinico-pathological characteristics of the four WAAI groups 
 

   

  A B AB C 
  no=204 no=76 no=60 n=255 

(total cases with 
available data)   

cases (% of all 
available A) 

cases (% of all 
available B) 

cases (% of all 
available AB) 

cases (% of all 
available C) 

Chi 
square: 

   
Age (mean, min-max)  
(n=594)  62 (28-90) 57 (33-88) 56 (28-90) 57 (28-93) P<0.001*
   
Histologic type   
n=429 IDC 108/153 (71%) 47/54 (87%) 44/48 (92%) 133/174 (76%)
 ILC 42/153 (27%) 5/54 (9%) 3/48 (6%) 25/174 (14%)
 Others 2/153 (1%) 1/54 (2%) 1/48 (2%) 13/174 (8%) p=0.001
 DCIS 1/153 (1%) 1/54 (2%) 0/48 (0%) 3/174 (2%)
   
Histologic grade    
n=549 Grade I 37/195 (19%) 3/71 (4%) 3/55 (6%) 30/228 (13%)
 Grade II 115/195 (59%) 20/71 (28%) 25/55 (45%) 88/228 (39%) p<0.001
 Grade III 43/195 (22%) 48/71 (68%) 27/55 (49%) 110/228 (48%)
    
ER status    
n=553 Positive 153/187 (82%) 28/74 (38%) 34/59 (58%) 145/233 (62%)
 Negative 34/187 (18%) 46/74 (62%) 25/59 (42%) 88/233 (38%) p<0.001
    
PgR status    
n=286 Positive 70/112 (63%) 15/40(37%) 22/42 (52%) 49/92 (53%)
 Negative 42/112 (37%) 25/40 (63%) 20/42 (48%) 43/92 (47%) p=0.053
    
HER2 status    
n=103 Positive 4/43 (9%) 4/12 (33%) 3/11 (27%) 8/37 (22%)
 Negative 39/43 (91%) 8/12 (67%) 8/11 (72%) 29/37 (78%) p=0.174
    
TP53 status    
n=292 Positive 13/115 (11%) 28/41 (68%) 19/42 (45%) 25/94 (27%)
 Negative 102/115 (89%) 13/41 (32%) 23/42 (55%) 69/94 (73%) p<0.001
   
Tumor size    
n=580 pT1 94/194 (48%) 38/75 (51%) 22/59 (37%) 139/252 (55%)
 pT2 89/194 (46%) 36/75 (48%) 31/59 (53%) 99/252 (39%)
 pT3 8/194 (4%) 1/75 (1%) 4/59 (7%) 9/252 (4%) p=0.275
 pT4 3/194 (2%) 0/75 (0%) 2/59 (3%) 5/252 (2%)
   
Node status   
n=556 Node neg. 96/186 (52%) 41/72 (57%) 24/55 (44%) 141/243 (58%)
 Node pos. 90/186 (48%) 31/72 (43%) 31/55 (56%) 102/243 (42%) n=0.202
    



Expression class    
n=298 Luminal A 86/115 (75%) 2/38 (5%) 10/33 (30%) 39/112 (35%)
 Luminal B 9/115 (8%) 10/38 (26%) 5/33 (15%) 9/112 (8%)
 erbB2+ 6/115 (5%) 7/38 (19%) 2/33 (6%) 30/112 (27%) p<0.001
 Basal-like 1/115 (1%) 18/38 (47%) 14/33 (43%) 13/112 (13%)
 Normal-like 12/115 (10%) 1/38 (3%) 2/33 (6%) 19/112 (17%)
 Unclassified 1/115 (1%) 0/38 (0%) 0 2/112 (2%)
   
Ploidy   
n=242 Diploid 54/80 (68%) 7/25 (28%) 6/18 (33%) 74/119 (62%)
 Aneuploid 26/80 (32%) 18/25 (72%) 12/18 (67%) 45/119 (38%) p=0.001
   
Treatment, 
Tamoxifen   
n=444 No Tam. 94/160 (59%) 42/62 (68%) 31/52 (60%) 103/170 (61%)
 Tam. 66/160 (41%) 20/62 (32%) 21/52 (40%) 67/170 (39%) p=0.666
   
Treatment, CMF   
n=444 No CMF 125/160 (78%) 48/63 (76%) 33/51 (65%) 135/170 (79%)
 CMF 35/160 (22%) 15/63 (24%) 18/51 (35%) 35/170 (21%) p=0.171
   
Adjuvant, general   
n=446 No adjuvant 86/161 (53%) 32/63 (51%) 22/52 (42%) 91/170 (54%) P=0.517
 Adjuvant 65/161 (47%) 31/63 (49%) 30/52 (58%) 79/170 (46%)
          
* Kruskal Wallis 
test   
   
 



Supplementary Table 4: Correlation between  molecular expression subgroups and WAAI groups: 

  A1 A2 B1 B2 AB1 AB2 C1 C2 Total: 

Luminal A 52/65 (80%) 34/50 (68%) 0/14 (0%) 2/24 (8%) 4/12 (33%) 6/21 (29%) 20/61 (33%) 19/51 (37%) 137

Luminal B 2/65 (3%) 7/50 (14%) 3/14 (21%) 7/24 (29%) 1/12 (8%) 4/21 (19%) 4/61 (7%) 5/51 (10%) 33

erbB2+ 2/65 (3%) 4/50 (8%) 1/14 (7%) 6/24 (25%) 0/12 (0%) 2/21 (10%) 15/61 (25%) 15/51 (29%) 45

Basal-like 1/65 (2%) 0/50 (0%) 10/14 (71%) 8/24 (33%) 5/12 (42%) 9/21 (42%) 7/61 (11%) 6/51 (12%) 46

Normal-like 8/65 (12%) 4/50 (8%) 0/14 (0%) 1/24 (4%) 2/12 (17%) 0/21 (0%) 14/61 (23%) 5/51 (10%) 34

NC* 0/65 (0%) 1/50 (2%) 0/14 (0%) 0/24 (0%) 0/12 (0%) 0/21 (0%) 1/61 (1%) 1/51 (2%) 3

Total: 65 50 14 24 12 21 61 51 298 

         
 
*NC: samples with low correlation to all five centroids. 
 



Supplementary Figure legends: 
 
Supplementary Figure 1: Validation of CAAI 
Scatter plot of CAAIs for 17q compared to mean HER2 copy number measured by FISH 
(MicMa cohort). The broken lines indicate the selected threshold (CAAI=0.5). Samples 
with CAAI>=0.5 all except one had 4 or more copies of HER2. A few samples had 
increased HER2 copy number but CAAI<0.5. Inspection of the corresponding aCGH 
profile in such cases revealed that increased copy number was due to narrow amplicons 
and not to complex rearrangements of the firestorm type.  
 
Supplementary Figure 2: Arm wise distribution of WAAI 
The box plots showing the arm-wise distribution of WAAI are illustrating the non-
random distribution of positive and negative WAAI scores in the ChinUC, MicMa/WZ 
and Ull cohort. The chromosomes arms are on the x-axis, and the WAAI sores on the y-
axis. The distribution of WAAI is approximately symmetric around zero for most arms, 
but for others, such as 1q, 8q and 16p, WAAI is skewed towards positive values. For 
others, such as 16q and 17q, WAAI is skewed towards negative values. 
 
Supplementary Figure 3: WAAI and centromere close translocation 
a: Plotted aCGH values for chromosome arm 1q and 16q from case WZ061; 
unsegmented data as blue points and PCF values as black line showed whole 
chromosome arm gain of 1q and loss of 16q. This was reflected in the estimated WAAI; 
WAAI= 1.221 for 1q and WAAI= -1.465 for 16q. 
b: Multi gene FISH analyses with five selected probes derived from centromere close 
BAC clones on chr.1 and chr.16 were hybridized to tumor cells (imprint) from WZ061. 
The image at the top show a tumor cell with all fluorescent probes superimposed 
revealing two green signals together, one orange and red and one green and orange (note 
that the probes will never be fused due to the large stretches of heterochromatin around 
the centromere). The illustration at bottom left show the combination of fluorochromes 
observed in nuclei from lymphocytes with non-translocated chr.1 and chr.16. To the right 
the observed combination in the tumor cells demonstrating a translocation and a 
derivative chromosome; der(1;16)(10q;10p) is illustrated. 
 
Supplementary Figure 4: Frequencies of gains and loss in the four cohorts. 
Frequency plots illustrating the percentage of samples with gain and loss within each 
cohort (red; gain, green; loss). The WZ cohort is enriched in diploid tumors by selection 
and has fewer events in total than the others, but the dominating alterations such as gains 
on 1q, 8q, 16p and 20q and loss on 6q, 8p, 11q,13, 16q, 17p and 22 is seen in all four 
cohorts.  
 
Supplementary Figure 5: Frequencies of gain and loss of the eight WAAI/CAAI 
defined groups. 
Frequency plots illustrating the percentage of samples with gain and loss within each 
WAAI/CAAI group (red; gain, green; loss). A1 tumors are dominated by gain on 1q and 
16p and loss on 16q. These alterations are frequent in A2 tumors, in addition to gain on 
8q, 17q and 20q and loss on 6q, 8p, 11q, 13 and 17p. B1, B2, AB1 and AB2 tumors have 



almost similar patterns of gain and loss where almost all chromosomes are affected, a 
pattern very dissimilar from aberrations in A1 and A2 tumors. C1 tumors have few 
alterations, with gain of 8q dominating. This is the most frequent aberration in C2 tumors 
as well, followed by gain on 1q, 17q and 20q. 
 
Supplementary Figure 6: Frequencies of WAAI in the WAAI/CAAI groups. 
Top: Bar plots illustrating the mean number of altered arms, either gain or loss 
(WAAI�0.8 or WAAI� -0.8) for each WAAI/CAAI group.  C tumors had fewest 
alterations, and this persisted even if we omitted all cases without any alterations (‘flat’ 
aCGH profiles). A and B tumors had intermediate number of arms altered, with slightly 
more in the latter group. AB tumors had the highest mean value of altered whole arms. In 
all four groups more arms were altered in the tumors with high CAAI on one arm or 
more. 
Middle: Bar plots illustrating the mean number of gained arms (WAAI�0.8) for each 
WAAI/CAAI group. The same tendency reflected by the total number of alterations was 
seen for gains alone.  
Bottom: Bar plots illustrating the mean number of lost arms (WAAI� -0.8) for each 
WAAI/CAAI group. In contrast to gains, the WAAI/CAAI groups seemed to have almost 
equal mean number of arms altered. This illustrate that the B1 group was dominated by 
tumors with losses, and that the total increase in altered arms seen in samples with high 
CAAI compared to those with low CAAI mainly was due to gains and not losses.   
 
Supplementary Figure 7: Chromosome wise frequencies of WAAI in the 
WAAI/CAAI groups. 
The four plots show the arm wise frequency of samples with whole arm gain or loss as 
measured by WAAI (whole arm gain; WAAI�0.8, whole arm loss; WAAI� -0.8). The 
plot at the top show A1 and A2 samples (dark and light blue bars), followed by B1 and B2 
samples (dark and bright red), AB1 and AB2 samples (orange and yellow) and at the 
bottom the C1 and C2 samples (dark and light green).The A1 and A2 tumors had the same 
distributions of altered arms, but A2 tumors had more frequent gain of 8q, 16p, 20p and 
20q. B1 tumors were dominated by whole arm losses (such as 17p, 4p, 4q and 5q), while 
B2 tumors had more frequent gain of 8q, 10p16p and 20q.  AB tumors had whole arm 
alterations resembling both the loss and gain pattern of both A and B tumors, with only 
little difference between AB1 and AB2 tumors. C tumors had the fewest numbers of 
whole arm alterations with gain of 8q and 16p and loss of 17p and 22 as the most 
frequent.  
Supplementary Figure 8: Chromosome wise frequencies of CAAI in the 
WAAI/CAAI groups. 
The four plots show the arm wise frequency of samples with complex rearrangements as 
measured by CAAI (CAAI�0.5). The plot at the top show A2 samples (light blue bars), 
followed by B2 samples (bright red), AB2 samples (yellow) and at the bottom the C2 
samples (light green). A2 tumors had high CAAI most frequent on 11q, 8p, 17q and 8q, 
B2 tumors had high CAAI on more arms (such 17q, 20q and 8p) while AB2 had a more 
heterogeneous distribution pattern of arms with high CAAI. In C tumors, high CAAI was 
most frequent on 17q. 
 



Supplementary Figure 9: Ploidy measurements and histological grade in the 
WAAI/CAAI groups.   
Top: Bar plot illustrating the distribution of aneuploid and diploid samples in each of the 
eight WAAI/CAAI groups. All groups had both diploid and aneuploid tumors, it was a 
higher percentage of diploids in A and C tumors compared to B and AB, and aneuploid 
tumors were more frequent in all groups with high CAAI compared to the respective 
groups with low CAAI. 
Bottom: Bar plot illustrating the distribution of histological grade in the eight 
WAAI/CAAI groups. Grade 1 tumors were most frequent in A1 and AB1 tumors, and 
rarely found in the other groups. In A tumors, there were a reduced proportion of grade 1 
and grade 2 tumors in A2 compared to A1, the same was seen for the C tumors. The 
highest percentage of grade 3 tumors was found in the B group.  
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