
UNIVERSITY OF OSLO
Faculty of Humanities
Department of Linguistics and
Scandinavian Studies

Rapid parser
prototyping in
Common Lisp

Thesis for the cand.philol.
degree

Christian Nybø
University of Oslo

November 30, 2005

Abstract

The syntax and semantics of internet standards are most often specified in
an Internet Request for Comments (RFC). The specification for the Hyper-
text Transfer Protocol (HTTP) (RFC 2616) presents the grammar for its
messages in a form known as Backus-Naur form (BNF). The application
reads these statements to generate a parser that reads http messages. To
demonstrate this technique, we use the parser as a building block in a web
server.

Contents

0.1 Thanks . 6

1 Introduction 7
1.1 Choice of topic . 7
1.2 Other implementations . 8
1.3 Pragmatism crowds out ideal solutions 9
1.4 From a mouse click to a web page 9
1.5 How HTTP and other net standards are specified 10
1.6 What is new about HTTP 1.1 10
1.7 Why performance matters . 11

2 Components of the system 13
2.1 Compiling and loading the components 14
2.2 Simple abstractions . 15
2.3 Date and time . 15
2.4 A language implementation 15
2.5 Compatibility with other implementations 16
2.6 Virtual hosts . 16
2.7 Logging . 17

2.7.1 Using the syslog facility 17

3 The request 19
3.1 Backus-Naur form . 21
3.2 The META language . 22

3.2.1 Specifying comma-separated lists 25
3.3 Match a type rather than characters 26
3.4 Parse tree . 31
3.5 Pragmatic parsing . 31

3.5.1 Intentional capture with special variables 31
3.5.2 Keeping the global namespace clean 33
3.5.3 Using grammar from another RFC 33
3.5.4 Specifying the format of the MIME file in BNF 36

3

3.6 Checking for type definitions 37
3.7 Ignoring whitespace . 37
3.8 From a flat parse to a parse tree 38
3.9 Memoization . 41

4 The response 42
4.1 The resource . 42
4.2 The variant . 42
4.3 The entity . 42
4.4 Semantics of HTTP . 42

4.4.1 A language for semantics? 43
4.5 Sending the response . 43
4.6 Speeding up the file transfer 44
4.7 MD5 . 45

5 The server 46
5.1 Multiple processes . 46
5.2 Signal handling . 47
5.3 Error handling . 47
5.4 Profiling . 47
5.5 Dumping the application . 48

6 Further work 49
6.1 Methods and combinations . 49

6.1.1 Methods . 49
6.1.2 Conditional requests 49
6.1.3 Ranges . 50
6.1.4 Content negotiation . 50

6.2 Session handling . 50
6.2.1 Cookies . 51
6.2.2 URL rewriting . 51

6.3 Web server stack . 51
6.3.1 Operating system . 51
6.3.2 Database server . 52
6.3.3 Server-side scripting language 52
6.3.4 Authentication . 53
6.3.5 Secure Sockets support 53
6.3.6 Load balancing . 53

7 Conclusion 54

4

A Colophon 59

B Acronyms 60

C Source code 62
C.1 Line counts . 62
C.2 Call graphs . 62
C.3 Utilities . 67
C.4 Meta . 72
C.5 BNF . 76
C.6 http . 90

C.6.1 Configuration . 90
C.6.2 Formatted strings . 90
C.6.3 Utility functions . 91
C.6.4 URI . 91
C.6.5 Packages for rulesets 92
C.6.6 Presets for ruleset . 92

C.7 date-parser . 114
C.8 md5 . 117
C.9 server-process . 121
C.10 clack.asd . 123
C.11 sample-rules.txt . 124
C.12 mime-filter . 126

5

0.1 Thanks

I’d like to thank the Norwegian Embassy in Lusaka as well as Ms. Karen
Jørgensen of Chifwema Road for borrowing me office space while in Zambia.

Herman Ruge Jervell, my thesis advisor, helped me out when I started the
work on this thesis. As I have lived in Lusaka, Zambia during this period,
I did the coding mostly on my own, and he has advised me the last four
months of the project, after I came back to Oslo.

6

Chapter 1

Introduction

1.1 Choice of topic

I have added parsing functionality to Common Lisp. The editable readtable
of Common Lisp lets us adapt the reader to syntaxes that are similar to
that of Common Lisp. For other input formats, altering the readtable is too
hairy for most programmers. This package will make it easy to read foreign
syntaxes as long as a BNF specification of the syntax is available.

eXtensible Markup Language (XML) is popular, both as a data inter-
change format between programs, and increasingly as a format for informa-
tion intended for people to read. With XML as the input format and an
appropriate XML input library, the scanning part of the parsing process is
no longer an issue, but translating from the format you get to the format
you want, is still a task. In other parts of the language landscape, trans-
formations using eXtensible stylesheet language (XSL) will be the way from
a parsed version of the input, while when writing a program in a language
with s-expressions, such as lisp, we will probably prefer to do these transfor-
mations in the language proper.

As an application of this technique, I have implemented a web server, thus
showing that there is a considerable gain in letting the software generate the
parser rather than writing it oneself. The macro with-bnf expands to cases
covering all of the six hundred symbols used in the HTTP specification. This
would have been error-prone to do by hand. with-bnf constitutes a virtual
laboratory for trying out various techniques in parsing the messages, as we
can alter the macro and rather instantly see the impact of the change for all
the symbols and their grammar rules.

The third version of the hypertext transfer protocol, HTTP 1.1, offers
opportunities to save bandwidth and decrease response time. As the mech-

7

anism for virtual hosts provides significant savings for the internet services
providers, there are few servers running earlier versions than HTTP 1.1.

As many web applications get fairly close to the protocol, it is at this
juncture up to the application programmer rather than the author of the
web server to realize these savings.

It is more work to implement a server-side executed page that correctly
implements performance-enhancing features of the protocol such as if-modified-
-since, last-modified, compression, and content-length, than merely replying
as if the client had made an unqualified GET request.

Improvements on the server side have the most impact for clients that
suffer from large latency or narrow bandwidth when talking to the server.
As these input variables may vary, it is a little difficult to precisely quantify
the savings generated for a single page, and as development takes place in
environments provided with seemingly unlimited bandwidth and low latency,
it is tempting to take shortcuts. These shortcuts in programming may add up
to sluggish performance for users far away from the server. Better knowledge
of the HTTP protocol combined with dedication to performance may result
in a satisfying user experience even with high latency and low bandwidth.

Non-industrialized regions will for some time be constrained to the per-
formance of satellite connections through Very Small Aperture Terminals
(VSATs), phone lines or GSM [Sarrocco, 2002]. Websites using web server ap-
plications that minimize bandwidth requirements will be attractive to these
regions. Let’s first have a look at what other web servers there are.

1.2 Other implementations

The industry standard for web servers is the Apache webserver [The Apache Group, 2005],
whose code base descends from the NCSA webserver [NCSA HTTPd Development Team, 1997],
written by Rob McCool. Within the Common Lisp community, the first
initiative was John C. Mallery’s CL-HTTP [Mallery, 1994]. The Lisp im-
plementation company Franz Inc. have made their AllegroServe software
[Foderaro, 1999] available in source code form, and others have ported it to
other lisp implementations under the name Portable Allegroserve.

Web server projects have different aims. Apache started out a set of
patches to the NCSA server, and as such, had pragmatic goal right from the
start. The AllegroServe project was launched in order to provide an example
of network programming in Common Lisp. Pragmatism is a core trait of
both TCP/IP, WWW and the Apache web server.

8

1.3 Pragmatism crowds out ideal solutions

The concept of hypertext is not new. Neither is the idea of distributed hy-
perlinked information systems. What Tim Berners-Lee did when he invented
World Wide Web at European Organization for Nuclear Research (CERN)
[Gillies and Cailliau, 2000] was adding pragmatism to the mix. Rather than
designing a beautiful and complete system, which is what Ted Nelson did
with Xanadu [Gillies and Cailliau, 2000], Berners-Lee implemented a sys-
tem with a few improvements compared to the then-dominantGopher service
[Anklesaria et al., 1993], and let it loose. Marc Andreesen, a student at The
National Center for Supercomputing Applications (NCSA), let the browser
display images within the text of pages [Andreesen, 1993], and suddenly a
new visual medium had been born. Such is the story of the mishmash of
rewritten standards that make up the infrastructure of the web, in that stan-
dards have been written, implemented and refined in several iterations. The
winning algorithm is to produce something that gathers a user-base, and
when there is a user-base, the user-base will improve on the product.

Xanadu compared to world wide web is like OSI compared to internet
- one is specification first, aiming for perfection, while the other is “rough
consensus and running code”, creating something of some value, letting it
loose, and improving as one goes along.

There are rough edges to the specification of HTTP, and the standard
itself is not as well-written as it could have been if it were written by a single
author with precognition of todays demands. Still, it has had tremendous
impact, and we will have to deal with these rough edges. But I will start
with the broader picture.

1.4 From a mouse click to a web page

Before we get down to the details, we will have a look at how web servers
fit into the World Wide Web infrastructure, from the viewpoint of a user
clicking a link on a web page.

A link has an action associated with it, described by the protocol element
of the Uniform Resource Locator (URL). Most often the protocol is HTTP,
and the corresponding action is to fetch a document. The location of the
document is described by a uniform resource locator, a URL. When a link is
clicked, the browser checks to ensure that it has a connection to the server
of the url, looks for the expiry date of a local copy, and asks the server for
a newer copy if there is one. If so, the new copy is downloaded, if not, the
local copy is used. The browser looks through the copy to see if there are

9

other resources that may be needed when displaying the copy.
In between the origin server and the client, there may be proxies. These

maintain a cache of previously requested resources, tagged with timestamps
describing when they were generated, fetched and when they expire. Each
cache verifies that their copy is as new as the version on the next server in
the chain. In this project, I intend to write an origin server, therefore I will
mostly disregard the cache functionality.

With a sketch of the pragmatics of HTTP, the formal part of the process
remains to be described.

1.5 How HTTP and other net standards are

specified

There is a need or an opportunity for a standardization, and someone writes a
specification. This someone may be a lone hacker, an employee at a company,
an academic, or someone who represents a blend of these roles.

The specification is then distributed as an Internet Draft, and after peer
review, its may be promoted to a Request for Comments. The name is
somewhat misleading, as the comments had better be in before the document
reaches status of an RFC [Bradner, 1996].

The current version of HTTP, HTTP 1.1, is specified in the internet RFC
2616 [Fielding et al., 1999].

1.6 What is new about HTTP 1.1

When a web client talks directly to a web server, there is a Transfer Con-
trol Protocol / Internet Protocol (TCP/IP) connection between the two. In
early versions of HTTP, the connection would be closed once the client got
the answer to its request. In HTTP 1.1, the TCP/IP connection is kept
alive. With the keep-alive directive introduced experimentally with HTTP
1.0 [Fielding et al., 1997], the client does not have to close the connection,
as the server will keep in listening for new requests.

This technique is sometimes referred to as pipelining. In addition to
pipelining, some browsers understand hints on prefetching, that is, a page
may tell the browser about other pages that are likely to be the next page
asked for by the user. The browser may then download this page in ad-
vance, and present it immediately in the likely case the user asks for that
page [Fisher, 2003]. With prefetching, the net result may be that more band-
width is spent, but to the user, there may be a gain, as the next page may be

10

available without any noticeable lag. Authors and programmers of web sys-
tems are at liberty to ignore the potential improvements offered by HTTP 1.1.
Rather than alienating users that are connected with high latency and/or low
bandwidth, authors, programmers and adminstrators may spend the extra
time it takes to take advantage of HTTP 1.1 to make pages and websites
respond faster.

1.7 Why performance matters

Moore’s law describes the development of computing power, in that it doubles
every 18 months. With Moore’s law, is there any point in being concerned
with the performance of software? Even for software running in a single
computer, Moore’s law may in itself run into physical limitations, but in our
case, we are concerned with the performace of networked applications, and
therefore we must consider the connections between computers in terms of
bandwidth and latency. Ubiquitous bandwidth is still not present. The digi-
tal divide will probably be bridged by powerful cellphones, but it is costly to
build networks that offer bandwidth above that needed for speech. Without
multiplexing, Global System for Mobile Communications (GSM) offers 9600
bits per second. The more efficient our use of the network, the more people
can connect to it and get useful responses within their budget. Large areas of
the world are only serviced through satellite connections, and as the satellites
are far away from the terminals, the latency of half a second is not likely to
go away.

Jacob Nielsen [Nielsen, 1997] talks of the bandwidth from his home to
the internet expanding at 60% a year.

Complex internet applications are attempts at hiding the distance be-
tween the user and where the actual application is running. Physics dictate
that this gap is unlikely to close soon.

When a personal computer is running at clock speed of 2 gigahertz (GHz),
light only travels 15 centimeter per clock cycle:

BNF> (format nil "Light travels ~F cm per clock cycle"
(let* ((ghz (expt 10 9))
(light 299792)
(light-in-cm (* light 1000 100)))

(/ light-in-cm (* 2 ghz))))

"Light travels 14.9896 cm per clock cycle"
BNF>

11

As light moves at 299792 kilometers per second, and a modern pc goes
through 2 billion clock cycles per second, light can only move less than 15
centimeters per clock cycle. Therefore, we can build faster computers, and
get more bandwidth, but network latency has an upper bound, and will
remain the bottleneck for web applications.

Given that that knowledge of HTTP is useful, we will move on to an
implementation.

12

Chapter 2

Components of the system

A web server has to make sense of requests in order to respond to them. The
format of the requests is specified in BNF expressions littered around in the
HTTP specification. I have assembled these in the file sample-rules.txt.
The format is straight-forward, although rule definitions may be broken over
several lines. If the first non-whitespace character of the next line is placed
beyond the column of the equal sign, this line is part of the rule definition of
the previous line.

The file bnf.lisp teaches the lisp to read these BNF expressions, and as
they are read, they are translated to META, a small language built on top
of lisp, then converted to lisp code. This lisp code is the parser for HTTP
messages.

Once we know how to parse HTTP messages, the file http.lisp contains
the procedures to receive and respond to single requests in http. The file
server-process.lisp adds two abilities - the ability to respond to another
request once one is replied to without closing the socket, and the ability to
have conversations with multiple clients at the same time.

There are another two source files, date-parser.lisp and md5.lisp,
they are both parts of http.lisp that are large enough to warrant separate
files. date-parser reads the date formats of HTTP and converts them to
number of seconds since 1900, while md5 provides a basic implementation of
a checksum algorithm used to ensure that a file is intact once it is received
at the endpoint.

I will demonstrate the use of BNF for prototyping by writing a simple
web server. The server comprises of the following parts:

Utilities are syntactic sugar in the form of macros and small functions.

Meta provides a reader for the META language, as described in [Baker, 1991].

13

Bnf extends the system with another small language, to generate parser
code from a collection of BNF statements.

Http uses bnf to generate a parser, and provides the semantics of an http
dialogue. Two files supply functions to the http file:

Date-parser reads and formats datetimes.

Md5 calculates an MD5 checksum for a string or a file

Server-process sets up a process that listens to a port and dispatches re-
quests to new threads.

Together these components provide the essentials of a web server, that
is, one that serves pages, but does not adhere to the full set of requirements
outlined in the HTTP RFC.

2.1 Compiling and loading the components

There are comprehensive facilities for loading and updating parts of a sys-
tem. Although not part of the language proper, Mark Kantrowitz’ defsystem
[Kantrowitz, 1991] has been the de-facto standard for a long time. A re-
cent replacement, Another System Definition Facility (asdf) [Barlow, 2004],
is adapted to the need to download system requirements on-the-fly, if needed.
So far, we have resorted to a simple solution; a file def.lisp that sets up
the default path, compiles, and then loads the parts of the system.

Starting the system from a bare lisp consists of these three steps:

(cwd ‘‘/Users/chr/proj/uio/sli/hovedfag’’)
(load ‘‘def’’)
(server:start)

After these steps, the server will listen to and answer requests on, port
8000.

With the asdf facilities, a system definition, contained in the file clack.asd
looks like this:

(defsystem "clack"
:description "clack: a web server."
:version "1.0"
:author "Christian Nybø <chr@sli.uio.no>"
:licence "Public Domain"
:components ((:file "utilities")

14

(:file "meta" :depends-on ("utilities"))
(:file "bnf" :depends-on ("meta"))
(:file "http" :depends-on ("bnf"))
(:file "server-process" :depends-on ("http"))))

and to load it with the asdf system present, you would say:

CL-USER> (asdf:operate ’asdf:load-op :clack)

2.2 Simple abstractions

The source file utilities.lisp contains various macro definitions that help
shorten the code. I find that extending the language with simple rewriting
macros to be a rather inexpensive addition, as readers unfamiliar with a
particular macro may well macroexpand the form in the place where it was
used, to see the effect of the macro. In that respect, a macro is almost self-
explaining. On the other hand, a macro may well obfuscate complexity, in
that only evaluating the macro may reveal what it does. One of my macros,
that is, with-bnf, differs from the utility macros in that it macroexpands
to thousands of lines of code 1, is quite complex, and it also depends on an
input file.

2.3 Date and time

HTTP accepts time in three formats. As they are a little too readable for
humans to be comfortable for computers, they are converted to universal
times, that is the number of seconds since 1900.

2.4 A language implementation

I chose the open-source implementation OpenMCL [Byers, 2005]. Histori-
cally, it stems from Digitool’s Macintosh Common Lisp .

Initial versions of the application used a few facilities from the ccl-package,
that is, facilities that are idiosyncratic to the OpenMCL implementation.
These forms were moved to a separate file, and instead there are implementation-
dependent statements that require compatibility code. For the compatible
forms needed for the file http.lisp, we look at compat/IMPLEMENTATION-NAME/
http.lisp.

1the grammar of sample-rules expands to about 9680 lines of code, including debug
statements

15

2.5 Compatibility with other implementations

Most of the server is written in plain Common Lisp. The exceptions are sock-
ets, threads and the test for whether a symbol can be used to refer to a type.
There are variants of writing a file to a stream that utilize OpenMCLs ability
to call C functions, and those are also proprietary to the implementation. I
will replace it with a slower but clean call to write-sequence.

I will remove ccl from the lists of imported packages, thus the namespaces
will be free of references to OpenMCLs symbols, and rather set up a set of
functions that a compatible system should provide.

Server-process sets up the server. That is about opening a socket,
listening to it, and for each new connection, start a new thread that handles
the requests on the connection. When there are no more requests, the thread
should stop existing.

2.6 Virtual hosts

For a single physical server with a limited number of network interfaces to
host many webservers with unique domain names, HTTP offers so-called
virtual hosting. A single server has a single IP address, but there may be sev-
eral domain names that point to this single Internet Protocol (IP) address.
A single server answers HTTP requests to this server, but the requests are
answered based on the Host:-header in the request. The Host:-header con-
tains the domain name of the server as it is seen in the URL that the client
is asking for.

The example server may be referred to as localhost or by its hostname
“macchr”, and we want the server do act differently based on which of these
names is used as the host part of the URL.

At this point, the server will serve pages also for urls that start with
http://macchr:8000. The next step is making the server differ between
hosts. A class vhost has a domainname, a document-root, a hashtable
functions of mappings from url prefixes to functions, and a logfile.

The request class needs a new slot for the Host:-header, receive-request
has to add it, and servable-document-p has to lookup an entity based on
the Host: header. The variable *document-root* is kept as a fallback.

From the parsed request, we will probably know what the wanted “host”
is set to, but as we don’t store the values from the parse as a hierarchical
structure, we can’t tell whether a particular value for host is a result of
parsing an absoluteURI or a Host:-header. Therefore it is neccessary to
store not only a value for the header, but also store how we got to the

16

header, the epistemology of the value, so to say. It is not sufficient to have
the name of a host, we must also know where it comes from.

2.7 Logging

It’s nice to know what the server is doing, and how much time it spends doing
it. In logging, we are looking at the total time spent serving a page, rather
to make sure that the end user does not have to wait for too long. If we are
looking for performance bottlenecks, we should rather resort to profiling.

We start out with a function like this:

(defun http-log (request entity time code bytes-sent)
(with-open-file (log "/tmp/log"

:direction :output
:if-exists :append
:if-does-not-exist :create)

(format log "~A - - [~A] ~S ~D ~D~%"
(remote-host request)
(iso-8601-string)
(request-line request)
code
bytes-sent)))

As we have several threads running at the same time, we need a way of
ensuring that they do not write to the same file at once. On way is to ensure
that no other threads attempt to write to the file while we write to the
file. We use the implementation-dependent macro (ccl:with-lock-grabbed
((ccl:make-lock "logfile")) to make sure that different threads do not
write at the same time.

A more advanced version would be to have a separate logger thread, and
send messages from the other threads that ask the logger to write a line in
the log. The logger could keep the file open, and the threads that wanted
to write something to the log, could send a message to the logger and forget
about it.

2.7.1 Using the syslog facility

I want the processes to output what they are doing. If they are to write to
a common log file, there wil be the issue of locking the file, waiting for logs,
picking a random time before retrying, and so forth. In unix, this has been
solved by the syslog facilities. These are part of the C library. The call I
want to use is

17

void syslog(int priority, const char *message, ...);

int is a number describing the severity of the condition, *message is a
format string as to printf, and ... are the argument(s) to the format string.

To use a C library, I’ll need to create a C string. (ccl::make-cstring ”zot”)
makes a C string. To call the C function syslog from openmcl, I can use the
macro # syslog, like this:

(#_syslog 6 (ccl::make-cstring "foo %s quux")
:address (ccl::make-cstring "zot"))

In addition, I’ll specify that everything from dppccl should be logged to a
particular file clack.log, so I add the lines below to the unix configuration file
syslog.conf,

!/Applications/openmcl/ccl/dppccl
. /var/log/clack.log
!*

(the first line says that the following statements concern those that are
from the application /Applications/openmcl/ccl/dppccl, the last line re-
sets this mode)

and restart syslogd with

killall -HUP syslogd

18

Chapter 3

The request

The request is what the client sends when asking for something.
The request specifies what the user wants. The answer depends on the

following traits of the request:

Trait sample value Comment
Method GET The method is the first element of

the request-line
Host www.uio.no The host name of the web server
Port 80 A service of a unix server is

associated with a port number
abs path /subjects/index.html Path to the resource, which may or

may not refer to a file on the server

These decide what resource to look for, in short, this may be phrased as:
Method * Host * Port * abs path → resource, wherein the star signi-
fies that the resource is the product of the combination of the four parame-
ters.

There may be several representations of a resource, varying in each of
these dimensions:

Accept text/html, application/pdf The preferred media-types of the
client

Accept-Charset iso-8859-1 Preferred character set and
encoding

Accept-Encoding gzip, compress Preferred compression scheme of
the client

Accept-Language en/en Languages that the client wants to
read

In short, this may be phrased as: media-type * Accept-Charset *

Accept-Encoding * Accept-Language → variant

19

media-type is specified by the Accept header, but its name is undescrip-
tive.

How to serve the answer depends on:

HTTP-Version 1.1 Does not change
Connection Keep-Alive An intention not to break the

connection
Authorization Basic

QWxhZGRpbjp
vcGVuIHNlc2FtZQ==

A token for allowing access

If-Match ”xyzzy” A tag for a particular version of a
resource or variant

If-Modified-Since Sat, 29 Oct 1994
19:43:31 GMT

A date

If-None-Match ”xyzzy” Also a tag
If-Range Sat, 29 Oct 1994

19:43:31 GMT
Also a date

Range bytes=0-499 A set of byte ranges

Again, this may be expressed as: HTTP-Version * Connection * Authorization

* If-Match * If-Modified-Since * If-None-Match * If-Range * Range

→ how to respond.
There are headers that in some obscure cases may affect what and how to

serve, such as Referer (“referer” has always been misspelled in HTTP) and
User-Agent. They may have values such as http://www.uio.no/other.html
and CERN-LineMode/2.15 libwww/2.17b3.

Host, port, and abs path together produce an identifier for a resource
(as a physical host can be pointed to by several hostnames, a process may
listen to several ports.)

The first step is to identify the resource that the client wants, then
whether it exists, if it is readable, and is allowed to be served to this user.

Once we have decided on a resource, we try to find the variant of the
resource that is the most suitable for the client. After deciding on a variant,
we’ll look at the method used by the client, and answer according to it.

20

fast complex

finite
Turing-swamp

regular
languages
can be
expressed
by finite
state
machines

R*
RS
RvS

squared words
if then else

BNF
state machine
plus stack
parenthesis-based
languages

algol 68,
C++,
Perl

infinite

Figure 3.1: The balance between decidability and expressiveness

3.1 Backus-Naur form

Lars Marius Garshol [Garshol, 1998] has written an informal introduction to
Backus-Naur form (BNF).

BNF is used to specify a grammar for a context-free programming lan-
guage or format. A grammar is a set of production rules that specify a set
of symbols and which combinations of symbols are valid expressions in the
language. If every production rule is the same regardless of what surrounds
the occurence of the rule, we call it a context-free grammar. As BNF has no
memory, and thus lacks facilities to specify the context in which a production
rule occurs, the programming language needs to be context-free in order to
specify it with BNF.

For example, in BNF we can not specify the property of well-formed XML
that the start tag should have a matching end-tag. This must be specified
by other means.

BNF represents a suitable balance between expressiveness and decidabil-
ity, as illustrated in figure 3.1.

A language specified in BNF may be recognized by a finite state automa-
ton with a stack.

The grammar of HTTP consists of a set of production rules. A production
rule consists of a left-hand side, an equal sign and a right-hand side. The
left-hand side specifies the name of the rule. The name is case sensitive as
some names differ only by case, such as “Host” and “host”. The right-hand

21

is the definition of the rule, and specifies what sequences are valid instances
of the rule.

A definition is implicitly a sequence.
The first line in an HTTP request looks something like this:
GET / HTTP/1.1

The first lines of the BNF specifying the format of the first line an HTTP
request:

Request-Line = Method SP Request-URI SP HTTP-Version CRLF
Method = "OPTIONS" ; Section 9.2

| "GET" ; Section 9.3

The BNF format used in the HTTP specification is described in chapter
2, Notational Conventions and Generic Grammar in the RFC.

3.2 The META language

Henry Baker’s [Baker, 1991] implementation of the META language is a small
language built on top of Lisp. It adds matching constructs such as concate-
nation, alternation and kleene-star. Using meta as an intermediate format is
not strictly necessary, we could well translate directly from BNF to lisp code,
but having meta as an intermediate step makes for a compact, but readable
representation of the rules specified in the BNF. Should macroexpansion and
compilation speed be an issue, one could translate directly from BNF to lisp
code. As we need to know how we drew some of the conclusions from a
parsed request, our implementation of meta differs from the one sketched by
Baker in that it builds a parse tree in addition to binding names to the result
of applying the rule of the name.

The parser uses backtracking, parses from the top of grammar, parses
from the left, and generates a leftmost parsing tree. As the parser works
with a buffer and there is no effort to minimize the lookahead, it is not
meaningful to qualify it with a value for how many characters it needs to
look at. We may therefore characterize the parser as an LL parser.

The lisp syntax is extended with the following constructs:

22

[] surrounds a sequence
{ } surrounds a list of alternatives
() surrounds a grouping
@(type var) match an element of type TYPE, bind the match

to variable VAR
$ Kleene star – match as many as possible of the

following element
! escape character – evaluate the following lisp

expression
As the meta language extends the syntax of lisp, we have added a few

characters to the syntax table of emacs, mimicking the syntax rules of paren-
theses. When emacs reads a file that ends with lines such as those below, it
may evaluate those forms to adapt to the syntax of the file.

;;; local variables:
;;; eval: (modify-syntax-entry ?{ "(} ")
;;; eval: (modify-syntax-entry ?} "){ ")
;;; eval: (modify-syntax-entry ?\["(] ")
;;; eval: (modify-syntax-entry ?\] ")[")
;;; end:

Below is a sample showing how to get from a fictious BNF statement as
they appear in the specification, to an expression in the META language:

BNF> (parse-rule-definition "Method = \"GET\" | \"HEAD\"
")
(RULENAME |Method| (("GET") (OR-TOKEN) ("HEAD")))
25
BNF> (normalize-rule *)
(RULENAME |Method| (PARSED-OR-EXPRESSION "GET" "HEAD"))
BNF> (bnf-expr-to-meta (cddr *))
"{\"GET\" \"HEAD\"}"
BNF> (let* ((index 0)

(string "GET")
(end (length string)))

(matchit #.(read-from-string *)))
(#\G #\E #\T)
BNF>

Figure 3.2 displays the steps from BNF expressions as found in the RFC
to a parser.

23

�
�
translate META
expressions into�
local lisp functions

RFC 2616:
Hypertext�
Transfer�
Protocol

HTTP Parser

HTTP Parser output�
Variable bindings�
Abstract parse tree

sample-rules.txt:�
ruleset �
in BNF �
format�

bnf.lisp:
meta statements �
that translate BNF�
to s-expressions,�
normalize them,�
then convert to META�
expressions

manual�
extraction

http request

Figure 3.2: From BNF to a lisp parser

24

3.2.1 Specifying comma-separated lists

BNF allows for a shorthand for specifying comma-separated lists of elements.
Separating list elements with commas is not the way of Common Lisp. In
the realm of C and Unix, it is quite common. Not surprisingly, I got a
definite feeling of going “against the grain” when I was to implement the
format for specifying comma-separated lists. In general, the BNF allows for
folding linear whitespace (LWS). For comma-separated lists, the picture is
more cluttered as it allows for empty elements that do not add to the total
count of elements. An expression to match a comma-separated list of two
elements should therefore look for something like:

*(*lws #\,) *lws element1 *lws #\, *(*lws #\,)
*lws element2 *(*lws #\,)

For most elements, it is appropriate to remove whitespace in front of the
element. If this is done elsewhere, we have a simpler regular expression:

*(*lws #\,) element1 *lws #\, *(*lws #\,)
element2 *(*lws #\,)

As we should consume whitespace in front of a comma, let us write comma
as a shorthand for the sequence *lws \#\,.

*(comma) element1 comma *(comma)
element2 *(comma)

If we remove the parenthesis around single elements, and write 1∗comma
for comma ∗ comma, we get:

*comma
element1

1*comma element2
*comma

To generalize the format, we see that the first element will look like
*comma element1. Subsequent elements will look like 1*comma element2.
After the list we will find *comma.

This format was not quite what I wanted, though. The code ended up
as:

25

(defun quantify-expr-list (min max body symbol)
(declare (ignorable symbol))
(let* ((comma (list ’(kleene-star

(kleene-star
((parsed-or-expression #\Return #\Newline)
(parsed-or-expression #\Space #\Tab)))

(kleene-star (parsed-or-expression #\Space #\Tab)))
#\,))

(commas (list (cons ’kleene-star comma)))
(subsequent (list comma commas body)))

(labels ((nconc-times (n expr)
(loop for i below n

nconc expr)))
(list commas

(if (zerop min)
(list ’parsed-or-expression body ’the-empty-string)
(cons body

(nconc-times (decf min) subsequent)))
(if (integerp max)

(nconc-times (- max min 1)
(list
(list
’parsed-or-expression
subsequent
commas)))

(list ’kleene-star subsequent))
commas))))

When invoked, the code produced from this would end up in a loop
looking for a match on Space or tab, then return or newline, then start
looking again. The problem is the line containing

(kleene-star (parsed-or-expression #\Space #\Tab)))

A kleene-starred expression can match the empty string. If there is a
kleene-star around such an expression, we end up with an infinite loop, as
the matcher will try to match the empty string as many times as possible.
One solution is to remove the kleene-star from the inner expression, and have
the outer kleene-star do the repetition.

3.3 Match a type rather than characters

The matcher collects characters and builds tokens from these. For each
character, a test is done to check whether the character is a token-char or

26

not. So far, the token-chars are specified by a rule that consists of a big
“or”-statement.

For a comparison, I add a new rule to the ruleset:

token-type = 1*token-type-char

and I define a corresponding set of characters:

HTTP> (deftype rfc2616::|token-type-char| ()
’(member #\! #\# #\$ #\% #\& #\’ #*

[...]))
RFC2616::|token-type-char|
HTTP> (let* ((string "thisisaverylongtokenendinghere ")

(index 0)
(end (length string)))

(with-bnf "sample-rules.txt"
#.(mapcar (lambda (sym) (intern sym :rfc2616))
(list "star-lws" "SP" "HT"

"LF" "CR" "segment" "path_segments"
"pchar" "reserved" "escaped" "uric" "unreserved"
"alphanum" "lowalpha" "upalpha" "alpha" "digit"
"domainlabel" "toplabel" "token-char"))

:rfc2616
(values (time (dotimes (i 10000)

(matchit !(rfc2616::|token|))
(setf index 0)))

(time (dotimes (i 10000)
(matchit !(rfc2616::|token-type|))
(setf index 0))))))

;Compiler warnings :
[...]

(DOTIMES (I 10000) (MATCHIT !(RFC2616::|token|)) (SETF INDEX 0))
took 4,186 milliseconds (4.186 seconds) to run.
Of that, 3,460 milliseconds (3.460 seconds) were spent in user mode

440 milliseconds (0.440 seconds) were spent in system mode
286 milliseconds (0.286 seconds) were spent
executing other OS processes.

950 milliseconds (0.950 seconds) was spent in GC.
29,920,000 bytes of memory allocated.
(DOTIMES (I 10000) (MATCHIT !(RFC2616::|token-type|)) (SETF INDEX 0))
took 318 milliseconds (0.318 seconds) to run.

27

Of that, 120 milliseconds (0.120 seconds) were spent in user mode
70 milliseconds (0.070 seconds) were spent in system mode
128 milliseconds (0.128 seconds) were spent
executing other OS processes.

40 milliseconds (0.040 seconds) was spent in GC.
1,600,000 bytes of memory allocated.
NIL
NIL
HTTP>

These forms appear to be good candidates for a speedup. If possi-
ble, I want rules translated into deftypes. A rule may be translated to a
deftype if it consists of a single-character string, an or-expression of single-
character strings, an or-expression of rules that themselves may be translated
to deftypes. I could rephrase that. A rule may be translated into a deftype
if every element of the rule is either a string of length 1 or an or-expression
whose elements are translatable into a deftype.

(defun translatable-into-deftype (rhs)
(typecase rhs

(string (array-in-bounds-p rhs 0) (not (array-in-bounds-p rhs 1)))
(list (and (eq (car rhs) ’bnf::parsed-or-expression)

(every #’translatable-into-deftype (cdr rhs))))))

Next, we want it to actually translate the expression while testing it.

(defun translate-to-deftype (rhs)
(typecase rhs

(string (when (and (array-in-bounds-p rhs 0)
(not (array-in-bounds-p rhs 1)))

(char rhs 0)))
(list (and (eq (car rhs) ’bnf::parsed-or-expression)

(let ((rest (mapcar #’translate-to-deftype (cdr rhs))))
(when (every (complement #’null) rest)
(cons ’member rest)))))))

We still have not handled rules that are composed of disjunct rules, such
as

alphanum = alpha | digit
alpha = lowalpha | upalpha

28

These make for an interesting situation. There are three possible cases
for a rule. Either it is not translatable, or it is translatable, or it may be
translatable in the future, if we can translate the components into deftypes.

So, when we meet a symbol, we will check whether it is already defined
as a deftype. In that case, we can use it as argument in an or-statement.

A fictional rule definition alpha | ‘‘0’’, which we see as
(bnf::parsed-or-expression rfc2616::alpha ‘‘0’’)

should be converted to a type specification such as (or alpha (member

#\0)). So, in a parsed-or-expression, we want to group the args according to
whether they are strings or symbols. Strings go into a “member” typespec.
If there are symbols, we wrap the member typespec in an “or” typespec.

Deftype creates a lexical binding. Which is what I want.
Once the deftypes are defined, there remains another hurdle. They are

defined in a lexical context, and BNF::CHAR-OR-TYPE-OR-FUNCTION does not
know about them, because char-or-type-or-function is evaluated before
these deftypes are evaluated. What to do?

We could hand char-or-type-or-function a list of the types that we
intend to define.

with-bnf calls meta-rules-and-deftypes. meta-rules-and-deftypes

has deftypes, and calls rule-bnf-expr-to-meta.
We will make deftypes into a dynamic variable, so that it’s visible from

char-or-type-or-function.
We can turn off the effect of these locally defined types by comment-

ing out the relevant case in char-or-type-or-function, and recompiling
receive-request.

(testcase) ;; with type definitions turned on
(DOTIMES (I 100000) (MATCHIT !(RFC2616::|HTTP-message|)))
took 2,313 milliseconds (2.313 seconds) to run.
Of that, 1,430 milliseconds (1.430 seconds) were spent in user mode

720 milliseconds (0.720 seconds) were spent in system mode
163 milliseconds (0.163 seconds) were spent
executing other OS processes.

842 milliseconds (0.842 seconds) was spent in GC.
43,259,136 bytes of memory allocated.

(testcase) ;; not using the type definitions
(DOTIMES (I 100000) (MATCHIT !(RFC2616::|HTTP-message|)))
took 3,074 milliseconds (3.074 seconds) to run.
Of that, 2,120 milliseconds (2.120 seconds) were spent in user mode

590 milliseconds (0.590 seconds) were spent in system mode
364 milliseconds (0.364 seconds) were spent

29

executing other OS processes.
874 milliseconds (0.874 seconds) was spent in GC.
48,101,792 bytes of memory allocated.

Comparing the time spent in user mode, we got a (- 1 (/ 1430 2120)) =

32.5 percent speedup.
The next improvement I would like to try out is to store indices to the

request string rather than strings. Hopefully, this can be done transparently,
as we can also modify the accessor methods to fetch the correct subsequence
of the string rather than a pair of indices to the start- and endpoint of the
relevant string.

(push (subseq string past-whitespace index) ,name)))
(push (cons past-whitespace index) ,name)))

That made no difference, it seems.

(testcase 100000)
(DOTIMES (I N) (MATCHIT !(RFC2616::|HTTP-message|)))
took 2,002 milliseconds (2.002 seconds) to run.
Of that, 1,240 milliseconds (1.240 seconds) were spent in user mode

530 milliseconds (0.530 seconds) were spent in system mode
232 milliseconds (0.232 seconds) were spent
executing other OS processes.

517 milliseconds (0.517 seconds) was spent in GC.
43,231,024 bytes of memory allocated.

Maybe that is because we’re replacing one expensive operation with another?
Binding each name to a (make-array 0 :adjustable t :fill-pointer

0 :element-type ’integer) and doing:

;; (push (subseq string past-whitespace index) ,name)))
;; (push (cons past-whitespace index) ,name)))

(vector-push-extend past-whitespace ,name)
(vector-push-extend index ,name)))

(testcase 100000)
(DOTIMES (I N) (MATCHIT !(RFC2616::|HTTP-message|)))
took 2,327 milliseconds (2.327 seconds) to run.
Of that, 1,340 milliseconds (1.340 seconds) were spent in user mode

820 milliseconds (0.820 seconds) were spent in system mode
167 milliseconds (0.167 seconds) were spent

30

executing other OS processes.
871 milliseconds (0.871 seconds) was spent in GC.
43,232,960 bytes of memory allocated.

So, this attempt did not generate any difference in speed.

3.4 Parse tree

A parse tree is an abstract representation of expressions in a language, with
a structure similar to that of the production rules of the grammar of the
language.

The tree may be represented as statements in the dot language of the
Graphviz package, and look like figure 3.3.

3.5 Pragmatic parsing

To parse a sentence means to recover the constituent structure
of the sentence – to discover what sequences of generation rules
could have been applied to come up with the sentence

([Norvig, 1992])

In a way, it implies proving that the sentence is valid in a particular grammar.
Earlier, we touched upon the generation of a parse tree as a result of

parsing an HTTP message. At first, the parse tree seemed somewhat clut-
tered. First, I wanted to chop off the dangling truth values. A Kleene-starred
expression has a successful match if it matches nothing. It can return T, but
to a human reader, that information just clutters up the view. Removing
these left a tree with a better signal to noise ratio.

We rather want to differ between a match that actually matches some-
thing, and a match of the empty string, which we would rather forget about.
Therefore, we will delete from the parse tree the results of Kleene-star ex-
pressions matching the empty string, as well as calls with empty arglist to the
concatenating and-operator, cand. That strings are sequences of characters,
but they are displayed as a box containing the string, rather than several
boxes each containing a letter.

3.5.1 Intentional capture with special variables

Index and old-index are made into special variables, so that we don’t have to
pass them around all the time. This violates referential transparency, that

31

H
TT

P-
m

es
sa

ge

Re
qu

es
t

Re
qu

es
t-L

in
e

Se
qu

en
ce

CR
LF

m
es

sa
ge

-b
od

y

M
et

ho
d

Re

qu
es

t-U
RI

H

TT
P-

Ve
rs

io
n

CR
LF

G
E

T
ab

s_
pa

th

/
pa

th
_s

eg
m

en
ts

se
gm

en
t

Se
qu

en
ce

/
Se

qu
en

ce
.

Se
qu

en
ce

H
T

T
P

1
1

^M
\n

Se
qu

en
ce

Se
qu

en
ce

Se
qu

en
ce

Se
qu

en
ce

re
qu

es
t-h

ea
de

r
CR

LF

U
se

r-A
ge

nt

Se
qu

en
ce

:
Se

qu
en

ce

U
s

e
r

-
A

g
e

n
t

pr
od

uc
t

Se
qu

en
ce

to
ke

n
Se

qu
en

ce

c
Se

qu
en

ce

u
r

l

/
pr

od
uc

t-v
er

sio
n

to
ke

n

7
Se

qu
en

ce

.
1

3
.

1

co
m

m
en

t
pr

od
uc

t
pr

od
uc

t
pr

od
uc

t

(
Se

qu
en

ce
)

ct
ex

t

p
Se

qu
en

ce

o
w

e
r

p
c

-
a

p
p

l
e

-
d

a
r

w
i

n
8

.
0

to
ke

n
Se

qu
en

ce

l
Se

qu
en

ce

i
b

c
u

r
l

/
pr

od
uc

t-v
er

sio
n

to
ke

n

7
Se

qu
en

ce

.
1

3
.

1

to
ke

n
Se

qu
en

ce

O
Se

qu
en

ce

p
e

n
S

S
L

/
pr

od
uc

t-v
er

sio
n

to
ke

n

0
Se

qu
en

ce

.
9

.
7

b

to
ke

n
Se

qu
en

ce

z
Se

qu
en

ce

l
i

b

/
pr

od
uc

t-v
er

sio
n

to
ke

n

1
Se

qu
en

ce

.
2

.
2

^M
\n

re
qu

es
t-h

ea
de

r
CR

LF

H
os

t

Se
qu

en
ce

:
ho

st
Se

qu
en

ce

H
o

s
t

ho
stn

am
e

to
pl

ab
el

EM
PT

Y l
Se

qu
en

ce

o
c

a
l

h
o

s
t

:
po

rt

8
0

0
0

^M
\n

ge
ne

ra
l-h

ea
de

r
CR

LF

Pr
ag

m
a

Se
qu

en
ce

:
Se

qu
en

ce

P
r

a
g

m
a

pr
ag

m
a-

di
re

ct
iv

e

n
o

-
c

a
c

h
e

^M
\n

re
qu

es
t-h

ea
de

r
CR

LF

A
cc

ep
t

Se
qu

en
ce

:
Se

qu
en

ce

A
c

c
e

p
t

Se
qu

en
ce

m
ed

ia
-ra

ng
e

EM
PT

Y

Se
qu

en
ce

*
/

*

^M
\n

^M
\n

en
tit

y-
bo

dy

K
LE

EN
E-

ST
A

R-
EM

PT
Y

Figure 3.3: Representation of parse tree of an HTTP Request

32

is, the property that functions may have that says that the function always
will have the same output with the same arguments. The gain is that the
code is easier to read this way.

3.5.2 Keeping the global namespace clean

As the symbol names read from the BNF are interned, we want this done in
a separate package to avoid name clashes with names defined in the language
or the application.

For example, the ruleset has the following definition:

quoted-pair = "\" CHAR

which points back to:
CHAR = <any US-ASCII character (octets 0 - 127)>

In Common Lisp, char is the name of a function. The big LABELS
statement will refer to char, but if it refers to char as part of a rule definition,
it should refer to the rfc2616::char rather than the common-lisp:char.
How do we go about that?

If we are further down in the implementation, I may want to refer to
cl:char, but will I then have to prefix it?

One solution may be to define a package :rfc2616 for the symbols read
from the ruleset, and explicitly prefix any symbol read from the ruleset with
rfc2616:. Then we will refer to rfc2616:char when we mean the char from
the ruleset.

When a package is created, it will inherit from common-lisp-user by
default, so when creating the package for ruleset, we will explicitly ask it not
to inherit any symbols, by adding a :use keyword with no argument when
calling defpackage.

3.5.3 Using grammar from another RFC

The optional “From:”-header uses grammar from the rfc for internet mail,
that is, RFC 822, later superseded by RFC 1123. Ideally, we should be able
to use the grammar specified in BNF within these RFCs directly, but there
are a few complicating factors.

The BNF notation is a little different, in that it uses the token “/” as an
or-token. That is, where RFC 2616 says “A” — “B” to mean: “Either the
string “a” or the string “b”.”, RFC 822 and 1123 say “A” / “B”.

For the rules imported from 822 and 1123, I have replaced the characters
slash with pipe by hand.

33

The RFCs have somewhat overlapping and conflicting namespaces, so we
have to be careful so as to specify which namespace is the default, and which
has to be named explicitly.

One way would be to mechanically check that each of the rulenames in the
additional ruleset is unused in rfc 2616. But this would be both cumbersome
and prone to human error.

We will instead use a separate namespace for the symbols imported from
the mail rfcs. Let’s call it rfc1123. Currently, the reader imports all symbols
and interns them into the rfc2616 package. We would like a facility to specify
another package.

If we wrap the code that calls intern in a let where *package* is bound
to :rfc2616, then unqualified symbols read will be interned in rfc2616, but
we can still prefix other symbols with a package name.

First step is to use read-from-string rather than intern.

CL-USER> (intern "foo" :common-lisp-user)
|foo|
NIL

CL-USER> (let ((*package* (find-package :common-lisp-user)))
(read-from-string "foo"))

FOO
3

Note that intern preserves the case of the symbol. Read can preserve it, too.

CL-USER> (let ((*package* (find-package :common-lisp-user))
(*readtable* (copy-readtable nil)))

(setf (readtable-case *readtable*) :preserve)
(read-from-string "foo"))

|foo|
3

Then we define an empty package for the imported symbols by adding the
(:use) flag to defpackage.

(defpackage #:rfc1123 (:use))
#<Package "RFC1123">

(let ((*package* (find-package :common-lisp-user))
(*readtable* (copy-readtable nil)))

(setf (readtable-case *readtable*) :preserve)
(read-from-string "rfc1123::foo"))

34

; Evaluation aborted
; as the package rfc1123 is not known.

(let ((*package* (find-package :common-lisp-user))
(*readtable* (copy-readtable nil)))

(setf (readtable-case *readtable*) :preserve)
(read-from-string "RFC1123::foo"))

RFC1123::|foo|
12

; with an upcased designator for the package, it is found

(let ((*package* (find-package :common-lisp-user))
(*readtable* (copy-readtable nil)))

(setf (readtable-case *readtable*) :upcase)
(read-from-string "rfc1123::foo"))

RFC1123::FOO
12

Parse-rule-definition reads through the string and parses the definitions.
Instead of (setf name (intern (subseq string old-index index) package))))

we will use
(setf name (let ((*package* package)) (read-from-string (subseq

string old-index index)))) As a first step, we would like to include the
grammar from rfc1123 with prefixed names. Later, we may want to put
them in a separate file, and associate this file with a particular package
name.

Well, as : is not allowed as part of a token, we have to alter our reader
a little.

;; (with-match [@token-char \$@token-char]
;; (setf thing (intern (subseq string old-index index) package))))

(with-match [@token-char \$@token-char
{[\#\\: \#\\: @token-char \$@token-char][]}]

(let ((*package* package))
(setf thing (read-from-string (subseq string old-index index))))))

With this alteration, the external names are interned in their respective
packages:

(pprint (bnf::parse-rule-definition
" rfc1123::mailbox = rfc822::addr-spec ; simple address

| [rfc822::phrase]

35

rfc822::route-addr; name & addr-spec"
0 :package (find-package :rfc2616)))

(BNF::RULENAME RFC1123::MAILBOX
((RFC822::ADDR-SPEC) (BNF::OR-TOKEN)
((BNF::PARSED-OR-EXPRESSION ((RFC822::PHRASE)) BNF::THE-EMPTY-STRING))
(RFC822::ROUTE-ADDR)))

; No value

With all the names prefixed with a package name, the expressions are
rather unreadable. Another option would be to store the expressions in a
separate file, associate a package with that file, and intern all unqualified
names from that file in the specified package.

This way, the local function RFC2616::FROM refers to RFC1123::MAILBOX,
which in turn refers to RFC822::ADDR-SPEC et cetera.

3.5.4 Specifying the format of the MIME file in BNF

Now that I have a system for generating parsers from BNF, I wanted to teach
the system how to interpret the format of the Multipurpose Internet Mail
Extensions (MIME) file. From the top of the file:

This is a comment. I love comments.

[... More comments ...]

MIME type Extensions
application/activemessage
application/andrew-inset ez
application/applefile
application/atomicmail

We are interested in the lines such as “application/andrew-inset ez”.
This line tells that files whose name ends in “.ez” have the mime type
“application/andrew-inset”.

As an application of the with-bnf framework, we could write a file mime-filter.bnf,
containing a bnf definition of the file format:

;;;# mime-filter
mime-list = (comment | type-suffixes | type | blank) newline
newline = "
"
comment = "#" *NOT-NEWLINE

36

blank = *" "
type-suffixes = type (" "|" ") *(" "|" ") suffixes
type = token "/" token
suffixes = suffix *suffix
suffix = token
token = TOKEN-CHAR *TOKEN-CHAR

and collect lines from the mime-type file like this:

(defparameter *mime-suffix-alist*
(let* ((string (file-to-string "/private/etc/httpd/mime.types"))

(index 0)
(end (length string))
(collection ()))

(with-bnf "mime-filter.bnf"
’(#\Space) :mime
(loop

(unless (matchit !(mime::|mime-list|)) (return collection))
(when (shiftf mime::|type-suffixes| nil)

(apush (shiftf mime::|suffix| nil) mime::|type| collection))
(setf mime::|type| nil))))

"An association list where the first element is a list of suffix strings
such as (\"jpeg\" \"jpg\"), and the second element is a mime designator
such as \"image/jpeg\".")

In addition, we need to lookup the mime-type of a particular suffix.

3.6 Checking for type definitions

The function char-or-type-or-function takes a name as its argument, and
returns a string in the META language. There are built-in predicates for
most of the available cases, but for checking whether there is a type whose
name is the name, is harder. I have used OpenMCLs built-in predicate
type-specifier-p to check whether there exists a matching type, which at
least in practice works as desired.

3.7 Ignoring whitespace

I’ve got a problem matching a header that looks like this, as there is whites-
pace occuring between the the header name and the header value:

Host: 127.0.0.1:8000

This should match the rule that is on the form:

37

Host = "Host" ":" host [":" port]

The challenge is that the spec also says the following:

implied *LWS The grammar described by this specification is
word-based. Except where noted otherwise, linear white space
(LWS) can be included between any two adjacent words (token
or quoted-string), and between adjacent words and separators,
without changing the interpretation of a field. At least one de-
limiter (LWS and/or separators) MUST exist between any two
tokens (for the definition of ”token” below), since they would
otherwise be interpreted as a single token.

I will therefore need to skip whitespace, but in some cases, the whitespace
may be part of the rule. Therefore, if the match fails, I will also need to try
to match with the whitespace. I will try with the whitespace included after
failing without the whitespace, as I presume that there will be more rules
that discard the whitespace than those who use it.

Whitespace is informally specified, and as there is no separate scanning
procedure, we deal with it as we read. There are just a few rules that want
to se the prepended whitespace, and we’ll remember those separately. Unless
a rule requires whitespace, I will add an expression in front of the rule that
munges whitespace.

3.8 From a flat parse to a parse tree

The hostname of the server can be supplied both as part of the first line of the
request, if the URL is a full URL called an AbsoluteURI, or it can be specified
as the request-header “Host:”. The RFC specifies that the AbsoluteURI has
precedence over the request-header. Therefore we need to know from where
in the request the name of the host origins.

Baker’s paper envisions a flat parse, that is, one where the result of the
indivudual matches is bound to a symbol, or stored through side effects. I
would prefer the result of the parse to be hierarchical, in which we would get
not only the values of the tokens, but their structure as well.

Currently, the with-bnf macro generates code whose return value is t if
there was a match, nil if there was none. The value is pushed onto the list
associated with the name of the rule.

Instead, we would like matchit to return a tree, in which a node has a
name, a sequence of characters, and points to its child nodes.

38

At the level of match, it is ok not to return a useful value. So I would
like the calls to functions to return useful values. If we are to match a
concatenation, we’ll have to collect these, and store the parts as a list.

As of now, a form such as

(MATCHIT [!(RFC2616::|Method|)
@RFC2616::SP
!(RFC2616::|Request-URI|)
@RFC2616::SP
!(RFC2616::|HTTP-Version|)
!(RFC2616::CRLF)])

expands to:

(LET ((META::OLD-INDEX INDEX))
(OR (AND (RFC2616::|Method|)

(META::MATCH-TYPE RFC2616::SP)
(RFC2616::|Request-URI|)
(META::MATCH-TYPE RFC2616::SP)
(RFC2616::|HTTP-Version|)
(RFC2616::CRLF))

(NOT (SETF INDEX META::OLD-INDEX))))

but in order to generate a parse tree, AND should be a collector as well as a
truth test.

Then we will need a test cand that not only tests whether all arguments
are true, but also collects the results of the tests, and returns them.

A few of the expansions in meta::compileit (concatenation and kleene-
star) had to collect their results, and the generic character and string match-
ers had to collect the tokens they had matched.

Now, let us see whether we can use this information. Given a parse tree,
we start by locating the paths to values for host, as a sort of epistemological
trail for the value. Given a parse treee, we ask the function opionion-of
with the arguments whom, regarding, and where, and with the answers, we
can adhere to the semantics specified in chapter 5.2. A test shows them in
practice:

chr@macchr/~/proj/privat/jobhunt\$ telnet localhost 8000
Trying ::1^M
telnet: connect to address ::1: Connection refused
Trying 127.0.0.1^M
Connected to localhost.

39

Escape character is ’^]’.
HEAD / HTTP/1.1
Host: localhost
Connection: Keep-Alive

^M
HTTP/1.1 200 OK^M
Date: Fri, 27 May 2005 07:11:01 GMT^M
Server: Clack/0.1 (Darwin)^M
Connection: Keep-Alive^M
Content-Length: 5240^M
Content-Type: text/html^M

the server uses the Host: header if nothing else is said

^M
HEAD http://localhost/ HTTP/1.1
Host: macchr
Connection: Keep-Alive

^M
HTTP/1.1 200 OK^M
Date: Fri, 27 May 2005 07:11:27 GMT^M
Server: Clack/0.1 (Darwin)^M
Connection: Keep-Alive^M
Content-Length: 5240^M
Content-Type: text/html^M

the host part of the complete url has precedence over a conflicting
Host:-header

^M
HEAD / HTTP/1.1
Host: macchr
Connection: Keep-Alive

^M
HTTP/1.1 200 OK^M
Date: Fri, 27 May 2005 07:11:42 GMT^M
Server: Clack/0.1 (Darwin)^M
Connection: Keep-Alive^M
Content-Length: 104^M
Content-Type: text/html^M

40

^M

a different page, of length 104, is served for a virtual host

3.9 Memoization

To store the result of an expensive function call, and return this result if the
function is called again with the same arguments is called memoization. As
macroexpanding with-bnf took a long time, I have added memoization code
to its definition.

41

Chapter 4

The response

Once the request has been prosessed, we will want to find a resource that
matches what the client asked for, thereafter we may look for a variant of
that resource, and finally we will serve it as an entity.

4.1 The resource

Resources are identified by a URI, but a resource may be available in multiple
representations.

4.2 The variant

A variant is a particular representation of a resource.

4.3 The entity

The entity is the payload of a request or reponse. It encompasses both the
entity-headers and the optional entity-body.

4.4 Semantics of HTTP

From an implementor’s point of view, it seems odd to me that the productiv-
ity enhancement enabled by the inclusion of BNF is not also utilized when it
comes to the semantics of HTTP. As internet standards are implemented in
several programming languages, several operating systems and several archi-
tectures, it should make sense to centralize some of the workload of imple-
menting a standard by providing machine-readable pseudocode that outlines

42

the intended behaviour of an application. As there is no such representation,
only the commitee-authored prose describing the rules of the dialogue be-
tween clients, caches and origin servers, we’ll resort to writing fairly readable
code that can then be macroexpanded into working code. One approach is
to build a language to talk about the problem domain, in this case the HTTP
protocol and its use, and in parallell, extend the language with a substrate
level to reach these abstractions [Graham, 1994].

It may be useful to write tests that verify that the server has a particular
trait specified by the RFC.

Rainer Joswig has written an entry on dealing with so-called Domain-
Specific Languages (DSLs) in Lisp [Joswig, 2005]. He calls his development
style “Putting parentheses around the specification and make it run.” In
short, it’s about molding the written specification of a DSL into working
code through using the interactive features of lisp.

My take on this would be to highlight the parts of the specification that
deal with the semantics of an origin server, that is, take out what is about
syntax, clients, and proxies and caching, and write code that implements
what is left.

4.4.1 A language for semantics?

Backus-Naur form is quite useful when implementing a parser for a foreign
format. When it comes to the semantics of HTTP, we do not have such a lan-
guage. In the specification of MD5 [Rivest, 1992], which I followed for my own
implementation, there is a sample implementation written in näıve C code,
which is very useful for the implementor, as unintended “room for doubt” is
resolved in the code. In the Common Lisp Hyperspec [Guy L. Steele, 1990],
section 2.2 The Reader Algorithm, there is an example of a specification of
an algorithm for reading a character in Common Lisp. This is also a useful
approach to giving implementors a hand in following the specification and
ending up with a conforming implementation.

4.5 Sending the response

Both requests and responses consist of an entity. A resource is something
that is pointed to by a URI. The entity sent as a response is in most cases a
manifestation of a variant of a resource.

A server has virtual hosts. Virtual hosts have resources. Resources re-
spond to methods. As resources may either point to functions or files, we
may say that these occupy the same namespace. We choose to let functions

43

have precedence over files. A function should answer to a method. If the
function does not handle a method, it may reply that it does not.

A resource should know which methods it supports. Methods can be
safe, that is, they do not have side-effects. They can be idempotent, in that
several requests have the same effect as a single request.

Say that each resource has an alist of METHOD-to-response, wherein
response is a function that takes the request as argument, and returns a
response. We will have a default set of such answers.

Currently, the function answer-request replies to all requests. Per default,
it replies as if to a GET; but if the method is not a GET, it will not print a
body to the output stream. This is a quite simple solution, a better one
would be to handle OPTIONS, HEAD, and conditional GET, and reply “method
not supported” to other methods.

There is also an interesting distinction between using #’foo and ’foo.
With #’foo you get the function cell of the symbol, and thus you loose if
you later want to alter that function.

4.6 Speeding up the file transfer

Some instances of web servers spend most of their busy time serving static
files. I made a comparison between the apache httpd server and my own
server. My server was not as fast as the Apache httpd, so I looked into what
could be the reason. On operating systems that support it, the apache server
will use the sendfile system call, which asks the operating system to send a
file from disk to a network socket in a single system call. Sendfile is available
in linux, and Windows NT has a similar call, named transmitfile. My host
OS, Mac OS X, does not yet provide such a system call.

The fallback for the apache httpd is to call writev, which writes from
multiple buffers in a single system call. I wanted to try this from Common
Lisp. OpenMCL, the implementation of Common Lisp that I use, has an
interface to C system calls.

I did a comparison between my server and the Apache httpd on serving
a 2.5 megabyte file. Apache was consistently twice as fast. I then rewrote
my code, and got a speedup.

I asked on the mailing list for the openmcl lisp implementation, and got
a tip on using the actual file descriptors, as they are seen from C.

First, how apache performs on a 20 megabyte file on the loopback inter-
face, with 10 repeated downloads. I collected the reported MB/s speed from
wget, and looked at the average.

(avg 7.50 6.56 12.69 6.75 7.01 10.27 6.94 8.27 14.74 7.75) 8.84

44

my own code:
(avg 5.45 10.78 5.73 4.90 1.44 2.82 6.05 8.00 5.88 10.22) 6.12

Next, how the code suggested by Gary Byers performs:
(avg 6.06 7.23 8.68 7.31 6.92 9.92 7.86 5.95 11.03 7.19) 7.81

There is a nice speedup when using file descriptors, but I can’t yet get the
same performance as the apache server.

On asking what to do when write returned -35 (Socket is temporarily

unavailable), I got two suggestions from Gary Byers, one is to use the
select(2) call, and thus let the thread wait until the socket is ready for
writing, another is to use openmcls built-in macro with-eagain, which will
write until the response code is positive.

4.7 MD5

MD5 [Rivest, 1992] is a means to ensure that a message has not been altered
since the checksum was computed. Erik Naggum [Naggum, 2005] claims that
the specification of MD5 indicates a procedure that is to be implemented close
to the hardware, that is, in assembly language or C. Such an implementa-
tion is beyond my scope, and I have instead implemented the algorithm in
Common Lisp, aiming for a terse rather than fast implementation.

In HTTP, MD5 is used as a checksum for the entity, and also for Digest
Authentication, as specified in RFC 1321 [Franks et al., 1999]. It works by
setting up four registers, a, b, c, and d, and a set of four operations. 16 32-bit
words of the message are used in turn, and for each turn, these 32 bits are
used in calls to the operations, which affect the contents of the four registers.
When the message is exhausted, the four registers are used to produce the
string that is the MD5 checksum.

I have little reason to doubt the advice on writing this part in assembler.
For example, there are assembler instructions that will rotate the bits in
unsigned an 32-bit integer with a single call, while my code that does the
same expands to about 45 lines of assembly code.

45

Chapter 5

The server

Figure 5.1 displays the dialogue between the browser and the server, in terms
of the TCP model.

The TCP/IP stack model stems from the book Unix Network Program-
ming [Stevens et al., 2003]. Server and browser both communicate through
HTTP.

In the most generic version, a server replies to a single request, then closes
the connection. We would like it to be able to keep on answering requests,
and servicing each client until it wants to close the connection.

Currently there is open-server, which opens a listener for connections
on port 8000. run-server gets handed the listener, and each time there
is a response from accept-connection, a new process is created running
accept-and-receive.

accept-and-receive gets the connection as a stream, and as long as
rfc2616:receive-request returns t, it will be called. When it returns nil,
the stream is closed, and the process dies.

5.1 Multiple processes

The openmcl function process-run-function runs a process as a native
thread.

For a variety of reasons - better utilization of CPU resources on
single and multiprocessor systems and better integration with the
OS in general - threads in OpenMCL 0.14 and later are preemp-
tively scheduled. In this model, lisp threads are native threads
and all scheduling decisions involving them are made by the OS
kernel.

46

7

6

5

4

3

2

1

IPv4, IPv6

TCP

css/javascript�
�

data�
�

browser�
�

http

application

user experience�
serverclient

device�
driver�
and�

hardware

Internet protocol�
suite

IPv4, IPv6

TCP

�
files/RDBMS�

�
web server�

�
http

device�
driver�
and�

hardware

Internet protocol�
suite

application

server environment

Figure 5.1: Web server and client in the context of TCP stacks

5.2 Signal handling

A unix process should be able to handle received signals.

5.3 Error handling

If there is a socket error, receive-request will return nil so that answer-request
will close the socket . This is not too sophisticated, but ensures that a socket
is closed if the client shuts down the connection.

5.4 Profiling

When an application is running, it may be possible to ask it what it is
doing. Profiling is collecting many such samples. The functions where the
application spends most of its time, may be bottlenecks. Once we know
which functions to look at, we can either improve on the overall algorithm
of the application in order to call particular functions less, or optimize the
functions where the application spends most of its time, ideally through the
algorithm or through typing and the like.

At the time of writing, OpenMCL does not have a built-in profiler,
but there is such a facility in the development environment called SLIME
[Eller, 2005]. Profiling is activated per-package, like this:

CL-USER> (mapcar (lambda (package)
(swank:profile-package (find-package package) t t))

47

(list :http :server :utilities :bnf :meta :common-lisp))

;;; use the application

CL-USER> (mon:report)
Function Time Cons Calls Sec/Call Call Time Cons
--
RFC2616:RECEIVE-REQUEST: 98.41 289.39 52 0.100029 68406 5.202 3557136
SERVER::ACCEPT-CONNECTION: 16.72 9.96 4 0.220991 30616 0.884 122464
BNF::MAKE-RULEMATCH: 6.91 0.00 7520 0.000049 0 0.365 0
UTILITIES::DELETE-IN-TREE: 4.36 0.00 7591 0.000030 0 0.231 0
RFC2616::READ-TO-CRLFCRLF: 2.92 0.00 52 0.002972 0 0.155 0
RFC2616::HTTP-LOG: 2.28 29.84 52 0.002318 7053 0.121 366776
--
TOTAL: 131.62 329.20 15271 6.957 4046376
Estimated monitoring overhead: 0.14 seconds
Estimated total monitoring overhead: 0.52 seconds
One hundred eighteen monitored functions were not called.
See the variable mon::*no-calls* for a list.
; No value

5.5 Dumping the application

In Common Lisp, “dumping” means to save the state of the lisp image. The
openmcl function save-application saves the state of the current lisp. One
of the keyword arguments is init-file, I gave it the filename of an init-file,
clack-init.lisp, and saved a file with that name in my home directory.
The file contains the line (server:start).

I also had to specify that I wanted the lisp kernel in the image. Therefore
I asked for ‘‘:prepend-kernel t’’.

Thus I can start the server by double-clicking it’s icon. This launches a
terminal with a lisp listener. As a starting point, that is sufficient.

Save-application seems tailored to window applications, as it has a
keyword for a toplevel-function and this function will be called repeatedly
when the application is launched. I guess toplevel-function should be a loop
that checks for particular events. For the server, which has it’s own loop, it
is not so useful.

48

Chapter 6

Further work

I now have a working web server. The next steps would be to fully support
the various methods and combinations of headers in order to reach HTTP 1.1

compliance. Thereafter, I would like the server to handle sessions, so that
clients that return their cookies hace session objects realted to it, and those
who do not return the cookies have a fallback scheme, such as URL rewriting.

With a well-rounded web server, the next steps would be to add elements
of a what is informally called a web server stack. That is the web server with
an operating system, a database server and the server itself, perhaps with a
load-balancing arrangement.

6.1 Methods and combinations

6.1.1 Methods

At this juncture, the server replies to GET and HEAD requests. For serving plain
files, the methods POST, PUT, DELETE and CONNECT are all fairly irrelevant, so
I would likke to answer “not implemented” to all of these. OPTIONS should
return a list of GET, HEAD and OPTIONS. In addition to the HTTP methods,
there are various combinations of headers that require special attention.

6.1.2 Conditional requests

The server handles If-Modified-Since, but there are other variants on this
theme.

If-Unmodified-Since is relevant to a request that will alter the resource,
such as PUT or POST. The same goes for If-Match, but rather than comparing
time, this compares an entity tag, a string that should identify a particular
version of a resource.

49

If-None-Match has about the same semantics as If-Modified-Since.
If-Range has either a date or a tag as its value, and implies that the

range specified by the Range-header should be sent if the entity matches, or
resource has not been modified since the date.

6.1.3 Ranges

Alhthough it is nice to have, it is not mandatory to support byteranges. The
web server may well reply as if the range header field had not been there.

6.1.4 Content negotiation

Given a particular resource, a web server may attempt to tailor the response
to the preferences of the client.

Media-type If the resource is available in several formats, or an automatic
translation is possible, the the server should choose the appropriate
format.

Character sets For some character sets, it may be possible to make a trans-
lation from one to the other, if the source character set is ISO-8859-1,
then it is easy to translate it to Unicode and encode it as UTF-8. A
translation from Unicode to a character set in the ISO-8859-set may
be possible.

Encoding Encoding is mostly about compression. If a compression scheme
is available and the client wants it, the server should not only compress
the reply, but also attempt to cache the compressed version of the
resource in order to be able to reply even faster to such a request at a
later time.

Language Truly advanced applications may have support for several human
languages, and of course, if there is a match with one of the preferred
languages of the client, it is adviseable to adhere to it.

6.2 Session handling

For some web applications, it is useful to attach a session object to a set of
requests from the same client. The proverbial example is the shopping basket
of an online store. The basket will be attached to a session object, and the
client will be given a unique string and it is expected that the client enclose
this string with each request to the same server.

50

6.2.1 Cookies

The regular way of sending the ticket is through the cookie mechanism. Cook-
ies are named after the chinese cookies that restaurant guests get after their
meal. Inside the cookie is a piece of paper with some word of wisdom. In
HTTP, the cookie is invisible to the user, and its value is connected to the
name of the server. The value is sent back only when the client accesses the
same server. The cookie has a timeout value. Although data may be stored
in the cookie, it is usually a key to a database on the server side, rather than
information in itself.

6.2.2 URL rewriting

To detect whether the client supports cookies, the server will send a cookie
with the firsts reply, and if that cookie is returned, the server can assume
that the client will continue to send them. If the cookie is not returned
and it session support is required for the web application to work, the client
should either be alerted that cookie support is mandatory, or the server may
implement session support through rewriting the URLs.

In URL rewriting, a unique string is generated and hidden within the
location of the response. As long as links within the response are relative,
or rewritten in the same manner, the server may acquire a unique id for a
session object from each request.

6.3 Web server stack

Certain combinations of operating system, web server, database server and
server-side scripting languages are known to work well together. Microsoft
products are often deployed together, and then the stack consissts of Win-
dows NT as the operating system, Internet Information Server as the web
server, SQL server as the database, and C# as the scripting language. The
predominant open-source stack consists of Linux or a BSD variant as the
operating system, Apache as the web server, MySQL or PostgreSQL as the
database, and Perl or PHP as the server-side scripting language.

6.3.1 Operating system

It is expected that the operating system provide an abstraction of the network
layer in the form of a TCP/IP and sockets implementation.

51

6.3.2 Database server

RDBMS A dynamic web server is perceived as one whose contents are ex-
pected to change frequently and provides ways of altering the contents.
Most dynamic web servers rely on a database for storage. The database
is mostly a Relational Database Management System (RDBMS). In
order to minimize the overhead of connecting and disconnecting to
the databse, the webserver may have a continuous connection to the
database server. Pages will mostly be constructed through requesting
a set of rows from the database, and loop over these rows, generating
html code as a means of presentation.

Applications in which the presentation, business logic and database
abstraction are separated, are called three-tiered applications.

Persistent storage An alternative to the traditional approach of storing
records in the database and querying the database when they are to be
displayed, is to store everything in memory, so called Object Prevalence
[Caekenberghe, 2003]. When something in memory is to be altered,
the change is logged to a file. Once a while the image itself may be
dumped to disk as a backup. Should the state of the web server be lost
because of a reboot or something similar, the web server will restart
with the previously saved image, apply the log as a set of patches, and
thus restore the state to what it was before the reboot. The upside of
this approach is that it is adapted to the regular usage pattern of a web
server, in that the information is seldom updated, and that information
is mostly read, rather than updated. The downside is that this is an
unusual way of developing web applications, and in addition, there’s
not much of a use for a database server, as this may well be done
through a lisp datastructure as long as the alterations to the structure
is logged as a set of expressions.

6.3.3 Server-side scripting language

At first there was a division between static pages, and pages generated by
Common Gateway Interface (CGI) scripts, that is, a technique in which the
web server would initiate a unix environment with the values of the HTTP
request bound to variables, call the script within this environment, collect
the output from the script, and return it to the client. Then came server-side
scripting languages, that is, languages that were run on the server side, but
not as a CGI, but rather in the server proper. The first implementations were
Netscapes NSAPI and soon after, Microsofts ISAPI. These made it possible

52

to run code written in JavaScript or VBScript on the server side without
the overhead associated with the incvocation of a CGI script. Later on came
PHP: Hypertext Preprocessor (PHP), employing a language dedicated to
generating web pages on the server side. When running, these languages all
have access to a server object, an application object, a session object and a
request object. With a server written in Common Lisp, it would be natural
to employ an arrangement for mixing html and server-side programming such
as Lisp Server Pages (LSP) [Wiseman, 2002].

6.3.4 Authentication

These days, http-based authentication is barely employed, so although im-
plementing it would be a nice exercise, it will probably not be used, as server
administrators and programmers prefer to cook their own username-password
pageson top of the session support.

6.3.5 Secure Sockets support

Secure Sockets Layer (SSL), on the other hand, is neccessary for most com-
mercial endeavours on the web. These solutions require a somewhat expen-
sive sertificate from a one of several named authorities, as well as either
interfacing with C libraries or writing an implementation in the native lan-
guage of the rest of the web server.

6.3.6 Load balancing

If the load of a web server is to be shared among several machines, so-called
load balancing is employed. This may be done through redirecting requests
to one of many servers, by having a main server acting as a proxy for other
servers behind it, or through dns juggling wherein dns servers will alter their
answer for the web server.

53

Chapter 7

Conclusion

Parsing a foreign syntax is easier with BNF. The messy part is the seman-
tics of the protocol. We have come to the point where the server needs a
big “CGI”-application, one that answers requests properly. By using BNF
expressions, the task of writing a parser is made a lot faster. This gain in
productivity should also be available for implementing the semantics part of
a server.

The semantics could be specified using prose, as in the specification of
the Common Lisp reader, as näıve computer code as done in the specification
of MD5, or in a dedicated language. The open-ended question is what this
language should be like.

54

Bibliography

[Andreesen, 1993] Andreesen, M. (1993). proposed new tag: IMG. http:

//www.webhistory.org/www.lists/www-talk.1993q1/0182.html.

[Anklesaria et al., 1993] Anklesaria, F., McCahill, M., Lindner, P., Johnson,
D., Torrey, D., and Albert, B. (1993). The Internet Gopher Protocol (a
distributed document search and retrieval protocol). RFC 1436 (Informa-
tional).

[Baker, 1991] Baker, H. G. (1991). Pragmatic parsing in Common Lisp.
ACM Lisp Pointers, 4(2):3–15. http://home.pipeline.com/~hbaker1/

Prag-Parse.html.

[Barlow, 2004] Barlow, D. (2004). Asdf - another system definition facility.
http://constantly.at/lisp/asdf/index.html#Top.

[Bradner, 1996] Bradner, S. (1996). The Internet Standards Process – Revi-
sion 3. RFC 2026 (Best Current Practice). Updated by RFCs 3667, 3668,
3932, 3979, 3978.

[Byers, 2005] Byers, G. (2005). OpenMCL. http://openmcl.clozure.

com/.

[Caekenberghe, 2003] Caekenberghe, S. V. (2003). Rebel with a cause. http:
//homepage.mac.com/svc/RebelWithACause/#prevalence.

[CERN, 1996] CERN (1996). Status of the cern httpd. http://www.w3.

org/Daemon/.

[Eller, 2005] Eller, H. (2005). The Superior Lisp Interaction Mode for Emacs.
http://common-lisp.net/project/slime/doc/html/slime.html.

[Fielding et al., 1997] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., and
Berners-Lee, T. (1997). Hypertext Transfer Protocol – HTTP/1.1. RFC
2068 (Proposed Standard). Obsoleted by RFC 2616.

55

http://www.webhistory.org/www.lists/www-talk.1993q1/0182.html
http://www.webhistory.org/www.lists/www-talk.1993q1/0182.html
http://home.pipeline.com/~hbaker1/Prag-Parse.html
http://home.pipeline.com/~hbaker1/Prag-Parse.html
http://constantly.at/lisp/asdf/index.html#Top
http://openmcl.clozure.com/
http://openmcl.clozure.com/
http://homepage.mac.com/svc/RebelWithACause/#prevalence
http://homepage.mac.com/svc/RebelWithACause/#prevalence
http://www.w3.org/Daemon/
http://www.w3.org/Daemon/
http://common-lisp.net/project/slime/doc/html/slime.html

[Fielding et al., 1999] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masin-
ter, L., Leach, P., and Berners-Lee, T. (1999). Hypertext Transfer Protocol
– HTTP/1.1. RFC 2616 (Draft Standard). Updated by RFC 2817.

[Fielding et al., 2003] Fielding, R., Gettys, J., Mogul, J. C., Frystyk, H.,
Masinter, L., Leach, P., and Berners-Lee, T. (2003). Hypertext Transfer
Protocol – HTTP/1.1. Internet RFC.

[Fisher, 2003] Fisher, D. (2003). Link Prefetching FAQ. http://www.

mozilla.org/projects/netlib/Link_Prefetching_FAQ.html.

[Foderaro, 1999] Foderaro, J. (1999). AllegroServe - a Web Application
Server. Web site. http://opensource.franz.com/aserve/index.html.

[Franks et al., 1999] Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence,
S., Leach, P., Luotonen, A., and Stewart, L. (1999). HTTP Authentication:
Basic and Digest Access Authentication. RFC 2617 (Draft Standard).

[Gabriel, 1990] Gabriel, R. P. (1990). Good News, Bad News, How to Win
Big. http://www.ai.mit.edu/docs/articles/good-news/good-news.

html.

[Garshol, 1998] Garshol, L. M. (1998). BNF and EBNF. http://www.

garshol.priv.no/download/text/bnf.html.

[Gillies and Cailliau, 2000] Gillies, J. and Cailliau, R. (2000). How the web
was born. Oxford University Press.

[Graham, 1994] Graham, P. (1994). On Lisp, chapter 1, pages 3–5. Prentice-
Hall.

[Guy L. Steele, 1990] Guy L. Steele, J. (1990). Common Lisp The Language.
Digital Press, second edition.

[Joswig, 2005] Joswig, R. (2005). Dsls in lisp, an example for an advanced
dsl development technique in lisp. http://lispm.dyndns.org/news?ID=

NEWS-2005-07-08-1.

[Kantrowitz, 1991] Kantrowitz, M. (1991). Defsystem. http:

//www-cgi.cs.cmu.edu/afs/cs/project/ai-repository/ai/lang/

lisp/code/tools/defsys/0.html.

[Mallery, 1994] Mallery, J. C. (1994). A common lisp hypermedia server.
WWW-94 Conference Paper. http://www.cl-http.org:8001/cl-http/
ai/projects/iiip/doc/cl-http/server-abstract.html.

56

http://www.mozilla.org/projects/netlib/Link_Prefetching_FAQ.html
http://www.mozilla.org/projects/netlib/Link_Prefetching_FAQ.html
http://opensource.franz.com/aserve/index.html
http://www.ai.mit.edu/docs/articles/good-news/good-news.html
http://www.ai.mit.edu/docs/articles/good-news/good-news.html
http://www.garshol.priv.no/download/text/bnf.html
http://www.garshol.priv.no/download/text/bnf.html
http://lispm.dyndns.org/news?ID=NEWS-2005-07-08-1
http://lispm.dyndns.org/news?ID=NEWS-2005-07-08-1
http://www-cgi.cs.cmu.edu/afs/cs/project/ai-repository/ai/lang/lisp/code/tools/defsys/0.html
http://www-cgi.cs.cmu.edu/afs/cs/project/ai-repository/ai/lang/lisp/code/tools/defsys/0.html
http://www-cgi.cs.cmu.edu/afs/cs/project/ai-repository/ai/lang/lisp/code/tools/defsys/0.html
http://www.cl-http.org:8001/cl-http/ai/projects/iiip/doc/cl-http/server-abstract.html
http://www.cl-http.org:8001/cl-http/ai/projects/iiip/doc/cl-http/server-abstract.html

[McIntyre, 2005] McIntyre, R. (2005). Mr. Moore in the Datacenter. http:
//www.ryanmcintyre.com/2005/03/mr_moore_in_the.html.

[Naggum, 2005] Naggum, E. (2005). lognot p̊a 32-bits integer. Usenet mes-
sage. http://groups.google.com/group/no.it.programmering.lisp/

msg/0842bbe5e3dd1671?dmode=print.

[NCSA HTTPd Development Team, 1997] NCSA HTTPd Development
Team (1997). Ncsa httpd overview. http://hoohoo.ncsa.uiuc.edu/

docs/Overview.html.

[Nielsen, 1997] Nielsen, J. (1997). The need for speed. http://www.useit.
com/alertbox/9703a.html.

[Norvig, 1992] Norvig, P. (1992). Paradigms of Artificial Intelligence Pro-
gramming: Case Studies in Common Lisp, chapter 19, page 656. Morgan
Kaufmann Publishers, Inc.

[Rivest, 1992] Rivest, R. (1992). The MD5 Message-Digest Algorithm . RFC
1321 (Informational).

[Sarrocco, 2002] Sarrocco, C. (2002). Improving ip connectivity in the least
developed countries. http://www.itu.int/osg/spu/ni/ipdc/study/

Improving%20IP%20Connectivity%20in%20the%20Least%20Developed%

20Countries1.pdf.

[Schmidt,] Schmidt, J. Portable allegroserve. http://portableaserve.

sourceforge.net/.

[Stevens et al., 2003] Stevens, W. R., Fenner, B., and Rudoff,
A. M. (2003). UNIX Network Programming: The Sockets Net-
working API, volume 1, chapter 1.7. Addison-Wesley, 3 edi-
tion. http://proquest.safaribooksonline.com/?x=1&mode=

section&sortKey=title&sortOrder=asc&view=&k=null&g=&catid=

itbooks.network.unix&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=

1&p=1&a=0&xmlid=0-13-141155-1/ch01lev1sec7.

[The Apache Group, 2005] The Apache Group (2005). Welcome! - the
apache http server project. http://httpd.apache.org/.

[Wiseman, 2002] Wiseman, J. (2002). Lisp server pages. http://

lemonodor.com/archives/000128.html.

57

http://www.ryanmcintyre.com/2005/03/mr_moore_in_the.html
http://www.ryanmcintyre.com/2005/03/mr_moore_in_the.html
http://groups.google.com/group/no.it.programmering.lisp/msg/0842bbe5e3dd1671?dmode=print
http://groups.google.com/group/no.it.programmering.lisp/msg/0842bbe5e3dd1671?dmode=print
http://hoohoo.ncsa.uiuc.edu/docs/Overview.html
http://hoohoo.ncsa.uiuc.edu/docs/Overview.html
http://www.useit.com/alertbox/9703a.html
http://www.useit.com/alertbox/9703a.html
http://www.itu.int/osg/spu/ni/ipdc/study/Improving%20IP%20Connectivity%20in%20the%20Least%20Developed%20Countries1.pdf
http://www.itu.int/osg/spu/ni/ipdc/study/Improving%20IP%20Connectivity%20in%20the%20Least%20Developed%20Countries1.pdf
http://www.itu.int/osg/spu/ni/ipdc/study/Improving%20IP%20Connectivity%20in%20the%20Least%20Developed%20Countries1.pdf
http://portableaserve.sourceforge.net/
http://portableaserve.sourceforge.net/
http://proquest.safaribooksonline.com/?x=1&mode=section&sortKey=title&sortOrder=asc&view=&k=null&g=&catid=itbooks.network.unix&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&xmlid=0-13-141155-1/ch01lev1sec7
http://proquest.safaribooksonline.com/?x=1&mode=section&sortKey=title&sortOrder=asc&view=&k=null&g=&catid=itbooks.network.unix&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&xmlid=0-13-141155-1/ch01lev1sec7
http://proquest.safaribooksonline.com/?x=1&mode=section&sortKey=title&sortOrder=asc&view=&k=null&g=&catid=itbooks.network.unix&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&xmlid=0-13-141155-1/ch01lev1sec7
http://proquest.safaribooksonline.com/?x=1&mode=section&sortKey=title&sortOrder=asc&view=&k=null&g=&catid=itbooks.network.unix&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&xmlid=0-13-141155-1/ch01lev1sec7
http://httpd.apache.org/
http://lemonodor.com/archives/000128.html
http://lemonodor.com/archives/000128.html

List of Figures

3.1 The balance between decidability and expressiveness 21
3.2 From BNF to a lisp parser . 24
3.3 Representation of parse tree of an HTTP Request 32

5.1 Web server and client in the context of TCP stacks 47

C.1 Functions in the utilities package. 63
C.2 Functions in the meta package. 63
C.3 Functions in the bnf package. 64
C.4 Functions in the http package. 65
C.5 Functions in the server package. 66

58

Appendix A

Colophon

For the programming, I used openmcl, an implementation of Common Lisp
for PowerPCs running Mac OS X, Darwin or LinuxPPC. I ran it on an
Apple Powerbook 1.33ghz running Mac OS X 10.4.2. OpenMCL interfaced
with XEmacs 21.4 through SLIME.

59

http://openmcl.org/
http://www.apple.com/powerbook/index12.html
http://www.apple.com/macosx/
http://www.xemacs.org
http://common-lisp.net/project/slime

Appendix B

Acronyms

HTTP Hypertext Transfer Protocol

RFC Request for Comments

BNF Backus-Naur form

XML Extensible markup language

XSL eXtensible stylesheet language

VSAT Very Small Aperture Terminal

GSM Global System for Mobile Communications

NCSA The National Center for Supercomputing Applications

CERN European Organization for Nuclear Research

OSI Open System Interconnection

URL Uniform Resource Locator

TCP/IP Transfer Control Protocol / Internet Protocol

IP Internet Protocol

GHz gigahertz

CMUCL Carnegie-Mellon Common Lisp

XML eXtensible Markup Language

LL parses input from left to right using leftmost derivation

60

MIME Multipurpose Internet Mail Extensions

DSL Domain-Specific Language

SLIME Superior Interaction Mode for Emacs

SQL Structured Query Language

RDBMS Relational Database Management System

CGI Common Gateway Interface

PHP PHP: Hypertext Preprocessor

LSP Lisp Server Pages

SSL Secure Sockets Layer

asdf Another System Definition Facility

61

Appendix C

Source code

C.1 Line counts

Filename Lines
of code

Lines
of
com-
ments

Empty
lines

Line-
count

utilities.lisp 150 14 40 204
bnf.lisp 517 23 64 604
meta.lisp 102 11 20 133
http.lisp 817 63 118 998
date-parser.lisp 99 2 12 113
md5.lisp 152 9 11 172
server-process.lisp 54 3 11 68

C.2 Call graphs

The figure C.1 illustrates the calls for functions in the utilities package.
Figure C.3 shows the bnf package. In this one, the main macro is with-

bnf, which expands code in the http package.
Figure C.4 shows the calls in the http package. The figure is a little too

complex to make sense in print, but should be readable in the electronic
version.

I looped over the symbols of each package, looking for the functions. For
each function, I asked for the functions that called it. Inverting this relation,
I got a graph of the calls made by each function. These are illustrated in two
figures, figure C.3 which describes the packages utilities, meta and bnf,
and figure C.4 which describes the packages http and server.

62

BNF::BNF-EXPR-TO-META

UTILITIES:SINGLE-ELEMENT-LIST-P

UTILITIES::UNDOCUMENTED-FUNCTIONS-OF

UTILITIES::FUNCTIONS-OF

UTILITIES::HOME-SYMBOLS

HTTP::READ-TO-CRLFCRLF

UTILITIES:MAKE-STRING-BUFFER

BNF::PARSE-BNF-RESULT-HELPER BNF:RULE-LIST

UTILITIES:FILE-TO-STRING

MD5::MD5

UTILITIES::COMPOSEUTILITIES::PURGE-PACKAGE

UTILITIES:SAFE-BRACKETSBNF:NORMALIZE-RULE BNF::LIFT-SINGLE-TOKEN

Figure C.1: Functions in the utilities package.

META::MATCH-TYPE

META::MAKE-META

META::MATCH

META::CAND

META::CAND-EXPAND

META::META-READER

META::COMPILEIT

BNF:WITH-BNF

META:MATCHIT

BNF::WITH-MATCH

Figure C.2: Functions in the meta package.

63

BNF::BNF-EXPR-TO-META

BNF::CHAR-OR-TYPE-OR-FUNCTION

BNF::PARSE-BNF-RESULT-HELPER

BNF::PARSE-BNF

BNF::CTOI

BNF::QUANTIFY-EXPR BNF::QUANTIFY-EXPR-LISTBNF::LIFT-OR-EXPRESSIONS

BNF:RULE-LIST

BNF:NORMALIZE-RULE BNF:PARSE-RULE-DEFINITION

BNF::NORMALIZE-RIGHT-HAND-SIDE

BNF::SYMBOL-VALUE-SAFE BNF::STARTS-WITH-WHITESPACE-P

BNF::LIFT-SINGLE-TOKEN

BNF::META-RULES-AND-DEFTYPES

BNF::TRANSLATE-RULES-TO-DEFTYPES BNF:RULE-BNF-EXPR-TO-META

BNF::MAKE-MEMO

BNF:WITH-BNF

BNF::MEMO-FILTER META:MATCHIT

BNF::WITH-MATCH

BNF::PARSE-INT

Figure C.3: Functions in the bnf package.

64

H
TT
P:
:P
AT
H
N
A
M
E-
FI
LE
-L
EN
G
TH

H
TT
P:
RE
CE
IV
E-
RE
Q
U
ES
T

H
TT
P:
:O
PI
N
IO
N
-O
F

H
TT
P:
:H
EA
D
ER
-T
O
-V
A
LU
E

H
TT
P:
:R
EA
D
-T
O
-C
RL
FC
RL
F

H
TT
P:
:C
O
N
N
EC
TI
O
N

H
TT
P:
:A
N
SW

ER
-R
EQ
U
ES
T

H
TT
P:
:M
A
K
E-
U
RI

H
TT
P:
:A
N
SW

ER
-R
EQ
U
ES
T-
O
U
TP
U
T

H
TT
P:
:C
H
O
M
P

H
TT
P:
:D
O
TT
ED
-A
D
D
RE
SS

H
TT
P:
:H
TT
P-
D
AT
E-
TO
-U
N
IV
ER
SA
L-
TI
M
E

H
TT
P:
:W
H
O
-S
ET
S

H
TT
P:
:H
O
ST

H
TT
P:
:F
IN
D
-H
TT
P-
M
ET
H
O
D

H
TT
P:
:A
BS
_P
AT
H

H
TT
P:
:N
O
T-
FO
U
N
D

H
TT
P:
:U
RI

H
TT
P:
:R
FC
11
23
-S
TR
IN
G

H
TT
P:
:M
O
D
IF
IE
D
-S
IN
CE
-P

H
TT
P:
:P
RI
N
T-
FI
LE
-T
O
-O
U
TP
U
T-
ST
RE
A
M

H
TT
P:
:H
TT
P-
LO
G

H
TT
P:
:C
O
D
E-
ST
RI
N
G

H
TT
P:
:P
RI
N
T-
LI
N
ES

H
TT
P:
:R
FC
11
23
-D
AT
E-
TO
-U
N
IV
ER
SA
L-
TI
M
E

H
TT
P:
:R
FC
85
0-
D
AT
E-
TO
-U
N
IV
ER
SA
L-
TI
M
E

H
TT
P:
:A
SC
TI
M
E-
D
AT
E-
TO
-U
N
IV
ER
SA
L-
TI
M
E

H
TT
P:
:D
EC
O
D
E-
TI
M
E

H
TT
P:
:P
O
RT

H
TT
P:
:R
ES
ER
V
ED
-E
SC
A
PE

H
TT
P:
:H
TM

L-
ST
AT
U
S-
D
O
CU
M
EN
T

H
TT
P:
:IS
O
-8
60
1-
ST
RI
N
G

H
TT
P:
:M
O
V
ED
-P
ER
M
A
N
EN
TL
Y-
D
O
CU
M
EN
T

H
TT
P:
:L
IS
T-
D
IR
EC
TO
RY

H
TT
P:
:F
IL
E-
N
A
M
ES
TR
IN
G
-U
N
ES
CA
PE
D

H
TT
P:
:IS
-D
IR
EC
TO
RY

H
TT
P:
:D
IR
EC
TO
RY
P

H
TT
P:
:M
A
K
E-
M
ET
H
O
D
S

H
TT
P:
:D
O
M
A
IN
N
A
M
E

H
TT
P:
:T
A
BL
E-
LI
ST
-D
IR
EC
TO
RY

H
TT
P:
:P
AT
H
N
A
M
E-
FI
LE
-L
A
ST
-M
O
D
IF
IE
D

H
TT
P:
:IF
-M
O
D
IF
IE
D
-S
IN
CE

H
TT
P:
:D
O
CU
M
EN
T-
RO
O
T

H
TT
P:
:E
N
SU
RE
-R
EL
AT
IV
E

H
TT
P:
:V
H
O
ST

H
TT
P:
:O
PT
IO
N
S-
D
O
CU
M
EN
T

H
TT
P:
:P
A
RE
N
T-
D
IR
EC
TO
RY

H
TT
P:
:E
N
TI
TI
ES

H
TT
P:
:N
O
T-
FO
U
N
D
-D
O
CU
M
EN
T

H
TT
P:
:B
EL
O
W
P

H
TT
P:
:R
EM

O
TE
-H
O
ST

H
TT
P:
:R
EQ
U
ES
T-
LI
N
E

H
TT
P:
:S
ET
-H
TT
P-
M
ET
H
O
D

H
TT
P:
:M
O
V
ED
-P
ER
M
A
N
EN
TL
Y

H
TT
P:
:M
IM
E-
TY
PE

SE
RV
ER
::A
CC
EP
T-
A
N
D
-R
EC
EI
V
E

H
TT
P:
:L
A
CK
S-
TR
A
IL
IN
G
-S
LA
SH

H
TT
P:
:U
RI
-U
N
ES
CA
PE

H
TT
P:
:S
ER
V
E-
D
O
CU
M
EN
T

H
TT
P:
:S
ER
VA
BL
E-
D
O
CU
M
EN
T-
P

Figure C.4: Functions in the http package.

65

SERVER::RUN-SERVER

SERVER::ACCEPT-CONNECTION SERVER::ACCEPT-AND-RECEIVE SERVER::PROCESS-RUN-FUNCTION

SERVER:STOP

SERVER::PROCESS-NAME SERVER::PROCESS-KILL SERVER::PROCESS-LISTSERVER::OPEN-SOCKET

SERVER:START

SERVER::START-UP-SERVER

Figure C.5: Functions in the server package.

66

C.3 Utilities

(defpackage :utilities (:nicknames :util)
(:use :common-lisp))

(in-package :utilities)

;; used in bnf.lisp
(defmacro maybe (thunk variable)

"If thunk returns a non-nil value, assign that value to variable."
(let ((g (gensym)))

‘(let ((,g (funcall
(function ,thunk)))) ;because we want

;the lexical value of func
(when ,g (setf ,variable ,g)))))

;; not used
(defun unshift (list element)

"If element, add it as the last element of list"
(when element

(rplacd (last list) (list element)))
list)

;; not used
(defmacro apush (key value place)

"Cons key and value together and cons it onto place."
(multiple-value-bind (vars forms var set access)

(get-setf-expansion place)
‘(let* (,@(mapcar #’list vars forms)

(,(car var) (acons ,key ,value ,access)))
,set)))

;; not used
(defun dotted-list-p (list)

"dotted list n. a list which has a terminating atom that is not nil.
(An atom by itself is not a dotted list, however.)"

(and (consp list)
(let ((cdr (cdr list)))

67

(or (and (atom cdr)
(not (null cdr)))

(dotted-list-p cdr)))))

;; not in use
(defun safe-brackets (string)

"Encode html-tags in string."
(loop for char across string

with result = (make-string-buffer)
for replacement = (cdr (assoc char

’((#\< . "<")
(#\> . ">"))))

if replacement
do (loop for char across replacement

do (vector-push-extend char result))
else
do (vector-push-extend char result)
finally (return result)))

;; not in use
(defun print-characters (character-list &key (stream nil) (columns 8))

"Print a list of characters in pretty columns."
(format stream (concatenate ’string "~{~"

(format nil "~D" columns)
"@{\"~C\"~^ | ~}~%~}") character-list))

Debug support, general macros

(defvar *dbg* nil "Whether to print debug messages.")

;; used in http.lisp

(defun dbg (string &rest args)
"Print a debug message string."
(when *dbg* (apply ’format *debug-io* string args))
(force-output *debug-io*)
t)

(defparameter *whitespace-bag*
(list #\Space #\Tab #\Newline #\Return)

"List of whitespace characters.")

;; used once in http.lisp, once in bnf.lisp

68

(defun make-string-buffer (&optional (length 0))
"Return an adjustable vector of characters with a fill-pointer."
(make-array length

:adjustable t
:element-type ’character
:fill-pointer 0))

;; used once in http.lisp, once in bnf.lisp
(defun file-to-string (file)

"Return contents of file as string."
(with-open-file (in file)

(let ((buf (make-array (file-length in) :element-type ’character)))
(read-sequence buf in)
buf)))

;; used in bnf.lisp
(defun single-element-list-p (list)

"Does list consist of a single element?"
(and (consp list)

(null (cdr list))))

;; used once in http
(defun split-string (string)

"A list of the words in string."
(loop for mark = 0 then (1+ point)

for point = (position #\Space string :test #’char= :start mark)
collect (subseq string mark point)
while point))

(defun seq (start end)
"The numbers from start to end."
(loop for i from start to end

collecting i))

(defun char-seq (start end)
"The characters from start to end."
(let ((nstart (if (characterp start) (char-code start) start))

(nend (if (characterp end) (char-code end) end)))
(loop for i from nstart to nend

collect (code-char i))))

(defun home-symbols (designator
&aux (package (find-package designator))

69

(result ()))
"The symbols for whom DESIGNATOR is the home package."

(do-symbols (sym package result)
(when (eq (symbol-package sym) package)

(push sym result))))

(defun purge-package (name &aux (package (find-package name)))
"Unintern all symbols for whom NAME is the home package."
(mapcar (lambda (sym) (unintern sym package))

(home-symbols package)))

(defmacro let-if ((name test) then &optional else)
"If test evaluates to a non-nil value, bind name to it,

and execute the form then, otherwise execute the form else."
(let ((g (gensym)))

‘(let* ((,g ,test)
(,name ,g))

,(if else
‘(if ,g ,then ,else)
‘(when ,g ,then)))))

(defun functions-of (designator
&aux (package (find-package designator)))

"List functions whose home package is designator."
(remove-if (complement #’fboundp) (home-symbols package)))

(defun undocumented-functions-of (designator)
"List undocumented functions in package designator"
(remove-if (lambda (f)

(documentation f ’function))
(functions-of designator)))

(defun delete-in-tree (item tree)
"Remove nodes that are eq to ITEM."
(labels ((rec (tree)

(if (atom tree)
tree
(if (eq item (car tree))

(rec (cdr tree))
(cons (rec (car tree))

(rec (cdr tree)))))))

70

(rec tree)))

(defun delete-in-tree (itemlist tree)
"Remove nodes that are eq to ITEM."
(labels ((rec (tree)

(if (atom tree)
tree
(if ;(eq item (car tree))
(member (car tree) itemlist)

(rec (cdr tree))
(cons (rec (car tree))

(rec (cdr tree)))))))
(rec tree)))

(defun compose (&rest fns)
(destructuring-bind (fn1 . rest) (reverse fns)

#’(lambda (&rest args)
(reduce #’(lambda (v f)

(funcall f v))
rest
:initial-value (apply fn1 args)))))

(export ’(unshift maybe apush dbg *dbg* make-string-buffer
file-to-string dotted-list-p
single-element-list-p safe-brackets
whitespace-bag split-string char-seq let-if))

(provide "utilities")

71

C.4 Meta

(defpackage :meta (:use :common-lisp))
(in-package :meta)

(defvar index 0)

;; uses index and end
(defmacro match (x)

"Return a form that matches the character or string X."
(etypecase x

(character
‘(when (and (< index end)

;;(util:dbg
;; "Trying to match ~:@C to ~:@C~%"
;; ’,x (char string index))
(eql (char string index) ’,x))

(incf index) (char string (1- index))))
(string
‘(let ((old-index index)) ; ’old-index’ is a lexical variable.

(or (cand ,@(map ’list #’(lambda (c) ‘(match ,c)) x))
(not (setq index old-index)))))))

;; uses index and end
(defmacro match-type (x &optional v)

"Return a form that matches the type X,
and if V is supplied, stores the value of the X in V."

(if v
‘(when (and (< index end) (typep (char string index) ’,x))

(setq ,v (char string index)) (incf index) ,v)
‘(when (and (< index end) (typep (char string index) ’,x))

(incf index) (char string (1- index)))))

(defstruct (meta
(:print-function
(lambda (m s d

&aux (char (meta-char m))
(form (meta-form m)))

(declare (ignorable d))
(ecase char

((#\@ #\! #\$) (format s "~A~S" char form))
(#\[(format s "[~{~A~^ ~}]" form))

72

(#\{ (format s "{~{~A~^ ~}}" form))))))
"A meta character and the form it precedes."
char
form)

(setf (documentation ’meta::meta-char ’function)
"The read macro character of a meta expression."
(documentation ’meta::meta-form ’function)
"The form of a meta expression.")

(defun cand-expand (args result)
"Helper for the concatenating AND operator, cand."
(if (null args)

(cons ’list (nreverse result))
(let ((gtest (gensym)))

‘(let ((,gtest ,(car args)))
(when ,gtest

,(cand-expand (cdr args) (cons gtest result)))))))

(defmacro cand (&rest args)
"Concatenating AND. If all args evaluate to a non-nil value,

collect their values and return that list."
(if args

(cand-expand args ())
:empty))

(defun compileit (x)
"Given a meta struct of character and form,

return lisp code that correspond to the semantics
of character in the meta language."

(typecase x
(meta
(ecase (meta-char x)

(#\! (meta-form x))
(#\[‘(let ((old-index index))

(or (cand ,@(mapcar #’compileit
(meta-form x)))

(not (setf index old-index)))))
(#\{ ‘(or ,@(mapcar #’compileit (meta-form x))))

; (#\$ ‘(not (do ()((not ,(compileit (meta-form x)))))))
;; Kleene-star will always return true, I guess.
(#\$ (let ((value (gensym))

73

(result (gensym)))
‘(do ((,value ,(compileit (meta-form x))

,(compileit (meta-form x)))
,result)

((not ,value) (or (nreverse ,result)
:kleene-star-empty))

(push ,value ,result))))
(#\@ (let ((f (meta-form x)))

(if (consp f) ‘(match-type ,(car f) ,(cadr f))
‘(match-type ,f))))))

(t ‘(match ,x))))

(defmacro matchit (x)
"Call compileit with an unevaluated arg."
(compileit x))

(eval-when (:compile-toplevel :load-toplevel :execute)

(defun meta-reader (s c)
"Read a character and a form and make a meta struct from it."
(make-meta :char c :form (read s)))

(mapc #’(lambda (c) (set-macro-character c #’meta-reader))
’(#\@ #\$ #\!))

;; reader macro character for a sequence
(set-macro-character
#\[
#’(lambda (s c)

(make-meta :char c
:form (read-delimited-list #\] s t))))

;; reader macro character for alternatives
(set-macro-character
#\{
#’(lambda (s c) (make-meta :char c

:form (read-delimited-list #\} s t))))

;; reader macro character for end of sequence or alternative
(mapc #’(lambda (c)

(set-macro-character c (get-macro-character #\) nil)))
’(#\] #\}))

74

)
(export ’(matchit index end))

(provide "meta")

75

C.5 BNF

(require "meta")

(defpackage :bnf (:use :meta :util :common-lisp)
(:import-from :meta meta:matchit meta:index meta:end)
(:documentation "To generate parser code from a collection of BNF
statements."))

(in-package :bnf)

(defvar *debug-indent* -1
"How much to indent the next debug statement.
Used to produce debug statements indented
according to their relationship.")

;; reading numbers

(deftype digit () "The numbers"
‘(member ,@(util::char-seq #\0 #\9)))

(defun ctoi (d)
"From a character to the corresponding number."

(- (char-code d) #.(char-code #\0)))

(defun parse-int (string &optional (index 0) (end (length string))
&aux (s +1) d (n 0))

"From a string representing a number to the number itself."
;;; Lexical ’string’, ’index’, and ’end’, as required by matchit.
(and
(matchit
[{#\+ [#\- !(setq s -1)] []}
@(digit d) !(setq n (ctoi d))
$[@(digit d) !(setq n (+ (* n 10) (ctoi d)))]])

(* s n)))

;; some types

(deftype upalpha () "The uppercase ASCII letters"
‘(member ,@(util::char-seq #\A #\Z)))

(deftype loalpha () "The lowercase ASCII letters"
‘(member ,@(util::char-seq #\a #\z)))

76

(deftype alpha () "The ASCII letters"
’(or loalpha upalpha))

(deftype alphanum () "ASCII letters and the digits"
’(or alpha digit))

(deftype octet () "Any byte"
’(unsigned-byte 8))

(deftype ctl ()
"CTL = <any US-ASCII control character

(octets 0 - 31) and DEL (127)>"
‘(member ,@(char-seq (code-char 0) #\Space) #\Delete))

(deftype separator () "Character that can’t be part of a token."
’(member #\(#\) #\< #\> #\@

#\, #\; #\: #\\ #\"
#\/ #\[#\] #\? #\=
#\{ #\} #\Space #\Tab))

(deftype token-char () "Character that can be part of a token."
’(not (or separator ctl)))

(deftype not-newline () "Anything but a newline."
’(not (member #\Newline)))

(deftype literal-constituent () "Character inside quotation marks."
’(and character (not (member #\" #\\))))

;; end of type declarations for bnf.

(defmacro with-match (form &body body) "If FORM matches, eval BODY."
‘(or (and (matchit ,form) ,@body)

(progn (setf index old-index) nil)))

(defun parse-bnf (string
&optional (index 0) column-start
(end (length string))
&key (package *package*))

"Parse right hand side of a rule definition
in bnf format in string into s-expressions.
A version with macros."

77

(values
(loop

with l = 0
and m = t
for symbol = nil
for result = nil
until (= index end)
do (multiple-value-setq (index l m symbol result)

(parse-bnf-result-helper
string index column-start end package l m symbol))

while result
collect (if symbol

(quantify-expr-list l m result)
(quantify-expr l m result)))

index))

(defun parse-bnf-result-helper (string index column-start
end package l m symbol
&aux thing)

(labels
((integer (&aux (old-index index) (s +1) d (n 0))

(declare (ignorable s))
"Read one or more digits, and parse them as a base-10 integer."
(with-match [{#\+ [#\- !(setq s -1)] []}

@(digit d) !(setq n (ctoi d))
$[@(digit d) !(setq n (+ (* n 10) (ctoi d)))]]

n))

(name (&aux (old-index index))
"Read one or more token-chars, return a symbol"
(with-match [@token-char $@token-char

{[#\: #\: @token-char $@token-char][]}]
(let ((*package* (find-package package))

(*readtable* (copy-readtable nil)))
(setf (readtable-case *readtable*) :preserve

thing
(read-from-string
(subseq string old-index index))))))

(literal (&aux (old-index index)
c
(buf (make-string-buffer)))

"Read a string enclosed in double quotes (\")."
(with-match ${[@(literal-constituent c)

78

!(vector-push-extend c buf)]
[#\\ @(character c)
!(vector-push-extend c buf)]}
(setf thing buf)))

(sequence ()
"Recursive call to parse-bnf returns a sequence."
(multiple-value-bind (result new-index)

(parse-bnf string index column-start end
:package package)

(and result
(setf thing result

index new-index))))

(comment (&aux (old-index index))
"Read and discard up to a newline."
(with-match $@not-newline))

(sufficient-indentation (&aux (old-index index)
beginning-of-line)

"Read whitespace until we are at column COLUMN-START."
(with-match

[!(setf beginning-of-line index)
$#\Space
!(>= (- index beginning-of-line) column-start)])))

(matchit
;; read prefix
[$#\Space

$[#\; !(comment)]
{[#\Newline !(not (sufficient-indentation))]
[{[#\Newline !(sufficient-indentation)] []}
$#\Space
{[!(maybe integer l)

{[{#*[#\# !(setf symbol #\#)]}
{[!(maybe integer m)]
[!(setf m t)] }]

!(setf m l) }]
[{#*[#\# !(setf symbol #\#)]}

!(setf l 0)
{!(maybe integer m) !(setf m t)}]

[!(setf l 1 m 1)] }

;; read thing

79

{[#\" !(literal) #\"]
[#\(!(sequence) #\)] ;concat
[#\; !(comment)] ;comment
[#\[!(sequence) #\] !(setf l 0 m 1)] ;optional
[#\| !(setf thing ’or-token)] ;alternate
[#\< #\" #\> !(setf thing "\"")]
!(name)
[]}

]
}

]))
(values index l m symbol thing))

(defun parse-rule-definition (string
&optional (index 0)
&key (package *package*)
(end (length string))
&aux (old-index index)
read-list rule name
parse-bnf beginning-of-line
column-start)

"Parse right hand side of a rule definition
in bnf format in string into s-expressions."

(declare (ignorable read-list rule))
(if (= index end)

(values nil index)
(labels ((name (&aux (old-index index))

(with-match [@token-char $@token-char
{[#\: #\: @token-char $@token-char][]}]
(let ((*package* (find-package package))

(*readtable* (copy-readtable nil)))
(setf
(readtable-case *readtable*) :preserve
name (read-from-string

(subseq string
old-index index))))))

(comment (&aux (old-index index))
(with-match $@not-newline)))

(with-match [$[$#\Space
{[#\; !(comment)] []}
#\Newline]

80

[!(setf beginning-of-line index)
$#\Space
!(name)
$#\Space !(setf column-start

(- index beginning-of-line))
#\=
$#\Space
!(multiple-value-setq (parse-bnf index)

(parse-bnf string index
column-start end
:package package))]])

(values (when name (list ’rulename name parse-bnf))
index))))

(defun normalize-rule (rule)
"Lift single elements in rule."
(let ((rhs (normalize-right-hand-side (caddr rule))))

(when (single-element-list-p rhs)
(setf rhs (car rhs)))

‘(rulename ,(second rule)
,rhs)))

(defun lift-single-token (tree)
"Return a tree in which single element lists

have been replaced by the element itself."
(if (atom tree)

tree
(if (single-element-list-p (car tree))

(lift-single-token (cons (caar tree) (cdr tree)))
(cons (lift-single-token (car tree))

(lift-single-token (cdr tree))))))

(defun normalize-right-hand-side (expr)
"Translate single element lists, and normalize alternatives."
(lift-or-expressions (lift-single-token expr)))

(defun lift-or-expressions (expr)
"Normalize alternatives."
(if (atom expr)

expr
(if (eq ’or-token (second expr))

(let ((position (position ’or-token expr)))
(cons ’parsed-or-expression

81

(cons (lift-or-expressions
(if (= position 1) (car expr)

(subseq expr 0 position)))
(remove ’parsed-or-expression

(lift-or-expressions
(subseq expr (1+ position)))))))

(cons (lift-or-expressions (first expr))
(lift-or-expressions (rest expr))))))

(defun bnf-expr-to-meta (expr)
"Convert a bnf expression to a semantically equivalent

expression in meta."
(if (atom expr)

(cond
((equal expr ’the-empty-string) "[]")
((stringp expr)
(if (= (length expr) 1)

(format nil "~@C" (char expr 0))
(format nil "~S" expr)))

(t (or (format nil "~A" (char-or-type-or-function expr)) "")))
(let ((rest (cdr expr)))

(case (car expr)
(parsed-or-expression
(format nil "{~{~A~^ ~}}" (mapcar #’bnf-expr-to-meta rest)))
(kleene-star
(let ((result (bnf-expr-to-meta rest)))
(format nil (if (listp result)

"$[~{~A~^ ~}]"
"$~A") result)))

(name (char-or-type-or-function (car rest)))
(type (destructuring-bind (type symbol)

rest
(format nil "@(~A ~A)" type symbol)))

(comment "")
(t
(if (single-element-list-p expr)

(format nil "~A" (bnf-expr-to-meta (car expr)))
(format nil "[~{~A~^ ~}]"

(mapcar #’bnf-expr-to-meta expr))))))))

;; list of possible types:
;; the-empty-string
;; a string "string" (a literal)

82

;; a single-character string "s"
;; a list == sequence
;; a list with a "magic" car such as
;; (parsed-or-expression kleene-star

End Generic character sets

(declaim (notinline char-or-type-or-function))

(defun char-or-type-or-function (name)
"Name is a character, type or form to be evaluated.

Return corresponding meta expression."
(declare (special deftypes))
(format
nil
(cond

((characterp name) "~@C")
((or #+openmcl (ccl:type-specifier-p name)

#+lispworks (SYSTEM::VALID-TYPE-SPECIFIER name)
#+cmu (handler-case (typep nil name)

(simple-error () nil)
(:no-error (ignore) (declare (ignore ignore)) t))

(find name deftypes :key #’second)
) "@~S")

(t "!(~S)"))
name))

(defun quantify-expr (min max body)
"Deal with the sequence quantifiers of BNF."
(if (zerop min) ; expr min max

(if (integerp max) ; *M 0 int
(labels ((optionals (count)

(cond ((> 1 count) nil)
((= 1 count)
‘((parsed-or-expression

,body the-empty-string)))
(t
(list (list ’parsed-or-expression

(cons body
(optionals (1- count)))

’the-empty-string))))))
(optionals max))

(list (funcall (if (listp body)
#’cons #’list)

83

’kleene-star body))) ; N*M plusp int /=
(append
(loop for i below min

collect body)
(quantify-expr 0 (if (integerp max)(- max min) t) body))))

(defun quantify-expr-list (min max body)
"Deal with the comma-separated list quantifiers of BNF."
(let* ((comma (list ’(kleene-star

(kleene-star
((parsed-or-expression #\Return #\Newline)
(parsed-or-expression #\Space #\Tab)))

(parsed-or-expression #\Space #\Tab))
#\,))

(commas (list (cons ’kleene-star comma)))
(subsequent (list comma commas body)))

(labels ((nconc-times (n expr)
(loop for i below n

nconc expr)))
(list commas

(if (zerop min)
(list ’parsed-or-expression body ’the-empty-string)
(cons body

(nconc-times (decf min) subsequent)))
(if (integerp max)

(nconc-times (- max min 1)
(list
(list
’parsed-or-expression
subsequent
commas)))

(list ’kleene-star subsequent))
commas))))

(defun rule-bnf-expr-to-meta (rule)
"Translate the right hand side of rule to META."
(declare (special deftypes))
(list ’rulename (cadr rule)

(bnf-expr-to-meta (caddr rule))))

(defun rule-list (file package)
"A list of rules as parsed from file."

84

(do ((string (file-to-string file))
(parse t)
(index 0)
(ruleset ()))

((not parse) ruleset)
(multiple-value-setq (parse index)

(parse-rule-definition string index :package package))
(when parse

(push (normalize-rule parse) ruleset))))

(defun meta-rules-and-deftypes (rules)
"Split the ruleset into those that are deftypes

and those that are rules."
(let ((deftypes (bnf::translate-rules-to-deftypes rules)))

(declare (special deftypes))
(values (mapcar #’rule-bnf-expr-to-meta

(set-difference rules deftypes :key #’second))
deftypes)))

(defun translate-rules-to-deftypes (&optional
(rules (bnf::rule-list

"sample-rules.txt"
:rfc2616))

&aux deftypes)
"Return deftype statements for the rules in rules

that can be translated."
(labels ((translate-to-deftype

(rule &aux (translation
(bnf::translate-to-deftype-args
(third rule))))

(when translation
‘(deftype ,(second rule) ()

’,(typespec-args translation))))
(typespec-args (args)

(when (atom args) (setf args (list args)))
(let* ((symbols (remove-if (complement #’symbolp) args))

(characters (remove-if (complement #’characterp)
args))

(member-statement (when characters
(cons ’member characters))))

(if symbols

85

(if member-statement
(list* ’or member-statement symbols)
(cons ’or symbols))

member-statement)))
(translate-to-deftype-args (rhs)

(typecase rhs
(string (when (and (array-in-bounds-p rhs 0)

(not (array-in-bounds-p rhs 1)))
(char rhs 0)))

(list (and (eq (car rhs) ’bnf::parsed-or-expression)
(let ((rest

(mapcar #’translate-to-deftype-args
(cdr rhs))))

(when (every (complement #’null) rest)
rest))))

(symbol
(when (or (find rhs deftypes :key #’second)

(let ((rule (find rhs rules :key #’second)))
(when rule

(translate-to-deftype rule))))
rhs)))))

(dolist (rule rules)
;; the rule may have occured in an earlier definition
;; and thus be defined already
(unless (find (second rule) deftypes :key #’second)
(let ((translation (translate-to-deftype rule)))

(when translation
(format *standard-output* "~A~%" translation)
(push translation deftypes)))))

deftypes))

(declaim (notinline starts-with-whitespace-p))

(defun starts-with-whitespace-p (name whitespace-list)
"True if name is listed amongst the names that need

their preceding whitespace in order to match as intended.
Whitespace-list is either a list of symbols or a symbol
whose value is such a list."

(member name (if (listp whitespace-list) whitespace-list
(symbol-value whitespace-list))))

(defstruct rulematch "Rule is the name of the rule,

86

string is what it matched,
and matches is a list of the rules
that were used to match the rule."
rule string matches)

(defparameter *memos* ())

(defstruct memo
pathname
mtime
whitespace-list
package
labels-part
deftypes
names)

(defun memo-filter (pathname mtime whitespace-list package)
"Return a function that returns the argument, a memo, if the slots

of the memo match the four arguments."
(lambda (memo)

(when (and (equal pathname (memo-pathname memo))
(= mtime (memo-mtime memo))
(equal whitespace-list (memo-whitespace-list memo))
(equal package (memo-package memo)))

memo)))

(defun symbol-value-safe (sym)
(if (symbolp sym)

(symbol-value sym)
sym))

(defmacro with-bnf (file whitespace-list package &body body)
"Generate a LABEL form based on the bnf in FILE,

and eval BODY within it.
Whitespace-list is the names that need their
preceding whitespace in order to match as intended.
Package is a preferably empty package where
we’ll intern the symbols read from FILE.
Return a hierarchy describing the matches."

(let* ((file (probe-file file))
(memo (find-if

(memo-filter file

87

(file-write-date file)
(symbol-value-safe whitespace-list)
(find-package package)) *memos*)))

(if memo
‘(let ,(memo-names memo)

,@(memo-deftypes memo)
(labels ,(memo-labels-part memo)
,@body))

(let ((names ())
(labels-part ()))

(multiple-value-bind (meta-rule-list deftypes)
(meta-rules-and-deftypes (rule-list file package))

(loop for (nil name definition) in meta-rule-list
do (push

‘(,name (&aux (old-index index) c)
(declare (ignorable c) (special index c))
(or (and

(dbg "~v,8TTrying to match ~A.~@?"

(incf *debug-indent*)
’,name
" (String is at: ~S)~%"
(subseq string index

(min end (+ 20 index))))
,(if (bnf::starts-with-whitespace-p

name whitespace-list) t
‘(matchit ,(read-from-string

"${#\\Space #\\Tab}")))
(let ((past-whitespace index))

(let ((match
(matchit
,(read-from-string

(if (bnf::starts-with-whitespace-p
name whitespace-list)
definition
(format nil

"~A" definition))))))
(and match

(dbg "~v,8TFound the match ~A. ~@?"
(shiftf *debug-indent*

(1- *debug-indent*))
’,name
"It’s: ~S. Match is ~A~%"

88

(subseq string old-index index)
match)

(make-rulematch
:rule ’,name
:string (car (push

(subseq string
past-whitespace
index) ,name))

:matches (util::delete-in-tree
(list :kleene-star-empty

:empty) match))))))
(progn (setf index old-index)

(dbg "~v,8TFailed to match ~A.~%"
(shiftf *debug-indent*

(1- *debug-indent*)) ’,name)
nil)))

labels-part)
do (push name names))

(push (make-memo :pathname file
:mtime (file-write-date file)
:whitespace-list
(symbol-value-safe whitespace-list)
:package (find-package package)
:deftypes deftypes
:labels-part labels-part
:names names)

memos)
‘(let ,names
,@deftypes
(labels ,labels-part

,@body)))))))

(export ’(parse-rule-definition normalize-rule rule-bnf-expr-to-meta
with-bnf rule-list))

(provide "bnf")

;; local variables:
;; eval: (modify-syntax-entry ?{ "(} ")
;; eval: (modify-syntax-entry ?} "){ ")
;; eval: (modify-syntax-entry ?\["(] ")
;; eval: (modify-syntax-entry ?\] ")[")
;; end:

89

C.6 http

(defpackage :http
(:use :common-lisp :util :bnf :meta))

#+lispworks (require "lispworks-http" "compat/lispworks/http.lisp")
#+openmcl (require "openmcl-http" "compat/openmcl/http.lisp")
#+cmu (require "cmucl-http" "compat/cmucl/http.lisp")

(in-package :http)

(require "date-parser" ’("date-parser"))

(eval-when (:compile-toplevel)
(load "date-parser"))

(require "bnf" ’("bnf"))

C.6.1 Configuration

;; other strings that may go here: machine-type, machine version,
;; machine-instance, lisp-implementation-type,
;; lisp-implementation-version , short-site-name, long-site-name

(defvar *server-identification* (format nil "Clack/0.1 (~A)"
(software-type))

"Product tokens are used to allow communicating applications
to identify themselves by software name and version.")

C.6.2 Formatted strings

;; would be better in date-parser.lisp??
(defun rfc1123-string (&optional (time (get-universal-time)))

"Format date like Sun, 06 Nov 1994 08:49:37 GMT"
(multiple-value-bind (second minute hour date

month year day)
(decode-universal-time time 0)

(format nil "~@?, ~2,’0D ~@? ~4,’0D ~2,’0D:~2,’0D:~2,’0D GMT"
#.(indexed-format

(mapcar (lambda (name) (subseq name 0 3))
weekdays))

day date
#.(indexed-format *months*) month

90

year hour minute second)))

C.6.3 Utility functions

(defun print-lines (os &rest args)
(dolist (line args)

(princ line os)
(princ #\Return os)
(terpri os)))

C.6.4 URI

(defclass uri ()
((uri-reference :type string

:accessor uri-reference :initarg :uri-reference)
(abs_path :accessor abs_path :initarg :abs_path)
(scheme :accessor scheme :type string :initarg :scheme)
(authority :accessor authority :type string :initarg :authority)
(userinfo :accessor userinfo :type string :initarg :userinfo)
(host :accessor host :type string :initarg :host)
(port :accessor port :initform "80" :type string :initarg :port)
(path :accessor path :type string :initarg :path)
(query :accessor query :type string :initarg :query)
(fragment :accessor fragment :type string :initarg :fragment))
(:documentation "A uniform resource identifier."))

(defun make-uri (uri-reference abs_path scheme authority
userinfo host port path
query fragment)

"Return a uri object."
(make-instance ’uri

:uri-reference (or uri-reference "")
:abs_path (or abs_path "")
:scheme (or scheme "")
:authority (or authority "")
:userinfo (or userinfo "")
:host (or host "")
:port (or port "80")
:path (or path "")
:query (or query "")
:fragment (or fragment "")))

91

C.6.5 Packages for rulesets

;; we do not want ruleset to inherit from any default package
;; From the Hyperspec:
;; "If :use is not supplied, it defaults to the same
;; implementation-dependent value as the :use argument to make-package."

(defpackage #:rfc2616 (:use)
(:documentation "Holds rule definitions from RFC 2616.
(\"Hypertext Transfer Protocol -- HTTP/1.1\")"))

(defpackage #:rfc1123 (:use)
(:documentation "Holds rule definitions from RFC 1123.
(\"Requirements for Internet Hosts -- Application and Support\")"))

(defpackage #:rfc822 (:use)
(:documentation "Holds rule definitions from RFC 822.
(\"Standard for the Format of ARPA Internet Text Messages\")"))

(defpackage #:rfc2109 (:use)
(:documentation "Holds rule definitions from RFC 2109.
(\"HTTP State Management Mechanism\")"))

(defpackage #:rfc2396 (:use)
(:documentation "Holds rule definitions from RFC 2396.
(\"Uniform Resource Identifiers (URI): Generic Syntax\")"))

C.6.6 Presets for ruleset

(deftype rfc2616::octet () "Any byte" ’(character))

; interesting choice of docstring,
; as if readers prefer binary ops,
; while compilers prefer less-than
(defun rfc2616::ascii-char-p (char)

"False if the high bit of character CHAR is set."
(< (char-code char) 128))

(deftype rfc2616::char ()
"High bit not set"
’(and character (satisfies ascii-char-p)))

(deftype rfc2616::|not-newline| ()
"Anything but a newline"
’(not (member #\Newline #\Return)))

(deftype rfc2616::|horizontal-whitespace| ()
"Space or tab"
’(member #\Space #\Tab))

92

(defstruct rulematch
"Rule is the name of the rule, string is what it matched,

and matches is the \"breadcrumb\" path that led
to the rule being called."

rule string matches)

(defun who-sets (item tree &aux (result ()))
"the paths that lead to item in tree."
(labels ((rec (tree path)

(typecase tree
(list
(loop for subtree in tree

do (rec subtree path)))
(bnf::rulematch
(if (eq (rulematch-rule tree) item)

;; will not look for further matches down this path
(push (cons (rulematch-string tree) path) result)
(rec (rulematch-matches tree)

(cons (rulematch-rule tree) path)))))))
(rec tree ()))

result)

(defun opinion-of (whom regarding where)
"Return the first opionion of WHOM

as to the value of REGARDING
based on the set of matches in WHERE."

(labels ((relevant (reason)
(member whom reason)))

(find-if #’relevant (who-sets regarding where))))

(defparameter *last-match* nil)

;; this has to be a list of symbols, as these do not yet have values.
(eval-when (:compile-toplevel :load-toplevel :execute)

(defparameter *whitespace-list*
’(RFC2616::|star-lws| RFC2616::SP RFC2616::HT RFC2616::LF

RFC2616::CR RFC2396::|segment| RFC2396::|toplabel| RFC2396::|uric|
RFC2396::|domainlabel| RFC2396::|escaped| RFC2396::|reserved|
RFC2396::|pchar| RFC2396::|unreserved| RFC2396::|alphanum|
RFC2396::|path_segments| RFC2616::|lowalpha| RFC2616::|upalpha|
RFC2616::|alpha| RFC2616::|digit| RFC2616::|token-char|)))

93

(defun read-to-crlfcrlf (is)
"Collect characters from input stream IS

until we find a sequence of CRLFCRLF."
(loop with state = 0

with buflength = 1024
with string = (util::make-string-buffer buflength)
with state-char = #(#\Return #\Newline #\Return #\Newline)
for char = (read-char is nil nil)
while char
do (vector-push-extend char string buflength)
if (char= char (svref state-char state))
do (when (= (incf state) 4) (return string))
else
do (setf state 0)))

(defmacro generate-headers (&rest name-and-values)
"Return a list of header lines."
(cons ’list

(loop for nv in name-and-values
when nv
collect (if (and (stringp nv) (string= nv ""))

nv
(if (car nv) ‘(concatenate ’string

,@(if (stringp (car nv))
‘(,(concatenate ’string

(car nv)
": "))

‘(,(car nv) ": "))
,(cadr nv)))))))

(defun answer-request-output (is request time code mime-type
body last-modified entity bytes-sent)

"An entity is found, and code and body are prepared.
We default to handling a HEAD request.
If it is a GET, add body to the answer."
(declare (notinline http-log))
(dbg "a-r-o-args: ~@{~A~^, ~}~%" is request time code mime-type

body last-modified entity bytes-sent)
;; attach another output stream to is
(apply #’print-lines is

(format nil "HTTP/1.1 ~D ~A" code (code-string code))
(macrolet ((when-gh (test (name value))

94

‘(when ,test (generate-headers (,name ,value)))))
(append (generate-headers ("Date" (rfc1123-string))

("Server" *server-identification*))
(when-gh request

("Connection" (if
(string-equal
(connection request)
"close")

"close"
"Keep-Alive")))

(when-gh (string-equal (method request) "OPTIONS")
("Allow"
(format nil "~{~A~^, ~}"

’(GET HEAD OPTIONS TRACE))))
(when-gh (= code 301)

("Location"
(concatenate
’string
(abs_path (uri request)) "/")))

(when-gh last-modified
("Last-Modified"
(rfc1123-string last-modified)))

(when-gh body
("Content-Length"
(prin1-to-string
(setf
bytes-sent
(typecase body

(string (length body))
(pathname
(pathname-file-length body)))))))

(when-gh mime-type
("Content-Type" mime-type))

(list ""))))
(when (and (string-equal (method request) "GET")

(modified-since-p request entity))
(typecase body
(string (princ body is))
(pathname (print-file-to-output-stream body is))))

(force-output is)
(http-log request entity time code bytes-sent)
(values request entity is))

95

(defun receive-request (is)
"Read and handle a request.

Return false if stream should be closed,
true if the stream should be kept alive."

(let* ((time (get-internal-run-time))
(string (read-to-crlfcrlf is)) ; if this times out,

; we may send a
; 408 Request Timeout

(index 0)
(end (length string)))

(when string
(bnf::with-bnf "sample-rules.txt"

whitespace-list;; a list of symbols
:rfc2616

;;the ’matchit should be wrapped in a timeout for a 408 check
(let ((tree (matchit !(rfc2616::|HTTP-message|))))
(setf *last-match* tree)
(if (null tree)

;; requires a different a-r-o
(answer-request-output is nil time 400

nil nil nil nil nil)
(string-not-equal
(connection
(answer-request
is (make-instance

’request
:request-line (chomp (car rfc2616::|Request-Line|))
:remote-host (dotted-address is)
:uri (apply

#’make-uri rfc2396::|URI-reference|
(mapcar #’car

(list (last rfc2396::|abs_path|)
rfc2396::|scheme|
rfc2396::|authority|
rfc2396::|userinfo|
rfc2396::|host|
rfc2396::|port|
rfc2396::|path|
rfc2396::|query|
rfc2396::|segment|)))

:host (or
(and (opinion-of ’rfc2616::|Request-URI|

’RFC2396::|absoluteURI|

96

tree)
;; Request-URI is an absoluteURI.
(car
(opinion-of ’rfc2616::|Request-URI|

’RFC2396::|host| tree)))
;; request-uri is not an absoluteuri
(and rfc2616::|Host|

(car (opinion-of
’rfc2616::|Host|
’RFC2396::|host| tree))))

;; should return a 400 Bad Request.
;; unless the HTTP Version is 1.0,
;; then we can guess.
:method (car rfc2616::|Method|)
:headers (append rfc2616::|general-header|

rfc2616::|request-header|
rfc2616::|entity-header|)

:http-version (car rfc2616::|HTTP-Version|)
:connection (car rfc2616::|connection-token|)
:if-modified-since
(and (not

(null rfc2616::|If-Modified-Since|))
(HTTP-date-to-universal-time
(header-to-value
(car rfc2616::|If-Modified-Since|))))

:body (car rfc2616::|message-body|)) time))
"Close")))))))

(defun header-to-value (string)
"Get the value part of a simple mime-type header."
(string-trim util:*whitespace-bag*

(subseq string (1+ (position #\: string)))))

(defparameter *status-codes*
’((100 . "Continue")

(101 . "Switching Protocols")
(200 . "OK")
(201 . "Created")
(202 . "Accepted")
(203 . "Non-Authoritative Information")

97

(204 . "No Content")
(205 . "Reset Content")
(206 . "Partial Content")
(300 . "Multiple Choices")
(301 . "Moved Permanently")
(302 . "Found")
(303 . "See Other")
(304 . "Not Modified")
(305 . "Use Proxy")
(307 . "Temporary Redirect")
(400 . "Bad Request")
(401 . "Unauthorized")
(402 . "Payment Required")
(403 . "Forbidden")
(404 . "Not Found")
(405 . "Method Not Allowed")
(406 . "Not Acceptable")
(407 . "Proxy Authentication Required")
(408 . "Request Time-out")
(409 . "Conflict")
(410 . "Gone")
(411 . "Length Required")
(412 . "Precondition Failed")
(413 . "Request Entity Too Large")
(414 . "Request-URI Too Large")
(415 . "Unsupported Media Type")
(416 . "Requested range not satisfiable")
(417 . "Expectation Failed")
(500 . "Internal Server Error")
(501 . "Not Implemented")
(502 . "Bad Gateway")
(503 . "Service Unavailable")
(504 . "Gateway Time-out")
(505 . "HTTP Version not supported"))

"Status Code mapped to Reason Phrase."
)

(defun code-string (code)
"The Reason Phrase corresponding to the status-code CODE."
(cdr (assoc code *status-codes*)))

(defun code-and-reason-string (code)
"The Reason Phrase corresponding to the status-code CODE."

98

(destructuring-bind (code . reason) (assoc code *status-codes*)
(format nil "~A ~A" code reason)))

(defun http-version-not-supported (is request time)
"The http-version is not supported."
(declare (ignore is request time))
(values 505))

(defun not-recognized (is request time)
"The method is not recognized."
(declare (ignore is request time))
(values 501))

(defun not-modified (is request time)
"The document is not modified, so return the code for that."
(declare (ignore is request time))
"The entity is not modified, so we’ll inform the client."
(values 304))

(defun modified-since-p (request entity)
"Is the entity ENTITY modified since the timestamp in REQUEST?"
(not (util::let-if (if-modified-since (if-modified-since request))

(util::let-if
(entity-modified (pathname-file-last-modified

(merge-pathnames
(ensure-relative entity)
(document-root request))))

(= if-modified-since
entity-modified)))))

(defun pathname-file-length (pathname)
"The length in bytes of the file pointed to by pathname."
(with-open-file (in pathname) (file-length in)))

(defun pathname-file-last-modified (pathname)
"When was the file pointed to by PATHNAME last modified."
(file-write-date pathname))

(defun http-log (request entity time code bytes-sent)
"Make a log entry."
(declare (ignorable entity))

99

(#_syslog #$LOG_INFO (ccl::make-cstring "%s") ;; Openmcl specific call
;; Franz would use
;; (excl.osi:syslog *log-info*, hopefully with lisp strings
;; for cmucl, look at c-call from the alien package
:address (ccl::make-cstring

(format nil "~A - - [~A] ~S ~D ~D ~D B/s"
(remote-host request)
(iso-8601-string)
(request-line request)
code
bytes-sent
(let ((divisor

(- (get-internal-run-time) time)))
(if (zerop divisor)

0
(floor
(* bytes-sent

internal-time-units-per-second)
divisor)))))))

(defun chomp (string)
"Cut whitespace from end of string."
(subseq string 0

(1+ (position-if
(lambda (char)
(not (member char util:*whitespace-bag*)))

string :from-end t))))

(defun lacks-trailing-slash (namestring)
"False if namestring ends in slash."
(loop for char across namestring

finally (return (char/= #\/ char))))

(defvar *mime-default* "text/plain"
"If we do not know better, serve file as text.")

(defpackage #:mime (:use)
(:import-from "BNF" "NOT-NEWLINE" "TOKEN-CHAR")
(:documentation
"Package for the rules for how to read the file

that specifies the suffix-to-mime-type mapping."))

(defparameter *mime-suffix-alist*

100

(let* ((string (file-to-string "/private/etc/httpd/mime.types"))
(index 0)
(end (length string))
(collection ()))

(bnf::with-bnf "mime-filter.bnf"
(#\Space) :mime

(loop
(unless (matchit !(mime::|mime-list|)) (return collection))
(when (shiftf mime::|type-suffixes| nil)

(apush (shiftf mime::|suffix| nil) mime::|type| collection))
(setf mime::|type| nil))))

"An association list where the first element
is a list of suffix strings such as (\"jpeg\" \"jpg\"),
and the second element is a mime designator such as \"image/jpeg\".")

(defun mime-type (suffix)
"Return a mime-type, such as \"image/jpeg\"

that corresponds to a suffix such as \"jpg\"."
(util::let-if

(list (find-if (lambda (suffix-list)
(member suffix suffix-list :test #’string=))

mime-suffix-alist :key #’car))
(cadr list) *mime-default*))

(defun recognized-method-p (method)
(member method ’("OPTIONS" "GET" "HEAD" "POST"

"PUT" "DELETE" "TRACE" "CONNECT")
:test #’string=))

(defun answer-request (is request time)
"The request object is prepared, and we should answer it.

29 lines is a little too much. What does it do? It takes
a request, and prepares headers and body.
If not found, not modified, or a directory, it will dispatch,
otherwise it gets values from serve-document. Then it calls a-r-o.
"
;; if HTTP-Version > 1.1, return "505 HTTP Version Not Supported" ?
(let ((entity (servable-document-p request))

(bytes-sent 0))
(multiple-value-bind

(code mime-type body last-modified)

101

(cond ((string/= (http-version request) "HTTP/1.1")
(http-version-not-supported request is time))
((not (recognized-method-p (method request)))
(not-recognized request is time))
((not entity) (not-found request is))
((not (modified-since-p request entity))
(not-modified is request time))
((string-equal (method request) "OPTIONS")
(options-document request entity is))
((is-directory entity)
(if (lacks-trailing-slash (abs_path (uri request)))

(moved-permanently
request is
(concatenate ’string

(abs_path
(uri request)) "/"))

(table-list-directory
request
(make-pathname :defaults entity

:name :wild) is)))
(t (serve-document request entity is)))

(answer-request-output is request time code
mime-type body last-modified
entity bytes-sent))))

(defclass request ()
((headers :accessor headers :initarg :headers)
(method :accessor method :initarg :method)
(uri :accessor uri :initarg :uri)
(host :accessor host :initarg :host)
(http-version :accessor http-version :initarg :http-version)
(if-modified-since :accessor if-modified-since

:initarg :if-modified-since)
(body :accessor body :initarg :body)
(connection :accessor connection :initarg :connection)
(remote-host :accessor remote-host :initarg :remote-host)
(request-line :accessor request-line :initarg :request-line))
(:documentation "Internal representation of a request."))

(defmethod abs_path ((request request))
"Conveniently ask for the abs_path of the uri of the request."
(abs_path (uri request)))

102

(defun answer-request (is request time)
"The request object is prepared, and we should answer it."
;; if HTTP-Version > 1.1, return
;; "505 HTTP Version Not Supported" ?
;; -- handle that further up the chain
;;
(let* ((abs_path (abs_path request))

(handler (find-http-method (method request)
abs_path (host request)))

(bytes-sent 0))
(multiple-value-bind

(code mime-type body last-modified)
(cond ((not handler) (not-found request is))

(t (funcall handler request abs_path is)))
(answer-request-output is request time code

mime-type body last-modified
abs_path bytes-sent))))

(defvar *document-root* "/Users/chr/Sites/"
"Where to look for static files.")

(defclass vhost ()
((domainname :type ’string :accessor domainname

:initarg :domainname
:documentation
"The name of the virtual host.")

(document-root :type ’pathname
:accessor document-root
:initarg :document-root
:documentation
"Where to look for static files for the vhost.")

(entities :type ’hashtable
:initform (make-hash-table :test #’equal)
:accessor entities
:documentation
"Dynamic resources for the virtual host.")

(logfile :type ’pathname
:accessor logfile
:initarg :logfile
:documentation
"Location of the log file."))

103

(:documentation "A virtual host."))

(defvar *vhosts* nil "List of virtual hosts")

(defmethod vhost ((hostname string))
(find hostname *vhosts*

:test #’string-equal
:key ’domainname))

(defmethod vhost ((req request)) (vhost (host req)))

(defmethod vhost ((vhost vhost)) vhost)

(defmethod entities ((host string))
(entities (vhost host)))

(defmethod document-root ((r request))
(util::let-if (vhost (vhost r))

(document-root vhost)
document-root))

(push (make-instance ’vhost :domainname "macchr"
:document-root "/Users/chr/Sites/macchr/"
:logfile "/tmp/macchr-log")

vhosts)

(push (make-instance ’vhost :domainname "localhost"
:document-root #p"/Users/chr/Sites/"
:logfile "/tmp/localhost-log")

vhosts)

(defun servable-document-p (request)
"If the file pointed to by abs_path is servable, return its entity.

A more appropriate name is entity, I guess.
The entity may have redirect information."
(let ((path (pathname (uri-unescape (abs_path (uri request))))))

(rplaca (pathname-directory path) :relative)
(let ((document-root (or

(let ((res (find (host request) *vhosts*
:test #’string-equal
:key ’domainname)))

(dbg "host: ’~A’, res: ~A~%"

104

(host request) res)
(if res (document-root res)))

document-root)))
(let ((entity (merge-pathnames path document-root)))

(when (and (probe-file entity)
(belowp entity document-root))

entity)))))

;; it is no longer appropriate to talk about an entity in itself, as
;; we are looking for the product of entity and method. So, what does
;; this imply? Is it the function we get when we look up GET entity
;; that should check whether the entity exists? Or verify that it is
;; indeed a "virtual" entity, one that does not correspond to a
;; physical file, but appears to do so?
;;

(defparameter *options* ’(OPTIONS GET HEAD POST PUT
DELETE TRACE CONNECT))

(defun options-document (request pathname is)
(declare (ignore request is))
(let ((options (remove-if-not

(lambda (option) (find-http-method option pathname))
options)))

(values 200 nil "" nil
(list "Allow"

(format nil "~{~A~^, ~}" options)))))

(defun ensure-relative (pathname)
(let ((p (make-pathname :defaults pathname)))

(rplaca (pathname-directory p) :relative)
p))

;; a directory
;; a directory, but lacks trailing slash

;; document does not exist
;; protect against macrocharacters in pathname...

(defun serve-document (request relative-pathname is)

105

"Serve a file pointed to by PATHNAME to stream IS.
Normally called by get and head."
(let ((absolute-pathname

(merge-pathnames (ensure-relative relative-pathname)
(document-root request))))

(cond ((wild-pathname-p absolute-pathname)
(util::let-if (paths (directory absolute-pathname))

(table-list-directory request absolute-pathname is)
(not-found request is)))

((probe-file absolute-pathname)
(if (is-directory absolute-pathname)

(if (lacks-trailing-slash (abs_path (uri request)))
(moved-permanently request is

(concatenate ’string
(abs_path
(uri request)) "/"))

(table-list-directory
request
(make-pathname :defaults absolute-pathname

:name :wild) is))
(values 200 (mime-type

(pathname-type absolute-pathname))
absolute-pathname
(pathname-file-last-modified absolute-pathname))))

(t (not-found request is)))))

(defun print-file-to-output-stream (in out)
"Read from in and write to out."
(with-open-file (is in :element-type ’(unsigned-byte 8))

(loop with buffer-size = 2048
with buffer = (make-array buffer-size

:element-type ’(unsigned-byte 8))
for nread = (read-sequence buffer is)
do (write-sequence buffer out :end nread)
while (= nread buffer-size)
;; finally (force-output out)
)))

(defun nwrite-sequence (sequence stream &key (start 0) (end nil))
"Return the number of elements written to stream."
(write-sequence sequence stream :start start :end end)
(- (or end (length sequence)) start))

106

(defun zerop-safe (arg)
"True if arg is a number and equals 0."
(and (numberp arg) (zerop arg)))

(setf util:*dbg* nil)

(defun is-directory (entity)
"T if entity points to a directory."
(directoryp entity))

(defun iso-8601-string (&optional (time (get-universal-time)))
"Return a string on the form \"2005-06-02T08:52:31\""
(if time (multiple-value-bind (second minute hour date

month year)
(decode-universal-time time 0)

(format nil "~4,’0D-~2,’0D-~2,’0DT~2,’0D:~2,’0D:~2,’0D"
year month date hour minute second))

""))

(defun list-directory
(entity is

&optional
(description-format
"~[~8< ~>~:;~:*~8,’ D~] ~36@<~A~> ~12<~A~> ~A~%"))

"List the contents of directory ENTITY,
in the format specified by DESCRIPTION-FORMAT.
Default format suits html."

(dolist (file (directory entity :directories t))
(let* ((dirp (is-directory file))

(namestring (if dirp
(car (last (pathname-directory file)))
(file-namestring-unescaped file))))

(format is description-format
(if (or dirp (not (probe-file file)))

0
(pathname-file-length file))

(let ((namestring (reserved-escape namestring)))
(if dirp

(concatenate ’string namestring "/")
namestring))

namestring
(or (file-author file) "")

107

(iso-8601-string (file-write-date file))))))

(defparameter *reserved-escapes*
(let* ((reserved #.(concatenate ’string ";" "/" "?" ":"

"@" "&" "=" "+" "$"
"," "\"" "#"))

(table (make-hash-table :test ’eq :size (length reserved))))
(loop for char across reserved

do (setf (gethash char table)
(format nil "%~X" (char-code char))))

table)
"Characters that need escaping in URLs."
)

(defun reserved-escape (string)
"URL-escape string."
(loop for char across string

with modified
with result = (make-array (length string)

:adjustable t
:element-type ’character
:fill-pointer 0)

for replacement = (gethash char *reserved-escapes*)
if replacement
do (progn (setf modified t)

(loop for replace across replacement
do (vector-push-extend replace result)))

else
do (vector-push-extend char result)
finally (return (if modified result string))))

(defun uri-unescape (string)
"Replace %hexhex with the corresponding character across string."
(loop with max = (length string)

for i below max
with result = (make-array (length string)

:adjustable t
:element-type ’character
:fill-pointer 0)

with modified
do (vector-push-extend

(if (char= (char string i) #\%)
(multiple-value-bind (val pos)

108

(parse-integer string
:start (min (+ i 1) max)
:end (min (+ i 3) max)
:radix 16
:junk-allowed t)

(if (< i pos)
(progn (setf modified t

i (1- pos))
(code-char val))

#\%))
(char string i))

result)
finally (return (if modified result string))))

(defun file-namestring-unescaped (pathname)
"The filename part of pathname."
(if (pathname-type pathname)

(concatenate ’string
(pathname-name pathname)
"."
(pathname-type pathname))

(pathname-name pathname)))

(defun table-list-directory (request entity is)
"List the contents of directory ENTITY as a html table."
(let ((sink (make-string-output-stream)))

(format sink "<html><head><title>
Directory listing of /~A</title></head>~2%<body>~%<table>~%"

(enough-namestring (make-pathname :name ""
:defaults entity)

document-root))
(list-directory
entity sink
"<tr><td align=\"flight\" class=\"size\">~[~:;~:*~D~]</td>

<td>~A</td>
<td class=\"uname\">~A</td><td class=\"mtime\">~A</td></tr>~%")

(format sink "</table>~%</body>~%</html>")
(values 200 "text/html"

(get-output-stream-string sink)
(pathname-file-last-modified
(make-pathname :defaults entity

:name nil
:type nil

109

:version nil)))))

;; directoryp is implementation-dependent

(defun belowp (file directory)
"File resides hierarchically below directory."
(let* ((path1 (pathname-directory directory))

(mismatch (mismatch path1 (pathname-directory file)
:test #’string=)))

(or (not mismatch) (= mismatch (length path1)))))

(defun not-found-document (request)
"The document was not found."
(let ((uri (uri request)))

(html-status-document
uri
"404 Not Found"
"Not Found"
(format nil

"<p>The requested URL ~A was not found on this server.</p>"
(abs_path uri)))))

(defun not-found (request is)
"Document was not found."
(declare (ignore is))
(values 404 "text/html" (not-found-document request)))

(defun moved-permanently (request is new-abs-path)
"Document has moved."
(declare (ignore is))
(values 301 "text/html"

(moved-permanently-document request new-abs-path)))

(defun moved-permanently-document (request new-abs-path)
"Document is moved permanently."
(html-status-document
(uri request)
"301 Moved Permanently"
"Moved Permanently"
(format nil "<p>The document has moved here.</p>"

new-abs-path)))

(defun html-status-document (uri title header body)

110

"Wrap body BODY in a html template."
(format nil "<!DOCTYPE HTML PUBLIC \"-//IETF//DTD HTML 2.0//EN\">

<html><head>
<title>~A</title>
</head><body>
<h1>~A</h1>
~A
<hr>
<address>~A Server at ~A port ~A</address>
</body></html>
"

title header body *server-identification*
(host uri)
(port uri)))

(defstruct methods
options
get
head
post
put
delete
trace
connect
code)

(defstruct moved
code path)

(defun find-http-method (method entity vhost)
(let ((vhost (vhost vhost))

(method (if (stringp method)
(intern (string-upcase method) #.*package*) method))

(entity (if (pathnamep entity) entity (pathname entity))))
(labels

((slot-value-safe (instance slot-name)
(when instance
(slot-value instance slot-name)))

(rec (p)
(when p
(or (slot-value-safe (gethash p (entities vhost)) method)

(rec (parent-directory p))))))
(rec entity))))

111

(defsetf find-http-method set-http-method)

(defun set-http-method (method entity vhost definition)
(let ((vhost (vhost vhost))

(method (if (stringp method)
(intern (string-upcase method))
method)))

(setf (slot-value (or (gethash entity (entities vhost))
(setf (gethash entity (entities vhost))

(make-methods))) method) definition)))

;; furthermore: add vhost to the calls so you get the signature
;; GET entity vhost when looking up.

(defun parent-directory (designator)
(typecase designator

(string (parent-directory (pathname designator)))
(pathname (if (and (null (pathname-name designator))

(null (pathname-type designator))
(eq :unspecific (pathname-version designator)))

(util::let-if
(dir (nbutlast (pathname-directory designator)))
(make-pathname :directory dir

:defaults designator))
(make-pathname :name nil

:type nil
:version nil
:defaults designator)))))

;; add top-level handlers for each vhosts
(loop for (method handler) in ’((get serve-document)

(head serve-document)
(options options-document))

do (loop for vhost in *vhosts*
do (setf (find-http-method method #p"/" vhost) handler)))

(export ’(usage receive-request request))

(provide "http")

;; local variables:

112

;; eval: (modify-syntax-entry ?{ "(} ")
;; eval: (modify-syntax-entry ?} "){ ")
;; eval: (modify-syntax-entry ?\["(] ")
;; eval: (modify-syntax-entry ?\] ")[")
;; eval: (put ’util::let-if ’common-lisp-indent-function 2)
;; outline-regexp: ";;;;;*"
;; indent-tabs-mode: nil
;; end:

113

C.7 date-parser

(in-package http)

(defun decode-time (string)
(values-list
(loop for i below 3

with index = -1
collect (parse-integer string

:start (incf index)
:end (incf index 2)))))

(defparameter *weekdays*
(list "Monday" "Tuesday" "Wednesday"

"Thursday" "Friday" "Saturday" "Sunday")
"Zero-indexed list of the days of the week,

starting with Monday.")

(defparameter *months*
(list nil "Jan" "Feb" "Mar" "Apr"

"May" "Jun" "Jul" "Aug"
"Sep" "Oct" "Nov" "Dec")

"One-indexed list of the months of the year,
starting with January.")

(defun indexed-format (list)
"Return a format string that when called with a numeric argument,

produces the string found in that position in list."
(format nil "~~[~{~@[~A~]~^~~;~}~~]" list))

(defun rfc850-date-to-universal-time (string &optional (index nil))
(let ((index (or index (loop for i from 1

for day in *weekdays*
for mismatch = (mismatch day string)
when (and mismatch

(= mismatch (length day)))
do (return mismatch)))))

(let* ((date (and (char= (char string index) #\,)
(parse-integer string

:start (+ 2 index)
:end (+ 2 2 index)))) ;date

(month (position (subseq string

114

(+ 5 index)
(+ 5 3 index))

months :test #’string-equal))
(year (parse-integer string

:start (+ 5 3 1 index)
:end (+ 5 3 1 2 index))))

(multiple-value-bind (hour minute second)
(decode-time (subseq string

(+ 5 3 1 2 1 index)
(+ 5 3 1 2 1 8 index)))

(encode-universal-time second minute hour date month
(+ year (if (> 50 year) 2000 1900)) 0)))))

(defun rfc1123-date-to-universal-time (string)
(let ((index 3))

(and (char= (char string index) #\,)
(char= (char string (incf index)) #\Space)
(let ((date (parse-integer string

:start (incf index)
:end (incf index 2))))

(and date (char= (char string index) #\Space)
(util:dbg "space")
(let* ((month (position (subseq string (incf index)

(incf index 3))
months
:test #’string-equal))

(year (parse-integer string :start (incf index)
:end (incf index 4))))

(multiple-value-bind (hour minute second)
(decode-time (subseq string (incf index)

(incf index 8)))
(encode-universal-time second minute hour date

month year 0))))))))

(defun asctime-date-to-universal-time (string)
(let ((index 2))

(and (char= (char string (incf index)) #\Space)
(let* ((month (position

(subseq string (incf index) (incf index 3))
months
:test #’string-equal))

(date (and (char= (char string (incf index)) #\Space)

115

(parse-integer string
:junk-allowed t
:start (incf index)
:end (incf index 2)))))

(multiple-value-bind (hour minute second)
(decode-time (subseq string (incf index) (incf index 8)))

(let ((year (and (char= (char string (incf index)) #\Space)
(parse-integer string :start (incf index)

:end (incf index 4)))))
(encode-universal-time second minute hour date

month year 0)))))))

(defun HTTP-date-to-universal-time (string)
(let* ((index 0)

(weekday (loop for i from 1
for day in *weekdays*
for mismatch = (mismatch day string)
when (and mismatch (= mismatch (length day)))
do (progn (setf index mismatch) (return i)))))

(if weekday ;rfc850-date
(rfc850-date-to-universal-time string index)

;else rfc1123 or asctime
(if (char= (char string 3) #\,) ;rfc1123-date has a comma

(rfc1123-date-to-universal-time string)
(asctime-date-to-universal-time string)))))

(provide ’date-parser)

116

C.8 md5

(defpackage :md5 (:use "COMMON-LISP"))

(in-package md5)

(eval-when (:compile-toplevel :load-toplevel :execute)

(defparameter *t-table*
;; in my cl,
;; (floor (* 4294967296 (abs (sin 1))))
;; -> "#xd76aa400", therefore I use the values from the spec.
;; the zero’th element is not used
#(#x00000000 #xd76aa478 #xe8c7b756 #x242070db #xc1bdceee #xf57c0faf

#x4787c62a #xa8304613 #xfd469501 #x698098d8 #x8b44f7af #xffff5bb1
#x895cd7be #x6b901122 #xfd987193 #xa679438e #x49b40821 #xf61e2562
#xc040b340 #x265e5a51 #xe9b6c7aa #xd62f105d #x02441453 #xd8a1e681
#xe7d3fbc8 #x21e1cde6 #xc33707d6 #xf4d50d87 #x455a14ed #xa9e3e905
#xfcefa3f8 #x676f02d9 #x8d2a4c8a #xfffa3942 #x8771f681 #x6d9d6122
#xfde5380c #xa4beea44 #x4bdecfa9 #xf6bb4b60 #xbebfbc70 #x289b7ec6
#xeaa127fa #xd4ef3085 #x04881d05 #xd9d4d039 #xe6db99e5 #x1fa27cf8
#xc4ac5665 #xf4292244 #x432aff97 #xab9423a7 #xfc93a039 #x655b59c3
#x8f0ccc92 #xffeff47d #x85845dd1 #x6fa87e4f #xfe2ce6e0 #xa3014314
#x4e0811a1 #xf7537e82 #xbd3af235 #x2ad7d2bb #xeb86d391))

(defparameter *old-readtable* (copy-readtable))

(setf *readtable* (copy-readtable nil))

(set-macro-character
#\[
#’(lambda (stream char1)

(declare (ignore char1))
(destructuring-bind (a b c d k s i)

(append (loop for i below 4
collect (intern

(string
(read-char stream nil nil t))))

(list* (read stream nil nil)
(read stream nil nil)
(read stream nil nil)
(read-delimited-list #\] stream t)))

‘(setf ,a (word (+ ,b

117

(<<< (word (+ ,a
(funcall log-op ,b ,c ,d)
(aref x ,k)
,(svref *t-table* i)))

,s)))))))

(set-macro-character #\] (get-macro-character #\))))

(defun md5 (message)
(let ((vector (make-array 16 :fill-pointer 0))

(sum 0)
(weight 0)
(nbytes 0)
(a #x67452301)
(b #xefcdab89)
(c #x98badcfe)
(d #x10325476))

(labels ((word (integer) (logand #xFFFFFFFF integer))
(<<< (integer count)
(logior (ash (logand

(byte (- 32 count) 0)
integer) count)

(ash (logand (byte count (- 32 count))
integer)

(- count 32))))
(f (x y z) (logior (logand x y) (logandc1 x z)))
(g (x y z) (f z x y))
(h (x y z) (logxor x y z))
(i (x y z) (logxor y (logorc2 x z)))
(operations (a b c d x)

(let ((log-op #’f))
[ABCD 0 7 1] [DABC 1 12 2] [CDAB 2 17 3] [BCDA 3 22 4]
[ABCD 4 7 5] [DABC 5 12 6] [CDAB 6 17 7] [BCDA 7 22 8]
[ABCD 8 7 9] [DABC 9 12 10] [CDAB 10 17 11] [BCDA 11 22 12]
[ABCD 12 7 13] [DABC 13 12 14] [CDAB 14 17 15] [BCDA 15 22 16])

(let ((log-op #’g))
[ABCD 1 5 17] [DABC 6 9 18] [CDAB 11 14 19] [BCDA 0 20 20]
[ABCD 5 5 21] [DABC 10 9 22] [CDAB 15 14 23] [BCDA 4 20 24]
[ABCD 9 5 25] [DABC 14 9 26] [CDAB 3 14 27] [BCDA 8 20 28]
[ABCD 13 5 29] [DABC 2 9 30] [CDAB 7 14 31] [BCDA 12 20 32])

(let ((log-op #’h))
[ABCD 5 4 33] [DABC 8 11 34] [CDAB 11 16 35] [BCDA 14 23 36]
[ABCD 1 4 37] [DABC 4 11 38] [CDAB 7 16 39] [BCDA 10 23 40]

118

[ABCD 13 4 41] [DABC 0 11 42] [CDAB 3 16 43] [BCDA 6 23 44]
[ABCD 9 4 45] [DABC 12 11 46] [CDAB 15 16 47] [BCDA 2 23 48])

(let ((log-op #’i))
[ABCD 0 6 49] [DABC 7 10 50] [CDAB 14 15 51] [BCDA 5 21 52]
[ABCD 12 6 53] [DABC 3 10 54] [CDAB 10 15 55] [BCDA 1 21 56]
[ABCD 8 6 57] [DABC 15 10 58] [CDAB 6 15 59] [BCDA 13 21 60]
[ABCD 4 6 61] [DABC 11 10 62] [CDAB 2 15 63] [BCDA 9 21 64])

(values a b c d))
(dump-byte (byte)
(if (eq byte :eof)

;; value of nbytes before padding
(let ((bitlength (* 8 nbytes))

(remainder (mod nbytes 64)))
(dump-byte 128)
(dotimes (i (- (if (< remainder 56) 56 120)

remainder 1))
(dump-byte 0))

(loop for i below 64 by 8
do (dump-byte (ldb (byte 8 i) bitlength)))

(setf sum 0
(fill-pointer vector) 0
weight 0
nbytes 0)

(format nil "~{~2,’0X~}"
(mapcan
(lambda (num)

(mapcar (lambda (i)
(ldb (byte 8 i) num))

(list 0 8 16 24)))
(list a b c d))))

(progn
(setf sum (dpb byte (byte 8 weight) sum))
(incf nbytes)
(when (= (incf weight 8) 32) ; logand
(vector-push sum vector)
(setf sum 0

weight 0))
;; >= integer 16 == (logbitp 4 integer)
(when (= (fill-pointer vector) 16)
;; as opposed to the spec, aa bb cc dd
;; are the new values for a b c d
(multiple-value-bind (aa bb cc dd)

(operations a b c d vector)

119

(setf a (+ a aa)
b (+ b bb)
c (+ c cc)
d (+ d dd)
(fill-pointer vector) 0)))))))

(declare (inline word <<< f g h i))
(cond

((stringp message)
(map nil (util::compose #’dump-byte #’char-code) message))
((and (streamp message) (input-stream-p message))
(if (subtypep (stream-element-type message) ’character)

(loop for element = (read-char message nil :eof)
until (eq element :eof)
do (dump-byte (char-code element)))

(loop for element = (read-byte message nil :eof)
until (eq element :eof)
do (dump-byte element))))

((pathnamep message) (with-open-file
(in message :direction :input)

(return-from md5 (md5 in)))))
(dump-byte :eof))))

(eval-when (:compile-toplevel :load-toplevel :execute)
(setf *readtable* *old-readtable*))

(defun md5test ()
(loop for (message correct) in

’(("" "d41d8cd98f00b204e9800998ecf8427e")
("a" "0cc175b9c0f1b6a831c399e269772661")
("abc" "900150983cd24fb0d6963f7d28e17f72")
("message digest" "f96b697d7cb7938d525a2f31aaf161d0")
("abcdefghijklmnopqrstuvwxyz"
"c3fcd3d76192e4007dfb496cca67e13b")
(#.(concatenate ’string "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

"abcdefghijklmnopqrstuvwxyz0123456789")
"d174ab98d277d9f5a5611c2c9f419d9f")
(#.(concatenate ’string

"123456789012345678901234567890"
"1234567890123456789"
"0123456789012345678901234567890")

"57edf4a22be3c955ac49da2e2107b67a"))
collect (format nil "~S~%~S~%~(~S~)~2%"

message correct (md5 message))))

120

C.9 server-process

(defpackage :server (:use :http :meta :common-lisp))

(in-package :server)

#+lispworks (require "lispworks-server-process"
"compat/lispworks/server-process.lisp")

#+openmcl (require "openmcl-server-process"
"compat/openmcl/server-process.lisp")

(eval-when (:compile-toplevel :load-toplevel)
(require "http" ’("http")))

(defun start ()
"Start a server."
(let ((proc (find "server" (process-list)

:test #’string=
:key #’process-name)))

(when proc (process-kill proc)))
(load (make-pathname :name server::*configuration-name*

:type server::*configuration-type*
:defaults server::*configuration-directory*))

(start-up-server :function ’run-server
:announce nil
:service 8000
:process-name "server"))

(defun stop ()
"Stop the server"
(loop for proc = (find "slave" (process-list)

:test #’string=
:key #’process-name)

while proc do (process-kill proc))
(let ((proc (find "server" (process-list)

:test #’string=
:key #’process-name)))

(when proc (process-kill proc))))

(defun run-server (s)
"Listen to a socket S."
(unwind-protect

;; you may want to name the thread with the remote-host?

121

;; reply with 503 Service Unavailable if there is too much work...
(loop (process-run-function "slave" #’accept-and-receive

(accept-connection s :wait t))
(util:dbg "started a slave.~%"))

(close s)))

(defun accept-and-receive (is)
"Handle requests on the input stream IS."
(when is (unwind-protect

(do ((result (http:receive-request is)
(http:receive-request is)))

((not result)))
(close is))))

(defvar *configuration-directory*
#p"/Users/chr/proj/uio/sli/hovedfag/*.*"
"Where to look for the configuration file.")

(defvar *configuration-name* "config"
"Name, sans suffix, of the configuration file.")

(defvar *configuration-type*
"lisp" "Suffix of the configuration file.")

(export ’(start stop))
(provide "server-process")

122

C.10 clack.asd

(defsystem "clack"
:description "clack: a web server."
:version "1.0"
:author "Christian Nybø <chr@sli.uio.no>"
:licence "Public Domain"
:components ((:file "utilities")

(:file "meta" :depends-on ("utilities"))
(:file "bnf" :depends-on ("meta"))
(:file "http" :depends-on ("bnf"))
(:file "server-process" :depends-on ("http"))))

123

C.11 sample-rules.txt

Some of the rules are reformulated, then the original is commented above the
reformed rule.

As latex has trouble with a file containing characters from latin-1 such
as guillemot and textcent at the same time, I have provided but a subset of
this file.

SP = " "
HT = "^I"
LF = "

"
CR = "^M"
HTTP-date = rfc1123-date | rfc850-date | asctime-date
wkday = "Mon" | "Tue" | "Wed"

| "Thu" | "Fri" | "Sat" | "Sun"
http_URL = "http:" "//" RFC2396::host [":" RFC2396::port]

[RFC2396::abs_path ["?" RFC2396::query]]
rfc1123-date = wkday "," SP date1 SP time SP "GMT"
rfc850-date = weekday "," SP date2 SP time SP "GMT"
asctime-date = wkday SP date3 SP time SP 4DIGIT
date1 = 2DIGIT SP month SP 4DIGIT

; day month year (e.g., 02 Jun 1982)
date2 = 2DIGIT "-" month "-" 2DIGIT

; day-month-year (e.g., 02-Jun-82)
date3 = month SP (2DIGIT | (SP 1DIGIT))

; month day (e.g., Jun 2)
time = 2DIGIT ":" 2DIGIT ":" 2DIGIT

; 00:00:00 - 23:59:59
weekday = "Monday" | "Tuesday" | "Wednesday"

| "Thursday" | "Friday" | "Saturday" | "Sunday"
month = "Jan" | "Feb" | "Mar" | "Apr"

| "May" | "Jun" | "Jul" | "Aug"
| "Sep" | "Oct" | "Nov" | "Dec"

delta-seconds = 1*DIGIT
charset = token
content-coding = token
transfer-coding = "chunked" | transfer-extension
transfer-extension = token *(";" parameter)
parameter = attribute "=" value
attribute = token
value = token | quoted-string
Accept = "Accept" ":"

124

#(media-range [accept-params])
; media-range = ("*/*"

media-range = *LWS
("*/*"
| (type "/" "*")
| (type "/" subtype)
) *(";" parameter)

accept-params = ";" "q" "=" qvalue *(accept-extension)
accept-extension = ";" token ["=" (token | quoted-string)]

; comment = "(" *(ctext | quoted-pair | comment) ")"
comment = (*LWS "(" *(ctext | quoted-pair | comment) ")")

| ("(" *(ctext | quoted-pair | comment) ")")

125

C.12 mime-filter

mime-list = (comment | type-suffixes | type | blank) newline
newline = "
"
comment = "#" *NOT-NEWLINE
blank = *" "
type-suffixes = type (" "|" ") *(" "|" ") suffixes
type = token "/" token
suffixes = suffix *suffix
suffix = token
token = TOKEN-CHAR *TOKEN-CHAR

126

	Thanks
	Introduction
	Choice of topic
	Other implementations
	Pragmatism crowds out ideal solutions
	From a mouse click to a web page
	How HTTP and other net standards are specified
	What is new about HTTP 1.1
	Why performance matters

	Components of the system
	Compiling and loading the components
	Simple abstractions
	Date and time
	A language implementation
	Compatibility with other implementations
	Virtual hosts
	Logging
	Using the syslog facility

	The request
	Backus-Naur form
	The META language
	Specifying comma-separated lists

	Match a type rather than characters
	Parse tree
	Pragmatic parsing
	Intentional capture with special variables
	Keeping the global namespace clean
	Using grammar from another RFC
	Specifying the format of the MIME file in BNF

	Checking for type definitions
	Ignoring whitespace
	From a flat parse to a parse tree
	Memoization

	The response
	The resource
	The variant
	The entity
	Semantics of HTTP
	A language for semantics?

	Sending the response
	Speeding up the file transfer
	MD5

	The server
	Multiple processes
	Signal handling
	Error handling
	Profiling
	Dumping the application

	Further work
	Methods and combinations
	Methods
	Conditional requests
	Ranges
	Content negotiation

	Session handling
	Cookies
	URL rewriting

	Web server stack
	Operating system
	Database server
	Server-side scripting language
	Authentication
	Secure Sockets support
	Load balancing

	Conclusion
	Colophon
	Acronyms
	Source code
	Line counts
	Call graphs
	Utilities
	Meta
	BNF
	http
	Configuration
	Formatted strings
	Utility functions
	URI
	Packages for rulesets
	Presets for ruleset

	date-parser
	md5
	server-process
	clack.asd
	sample-rules.txt
	mime-filter

