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Summary

This paper has two purposes. The �rst is to describe the existing theory of

long-run behavior of populations playing a normal-form game. In this paper the

emphasis is on symmetric 2× 2 games which is the most analytical convienent.

The methods here relies on that agents are not fully rational, they can make

mistakes when playing. The reason for this possible mistakes or perturbations

are not speci�ed but it can be random experementation or just ignorance. When

studying these processes the theory of Markov chains becomes useful. When

assuming that there is one population playing, the dynamics of the distribution

of strategies is a one-dimensional Markov chain. By using standard theory or

the Markov chain tree theorem we can deduce a limiting distribution for the

process(we let time go towards in�nity). This limiting distribution will be a

function of the perturbations mentioned earlier. Then, if we let the pertubations

tend to zero, it will often be the case that the probability of the process being in

a speci�c state is much higher than for all the other states. This idea leads to the

concept of stochastic stability which was introduced be Foster and Young,1993.

This concept gives a prediction of how the behavior of the population will be

in the long-run i.e which strategies of the game they are most likely to play.

In 2 × 2 games there is a link between the risk dominant equlibrium and the

stochastically stable state and this is used to verify the results when examples

of the use of the theory is presented.

The second purpose of this paper is to extend the existing theory. The

extension here is that we let two populations play against each other in the

game. We assume that one population operates the rows and the other the

columns. This calls for a di�erent theoretical approach but still the theory of

Markov chains is important. The best-response dynamics is a�ected by the

distribution of strategies in the other population. When we let the time horizon

tend to in�nity we can again compare the probabilities of being in the di�erent

states as the perturbations go to zero. The stochastically stable state, which

will be pairs of distributions in the two populations, shows which strategy both

populations will play in the long-run. This state corresponds to the predicton

we got in the one population case.

The approach here is totally theoretical. The methods used is game theory,

mathematics and statistics. When new concepts or theorems needed to �nd the

stochastically stable states are presented there are examples to show how these

easily can be used. The reason for this is that it should be simple to use the

theory in this paper in other economic applications.

The paper is written in LATEX.
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1 Introduction

In economics the strategic behavior of individuals has since the 1950's been of

upmost interrest among the students within the �eld. The work of John Nash

is in this respect one of the most important contributions, and gave matemath-

icians and economists the analytical tool to matemathically explain di�erent

strategic settings within an economy. Nash's theory can also be used to explain

previous works on especially duopoly, like the Bertrand- and Cournot solutions

from the 17th century. This paper will present a theory of stochastic adap-

tive dynamics, which relies on game theory but also elements from stochastic

modelling. This theory stems from the pioneering work of Kandori, Mailath,

Rob(1993 [11]) and Young(1993 [3]). The core of this theory is that one inves-

tigate the strategic behavior of large number of agents playing a normal-form

game. An important feature is that the agents are assumed to not be fully ratio-

nal, as in much of the other existing game theory used in economics. They can

make mistakes when playing the game. This possibility of a "trembling hand"

causes the long-run behavior of the system to be substantially di�erent from a

deterministic process.

The stochastic shocks,or perturbations, may be of di�erent types, �rst the

way that agents interact may be stochastic when agents are randomly paired up

to play the game, second the agents can be using mixed strategies when playing

the game and third the agent may observe the distribution of the population

and change his type since this is a best response. All these things can be reasons

for the stochastic element in the decitionmaking, but there can also be other

sources.

This theory di�ers from the theory of evolutionary stable equilibria in games,

where a small mutant group can invade the population and may cause the behav-

ior of the agents to change. But in the evolutionary framework the disturbance

to the process is an isolated event, which clearly can not be a realistic assump-

tion when studying economic systems where shocks constantly hits the system.

When working with this kind of processes one have to combine game theory and

the theory of Markov chains, that is, when time is assumed to be discrete. In

continuous time the stochastics are often assumed to follow a Browninan motion.

In this paper we will limit ourself to discussing dicrete time. When modelling

the behavior i.e the evolution of the strategies or types in the population, as

a Markov chain one can predict what happens to the system in the long-run.

This leads to the idea of stochastic stability(Foster and Young,1990 [1]).

The rest of the paper is compiled in the following way, chapter 2 presents the

standard game theory needed, chapter 3 presents the theory of Markov chains,
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chapter 4 will introduce the concept stochastic adaptive dynamics, chapter 5

gives a possible extension to the theory, chapter 6 is a discussion of the assump-

tions underlying the theory and chapter 7 concludes.

2 Game Theory

2.1 Introduction

Game thory provides a systematic way to study strategic interaction between

agents. This is useful when trying to model how economic agents behave in

di�erent situations. This chapter will brie�y go through the needed concepts

for the later discussion of stochastic adaptive dynamics. The chapter starts

with some useful de�nitions, and then discusses 2× 2 games that will be widely

used later because of its analytic convinience. Lastly the standard theory of

evolutionary stable strategies(ESS) are presented so the di�erences between

these and stochastically stable states(SSS) can be pointed out later.

2.2 De�nitions

De�nition 1 A strategy is a complete contigent plan for a player in a game.

Given a game G, let Si denote the strategy space of player i. Let si denote a sin-

gle strategy. A strategy pro�le s = (s1, s2, .., sn) shows all individual strategies.

S is the set of all strategy pro�les, where S = S1 × S2 × · · · × Sn1.

De�nition 2 Let ui : S → R be de�ned as a payo� function. ui(s1, s2, ...sn) is

the payo� to player i when the strategy pro�le is s = (s1, s2, .., sn)

De�nition 3 A belief of player i is a probability distribution, denoted µ−i ∈
∆S−i over the strategies of the other players. ∆S−i is the set of probability

distributions over the strategies of all players except player i. The belief of

player i about the behavior of player j is µj ∈ ∆Sj,where ∆Sj is the set of

all probability distributions for player j, such that for each sj ∈ Sj of player j,

µj(sj) is the probability that player i thinks player j will play sj.

Properties:

µj(sj) ≥ 0 sj ∈ Sj (1)∑
sj∈Sj

µj(sj) = 1 (2)

1S is the cartesian product of the players individual strategy space Si, i = 0, .., n.
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A mixed strategy is the act of selecting a strategy according to the above prob-

ability distribution. In other words the players choose the probability that they

will play the di�erent strategies. Extending the de�nition of a payo� function

to mixed strategies and beliefs can be done by using the concept expected value.

When player i has beliefs µ−i about the actions of others and therefore plan to

use strategy si, then the expected value is:

ui(si, µ−i) =
∑

s−i∈S−i

µ−i(si)ui(si, s−i) (3)

Assume that a rational agent wish to maxmize the payo� that the agent expect

to recieve. The agent should then select the strategy that yields the greatest

expected payo� against his or her beliefs.

De�nition 4 Suppose player i have belief µ−i ∈ ∆S−i about the strategies

played by other players. Player i's strategy si ∈ Si is a best response if:

ui(si, µ−i) ≥ ui(s′i, µ−i) ∀isi ∈ Si (4)

De�nition 5 The formal de�nition of weak and strong dominance is the fol-

lowing. A pure strategy si of player i is dominated if there is a pure or mixed

strategy denoted ςi, where ςi ∈ ∆Si such that;

ui(ςi, s−i) ≥ ui(si, s−i) (5)

for all strategy pro�les s−i ∈ S−i of the other players.

The strategy is weakly or strongly dominated when the inequality is weak or

strict respectively.

De�nition 6 A strategy pro�le is a Nash equilibrium if and only if each player's

prescribed strategy is a best response against the strategies of others.

Formally a strategy pro�le si ∈ S is a Nash equilibrium if and only if,

ui(si, s−i) ≥ ui(s′i, s−i) (6)

for each s′i ∈ Si and each player i.

De�nition 7 A mixed-strategy Nash equilibrium is an equilibrium where the

players use a probability distribution as a strategy. Formally, a strategy pro�le

σ = (σ1, σ2, .., σn),where σi ∈ ∆Si,∀i is a mixed-strategy Nash equilibrium if

and only if;

ui(σi, σ−i) ≥ ui(s′i, σ−i) (7)

for each s′i ∈ Si and each player i.
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Theorem 1 (Nash,1950 [9]) In the n-player normalform game G, if n and

Si is �nite for every i then there exists at least one Nash equilibrium possibly

involving mixed strategies.

2.3 Symmetric two-player games

A game G is a symmetric two-player game if S1 = S2 and u1(s2, s1) = u2(s1, s2)

for all (s1, s2) ∈ S1 × S2 = S

To classify symmetric 2×2 games we can use a graphical treatment. Consider

the payo� matrix A.

A =

(
a11 a12

a21 a22

)
(8)

This is eqvivalent to:

A′ =

(
a11 − a12 0

0 a22 − a21

)
(9)

=

(
a1 0

0 a2

)
(10)

This eqvivalence relation holds because the Nash equilibria, both pure and

mixed, are the same after this normalization. It should be mentioned that

this eqvivalence only holds when we have a symmetric game. It follows that

any symmetric 2× 2 game after this normalization can be identi�ed by a point

a = (a1, a2) ∈ R2

Let ∆NE be the set of Nash Equilibria. s1 refers to the �rst row and the �rst

column while s2 to the second row and the second column.

Category I: In this quadrant strategy 2 stricly dominates strategy 1(a1 <

0, a2 > 0). Hence all such games are stricly dominance solvable. ∆NE =
{
s2
}

Ex.Prisoners Dilemma.

Category II: All games in this category(a1 > 0, a2 > 0) have two symmet-

ric strict Nash equilibria, and one mixed-strategy Nash equilibrium. ∆NE ={
s1, s2, σ

}
. Ex. Coordination game.

Category III: No strategy is dominated(a1 < 0, a2 < 0), but the best reply

to a pure strategy is the other pure strategy. These games have two asymmet-

ric strict Nash Equilibria, and one symmetric mixed-strategy Nash equilibrium.

∆NE = {σ}. Ex. Hawk-Dove Game.
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Figure 1: Classi�cation of symmetric 2× 2 games

Category IV: The games in this category(a1 > 0, a2 < 0) are symmetric to

category I, but strategy 1 stricktly dominates strategy 2. ∆NE =
{
s1
}

In the later discussion games in category II and III will be used in exam-

ples since these games are analytically tractable. The other two categories can

be solved by using elimination of stricktly dominated strategies and are not

interresting within the framework this paper presents.

2.4 Risk dominant equilibrium

Consider the 2× 2 game G.

G =
a11, b11 a12, b12

a21, b21 a22, b22
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There are two pure strategy Nash Equilibria ∆NE =
{
s1, s2

}
if: a11 > a21, b11 >

b12, a22 > a12, b22 > b21. Again s1 refers to the �rst row and the �rst column

while s2 to the second row and the second column.

The equilibrium (s1) is risk dominant if:

(a11 − a21)(b11 − b12) ≥ (a22 − a12)(b22 > b21) (11)

It is strictly risk dominant if equation (11) holds with strong inequality. (Harsanyi

and Selten,1988 [6]).

It is not always the case that players adapt to the Pareto-dominant equi-

librium when playing the game. The Pareto-dominant equilibrium is the one

yielding highest payo� for the players. This comes from the tradeo� between

e�cency and strategic risk. E�ciency here means that the players know which

payo� that gives them the highest utility and when realizing this should play

such that this is achieved. The strategic risk stems from the possibility that the

other player(s) defects from the e�cient strategy and therefore in�ict a loss to

the other player(s).

2.5 Evolutionary stability criteria

The �rst step to explore evolutionary behavior in games formally was conducted

in the 1970's by Maynard Smith and Price(Maynard Smith and Price,1973 [8]).

The idea is that a large population is playing a game,G. Most of the individuals

are in a sense programmed to play the same strategy s ∈ S. While there is a

small group of mutants in the same population programmed to play some other

mutant strategy s′ ∈ S.
Formally, let us assume that the share of mutants is ε ∈ (0, 1). Then pairs of

individuals are repeatedly drawn at random to play G(each with equal proba-

bility). Assume then that for the symmetic 2× 2 game, G, with payo� matrix,

A =

(
a11 a12

a21 a22

)
(12)

a strategy s∗ is said to be evolutionary stable if it for all s 6= s∗ exists an ε such

that:

sA(εs+ (1− ε)s∗) < s∗A(εs+ (1− ε)s∗) (13)

for all positive ε < ε. (Maynard Smith and Price,1973 [8];Maynard Smith,1974 [7]).

Let ∆ESS be the set of evolutionary stable equlibrias, then:

∆ESS =
{
s ∈ ∆NE : u(s′, s′) < u(s, s′)

}
. (14)
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Where s, s′ ∈ S. This condition states that every evolutionary stable strategy

has to be a Nash equlibrium.

We can use the same kind of classi�cation scheme for 2 × 2 games as in

section 2.3 to show the evolutionary stable equilibrium(equilibria).

Category I: In this quadrant we have (a1 < 0 and a2 > 0). Hence in all such

games ∆NE =
{
s2
}
. The equilibrium is strict and symmetric so it have one

ESS. ∆ESS = ∆NE =
{
s2
}
Ex.Prisoners Dilemma.

Category II: All games in this category (a1 > 0, a2 > 0) have two symmetric

strict Nash equilibria, and one mixed-strategy Nash equilibrium. The two pure

strategy equlibrias are evolutionary stable. ∆ESS =
{
s1, s2

}
. Ex. Coordination

game.

Category III: These games have two asymmetric strict Nash Equilibria, and

one symmetric mixed-strategy Nash equilibrium (a1 < 0, a2 < 0). Therefore

∆ESS = {σ}. Ex. Hawk-Dove Game.

Category IV: The games in this category(a1 > 0, a2 < 0) are symmetric

to category I. ∆ESS = ∆NE =
{
s1
}
(For a more extensive representation of

evolutionary game theory see Weibull,1996 [10])

3 Markov Chain Theory

3.1 Introduction

A Markov process {Xt} is a stochastic process with the property that, given the

value of Xt, the values of Xs for s > t are not in�uenced by the values of Xu

for u < t. This discussion limits itself to stationary transition probabilities i.e

the probabilities are independent of time.

The Markov property is formally,

Pr(Xn+1 = j|X0 = i, ...,Xn = i) = Pr(Xn+1 = j|Xn = i) = Pij (15)

It is customary to arrange these probabilities,Pij , in a transition probability

matrix.

P =



P11 . . . . . . . . . P1n

...
. . .

...
... Pij

...
...

. . .
...

Pn1 . . . . . . . . . Pnn


(16)
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This matrix shows the probability of going from one state to the same or a

another state in one transition. For example Pij shows the probability of moving

from state i to state j.

Each transition probability satis�es the conditions:

Pij ≥ 0 ∀i, j = 1, .., n (17)

n∑
j=0

Pij = 1 i = 1, .., n (18)

The probability that the process goes from state i to state j in n transitions

are

P
(n)
ij = Pr(Xm+n = j|Xm = i) (19)

or eqvivalently, the n-step transition probabilities P
(n)
ij are the entries in the

matrix Pn.

3.2 One-Dimensional Movement in a Markov Chain

What is meant by an One-Dimensional Movement in a Markov Chain is that

when the process is in state i, it can in a single transition only stay in state i

or move to one of the neighboring states i-1 or i+1.

P =



s0 r0 0 . . . . . . . . . 0

l1 s1 r1 0 . . . . . . 0

0 l2 s2 r2 0 . . . 0
...

. . .
. . .

. . .
...

... ln−1 sn−1 rn−1

...

0 . . . . . . . . . . . . ln sn


(20)

where Pr(Xn+1 = i + 1|Xn = i) = ri, Pr(Xn+1 = i − 1|Xn = i) = li and

Pr(Xn+1 = i|Xn = i) = si, i = 0, ..., n.

These kind of processes will become important later when studying the adap-

tive play in games. It is often the case that the movement in the system is

one-dimensional and therefore follows such a Markov Chain.

3.3 Long-run Behavior of Markov Chains

We often want to know what happens with the stochastic process {Xt} when
we let time tend to in�nity i.e. the behavior of the entries in the transition

probability matrix Pn as n→∞. This gives us an idea of how likely it is that

the process will be in the di�erent states in the long-run.
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Before moving to the limiting behavior theory some concepts have to be

de�ned.

De�nition 8 If P
(n)
ij > 0 for some n ≥ 1, we say that j is accesible from i, or

in shorter notation (i→ j).

This means that there is positive probability that state j can be reached starting

from state i in some �nite number of transitions.

De�nition 9 Two states i and j, each accessible from the other is said to com-

municate (i↔ j).

Communicating states have three properties:

Re�exitivity,(i↔ i).

Symmetry, if (i↔ j) then (j ↔ i).

Transitivity, if (i↔ j) and (j ↔ k) then (i↔ k).

De�nition 10 A set of states C is closed if Pij = 0, for i ∈ C and j /∈ C. No

state in C is accessible from any state outside C.

De�nition 11 A subset C of S,where S is the whole state space, is irreducible

if all states in C communicates.

De�nition 12 Periodicity of a Markov Chain The period d(i) of a state

i is the greatest common divisor of all numbers P
(n)
ii > 0 for all n ≥ 1. We

say that it is aperiodic if d(i) = 1. That is P 1
ii > 0 or P

(n)
ii > 0, where n is a

prime number.

We can classi�y states by deciding whether they are recurrent or transient.

For this we need some notation.

f
(n)
ii = Pr(Xn = i,Xν 6= i, ν = 1, 2, ..., n− 1|X0 = i) (21)

f
(n)
ii is the probability of starting in state i, and then the process is in a state

i′ 6= i for n− 1 periods and at the nth period we return to state i.

De�nition 13 Recurrent and transient states State i is recurrent if the

probability, fii, that we at some point in time return to state i is equal to 1. A

state i is transient if fii < 1.

Theorem 2 A state i is recurrent if and only if,

∞∑
n=1

P
(n)
ii =∞ (22)
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Equvivalently, state i is transient if and only if,

∞∑
n=1

P
(n)
ii <∞ (23)

(See Karlin and Taylor for a proof [2]). It is noteworthy that the de�niton and

the theorem states the same thing, but in di�erent ways.

De�nition 14 Stationary distribution The distribution π = (π0, π1, .., πn)

is stationary if π = πP, where P is the transition probability matrix.

De�nition 15 Positive recurrence If limn→∞ P
(n)
ii > 0 for one i in an ape-

riodic recurrent class, then πj > 0(πj is a stationary distribution) for all j in

the class of i. The class is then called positive reccurent.

De�nition 16 Limiting distribution The distribution π∗j = limn→∞ P
(n)
ij is

a limiting distribution if the limit exists, and it is independent of i and
∑
π∗j = 1.

The next three thorems that are presented is crucial for determining if a

limit distribution exists, and they will be used implisitly in later chapters.

Theorem 3 A limit distribution is stationary.

Theorem 4 2 If the statespace S is �nite, then:

1. Some state is recurrent.

2. All recurrent states are positive.

3. A stationary distribution always exist.

4. A limit distribution exists if the chain is irreducible and aperiodic.

Theorem 5 In a positive recurrent aperiodic Markov chain with states j=0,1,...

we have that,

lim
n→∞

P
(n)
jj = πj =

∞∑
i=0

πiPij ,

∞∑
i=0

πi = 1 (24)

and the π's are uniquely determined by the set of equations,

πi ≥ 0,
∞∑
i=0

πi = 1, πj =
∞∑
i=0

πiPij , j = 0, 1.. (25)

2In addition the following hold: A class is recurrent ⇔ the class is closed. A state is

transient if and only if for some closed set C, P n
ij > 0 for some j ∈ C, some n and i /∈ C
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4 Stochastic Adaptive Dynamics

4.1 Introduction

In economics we often want to study how individual decitionmaking a�ects the

economy at the aggregate level. The behavior of individuals are often illustrated

by assuming that they are rational and that they does not make any mistakes

when engaging each other in a strategic situation. In this section we leave

that assumption in a sense, and show how irrational behavior on the individual

level still can give rational behavior on the aggregate level. The reason that

causes this is that we let the behavior of individuals be a�ected by (small)

persistent stochastic disturbances, which may alter the long-run behavior. In

this stochastic setting, conventional wisdom like evolutionary stable strategies

becomes obsolete. Instead of letting a small mutant group of players invade

the population we here assume that it is the stochastic disturbances and the

distribution of the population that is the factors determining the behavior and

therefore the equlibrium selection. The method used in this chapter leads to a

"new" equlibrium concept, namely stochastic stability, �rst introduced by Young

and Foster(Foster and Young,1990 [1]). Much of this and the next chapter will

mainly contain theory but there will be presented some simple examples of how

this theory can be used.

This theory can be applied to many �elds within economics. It can be

used for explaining bargaining problems like sharecropping in agriculture, the

existence of a pension system or the long-run behavior of �rms in a duopoly. It is

especially suited for explaining conventions within a society. This was only a few

examples and there are many additional �elds where we can use this theory(for

more examples see Bowles,2004 [12]). To gain further perspective, this theory

is also used in biology, where it is used to model a Darwinian strategic survival-

of-the-�ttest situation.

The stochastic disturbances may stem from di�erent sources. First, the

agents encounters with each other could happen at random. Second, the agents

behavior in the game may be intentionally random when using mixed strategies.

Third, there could be some kind of mutation process such that some agents do

mistakes in their course of action. Fourth, if agents are assumed to have memory

this can introduce uncertainty into the model.

In evolutionary game dynamics, when the population is large, random shocks

at the individual level will average out. This is just an implication of the law of

large numbers. This will induce that the process at the aggregate level will have

a deterministic direction of motion. This approach can be reasonable in the
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short- and medium-run, but it may fail when in the case of a long time horizon.

The most important insight when analysing the following processes is that

when the aggregate stochastic e�ects are "small" the resulting Markov process

satis�es certain conditions. The conditions are that the process have a �nite

state space, is irreducible and aperiodic. If full�lled the process will have a

long-run distribution which is often concentrated on a single state when the

probability of making errors go to zero. This is the stochastically stable state

(or set if there are more states which occur with high probability). In many

cases we can say more about which equlibrium is selected when considering

stochastic stability versus Nash or evolutionary stable equlibria. When there are

two Nash equlibrias in a game we can not tell which of these will be played in

a real world situation, only that it is rational to play them. Using the concept

stochastic stability we can say more i.e we can predict the strategic behavior

of a population playing the game when the time horizon becomes long. The

stochastically stable equilibrium need not correspond to the Nash equlibrium or

the evolutionary stable equilibrium.

In this chapter there will be presented the analytical tools to �nd the stochas-

tically stable state(s) in games. The games analysed here will be 2 × 2 games

for analytical conviniance. When a theorem or new concept is introduced there

will be examples to illustrate them.

4.2 The General Idea

Consider a population of size n playing the game G.

G =
a11, b11 a12, b12

a21, b21 a22, b22

At the beginning of each period one agent from the population is chosen

at random. Time is discrete. The state of the process at time t is the current

number of agents playing the �rst row and the �rst column, from now on referred

to as strategy A, denoted zt ∈ Z = {0, 1, ..., n}. Agents playing the second row

and the second column is re�ered to as playing strategy B.

The best-response to the current distribution is given by the value of zt, that

is, whether it is smaller or bigger than the critical value,

zct =
a22 − a12

a11 − a12 + a22 − a21
n (26)

Here it is assumed that the player includes himself in the assessment of the

current distribution.

With high probability, 1 − ε, the agent chooses a best-response to the cur-

rent distribution of strategies. With probability, ε/2, he chooses strategy A at
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random. Similarly he chooses strategy B with probability, ε/2. This leads to

what is called a perturbed Markov Process.

Example 1 Consider a population of n agents playing the Pareto Coordination

game.

2, 2 0, 0

0, 0 1, 1

The state of the process at time t is the current number of agents playing the

�rst row or the �rst column, from now on re�ered to as strategy A and players

playing the second row or the second column is referred to as playing strategy

B, denoted zt ∈ Z = {0, 1, ..., n}. Time is discrete.

If zt ≥ n
3 strategy A is a best-response.

If zt ≤ n
3 strategy B is a best-response.

With high probability, 1 − ε, the agent chooses a best-response to the cur-

rent distribution of strategies. With probability, ε/2, he chooses strategy A at

random. Similarly he chooses strategy B with probability, ε/2. The process is

one-dimensional and the states can be illustrated as a directed tree. The only

movement we can have is either to stay in the same state or move one step to

the right or one step to the left.

Lets assume that n = 6. This imply that the critical value is 2.

Figure 2: 6-tree

The probabilities of the di�erent alternatives then becomes:

z < 2: Rz = (1−z/6)(ε/2), Lz = (z/6)(1−ε/2) and Sz = (1/6)(6−z+zε−3ε)

z > 2: Rz = (1− z/6)(1− ε/2), Lz = (z/6)(ε/2) and Sz = (1/6)(z− zε+ 3ε)

z = 2: R2 = 1/3, L2 = 1/6 and S2 = 1/2

The intuition behind the above transition probabilities are quite transparent.

If we are in a state z to the right of the critical point z = 2 the process moves

left if one less agent plays strategy A. This can happen if an agent currently

playing A is drawn(which happens with probability z/6) and this agent make a

13



mistake and plays strategy B(which happens with probability ε/2). A symmetric

argument holds when considering right transitions. The probability of staying in

a state is of course one minus the probabilities of moving left and right. If we

are in the critical point it is assumed that ε = 1 so the probability to play the

same or the new strategy are both one half. This leads to a perturbed Markov

chain,Pε. The entries in the matrix show the perturbed probabilities of moving

between the di�erent states. If we are in zt = 0, the probability of staying in

the same state is 1− ε/2 and the probability that the agent playing changes his

strategy(type) to strategy A is ε/2. The perturbed transition matrix is then,

Pε =



S0 R0 0 . . . . . . . . . 0

L1 S1 R1 0
...

0 L2 S2 R2 0
...

... 0 L3 S3 R3 0
...

... 0 L4 S4 R4 0

... 0 L5 S5 R6

0 . . . . . . . . . 0 L6 S6


(27)

which in this case is equal to,

Pε =



1− ε
2

ε
2 0 . . . . . . . . . 0

(1−ε/2)
6

(5−2ε)
6

5ε
12 0

...

0 1
6

1
2

1
3 0

...
... 0 ε

4
1
2

(1−ε/2)
2 0

...
... 0 ε

3
(4−ε)

6
(1−ε/2)

3 0
... 0 5ε

12
(5−2ε)

6
(1−ε/2)

6

0 . . . . . . . . . 0 ε
2 1− ε

2


(28)

4.3 Perturbed Markov Processes

Let P0 be a Markov process de�ned on a �nite state space S. A perturbation

of P0 is a process whose transition probabilities are slightly perturbed versions

of the transition probabilities P 0
ij . An example of such a process is the matrix

Pε in Example 1 above.

Let Pε be a Markov process on S. Pε is a regular perturbed process if it is

irreducible for every ε ∈ [0, ε∗]. Formally,

lim
ε→0

P εij = P 0
ij (29)
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and if P εij > 0 for some ε > 0, then

0 < lim
ε→0

P εij
εr(i,j)

<∞ (30)

for some r(i, j) ≥ 0.

r(i, j) is the resistance of the transition from i to j, and is unique. Some

more explaining is needed on this. The resistance shows how di�cult it is to

move from one state to another in a perturbed process i.e how many ε's that we

meet in the path in question. P 0
ij > 0 if and only if r(i, j) = 0. This is because

transitions in the unperturbed process do not have any resistance. Next, assume

that r(i, j) =∞ if P εij = P 0
ij = 0 for every ε.

Since the perturbed transition matrix Pε is irreducible and aperiodic for ev-

ery ε, it has an unique stationary distribution,πε. This distribution is important

when we want to �nd the stochastically stable state. It is the case that when

we let ε go to zero and the stationary probability of being in a speci�c state is

greater than zero this will be the stochastically stable state.

Theorem 6 (Young,1993a [4]) A state i is stochastically stable if,

lim
ε→0

πεi > 0 (31)

Example 2 To illuminate Theorem 6 let us now consider for simplicity a pop-

ulation of 3 individuals playing the Pareto coordination game as above. The

critical point now becomes 1. The transition matrix then becomes,

Pε =


S0 R0 0 0

L1 S1 R1 0

0 L2 S2 R2

0 0 L3 S3

 =


1− ε

2
ε
2 0 0

1
6

1
2

1
3 0

0 ε
3

(2−ε/2)
3

(1−ε/2)
3

0 0 ε
2 1− ε

2

 (32)

We then use standard Markov Chain theory if we want to �nd the stationary

distribution. This process is irreducible because we can with positive probability

reach all states when we start in an arbitrary state i. It is also aperiodic since

Pii > 0 and therefore the greatest common divisor is of course 1. Because of

this we know that a limiting ditribution exists. The equality that has to hold is

πε = πεPε. This leads to the following equation system,

S0π
ε
0 + L1π

ε
1 = πε0 (33)

R0π
ε
0 + S1π

ε
1 + L2π

ε
2 = πε1 (34)

R1π
ε
1 + S2π

ε
2 + L3π

ε
3 = πε2 (35)

R2π
ε
2 + S3π

ε
3 = πε3 (36)
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πε0 + πε1 + πε2 + πε3 = 1 (37)

The solution to the system is,

πε0 = ϕε, πε1 = 3ϕε2, πε2 = 3ϕε, πε3 = ϕ(2− ε), ϕ =
1

3ε2 + 3ε+ 2
(38)

From this we clearly see that the only state that has limε→0 π
ε
i > 0, i = 0, 1, 2, 3,

is state 3,which is infact the stochastically stable state. In the long run all three

agents will be playing (A,A), which is the Pareto-e�cient solution of the game.

There are other methods to �nd the stochastically stable state(s), as the

next theorem shows.

Theorem 7 (Young,1993a [4]) Let Pε be a regular perturbed Markov process,

and let πε be the unique stationary distribution of Pε for each ε > 0. Then,

lim
ε→0

πε = π0 (39)

exists, and π0 is a stationary distribution of the unperturbed process,P0. The

stochastically stable states are precisely those states that are contained in the

reccurrent class(es) of P0 having minimum stochastic potential,denoted γi.

The concept minimum stochastic potential is explained in the next example.

Figure 3: Perturbed tree

Figure 4: Unperturbed tree(ε = 0)
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Example 3 In �gure 4 we observe that the unperturbed process have two re-

current classes. C1 = {0} and C2 = {6}. In the pertubed process the path with

least resistance from C1 to C2 is:

ε

2
5ε
12

(1− ε/2)
2

(1− ε/2)
3

(1− ε/2)
6

=
5ε2(1− ε/2)3

2592
⇒ r12 = 2 (40)

Symmetrically the least resistant path from C2 to C1 is:

ε

2
5ε
12
ε

3
ε

4
1
3

(1− ε/2)
6

=
5ε4(1− ε/2)

5184
⇒ r21 = 4 (41)

Therefore the stochastic potential for the two reccurent classes are γ1 = 4 and

γ2 = 2.

Figure 5: Resistance between two recurrent classes

We conclude that C2 has the minimum stochastic potential and is therefore

the stochastically stable state.

The stochastic potential is the minimum of the resistances between di�erent

paths starting in state j and ending in a recurrent state(or set) of the system.

The above theorem states that the long-run probability of the process will

be concentrated around some state when we lack a estimate of ε, but know that

it is "small". If ε was known we could in theory estmate it by computing the

actual distribution using the same method as above, namely �nd the solution

to the equationsystem πε = πεPε.

In the discussion and examples so far it has been assumed for simplicity

that the population,n, has been small. If n becomes large, which is a resonable

assumption, the method of �nding a perturbed stationary distribution becomes

very timeconsuming so another approach is more convinient to use. This is

called the Markov chain tree theorem.

4.4 Markov chain tree theorem

Let P be any irreducible Markov process de�ned on a �nite state space S. Take

one state i, and consider the directed tree Ti which consist of all right transitions

from states to the left of i and all left transitions from states to right of i. This

is called a i-tree. A directed tree is a graph that consists of S − 1 edges and

from every vertex j 6= i there exists an uniqe path from j to i. Figure 3 is an

example of a tree. (for more on graph theory see Wiitala,1987 [13]).
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Theorem 8 (Markov chain tree theorem [5]) For one-dimensional pro-

cesses, the long-run probability of being in state i is proportional to the product

of the probabilities on the edges of the directed tree Ti,

πi = k
∏
y<i

Ry
∏
y>i

Ly (42)

, here k is a factor of proportionality such that
∑n
i=0 πi = 1.

This theorem applied o�ers a tractable way to calculate the probabilities for

being in di�erent states, and when applied it can be used to see which state(s)

is the stochastically stable one. One can just compare the di�erent probabilities

i.e to which power ε the stationary distribution have in all the states and see

what happens as the perturbation tend to zero(ε → 0). Usually one state is

much more likely than the other states.

To check this theorem one can start out with the regular theory about sta-

tionary distributions in �nite Markov chains, and insert in the above theorem.

Assume that the state is i. The subscipt i on the transition matrix,P, means

the i'th column of the matrix.

πi = πiPi

= Ri−1πi−1 + Siπi + Li+1πi+1

= Ri−1k
∏

y<i−1

Ry
∏

y>i−1

Ly + Sik
∏
y<i

Ry
∏
y>i

Ly

+ Li+1k
∏

y<i+1

Ry
∏

y>i+1

Ly

= Ri−1k
∏

y<i−1

Ry
∏

y>i−1

Ly + (1− Li −Ri)k
∏
y<i

Ry
∏
y>i

Ly

+ Li+1k
∏

y<i+1

Ry
∏

y>i+1

Ly

= k
∏
y<i

Ry
∏
y>i

Ly ≡ πi

(43)

This holds for every state i. In addition the condition that
∑
i πi = 1 must

hold. In this way we have shown that this approach is equvivalent to solving

the equation system π = πP.

Example 4 cont. of Example 1. This example will show how the relative prob-

abilities di�er in which power the ε's are, from this it is easy to �nd the stochas-

tically stable state in the game in Example 1. The relative probabilities of the

six di�erent states are:

π0 = k
∏
y<0

Ry
∏
y>0

Ly = kL1L2L3L4L5L6 = k
5ε4(1− ε/2)

10368
(44)
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π1 = k
∏
y<1

Ry
∏
y>1

Ly = kR0L2L3L4L5L6 = k
5ε5

3456
(45)

π2 = k
∏
y<2

Ry
∏
y>2

Ly = kR0R1L3L4L5L6 = k
5ε6

6912
(46)

π3 = k
∏
y<3

Ry
∏
y>3

Ly = kR0R1R2L4L5L6 = k
5ε5

5184
(47)

π4 = k
∏
y<4

Ry
∏
y>4

Ly = kR0R1R2R3L5L6 = k
5ε4(1− ε/2)

3456
(48)

π5 = k
∏
y<5

Ry
∏
y>5

Ly = kR0R1R2R3R4L6 = k
5ε3(1− ε/2)2

864
(49)

π6 = k
∏
y<6

Ry
∏
y>6

Ly = kR0R1R2R3R4R5 = k
5ε2(1− ε/2)3

2592
(50)

When ε→ 0 state 6 where all the players play strategy A is the most

probable state of the system, and therefore is the stochastically stable

state. The intuition behind this is that π6 include ε2 while in the other states

epsilon is in a higher power than 2. Therefore as ε → 0 the probabilities of

the other states will go much faster towards zero than the probability of state 6.

From this result we can draw the conclusion that this must be the stochastically

stable state. State 6 i.e all coordinate on playing (A,A) is also the Pareto-

optimal solution of the game. In this case the stochastically stable state is also a

Nash equilibrium in the game. This re�nement gives us more information about

what will happen when a population plays a game than standard game theory.

There are caveats in relation to the assumption about the long time horizon that

is needed to reach this equlibria, but this will be discussed in chapter 6.

4.5 A interesting example

Consider the Hawk-Dove game,G,

G =
w−l

2 , w−l2 w, 0

0, w w
2 ,

w
2

Here w is the reward of winning the �ght. The cost of losing is l. We assume

that there is an equal probability of winning if there are a �ght. In addition it

is assumed that w−l
2 < 0. The �rst row and the �rst column is denoted strategy

�ght while the second row and the second column is denoted strategy �ight.

There is two asymmetric pure strategy Nash equilibria in this game, namely

(�ght,�ight) and (�ight,�ght). There is also one mixed strategy Nash equlibrium
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where the players play the �ght strategy with probability w
l . This is also the

evolutionary stable equlibrium in this game.

Next assume that there are n agents in a population playing the game above.

The state of the system, at period t, is the number of agents playing the �ght-

strategy denoted by zt. There is also trembling of the same kind as in the

examples above. When deciding on which strategy to play the agents compare

the expected payo� of the two strategies. The critical point is therefore, zt =
w
l n = δn, where δ ∈ (0, 1). So if zt > δn ⇒ fight is a best response, and if

zt < δn⇒ flight is a best response.

For illustrative purposes now assume that w = 4, l = 6 and that n = 15. The

critical point then becomes zt = 10. The transitions probabilities are of course,

z < 10: Rz = (1 − z/15)(ε/2), Lz = (z/15)(1 − ε/2) and Sz = 1 − Rz − Lz
z > 10: Rz = (1 − z/15)(1 − ε/2), Lz = (z/15)(ε/2) and Sz = 1 − Rz − Lz
z = 10: R10 = 1/3, L10 = 1/6 and S10 = 1/2

Using the Markov chain tree theorem we can �nd the relative probabilities

of the di�erent states when t→∞.

π0 = k
∏
y<0

Ry
∏
y>0

Ly = kL1 . . . L15 = k(ε/2)5(1− ε/2)9 (51)

π15 = k
∏
y<15

Ry
∏
y>15

Ly = kR0 . . . R14 = k(ε/2)10(1− ε/2)4 (52)

Here the only two states we need to compare the probability of is the left- and the

right endpoint, since these are the possible candidates. From the calculation it

is clear that the probability that no one play �ght is the greatest, which imply

that the stochastically stable state(SSS) is (�ight,�ight). The probability of

this state is larger by a factor of 1/ε5 when comparing the two alternatives.

This di�ers from the predictions of other equilibrium concepts. The long-run

aggregate behavior in the population is to "cooperate" such that the Pareto-

optimal equilibrium is played.

4.6 Link between Stochastic Stability

and Risk Dominance

There is a direct link between stochastic stability and risk dominance in 2 × 2

games. In this kind of game the stochastically stable state is the risk dominant

equilibrium. This was �rst showed by Kandori, Mailath and Rob(1993) [11].

The conditions for this result to hold is that the mutation rate is uniform and

that the population is large enough. This eqvivalence relation can be illustrated

by using the results from Example 2.
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Example 5 cont. of Example 2 The Pareto Coordination game is the following,

G =
a11, b11 a12, b12

a21, b21 a22, b22

with a11 = b11 = 2,a12 = b12 = a21 = b21 = 0 and a22 = b22 = 1. Using the the

method in chapter 2.4,

(a11 − a21)(b11 − b12) ≥ (a22 − a12)(b22 > b21) (53)

which in this case is the same as,

(2− 0)(2− 0) > (1− 0)(1− 0)⇒ 4 > 1 (54)

Therefore the equilibrium (A,A) is the stricktly risk dominant equilibrium, and

because of the eqvivalence relation also is the stochastically stable state as showed

in Example 2.

The eqvivalence between the two concepts holds only for 2 × 2 games. When

each player have more than two strategies in their strategy space this relation

breaks down.

4.7 Remarks

When trying to �nd the stochastically stable state (or set) there are "many roads

that leads to Rome". When the di�erent methods should be used depends on

which situation one is in. Theorem 5 is not very usefull when the population

becomes large since this demands tedious calculations to �nd the (perturbed)

stationary distribution of the system. Theorem 6 is easier to use when n in-

creases because it is often simple to �nd the recurrent classes and after this to

�nd the state with the minimum stochastic potential. The Markov chain tree

theorem is tractable when working with one-dimensional Markov chains, but be-

comes di�cult to use if we leave this assumption. Next there will be presented

an extension to the existing theory using a di�erent method. The Markov chain

tree theorem could possibly also be used, but that is omitted in this paper.

5 Extension of the Concept

5.1 Games with two populations playing agains each other

Consider the game G,

G =
a11, b11 a12, b12

a21, b21 a22, b22
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Assume that there are m players in population A operating the rows, and that

there are n players in population B operating the columns. Let i be the number

of agents in population A that plays the �rst row, denoted as strategy a, and

let j be the number of agents in population B that plays the �rst column, also

denoted strategy a. The second row and the second column is both denoted

strategy b. Assume that time is discrete, and that in period t one player from

both populations is drawn at random. In addition the two agents drawn faces a

probability equal to 1/2 to be allowed to play i.e. in each period there is only one

of the drawn agents playing. The probability that the agent from population A

plays strategy a is pAa = i/m and that an agent from population B plays strategy

a is pBa = j/n. If the player from population A is allowed to play the agent

will choose strategy a if this yields a higher payo� than playing strategy b. The

payo�s are determined as follows: The opponent is a randomly drawn player

from population B which play strategy a or strategy b with the probabilities

pBa = j/n and pBb = 1 − j/n respectively. The agent from population A then

compares the expected payo�s,

EA(a) = a11p
B
a + a12(1− pBa ) = a11(j/n) + a12(1− j/n) (55)

EA(b) = a21p
B
b + a22(1− pBb ) = a21(j/n) + a22(1− j/n) (56)

This gives a critical point for the agents behavior,

j∗ =
a22 − a12

a11 − a12 + a22 − a21
n = δAn, δA ∈ (0, 1) (57)

This gives the following rule for playing the game: If j > j∗ = δAn ⇒play

strategy a, if j < j∗ = δAn ⇒play strategy b and if j = j∗ = δAn ⇒the agent

is indi�erent between strategy a and strategy b.

If the agent is a a-player and j < j∗ = δAn, the agent changes strategy to

being a b-player hence the state changes from (i/m) to ((i − 1)/m). On the

other hand if the player is a b-player and j > j∗ = δAn the state will change to

((i+1)/m). In the other cases we get no change in the state. Assume that there

is no change in j/n. In addition to this there is trembling. With probability

1 − ε the agent follows a best-response scheme, with probability ε/2 the agent

goes left by mistake and with probability ε/2 the agent goes right by mistake.

Since we allow trembling the system will be similar to the cases in chapter 4,

but the di�erence here is that the states will be pairs (i, j) in the perturbed
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transition probability matrix.

Pε =



P(0,0)(0,0) . . . . . . . . . P(0,0)(m,n)

...
. . .

...
... P(i,j)(i,j)

...
...

. . .
...

P(m,n)(0,0) . . . . . . . . . P(m,n)(m,n)


(58)

If it is an agent from the B population playing it is naturally symmetric so,

i∗ =
b22 − b12

b11 − b12 + b22 − b21
n = δBm, δB ∈ (0, 1) (59)

is the critical point and the behavior rules are, if i > i∗ = δBm⇒play strategy

a, if i < i∗ = δBm ⇒play strategy b and if i = i∗ = δBm ⇒the agent is

indi�erent between strategy a and strategy b.

The probabilities in the above transitions matrix,Pε can be calculated ex-

plicitly. If we are in a state (i, j), there are �ve possible transitions that can

happen. A agent from population A drawn with probability 1/2. The proba-

bilities of the transitions to the left or to the right will be a�ected by the state

in population B, since the best-response dynamics for the population A player

is a a�ected by the value of j. It will be symmetric for a agent from the B

population. If a agent from population A is drawn the transitions probabilities

are:

P(i,j)(i−1,j) =
1
2

(
i

m
)(1− ε

2
), P(i,j)(i+1,j) =

1
2

(1− i

m
)(
ε

2
), j < j∗

P(i,j)(i−1,j) =
1
2

(
i

m
)(
ε

2
), P(i,j)(i+1,j) =

1
2

(1− i

m
)(1− ε

2
), j > j∗

P(i,j)(i−1,j) =
1
4

(
i

m
), P(i,j)(i+1,j) =

1
4

(1− i

m
), j = j∗

, and symmetrically if a agent from population B are drawn:

P(i,j)(i,j−1) =
1
2

(
j

n
)(1− ε

2
), P(i,j)(i,j+1) =

1
2

(1− j

n
)(
ε

2
), i < i∗

P(i,j)(i,j−1) =
1
2

(
j

n
)(
ε

2
), P(i,j)(i,j+1) =

1
2

(1− j

n
)(1− ε

2
), i > i∗

P(i,j)(i,j−1) =
1
4

(
j

n
), P(i,j)(i,j+1) =

1
4

(1− j

n
), i = i∗

The probability of the transition to the same state is of course P(i,j)(i,j) =

1− P(i,j)(i−1,j) − P(i,j)(i+1,j) − P(i,j)(i,j−1) − P(i,j)(i,j+1).

Next, assume that the states (0, 0) and (m,n) are both recurrent and ab-

sorbing. Then any stationary distribution is a convex combination of π0 which
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equals 1 for (0, 0) and 0 for all other states, and π1 which equals 1 for (m,n) and

zero for all other states. Then if πε is the (unique) stationary distribution of Pε,

and π is a cluster point of πε when ε → 0, then π is a stationary distribution

of the unperturbed process P0 and therefore equals a convex combination of π0

and π1. Let π
εk be a convergent sequence where εk → 0 as k →∞ such that,

lim
k→∞

πεk = π (60)

For any γ > 0, πεk(h, k′) < γ for all (h, k′) /∈ {(0, 0), (m,n)}. Moreover, πεk(0,0) =

limq→∞ P q(h,k′)(0,0) for all (h, k′), in particular for (h, k′) = (m,n) so

πεk(0,0) = limq→∞ P q(m,n)(0,0) and symmetrically πεk(m,n) = limq→∞ P q(0,0)(m,n)

Figure 6: Illustration of the process

We know that j∗ is the critical value for population A. So if j > j∗ ⇒ play

strategy a and if j < j∗⇒play strategy b. Similarly i∗ is the critical value for

population B and if i > i∗⇒play strategy a or if i < i∗⇒play strategy b. When

considering the movement in the graph above these values become important,

and we can divide the behavior of the Markov process into four categories.

The movement in the process can be shown using a dynamic "best-response-

diagram".

I: j < j∗ and i < i∗ ⇒ strategy b is a best-response for both players since

(1/2)P(i,j)(i+1,j) < (1/2)P(i,j)(i−1,j) for the A population and (1/2)P(i,j)(i,j+1) <

(1/2)P(i,j)(i,j−1) for the B population i.e movement to the right is more likely

than movement to the left for both populations so the movement will be down-

ward and to the left.
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II: j < j∗ and i > i∗ ⇒ strategy b is a best-response for players in pop-

ulation A and strategy a is a best-response for players in population B since

(1/2)P(i,j)(i+1,j) < (1/2)P(i,j)(i−1,j) for the A population and (1/2)P(i,j)(i,j+1) >

(1/2)P(i,j)(i,j−1) for the B population i.e the movement of the process is upward

and to the left.

III: j > j∗ and i < i∗ ⇒ strategy a is a best-response for players in pop-

ulation A and strategy b is a best-response for players in population B since

(1/2)P(i,j)(i+1,j) > (1/2)P(i,j)(i−1,j) for the A population and (1/2)P(i,j)(i,j+1) <

(1/2)P(i,j)(i,j−1) for the B population i.e the movement of the process is down-

ward and to the right.

IV: j > j∗ and i > i∗ ⇒ strategy a is a best-response for both players since

(1/2)P(i,j)(i+1,j) > (1/2)P(i,j)(i−1,j) for the A population and (1/2)P(i,j)(i,j+1) >

(1/2)P(i,j)(i,j−1) for the B population i.e movement to the right is more likely

than movement to the left for both populations so the movement will be upward

and to the right.

Figure 7: Law-of-motion in the process

We will show the order of magnitudes,with respect to ε, of the various proba-

bilities. To calculate order of magnitudes, we can replace probabilities connected

with "nontrembling" by one i.e the cases where we have 1− ε/2 ≈ 1. We use ∼
when order of magnitude is described. From the �gure we see that P i

∗+j∗

(i∗,j∗)(0,0) ∼
1. This means that moving from the point (i∗, j∗) to (0, 0) in the process hap-

pens without meeting resistance since the movement of the process goes in this

direction,when assuming that this is a directed path from (i∗, j∗) to (0, 0). The
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reason why the probability has i∗+j∗ as power is that it will take i∗+j∗ steps to

reach from (0, 0) from (i∗, j∗) and vice versa. When we go from (0, 0) to (i∗, j∗)

there will be resistance since we are going uphill against the movement of the

process. The probability of this is P i
∗+j∗

(0,0)(i∗,j∗) ∼ εmin{i∗+1,j∗+1}. If we con-

sider the other recurrent state ,(m,n), the probability of moving from (i∗, j∗) to

(m,n) is Pm−i
∗+n−j∗

(i∗,j∗)(m,n) ∼ 1 and the probability of moving from (m,n) to (i∗, j∗) is

equal to Pm−i
∗+n−j∗

(m,n)(i∗,j∗) ∼ εmin{m−i∗,n−j∗}. Therefore the probabilities of moving

from one recurrent state to the other is:

Pm+n
(m,n)(0,0) ∼ ε

min{m−i∗,n−j∗} (61)

Pm+n
(0,0)(m,n) ∼ ε

min{i∗+1,j∗+1} (62)

These probabilities are proportional and by introducing a proportionality vari-

able we can �nd the probabilities more exact. The next to last step before

ending in the recurrent state (m,n) or (0, 0) can originate from three di�er-

ent positions namely (m− 1, n), (m,n− 1) and (m,n) or (1, 0), (0, 1) and (0, 0)

respectively. We can therefore make the proportionality variable a convex com-

bination of these three possibilities. Let α(0,0) be the variable corresponding to

the path from (m,n) to (0, 0) and let β(m,n) correspond to the path (0, 0) to

(m,n). Then the probabilities becomes:

Pm+n
(m,n)(0,0) = α(0,0)ε

min{m−i∗,n−j∗} (63)

Pm+n
(0,0)(m,n) = β(m,n)ε

min{i∗+1,j∗+1} (64)

Here α(0,0) = kco
{{
α(0,0), α(1,0), α(0,1)

}}
and β(m,n)=

kco
{{
β(m,n), β(m−1,n), β(m,n−1)

}}
. k is a factor which is the same for both

α(0,0) and β(m,n) and stems from the number of addends in Pm+n. k ∈ [1, 3).

Here it is assumed that when the state is exactly in i∗ the downward move-

ment in the third quadrant is in e�ect and likevise when the state is exactly in

j∗ the dominant e�ect is the left movement in the second quadrant. This is the

case when we me move from (m,n) to (0, 0). When we have the opposite path,

namely from (0, 0) to (m,n), we say that the upward movement in the second

quadrant kicks in at i∗ + 1 and that the right movement in the third quadrant

is in e�ect at j∗ + 1.

The explaination of why the probabilities is propotional to εmin{i∗+1,j∗+1} or

εmin{m−i∗,n−j∗} is that this must be the paths of least resistance. Within this

framework resistance means how di�cult it is to move against the motion of the

process i.e how many ε's one encounter when going from one state to another.

The intuition is that when starting at (0, 0) the movement up and to the right
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meets more resistance when we move along an arbitrary path to (i∗ + 1, j∗ + 1)

than if we follow the most e�cient of the two possible paths. There are two

paths that potentially can have the least resistance moving from (0, 0) to (m,n).

The �rst of these paths goes from (0, 0) to (i∗ + 1, 0) which causes i∗ + 1 steps

that meets resistance and when we get to (i∗+1, 0) the movement of the system

is upward and this imply no resistance to reach (i∗+ 1, j∗+ 1). From this point

the movment is upward and to the right so we can go from (i∗ + 1, j∗ + 1)

to (m,n) meeting no more resistance. The other path �rst go from (0, 0) to

(0, j∗ + 1) meeting j∗ + 1 steps with resistence and then the right movment in

the third quadrant gives no resistance to reach (i∗ + 1, j∗ + 1) and also here

there are no more resistance from (i∗ + 1, j∗ + 1) to (m,n) as above. Taking

the minimum of these two paths gives the path from (0, 0) to (m,n) that meets

the least resistance and is therefore the most e�cient path. When we start

at (m,n) the two paths that are candidates for being the one with the least

resistance. The �rst is the path (m,n) to (m− i∗, n),with m− i∗ steps meeting

resistance, and then move downwards to (m− i∗, n− j∗) without resistance in
the third quadrant. When in the point (m−i∗, n−j∗) the process meets no more

resistance on its way down to (0, 0). The second path is (m,n) to (m,n − j∗),
with n− j∗ steps meeting resistance, and then move without resistance down to

(0, 0) from (m,n − j∗). We use the minimum function in both cases to decide

which of the two paths are the one with the least resistance.

By induction, assume that for all m,n and any given q ≥ m+ n the proba-

bilities are proportional to,

P q
′

(m,n)(0,0) ∼ ε
min{m−i∗,n−j∗} (65)

P q
′

(0,0)(m,n) ∼ ε
min{i∗+1,j∗+1} (66)

and q ≥ q′ ≥ m+ n.

Or,

P q
′

(m,n)(0,0) = α(q′,0,0)ε
min{m−i∗,n−j∗} (67)

P q
′

(0,0)(m,n) = β(q′,m,n)ε
min{i∗+1,j∗+1} (68)

Like above α(q′,0,0) = kco
{{
α(q′,0,0), α(q′,1,0), α(q′,0,1)

}}
and β(q′,m,n)=

kco
{{
β(q′,m,n), β(q′,m−1,n), β(q′,m,n−1)

}}
. k is a factor which is the same for

both α(q′,0,0) and β(q′,m,n) and stems from the number of addends in P q
′
. k ∈

[1, 3).

In the next induction argument these variables are omitted for convinence

since they wont a�ect the result.
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Let us show this formula for q′+1. For any path from (0, 0) to (m,n) or (m,n)

to (0, 0), if at step q′ the state is in (m,n) or (0, 0) respectively there is nothing

to prove since P q
′+1

(0,0)(m,n) ∼ εmin{i∗+1,j∗+1} and P q
′+1

(m,n)(0,0) ∼ εmin{m−i∗,n−j∗}.

If the next to last state is either (m − 1, n) or (m,n − 1) the products up

to step q′ are, respectively, P q
′

(0,0)(m−1,n) ∼ P q
′+1

(0,0)(m,n) ∼ εmin{i∗+1,j∗+1} and

P q
′

(0,0)(m,n−1) ∼ P q
′+1

(0,0)(m,n) ∼ εmin{i∗+1,j∗+1}, since there is no resistance for

this movement(the last step has a probability ∼ 1). But for the reversed

path there will be alterations, here the probabilities will be,P q
′

(m−1,n)(0,0) ∼
εmin{m−1−i∗,n−j∗} ⇒ P q

′+1
(m,n)(0,0) ∼ εε

min{m−1−i∗,n−j∗} and

P q
′

(m,n−1)(0,0) ∼ εmin{m−i∗,n−1−j∗} ⇒ P q
′+1

(m,n)(0,0) ∼ εεmin{m−i∗,n−1−j∗}. This is

because the last step imply one more unit of resistance i.e one more ε. This

holds if we require that the path should go from (m,n) to (0, 0) in q′ + 1 steps.

It will be totally symmetric when at step q′ we are in state (1, 0) or (0, 1) and

require that we go from state (0, 0) to (m,n) in q′ + 1 steps.

To decide which of these paths has the least resistance we have to compare

the transition probabilities. We now consider the case when we at step q′ are

in state (m− 1, n) or (m,n− 1). If, P q
′

(m−1,n)(0,0) ∼ ε
min{m−1−i∗,n−j∗} <

εmin{m−i∗,n−1−j∗} ∼ P q
′

(m,n−1)(0,0) then, min {m− 1− i∗, n− j∗} <
min {m− i∗, n− 1− j∗}. Here m− 1− i∗ is clearly less than m− i∗, and n− j∗

is bigger than n− 1− j∗ so we have to compare m− 1− i∗ and n− 1− j∗. This
gives, m − 1 − i∗ < n − 1 − j∗ ⇒ m − i∗ < n − j∗. So if m − i∗ < n − j∗ the
best path is to the left from (m,n) to (0, 0).

Lets check if this holds for q′+1, P q
′+1

(m,n)(0,0) ∼ εε
min{m−1−i∗,n−j∗} = εεm−1−i∗ =

εm−i
∗

= εmin{m−i∗,n−j∗}. When the opposite inequality holds we get, P q
′+1

(m,n)(0,0) ∼
εεmin{m−i∗,n−1−j∗} = εεmin{m−i∗,n−1−j∗} = εεn−1−j∗ = εn−j

∗
= εmin{m−i∗,n−j∗}.

Again we have that because of symmetry this holds for the paths from (1, 0)

and (0, 1) to (m,n).

The induction argument above shows that the transition probabilities are

only a�ected by the value of q in the variables α(q,0,0) and β(q,m,n). If we assume

that these are bounded i.e 0 < limq→∞ α(q,0,0) < ∞, limq→∞ α(q,0,0) = α and

0 < limq→∞ β(q,m,n) <∞, limq→∞ β(q,m,n) = β, we can say the following,

πεk(0,0) = lim
q→∞

α(q,0,0)P
q
(m,n)(0,0) = αεmin{m−i∗,n−j∗} (69)

and,

πεk(m,n) = lim
q→∞

β(q,m,n)P
q
(0,0)(m,n) = βεmin{i∗+1,j∗+1} (70)

So limε→0 απ
εk
(0,0) � limε→0 βπ

εk
(m,n) if, ε

min{m−i∗,n−j∗} < εmin{i∗+1,j∗+1} which

imply the following conditions for (0, 0) to be the equilibrium, m− i∗ < i∗+1⇔
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m < 2i∗+1, n−j∗ < j∗+1⇔ n < 2j∗+1, m−i∗ < j∗+1⇔m < i∗+j∗+1 and

n− j∗ < i∗ + 1 ⇔ n < i∗ + j∗ + 1. If we have limε→0 απ
εk
(0,0) ≺ limε→0 βπ

εk
(m,n)

the conditions is symmetric. So the equilibrium is given from the size of the

populations and the distribution of payo�s in the game.

Example 6 Consider the Hawk-Dove game as in section 4.5, with w = 4 and

l = 6. The payo�s in the game then becomes,

−1,−1 4, 0

0, 4 2, 2

We now want to check which predictions the new concept gives in this game.

Calculating the critical points in each population is done as above and yields,

j∗ = 2
3n and symmetrically i∗ = 2

3m. Now assume that the A and B popu-

lations are of di�erent sizes, say n = 9 and m = 6, which imply j∗ = 6 and

i∗ = 4. The probability of moving from one recurrent state to the other is:

P 15
(0,0)(6,9) ∼ εmin{m−i∗,n−j∗} = εmin{2,3} = ε2 and P 15

(6,9)(0,0) ∼ εmin{i∗+1,j∗+1} =

εmin{5,7} = ε5. Using this result we can �nd the limiting distributions: πεk(0,0) =

limq→∞ α(q,0,0)P
q
(6,9)(0,0) = αεmin{m−i∗,n−j∗} = αε2 and πεk(6,9) =

limq→∞ β(q,6,9))P
q
(0,0)(6,9) = βεmin{i∗+1,j∗+1} = βε5. To �nd the stochastically

stable state we have to compare how the two limiting distributions evolves when

ε → 0, which is: limε→0 π
εk
(0,0) = limε→0 αε

2 and limε→0 π
εk
(6,9) = limε→0 βε

5.

Since the long-run probability of state (0, 0) involves ε to the power of 2 while

the probability for state (6, 9) involves ε to the power of 5 it should be obvious

that, as ε → 0, the state (0, 0) is much more likely than state (6, 9). Therefore

state (0, 0) is the stochastically stable state i.e all the agents in population A and

population B plays the second row and the second column respectively. This equi-

librium strategy is �ight. This corresponds to the predicted stochastically stable

state in section 4.5, but now the only di�erence is that we have two populations

playing against each other in contrast to the single population earlier.

6 Discussion of the assumptions underlying the

theory

An economy is a extremly complex system and to be able to investigate the

di�erent aspects it is crucial to make simplifying assumption. In this section we

have a closer look at the assumptions of the models and methods used in this

paper.

First, when we want to �nd the stochastically stable state (set) we let the

number of time periods tend to in�nity. Therefore it takes a very long time
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before the system reaches the equilibrium and we can not say anything about

the strategic interaction in the short and medium-run. So stochastic stability is

a concept only to be used when the time period we are interested in are long.

Many will be tempted to say that this makes the concept unusable because of

the known fact that "in the long-run, we're all dead", but if the time periods are

measured in short intervals i.e the strategic interactions happens very frequently,

we can probably reach the stochastically stable state in a shorter time horizon.

Second, the trembling in the models is assumed to be stationary since ε is a

given small number. This means that all agents in the population(s) are equaly

likely to make an error, so the population is homogenous in this respect. In

a real world population this is clearly not the case, but if the probability of

making an error was to be di�erent for each agent(it could have been normally

distributed) it would make the model more complex and therefore is omitted

here.

Third, in the above models we have not said anything about the exact value

of ε, only that it is a small number. It is a resonable assumption that the

probability of making errors are small, but if ε increases for some reason this

may alter the behavior of the agents (See Young,1998 [4] or Young,2009 [5]).

Fourth, here it has been the case that the players have made their decitions

on the basis of the number of agents in the population playing the di�erent

strategies. This can be a reasonable assumption if it is possible to do so. In the

litterature there exist other factors that the agents base their decitions on, for

example letting the agents have memory. In this kind of models the agent draw

a memory combinaton,of what happened in the m last periods, and base their

decition on this(See Young,1998 [4]).

7 Conclusion

The aim of this paper have been to present and re�ne the theory of stochastic

stability in normal-form games. The existing theory is here stated without

proofs, but references to the litterature is given. When the theorems have been

presented there are examples to make the theory more applicable to economic

problems. The new extension give an alternative way to �nd the stochastically

stable state(s) in games with two populations. The results from this theory

gives reasonable predictions when compared with the one population case.
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