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Chapter 1

Introduction

Since the development of quantum mechanics in the 1920s and with the introduction
of the Schrödinger equation in 1926 [1], different approaches to solve the Schrödinger
equation have received substantial attention by physicists and chemists around the
world. With the discovery and development of computers we are now capable of solv-
ing the Schrödinger equation for systems one did not deem possible less than a century
ago; illustrated by the famous statement of P. A. M. Dirac [2] in 1929,

The underlying physical laws necessary for the mathematical theory of a
large part of physics and the whole part of chemistry are thus completely
known, and the difficulty is only that the applications of these laws leads
to equations much too complicated to be soluble.

Although exact solutions can be obtained only for a few systems, the introduction
of computer technology and the development of computational methods have allowed
the Schrödinger equation to be solved in an approximate fashion for a large variety
of systems. The theoretical studies of molecular properties have developed into an
important tool, used both for predictions and analysis of chemical and physical pro-
cesses. As a result, the use of calculations and simulations, rigorously based on the
laws of quantum mechanics, has increased dramatically in many branches of science in
the recent years; not only in chemistry and physics, but also in related fields such as
medicine and biology.

The traditional way to solve the Schrödinger equation is by the use of wave-function
based methods. The hierarchical wave-function based methods can systematically be
extended to any given level of accuracy, and state-of-the-art electronic structure cal-
culations challenge the accuracy of experiments. The scaling behavior of these meth-
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ods, however, currently limits their use to small systems. For larger systems density
functional theory (DFT) have become very popular, since the DFT methods typi-
cally constitute a good compromise between cost and accuracy. The DFT approach is
based upon the fact that the ground state electron density contains all the informa-
tion necessary to obtain the potential, and vice versa. Thus all the information is in
principle possible to obtain if one of the two is know. The exact universal functional
is not known, and a multitude of different approximate functionals exists. Still, DFT
is the most widely used quantum-mechanical approach today, and provide important
qualitative information even for large systems. During the last decade linear-scaling
developments have allowed DFT calculations for molecular systems containing more
than 1000 atoms.

The aim of this thesis has been development towards routine calculation for large
molecular systems. To reach this goal, it is necessary to reduce both the cost and
scaling properties of the DFT approach, and to develop robust, black-box optimization
schemes.



Chapter 2

A brief summary of included paper

In Paper I we develop a new integral evaluation scheme, in which the solid-harmonic
Gaussian basis functions are expanded in Hermite rather than Cartesian Gaussian in-
termediate functions. This approach both reduces the cost and simplifies the evaluation
of differentiated integrals, and of for example the two- and three-center two-electron
integrals used in the so-called density-fitting approximation. This approach is used
both in Paper III and Paper IV to improve computational performance and at the
same time reduce programming efforts.

In Paper II we present a boxed density-fitting scheme for linear-scaling density-
fitted Coulomb evaluation. This approach is based upon the partitioning of the electron
density [3], and the approximation of each part individually. By adding a robust correc-
tion term to the density-fitted Coulomb contribution, the introduced errors are small
- compared to for example the errors introduced by the numerical integration quadra-
ture for the exchange-correlation term. Linear scaling of the density-fitted Coulomb
contribution is demonstrated for polyalanine peptides containing up to 1200 atoms.

In Paper III we follow Dunlap [4] and use a robust and variational density-fitting
formulation to approximate four-center two-electron integrals. The results of this paper
clearly indicate that sparse metrics may in fact be used for linear-scaling density-fitting
developments. As an example, obtaining the fitting coefficients using the overlap metric
introduce errors within 50−100% of the errors using the conventional Coulomb metric;
instead of the previously reported order of magnitude larger errors in Refs. [5, 6].

In Paper IV we present an efficient DFT force evaluation - the forces are needed
for traversing the potential energy surface of molecular systems, and are essential for
the determination of equilibrium and transition state structures. For the density-fitted
Coulomb force, the integral evaluation scheme of Paper I is combined with linear-scaling

3
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multipole-moment far-field interactions. This is further combined with an efficient im-
plementation of the exchange-correlation contribution and of the geometry-optimizer,
and results are presented for systems containing up to 500 atoms.

In Paper II and Paper V we present a linear-scaling atomic-orbital (AO) based
SCF optimization scheme. In the trust-region SCF (TRSCF) approach the AO density
matrix is expanded utilizing an exponential parameterization [7], and, rather than
a cubic-scaling diagonalization step, the Roothaan-Hall energy is minimized in each
SCF iteration through a series of conjugate gradient iterations and combined with the
density-subspace minimization (DSM) approach [8, 9] to obtain a new density matrix.
By automating step size criteria, based on the trust-region approach [8, 9], the TRSCF
approach can be used in a black-box manner (i.e. without the need for a common
user to manually set a level-shift or damping parameter), and is further demonstrated
to be more robust than the traditional Roothaan-Hall (RH) direct inversion in an
iterative subspace (DIIS) approach [10]. This approach is applied to the optimization
of polyalanine peptides containing up to 1200 atoms.

In Paper VI we develop an even more reliable and efficient linear-scaling optimiza-
tion scheme, the augmented Roothaan-Hall (ARH) approach. In this approach, a local
quadratic model of the KS energy, that is exact to second order in the subspace of
the previous density matrices and constitute a good approximation in other directions,
is minimized using the trust-region approach. The method differs from previous KS
optimization methods in that it does not involve two separate steps, such as the RH
diagonalization followed by the DIIS averaging. Instead, one single step is performed
that exploits the curvature information spanned by the previous density matrices. Since
the ARH contains information about the electronic Hessian, the method both enhances
performance and converges by design to a minimum. This is demonstrated by sample
calculations where the ARH approach finds a minimum and the traditional RH/DIIS
approach either diverges or converges to a saddle-point.

Finally, in Paper VII we present a linear-scaling AO based linear-response im-
plementation for HF and DFT. The response equations are solved iteratively in a
subspace of paired trial vectors. The used of paired trial vectors preserve the algebraic
structure of the response equations, both enhancing convergence and avoiding complex
eigenvalues. A non-diagonal preconditioner combined with good initial guesses allows
performance comparable with canonical molecular-orbital (MO) theory, with typically
five to ten iterations needed for convergence. The computational time is dominated
by the construction of the effective Fock/KS matrices, as in the canonical case, but
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with linear complexity achieved using sparse-matrix algebra. Linear scaling, and robust
convergence is demonstrated for the calculation of frequency-dependent polarizabilities
and excitation energies of polyalanine peptides containing up to 1400 atoms.
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Chapter 3

Theory

In this chapter we first give an introduction to the basic theory essential for this thesis.
As the theory is considered fundamental, we will only occasionally provide references
in this chapter. For a more thorough introduction, consult some of the many theory
books on quantum chemistry, for example Refs. [7, 11, 12, 13] on which most of this
introduction is based upon. We start with a brief introduction to theory essential for
quantum chemistry in section 3.1. In section 3.2, we give an introduction to Hartree-
Fock theory and briefly discuss the post Hartree-Fock methods. In section 3.3, we give
an introduction to Kohn-Sham density functional theory, and finally in section 3.4 we
give an introduction to response theory.

3.1 Introductory theory

This section give a brief introduction to some of the theory fundamental to molecular
quantum chemistry; the Schrödinger equation, the Born-Oppenheimer approximation,
the potential energy surface, the Slater determinant, the one-electron orbital basis-set
expansion and the variation method.

3.1.1 The Schrödinger Equation

We are in this thesis interested in solving the non-relativistic, time-independent, N -
electron Schrödinger equation for molecules,

ĤΨn = EnΨn, (3.1)

where Ĥ is the molecular electronic Hamiltonian operator, Ψn the different eigenstates
or wave functions, and En are the corresponding energies. The molecular electronic
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Hamiltonian is given by

Ĥ = ĥ + ĝ + ĥnuc, (3.2)

where ĥnuc is the nuclear repulsion, ĥ is the one-electron part, consisting of the kinetic
energy and the nuclear-electron attraction operators, and ĝ the two-electron part of
the Hamiltonian. In atomic units, we have

ĥnuc =
1

2

M∑
A�=B

ZAZB

RAB

ĥ = −1

2

N∑
i

∇2
i −

N∑
i

M∑
A

ZA

rAi

ĝ =
1

2

N∑
i�=j

1

rij

,

(3.3)

with N the number of electrons, M the number of nuclei, ZA the charge of nuclei
A, RAB the distance between nuclei A and B, rAi the distance between nuclei A and
electron i, and rij the distance between the two electrons i and j. The N -electron
wave function Ψn = Ψn(x1, ...,xN) depends on the 3N spatial {ri = (xi, yi, zi)} and
N spin coordinates {si}; jointly written in the compact notation {xi = (ri, si)}. The
complexity of the electronic Schrödinger equation stems from the fact that the N -
electron wave functions depend on the coupled 4N spatial and spin coordinates {xi}.

3.1.2 The Born-Oppenheimer approximation

To arrive at the molecular electronic Hamiltonian, the Born-Oppenheimer approxima-
tion has been adopted. Although the state of a many-particle system depends on all
particles involved (in the molecular case, both electrons and nuclei), the motion of the
nuclei is slow compared to the motion of the electrons, due to the three or more orders
of magnitude difference in their masses. In the Born-Oppenheimer approximation the
electronic state is therefore taken to be independent of the motion of the nuclei, de-
pending only on their positions. For high accuracy, the motion of the nuclei should be
accounted for by adding vibrational corrections to the electronic energy. Also note that
when two different states cross, the Born-Oppenheimer approximation breaks down.
But, as stated in Ref. [11] the Born-Oppenheimer approximation introduce only very
small errors for the majority of systems.
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3.1.3 The potential energy surface

The energy as a function of the nuclear coordinates is denoted the potential energy
surface (PES). Information about the PES of a molecular system is crucial for the the-
oretical study of molecules and their interactions. The different minima, or equilibrium
geometries, are important in for example the determination of reaction enthalpies, and
also forms the basis for the calculation of several other chemical properties - like vi-
brational spectra and various electric and magnetic properties. Saddle points are also
of great importance, as they represent transitional structures, which are important in
the determination of possible reaction pathways and for the determination of reac-
tion barriers. Efficient geometry-optimization procedures, involving energy, gradient
and possibly Hessian evaluations, are therefore essential for the efficient application to
quantum chemical methods to problems in chemistry.

3.1.4 Slater determinants

For a system of identical fermions, such as electronic systems, the wave function is,
according to the Pauli principle, anti-symmetric with respect to an interchange of two
fermions,

The Pauli Principle The total wave function must be antisymmetric
under the interchange of any pair of identical fermions and symmetric
under the interchange of any pair of identical bosons.

One way to fulfill the Pauli principle is by expanding the total N -electron wave func-
tion in a linear combination of N -electron Slater determinants |SD〉. The Slater de-
terminants are anti-symmetrized linear combinations of the products of one-electron
functions, for example

|SD〉 =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣

Φ1(x1) Φ1(x2) . . . Φ1(xN)

Φ2(x1) Φ2(x2) . . . Φ2(xN)

...
... . . . ...

ΦN(x1) ΦN(x2) . . . ΦN(xN)

∣∣∣∣∣∣∣∣∣∣∣∣
, (3.4)

where the one-electron spin orbitals Φp(x) depend both on the three spatial coordinates
and the spin coordinate.

There are many possible approaches for solving the molecular electronic Shrödinger
equation of Eq. (3.1), among others the HF and post HF approaches, DFT and quantum
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Monte Carlo methods. In principle these methods are quite different, but in practice a
linear combination of Slater determinants (possibly only one) typically forms the basis
of the approximate wave function.

3.1.5 Basis sets

The spin orbitals Φp(x), from which the Slater determinants are constructed, are prod-
ucts of orbitals φp(r) and spin functions σ(s),

Φp(x) = φp(r)σ(s). (3.5)

The spin functions are either the spin up or the spin down functions α(s) or β(s),
respectively, whereas the orbitals could in principle be three-dimensional functions of
any given form.

The orbitals are expanded in a basis {χa} of three-dimensional functions of known
form, according to

φp(r) =
∑

a

Capχa(r). (3.6)

When the basis functions {χa} are atomic orbitals, the above expansion is known as the
linear-combination of atomic-orbitals (LCAO) approach. The orbital coefficients Cap

are for molecules known as the MO coefficients, and the basis functions χa are typically
taken to be atom-centered functions. These functions are somewhat loosely denoted
atomic orbitals (AOs) - although not actually atomic orbitals their form typically
resembles that of the atomic orbitals. Throughout this thesis we will denote these
functions as AOs. The set of all AOs in a basis is called a basis set. To be able to
reproduce the form of the MOs, the basis set must in principle be complete. In practice,
however, a truncation must be made.

Many different forms of these AO basis functions are possible but, in quantum
chemistry, the spherical harmonic Slater type orbitals (STOs) and Gaussian type or-
bitals (GTOs) have proven successful. Of these two, most quantum chemistry software
programs today use the GTOs rather that the STOs, although some use is made of
STOs in DFT. In this thesis, we only use GTOs. In chapter 4, we will see how this
choice reduces the six-dimensional two-electron integrals to one-dimensional integrals
(and recurrence relations on these).
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3.1.6 The variation method

Before addressing the variation method, we take a look at the properties of the exact
solutions to the Schrödinger equation, Eq. (3.1). The energy expectation value is a
functional of the trial wave function Ψ,

E[Ψ] =
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉 . (3.7)

All exact solutions Ψn(x1, . . . ,xN) of Eq. (3.1) are variational in the sense that, for all
possible variations δΨn that are orthogonal to Ψn, the energy is stable, which is easily
verified because

〈δΨn|Ĥ|Ψn〉 ≡
∫

δΨ∗
n(x1, . . . ,xN)ĤΨn(x1, . . . ,xN)dx1 . . . dxN

= En〈δΨn|Ψn〉 = 0.

(3.8)

Indeed, solving the Schrödinger equation of Eq. (3.1) and the variational optimization
of Eq. (3.7) are identical. This is known as the variation principle,

The Variation Principle The ground state solution of the time-
independent Schrödinger equation (Eq. 3.1) is equivalent to the varia-
tional optimization of the energy functional (Eq. 3.7).

This principle leads us to the powerful procedure of the variation method. Accord-
ing to the variation method, the best set of parameters C of a given trial wave function
Ψ(C) are the values that gives stationary points of the energy function

E(C) =
〈C|Ĥ|C〉
〈C|C〉 . (3.9)

A wave function that has been optimized according to the variation method is termed
variational. Variational optimization has several advantages. First, the energy E(C)

is always greater than or equal to the true ground-state energy E0. This ensures that
improvements of the wave function always result in a decrease in the energy, with the
ground-state energy as a lower bound. Second, the error in the energy is second order
in the error in the wave function,

E(C) = E[Ψ0 + δΨ] = E[Ψ0] + O(δΨ2), (3.10)

where Ψ0 is the true ground state wave function and where δΨ is the difference between
the true ground state and the trial wave function Ψ(C). Third, energy derivatives
needed in for example response theory are greatly simplified because the derivatives
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with respect to the variational parameters C are zero. This leads to the Wigner 2n+1-
rule in response theory; provided the energy has been optimized variationally one only
needs to solve the order n response equations in order to obtain 2n + 1-order response
functions.

Note that there are several restrictions on the wave function that need to be met,
for instance that the MOs are orthogonal, so the optimization is not entirely free.
There are different ways to impose conditions on the wave function. One way is to use
Lagranges method of undetermined multipliers, in which a Lagrangian is constructed
as the sum of the energy and of the different constraints multiplied with undetermined
Lagrange multipliers. The Lagrangian is optimized variationally with respect to both
the variational parameters C and the Lagrange multipliers λ.

3.2 Hartree-Fock theory

In restricted HF (RHF) theory, the wave function |HF〉 is taken to be a single con-
figuration state function |CSF〉; which is a fixed (and minimal) linear combination of
Slater determinants |SD〉, constructed in such a way as to provide the correct spin sym-
metry. Note that in unrestricted Hartree-Fock (UHF) theory, in which no symmetry
constraints are imposed on the total spin, and for closed-shell systems, the Hartree-Fock
wave function is always a single Slater determinant.

3.2.1 The Hartree-Fock equations

If a RHF wave function |HF〉, constructed from n molecular spin orbitals Φi, is opti-
mized according to Lagranges method of undetermined multipliers (see section 3.1.6)
under the constraint that the MOs are orthonormal, we arrive at the Hartree-Fock
equations [11],

f̂Φi ≡
[
ĥ +

nocc∑
j

(Ĵj − K̂j)

]
Φi =

n∑
ij

εijΦj, ∀Φi. (3.11)

Here f̂ is the Fock operator, nocc refers to the number of occupied spin orbitals and εij

are the Lagrange multipliers. The Coulomb operator Ĵi and the exchange operator K̂i

operating on an arbitrary one-electron spin orbital g(x) are defined as

Ĵig(x1) =

(∫
Φ∗

i (x2)Φi(x2)
1

r12

dx2

)
g(x1)

K̂ig(x1) =

(∫
Φ∗

i (x2)g(x2)
1

r12

dx2

)
Φi(x1).

(3.12)



3.2. HARTREE-FOCK THEORY 13

The exchange operator Ki only gives non-vanishing contributions when the spin func-
tion of g and Φi are identical. For a closed-shell system, the RHF equations therefore
reduce to [

ĥ +
nocc∑

j

(2Ĵj − K̂j)

]
φi =

n∑
ij

εijφj, ∀φi, (3.13)

where n and nocc now refers to the number of orbitals and of doubly occupied orbitals φi,
respectively, and where the Coulomb and the exchange operators operate instead on a
one-electron function g(r). Note that in the canonical Hartree-Fock representation, the
orbitals undergo a unitary transformation to the canonical MOs in which the Lagrange
multipliers constitute a diagonal matrix εij = δijεi. In the canonical representation the
MOs are the eigenfunctions of the Fock operator f̂ , and the corresponding eigenvalues
εi are denoted orbital energies.

3.2.2 The Roothaan-Hall equations

For simplicity, we will in the following restrict ourselves to closed-shell HF theory and
assume real basis functions. When the MOs φi(r) are expanded in a linear combination
of AO basis functions χa(r), in accordance with Eq. (3.6), we arrive at the Roothaan-
Hall equations,

FC = SCE. (3.14)

To arrive at Eq. (3.14) we have in addition multiplied from the left with the different
basis functions and integrated. The Fock matrix F is the sum of the one-electron
matrix h and the two-electron Coulomb J and exchange K matrices, given by

Fab = hab + 2Jab − Kab

= 〈a|ĥ|b〉 + 2
nocc∑

i

(ab|ii) −
nocc∑

i

(ai|bi)

= 〈a|ĥ|b〉 + 2
∑
cd

(ab|cd)Dcd −
∑
cd

(ac|bd)Dcd,

(3.15)

and the overlap matrix S is given by

Sab = 〈ab〉. (3.16)

In Eq.(3.15) we have used the Mulliken like notation

〈f〉 =

∫
χf (r)dr

〈f |ŵ|g〉 =

∫
χf (r)ŵχg(r)dr

(f |g) =

∫
χf (r1)

1

r12

χg(r2)dr1dr2,

(3.17)



14 CHAPTER 3. THEORY

and where the AO density matrix D is the sum of the product of occupied MO-
coefficient pairs according to

Dab =
nocc∑

i

CaiCbi. (3.18)

3.2.3 The self-consistent field approach

In the canonical representation, in which E is diagonal, the Roothaan-Hall equations
has the form of a generalized eigenvalue problem - from which the diagonal elements
εi and the MO coefficients C can be found by diagonalization. However, since the
Fock matrix depends on the MO coefficients, or the density matrix, the Roothaan-Hall
equations defines a (non-linear) pseudo-eigenvalue problem, where the solutions are
found in a self consistent field (SCF).

In general, a self consistent solution can be obtained through an iterative SCF
optimization. For instance, when solving the Roothaan-Hall equations, the initial MO-
coefficients are used to construct a density matrix. From the density matrix, a Fock
matrix is built and diagonalized. The new MO coefficients are again used to build a
density matrix and so forth. The procedure is repeated until the MO coefficients (or
the density matrix) are reproduced to a given accuracy - the solutions are then said
to be self-consistent. SCF convergence can be difficult - convergence is not guaranteed
and in some cases the converged solution does not represent a minimum.

A highly successful approach to improve SCF convergence has been the DIIS ap-
proach of Pulay [10]. In this scheme, subsequent sequences of Fock matrices

{
F(1),F(2), . . .

}
,

density matrices
{
D(1),D(2), . . .

}
and error-estimates

{
E(1),E(2), . . .

}
are stored, and

at a given iteration k, the error in the subspace of error-estimates E
(k)
int ,

E
(k)
int =

k∑
i=1

eiE
(i), (3.19)

is interpolated by minimization of the scalar error function SE(e), given by

SE(e) = Tr
(
E

(k)
intE

(k)
int

)
, (3.20)

under the normalization constraint
k∑

i=1

ei = 1. (3.21)

Once the coefficients have been obtained an extrapolated Fock matrix F
(k)
ext is con-

structed according to

F
(k)
ext =

k∑
i=1

eiF
(i), (3.22)
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from which the new density matrix D(k+1) is obtained. The new density matrix is again
used to construct the next Fock matrix F(k+1), and so on.

Is some cases, oscillations make convergence problematic. Then damping or level
shifting may be introduced to improve the convergence. With damping, the SCF step
is limited by taking as you new density D(k+1) a linear combination of the current
density D(k) and the predicted, undamped density matrix D

(k+1)
pred ,

D(k+1) = αD(k) + (1 − α)D
(k+1)
pred . (3.23)

The damping parameter α can in principle be any number between zero (no damping)
and one (full damping). Level shifting limits the SCF step by increasing the energy of
the unoccupied orbitals. This effectively reduces how much the orbitals rotate (see sec-
tion 6.1), or mix occupied and unoccupied orbitals, and may therefore reduce or remove
oscillations from the SCF cycles. Increasing the level shift reduces the oscillations, but
at the same time larger shifts reduce the convergence rate.

We have now had a look at different techniques to achieve SCF convergence. But,
as mentioned, SCF convergence does not necessarily mean that the energy has reached
a minimum - only that the converged wave function is stationary with respect to orbital
rotations. In order to identify the nature of the solution, one must analyze the electronic
Hessian (which is the second derivative of the energy with respect to the variational
parameters). If the eigenvalues of the Hessian are all positive the solution has reached
a minimum, otherwise the solution represents a saddlepoint. Evaluation of the Hessian
is typically quite demanding, and such an analysis is typically not carried out.

In second order SCF theory both the gradient and the Hessian are calculated at
each SCF cycle. This leads to quadratic convergence near the minimum, and conver-
gence is therefore obtained in only a few iterations. This method is computationally
demanding due to the expensive evaluation of the Hessian and seldom used in prac-
tice. If the computationally demanding Hessian is replaced by an approximate Hessian,
it is possible to enhance convergence (for an example see Paper VI). Note that such
approaches are no longer quadratically convergent.

3.2.4 Electron correlation

The Hartree-Fock method typically accounts for about 99.5% of the electronic energy,
and several chemical properties, like dipole moments, polarizabilities, excitation en-
ergies, magnetizabilities and force constants, are typically off by less than 10%. The
problem with HF is that it does not include all electron correlation effects. The broad-
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est definition of electron correlation is to say that the position of one electron depends
on the position of all other electrons. In the mean-field HF approach, however, each
electron interacts with the other electrons only through an averaged potential, and fails
to account for the instantaneous electron-electron repulsion effects. It does however,
include the electron correlation enforced by the anti-symmetry of the HF wave func-
tion. This correlation is termed the Fermi correlation and accounts for most of the
correlation. Note also that whenever the HF wave function is composed of more than
one Slater-determinant, this leads to the inclusion of additional electron correlation
effects.

In wave-function theory, the term electron correlation is normally reserved to de-
scribe the correlation that occurs upon superpositions of configuration-state functions
- that is, the difference between the HF and the exact result. This leads to the Löwdin
definition of the electron correlation energy : "the correlation energy for a certain state
with respect to a specified Hamiltonian is the difference between the exact eigenvalue
of the Hamiltonian and its expectation value in the Hartree-Fock approximation for
the state under consideration." Note that it is implicit in the above definition that the
basis-set limit is taken.

There exist different hierarchical wave-function methods, like the different orders
of Møller-Plesset perturbation theory (MPPT), configuration-iteration (CI), coupled-
cluster (CC) and multi-configurational self-consistent field (MCSCF) theory, that incor-
porates electron correlation effects by making linear combinations of CSFs. When the
full CI wave function, in which all possible configuration state-functions are included, is
dominated by a single reference CSF function, the CC approaches in particular provide
highly accurate results. When the full CI is dominated by more than a single refer-
ence state, for instance when looking at bond breaking, the MCSCF methods typically
works well - in particular the complete active space (CAS) approach. The problem
with these methods, however, is their poor scaling with system size, and therefore
these methods are currently fairly limited with respect system size. In this thesis the
focus is on developing theory for treating large systems. Therefore, we will not discuss
the different wave-function approaches further. For large systems, DFT has proven
highly successful, as it constitute a good compromise between cost and accuracy. In
the next subsection we will give a brief introduction to Kohn-Sham DFT.
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3.3 Density functional theory

Today, the most widely used method in quantum chemistry is the DFT approach.
In this section, we will first consider the basis of density functional theory by the
introduction of the Hohenberg-Kohn theorems and the Kohn-Sham equations, followed
by an overview of some of the most common exchange-correlation functionals.

3.3.1 The Hohenberg-Kohn theory

Fundamental to density functional theory is the electron density. The N -electron
density ρ(r) depends only on three spatial coordinates r,

ρ(r) = N

∫
|Ψ(x1,x2, . . . ,xN)|2 ds1dx2 . . . dxN . (3.24)

The electron density is non-negative, vanishes at infinity and gives the total number of
electrons N when integrated over the real-space coordinates R3,∫

ρ(r)dr = N. (3.25)

In 1964 Hohenberg and Kohn [14] established that the exact ground-state electron
density ρ(r) may be uniquely associated with one external potential vext(r) (up to an
additive constant),

The Hohenberg-Kohn theorem Each v-representable N-electron
density ρ(r) is the ground state density of at most one external potential
vext(r) + C, which is determined up to an additive constant C.

An electron density ρ(r) is termed v-representable if it is associated with the ground
state wave function of an electronic Hamiltonian of the form

Ĥ = −1

2

N∑
i

∇2
i +

1

2

N∑
i�=j

1

rij

+
N∑
i

vext(ri)

= T̂ + V̂ee +
N∑
i

vext(ri),

(3.26)

where vext(r) defines the external potential. It follows from the Hohenberg-Kohn the-
orem that the potential v(r) is a functional of the electron density, v[ρ], and that the
ground state energy is a functional of the electron density ρ(r), in the sense that the
density uniquely determines the external potential (up to an additive constant), which
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in turn determines the energy E[v]. Thus the Hohenberg-Kohn theorem provide, at
least in principle, a means of obtaining the ground state energy.

The Hohenberg-Kohn functional F [ρ] defined by

F [ρ] = E[v[ρ]] −
∫

ρ(r)v[ρ]dr, (3.27)

does not depend on the potential, and is therefore universal. To see this, we rewrite
the Hohenberg-Kohn functional in terms of the wave function Ψ0[ρ] associated with
the density ρ. For non-degenerate systems, there is only one such wave function, and
we may then write Eq. (3.27) uniquely as

F [ρ] = 〈Ψ0[ρ]|T + Vee +
N∑
i

v(ri)|Ψ0[ρ]〉 −
∫

ρ(r)v[ρ]dr

= 〈Ψ0[ρ]|T + Vee|Ψ0[ρ]〉 = T [ρ] + Vee[ρ].

(3.28)

Hohenberg and Kohn further established that the variational principle may be recast
in terms of the electron density ρ(r) rather than the wave function Ψ(x1,x2, . . . ,xN),

Hohenberg-Kohn variation principle The ground state energy can
be obtained by the density minimization

E0[v] = min
ρ

(
F [ρ] +

∫
ρ(r)v[ρ]dr

)
, (3.29)

where the minimization is constrained to densities that are v-
representable.

In the original formulation by Hohenberg and Kohn, the ground state was assumed
to be non-degenerate and the variational optimization was constrained to densities
that where v-representable. It has been shown that certain reasonable densities are
not v-representable [15, 16]. Levy [17, 15] solved both these problems by showing that
it was sufficient for the density to be N-representable, which means that the density
can be obtained from an N -electron ground state. This gives the energy functional

E0[v] = inf
Ψ→ρ

〈Ψ|T̂ + Vee|Ψ〉 +

∫
vext(r)ρ(r)dr, (3.30)

where the infimum inf is the greatest lower bound (rather than a minimum).
Hohenberg and Kohn thus established that the ground state electron density con-

tains all the information that is needed to reconstruct the external potential, and
therefore the different wave functions and energies. The functional form of the energy
functional F [ρ], however, is not known.
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3.3.2 Kohn-Sham density functional theory

In 1965 Kohn and Sham [18] derived a set of equations for finding the density in a self
consistent fashion. They began by partitioning the energy according to

E[ρ, φ] = F [ρ, φ] +

∫
vext(r)ρ(r) = Ts[φ] + J [ρ] + Exc[ρ] +

∫
vext(r)ρ(r) (3.31)

where Ts is the kinetic energy of a non-interacting system that gives raise to the density
ρ, vext is the external potential and Exc is the exchange-correlation energy. Here the
only unknown is the exchange-correlation energy, which contains the exchange and
correlation energies, and the correction to the kinetic energy Ts (which is obtained in
the non-interacting system). A single Slater determinant is the exact eigenfunction
of the Hamiltonian of a non-interacting system. Furthermore, any density ρ(r) can
be obtained from a single Slater determinant. As a consequence, a scheme similar to
Hartree-Fock can be adapted for DFT; know as the Kohn-Sham DFT approach. If
the Kohn-Sham (KS) energy functional of Eq. (3.31) is optimized under the constraint
that the the KS orbitals φi(r) are orthonormal, we arrive at the Kohn-Sham orbital
equations, [

−1

2
∇2 − vext +

∫
ρ(r′)
|r′ − r| +

δExc[ρ]

δρ(r)

]
φi(r) =

∑
j

εijφj(r), (3.32)

with the density given by

ρ(r) =
N∑

i=1

|φi(r)|2 . (3.33)

We proceed in the exact same fashion as when deriving the Roothaan-Hall equations for
Hartree-Fock, i.e. make an expansion of the orbitals according to Eq. (3.6), multiplying
from the left with an AO basis function χa(r) and integrating, to arrive at the Kohn-
Sham equations

FKSC = SCE. (3.34)

For close-shell systems the KS matrix FKS is given by

FKS
ab = hab + 2Jab + Xab

= 〈a|ĥ|b〉 + 2
∑
cd

(ab|cd)Dcd +

∫
χa(r)χb(r)vxc(r)dr,

(3.35)

where X is the exchange-correlation matrix and where the exchange-correlation poten-
tial vxc(r) is given by

vxc(r) =
δExc[ρ]

δρ(r)
. (3.36)
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The solutions to the KS equations are, in direct parallel to solving the Roothaan-Hall
equations of Eq. (3.14), found in a self-consistent field as outlined in section 3.2.3.

There are obvious similarities between HF and KS theory. In both methods, a set
of orbitals is determined self consistently, the cost of the two methods is similar, and
both methods use an effective potential. Still, the two methods are also different by
design. The HF orbitals gives an approximate wave function, whereas the KS orbitals
in principle give the exact density. In both approaches, the energy is determined
variationally, but the DFT energy, although in principle exact, does not provide an
upper-bound to the true ground state energy for approximate exchange-correlation
potentials.

3.3.3 Exchange-correlation functionals

The quality of the KS approximation depends solely on the functional form of the
exchange-correlation energy. In this subsection, we provide a basic overview of the
general form and provide a few examples of the most common functionals.

The local density approximation (LDA) is based on the uniform electron gas, as
proposed by Kohn and Sham in their initial paper [18], where the electrons are evenly
distributed on a positive background charge. The LDA energy is given as

ELDA
xc [ρ] =

∫
ρ(r)εxc[ρ(r)]dr, (3.37)

where εxc is the exchange-correlation energy per electron in a uniform electron gas. For
a uniform electron gas, the exchange-correlation energy is split into separate exchange
and correlation energies. The exchange energy for a uniform electron gas was derived
by Dirac [19],

ELDA
x [ρ] = −3

4

(
3

π

)1/3 ∫
ρ4/3(r)dr. (3.38)

There is no such simple expression for the correlation energy of a uniform electron
gas. However, in 1980 Ceperley and Alder [20] performed highly accurate Monte-
Carlo simulations on the uniform electron gas, resulting in the development of several
analytical forms by Vosko, Wilk and Nussair (VWN) [21]. For the correlation energy,
one of these VWN functional forms (number V), here denoted EV WN

c , remains the
most commonly used for the LDA approach to date. The LDA functional thus has the
following form,

ELDA
xc = ELDA

x + EV WN
c . (3.39)

Despite the rather simple form, LDA provides fairly accurate results, in most cases
comparable or better than the HF approach. With the LDA functional, it is possible
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to achieve good vibrational frequencies, equilibrium structures and dipole moments.
However, bond energies are systematically too high.

In the generalized gradient approximation (GGA), the energy functional EGGA
xc [ρ]

depends on the gradient of the density ∇ρ(r) in addition to the density,

EGGA
xc [ρ] =

∫
Fxc (ρ,∇ρ) dr, (3.40)

where the form of Fxc varies for the different functionals. As was the case for LDA,
the GGA exchange-correlation energy EGGA

xc is also split into separate exchange and
correlation parts. The use of GGA can lead to significant improvements compared to
the properties calculated with LDA. There exists a variety of different GGA function-
als, including functionals specifically designed for the calculation of certain chemical
properties - commonly used functionals are the BLYP [22, 23], BPW91 [22, 24] and
PBE [25]. To give an example, the BLYP functional has the following form

EBLYP
xc = ELDA

x + EB88
Δx + ELYP

c , (3.41)

where the first term is the LDA exchange energy, the second term is the GGA correction
term to the exchange energy as suggested by Becke [22], and the third term is the GGA
correlation term of Lee, Yang and Perdew (LYP) [23].

In HF theory, the Fermi correlation is accounted for by the exchange contribution,
which accounts for the bulk (about 90%) of the correlation energy, and neither the
LDA or the GGA approaches include Fermi correlation in a fully satisfactory manner
The Coulomb repulsion energy

J =
1

2
(ρ|ρ) =

1

2

nocc∑
ij

(ii|jj), (3.42)

appearing in both HF and DFT includes the self-interaction term, (ii|ii). An electron
in an occupied orbital moves in the averaged potential generated by all electrons -
including itself. In HF this self interaction is canceled by an equivalent interaction of
the opposite sign appearing in the exchange term,

K =
1

2

nocc∑
ij

(ij|ij). (3.43)

Hybrid functionals combines a part xk of the HF exchange K together with GGA
functional contributions,

EHybrid
xc = EGGA

x − xkK + EGGA
c . (3.44)
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Actually, K differs from the HF exchange because it is based on the KS orbitals
rather than the HF orbitals. Still it is often denoted HF exchange, or sometimes as
the non-local exchange or the exact exchange.

The inclusion of the full HF exchange (xk = 1) was proposed by Kohn and Sham
in their original paper [18], but deriving an appropriate and accurate correlation func-
tional for use with the non-local exchange has been difficult. Including only a propor-
tion of the HF exchange has proven much more successful. The B3LYP functional of
Stevens et al. [26] is the most popular and widely used hybrid functional to date. It
combines the correlation and the exchange terms of the BLYP and LDA functionals in
a semi-empirical manner,

EB3LYP
xc = (1 − xk)E

LDA
x + aEB88

Δx − xkK + bELYP
c + (1 − b)EVWN

c . (3.45)

In the B3LYP functional 20% of the HF is included (xk = 0.2), and the two parameters
a and b are 0.72 and 0.81, respectively. Other examples of hybrid functional are the
PBE0 [27] and the B97 series [28, 29, 30].

Finally, we would like to mention the class of range separated functionals, in which
the exchange interaction is described by different mechanisms for short and long range
interactions. An example of such a functional is the CAM-B3LYP functional [31].

3.4 Response theory

In response-function theory, we determine the time-development of an observable when
the molecular system is subjected to, for example, an external electric or magnetic field.
The response of the observable may be expanded in powers of the field strength: the
linear response is determined by the linear response function, the quadratic response
by the quadratic response function, and so on [32]. Molecular response properties, for
example the frequency-dependent polarizability, may be calculated from the response
functions by specifying operators for the observable in question as well as the applied
field. From the poles and residues of the response functions, additional molecular prop-
erties can be obtained, including for example excitation energies and the corresponding
transition moments. At most frequencies of the external field, the interaction imposes
a small change in the wave function. If the frequency matches an excitation energy,
the external field may introduce an excitation that gives rise to large changes in the
wave function. We will in the following give an introduction to the basics of response
theory, for a more thorough discussion consult for example Ref. [32], upon which this
introduction is based.
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3.4.1 From the time domain to the frequency domain

The time development of the exact wave function |0̄〉 is governed by the time-dependent
Schrödinger equation

H|0̄(t)〉 = i
∂

∂t
|0̄(t)〉. (3.46)

The Hamilton operator is decomposed into a time-independent part H0 and a time-
dependent perturbation V t, according to

H = H0 + V t. (3.47)

We further assume that the perturbation V t is switched on adiabatically at t = −∞, In
the unperturbed limit t = −∞ the time evolution approaches |0̄(t)〉 = exp(−iE0t)|0〉,
where |0〉 is an eigenfunction of the unperturbed Hamiltonian H0,

H0|0〉 = E0|0〉. (3.48)

In the frequency domain, the perturbation operator can be written in terms of the
Fourier transformation

V t =

∫ ∞

−∞
V ω exp[(−iω + ε)t]dω, (3.49)

where the positive infinitesimal ε ensures that the field is switched on adiabatically.
The perturbation V t is required to be Hermitian, which imposes the condition

(V ω)† = V −ω. (3.50)

on the frequency components of V t. At finite time t, we can write the perturbed
phase-isolated wave function |0̃(t)〉 = exp(iF (t))|0̄(t)〉 as a perturbation expansion

|0̃(t)〉 = |0〉 +

∫ ∞

−∞
|0ω

1 〉 exp[(−iω + ε)t]dω

+

∫ ∞

−∞
|0ω1,ω2

2 〉 exp[(−i(ω1 + ω2) + 2ε)t]dω1dω2 + . . . ,

(3.51)

where |0ω
1 〉 and |0ω1,ω2

2 〉 contain terms that are linear and quadratic in the perturbations,
respectively.
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3.4.2 Response functions

Similarly, the averaged expectation value Aav.(t) of an operator A can be expanded to
different orders of the perturbation according to

Aav.(t) = 〈0̄(t)|A|0̄(t)〉

= 〈0|A|0〉 +

∫ ∞

−∞
〈〈A; V ω〉〉ω exp[(−iω + ε)t]dω

+
1

2

∫ ∞

−∞
〈〈A; V ω1 , V ω2〉〉ω1ω2 exp[(−i(ω1 + ω2) + ε)t]dω1dω2 + . . . ,

(3.52)

where 〈〈A; V ω〉〉ω is the linear response function and 〈〈A; V ω1 , V ω2〉〉ω1ω2 is the quadratic
response function. In the definition of the response functions we assume that the limit
ε → 0 has been taken.

It can be shown [32] that in the basis of exact eigenfunctions {|n〉} of H0, for which
the normalized time-dependent wave function is given by

|0̃(t)〉 =
|0〉 +

∑
n dn|n〉√

1 + dTd
, (3.53)

the linear response function can be written as a sum over eigenstates

〈〈A; V ω〉〉ω =
∑
n�=0

〈0|A|n〉〈n|V ω|0〉
ω − (En − E0)

−
∑
n�=0

〈0|V ω|n〉〈n|A|0〉
ω + (En − E0)

. (3.54)

This equation is called the spectral resolution of the linear response function. In
Eq. (3.54) En is the energy corresponding to state |n〉.

3.4.3 Poles and residues

The linear response function has poles at frequencies equal to plus or minus the exci-
tation energies ωn = En −E0 of the unperturbed system. The corresponding residues,
given by

lim
ω→ωn

(ω − ωn)〈〈A; V ω〉〉ω = 〈0|A|n〉〈n|V ω|0〉

lim
ω→ωn

(ω + ωn)〈〈A; V ω〉〉ω = −〈0|V ω|n〉〈n|A|0〉,
(3.55)

involve the transition matrix elements. The linear response function thus contains
information about the excitation energies from the reference state |0〉 to an exited state
|n〉, and the corresponding transition matrix elements, which is sufficient information
to describe all one-photon processes. Multi-photon processes can similarly be described
by means of the residues of higher-order response-functions.
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3.4.4 Response equations

By expanding the time-dependent coefficients d of Eq. (3.53) to different orders of the
perturbation, d = d(1) +d(2) + . . . , the responses to different orders can be obtained by
solving the corresponding response-equations, obtained from the Schrödinger equation
by collecting the terms of the various orders. In the frequency domain the first- and
second-order response equations are given by

(E[2] − ωI)d(1)(ω) = −Vω[1]

(E[2] − (ω1 + ω2)I)d
(2)(ω1, ω2) = −1

2

(
Vω1[2]d(1)(ω2) + Vω2[2]d(1)(ω1)

)
,

(3.56)

respectively, with the elements of Vω[1], Vω[2] and E[2] according to

V
ω[1]
i = 〈i|V ω|0〉

V
ω[2]
ij = 〈i|V ω|j〉 − δij〈0|V ω|0〉
E

[2]
ij = 〈i|H0|j〉 − δij〈0|H0|0〉 = δij(Ei − E0).

(3.57)

The corresponding response-functions are given by

〈〈A; V ω〉〉ω =d(1)†(−ω)A[1] + A[1]†d(1)(ω)

〈〈A; V ω1 , V ω2〉〉ω1,ω2 =d(2)†(−ω1,−ω2)A
[1] + A[1]†d(2)(ω1, ω2)

+ d(1)†(−ω1)A
[2]d(1)(ω2) + d(1)†(−ω2)A

[2]d(1)(ω1),

(3.58)

with

A
[1]
i = 〈i|A|0〉

A
[2]
ij = 〈i|A|j〉 − δij〈0|A|0〉.

(3.59)

Hence, to obtain the response functions to different orders one needs to solve response
equation of the general form

(E[2] − ωI)d = −Arhs, (3.60)

where the right-hand side Arhs varies for different perturbations and response orders.
The theory discussed here is for exact theory. For approximate methods, derivations
based on the wavefunction parameterization are needed.
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Chapter 4

Integral evaluation

Efficient integral evaluation is central to quantum chemistry. There are several differ-
ent schemes and formalisms to enhance the performance of integral evaluation. In the
first section of this chapter, section 4.1, we give a brief overview of the McMurchie-
Davidson formalism for integral evaluation, and then, in section 4.2, we outline the
integral evaluation scheme presented in Paper I. This scheme enhances performance
and simplifies the implementation of differentiated integrals, and further reduces the
cost of two- and three-center integral evaluation. In section 4.3 we discuss the effi-
cient and linear-scaling evaluation of the Coulomb contribution, followed by the linear-
scaling evaluation of the exchange contribution in section 4.4. Finally, we will give
an introduction to the numerical quadrature typically used for the evaluation of the
exchange-correlation contribution in section 4.5.

4.1 The McMurchie-Davidson scheme

Most quantum chemistry softwares today use GTOs rather than STOs for integral
evaluation. A greater number of GTOs than STOs are needed to obtain the same level
of accuracy, but integration over GTOs is both simpler and faster than integration over
STOs. The main advantage of using Gaussian basis functions is that they are separable
in the Cartesian directions according to the Gaussian product rule [7], which greatly
simplifies the integration.

There are several formalisms for molecular integral evaluation over GTOs, for in-
stance the Rys scheme [33], the McMurchie-Davidson scheme [34], the Obara-Saika
scheme [35], as well as modifications to these schemes [36, 37]. The different schemes
typically has certain advantages and disadvantages, see for instance [7]. We will not
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go into the different schemes or their differences in this thesis, but rather focus on
the McMurchie-Davidson scheme; which forms the basis of the integral evaluation in
DALTON [38]. In this section we summarize some of the key points regarding integral
evaluation using the McMurchie-Davidson scheme. A more thorough introduction is
given in Ref. [7].

4.1.1 Solid-harmonic Gaussian basis functions

In the McMurchie-Davidson scheme, the integral evaluation over contracted real solid-
harmonic GTO basis functions χlm

a,A(r) is first carried out over primitive Cartesian
GTOs Gi

am,A(r) of the form

Gi
am,A(r) = xix

A y
iy
A x

iy
A exp(−amr2

A), (4.1)

with Cartesian powers i = (ix, iy, iz), primitive exponent am, the center of the Gaussian
A = (Ax, Ay, Az), and with the distances rA = |r − A|, xA = x − Ax and similarly for
yA and zA. Then, the primitive Cartesian integrals are both contracted with contrac-
tion coefficients Cm to a contracted basis and spherical transformed to the real solid-
harmonicl basis. Note that in Eq. (4.1) we have omitted the normalization constant
which we include into the contraction coefficients. The contraction and the spherical
transformation steps are independent of each other, which means we are free to choose
the order of these steps

χlama
a,A (r) =

∑
i

S lama
i

∑
m

CmGi
am,A(r) =

∑
m

Cm

∑
i

S lama
i Gi

am,A(r). (4.2)

where S lama
i denotes the Cartesian to solid-harmonic transformation coefficients [7],

with magnetic quantum number ma.

4.1.2 The expansion of Cartesian overlap distributions in Her-

mite Gaussians

The overlap distribution Ωab(r) is the product between two contracted real solid har-
monic Gaussians, and can thus be expanded in primitive Cartesian overlap distributions
Ωij

ambn
(r) according to

Ωab(r) = χlama
a,A (r)χlbmb

b,B (r) =
∑
ij

Sab
ij

∑
mn

CmnΩij
ambn

(r), (4.3)

with the joint spherical transformation

Sab
ij = S lama

i S lbmb
j , (4.4)
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and with the joint contraction coefficient

Cmn = CmCn. (4.5)

The primitive Cartesian overlap distribution is by the Gaussian product theorem [7]
given as

Ωij
ab(r) = Gi

a,A(r)Gj
b,B(r) = xix

A y
iy
A ziz

A xjx

B y
jy

B zjz

B exp(−μR2
AB) exp(−pr2

P ), (4.6)

with p = a + b, μ = ab/p, RAB = |A − B| and P = (aA + bB)/p. In the McMurchie-
Davidson scheme this overlap distribution is again written as a linear combination of
Hermite Gaussians [34]

Ωij
ab(r) =

la+lb∑
t+u+v=0

Eij
tuvΛtuv(r), (4.7)

with la = ix + iy + iz and similarly for lb, with the Hermite to Cartesian transformation
coefficients Eij

tuv, and where the Hermite Gaussians are given by

Λtuv(r) =
∂t+u+v

∂P t
x∂P u

y ∂P v
z

exp(−pr2
P ). (4.8)

Note that when calculating the overlap distribution between real solid harmonic Gaus-
sians, the intermediate transformation to Cartesian primitives is not necessary, as we
can transform directly to the real solid harmonic basis according to,

Ωab(r) =
∑
mn

Cmn

la+lb∑
tuv

Eambn
tuv Λmn

tuv(r), (4.9)

with Λmn
tuv(r) the Hermite Gaussian for primitive pair mn, and with

Eab
tuv =

∑
ij

Sab
ij Eij

tuv. (4.10)

The differentiations in the three different Cartesian directions are independent of each
other, which leads to simple recurrence relations for integrals over Hermite Gaussians.
Note that since the Gaussians are separable in the three Cartesian directions, we can
separate the E-coefficients Eij

tuv = Eixjx
t E

iyjy
u Eizjz

v . The recurrence for the Eij
t is given

as [7]

Ei+1,j
0 = XPAEij

0 + Eij
1

Ei,j+1
0 = XPBEij

0 + Eij
1

Ei,j
t =

1

2pt

(
iEi−1,j

t−1 + jEi,j−1
t−1

)
, t > 0,

(4.11)

starting from E00
0 = exp(−μX2

AB).
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4.1.3 One-electron integrals

We are now ready to look at the integral evaluation of the different integrals over
real solid-harmonic Gaussians χlama

a,A (r). We start out with the multipole-moment in-
tegrals from which the overlap integrals are a special case. The overlap integrals are
fundamental for AO-based DFT, and the multipole-moment integrals are used in for
example the fast multipole-moment method, see section 4.3, to achieve linear-scaling
Coulomb evaluation. The Cartesian multipole-moment integrals Se

ab between two con-
tracted real solid harmonic GTOs, χlama

a,A (r) and χlbmb
b,B (r), expanded at center C with

the Cartesian powers xex
C y

ey

C zez
C , can be written as a linear combination of primitive

Cartesian multipole-moment integrals Sije
ambn

, using Eq. (4.2),

Se
ab ≡

∫
Ωab(r)x

ex
C y

ey

C zez
C dr

=
∑
ij

Sab
ij

∑
mn

Cmn

∫
Ωij

ambn
(r)xex

C y
ey

C zez
C dr

=
∑
ij

Sab
ij

∑
mn

CmlS
ije
ambn

.

(4.12)

These primitive Cartesian multipole-moment integrals can again be separated into the
Cartesian directions according to

Sije
ab = Sixjxex

ab S
iyjyey

ab Sizjzez

ab , (4.13)

which following the McMurchie-Davidson scheme are given by

Sije
ab =

∫
Ωij

ab(x)xe
Cdx =

i+j∑
t=0

Eij
t

∫
Λt(x)xe

Cdx =

i+j∑
t=0

Eij
t M e

t . (4.14)

The multipole-moment integrals over the Hermite Gaussians M e
t can be found by re-

currence according to [7],

M e+1
t = tM e

t−1 + XPCM e
t +

1

2p
M e

t+1, (4.15)

starting from

M0
t = δt0

√
π

p
, (4.16)

which follows directly by taking the differentiation outside the integration, and by
noting that M e

t = 0 for all t > e. For the primitive Cartesian overlap integrals this
gives the simple expression

Sij
ab ≡ Sij0

ab =

la+lb∑
t+u+v=0

Eij
tuvM

0
t M0

uM0
v = Eij

000

(
π

p

)3/2

. (4.17)
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4.1.4 Nuclear attraction integrals

We now turn our attention to the evaluation of Coulomb integrals. Similarly to the
overlap integrals, the overlap distribution between two contracted real solid-harmonic
Gaussians, Eq. (4.3), are expanded in primitive Cartesian overlap distributions, which
are again expanded in Hermite Gaussians according to Eq. (4.7). The nuclear attraction
part hna

ab , of the one-electron part of the Fock/KS matrix Eqs. (3.15) and (3.35), is given
by

hna
ab = −

∑
K

ZKVab(CK) = −
∑
ij

Sab
ij

∑
mn

Cmn

∑
K

ZKV ij
ambn

(CK). (4.18)

where CK is the center and ZK the nuclear charge of nuclei K, and where the primitive
Cartesian Coulomb potential V ij

ab(C) is given by

V ij
ab(C) =

∫
Ωij

ab(r)
1

rC

dr =
2π

p

∑
tuv

Eij
tuvRtuv(p,RPC). (4.19)

4.1.5 The Hermite Coulomb integrals

The Hermite Coulomb integrals Rtuv(p,RPC) are given as the derivatives of the zeroth
order Boys Function F0(x), according to [34]

Rt,u,v (p,RPC) =
∂t+u+vF0(pR

2
PC)

∂P t
x∂P u

x ∂P v
x

, (4.20)

with the nth-order Boy’s function given as

Fn(x) =

∫ 1

0

e−xt2t2ndt. (4.21)

The integrals Rt,u,v ≡ R0
t,u,v can be found by recursion from the spherical integrals

Rn
000(p,RPC) = (−2p)nFn(pR2

PC) (4.22)

of orders n ≤ t + u + v, according to the recurrence relations

Rn
t+1,u,v(p,RPC) =tRn+1

t−1,u,v(p,RPC) + XPCRn+1
t,u,v(p,RPC)

Rn
t,u+1,v(p,RPC) =uRn+1

t,u−1,v(p,RPC) + YPCRn+1
t,u,v(p,RPC)

Rn
t,u,v+1(p,RPC) =vRn+1

t,u,v−1(p,RPC) + ZPCRn+1
t,u,v(p,RPC).

(4.23)

4.1.6 Two-electron Coulomb repulsion integrals

We now turn our attention to the four-center two-electron Coulomb repulsion integrals
(ab|cd), which play a central role in quantum chemistry. The contracted four-center
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two-electron integrals (ab|cd) can be written as a linear combination of primitive four-
center two-electron [ambn|crds] according to

(ab|cd) =
∑
mn

Cmn

∑
rs

Crs[ambn|crds]. (4.24)

Here, the primitive solid harmonic Coulomb integrals [ab|cd] are, similarly to the prim-
itive Cartesian Coulomb potential of Eq. (4.19), given as

[ab|cd] =
∑
ij

Sab
ij

∑
kl

Scd
kl

∫
Ωij

ab(r1)
1

r12

Ωkl
cd(r2)dr1dr2

=
2π5/2

pq
√

p + q

∑
ij

Sab
ij

∑
tuv

Eij
tuv

∑
kl

Scd
kl

∑
τνφ

(−1)τ+ν+φEkl
τνφRt+τ,u+ν,v+φ(α,RPQ)

=
2π5/2

pq
√

p + q

∑
tuv

Eab
tuv

∑
τνφ

(−1)τ+ν+φEcd
τνφRt+τ,u+ν,v+φ(α,RPQ),

(4.25)

with q = c + d, Q = (cC + dD)/q, RPQ = P − Q and α = pq/(p + q). Note
that to improve performance, contractions that reduce the number of intermediates
should be carried out as early as possible. This means that we do not calculate the
primitive real solid-harmonic Coulomb integrals [ab|cd] explicitly, but rather carry out
contractions and transformations on the two electrons separately. The McMurchie-
Davidson algorithm for four-center two-electron integrals is outlined in figure 4.1. The
loops are carried out over shell pairs ab and cd, as integrals between such pairs share
intermediates. A shell pair ab consists of basis functions from the shells of two atoms,
each shell sharing both primitives and angular momentum.

The permutational symmetries of the four-center two-electron integrals

(ab|cd) = (ba|cd) = (ba|dc) = (ab|dc)

= (cd|ab) = (cd|ba) = (dc|ba) = (dc|ab)
(4.26)

is exploited by limiting the two loops in figure 4.1 so that for example a ≥ b ≥ c ≥ d,
which reduce the number of computations by (up to) a factor eight. Note that as
a special case two- and three-center two-electron integrals can be calculated using
the algorithm outlined in figure 4.1. This can be done by expanding the primitive
solid-harmonic Gaussian basis functions in Hermite Gaussians, instead of the overlap
distribution of Eq. (4.7), according to

χlama
a,A (r) =

la∑
t+u+v=0

Ea
tuvΛtuv(r). (4.27)
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Loop ab shell pairs
Set p, P, Eab

tuv (for all primitive pairs mn)
Loop cd shell pairs

Set q, Q, Ecd
τνφ (for all primitive pairs rs)

Set α, RPQ (for all primitive quadruples mnrs)
Build Fn(α,RPQ) and Rt+τ,u+ν,v+φ(α,RPQ)

Contract (tuv|crds] =
∑
τνφ

(−1)τ+ν+φEcrds
τνφ Rt+τ,u+ν,v+φ(α,RPQ)

Contract (tuv|cd) =
∑
rs

(tuv|crds]Crs

Contract [ambn|cd) =
∑
tuv

Eambn
tuv (tuv|cd)

Contract (ab|cd) =
∑
mn

Cmn[ambn|cd)

End loop cd

End loop ab

Figure 4.1: Outline of the McMurchie-Davidson algorithm for four-center two-electron inte-

grals.
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4.2 McMurchie-Davidson using Hermite primitives

In Paper I we develop a new scheme for integral evaluation in which the intermediate
integration is carried out over Hermite Gaussians H i

a,A(r) rather than the Cartesian
Gaussians Gi

a,A(r) of Eq. (4.1). This reduces computational efforts for both the evalua-
tions of differentiated integrals and for the evaluation of two- and three-center integrals,
in addition to making the expressions for differentiated integrals simpler.

4.2.1 Solid-harmonic Gaussians expanded in Hermite rather

than Cartesian Gaussian primitives

The new integration scheme follows from the fact that the solid-harmonic combinations
of Cartesian, Gi

a,A(r), and Hermite Gaussians, H i
a,A(r), are identical,

χlama
a,A =

∑
i+j+k=la

S lama
i H i

a,A(r) =
∑

i+j+k=la

S lama
i Gi

a,A(r). (4.28)

The primitive Hermite Gaussians H i
a,A(r) are taken to be scaled versions of the Hermite

Gaussians Λtuv(r) of Eq. (4.8), according to

H i
a,A(r) =

1

(2a)la
Λi(r) =

1

(2a)la
Hi(2a, r) exp(−ar2

A), (4.29)

with the Hermite polynomial Hijk(2a, r) given by

Hijk(2a, r) = Hi(2axA)Hj(2ayA)Hk(2azA), (4.30)

and with Ht(x) defined by the Rodrigues expression

Ht(x) = (−1)t exp(x2)
dt

dxt
exp(−x2). (4.31)

With the above definition, it follows that the leading terms of the polynomials in front
of the exponent exp(−ar2

A) of both the Cartesian Gaussian Gi
a,A(r) and the scaled

Hermite Gaussian Gi
a,A(r) are equal to xix

A y
iy
A ziz

A . Following Paper I, the identity of
the two solid-harmonic transformations of Eq. (4.28) follows because only the homo-
geneous polynomial of degree la = ix + iy + iz, with unity prefactor, remains after the
transformation.

Although the new integration scheme in Paper I is developed in both the Obara-
Saika and the McMurchie-Davidson formalisms, we will limit the scope in this section to
the McMurchie-Davidson formalism, and demonstrate the benefits of this new scheme
using the McMurchie-Davidson formalism.
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4.2.2 The expansion of Hermite primitive overlap distributions

Similarly to the overlap distribution between two primitive Cartesian Gaussians Ωij
ab(r),

Eq. (4.7), the overlap distribution between two primitive Hermite Gaussians Ωij
ab(r) can

be expressed as

Ωij
ab(r) = H i

a,A(r)H j
b,B(r) =

la+lb∑
t+u+v=0

E ij
tuvΛtuv(r). (4.32)

Note that the overlap distribution has here been expanded in the Hermite Gaussians
Λtuv(r) to coincide with the expansion of Eq. (4.7), whereas in Paper I the expansion is
instead in the scaled Hermite Gaussians H tuv

p,P(r). This choice has been made in order
for the intermediate integrals over Hermite Gaussians to be identical to the integrals
developed in the previous section. The Hermite E-coefficients E ij

tuv are also separated
into E-coefficients for the three Cartesian directions E ij

t ,

E ij
tuv = E ixjx

t E iyjy
u E izjz

v , (4.33)

which can again be obtained by the recurrence relations

E i+1,j
0 = XPAE i,j

0 + E ij
1 − i

2a
E i−1,j

0

E i,j+1
0 = XPBE i,j

0 + E ij
1 − j

2b
E i,j−1

0

E ij
t =

1

2pt

(
iE i−1,j

t−1 + jE i,j−1
t−1

)
, t > 0.

(4.34)

The recurrence relations for the E-coefficients in Hermite compared to the Cartesian
representation, Eq. (4.34) and Eq. (4.11) respectively, are equal except for the addi-
tional third term in the two first expressions of Eq. (4.34). The integrals using primitive
Hermite Gaussians basis functions follows exactly the same formulas as for the inte-
grals using primitive Cartesian integrals, by replacing all Eij

tuv and Eab
tuv by E ij

tuv and
Eab

tuv in Eqs. (4.17), (4.19) and (4.25). We note, that computationally these recurrence
relations are fast compared to other steps in the integral evaluation, so the added terms
of Eq. (4.34) are negligible with respect to computational time.

4.2.3 Differentiated integrals

The advantage of using Hermite Gaussians becomes clear for differentiated integrals
and for two- and three-center integrals. When differentiating the primitive Hermite
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Gaussian of Eq. (4.29) with respect to the Gaussian center we get another single prim-
itive Hermite Gaussian, according to

H i,I
a,A(r) ≡ ∂Ia

∂AI
H i

a,A(r) = (2a)IH i+I
a,A(r), (4.35)

with I = (Ix, Iy, Iz), I = Ix + Iy + Iz and with

∂I

∂AI
=

∂I

∂AIx
x ∂A

Iy
y ∂AIz

z

. (4.36)

The corresponding derivative of a primitive Cartesian Gaussian, Eq. (4.1), gives a
linear combination of several primitive Cartesian Gaussians. Clearly, expanding the
solid-harmonic Gaussians in Hermite rather than Cartesian Gaussians is preferable
for geometrical derivatives. To give an example, let us consider a differentiated four-
center two-electron integral. First, consider the differentiation of overlap distribution
of Eq. (4.32), which gives

Ωij,IJ
ab (r) =

∂I+JΩij
ab(r)

∂AI∂BJ
= (2a)I(2b)J

la+I+lb+J∑
tuv

E i+I,j+J
tuv Λtuv. (4.37)

The differentiated overlap distribution use the same expansion coefficients E ij
tuv as in

Eq. (4.32), only expanded to higher order. This gives the differentiated primitive solid-
harmonic four-center two-electron integral

[ab|cd]IJKL =
∂I+J+K+L

∂AI∂BJ∂CK∂DL
[ab|cd]

=
∑
ij

Sab
ij

∑
kl

Scd
kl

∫
Ωij,IJ

ab (r1)
1

r12

Ωkl,KL
cd (r2)dr1dr2

=
2π5/2

pq
√

p + q
(2a)I(2b)J(2c)J(2d)K

∑
ij

Sab
ij

∑
tuv

E i+I,j+J
tuv∑

kl

Scd
kl

∑
τνφ

(−1)τ+ν+φEk+K,l+L
τνφ Rt+τ,u+ν,v+φ(α,RPQ).

(4.38)

The differentiated integrals of Eq. (4.38) can be obtained (to any order) making only
minor modification of an existing code for the undifferentiated integrals of Eq. (4.25).
Note that the summation over tuv goes from 0 ≤ t + u + v ≤ la + I + lb + J and
similarly for the summation over τνφ, so the order of expansion of both the expan-
sion coefficients E ij

tuv and the Hermite Coulomb integrals Rtuv(α,RPQ) are increased
accordingly for the differentiated integrals. Thus, the number of intermediate Hermite
integrals Rt+τ,u+ν,v+φ(α,RPQ) is the same as when using the Cartesian Gaussian in-
termediates, but the number of contractions with the E-coefficients is greatly reduced
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with increasing angular momentum. For instance the first derivatives with respect
to both center C and D of a cd shell pair consisting of two p-orbitals, gives a total
of 54 solid-harmonic derivative components (two centers, three Cartesian directions,
three components per p-orbital). Using Cartesian Gaussians all these components are
generated by contracting (both differentiated and undifferentiated) E-coefficients with
the Hermite integrals, Rtuv(α,RPQ), whereas when using Hermite Gaussians only the
modified E-coefficients of the 36 Hermite Gaussian pairs (the two combinations of dp-
and pd-orbital pairs) are contracted with the Hermite integrals. The spherical trans-
formation to the solid-harmonic basis can be postponed to a later stage.

4.2.4 Two- and three-center integrals

For the two- and three-center integrals the expressions become even simpler. The
differentiated two-center two-electron integrals become

[p|q]MN =
∂M+N

∂PM∂QN
[p|q]

=
∑
m

Sp
m

∑
n

Sq
n

∫
Hm,M

p,P (r1)
1

r12

Hn,N
q,Q (r2)dr1dr2

=
2π5/2

pq
√

p + q
(2p)M−lp(−2q)N−lq

∑
m

Sp
m

∑
n

Sq
n Rm+M+n+N(α,RPQ),

(4.39)

with M = (Mx, My, Mz), M = Mx + My + Mz and similarly for N and N , and the
differentiated three-center two-electron integrals become

[p|cd]MKL =
∂M+K+L

∂PM∂CK∂DL
[p|cd]

=
∑
m

Sp
m

∑
kl

Scd
kl

∫
Hm,M

p,P (r1)
1

r12

Ωkl,KL
cd (r2)dr1dr2

=
2π5/2

pq
√

p + q
(2p)M−lp(2c)J(2d)K

∑
m

Sp
m

∑
kl

Scd
kl

∑
τνφ

(−1)τ+ν+φEk+K,l+L
τνφ Rmx+Mx+τ,my+My+ν,mz+Mz+φ(α,RPQ),

(4.40)

Note the significant reduction in the number of terms both for higher angular mo-
mentum and for higher order of differentiation. For instance for the undifferentiated
three-center integrals of Eq. (4.40), with M = K = L = 0, the number of intermediates
(tuv|cd), see figure 4.1, for a shell p is reduced from (lp+M+1)(lp+M+2)(lp+M+3)/6

terms to only (lp+M+1)(lp+M+2)/2 terms, per solid-harmonic component of the shell
pair cd, by using Hermite rather than Cartesian primitives. This reduce the number
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of innermost contractions (cd) over E-coefficients accordingly. Finally, the outermost
contraction (p) with E-coefficients is replaced by a simple scaling.

4.3 The Coulomb contribution

The Coulomb contribution to the Fock or KS matrices of Eqs. (3.15) and (3.35), the
Coulomb matrix

Jab =
∑
cd

(ab|cd)Dcd = (ab|ρ), (4.41)

can be obtained in a linear scaling fashion by combining integral screening [39, 40] and
the continuous fast multipole-method (CFMM) [41]. Several approaches to further ac-
celerate the construction of the Coulomb matrix exists in the literature. These include
J-engine based integral evaluation [42, 43, 44, 45], the Fourier transform Coulomb [46],
Cholesky decomposition [47] and density-fitting approximations [48, 49, 5, 50]. We will
in this section limit the scope to integral screening, CFMM and J-engine, and later, in
chapter 5, we will discuss the density-fitting approach.

4.3.1 Integral screening

The overlap distribution Ωab(r) decays exponentially with the square of the distance
RAB between the centers of the two solid-harmonic Gaussians, according to Eqs. (4.3)
and (4.6), and thus becomes negligible with distance. Therefore, the number of non-
negligible overlap distributions Ωab(r) scales as O(N) rather than O(N2). A rigorous
upper bound to the absolute value of two-electron Coulomb repulsion integrals can be
attained by Cauchy-Schwarz (CS) screening of Häser and Ahlrichs [39],

|(f |g)| ≤
√

(f |f)
√

(g|g). (4.42)

Note that there is also a nice proof of this inequality by Whitten [48]. When applied
to the four-center two-electron integrals the scaling is reduced from O(N4) to O(N2).
The CS screening does not, however, account for the 1/R distance decay (or faster)
between the centers of the two non-overlapping charge-distributions g(r1) and f(r2).
This distance decay can be incorporated using the multipole-based integral estimate of
Lambrecht and Ochsenfeld [40].
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4.3.2 The fast multipole method

The fast multipole-method (FMM) of Greengard and Rokhlin [51] was introduced for
gravitational forces in astronomy to achieve linear scaling for long-range particle inter-
actions, and can straightforwardly be applied to the interaction between charges. In
FMM a distribution of particles is expanded in multipole moments around some shared
point in space, and the approximate interaction between two well separated particle
distributions can accurately be represented by their multipole moment interactions.
Larger and larger distributions can be treated to the same level of accuracy when the
distance between the two particle distributions increase, and by systematically enlarg-
ing the size of the distributions with distance, linear scaling can be achieved.

More specifically, the FMM procedure starts by forming a parent box that contains
all particles. This parent box is then bisected along each Cartesian axis. Each child
box is further subdivided and so forth forming a computational family tree. The num-
ber of subdivisions is chosen such that the number of particles at the lowest level is
(approximately) independent of the total number of particles. Each particle is placed
within a box on the lowest level, and the multipole moment of the charges contained
in a given box is then expanded in multipole moments about the center of the box; all
empty boxes are removed. The multipole moments of the lowest level boxes are then
translated to the parent boxes at the next level and so forth up through the family
tree. The next step constitutes building up the potential from all boxes at a given level
that are well separated and which are not already included at a higher level. Then,
the potentials at the different levels are translated from the parent boxes and added
to their children all the way down the tree. The next step constitutes the calculation
of the far-field potential at the position of each particle from the Taylor expansion in
the center of the lowest level boxes. Finally, the interactions between the particles and
the far-field potential are calculated.

4.3.3 The continuous fast multipole method

FMM was first used for molecular systems by Ding, Karasawa and Goddard [52] in
their cell multipole method, and was extended to continuous charge distributions in
the CFMM approach by White and Head-Gordon [41]. Contrarily to point charges,
the continuous distributions overlap in space. To illustrate how FMM is extended
to continuous distributions, we consider the Coulomb interaction Upq between two
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spherical charge distribution exp(−pr2
P ) and exp(−qr2

Q)

Upq =

∫
exp(−pr2

1P ) exp(−qr2
2P )

r12

dr1dr2, (4.43)

which, following Watson et al. [45], can be separated into a classical U cls
pq and a non-

classical contribution Unon
pq

Upq = U cls
pq + Unon

pq . (4.44)

Although, in principle a Gaussian extend over the entire space, it decays exponentially
with the square of the distance from its center. Therefore, it is sufficient to define some
extent rp for each charge distribution exp(−pr2

P ). Using the definition of the extent by
Watson et al.

rp =
1√
p
erfc−1(10−k), (4.45)

it follows [7] that for two spherical Gaussians, separated by more than the sum of their
extents, we have ∣∣∣∣Unon

pq

U cls
pq

∣∣∣∣ < 10−k, (4.46)

for some choice k. This rigorous upper bound to the ratio between the non-classical and
the classical contributions allows for a division of the contributions that must be treated
explicitly and those that can be treated with multipole-moment interactions. Note from
Eq. (4.45) that, as expected, it follows that the smaller the exponent the longer the
extent. In the CFMM approach [41], distributions with differing extents are classified
into branches according to how many boxes that must separate two distributions (at
a given level of the FMM tree structure) in order for the interactions to be treated
classically. This gives rise to multiple branches of varying extents that makes the
CFMM both more cumbersome and slower than regular FMM. Note that by Eq. (4.44)
it is possible to separate each individual interactions into purely classical and non-
classical contributions, so that all well separated classical contributions can be treated
directly with FMM rather than CFMM [45]. Note, that in this approach the classical
contributions are not only charges, but rather multipoles.

4.3.4 The J-engine approaches

In the J-engine schemes, the density-matrix elements are contracted in an early stage
to bypass the explicit calculation of four-center two-electron Coulomb integrals, as pro-
posed independently by Ahmadi and Almlöf [42] and by White and Head-Gordon [43].
The two methods differ only by the formalism used for integral evaluation - the
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McMurchie-Davidson scheme [34] by Ahmadi and Almlöf and a variation of the Obara-
Saika scheme [35] by White and Head-Gordon. White and Head-Gordon later presented
an improved J-engine scheme based on the McMurchie-Davidson integral formalism.
The speed-up of J-engine compared to integral evaluation schemes based on explicit
four-center integrals typically range from factor 2-10, and is greater with increasing an-
gular momentum functions. The implementation adopted in DALTON [38] is presented
in Watson et al. [45], and is based on the scheme by Ahmadi and Almlöf. In this
scheme the electron density ρ(r) is expanded according to

ρ(r) =
∑
ab

Ωab(r)Dab =
∑
p,P

la+lb∑
t+u+v=0

(−1)t+u+vF p,P
tuv Λt(p, rP ), (4.47)

with

F p,P
tuv = (−1)t+u+v

∑
mn∈p,P

CmCnE
ambn
tuv Dambn (4.48)

with mn ∈ p,P meaning all primitive overlap distributions sharing both exponent p

and center P. For the Coulomb matrix of Eq. (4.41) this then gives

Jab =
∑
mn

CmCn

la+lb∑
t+u+v=0

Eambn
tuv

∑
q,Q

2π5/2

pmnq
√

pmn + q

∑
τνφ

F q,Q
τνφRt+τ,u+ν,v+φ(αmn,RPmnQ),

(4.49)
where we have used Eq. (4.25), and where the subscript mn on pmn, Pmn and αmn indi-
cate that the overlap distribution arise from the two primitive solid-harmonic Gaussians
with exponents am and bn, respectively.

4.4 The exchange contribution

The exchange matrix K appearing in both HF and hybrid KS theory,

Kab =
∑
cd

(ac|bd)Dcd, (4.50)

is intrinsically linear scaling provided the density-matrix elements Dcd decay with dis-
tance. This can be seen by noting that the density-matrix elements couple basis func-
tions belonging to different electrons, according to Eq. (3.17), thus effectively damping
the long ranged 1/r12 interaction. For insulators, the first order-reduced density matrix
ρ(r, r′), given by

ρ(r, r′) =
∑
cd

Dcdχc(r)χd(r
′), (4.51)
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decays exponentially with distance at long range, with the exponent proportional to the
band gap of the system. For conductors, which do not have a band gap, the decay rate
is only proportional to some power of 1/r12 (which at the length scale of molecules or
solids is very slow). For finite systems the situation is less clear cut. However, systems
with small HOMO-LUMO gaps behaves similarly to conductors, whereas systems with
large HOMO-LUMO gaps behaves similarly to insulators.

Although screening typically shows a small prefactor, it becomes significant for
large systems. Linear-scaling calculation of exchange contribution (for insulator like
systems) is achieved by combining integral screening and proper reorganization of the
integral loop structure, as first implemented in the order N exchange (ONX) [53] and
then later in the linear-scaling exchange (LinK) [54]. At the heart of both ONX and
LinK is the sorting of shell pairs by decreasing values, so that the different loops can
be exited whenever an integral estimate becomes smaller than a certain threshold.
This allows the screening to be performed in time proportional to system size. The
main difference between the ONX and the LinK schemes is that in the original ONX
approach the full permutational symmetries of the four-center two-electron integrals
(ab|cd), Eq. (4.26), is not exploited, as is done in the LinK scheme. Both approaches
reduce naturally to quadratic dependence in systems where the HOMO-LUMO gap is
small.

Figure 4.4 gives an outline of the LinK scheme. The first step constitutes both a
removal of small elements and a sorting of the shell pairs ab - according to decreasing
values of Gab =

√
(ab|ab). The second step constitutes making lists La of all shells c

that give significant estimates of the couplings with shell a through the density -matrix
Dac, sorted according to decreasing values of |Dac|Gmax

c ; with Gmax
c the maximum

element of Gcd with shell c fixed. Third, within the loop of significant "bra" shell pairs
ab, one sets up the mini-list ML of all "ket" shell pairs to interact with. This is done
by merging the mini-list MLa of all shell pairs cd the shell a interact with and the
mini-list MLb of all shell pairs the shell b interacts with. Finally, all integrals (ab|cd)

between the current "bra" shell pair ab, and all "ket" shell pairs cd in the mini-list
ML are calculated and contracted with density-matrix elements (exploiting fully the
permutational symmetry of the four-center two-electron integrals (ab|cd)).
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Remove shell pairs ab with maximum element Gab < thresh/Gmax
cd Dmax

cd and
sort shell pairs according to decreasing values Gab =

√
(ab|ab)

Loop over a’s in significant "bra" shell pair list ab

Loop over c’s in significant "ket" shell pair list cd

If (|Dac|Gmax
a Gmax

c ≥ thresh) then
Store significant c’s for each a in list La

Else
Exit c loop

End if
End c loop

End a loop
Sort La list according to decreasing values Gmax

c |Dac|
Loop over significant "bra" shell pairs ab

Loop over c’s in La

Loop over significant d’s in "ket" shell pair list cd

If (|Dac|GabGcd ≥ thresh) then
Add cd to MLa

Else
Exit d loop

End if
End d loop
If resulting number of d’s are zero exit c loop

End c loop
Create similarly list MLb

Merge the two lists MLa and MLb into ML
Loop over significant "ket" shell pairs cd in list ML

Form (ab|cd) and contract with Dac, Dad, Dbc and Dbd

End cd loop
End ab loop

Figure 4.2: Outline of the LinK algorithm.
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4.5 The exchange-correlation contribution

Due to the complex expressions of available exchange-correlation (XC) functionals Fxc

the integration of Fxc is performed numerically in the course of the energy evaluation.
The exchange-correlation contribution the numerical quadratures are intrinsically linear
scaling due to the fast decaying nature of the basis functions used [55, 56] and by using
linear-scaling grid-generation [57]. The DFT exchange-correlation evaluation consists
of three main step, namely the grid generation, the evaluation of the electron density
and the evaluation of the exchange-correlation contribution to the KS matrix and
energy.

The molecular grid is broken down into atomic grids, separated into radial and
angular components, followed by a weight correction by means of a space partition-
ing. For the space partitioning we follow Becke [58], in which the grid weights wi are
evaluated according to

wi = wA
i wA(ri) (4.52)

where wA
i are the atomic grid weights, and wA(r) the partitioning function [58, 57]

depending on the nuclear positions and of the spatial position ri of the grid point
i. The partitioning function is close to unity near the atom center A and zero near
other atoms. Although the partitioning function in principle depends on all nuclear
coordinates, in practice the corrected weights are unaffected by excluding contributions
from atoms B far from A. The density at each grid point i is evaluated according to

ρ(ri) =
∑
ab

Dabχa(ri)χb(ri). (4.53)

For the efficient evaluation, the space is partitioned into spatial boxes. For each box
only non-vanishing AOs need to be evaluated, and for large molecular systems linear
scaling is achieved since the number of non-vanishing AOs becomes saturated in each
box. Once the density at each grid point has been evaluated, the exchange-correlation
contribution to the KS matrix and energy can be evaluated. The KS energy is deter-
mined according to

Exc =

∫
Fxc[ρ(r)]dr =

∑
i

wiFxc[ρ(ri)], (4.54)

with Fxc[ρ(r)] the functional form, and with the XC contribution to the KS matrix X

according to

Xab =

∫
χa(r)χb(r)vxc[ρ(r)]dr =

∑
i

wiχa(ri)χb(ri)vxc[ρ(ri)]. (4.55)
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The extension to the GGA approach follows the same structure as outlined for LDA
above, but requires the additional evaluation of the AO gradient elements and the
gradient of the density.
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Chapter 5

Density fitting

The evaluation of molecular integrals is central to quantum chemistry, and is often
one of the time-limiting steps. Therefore approximations of these integrals have, in
addition to improved integral evaluation schemes, been a concern from the early de-
velopments of quantum chemistry. The density-fitting methods, or alternatively the
resolution-of-the-identity (RI) methods, have today been established as highly success-
ful for approximating the Coulomb contribution. In these approaches the expensive
evaluation of four-center integrals is replaced by the evaluation of two- and three-
center integrals, and a set of linear equations for the fitting coefficients. Speed-ups in
the range of 3-30 are commonly observed, with errors well within the basis-set errors.
Typical errors due to density fitting are about two orders of magnitude smaller than
the basis-set errors.

Linear-scaling density-fitting developments is one of the main topics of this thesis.
In this chapter we therefore start in section 5.1 with a somewhat detailed overview
of the density-fitting approximation and at the same time introduce some important
concepts to be used in the next section, section 5.2, in which we discuss linear-scaling
density-fitting approaches. In section 5.3 we present the boxed density-fitting scheme
for accurate linear-scaling density-fitted Coulomb matrix formation. In section 5.4 we
present a robust variational formulation and implementation. We establish that the
robust variational formulation can be adopted to solve for the fitting coefficient in
sparse, rather than the Coulomb metric, at little loss of chemical accuracy, allowing
the presented formalism to be applied in linear-scaling density-fitting developments.
Finally, in section 5.5, we present a linear-scaling density-fitted Coulomb force evalua-
tion, accelerated using the novel integral evaluation scheme presented in Paper I. The
presented force and energy evaluation is efficient, and used for geometry optimization

47
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for molecules containing up to 400 atoms.

5.1 Historical overview

The density-fitting approximations as we know them today have gone through several
different phases, starting with the axial expansion of Boys and Shavitt’s [59] in 1959,
in which a product between two STOs was expanded by least-square-fitting in twenty
single STOs distributed on the line connecting the two centers, followed by the pro-
jection of diatomic differential overlap (PDDO) method [60, 61] in 1968 and 1969, and
by the limited expansion of diatomic overlap (LEDO) [62, 63] in 1969 and 1971. The
density-fitting approximation is today most often tributed to the 1973 contributions of
Whitten [48] and of Baerends, Ellis and Ros [49], and to the following developments
by Dunlap, Connolly and Sabin [5, 50] in 1979.

5.1.1 Whitten paper

In his 1973 paper, Ref. [48], Whitten developed a mathematical framework for approx-
imation of two-electron integrals (f |g) according to

(f |g) ≈ (f̃ |g̃), (5.1)

in terms of approximate densities f̃(r1) and g̃(r2), by providing rigorous error-bounds
between the true and the approximated integrals∣∣∣(f |g) − (f̃ |g̃)

∣∣∣ ≤ δ, (5.2)

for given tolerance δ. Following the LEDO approach of Billingsley and Bloor [62, 63],
the four-center two-electron integrals (ab|cd) are approximated according to

(ab|cd) ≈ (̃ab|cd) = (ãb|c̃d). (5.3)

In this approach the product between two GTOs is expanded in single GTOs auxiliary
basis functions according to

Ωab(r) ≈ Ω̃ab(r) =
∑

α

cab
α χα(r), (5.4)

and similarly for the product Ωcd(r). Whitten realized that minimization of the residual
density Coulomb repulsion integral Δab,

Δab = (ab − ãb|ab − ãb), (5.5)
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and similarly for Δcd, minimize the error in the approximation (ab|cd) ≈ (ãb|c̃d).
Such a minimization actually leads to the same set of linear equations for the fitting
coefficients cab

α ∑
β

(α|β)cab
β = (α|ab). (5.6)

as those used in the LEDO method. Note that one can also view the fitting equations
of Eq. (5.6) as imposing that the Coulomb interaction between the auxiliary functions
χα(r) and both the true Ωab(r) and the fitted distributions Ω̃ab(r) should be equal.
Harris and Rein [64] originally used this idea, of enforcing that the approximated
charge distributions yield correct values for certain integrals, to calibrate the fitting
coefficients - an idea that was adapted into the LEDO procedure.

The above formulation of Eqs. (5.3-5.6) is more or less identical to the formulas
most people use today. However, Whittens formulation deviates from the conventional
formulation used today on a few of points. First, Whitten proposed to approximate
the four-center two-electron integrals only when their estimated error was below a
certain threshold δ (as later used in an SCF implementation by Jafri and Whitten [65]).
Second, he did not make any assumptions about the auxiliary functions - whether they
where atom-centered, or if the same set of functions where used to approximate all the
different products of GTOs Ωab(r). Third, the formulae for the integral approximation,
Eq. (5.3), often takes a slightly different form, namely

(ab|cd) ≈ (̃ab|cd) = (ab|c̃d), (5.7)

in particular when used to approximate the Coulomb matrix J used for the construction
of both the Fock- and KS-matrices, Eqs. (3.15) and (3.35), respectively.

5.1.2 Baerends, Ellis and Roos paper

In the paper by Baerends et al [49], the full electronic density

ρ(r) =
∑
ab

DabΩab(r) (5.8)

is approximated by least-square-fitting of the expansion

ρ̃(r) =
∑

α

cαχα(r). (5.9)

The least-square-fit is obtained by minimization of the residual density norm Δδ
ρ

Δδ
ρ =

∫
(ρ(r) − ρ̃(r))2 dr, (5.10)
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subject to the charge constraint∫
ρ̃(r)dr =

∫
ρ(r)dr = Ne, (5.11)

with Ne the number of electrons. This gives the linear set of equations for the fitting-
coefficients cα ∑

β

〈αβ〉cβ = 〈αρ〉 + λ〈α〉, (5.12)

with the Lagrange multiplier λ given by

λ =
Ne −

∑
αβ〈α〉〈αβ〉−1〈βρ〉∑

αβ〈α〉〈αβ〉−1(β〉 . (5.13)

The approximated density is again used to build an approximate Coulomb potential
ṼC(r) according to

VC(r) =

∫
ρ(r′)
|r − r′|dr

′ ≈ ṼC(r) =

∫
ρ̃(r′)
|r − r′|dr

′. (5.14)

This gives the density fitted Coulomb matrix J̃ab

J̃ab =

∫
Ωab(r)ṼC(r)dr = (ab|ρ̃), (5.15)

to be compared with the regular Coulomb matrix of Eq. (4.41).
As an alternative Baerends et. al [49] also suggested to fit the individual pair-atomic

densities ρAB(r) instead of the full electron density,

ρAB(r) =
∑

a∈A,b∈B

Ωab(r)Dab, (5.16)

where a ∈ A means all basis functions χa(r) sharing atomic center A, by using auxiliary
basis functions centered on the two centers A and B, only. In this manner the fitted
electron density

ρ̃(r) =
∑
AB

ρ̃AB(r), (5.17)

is obtained in a more economical manner.
The approach by Baerends et. al is in many ways similar to the PDDO method,

but differs on certain points. First, each integral is not approximated individually (by
approximating individual diatomic distributions Ωab(r)), rather the full Coulomb in-
teraction is approximated (by approximating the full electron density ρ(r)). Second,
and perhaps more importantly, was the choice by Baerends et. al to use an indepen-
dent (atom-centered) auxiliary basis set {χα}. This was contrary to the PDDO and
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LEDO approximations. In both these approaches the auxiliary basis set was taken as a
union between basis functions centered on the two atomic centers, as in the alternative
approach of Baerends et. al. However, the atom-centered set of auxiliary basis func-
tions was in the PDDO and LEDO approximations taken to be the combination of 1)
all possible products between two regular basis functions sharing center and 2) a few
additional functions. This choice of basis functions both limited the size of the regular
basis sets to be used, and led to problems with linear dependencies when solving for
the expansion coefficients.

5.1.3 Dunlap, Connolly and Sabin papers

The density-fitting approach presented in the two 1979 papers by Dunlap, Connolly and
Sabin [5, 50] greatly resembles the approach of Baerends et. al in form, but, following
the LEDO approach and the Whitten paper, uses the Coulomb rather than the overlap
metric for the determination of the fitting coefficients. So, instead of performing a
least-square-fit (in the overlap metric), the residual density Coulomb repulsion integral

Δρ = (ρ − ρ̃|ρ − ρ̃), (5.18)

is minimized subject to the charge conserving constraint of Eq. (5.11). This gives the
slightly modified linear equation set for the fitting coefficients∑

β

(α|β)cβ = (α|ρ) + (α)λ, (5.19)

with the Lagrange multiplier λ now given by

λ =
Ne −

∑
αβ(α)(α|β)−1(β|ρ)∑

αβ(α)(α|β)−1(β)
. (5.20)

Dunlap et. al further note that by Eq. (5.18) we have

1

2
(ρ|ρ) = (ρ|ρ̃) − 1

2
(ρ̃|ρ̃) − 1

2
Δρ, (5.21)

Therefore, the first order correction ΔJ to the fitted Coulomb repulsion energy

J̃ =
1

2
(ρ|ρ̃), (5.22)

is given by
ΔJ =

1

2
[(ρ|ρ̃) − (ρ̃|ρ̃)] . (5.23)

This correction term is both used to analyze the errors introducing by fitting the density
in either the Coulomb or the overlap metric [5], and as a correction to the fitted
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Coulomb repulsion energy [50]. For the example calculations presented in Ref. [5],
typical errors in the fitted energies are about one order of magnitude smaller when
using the Coulomb rather than the overlap metric.

5.1.4 Robust and variational fitting

In another development from 1979, Mintmire [66] argued that the charge conserving
constraint should be lifted. By taking

J̃ = (ρ|ρ̃) − 1

2
(ρ̃|ρ̃), (5.24)

as the approximated Coulomb repulsion energy, this then gives a variational fitting
procedure that at the same time minimizes the error Δρ. Note that differentiation of
Eq. (5.24) with respect to the density-matrix elements Dab and the fitting coefficients
cα gives, respectively, the fitted Coulomb matrix of Eq. (5.15) and the unconstrained
version of Eq. (5.19), namely ∑

β

(α|β)cβ = (α|ρ). (5.25)

Dunlap later [4, 67] denoted a fitting method that corrects the target function to first
order in the error made by the fit as robust. Note that although there are many ways to
obtain the fitting coefficient cα, and that Eq. (5.24) should in general be used to obtain
a robust fit, the fitting procedure of Eqs. (5.15) and (5.25) produces an approximated
energy that is robust even when using Eq. (5.22), as can be seen by noting that by
Eq. (5.25) the first order correction to the Coulomb repulsion energy of Eq. (5.23) is
zero.

Although the original ideas leading to the density-fitting approximation of Refs. [49,
5] were developed for the approximation of individual two-electron integrals, the density-
fitting approximation was for a long time only used to approximate the Coulomb repul-
sion term of Eq. (5.15). For four-center two-electron integrals, Dunlap [4] emphasizes
that in general the robust approximation

(̃ab|cd) = (ab|c̃d) + (ãb|cd) − (ãb|c̃d) (5.26)

should be used. The minimization of either Δab of Eq. (5.5) or (̃ab|cd) of Eq. (5.26) with
respect to the fitting coefficients cab

α gives the linear equation set of Eq. (5.6). Therefore,
provided the same set of auxiliary basis functions is used to approximate both Ωab(r)

and Ωcd(r), the three approximations (ab|c̃d), (ãb|cd) and (ãb|c̃d) become identical, and
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thus the three approximations of Eqs. (5.3), (5.7) and (5.26). For derivatives however,
Eq. (5.26) should be used.

Dunlap further notes [4] that by employing Eq. (5.6) any function of the robust
approximation of Eq. (5.26), E[(̃ab|cd)], is automatically variational with respect to
the fitting coefficients cab

α since by Eq. (5.26) we have

dE[(̃ab|cd)]

dcab
α

=
∂E[(̃ab|cd)]

∂(̃ab|cd)

∂(̃ab|cd)

∂cab
α

= 0. (5.27)

5.1.5 Density fitting of the exact exchange

Density fitting of the exact exchange was first introduced by Weigend [68] as late as in
2002. In this paper, the exchange matrix of Eq. (4.50) was approximated by combining
Eqs. (5.6) and (5.7), according to

K̃ab =
∑
cd

∑
αβ

(ac|α)(α|β)−1(β|bd)Dcd =
∑
cd

∑
α′

(ac|α′)(α′|bd)Dcd. (5.28)

Here the last step constitutes a transformation to an orthogonal auxiliary basis

χα′(r) =
∑

α

(α′|α)−
1
2 χα(r). (5.29)

Note that this approach scales as O(N4) in both the transformation and contraction
steps.

5.1.6 Considerations

As we have now hoped to have demonstrated, the density-fitting approximation which
uses the full set of atom-centered auxiliary basis functions for each individual overlap
distribution Ωab(r) and follows Eqs. (5.6) and (5.26) (leading to Eqs. (5.6) and (5.7))
is the best choice of fitting with respect to the variational property and the automatic
robustness. The problem with this way of fitting becomes apparent for large systems
due to 1) the cubic scaling nature of solving the fitting equations and 2) the number
of significant auxiliary functions included in the expansion of the overlap distribution
Ωab(r). When approximating the Coulomb matrix, the first point 1) only becomes a
problem for large systems (typically more than 10000 auxiliary basis functions), due to
the very fast matrix-libraries routines - like the lapack DPOSV, which uses standard
LU-decomposition of the metric-matrix (Cholesky-decomposition), followed first by a
forward-substitution step and then by a backward-substitution step, see for instance
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Ref. [69]. Note that the LU factors only need to be calculated once at the beginning
of the SCF cycle. For the exchange matrix, although 1) takes longer than for the
Coulomb matrix, since a set of linear equations must be solved for each orbital pair ab,
the second point 2) becomes the computational bottleneck due to the O(N4) scaling
of the different contractions and transformation steps.

Before we proceed with the linear-scaling density-fitting developments we note that
the important subject of auxiliary basis sets have been studied by Eichkorn et al. [70, 71]
for polarized split-valence (SVP) and polarized triple-zeta valence (TZVP) basis sets,
and by Weigend [68, 72] for correlation consistent basis sets and for the fitting of exact
exchange. Further note that the density-fitting approximation can be accelerated using
the Poisson equation [73], and that is can be applied to MP2 theory [74].

5.2 Linear-scaling density fitting

The recent developments toward large systems have highlighted the need for a linear-
scaling density-fitting scheme. In this section, we give a brief overview of different
linear-scaling density-fitting schemes presented in the literature. We first discuss meth-
ods based on the use of a local metric; next we consider methods based on the spatial
partitioning of the electron density.

5.2.1 Density fitting using local metrics

For the Coulomb contribution, density-fitting methods based on the use of a local metric
has been explored by Refs. [49, 6, 75] and is further developed in paper Paper III, using
a robust, variational formulation. In the approach of Baerends et al. [49], the electron
density is fitted in the overlap metric, giving errors one order of magnitude greater than
in the Coulomb metric [5]. This result was confirmed by Vahtras et al. [6], who compare
three different ways of fitting the four-center integrals in the overlap metric to the
corresponsing ones fitted in the Coulomb metric. In the paper by Jung et al. [75], the
expansion coefficients obtained in the Coulomb metric, overlap metric, and attenuated
metric w(r1, r2) = erfc(ωr12)/r12 are compared. The attenuated metric bridges the
Coulomb and the overlap metrics by varying the value of the damping parameter ω.
The coefficients obtained in the overlap metric decay more or less exponentially with
distance, whereas the coefficients obtained in the Coulomb metric decay more slowly
at long distances. For a one-dimensional test system studied in that paper, the fitting
coefficients decay as ∼ r−1.25 in the Coulomb metric, with a faster decay observed
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for two- and three-dimensional systems. The authors further provide statistics on
atomization energies for the G2 benchmark set using RI second-order Møller–Plesset
(MP2) perturbation theory in the cc-pVDZ basis, reporting errors six to seven times
larger in the overlap metric than in the Coulomb metric. Note that none of the above
schemes are either robust or variational; which means Lagrange multipliers are needed
for a proper description already for first derivatives and that a far larger number of
auxiliary basis functions must be employed to obtain the same level of accuracy as for
the robust approaches.

5.2.2 The partitioning approach

We now turn our attention to the partitioning approach; in which the density is writ-
ten as a linear combination of subsystem densities and where each subsystem density
is approximated by auxiliary functions in some local region. For the Coulomb con-
tribution, this approach has been explored by several authors [49, 3, 76] and is also
used in Paper II. In the paper by Baerends et. al [49] the pair densities ρAB(r) can, as
already described in the previous section, be fit individually - including auxiliary basis
functions centered only on the two parent atoms A and B. By standard screening tech-
niques, only a linear number of non-negligible pair densities need to be approximated
and the density can thus be approximated in a linear scaling fashion. The PES of this
approximation is continuous, but the resulting energy is neither robust nor variational.
It is worth noting that STOs are used rather than GTOs, and that the fitted density
is used to build an approximate Coulomb potential that is included in the numerical
evaluation together with the exchange–correlation contribution.

In the paper by Gallant and St-Amant [3], the density is partitioned using Yangs
partitioning [77], according to

ρ(r) =
∑

s

ρs(r) =
∑
ab

xs
abDabΩab(r), (5.30)

with

xs
ab =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if both a ∈ s and b ∈ s

1/2, if either a ∈ s or b ∈ s

0, otherwise.

(5.31)

Each subsystem density ρs(r) is fitted separately by including fitting functions centered
on all atoms within some predefined vicinity of the density, with the charge constraint∫

ρ̃s(r)dr =

∫
ρs(r)dr = Qs (5.32)
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enforced for each subsystem. The resulting errors can be made arbitrarily small by
enlarging the buffer size to include (atom-centered) auxiliary functions. The approach
of Gallant and St-Amant is neither robust nor variational, nor does it provide a con-
tinuous PES.

In the local atomic density fitting (LADF) or the atomic resolution of the identity
(ARI), of Sodt et al. [76] the density is partitioned into atomic regions by localizing
the individual overlap distributions Ωab(r) to one of the atoms that the basis functions
originate from. Following Gallant and St.-Amant, these atomic densities are fitted
individually by including fitting functions in some buffer zone around the atom. In
addition a ‘bump’ function is introduced on the boundary of the buffer zone to smoothly
turn off which fitting functions to include. A robust correction term is added for
the individual Coulomb matrix element, which makes the algorithm both robust and
variational.

Of the above partitioning schemes, the (alternative) pair-atomic fitting scheme of
Baerends et. al is perhaps the most appealing, but the LADF scheme offers the best
compromise between cost and accuracy. The bump function does, however, represent
an artifact, which for instance can create artificial minima on the PES. Also, in all the
above partitioning schemes, except the pair-atomic fitting, some cut-off scheme must
be adopted. A criticism of such cut-off schemes is that the impact of the fitting error
on the calculated properties is difficult to predict.

5.2.3 Linear-scaling density fitting of the exchange contribution

Linear-scaling aspects of density fitting of exchange contribution were first considered
by Polly et al. [78]. The fitted exchange matrix

K̃ab =
nocc∑

i

(ai|α)cbi
α , (5.33)

is computed in linear time. This is achieved using localized orbitals χa(r) and φi(r)

that interact with auxiliary functions ξα(r) only in some local domain. Localization of
the molecular orbitals is achieved through Pipek-Mezey localization Ref. [79], but can
in principle be localized by any localization procedure - see Ref. [80] and references
therein. The final density-fitted exchange energy

K̃ =
nocc∑
ij

∑
α

(ij|α)cij
α , (5.34)

is computed without use of local fitting domains. It is argued that the fitted exchange
energy depends sensitively on the size of the fitting domains, whereas the optimized
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MO coefficients do not. Reported errors are in the micro-Hartree range. In effect the
MOs are not optimized variationally, although the energy is corrected through first
order. It should be noted that the final step of Eq. (5.34) does not scale linearly with
system size; i.e. without the use of local fitting domains. Furthermore, this scheme
does not provide continuous potential energy surfaces.

The ARI exchange method (ARI-K) of Sodt et al. [81] is an extension of the LADF
or ARI approach of Ref. [76], applied to the exchange rather than the Coulomb con-
tribution. In this approach, the product overlaps Ωai(r) are approximated by auxiliary
basis functions ξα(r) in the local domain [A] near the parent atom of AO χa(r),

Ω̃ai(r) =
∑
α∈[A]

cai
α ξα(r), (5.35)

with
cai
α =

∑
β∈[A]

(α|β)−1
A (β|ai). (5.36)

As in the LADF scheme, continuity of the potential energy surface is ensured by the use
of a bump function which is incorporated into the individual inverses (α|β)−1

A associated
with the centers A, see Ref. [81] for details. The exchange matrix of Eq. (4.50) is further
approximated according to

K̃ab =
1

2

∑
i

(∑
α∈[A]

cai
α (α|bi) +

∑
β∈[B]

(ai|β)cbi
β

)
. (5.37)

We note that this approach is non-variational, which is justified by reporting errors in
energies using Eq. (5.37) that are typically only twice those of regular density fitting
of exchange.

5.3 Boxed density fitting

The boxed density-fitting approach presented in Paper II follows the approach of Gal-
lant and St-Amant, with a few exceptions. First the charge constraint has been lifted,
second the partitioning is not performed by selection of functional groups but by au-
tomatically generated boxes, finally a first order correction to the energy, according
to Eq. (5.23), is added in order to make the energy robust. For the generation of the
boxes, the total system is put into a rectangular box, which is recursively bisected until
no sub-box contains more than some fixed number of auxiliary basis functions. Each
subsystem is fitted using auxiliary basis functions located within an extended subsys-
tem s, comprising the original subsystem s padded with a buffer zone δs. The error in
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Figure 5.1: Contour plot of the boxed density-fitting error compared to regular Coulomb

density fitting, as a function of the size of the buffer zone and the number of boxes for the

valinomycine peptide (C54N6O18H90), using 6-31G basis and with auxiliary basis given in

Refs. [70, 71]. Absolute errors in the energy in logarithmic scale, from 10−2 to 10−9 Hartree.

the energy using the boxed density-fitting approach compared to regular fitting using
the Coulomb metric, is plotted in figure 5.1 for the valinomycine peptide. As can be
seen from the figure, the errors can be made arbitrarily small by extending the buffer
size. Although the error increases with the number of boxes, the approach is most
sensitive to the buffer size. For the calculations presented in Paper II a buffer zone
of 5 Bohr was used, and the total system was recursively bisected until no sub-box
contained more than 5000 auxiliary basis functions.

5.4 Robust and variational fitting using local metrics

In Paper III we formulate the robust and variational fitting of four-center two-electron
integrals in a general metric, and present results for the fitting of both the Coulomb
and exchange contributions using the Coulomb, attenuated Gaussian damped Coulomb
and overlap metrics to obtain the fitting coefficients.
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5.4.1 Robust and variational fitting of two-electron four-center

integrals

These coefficients are, in a general metric w(r1, r2), obtained by minimizing the residual
density interaction Δw

ab, according to

Δw
ab = 〈Δab|w|Δab〉, (5.38)

with |Δab〉 = |ab〉 − |ãb〉 and with the Mulliken like notation

〈f |w|g〉 =

∫
f(r1)w(r1, r2)g(r1dr1dr2. (5.39)

This lead to the set of linear equations

〈Δab|w|β〉 = 0, 〈α|w|Δcd〉 = 0 (5.40)

for the fitting coefficients. These equations are sparse when local metric and basis
functions are used, allowing for a solution in time proportional to system size. Following
Dunlap [4], and introducing Lagrange multipliers c̄ab

α and c̄cd
β to make the integrals

variational with respect to the fitting coefficients, we obtain

(̃ab|cd) = (ab|c̃d) + (ãb|cd) − (ãb|c̃d) − 〈ab|w|Δcd〉 − 〈Δab|w|cd〉 , (5.41)

in the notation

〈ab| =
∑

α

c̄ab
α 〈α|, |cd〉 =

∑
β

c̄cd
β |β〉. (5.42)

The last two terms of Eq. (5.41) are not needed for the unperturbed integrals (̃ab|cd),
but become important for the calculation of molecular properties.

5.4.2 The Coulomb contribution using local metric

For the approximate Coulomb matrix the above approximation gives

J̃ab = (ab|ρ̃) + (ãb|Δρ), (5.43)

with |Δρ〉 = |ρ〉 − |ρ̃〉, which compared to Eq. (5.15) has a first order correction term.
Note that in the Coulomb metric this term is zero by Eq. (5.25). Also note that
the Coulomb integrals appearing in Eq. (5.43) are the same as those appearing in
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the standard density-fitting approximation of Eqs. (5.25) and (5.15), except that the
two-center two-electrons integrals (α|β) now appears in a form,

(α|ρ̃) =
∑

β

(α|β)cβ, (5.44)

that can also be obtained in a linear scaling fashion using CFMM. Finally note that
when evaluating the approximate Coulomb matrix one does not need to calculate the
three-index fitting coefficients cab

α , rather on can first solve∑
β

〈α|w|β〉cα = 〈α|w|ρ〉 (5.45)

then build the first contribution (ab|ρ̃), and the intermediate (α|Δρ) used to obtain
Δcα according to ∑

β

〈α|w|β〉Δcβ = (α|Δρ), (5.46)

and finally build

(ãb|Δρ) =
∑

α

〈ab|w|α〉Δcα. (5.47)

Similar methodology is also possible for the perturbed contributions needed for prop-
erty evaluations. To summarize, the cubic-scaling linear solver step for obtaining the
fitting coefficients using the Coulomb metric can be replaced by the additional evalu-
ation of the sparse two- and three-center integrals, and two sets of sparse linear equa-
tions, when using a sparse metric w(r1, r2). The sparse linear equations of Eq. (5.40)
can be solved using for example the linear-scaling Lowdin decomposition as outlined in
Ref. [82]. For the benchmark set of Peach et. al [83] the robust variational fitting of the
Coulomb contribution using overlap metric to obtain the fitting coefficients gave errors
in the energy due to density fitting within approximately a factor 2 larger than when
using the regular Coulomb metric; even when using auxiliary basis sets optimized for
fitting in the Coulomb metric.

5.4.3 The exchange contribution using local metric

Linear scaling of the exchange matrix is more intricate as it involves the three-index fit-
ting coefficients cab

α or the half-transformed coefficients cai
α , where i denotes a molecular

orbital. The robust variational fitting of the exchange matrix can be written as

K̃ab =
∑
cd

(̃ac|bd)Dcd =
∑

i

(̃ai|bi) =
∑

i

[
(ai|b̃i) + (ãi|Δbi)

]
, (5.48)
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where i denotes an occupied molecular orbital, and with

|ãi〉 =
∑

c

Cci|ãc〉 =
∑

α

cai
α |α〉. (5.49)

The three-index fitting coefficients are either found directly by solving for the half-
transformed coefficients cai

α or by first solving for the coefficients in AO-basis cab
α and

then contract with either the density-matrix elements or half-transform to cai
α .

For insulators, linear-scaling density-fitted exchange-matrix construction can be
achieved in a local metric by following the same arguments as for the regular exchange
matrix, and by pretabulating which three-center Coulomb repulsion integrals (ab|α) (or
(ai|α)) to calculate. First, we note that, in a local metric, the number of fitting coeffi-
cients cab

α scales linearly with system size, as auxiliary basis functions ξα(r) sufficiently
far away from the product overlaps Ωab(r) do not contribute to the fitted product over-
lap Ω̃ab(r) [75]. Second, since the density-matrix elements Dcd couple basis functions on
two different electrons, χc(r1) and χd(r2), we can neglect all integrals (ac|bd) where the
density-matrix elements become sufficiently small; for example, using Cauchy-Schwarz
screening

|(ac|bd)Dcd| ≤
√

(ac|ac)
√

(bd|bd) |Dcd| . (5.50)

Therefore, the fitted integrals (̃ac|bd) of (ac|bd) need only be calculated whenever√
(ac|ac)

√
(bd|bd) |Dcd| ≥ ε, (5.51)

for a given threshold ε. For insulators, the density-matrix decrease exponentially with
increasing distance, which means, for instance, that Ωac(r1) only interact with Ω̃bd(r2)

provided χc(r1) and χd(r2) are within some finite distance of each other. As a result,
χa(r1) and χb(r2) must also be close to each other. The same argument applies to the
fitting functions since ξα(r2), included in Ω̃bd(r2), have a limited extent from the center
of Ωbd(r2), from which Ω̃bd(r2) originates. The combined effects of locality in the den-
sity matrix and locality in the fit imply that the number of contributing three-center
integrals (ac|α) scales linearly with system size. The same argument holds for the
term including the two-center integrals (α|β). Also note that for the half-transformed
fitting coefficients cai

α linear scaling can be achieved provided local molecular-orbitals
(LMOs) are used—see Ref. [80] and references therein. Linear-scaling follows by com-
bining LMOs and Cauchy–Schwarz screening, since, provided the AOs χa and χb are
sufficiently far away from each other, a given LMO will not overlap with both AOs. To
see this, we apply the Cauchy–Schwarz inequality twice

|(ai|bi)| ≤
√

(ai|ai)
√

(bi|bi) ≤
[∑

c

|Cci|
√

(ac|ac)
][∑

c

|Cci|
√

(bc|bc)
]
, (5.52)
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where we have used

(ai|ai) =
∑
cd

CciCdi(ac|ad) ≤
∑
cd

|Cci| |Cdi|
√

(ac|ac)
√

(ad|ad)

=
[∑

c

|Cci|
√

(ac|ac)
]2

(5.53)

and similarly of (bi|bi).

5.5 Density-fitted Coulomb force evaluation

The evaluation of the density-fitted Coulomb force has been considered in Refs. [84,
85, 86], and for the multipole-moment treatment in Refs. [87, 88]. In Paper IV we
combine the density-fitted Coulomb force evaluation with multipole-moment treat-
ment using the CFMM approach [41], and integral screening techniques [39, 48], for
the first implementation of linear-scaling density-fitted Coulomb force evaluation. The
construction of the density fitted Coulomb force contributions are accelerated using
the McMurchie–Davidson J–engine like integral scheme presented in Ref. [45], in com-
bination the novel integral evaluation scheme presented in Paper I. Expanding the
solid harmonic Gaussians in Hermite rather than Cartesian Gaussians, has the benefits
of reducing the cost of the differentiated integral evaluation and simplifying the im-
plementation. In Paper IV we demonstrate the efficient implementation of molecular
forces for systems containing up to 500 atoms.

5.5.1 The density-fitted Coulomb force contributions

Differentiation of the fitted electronic Coulomb repulsion energy of Eq. (5.24) with
respect to the nuclear coordinate Re gives [85]

J̃e =
dJ̃

dRe

=
∑
ab

De
abJ̃ab +

∑
ab

DabJ̃
e
ab +

∑
α

cα(ge
α − g̃e

α) (5.54)

with e = x, y, z, and where we have introduced e as the first, second or third row of the
three by three identity matrix for differentiation with respect to the x, y or z Cartesian
directions, respectively. The first term is the density-fitted Coulomb contribution to
the so-called Pulay force [89], with the differentiated density matrix is given [90] as
De = −DSeD. The Pulay force is evaluated by contracting the differentiated density
matrix De with the (converged) KS matrix. This leave the three terms for the density-
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fitted Coulomb force

J̃e
ab = ({ab}e |ρ̃)

ge
α = (αe|ρ)

g̃e
α = (αe|ρ̃).

(5.55)

5.5.2 Linear-scaling density-fitted force evaluation

Similarly to the undifferentiated Coulomb contribution J̃ the three differentiated con-
tributions of Eq. (5.55) are obtained in a linear scaling fashion combining Cauchy-
Schwartz screening [39, 48] of Eq. (4.42), which for the derivative case includes second
derivative integrals, and the CFMM approach [41].

There are two possible ways to obtain the far-field (FF) Coulomb gradient contri-
bution - either by differentiating a given multipole moment expansion of the classical
part of the interaction energy [88], Jcls., given by [7],

Jcls. =
1

2

∑
p

∑
q∈FFP

Dpqp(P)TW(RP̄P)TT(RQ̄P̄)W(RQ̄Q)qq(Q)Dq, (5.56)

or by first taking the analytical derivative and then introducing the CFMM approxima-
tion [87]. Differentiation of Jcls., gives and exact gradients for a given order of multipole
moment expansion, provided the partitioning of the global system into a hierarchical
family of boxes remains the same throughout the optimization, and provided the cen-
ters P of the charge-distributions Ωp(r) remain within the same boxes (with centers
P̄). During the course of the optimization, however, the charge-distributions can move
between different boxes. Furthermore, keeping the boxes fixed throughout the opti-
mization is not a good alternative, since for instance different starting geometries then
would converge to different minima. Therefore, both ways of obtaining the CFMM
contribution to the gradient are limited by the accuracy of the CFMM expansion. We
choose the second approach for obtaining the gradient, namely to first do the analyti-
cal derivative of the density-fitted energy according to Eq. (5.54), and then introduce
the CFMM approximation for each of the three terms of Eq. (5.55) afterwards. This
approach is simpler to implement as it only includes the multipole moments qe

p of the
differentiated charge-distributions Ωe

p(r), keeping the FF potential fixed; and thus also
leaving the translation matrices W(R) and the interaction matrices T(R) unchanged.
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5.5.3 Acceleration of the near-field force contributions

Construction of the three contributions of Eq. (5.55) is accelerated using J-engine based
integral evaluation of Ref [45], and we further utilize the fact that solid-harmonic com-
binations of Cartesian Gi

a,A(r) and Hermite Gaussian H i
a,A(r) atomic orbitals are iden-

tical according to Paper I. This gives the three differentiated contributions of Eq. (5.55)

J̃e
ab =

∑
ij

Sa
i S

b
j

∑
mn

CmCn

la+lb+1∑
|t|=0

(
δEAE i+e,j

t + δEBE i,j+e
t

)
∑
q,Q

∑
|u|=lq

F̃ q,Q
u Rt+e+u(γ,RPQ)

ge
α =δEP

∑
|t|=lα

Sα
t

∑
m

Cm(2αm)1−lα
∑
q,Q

lq∑
|u|=0

F q,Q
u Rt+e+u(γ,RPQ)

g̃e
α =δEP

∑
|t|=lα

Sα
t

∑
m

Cm(2αm)1−lα
∑
q,Q

∑
|u|=lq

F̃ q,Q
u Rt+e+u(γ,RPQ),

(5.57)

where the Dirac delta function δAB is zero if the centers A and B are different, and one
if they are identical, and where the primitive Hermite repulsion integrals Rtuv(γ, RPQ)

are found using the recurrence relations of Eq. (4.20). As can be seen from Eq. (5.57)
the use of Hermite rather than Cartesian Gaussians has two advantages. First, for
the one-center auxiliary functions, the number of contractions is reduced, which can
be seen for instance from the first term of J̃e

ab where the innermost summation only
contains terms for which |u| = lq, rather than stating from |u| = 0. Second, there are
no differentiated E-coefficients involved, instead the Eij

t ’s are incremented by one order
in the quantum numbers.

5.5.4 Results and considerations

In Paper IV we present computational timings for the force evaluation for linear alkene
chains, containing up to 502 atoms, and demonstrate efficient linear scaling formation
of the density-fitted Coulomb matrix and gradient evaluation, at the BP86/6-31G**
level of theory. Both the evaluation of the FF and NF contributions to the density-
fitted Coulomb force, takes about a factor two longer than the contribution to a single
Coulomb matrix construction. We further report averaged timings for the energy,
force and geometry optimization steps for the geometry optimization of the taxol and
valinomycine molecules at BP86/6-31G and BP86/6-31G** level of theory, and for
titin molecule at the BP86 level of theory, in a combination of the 6-31G and 6-31G*
bases. The density-fitted Coulomb NF forces are only a factor 2.1 to 2.5 slower than
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the corresponding construction of the density-fitted Coulomb matrix, whereas the FF
evaluation is only 20 to 30 percent slower.

For the full geometry optimization, using the incremental scheme [53] for the KS-
matrix construction, the forces takes 24 to 28 percent of the full calculation, for the
given systems. The forces are balanced between the density-fitted Coulomb and the
XC forces, with the quadratic scaling one-electron part taking about 20 percent of the
force evaluation for the largest system titin (with 392 atoms and 2221 contracted basis
function). For the same system, a single point calculation takes on average about 1
hour for the energy evaluation, a little less than 20 minutes for the force evaluation,
and less than two minutes for the geometry-optimization step.

The computational time of the energy evaluation is dominated by the FF evaluation
of the density-fitted Coulomb contributions. For the titin molecule this step takes on
average 38 percent of the energy evaluation time. The XC contribution takes 22, the
grid evaluation 15, NF contribution 9.5, RH/DIIS optimization 7.8 and the construction
of the screening matrices 4.4 percent.

The results presented in Paper IV clearly demonstrates the efficiency of the pre-
sented implementation. By removal of the quadratic scaling density-fitted force evalua-
tion by using the CFFM approach, and through the implementation of the new integral
evaluation scheme of Paper I for the NF contribution and an efficient XC correlation
implementation.
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Chapter 6

Wave-function optimization

The traditional SCF optimization combines the Roothaan-Hall (RH) diagonalization
step of Eqs. (3.14) and (3.34) with the DIIS approach as outlined in section 3.2.3.
Although highly successful, there are two problems with the RH/DIIS approach. The
first is the cubic-scaling diagonalization step. The second problem concerns the con-
vergence properties and the quality of the converged solution. The RH energy, which
is minimized upon diagonalization, represents only a crude model to the true SCF
energy. At the expansion point the RH energy has the correct gradient but only an
approximate Hessian. As a consequence, convergence can at times be difficult to obtain
and there is no guarantee that the converged solution actually represents a minimum.

In this chapter we look at two linear-scaling alternatives to the RH/DIIS approach,
which incorporates additional information of Hessian. Both the linear-scaling trust-
region SCF (LS-TRSCF) and the augmented Roothaan-Hall (ARH) approaches pre-
sented here are based on an exponential parameterization of the AO density matrix. In
the next section we start by introducing the exponential parameterization, and continue
with the LS-TRSCF and ARH approaches in the following two sections.

6.1 Parameterization of the density matrix

Let D be a valid AO density matrix, satisfying the trace

Tr(DS) =
N

2
, (6.1a)

symmetry
DT = D, (6.1b)

and idempotency conditions
DSD = D. (6.1c)
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Any valid N -electron AO density matrix can then be obtained through orbital rotations
acting on D, according to the exponential parameterization of Helgaker et. al [7, 91, 92]
in 2000,

D(X) = exp(−XS)D exp(SX), (6.2)

where X is an arbitrary anti-hermitian matrix (or anti-symmetric in the case of real
orbital rotations). By inspection, it is easy to verify that the orbital-rotated den-
sity matrix of Eq. (6.2) satisfies the trace, symmetry and idempotency conditions
of Eqs. (6.1a-c). Only the occupied-virtual and virtual-occupied rotations are non-
redundant, therefore in order to avoid redundancies, the projection P(X), given by

P(X) = PoXPT
v + PvXPT

o , (6.3)

with the projections onto the occupied Po and virtual Pv spaces

Po = DS

Pv = I − DS,
(6.4)

replaces the anti-hermitian matrix X in Eq. (6.2). The density matrix can further be
expanded in orders of X according to the Baker-Campbell-Hausdorff expansion

D(X) = D + [D,P(X)]S +
1

2
[[D,P(X)]S ,P(X)]S + . . . , (6.5)

with the S commutator [A,B]S given as

[A,B]S = ASB − BSA. (6.6)

Note that the exponential exp(A) is evaluated as a Taylor expansion according to

exp(A) =
∞∑

n=0

An

n!
. (6.7)

The convergence of the Taylor expansion of Eq. (6.7) is rapid only for small values of
A, and in order to accelerate convergence for large arguments one can apply the scaled
relation

exp(A) =
[
exp(2−kA)

]2k

. (6.8)

In this way the density matrix can be evaluated in about ten matrix multiplies. In
this chapter the orbital rotations will be used for the formulation of AO-based HF/KS
theory, which allows for linear-scaling SCF optimization. Orbital rotations based for-
malism is also used in connection with response theory in the next chapter.
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6.1.1 AO based HF/KS theory

Solving the RH/KS equations is intrinsically cubic scaling in time due to the RH
diagonalization step. In an AO-based formulation, however, we may replace the diag-
onalization step by a series of matrix multiplies, thereby allowing linear-scaling SCF
optimization in the limit of large systems when the matrices are sparse. Since all
valid AO densities can be obtained through the orbital rotations of Eq. (6.2), it is
not necessary to go via the MO coefficients - we can instead parameterize the HF/KS
wave function in terms of the orbital rotation parameters X. It is worth noting that
the canonical MOs found when solving the RH/KS equations is just one set out of
infinitely many other choices of MOs, related by unitary transformations. The density
matrix however is unique.

In terms of the AO density matrix D(X), the exact closed-shell SCF energy ESCF

can be expressed directly as

ESCF(X) = Tr [D(X)h] + Tr (D(X)G[D(X)]) + Exc [D(X)] + ĥnuc, (6.9)

with the two-electron matrix G(D) defined by

Gab(D) =
∑
cd

[2(ab|cd) − xk(ac|bd)] Dcd. (6.10)

Here Exc [D(X)] does not include the exact exchange; which is instead included in the
two-electron matrix G(D) with fraction xk. The RH diagonalization of Eqs. (3.14) and
(3.34) and the minimization of the Roothaan-Hall energy [91, 92]

ERH(X) = Tr [D(X)F] , (6.11)

give rise to the same density matrix; so in effect the two approaches are identical.
At the expansion point (X = 0) both the true SCF energy ESCF and the RH energy
ERH have the same gradient g, but the RH energy has noly an approximate Hessian
H. Note that the Fock- or KS-matrix F of Eq. (6.11) is determined at the point of
expansion (with density matrix D). The minimization of Eq. (6.11) is carried out by
first making an expansion to different orders of the non-redundant parameter X, and
then minimizing with respect to X. Inserting the parameterization of Eq. (6.5) into
Eq. (6.11), and ignoring third- and higher-order terms, minimization gives the set of
linear equations

FvvXSoo − FooXSvv − SvvXFoo + SooXFvv = − (Fov − Fvo) (6.12)
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where we have used
∂Tr(AB)

∂B
= AT, (6.13)

and the anti-symmetry relation XT = −X, and where we have introduced the matrix-
notation Mab = PT

a MPb, with a and b either the occupied or virtual spaces o or v.
The quasi-Newton equations of Eq. (6.12), for which the product of the approximate
Hessian H with X is given by the left-hand side of Eq. (6.12), can be solved using for
example the conjugate gradient approach. In the AO basis such an approach encounters
difficulties [92], due to the high condition number of the Hessian. This problem was
addressed in the curvy step method of Shao et. al [93] in 2003 using the preconditioned
conjugate gradient (PCG) approach, which was achieved by transforming the Newton
equations to the orthogonal Cholesky basis in which the condition number is much
smaller. In the next two sections we discuss improvements to the curvy step method.

6.2 Trust-region SCF

The RH energy ERH constitute only a crude model to the true SCF energy ESCF ,
which may lead to steps that are to large to be trusted. In the trust-region ap-
proach [8, 9] the Newton step is only taken if the Hessian is positive definite and
the Newton step is inside the trust-region; otherwise the minimum is determined on
the boundary of the trust region. This approach was adapted into the TRRH ap-
proach by Thøgersen et. al [8, 9] in 2003, in conjunction with the diagonalization of
the Fock/KS-matrix. In Paper II and Paper V this approach is extended further to
a formalism suitable for linear scaling (LS-TRRH), in which the diagonalization step
is replaced by a minimization procedure involving only matrix multiplications. In the
linear-scaling trust-region SCF (LS-TRSCF) method, the LS-TRRH approach is com-
bined with the trust-region density-subspace minimization (TRDSM), also presented
in Refs. [8, 9].

6.2.1 The Roothaan-Haal Newton equations

In the LS-TRRH approach, the RH energy is minimized subject to the constraint
that the new occupied space does not differ appreciably from the old occupied space,
according to

||D(X) − D||2S = Tr {[D(X) − D]S [D(X) − D]S}
= 2N − 2Tr [DSD(X)S] ≤ δ,

(6.14)
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for some maximal step-size δ. Introducing the constraint into the RH-energy of Eq. (6.11)
yields the Lagrangian

LRH(X) = ERH(X) − 2μ {N − Tr [DSD(X)S] − δ} (6.15)

with Lagrange multiplier μ. Expanding the Lagrangian in powers of X gives

LRH(X) =Tr(FD(X) + Tr(FvoX − FovX)

+ Tr(FooXSvvX − FvvXSooX)

+ 2μ [Tr(SooXSvvX − δ] + O(X3)

(6.16)

Minimization with respect to X, ignoring the higher order terms, gives the quasi-
Newton equations

FvvXSoo − FooXSvv − SvvXFoo + SooXFvv

−2μ (SvvXSoo + SooXSvv) = − (Fov − Fvo) ,
(6.17)

where the level-shift μ can, according to Eq. (6.14), be used to limit the step-size
of the orbital rotations based on tolerance δ. For each non-redundant solution X =

P(X), Eq. (6.17) has redundant solutions X+XR, where XR contains only redundant
elements. Restricting ourselves to only the non-redundant solutions, and introducing
the notation

g = Fov − Fvo

H(μ) = Fvv − Foo − μS,
(6.18)

for the RH gradient and level-shifted Hessian, we can write the RH Newton equations
of Eq. (6.17) more compactly as

H(μ)X̃S + SX̃H(μ) = −g. (6.19)

It is here assumed that X̃ is pure in the sense that X̃ = P(X̃). Before looking into
how Eq. (6.19) is solved, it can be instructive to recast the RH Newton equations in
terms of a vectorized linear equation form. Applying the vec operator

vec

(
a11 a12

a21 a22

)
=

⎛⎜⎜⎜⎜⎝
a11

a12

a21

a22

⎞⎟⎟⎟⎟⎠ (6.20)

to both sides of Eq. (6.19), noting the relationship

vec(ABC) = (CT ⊗ A)vecB (6.21)
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with ⊗ the Kronecker (or direct) product, we arrive at the RH Newton linear equations

H(μ)vec X̃ = −vecg, (6.22)

with the level-shifted Hessian matrix given by

H(μ) = H(μ) ⊗ S + S ⊗ H(μ). (6.23)

6.2.2 Preconditioner

To accelerate the convergence of the conjugate gradient method, a proper precondi-
tioner W , that approximates the Hessian H(μ) and is easy to invert, is essential. The
preconditioned RH linear equations is given by

W−1H(μ)vec X̃ = −W−1vecg. (6.24)

Factorizing the preconditioner according to W = VTV , with V = V ⊗ V, we arrive at
the preconditioned RH Newton equations

HV(μ)X̃VSV + SVX̃VHV(μ) = −gV, (6.25)

with

gV = Fov
V − Fvo

V

HV(μ) = Fvv
V − Foo

V − μSV,
(6.26)

in notation

AV = V−TAV−1

AV = VAVT.
(6.27)

In the limit of large μ the Newton equations of Eq. (6.25) takes the form μSVX̃VSV =

−gV. which suggests that a suitable preconditioner V is obtained by factorizing the
overlap matrix

S = VTV (6.28)

which then gives SV = I. Such a factorization may be achieved in infinitely many
ways. In Paper II we tested both the Cholesky factorization [69], VC = U, and the
Löwdin decomposition [94], VS = S1/2. Both factorizations yield the same condition
number for the preconditioned Hessian κ [W−1H(μ)], as they are related by a (condition
number conserving) orthonormal transformation. Since the structures of F and S are
broadly similar, these preconditioners typically reduce the condition number by several
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orders of magnitude, greatly enhancing the conjugate gradient convergence and thus
reducing overall computational efforts. Of all possible orthogonal bases, the Löwdin
basis is the one that most closely resembles the AO basis, ensuring that locality is
preserved to the greatest possible extent [95]. Although the Cholesky and Löwdin
decomposed preconditioners show similar behavior, we use as default the Löwdin basis.
A further improvement is possible by a diagonal preconditioning; in which the set of
linear equations is scaled so that the diagonal part of the Hessian becomes the identity
matrix. This is achieved by scaling the factorization matrix V by the square-root
diagonal of the Hessian, according to

VH = diag ([HV(μ)]11, [HV(μ)]22, . . . )V. (6.29)

6.2.3 The level-shifted Newton equations in the canonical MO

basis

To better understand the convergence of the PCG algorithm, and how the level-shift
parameter is to be chosen, we express Eq. (6.25) in the unoptimized canonical MO
basis; in which the diagonal of the Fock/KS matrix consists of the orbital energies εP

and the occupied-virtual and virtual-occupied blocks are non-zero. The level-shifted
Hessian elements are given by

HAIBI(μ) = δABδIJ(εA − εI − μ), (6.30)

which for the virtual-occupied elements of Eq. (6.25) gives

(εA − εI − μ)XAI = FAI , (6.31)

where XAI is the solution vector in canonical MO basis, and with occupied indices I, J

and unoccupied indices A, B. The step-length function

||X||2S =
∑
AI

F 2
AI

(εA − εI − μ)2
(6.32)

has k + 1 branches, with k the number of eigenvalues εA − εI of the unshifted Hessian,
as illustrated in figure 6.1. The function is positive for all values μ and has asymptotes
equal to the eigenvalues. For μ < min(εA − εI) the level-shifted Hessian is positive
definite and the RH energy is lowered to first and second orders [7]. Note that with
too large level-shifts |μ| each step is small and the convergence slow, with too small
level-shifts we may take steps that are too long to be trusted. The level shift parameter
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Figure 6.1: The step length ||X|| as a function of the level shift parameter μ. The trust-

radius h is marked by the horizontal dotted line, and the step length function marked with

an asterisk represents the chosen level shift.

μ that limits the step length ||XV|| to some maximal value h, is the lower bound to the
intersection between the step-length function and the value h marked by an asterisk
in figure 6.1 No level-shifting is performed if the intersection, μ, is positive, since the
Hessian in such cases is positive definite.

6.2.4 The level-shifted Newton equaitons as an eigenvalue prob-

lem

In the AO basis the Hessian is not diagonal, and the iterations are determined itera-
tively. The level-shift parameter is determined by first solving the augmented eigen-
value problem

A(α)

(
1

x̃

)
= μ

(
1

x̃

)
(6.33)

in a reduced space R of n + 1 trial vectors(
1

0

)
,

(
0

b1

)
,

(
0

b2

)
, . . . ,

(
0

bn

)
, (6.34)

by dynamically adjusting the parameter α to satisfy

||α−1x̃R||2 = h2. (6.35)

Here, the trial vectors bi = vecBi are orthonormal, and the first trial vector b1 is the
normalized gradient vector

b1 = ||gV||−1gV. (6.36)
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To determine the lowest eigenvalue of the augmented Hessian efficiently, a good initial
guess is required, but since the Hessian is not strongly diagonally dominant, such a
guess is usually not available. In practice, therefore, the augmented Hessian is only
used to update α, to ensure that the level shift is in the proper interval, and of the
correct size. The improved trial vectors are obtained by solving the reduced space
level-shifted Newton equations

HR
V(μ)x̃R = −gR

V = −||gV||

⎛⎜⎜⎜⎜⎜⎝
1

0
...
0

⎞⎟⎟⎟⎟⎟⎠ , (6.37)

where the reduced space Hessian elements are given by[HR
V(μ)

]
ij

= bT
i HV(μ)bj. (6.38)

6.2.5 Summary and concluding remarks

To summarize, each time we want to solve the preconditioned RH Newton equations
of Eq. (6.25) we run a series of PCG iterations. In each PCG iteration, we first
solve the augmented eigenvalue problem of Eq. (6.33), by adjusting the value α, until
the condition ||α−1x̃R||2 ≈ h2 is met. This gives a level-shift λ, equal to the lowest
eigenvalue of the reduced space augmented eigenvalue problem, which is used to find
the solution vector of the reduced space level-shifted Newton equation, using the basis
bi. To give a more robust convergence in the global region, the Newton equations
are first converged by constraining the Frobenius norm of the step ||XV|| followed
by constraining the size-intensive maximum absolute element size XV

max. We have
found ||XV|| = 0.6 and XV

max = 0.35 to be suitable parameters, and converge the
preconditioned RH Newton, Eq. (6.25), until the residual ||R|| is reduced by a factor
100 and 50, respectively, from the initial two-dimensional reduced space solution. Note
that in the local region both two step size conditions are fulfilled without imposing a
level-shift. Here, convergence is achieved when the residual ||R|| is reduced by a factor
100. Note, that the overall SCF convergence is not sensitive to the choice of these
convergence thresholds. Note that as a convergence criteria for the SCF optimization
we used the size-intensive gradient norm ||gV||/√N , with N the number of electrons.

The sample calculations presented in Paper II, demonstrate that the LS-TRSCF
scheme is both fast and robust. When compared to the curvy step method, Ref. [93],
the main differences are the diagonal preconditioning of the PCG approach, which gives
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significant reductions in the number of PCG iterations needed, and the level-shifting of
the SCF iterations. An important feature of the LS-TRSCF method is that the level
shift is determined dynamically; without any additional effort to a common user. This
can be seen from comparison of RH/DIIS and LS-TRSCF calculations on some selected
difficult cases. The RH/DIIS shows at times erratic behavior without the adding of a
level-shift, whereas the LS-TRSCF scheme converges in all cases. Finally, linear scaling
is demonstrated using sparse-matrix algebra for polyalanine peptides including up to
119 alanine residues.

6.3 Augmented Roothaan-Hall

The standard method of optimization consists of a two-step procedure. First, in the
RH step, a new density is constructed by diagonalization of the KS matrix, or alterna-
tively, as we have outlined in the previous section, by an energy minimization. Second,
an improved density is determined, by combining this new density with the density
matrices of the previous iterations; like in the DIIS or the TR-DSM step. Although
this two-step procedure has been very successful, it sometimes fails, either by con-
verging to a saddle point or by diverging. Whereas divergence is an obvious failure,
a convergence to a saddle point leaves the user unaware that the solution does not
represent the electronic ground state, unless a stability analysis of the stationary point
is performed. Such a stability test is rarely performed, as the computational cost is
comparable to that of the whole optimization. Previous attempts at improving the
RH-DIIS convergence, Refs. [96, 8, 9] and in Paper II and Paper V, have retained the
two-step framework, modifying the two steps separately, and have not constituted a
dramatic improvement. In Paper VI we present the augmented Roothaan-Hall (ARH)
method, in which the two step procedure is replaced a single step that fully exploits
the Hessian information from the previous iterations. At each iteration we construct a
local quadratic model of the KS energy that is exact to second order in the directions
of the previous iterations and a good approximation in the remaining directions. The
new density matrix is obtained by applying the trust-region minimization method, as
described in the previous section, thereby ensuring that the energy is lowered at each
iteration. Since the algorithm exploits information about the Hessian it converges by
design to a minimum. Like the LS-TRSCF method is does not rely upon diagonal-
ization and is based on matrix multiplications which enables linear scaling for large
systems when the sparsity of the matrices is exploited.
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6.3.1 The augmented Roothaan-Hall energy function

Assuming that we have carried out n iterations, in which we have generated sequences
of density matrices D1,D2, . . . ,Dn and KS matrices F1,F2, . . . ,Fn, with Fi = F(Di).
Expanding the KS energy to second order about Dn gives

EKS(D) = E(Dn) + 〈D − Dn|E[1](Dn)〉 +
1

2
〈D − Dn|E[2](Dn)|D − Dn〉, (6.39)

where 〈A|B〉 = Tr(ATB). Ignoring the second order term we retain the RH energy of
Eq. (6.11) with the constant offset E(Dn)−〈Dn|E[1](Dn)〉. Therefore, the minimization
of Eq. (6.39), with the second order term removed, is identical to the minimization of
the RH energy. To make better use of the information in the density-matrix subspace
spanned by the n former density matrices, we retain the second order term of Eq. (6.39)
by invoking the quasi-Newton condition. First, the new density matrix is expanded
using the exponential parameterization D(X) of Eq. (6.5) around the current density
matrix Dn. In an orthonormal basis this gives, by ignoring third and higher order
terms,

EKS(X) = E(Dn) + 〈[Dn,X]|E[1](Dn)〉
+

1

2
〈[[Dn,X],X]|E[1](Dn)〉

+
1

2
〈[Dn,X]|E[2](Dn)|[Dn,X]〉.

(6.40)

Note that both E[1](D) and E[2](D) still are the variations with respect to the density
matrix elements, not the elements of X.

6.3.2 The augmented Roothaan-Hall Netwon equaitons

The Newton equations are obtained by differentiating Eq. (6.40) with respect to X,
yielding

1

2
〈[[Dn,X],X]μ|E[1](Dn)〉 + 〈[Dn,X]μ|E[2](Dn)|[Dn,X]〉

= 〈[Dn,X]μ|E[1](Dn)〉,
(6.41)

where the superscript μ denotes differentiation with respect to Xμ of X. The left-hand
side represents a multiplication of the Hessian with X and the right-hand side the
gradient.

When the Newton equations are solved iteratively, each new trial vector is trans-
formed by the Hessian. The first Hessian contribution of Eq. (6.41) is easy to evaluate,
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whereas the second contribution requires a revaluation of both the Coulomb and the
exchange-correlation contribution. We retain an approximation to the second order
term of Eq. (6.39) by invoking the quasi-Newton condition

E[2](Dn)(Di − Dn) = E[1](Di) − E[1](Dn)

= 2F(Di) − 2F(Dn) = 2Fin,
(6.42)

and restrict E[2](Dn) in the second Hessian term in Eq. (6.41) to operate only on the
density-matrix subspace. This is achieved by the introduction of the density-subspace
projector

Pn =
n−1∑
i,j=1

|Din〉[T−1]ij〈Djn|, Tij = 〈Din|Djn〉 (6.43)

with Din = Di − Dn, which gives the ARH approximation to the Hessian trial-vector
transformation

〈[Dn,X]μ|E[2](Dn)Pn|[Dn,X]〉
= 2
∑
ij

〈[Dn,X]μ|Fin〉[T−1]ij〈Djn|[Dn,X]〉 (6.44)

An explicit expression for the non-redundant ARH quasi-Newton equations is given by

(Fvv
n − Foo

n )X + X(Fvv
n − Foo

n )

+
∑
ij

(Fov
in − Fvo

in)[T−1]ijTr(Djn[Dn,X])

= Fvo
n − Fov

n .

(6.45)

The above expression is equal to the RH Newton equations of Eq. (6.25), in an orthog-
onal basis, except for the addition of the third term. This additional contribution to
the product of the Hessian with the trial vector goes beyond the RH Hessian. Within
the density-matrix subspace the Hessian becomes exact to within the finite-difference
error of the quasi-Newton condition, whereas in the orthogonal complement of the
density-matrix subspace, the ARH Hessian reverts to the RH Hessian. The RH Hes-
sian is in itself quite accurate, except in the directions that represents orbitals of similar
energies. Since the density-matrix subspace spans primarily such directions, the ARH
Hessian constitute a good approximation to the true KS Hessian. Similarly to the
LS-TRSCF method we can straightforwardly apply the trust-region method also for
the ARH method.
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6.3.3 Concluding remarks

The presented calculations of Paper VI clearly demonstrates the benefits of the ARH
method. Foremost, for difficult cases where the RH/DIIS converge to a saddlepoint,
the ARH method locates the minimum. Second, the ARH exhibit fast convergence due
to the benefits of the second order approximation, noting that with an exact Hessian
quadratic convergence is obtained.
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Chapter 7

Linear response theory

In section 3.4 we gave a brief introduction to response theory in the exact case. Re-
sponse theory has been implemented for various approximate methods including HF,
CC and DFT, traditionally in the MO basis. Recently, AO-based response theory has
been explored by several authors.

Linear-scaling AO-based evaluation of static molecular properties has previously
been considered by Ochsenfeld and Head Gordon [97], where the idempotency is taken
care of by replacing the density-matrix by its McWeeny-purified counterpart [98]. Using
this approach, Ochsenfeld et. al have reported a linear-scaling implementation of NMR
shifts for linear alkanes and presented results for three-dimensional systems with more
than 1000 atoms [99]. A linearly scaling time-independent response theory had also
been presented by Niklasson and co-workers [100, 101] within a purification framework.

Larsen et al. [102] presented in 2000 an AO-based parameterization of HF and KS
response-function theory. In paper Paper VII we used the derivation of Larsen et al.
to obtain and implement a linear-scaling algorithm for solving the response eigenvalue
and linear equations and for evaluating frequency-dependent second-order molecular
properties, which we will discuss in the following. In 2007 Kussmann and Ochsen-
feld [103] have also reported time-dependent Hartree-Fock and Kohn-Sham calculations
of the frequency-dependent polarizability and hyper-polarizability using a linear-scaling
framework.

7.1 Linear-scaling response theory

Here we start by giving a brief introduction to the time dependent AO based re-
sponse functional formulation of Ref. [102], and then describe the linear-scaling linear-
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response-function implementation of Paper VII.

7.1.1 AO-based SCF linear response theory

In the AO basis the linear response function of Eq. (3.58) can be written as [102]

〈〈A; B〉〉ω = Tr
[
A[1]X(ω)

]
(7.1)

with the corresponding response equation

(E[2] − ωS[2])vecX(ω) = −vecB[1], (7.2)

which can be compared to the linear response equation of Eq. (3.56). Here M[1] is the
property gradient

M[1] = SDM − MDS = PT
o M − MPo, (7.3)

of the operator M represented by the AO matrix M, with elements

Mab = 〈a|M |b〉. (7.4)

As in Paper II and Paper VI, the generalized Hessian matrix E[2] and the metric
matrix S[2] are not needed explicitly, but may instead be defined in terms of their
linear transformations on a trial vector vecb [102],

σ = E[2](b) = PT [FDbS − SDbF + G(Db)DS − SDG(Db)]

ρ = S[2](b) = −PT [SDbS] ,
(7.5)

with the Fock/KS matrix given by

F = h + G(D). (7.6)

Here G(D) includes the Coulomb, the exact exchange and the exchange-correlation
contributions, and where we have introduced, in analogy with Eq. (6.3),

PT(M) = PT
o MPv + PT

v MPo, (7.7)

and with the transformed density matrix

Db = [P(b),D]S = P([b,D]S) = PvbPT
o − PobPT

v . (7.8)

Under the assumption that P(b) = b, we may also write the linear transformations of
Eq. (7.5) in the form

σ = E[2](b) = (Fvv − Foo)bS + Sb(Fvv − Foo) + Gvo(b) − Gov(b)

ρ = S[2](b) = −SvvbSoo + SoobSvv.
(7.9)
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The excitation energies ωn0 from the ground state |0〉 to the excited state |n〉 are the
eigenvalues of the generalized eigenvalue problem

(E[2] − ωn0S
[2])vecXn = 0. (7.10)

The corresponding transition moment of A is obtained from the residue of the linear
response function

〈0|A|n〉 = Tr[A[1]Xn]. (7.11)

7.1.2 Iterative solution of response equations

Noting that

[E[2](b)]T = E[2](bT)

[S[2](b)]T = −S[2](bT),
(7.12)

it follows that if the transformations of Eq. (7.9) are known for a given trial matrix bi,

σi = E[2](bi)

ρi = S[2](bi),
(7.13)

they are also known for the transposed trial matrix bT
i ,

σT
i = E[2](bT

i )

−ρT
i = S[2](bT

i ).
(7.14)

Since the transformations of bi and bT
i are related in such a simple manner, new trial

matrices are always added in pairs.
Similarly to the solution of the level-shifted RH Newton equation of Eq. (6.25),

the solution to the response and generalized equation of Eq. (7.2), and the gen-
eralized eigenvalue equation for the excitation energies of Eq. (7.10), are obtained
in the reduced space formed by the basis of the paired orthonormal trial matrices{
b1,b

T
1 ,b2,b

T
2 , . . . ,bn,b

T
n ,
}
, satisfying the projection relation bi = P(bi). The basis

of trial matrices and their transformed counterparts, given by Eqs. (7.13) and (7.14),
are used to set up both the response equations

(E
[2]
R − ωS

[2]
R )XR(ω) = −B

[1]
R , (7.15)

and the generalized eigenvalue equation for the excitation energies

(E
[2]
R − ωn0S

[2]
R )XR,n = 0. (7.16)
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in a reduced space R of dimension 2n. In the PCG approach, the residual is used to
obtain the next conjugate vector. To accelerate convergence the residuals R and Rn,
of Eqs. (7.2) and (7.10), given by

R = E[2](X) − ωS[2](X) + B[1] (7.17)

and
Rn = E[2](Xn) − ωn0S

[2](Xn), (7.18)

are preconditioned as will be discussed in the next subsection.

7.1.3 Preconditioning

The preconditioner M should be a good approximation to the response matrix, in the
sense that the condition number of M−1(E[2] − ωS[2]) should be significantly smaller
than that of E[2] − ωS[2]. Moreover, the cost of solving the preconditioning equation

MvecRp = vecR, (7.19)

should be significantly smaller than the cost of solving the response equations Eq. (7.2).
The most expensive step in the solution of the response equations is the evaluation of
G(D), corresponding to the two last terms of Eq. (7.9). Since these two terms are
small compared to the other terms in Eq. (7.9), a good preconditioner is given by

M = E
[2]
F − ωS[2], (7.20)

where E
[2]
F is an approximation to E[2] with the two last terms in Eq. (7.9) neglected. In

the AO basis, the solution to the preconditioning equation Eq. (7.19) is difficult since
the condition number of E

[2]
F −ωS[2] is large. The conditioning number may be greatly

reduced by a transformation to an orthogonal AO (OAO) basis, like the Cholesky and
Löwdin bases, in the same fashion as for the TRSCF approach of Paper II. In the OAO
basis the linear transformations of Eq (7.5), take the form

(σF)V = (Fvv
V − Foo

V )XV + XV(Fvv
V − Foo

V )

ρV = DVXV − XVVV,
(7.21)

in notation according to Eq. (6.27). The preconditioning of the residual for the response
equations Eq. (7.2) is performed in the OAO basis, using a diagonal preconditioner,
with elements

Mαβ,αβ = (Fvv
V − Foo

V )αα + (Fvv
V − Foo

V )ββ − ω
[
(DV)αα − (DV)ββ (7.22)

The preconditioning of the residual of the eigenvalue equations may be carried out in
the same manner but with the frequency ω replaced by the excitation energy ωn0.
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7.1.4 Initial vectors for the response equations

When solving the preconditioned response equations, the property gradient −B[1] is
straightforwardly taken as the trial conjugate vector for the PCG approach. For the
eigenvalue equations however, another starting guess must be adopted. In the MO
basis, the initial guess of an excitation vector has previously been successfully obtained
as the solution to the simplified response eigenvalue equations[(

Δε 0

0 Δε

)
− ω

(
I 0

0 −I

)]
vecYMO = 0, (7.23)

with ΔεAI = εA − εI . The left-hand side matrix of Eq. (7.23) is the simplified response
matrix MMO = (E

[2]
F )MO − ω(S[2])MO, and the solution matrix

YMO =

(
0 Yvo

Yov 0

)
, (7.24)

has zero elements in the Yvo and Yov blocks except for a unit element in Yvo corre-
sponding to the considered orbital-energy difference εA − εI .

In the OAO basis, the initial vector becomes YOAO = CYMOCT with elements
(YOAO)ab = CaACbI . The eigenvectors C of the Fock/KS matrix in OAO basis, can be
obtained using iterative techniques for the highest occupied and lowest virtual orbitals,
to form the initial guesses for the excitation vectors.

7.1.5 Results and considerations

Calculations of frequency-dependent polarizabilities and excitation energies were car-
ried out for polyalanine peptides of increasing size. The largest peptide considered
contained 1392 atoms, demonstrating the efficiency and robustness of the presented
algorithm. As for the optimization of HF and KS density matrices, the solution of
the response equations is dominated by the construction of the Fock/KS matrix, once
in each iteration of the subspace algorithm, with performance similar to that in the
MO basis. Important features include the paired-structure of the trial vectors, a non-
diagonal preconditioner and good start vectors. The solution of the preconditioning
equations is dominated by matrix multiplications, for which sparse-matrix algebra is
applied to approach linear scaling. The preconditioning is carried out in the Löwdin
basis.
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Chapter 8

Concluding remarks

The further development of quantum-chemical methods is important, as they help
understanding complicated chemical processes and provide important qualitative and
quantitative information. Of the different quantum-chemical methods available, the
DFT approach constitutes a good compromise between cost and accuracy. In this thesis
we have investigated several strategies to improve the existing DFT methodologies:

• We have presented a novel integral evaluation scheme (Paper I), in which the
solid-harmonic Gaussian are expanded in Hermite rather than Cartesian Gaus-
sians. The presented scheme simplifies the evaluation of derivative integrals since
differentiation merely increments the quantum numbers of the Hermite integrals.
Consequently, the differentiation can be carried out to arbitrary order using the
same code as for the undifferentiated integrals. Moreover, the presented scheme
simplifies the evaluation of two- and three-center integrals, bypassing the time-
consuming transformation to Cartesian basis.

• We have developed a boxed density-fitting scheme (Paper II) that corrects the
fitted Coulomb energy to first order, for linear-scaling density-fitted Coulomb
matrix evaluation. This approach is both efficient and accurate, and has been
applied to molecular energy optimizations (Paper II) and to the calculation of
frequency-dependent molecular response properties for polyalanine peptides con-
taining up to 1400 atoms (Paper VII).

• We have presented a robust variational density-fitting formulation for the fit-
ting of four-center two-electron integrals, applied to the density-fitted Coulomb
and exchange matrix constructions, by solving the fitting equation in local met-
rics instead of the traditional Coulomb metric (Paper III). The reported results
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demonstrate that local metrics can be used for linear-scaling density-fitting devel-
opments, without jeopardizing the accuracy of the calculations. The formalism is
suitable for the extension to molecular properties and to other quantum-chemistry
methods involving four-center two-electron integrals. The errors of performing
the fitting in the overlap metric are, for benchmark calculations, shown to be
only factor 1.5 − 2.0 larger than in the traditional Coulomb metric, rather than
the order of magnitude larger errors reported previously.

• An efficient evaluation of the molecular forces has been developed and applied to
systems containing up to 500 atoms (Paper IV). The different contributions to the
density-fitted Coulomb force is demonstrated to scale linearly with system size by
combining screening with multipole moment far-field interactions. The evaluation
of the near-field is particularly effective, using the novel integration scheme of
Paper I. The forces have further been applied to the geometry optimization of
systems containing up to 400 atoms.

• We have further implemented an efficient linear-scaling AO-based SCF optimiza-
tion scheme, the TRSCF approach (Paper II), based on the exponential pa-
rameterization of the AO density matrix. The RH energy is minimized in each
SCF through a series of preconditioned conjugate-gradient iterations, using the
Löwdin orthogonal AO basis, bypassing the traditional cubic-scaling diagonal-
ization step, and combined with the trust-region DSM approach for density av-
eraging. By automating step size criteria, based on the trust-region approach,
the TRSCF approach can be used in a black-box manner (i.e. without the need
for a common user to manually set a level-shift or damping parameter), and is
further demonstrated to be more robust than the traditional RH/DIIS approach.
Linear-scaling SCF optimization is reported for polyalanine peptides containing
up to 1200 atoms.

• In the linear-scaling ARH approach (Paper VI), a local quadratic model of the KS
energy, that is exact to second order in the subspace of the previous density matri-
ces and constitute a good approximation in other directions, is minimized using
the trust-region approach. The method differs from previous KS optimization
methods in that it does not involve two separate steps, such as the RH diago-
nalization followed by the DIIS averaging. Instead, one single step is performed
that exploits the curvature information spanned by the previous density matrices.
Since the ARH contains information about the electronic Hessian, the method
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both enhances performance and converges by design to a minimum, resulting in a
robust and efficient optimization scheme. This is demonstrated by sample calcu-
lations where the ARH approach finds a minimum and the traditional RH/DIIS
approach either diverges or converges to a saddle-point.

• We have finally presented a linear-scaling AO-based linear response implementa-
tion for HF and DFT (Paper VII). The response equations are solved iteratively
in a subspace of paired trial vectors. The used of paired trial vectors preserve
the algebraic structure of the response equations, both enhancing convergence
and avoiding complex eigenvalues. A non-diagonal preconditioner combined with
good initial guesses allows performance comparable with canonical MO theory,
with typically five to ten iterations needed for convergence. The computational
time is dominated by the construction of the effective Fock/KS matrices, as in
the canonical case, but with linear complexity achieved using sparse-matrix alge-
bra. Linear scaling, and robust convergence is demonstrated for the calculation of
frequency-dependent polarizabilities and excitation energies of polyalanine pep-
tides containing up to 1400 atoms.

To briefly summarize, we have explored different approaches to improve the DFT
methodology. The improvements include 1) enhancing computational performance,
2) reducing scaling behavior, 3) development of black-box methods and 4) extending
the applicability of existing methodology.

The developments have been carried out in a development branch of the quantum
chemistry package DALTON, in a collaboration including many developers. My main
contribution has been associated with reducing the computational prefactor of the
DFT method, by the development and implementation of efficient integral evaluation
schemes combined with linear-scaling and density-fitting developments. Significant
effort has also been directed at code optimizations. The combined efforts by myself
and my co-workers have resulted in orders of magnitude speed-ups for the evaluation
of the Coulomb and XC contributions, compared to the available code when I started
my thesis in 2004.

During the course of this thesis, it has become apparent that we would benefit
from a new integral driver tailored for large systems, and we have implemented a new
integral driver the last year of my thesis. The flexibility of the new driver will allow
us to explore different approaches for efficient integral evaluation more easily. There
are several approaches I would like to explore in the future. As demonstrated by Pa-
per IV, the evaluation of the density-fitted Coulomb contribution is dominated by the



FF evaluation. It is therefore natural to explore different approaches for the efficient
evaluation of the FF density-fitting Coulomb contributions. Possible improvements
include the splitting of the Coulomb interaction into classical and non-classical contri-
butions [45], which allows for efficient FF evaluation through FMM rather than CFFM
and with possible extensions for tailoring the FMM approach for the density-fitting ap-
proach. Additionally, the implementation of the Poisson density-fitting approach [73]
will reduce the number of Coulomb interactions to be treated with FFM. The Pois-
son density-fitting approach can also be used for the efficient NF evaluation and for
density-fitting exchange developments.

The main computational bottleneck in the current implementation is the exact
exchange, evaluated using the LinK scheme [54]. The exact exchange is particularly
important in the DFT treatment of large systems, as the pure functionals tend to
underestimate the HOMO-LUMO gaps, resulting in density optimization difficulties, in
addition to a poor description of for example long range excitations and polarizabilities.
Therefore the efficient evaluation of exact exchange is important. Efficient density-
fitted exchange evaluation has been developed as part of this thesis for small to medium
sized systems, and I would like to extend these development for an efficient linear-
scaling approach by combining linear-scaling density-fitting approaches with the LinK
scheme. The main computational challenge for efficient density-fitting treatment of the
exact exchange for larger systems, is the number of auxiliary basis functions included in
the fitting expansion of the charge distributions - due to the long decaying nature of the
fitting coefficients. Highly local fitting schemes will reduce the prefactor of the different
transformation and contraction steps involved, and one way forward may be the di-
atomic fitting [104] in combination with a robust variational density-fitting formulation
as the one presented in Paper III. Such developments can also prove important for
correlated treatments, like for the RI-MP2 approach [74].

The developments for efficient integral evaluation schemes is not fruitful without
efficient and reliable density optimization and response solver methodology. Therefore
the continued collaboration with colleagues in these fields is important, and I hope
to broaden my scope through such collaboration in the future. Naturally, developed
methodology for integral evaluation also needs to be extended to allow efficient property
evaluations.
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Utilizing the fact that solid-harmonic combinations of Cartesian and Hermite Gaussian atomic

orbitals are identical, a new scheme for the evaluation of molecular integrals over solid-harmonic

atomic orbitals is presented, where the integration is carried out over Hermite rather than

Cartesian atomic orbitals. Since Hermite Gaussians are defined as derivatives of spherical

Gaussians, the corresponding molecular integrals become the derivatives of integrals over

spherical Gaussians, whose transformation to the solid-harmonic basis is performed in the same

manner as for integrals over Cartesian Gaussians, using the same expansion coefficients. The

presented solid-harmonic Hermite scheme simplifies the evaluation of derivative molecular

integrals, since differentiation by nuclear coordinates merely increments the Hermite quantum

numbers, thereby providing a unified scheme for undifferentiated and differentiated four-center

molecular integrals. For two- and three-center two-electron integrals, the solid-harmonic Hermite

scheme is particularly efficient, significantly reducing the cost relative to the Cartesian scheme.

1. Introduction

In molecular electronic-structure theory, an essential step is

the evaluation of molecular one- and two-electron integrals

over one-electron basis functions, which are typically taken

to be linear combinations of solid-harmonic Gaussians.

Over the years, several efficient schemes have been developed

for the evaluation of such integrals: the Rys scheme,1 the

McMurchie–Davidson scheme,2 the Obara–Saika scheme,3 as

well as modifications to these schemes.4,5 In all these schemes,

the integration is carried out over Cartesian Gaussians, fol-

lowed by a transformation to the solid-harmonic basis (or by a

series of partial transformations to this basis, in the course of

the integration). A disadvantage of this approach is that

derivatives of Cartesian Gaussians with respect to the orbital

centers are linear combinations of undifferentiated Gaussians,

making the evaluation of derivative integrals cumbersome.

In the present paper, we observe that solid-harmonic com-

binations of Cartesian Gaussian atomic orbitals are in fact

identical to the corresponding combinations of Hermite Gaus-

sians, generated by differentiation of spherical Gaussians with

respect to the orbital center. Based on this observation, we

propose to evaluate molecular integrals over Hermite rather

than Cartesian Gaussians or, equivalently, to generate mole-

cular integrals by differentiation of integrals over spherical

Gaussians. In this manner, we obtain derivative integrals

(as needed for the evaluation of molecular gradients and

Hessians) and integrals involving the momentum operator

(as needed for the kinetic energy and for kinetically-balanced

small components in relativistic theory) by a simple modifica-

tion of the scheme for undifferentiated integrals, consisting

only in the raising of the Hermite quantum numbers. As a

bonus, the use of Hermite rather than Cartesian Gaussians

simplifies the evaluation of two- and three-center integrals

significantly, relative to the scheme based on Cartesian

Gaussians.6 %ivković and Maksić have considered the use of

Hermite Gaussian basis functions but not in solid-harmonic

form.7

The remainder of this paper consists of four sections. First,

in Section 2, we demonstrate that solid-harmonic Gaussians

may be expanded in Hermite Gaussians, using the same

expansion coefficients as for the Cartesian Gaussians. Next,

in Section 3, we expand molecular integrals over solid-harmo-

nic Gaussians in terms of two-, three- and four-center Hermite

integrals, whose evaluation by the Obara–Saika and

McMurchie–Davidson schemes is described in Section 4.

Section 5 contains some concluding remarks.

2. Solid-harmonic Gaussians

In the present section, we discuss solid-harmonic Gaussian

functions, noting that these may be constructed equally well

from Cartesian and Hermite Gaussians, using the same solid-

harmonic expansion coefficients. The properties of the Carte-

sian and Hermite Gaussians are compared and it is pointed

out that Hermite Gaussians, defined as (scaled) derivatives of

spherical Gaussians, are better suited than Cartesian Gaus-

sians in applications where orbital derivatives are needed—for

example, in calculations of molecular gradients and Hessians

and in relativistic calculations where the small-component
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functions are obtained from the large-component ones by

differentiation.

2.1 Solid-harmonic Gaussians expanded in Cartesian

Gaussians

In this paper, we consider the evaluation of molecular integrals

over solid-harmonic Gaussians of the form

Glmðr; a;AÞ ¼ SlmðrAÞ expð�ar2AÞ ð1Þ
where a 4 0 is the Gaussian exponent, rA = r � A is the

position of the electron r relative to the center of the Gaussian

A, and Slm(rA) with 0 r |m| r l is a real-valued solid-

harmonic function of rA. The real-valued solid-harmonic

functions satisfy Laplace’s equation and are eigenfunctions

of the total angular momentum and (when linearly combined)

of the projected angular momentum:8

r2SlmðrAÞ ¼ 0 ð2Þ

L2SlmðrAÞ ¼ lðl þ 1ÞSlmðrAÞ ð3Þ

Lz½SlmðrAÞ þ iSl;�mðrAÞ� ¼ m½SlmðrAÞ þ iSl;�mðrAÞ� ð4Þ
In atomic units, the angular-momentum operators about A are

as usual given by

L2 ¼ L2
x þ L2

y þ L2
z ð5Þ

Lz ¼ �i xA
d

dyA
� yA

d

dxA

� �
ð6Þ

and similarly for Lx and Ly. Rewriting the operator for the

total angular momentum about A in the form

L2 ¼ �r2Ar2 þ ðrA � =Þ2 þ rA � = ð7Þ
and invoking eqn (2), we find that the solid harmonics satisfy

the eigenvalue equation

ðrA � =ÞSlmðrAÞ ¼ l SlmðrAÞ ð8Þ
Since the eigenfunctions of rA �= belonging to the eigenvalue l

are the set of homogeneous polynomials of degree l in rA, we

conclude that the solid harmonics Slm(rA) are homogeneous

polynomials of degree l in rA:

SlmðzrAÞ ¼ zlSlmðrAÞ ð9Þ
Consequently, we may expand the solid harmonics in Carte-

sian monomials in the form

SlmðrAÞ ¼
X

iþjþk¼l

Slm
ijkx

i
Ay

j
Az

k
A ð10Þ

where all terms vanish except those for which i + j + k = l.

An explicit expression for this expansion is given in ref. 8 and 9

but is not needed for the present development.

In the calculation of one- and two-electron molecular

integrals over solid-harmonic Gaussians eqn (1), the integra-

tion is commonly performed over Cartesian Gaussians

Gijkðr; a;AÞ ¼ xi
Ay

j
Az

k
A expð�ar2AÞ; ð11Þ

with ‘‘quantum numbers’’ i Z 0, j Z 0, k Z 0, using for

example the Rys scheme,1 the McMurchie–Davidson scheme,2

or the Obara–Saika scheme3 followed by a transformation to

solid-harmonic form

Glmðr; a;AÞ ¼
X

iþjþk¼l

Slm
ijkGijkðr; a;AÞ ð12Þ

Here, we shall consider an alternative approach, where the

integration is first performed over the Hermite Gaussians

Hijkðr; a;AÞ ¼ @iþjþk expð�ar2AÞ
ð2aÞiþjþk@Ai

x @A
j
y@Ak

z

ð13Þ

followed by the transformation

Glmðr; a;AÞ ¼
X

iþjþk¼l

Slm
ijkHijkðr; a;AÞ ð14Þ

using the same coefficients as in eqn (12). In Subsection 2.2, we

shall demonstrate that the resulting functions eqn (14) are in

fact identical to the standard solid-harmonic Gaussians eqn

(12). Consequently, we may choose for our integration those

functions that are best suited to the task: the Cartesian

Gaussians eqn (11) or the Hermite Gaussians eqn (13).

Let us briefly compare the properties of the Cartesian and

Hermite Gaussians eqns (11) and (13). Both functions may be

factorized in the Cartesian directions

Gijkðr; a;AÞ ¼ Giðx; a;AxÞ Gjðy; a;AyÞ Gkðz; a;AzÞ ð15Þ

Hijkðr; a;AÞ ¼ Hiðx; a;AxÞ Hjðy; a;AyÞ Hkðz; a;AzÞ ð16Þ
where the x components are given by

Giðx; a;AxÞ ¼ xi
A expð�ax2

AÞ ð17Þ

Hiðx; a;AxÞ ¼ di expð�ax2
AÞ

ð2aÞidAi
x

ð18Þ

and likewise for the other components. We also note that the

Cartesian Gaussians satisfy the recurrence relations

xAGiðx; a;AxÞ ¼ Giþ1ðx; a;AxÞ ð19Þ

dGiðx; a;AxÞ
dAx

¼ 2aGiþ1ðx; a;AxÞ � iGi�1ðx; a;AxÞ ð20Þ

whereas the corresponding relations for the Hermite Gaus-

sians are given by

xAHiðx; a;AxÞ ¼ Hiþ1ðx; a;AxÞ þ i

2a
Hi�1ðx; a;AxÞ ð21Þ

dHiðx; a;AxÞ
dAx

¼ 2aHiþ1ðx; a;AxÞ ð22Þ

where eqn (21) follows from [(d/dAx)
i,xA] = �i(d/dxA)

i�1.

Note that the first (incremented) term is the same in the

Cartesian and Hermite recurrence relations eqns (19)–(22).

The only difference occurs in the second (decremented) term,

which vanishes upon multiplication by xA in the Cartesian

Gaussian and upon differentiation by Ax in the Hermite

Gaussian.

Because of eqn (22), the Hermite Gaussians are particularly

well suited to integration over differentiated solid-harmonic

functions since differentiation of eqn (14) merely raises the

4772 | Phys. Chem. Chem. Phys., 2007, 9, 4771–4779 This journal is �c the Owner Societies 2007



quantum numbers of the Hermite Gaussians:

@IþJþKGlmðr; a;AÞ
@AI

x @A
J
y @A

K
z

¼ ð2aÞIþJþK
X

iþjþk¼l

Slm
ijkHiþI ;jþJ;kþK ðr; a;AÞ

ð23Þ
whereas differentiation of the Cartesian Gaussians produces

linear combinations of Gaussians eqn (20). Thus, provided

the solid-harmonic Gaussians are expanded in Hermite

Gaussians, there is no need for a special derivative code, to

any order in differentiation. We shall also see that Hermite

Gaussians are better suited than Cartesian Gaussians to

integration over charge distributions consisting of linear

combinations of single Gaussians rather than product

Gaussians, as occur, for example, in the evaluation of

Coulomb energies by density fitting.10, 11 Special methods

for two- and three-center Coulomb integrals have previously

been considered by Köster6 (for Hermite functions) and by

Ahlrichs.12

2.2 Solid-harmonic Gaussians expanded in Hermite Gaussians

In Subsection 2.1, we expressed the solid-harmonic function

Slm(rA) as a homogeneous polynomial of degree l in xA, yA,

and zA, see eqn (10). We shall now establish the equivalence of

the real solid-harmonic functions expressed as linear combina-

tions of either Hermite or Cartesian Gaussians. For this

purpose, consider the transformed solid harmonics

SlmðrAÞ ¼
X

iþjþk¼l

Slm
ijkHiðxAÞHjðyAÞHkðzAÞ ð24Þ

where the coefficients Slm
ijk are the same as in eqn (10) but where

the monomial xi
A of degree i has been replaced by the Hermite

polynomial of the same degree:

HiðxAÞ ¼ ð�2Þ�i expðx2
AÞ

di

dxi
A

expð�x2
AÞ ð25Þ

and likewise for yjA and zkA. As seen by induction on the

Rodrigues expression eqn (25), the Hermite polynomials

may be generated recursively as

Hiþ1ðxAÞ ¼ xAHiðxAÞ � i

2
Hi�1ðxAÞ ð26Þ

beginning withH0(xA) = 1. Note that we have normalized the

Hermite polynomials such that the leading term is equal to xi
A:

1, xA, x
2
A � 1

2
, x3

A � 3
2
xA, and so on.

Clearly, the transformed solid harmonics eqn (24) have the

same leading terms as the standard solid harmonics eqn (10).

Therefore, since the standard solid harmonics are homoge-

neous eqn (9) (which means that all terms are leading terms),

the equivalence of the standard and transformed solid

harmonics eqns (10) and (24) is established if we can show

that the transformed solid harmonics eqn (24) are also

homogeneous. For this purpose, we introduce the differential

operator

Dx ¼ exp � 1

4

d2

dx2
A

� �
¼

X1
k¼0

1

ð�4Þkk!
d2k

dx2k
A

ð27Þ

which commutes with d/dxA and satisfies the commutator

relation

½xA;Dx� ¼ 1

2

d

dxA
Dx ð28Þ

Using this relation, we find that

Dxx
iþ1
A ¼ xADxx

i
A � ½xA;Dx�xi

A

¼ xADxx
i
A � i

2
Dxx

i�1
A ð29Þ

Comparing with eqn (26) and noting that Dx1 = 1, we

conclude that the operator Dx, when applied to xi
A, generates

the Hermite polynomial Hi(xA) of eqn (25):

HiðxAÞ ¼ Dxx
i
A ð30Þ

Next, introducing this relation and the corresponding rela-

tions for yjA and zkA in eqn (24), we find that the transformed

and standard solid harmonics are related in the following

manner:

SlmðrAÞ ¼
X

iþjþk¼l

Slm
ijkDxx

i
ADyy

j
ADzz

k
A

¼ DxDyDzSlmðrAÞ ð31Þ
Finally, applying rA �= to the transformed solid harmonics

eqn (31), we obtain

ðrA � rÞSlmðrAÞ ¼ ðrA � rÞDxDyDzSlmðrAÞ
¼ DxDyDzðrA � rÞSlmðrAÞ þ ½rA � r;DxDyDz�SlmðrAÞ

¼ DxDyDzlSlmðrAÞ þ 1
2
DxDyDzr2SlmðrAÞ

¼ lDxDyDzSlmðrAÞ ¼ lSlmðrAÞ

ð32Þ

where we have used the homogeneity of the solid harmonics

eqn (8), the commutator relation eqn (28), and Laplace’s

equation eqn (2), thereby demonstrating that the Slm(rA) are

homogeneous polynomials of degree l. Since the standard

and transformed solid harmonics are homogeneous polyno-

mials with the same leading terms, they must be identical. We

may therefore write the solid harmonics in the form

SlmðrAÞ ¼
X

iþjþk¼l

Slm
ijkHiðxAÞHjðyAÞHkðzAÞ ð33Þ

which differs from the standard expression eqn (10) in the

replacement of xi
A, yjA, and zkA by Hi(xA), Hj(yA), and

Hk(zA), respectively.

Combining eqns (1) and (33), we may now express the solid-

harmonic Gaussians as

Glmðr; a;AÞ ¼a�l=2
X

iþjþk¼l

Slm
ijkHið

ffiffiffi
a

p
xAÞHjð

ffiffiffi
a

p
yAÞHkð

ffiffiffi
a

p
zAÞ

� exp �ar2A
� � ð34Þ

where the homogeneity of the solid harmonics ensures that the

coordinate scaling is canceled by the prefactor a�l/2 =

a(�i�j�k)/2. Substituting xA by
ffiffiffi
a

p
xA in eqn (25) and multi-

plying the resulting equation from the left by exp(�ax2
A), we

obtain:2

Hið
ffiffiffi
a

p
xAÞ expð � ax2

AÞ ¼ ð2 ffiffiffi
a

p Þ�i d

dAx

� �i

expð � ax2
AÞ ð35Þ
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Using this result in eqn (34), we arrive at eqn (14), where we

have introduced the Hermite Gaussians eqn (13). Thus, we

may globally replace the Cartesian Gaussians eqn (11) by the

Hermite Gaussians eqn (13) in the expansion of the solid

harmonics eqn (12).

3. Molecular integrals over solid-harmonic

Gaussians

In this section, we demonstrate how integrals over solid-

harmonic Gaussians can be expanded in integrals over

Hermite Gaussians, expressed as scaled derivatives of integrals

over spherical Gaussians. The evaluation of these Hermite

integrals is discussed in Section 4.

3.1 Overlap and multipole-moment integrals

Consider the multipole-moment integrals about M between

two solid-harmonic Gaussians at A and B expanded in

Hermite Gaussians eqn (14):

Mk
ab ¼

Z
Glamaðr; a;AÞGlbmb

ðr; b;BÞxkx
My

ky
MzkzM dr

¼
X
ij

Slama
i S

lbmb
j mab

ijk ð36Þ

An important special case is the overlap integral Sab = M0
ab.

The Hermite multipole-moment integrals mab
ijk are given by

mab
ijk ¼

Z
Hiðr; a;AÞHjðr; b;BÞxkx

My
ky
MzkzM dr

¼ @iþj
R
expð�ar2AÞ expð�br2BÞ xkx

My
ky
MzkzM dr

ð2a@AxÞix � � � ð2b@BzÞjz
ð37Þ

We have here inserted the Hermite Gaussians eqn (13) and

used the Leibniz integral rule to take the differential operators

outside the integration sign, noting that the integration limits

are independent of the Gaussian coordinates.2,7 For brevity,

we have introduced the notation i = (ix, iy, iz) and i = ix + iy
+ iz (and likewise for j and k); we also adopt the convention of

denoting integrals over solid-harmonic Gaussians eqn (36) by

uppercase letters Mk
ab and the corresponding Hermite integrals

eqn (37) by lowercase letters mab
ijk. Invoking the Gaussian

product rule13

expð�ar2AÞ expð�br2BÞ ¼ expð�mR2
ABÞ expð�pr2PÞ ð38Þ

with

p ¼ aþ b; m ¼ ab

p
; RAB ¼ A� B;

P ¼ aAþ bB

p

ð39Þ

we find that the integral over the product of spherical Gaus-

sians eqn (38) is given byZ
expð�ar2AÞ expð�br2BÞ xkx

My
ky
MzkzM dr ¼ expð�mR2

ABÞMkðp;RPMÞ
ð40Þ

We have here introduced the multipole-moment integral

Mkðp;RPMÞ ¼
Z

xkx
My

ky
MzkzM expð�pr2PÞdr ð41Þ

which depends on p and RPM = P �M, with the special value

M0(p, RPM) = (p/p)3/2. Inserting this result into eqn (37), we

obtain the following Hermite multipole-moment integral

mab
ijk ¼ @iþjexpð � mR2

ABÞMkðp;RPMÞ
ð2a@AxÞix � � � ð2b@BzÞjz

ð42Þ

whose recursive evaluation is discussed in Section 4. However,

we note here that the overlap integral may be expressed as a

scaled Hermite Gaussian eqn (13) in RAB with exponent m:7

sabij ¼ mab
ij0 ¼ ð�1Þi p

p

� �3=2
b

p

� �i
a

p

� �j

HiþjðRAB; m; 0Þ ð43Þ

Since odd-order Hermite Gaussians vanish at the origin, the

overlap integrals vanish for odd ix + jx if Ax = Bx (and

likewise for the y and z directions).

The integrals discussed above were evaluated over a two-

center overlap distribution, generated by a product of two

Gaussians. Sometimes, we are interested in integrals over one-

center overlap distributions—in particular, in density-fitting

methods. Let us therefore consider the one-center overlap

integrals

Sp ¼
Z

Glpmpðr; p;PÞdr ¼
X
t

S
lpmp

t s
p
t ð44Þ

where, by convention, we use p and P for one-center overlap

distributions, with the Hermite quantum numbers t = (tx, ty,

tz). Proceeding as for two-center overlap distributions

eqn (37), we find that

s
p
t ¼

p
p

� �3=2

dt0 ð45Þ

where t = tx + ty + tz, in agreement with the fact that

integration over a single solid-harmonic Gaussian gives zero

except in the totally symmetric case lp = mp = 0.

3.2 Integrals over differential operators

In the Hermite scheme, one-electron integrals over differential

operators are easily obtained from the overlap integrals:

Dk
ab ¼

R
Glamaðr; a;AÞ @kx

@xkx

� �
@ky

@yky

� �
@kz

@zkz

� �
Glbmb

ðr; b;BÞ dr
¼ P

ij

Slama
i S

lbmb
j dab

ijk ð46Þ

where the Hermite integrals may be calculated in a variety of

equivalent ways, such as

dab
ijk ¼ ð2aÞksabiþk;j ¼ ð�2bÞksabi;jþk ð47Þ

As an important special case, the kinetic-energy integral is

given by

Tab ¼ �1
2
ðD200

ab þD020
ab þD002

ab Þ ð48Þ

and is thus easily obtained from overlap integrals with in-

cremented quantum numbers.

3.3 One-electron Coulomb integrals

For the one-electron Coulomb integrals, we follow the same

approach as for the multipole-moment integrals in Subsection

4774 | Phys. Chem. Chem. Phys., 2007, 9, 4771–4779 This journal is �c the Owner Societies 2007



3.1, expanding in Hermite integrals

Vab ¼
ZZ

Glamaðr; a;AÞ Glbmb
ðr; b;BÞ

rC
dr ¼

X
ij

Slama
i S

lbmb
j vabij

ð49Þ

where the Leibniz rule gives

vabij ¼
ZZ

Hiðr; a;AÞHjðr; b;BÞ
rC

dr ¼ @iþj
R
expð�ar2AÞ expð�br2BÞ r�1

C dr

ð2a@AxÞix � � � ð2b@BzÞjz
ð50Þ

Following Boys, we next invoke the Gaussian product rule eqn

(38), obtaining

Z
expð�ar2AÞ expð�br2BÞ

rC
dr ¼ 2p

p
expð � mR2

ABÞF0ðpR2
PCÞ
ð51Þ

where we have introduced the Boys function13

FnðxÞ ¼
Z 1

0

expð � xt2Þt2ndt ð52Þ

Inserting eqn (51) in eqn (50), we find that the two-center

one-electron Coulomb integrals are scaled derivatives of

exp(�mR2
AB)F0(pR

2
PC) with respect to A and B:

vabij ¼ 2p
p

@iþjexpð�mR2
ABÞF0ðpR2

PCÞ
ð2a@AxÞix � � � ð2b@BzÞjz

ð53Þ

Unlike the multipole-moment integral eqn (42), it cannot be

factorized in the Cartesian directions. For the corresponding

one-center Coulomb integrals, we obtain

Vp ¼
Z

Glpmpðr; p;PÞ
rC

dr ¼
X
t

S
lpmp

t v
p
t ð54Þ

v
p
t ¼

Z
Htðr; p;PÞ

rC
dr ¼ 2p

p

@tF0ðpR2
PCÞ

ð2p@PxÞtx � � � ð2p@PzÞtz
ð55Þ

Comparing with the two-center case eqn (53), we note the

expected absence of the exponential exp(–mR2
AB), greatly sim-

plifying its evaluation, as discussed in Section 4.

3.4 Two-electron Coulomb integrals

The four-center two-electron repulsion integrals over solid-

harmonic Gaussians

Gabcd ¼
ZZ

Glamaðr1; a;AÞGlbmb
ðr1; b;BÞGlcmcðr2; c;CÞGldmd

ðr2; d;DÞ
r12

dr1 dr2

ð56Þ

and the corresponding two- and three-center integrals Gpq,

Gab,q and Gp,cd may be treated in the same way as the one-

electron integrals in Subsection 3.3. Substituting the expan-

sions of the solid-harmonic functions eqn (14) in Hermite

Gaussians, we obtain

Gabcd ¼
X
ijkl

Slama
i S

lbmb
j Slcmc

k S
ldmd
l gabcd

ijkl ð57Þ

Gab;q ¼
X
iju

Slama
i S

lbmb
j S

lqmq
u g

ab;q
ij;u ð58Þ

Gp;cd ¼
X
tkl

S
lpmp

t Slcmc
k S

ldmd
l g

p;cd
t;kl ð59Þ

Gpq ¼
X
tu

S
lpmp

t S
lqmq
u g

pq
tu ð60Þ

where the Hermite integrals are denoted by gabcdijkl , g
ab,q
ij,u , gp,cdt,kl ,

and gpqtu . As for the one-electron integrals, we substitute the

Hermite Gaussians eqn (13) in the Hermite integrals, invoke

the Leibniz rule and apply the Gaussian product rule eqn (38),

introducing the exponents and coordinates eqn (39) for the

first electron and

q ¼ cþ d; n ¼ cd

q
; RCD ¼ C �D;

Q ¼ cC þ dD

q

ð61Þ

for the second one. Finally, using the result of Boys13

ZZ
expð�pr21PÞ expð�qr22QÞ

r12
dr1 dr2 ¼ 2p5=2

pq
ffiffiffiffiffiffiffiffiffiffiffi
pþ q

p F0ðaR2
PQÞ

ð62Þ

with

a ¼ pq

pþ q
; RPQ ¼ P �Q ð63Þ

we find that the two-electron Hermite integrals are given by

gabcd
ijkl ¼ 2p5=2

pq
ffiffiffiffiffiffiffiffiffiffiffi
pþ q

p @iþjþkþlexpð�mR2
ABÞ expð�nR2

CDÞF0ðaR2
PQÞ

ð2a@AxÞix � � � ð2d@DzÞlz
ð64Þ

g
ab;q
ij;u ¼ 2p5=2

pq
ffiffiffiffiffiffiffiffiffiffiffi
pþ q

p @iþjþu expð�mR2
ABÞF0ðaR2

PQÞ
ð2a@AxÞix � � � ð2q@QzÞuz

ð65Þ

g
p;cd
t;kl ¼ 2p5=2

pq
ffiffiffiffiffiffiffiffiffiffiffi
pþ q

p @tþkþl expð�nR2
CDÞF0ðaR2

PQÞ
ð2p@PxÞtx � � � ð2d@DzÞlz

ð66Þ

g
pq
tu ¼ 2p5=2

pq
ffiffiffiffiffiffiffiffiffiffiffi
pþ q

p @tþuF0ðaR2
PQÞ

ð2p@PxÞtx � � � ð2q@QzÞuz
ð67Þ

to be compared with the multipole-moment integrals eqn (42)

and the one-electron Coulomb integrals eqns (53) and (55).

The two- and three-center two-electron integrals are easier to

calculate than the four-center integrals, not only because there

are fewer differentiations to be carried out but also since the

functions to be differentiated are simpler. In Section 4, we shall

consider the evaluation of the Hermite Coulomb integrals.
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3.5 Differentiated molecular integrals

Let us consider the evaluation of integrals over the differen-

tiated solid-harmonic Gaussians

G
IxIyIz
lama

ðr; a;AÞ ¼ @IxþIyþIzGlamaðr; a;AÞ
@AIx

x @A
Iy
y @AIz

z

ð68Þ

Substituting here the expansion of solid-harmonic Gaussians

in Hermite Gaussians eqn (14) and noting that the expansion

coefficients are independent of A, we obtain

GI
lama

ðr; a;AÞ ¼ ð2aÞI
X
i

Slm
i HiþI ðr; a;AÞ ð69Þ

where I = (Ix, Iy, Iz) and I = Ix + Iy + Iz. Letting GIJKL
abcd

denote the two-electron integral evaluated over such functions,

we obtain

GIJKL
abcd ¼ð2aÞI ð2bÞJð2cÞK ð2dÞL

�
X
ijkl

Slama
i S

lbmb
j Slcmc

k S
ldmd
l gabcd

iþI ;jþJ;kþK ;lþL

ð70Þ

as a generalization of eqn (57). The same result applies to all

other integrals evaluated in terms of Hermite Gaussians.

Molecular integrals over differentiated solid-harmonic Gaus-

sians are thus obtained in the same manner as undifferentiated

integrals, by incrementing the quantum numbers of the Her-

mite Gaussians eqn (69). A code written for general angular

momentum is therefore also a code for general geometrical

derivatives.

Assume that we wish to calculate the nth-order Cartesian

derivatives arising from of an orbital shell of angular momen-

tum l0 (which we may take to be the first of four orbital shells

in a two-electron integral). There are (n + 1)(n + 2)/2

independent Cartesian derivatives of each of the 2l0 +1

solid-harmonic Gaussians in this shell. In the Hermite scheme,

we begin by calculating all integrals arising from this shell with

the angular momentum increased from l0 to l0 + n. Next, the

resulting (l0 + n + 1)(l0 + n + 2)/2 Hermite components are

combined to differentiated solid harmonics, using eqn (69). By

contrast, in the Cartesian scheme, we first calculate all inte-

grals with angular momentum max(0, l0 � n) r l r l0 + n on

the first orbital. The number of such components is propor-

tional to l20n + n3/3. Subsequently, these Cartesian integrals

are transformed to the derivative solid-harmonic basis, each

transformation of which is more expensive than that from the

Hermite basis.14 Clearly, in this case, it is advantageous to use

Hermite rather than Cartesian integrals as intermediates, as

their number depends quadratically rather than cubically on n.

The advantages of the Hermite scheme become less pro-

nounced when all derivatives in a given range 0 r n r nmax

are needed—we then need Hermite integrals with l0 r l r l0
+ nmax, compared with max(0, l0 � nmax) r l r l0 + nmax in

the Cartesian case. The Hermite scheme is still preferable,

however, since the subsequent transformation to the derivative

solid harmonics is simpler, the same number of Hermite

Gaussians contributing to each solid-harmonic function, for

all orders of differentiation n.

4. Evaluation of Hermite integrals

In Section 3, we expanded molecular integrals over solid-

harmonic Gaussians in integrals over Hermite Gaussians,

expressed as derivatives of a generating function—see eqn

(42) for multipole-moment integrals, eqns (53) and (55) for

one-electron Coulomb integrals, and eqns (64)–(67) for two-

electron Coulomb integrals. In the present section, we consider

the evaluation of these Hermite integrals, using the Obara–

Saika scheme3 in Subsection 4.1 and the McMurchie–

Davidson scheme2 in Subsection 4.2. %ivković and Maksić

have given expressions for integrals over Hermite functions,

without the use of recurrence relations.7

4.1 The Obara–Saika scheme for Hermite integrals

In the Obara–Saika scheme, the integrals are calculated from

recurrence relations between integrals of different Hermite

quantum numbers. Consider first the multipole-moment inte-

grals eqn (42), which may be factorized in the three Cartesian

directions, yielding the x component:

mab
ijk ¼ @iþjexpð�mX2

ABÞMkðp;XPMÞ
ð2a@AxÞið2b@BxÞj

ð71Þ

in the short-hand notation i, j and k for ix, jx and kx,

respectively. The function Mk(p, XPC), which is the x factor

of eqn (41), satisfies the relations

M0ðp;XPMÞ ¼
ffiffiffi
p
p

r
ð72Þ

Mkþ1ðp;XPMÞ ¼ XPMMkðp;XPMÞ þ k

2p
Mk�1ðp;XPMÞ ð73Þ

@Mkðp;XPMÞ
@Px

¼ kMk�1ðp;XPMÞ ð74Þ

Incrementing the three indices, we obtain after a little algebra

mab
iþ1;j;k ¼ XPAm

ab
ijk þ

1

2p
ðiwabm

ab
i�1;j;k þ jmab

i;j�1;k þ kmab
i;j;k�1Þ ð75Þ

mab
i;jþ1;k ¼ XPBm

ab
ijk þ

1

2p
ðimab

i�1;j;k þ jwbam
ab
i;j�1;k þ kmab

i;j;k�1Þ ð76Þ

mab
i;j;kþ1 ¼ XPMmab

ijk þ
1

2p
ðimab

i�1;j;k þ jmab
i;j�1;k þ kmab

i;j;k�1Þ ð77Þ

where we have introduced the factor

wab ¼ � b

a
ð78Þ

From these ’’vertical’’ recurrence relations (which increment

the highest i + j + k ), we may generate the full set of

integrals, beginning with mab
000. For example, we may first

generate the overlap integrals using the first two recurrences

eqns (75) and (76), followed by the generation of the multi-

pole-moment integrals from the overlap integrals using

eqn (77). We also note the ‘‘horizontal’’ recurrence relation

2amab
iþ1;j;k þ 2bmab

i;jþ1;k ¼ kmab
i;j;k�1 ð79Þ

which follows from translational invariance and conserves the

highest i + j + k.
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The same approach can be applied to the Coulomb inte-

grals. Because of the presence of the Boys function, the

integrals can no longer be factorized into Cartesian factors,

although the recurrence relations in the three Cartesian direc-

tions are still independent. In the following, we therefore

consider only increments in the x direction. Introducing the

auxiliary functions

Yn
ij ¼

2p
p

@iþj expð�mR2
ABÞ ð�2pÞnFnðpR2

PCÞ
ð2a@AxÞið2b@BxÞj

ð80Þ

Yn
ijkl ¼

2p5=2

pq
ffiffiffiffiffiffiffiffiffiffiffi
pþ q

p �

@iþjþkþl expð�mR2
ABÞ expð�nR2

CDÞð�2aÞnFnðaR2
PQÞ

ð2a@AxÞið2b@BxÞjð2c@CxÞkð2d@DxÞl

ð81Þ

and using Fn
0(x) = �Fn+1(x), we obtain the following vertical

recurrence relations

Yn
iþ1;j ¼ XPAYn

ij þ
1

2p
ðiwabYn

i�1;j þ jYn
i;j�1Þ

þ 1

2p
XPCYnþ1

ij þ 1

4p2
ðiYnþ1

i�1;j þ jYnþ1
i;j�1Þ ð82Þ

Yn
iþ1;j;k;l ¼XPAYn

ijkl þ
1

2p
ðiwabYn

i�1;j;k;l þ jYn
i;j�1;k;lÞ

þ 1

2p
XPQYnþ1

ijkl þ 1

4p2
ðiYnþ1

i�1;j;k;l þ jYnþ1
i;j�1;k;lÞ

� 1

4pq
ðkYnþ1

i;j;k�1;l þ lYnþ1
i;j;k;l�1Þ

ð83Þ
and likewise for increments in j, k and l. Beginning from Yn

00

with 0r nrmax(i + j) orYn
0000 with 0r nrmax(i + j + k

+ l), we may thus generate the full set of Hermite Coulomb

integrals nabi00,j00 = Y0
ij and gabcdi00,j00,k00,l00 = Y0

ijkl. Note that the

one-electron Coulomb recurrence relations eqn (82) are iden-

tical to the two-electron relations eqn (83) except for the

replacement of XPQ by XPC and the absence of the last two

terms; also, the first three terms in eqns (82) and (83) are the

same as for the multipole-moment integral eqn (75).

The Obara–Saika recurrence relations for Hermite Cou-

lomb integrals eqns (82) and (83) resemble closely those for

Cartesian integrals,3,8 to which they reduce if we arbitrarily set

wab = 1. As in the Cartesian case, it may be advantageous to

use additional recurrence relations. From eqn (21), we obtain

the horizontal recurrence relations

Yn
i;jþ1;k;l ¼ Yn

iþ1;j;k;l þ XABYn
ijkl þ

i

2a
Yn

i�1;j;k;l

� j

2b
Yn

i;j�1;k;l ð84Þ

which differ from the Cartesian recurrences4 by the presence of

the two last terms. Finally, from the translational invariance of

the integrals, we obtain the electron-transfer relations

Yn
i;0;kþ1;0 ¼ � bXAB þ dXCD

q
Yn

i0k0 þ
iwab

2q
Yn

i�1;0;k;0

þ kwcd

2q
Yn

i;0;k�1;0 �
p

q
Yn

iþ1;0;k;0 ð85Þ

which differ from to the corresponding relations for Cartesian

Gaussians15,16 only in the presence of the wab and wcd factors.

Using these relations, we may simplify the evaluation of

integrals by using a reduced Obara–Saika recurrence eqn

(83) to generate all Yn
i+j+k+l,0,0,0, followed by use of the

electron-transfer relation eqn (85) to generate all Yi+j,0,k+l,0.

In the final step, we use the horizontal recurrences eqn (84) to

generate the final integrals Yijkl.

The Coulomb recurrence relations given above eqns (82)

and (83) are for two-center overlap distributions. The corre-

sponding relations for integrals with one-center distributions

eqn (55) and eqns (65)–(67) are obtained by setting a = b = p,

A= B = P, and i + j = t for the first electron and c = d = q,

C = D = Q, and k + l = u for the second electron. For

example, for two-center two-electron Coulomb integrals, we

obtain from eqn (83) the recursion

Yn
tþ1;u ¼

1

2p
XPQYnþ1

tu þ t

4p2
Ynþ1

t�1;u �
u

4pq
Ynþ1

t;u�1 ð86Þ

where the first three terms of eqn (83) vanish and the pairs of

terms in parentheses collapse into single terms, reducing the

total number of terms from eight to three. By further rewriting

the intermediate integrals in the form

Yn
tu ¼ ð2pÞ�tð�2qÞ�uyntþu ð87Þ

ynt ¼ ð�2aÞn 2p5=2

pq
ffiffiffiffiffiffiffiffiffiffiffi
pþ q

p @tFnðaR2
PQÞ

@Pt
x

ð88Þ

we obtain the even simpler McMurchie–Davidson recursion:2

yntþ1 ¼ XPQynþ1
t þ tynþ1

t�1 ð89Þ

and similarly for the y and z directions. We have thus reduced

the Obara–Saika recurrence relations from eight to two terms.

No such reduction is possible in the Cartesian basis.

Finally, we note that it is possible to set up a scheme for the

Hermite integrals eqn (64), where we first calculate the deri-

vatives of the three factors Fab
n = qn exp(�mR2

AB)/qA
n
x, F

cd
n =

qn exp(�nR2
CD)/qC

n
x, and Rpq

n = qn F0(aR
2
PQ)/qP

n
x, after which

the Hermite integrals are assembled by binomial expansion, as

done by %ivković and Maksić.7

4.2 The McMurchie–Davidson scheme for Hermite integrals

In the Obara–Saika scheme, molecular integrals are generated

recursively, using different sets of recurrence relations for one-

and two-center overlap distributions, as discussed in Subsec-

tion 4.1. In the McMurchie–Davidson scheme, we take a

different approach, expanding two-center overlap distribu-

tions in one-center overlap distributions. In this way, all

four-center two-electron Coulomb integrals are reduced to

two-center Coulomb integrals, which are evaluated using the

same recurrence relations as in the Obara–Saika scheme.

Consider the overlap distribution generated by the Hermite

Gaussians Hi(r1, a, A) and Hj(r1, b, B):

Oijðr; a;A; b;BÞ ¼ Hiðr; a;AÞHjðr; b;BÞ ð90Þ

In the McMurchie–Davidson scheme, this two-center distribu-

tion is expanded in Hermite Gaussians about the product
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center P:

Oijðr; a;A; b;BÞ ¼
Xiþj

t¼0

F
ij
t ða; b;RABÞHtðr; p;PÞ ð91Þ

noting that the expansion coefficients depend only on the

relative positions of the Gaussians. Substituting eqn (91) in

eqn (37) and using eqn (45), we obtain for the overlap integrals

sabij ¼
X
t

F
ij
t s

p
t ¼ F

ij
0 s

p
0 ð92Þ

For the two-center one-electron Coulomb integrals eqn (50),

substitution of eqn (91) yields

vabij ¼
X
t

F
ij
t v

p
t ð93Þ

where the one-center integral is given by eqn (55). Finally, for

the two-electron Coulomb integrals of Subsection 3.4, eqn (91)

and a similar expansion of Okl(r, c, C, d, D) yield

g
ab;q
ij;u ¼

X
t

F
ij
t g

pq
tu ð94Þ

g
p;cd
t;kl ¼

X
u

g
pq
tuF

kl
u ð95Þ

gabcd
ijkl ¼

X
tu

F
ij
t g

pq
tuF

kl
u ð96Þ

where the basic two-center integrals gpqtu are given by eqn (67).

In the original Cartesian-based McMurchie–Davidson

scheme,2 also one-center overlap distributions are expanded

in Hermite orbitals according to eqn (96). In the purely

Hermite scheme presented here, only two-center distributions

are expanded, greatly simplifying the evaluation of few-center

integrals. The Hermite integrals npt and gpqtu are evaluated using

eqns (87)–(89).2

It only remains to discuss the evaluation of the expansion

coefficients of eqn (91). Factorizing the expansion in the

Cartesian directions and introducing the following short-hand

notation for the x direction

Oij ¼
X
t

F
ij
t Ht ð97Þ

we obtain

2aOiþ1;j þ 2bOi;jþ1 ¼ 2p
X
t

F ij
t Htþ1 ð98Þ

where we have applied q/qAx + q/qBx = q/qPx and then eqn

(22) on both sides of the equation. Inserting eqn (97) on the

left-hand side and collecting terms, we arrive at the horizontal

recurrence relation

aFiþ1;j
t þ bFi;jþ1

t ¼ pFij
t�1 ð99Þ

Next, we rewrite each term in eqn (98) using eqn (21), yielding

2pxPOij � iOi�1;j � jOi;j�1 ¼ 2pxP

X
t

F
ij
t Ht

�
X
t

F
ij
t tHt�1 ð100Þ

where we have used the relation axA + axB = pxP on the left-

hand side. Canceling the first term on each side and rearran-

ging, we obtain the vertical recurrence relation

iF
i�1;j
t þ jF

i;j�1
t ¼ ðtþ 1ÞFij

tþ1 ð101Þ
However, this relation can only be used to increment the upper

indices ij for Fij
t with t 4 0. Different vertical recurrences are

obtained by incrementing the first index of Oij, yielding

Oiþ1;j ¼ xAOij � i

2a
Oi�1;j

¼ XPAOij þ
X
t

F ij
t xPHt � i

2a
Oi�1;j

¼ XPAOij þ
X
t

F ij
t Htþ1 þ

X
t

F ij
t

t

2p
Ht�1 � i

2a
Oi�1;j

ð102Þ
where we have first used eqn (21) for orbital a, then expanded

xA = xP + XPA, followed by the application of eqn (21) for

orbital p. Collecting terms, we obtain

F
iþ1;j
t ¼ F

ij
t�1 þ XPAF

ij
t þ tþ 1

2p
F

ij
tþ1 �

i

2a
F

i�1;j
t ð103Þ

A similar set of recurrence relations may be derived for

increments in the second index j. However, the most efficient

scheme for the evaluation of the full set of expansion coeffi-

cients is to use the following combination of eqns (99), (101)

and (103):

Fiþ1;0
0 ¼ XPAF

i0
0 þ 1

2p
Fi0
1 � i

2a
Fi�1;0
0 ð104Þ

F
i;jþ1
0 ¼ � a

b
F

iþ1;j
0 ð105Þ

F
ij
t ¼ i

t
F

i�1;j
t�1 þ j

t
F

i;j�1
t�1 ; t 4 0 ð106Þ

beginning with F00
0 = exp(�mX2

AB). The recurrence relations of

the Hermite Gaussians are therefore no more complicated

than those for the Cartesian Gaussians.2,8 We note, however,

that our definition of Hermite Gaussians eqn (13) differs from

that of McMurchie and Davidson,2 who use

Ltðr; p;PÞ ¼ ð2pÞtxþtyþtzHtðr; p;PÞ. We have therefore here

denoted the expansion coefficients in eqn (91) by Fij
t rather

than by Eij
t as in ref. 2.

5. Conclusions

We have presented a scheme for the evaluation of molecular

integrals over solid-harmonic Gaussians, in which the integra-

tion is carried out over Hermite Gaussians rather than over

Cartesian Gaussians, based on the observation that solid-

harmonic Hermite Gaussians are identical to the correspond-

ing solid-harmonic Cartesian Gaussians. The presented

scheme simplifies the evaluation of derivative integrals (needed

for energy derivatives and in relativistic theory) since differ-

entiation with respect to nuclear coordinates merely incre-

ments the quantum numbers of the Hermite integrals, in the

same way as when the angular momentum is increased.

Consequently, the differentiation can be carried out to arbi-

trary order using the same code as for undifferentiated
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integrals. Moreover, the presented Hermite-based scheme

simplifies the evaluation of two- and three-center two-electron

integrals, of importance in density-fitting schemes, bypassing

the traditional time-consuming transformation to Cartesian

basis.

Note added in proof

After this article had been accepted for publication, we became

aware of the general theory of spherical tensor gradient

operators, as reviewed by Weniger.17 From this theory, the

equivalence of the expansions of solid-harmonic Gaussians in

Cartesian and Hermite Gaussians follows as a special result.

For further details and references, we refer the reader to this

work. However, it is proper here to mention the work of

Dunlap18–20 and of Ishida,21 who have used spherical tensor

gradient theory to develop integration techniques based on

angular-momentum recoupling, bypassing the evaluation of

integrals over Cartesian and Hermite Gaussians entirely. We

would also like to draw attention to the work of Fortunelli and

Salvetti,22 where two-electron integrals over Hermite functions

are considered within the Obara–Saika scheme.
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A linear-scaling implementation of Hartree-Fock and Kohn-Sham self-consistent field �SCF�
theories is presented and illustrated with applications to molecules consisting of more than 1000
atoms. The diagonalization bottleneck of traditional SCF methods is avoided by carrying out a
minimization of the Roothaan-Hall �RH� energy function and solving the Newton equations using
the preconditioned conjugate-gradient �PCG� method. For rapid PCG convergence, the Löwdin
orthogonal atomic orbital basis is used. The resulting linear-scaling trust-region Roothaan-Hall
�LS-TRRH� method works by the introduction of a level-shift parameter in the RH Newton
equations. A great advantage of the LS-TRRH method is that the optimal level shift can be
determined at no extra cost, ensuring fast and robust convergence of both the SCF iterations and the
level-shifted Newton equations. For density averaging, the authors use the trust-region
density-subspace minimization �TRDSM� method, which, unlike the traditional direct inversion in
the iterative subspace �DIIS� scheme, is firmly based on the principle of energy minimization. When
combined with a linear-scaling evaluation of the Fock/Kohn-Sham matrix �including a boxed fitting
of the electron density�, LS-TRRH and TRDSM methods constitute the linear-scaling trust-region
SCF �LS-TRSCF� method. The LS-TRSCF method compares favorably with the traditional SCF/
DIIS scheme, converging smoothly and reliably in cases where the latter method fails. In one case
where the LS-TRSCF method converges smoothly to a minimum, the SCF/DIIS method converges
to a saddle point. © 2007 American Institute of Physics. �DOI: 10.1063/1.2464111�

I. INTRODUCTION

During the last decade, much effort has been directed
towards the development and implementation of Hartree-
Fock �HF� and Kohn-Sham �KS� self-consistent field �SCF�
theories in such a manner that, for sufficiently large systems,
the cost of the calculations scales linearly with system size
O�N�, where N may be taken as the number of atoms in the
molecule. To achieve linear scaling, two bottlenecks must be
overcome: first, the construction of the Fock/KS matrix F in

the atomic-orbital �AO� basis, which conventionally scales
as O�N2�; second, the generation of a new density matrix
from a given Fock/KS matrix, which is conventionally
achieved by an O�N3� diagonalization step FC=SC�, where
S is the AO overlap matrix. Over the years, many strategies
have been proposed to make the cost of these key steps scale
linearly with system size.

To remove the diagonalization bottleneck, many meth-
ods have been suggested—see Refs. 1 and 2 for an overview.
We focus here on the density-matrix methods,1 which may be
subdivided into two categories:2 the Fermi-operator expan-
sion �FOE� methods and the density-matrix minimization
�DMM� methods. The FOE methods include rational-
function, polynomial, or recursive-polynomial expansions to
compute the density matrix, of which the canonical-
purification method of Palser and Manolopoulos,3 the
purification4,5 of McWeeny and the Chebyshev expansion6,7

of Baer and Head-Gordon serve as examples. Alternatively,
the DMM methods use the fact that the density matrix ob-
tained from a Fock/KS matrix diagonalization represents the
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global minimum of the Roothaan-Hall �RH� energy function
ERH=Tr DF �with F fixed�,8,9 thereby replacing the diagonal-
ization by a minimization, suitably constrained so as to sat-
isfy the idempotency condition DSD=D. Li et al. proposed
to deal with the idempotency constraint by replacing the den-
sity matrix in the optimization by its McWeeny-purified
counterpart, noting that the variations are then idempotent to
first order;10 their approach was further developed by Millam
and Scuseria11 and by Challacombe.12 Alternatively, the
idempotency condition may be incorporated into the param-
etrization of the density matrix D�X�=exp�−XS�D exp�SX�
with X antisymmetric, as described by Helgaker and
co-workers.8,13,14 The first attempts to use this parametriza-
tion to minimize ERH employed a sequence of Newton itera-
tions but encountered difficulties in the solution of the New-
ton linear equations.14 Subsequently, these difficulties were
solved by Shao et al.15 in their curvy-step method by trans-
forming the Newton equations to the Cholesky basis, where
the Hessian has a smaller condition number and is more di-
agonally dominant than in the AO basis. We discuss here
improvements to the algorithm of Shao et al.15 using the
Löwdin or principal square-root basis rather than the
Cholesky basis for the following reasons. First, the conver-
gence of the Newton equations is marginally better in the
Löwdin basis than in the Cholesky basis; second, the Löwdin
basis is the orthogonal AO basis that resembles most closely
the original AO basis,16 ensuring that locality is preserved to
the greatest possible extent; and third, the transformation to
the Löwdin basis can be performed straightforwardly within
a linear-scaling framework.17

In setting up the SCF iterations, we note that the RH
energy ERH�X�=Tr D�X�F constitutes a rather crude model
of the true SCF energy ESCF. In particular, at the expansion
point X=0, ERH has the same gradient as ESCF but only an
approximate Hessian. A global minimization of ERH �as tra-
ditionally accomplished by diagonalization of the Fock/KS
matrix� may therefore lead to steps that are too long and
therefore unreliable. To avoid such problems, we impose in
the trust-region RH �TRRH� method the condition that steps
should not be taken outside the trust region, that is, outside
the region where ERH is a good approximation to ESCF. We
have previously implemented the TRRH method in conjunc-
tion with the diagonalization of the Fock/KS matrix.18,19 In
the present paper, we describe how the TRRH method may
be implemented without diagonalization, making it suitable
for linear-scaling SCF calculations. We denote the obtained
algorithm the linear-scaling TRRH �LS-TRRH� method.

The information in the density and Fock/KS matrices
�gradients� Di and Fi that have been generated during an SCF
optimization may be used to accelerate the convergence of
the SCF iterations. Traditionally, this is accomplished by Pu-
lay’s method of direct inversion in the iterative subspace
�DIIS�,20 where an improved density matrix is obtained in
the subspace of the previous density matrices by minimizing
the norm of the gradient. As an alternative to DIIS, we re-
cently introduced the trust-region density-subspace minimi-
zation �TRDSM� algorithm,18,19 where a local energy model
EDSM is set up in the subspace of the previous density matri-
ces Di. Disregarding the idempotency conditions, the

TRDSM algorithm reduces to the energy-DIIS �EDIIS� algo-
rithm of Kudin et al.21 A disadvantage of the EDIIS algo-
rithm is that, even at the expansion point, the EDIIS gradient
is not equal to the SCF gradient. By contrast, the EDSM en-
ergy of the TRDSM algorithm constitutes an accurate repre-
sentation of the true energy ESCF in the subspace of previous
density matrices Di; consequently, a trust-region optimiza-
tion may be safely performed on EDSM to obtain the im-
proved density matrix.

Combining the LS-TRRH and TRDSM algorithms, we
obtain the linear-scaling trust-region SCF �LS-TRSCF�
method. In the LS-TRSCF calculations, sparse-matrix alge-
bra is used both in the LS-TRRH part and in the TRDSM
part of the optimization to achieve linear scaling. Sample
calculations are reported on polyalanine peptides containing
up to 119 alanine residues to demonstrate linear scaling. The
LS-TRSCF convergence is also examined and compared
with the convergence of conventional SCF/DIIS calculations,
that is, diagonalization without level shifting, improved by
the DIIS algorithm. The calculations demonstrate that the
LS-TRSCF algorithm constitutes an efficient and robust al-
gorithm for optimizing SCF wave functions.

For the Fock/KS matrix evaluation to scale linearly, a
number of techniques have been introduced for the different
contributions to F: the fast multipole method �FMM� for the
Coulomb contribution;22–26 the order-N exchange method
and the linear exchange K �LinK� method for the exact HF
exchange contribution,27–32 and efficient numerical-
quadrature methods for the exchange-correlation �XC�
contribution.33–35 Our SCF code uses FMM combined with
boxed density fitting for the Coulomb contribution, LinK for
the exact-exchange contribution, and linear-scaling numeri-
cal quadrature for the XC contribution.

The remainder of this paper contains three sections. We
begin by discussing the optimization of the RH energy in
Sec. II. Section III contains some illustrative calculations,
whereas Sec. IV contains conclusions.

II. OPTIMIZATION OF THE ROOTHAAN-HALL
ENERGY

A. Parametrization of the density matrix

Let D be a valid KS density matrix of an N-electron
system, which together with the AO overlap matrix S satis-
fies the following relations:

DT = D , �1�

Tr DS = N , �2�

DSD = D . �3�

Introducing the projectors Po and Pv onto the occupied and
virtual orbital spaces

Po = DS , �4�

Pv = I − DS , �5�

we may, from the reference density matrix D, generate any
other valid density matrix by the transformation8
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D�X� = exp�− P�X�S�D exp�SP�X�� , �6�

where X is an antisymmetric matrix and where we have in-
troduced the notation

P�X� = PoXPv
T + PvXPo

T. �7�

The matrix exponential is evaluated as

exp�XS� = �
n=0

�
�XS�n

n!
. �8�

In an orthonormalized AO basis, such as will be discussed in
Sec. II E, simplifications and a typically faster convergence
follow from the fact that S=I.

The density matrix D�X� may be expanded in orders of
X as

D�X� = D + �D,P�X��S + 1
2 ��D,P�X��S,P�X��S + ¯ ,

�9�

where we have introduced the S commutator

�A,B�S = ASB − BSA . �10�

We shall here in particular be concerned with expansions of
the type Tr�MD�X��, where M is symmetric. Inserting the S
commutator expansion of the density matrix D�X�, we obtain

Tr�MD�X�� = Tr�MD� + Tr�MPoXPv
T − MPvXPo

T�

+ 1
2Tr�MPoXPv

TSPvXPo
T

− 2MPvXPo
TSPoXPv

T

+ MPoXPv
TSPvXPo

T� + ¯ , �11�

where we have made repeated use of the idempotency rela-
tions Po

2=Po and Pv
2=Pv and of the orthogonality relations

PoPv=PvPo=0 and Po
TSPv=Pv

TSPo=0. Introducing the short-
hand notation

Mab = Pa
TMPb, �12�

this result may be written compactly as

Tr�MD�X�� = Tr�MD� + Tr�MvoX − MovX�

+ Tr�MooXSvvX − MvvXSooX� + ¯ .

�13�

Note that, whereas the off-diagonal blocks Mov and Mvo of
M contribute to the terms linear in X, the diagonal blocks
Moo and Mvv contribute to the quadratic terms.

B. The Roothaan-Hall Newton equations

In an SCF optimization, diagonalization of the Fock/KS
matrix F is equivalent to minimization of the RH energy8,9

ERH�X� = Tr�FD�X�� �14�

in the sense that both approaches yield the same density ma-
trix. However, ERH is only a crude model of the true SCF
energy function ESCF, having the correct gradient but an ap-
proximate Hessian at the point of expansion; this can be
understood from the observation that, whereas ERH depends
linearly on D�X�, the true energy ESCF depends nonlinearly

on D�X�. Therefore, a complete minimization of ERH �as
achieved, for example, by diagonalization of the Fock/KS
matrix� may give steps that are too long to be trusted, in-
creasing, for example, rather than decreasing the total SCF
energy. We therefore impose on the minimization the condi-
tion that the new occupied space does not differ appreciably
from the old occupied space. Noting that D�X�S and DS are
projectors onto the new and old occupied spaces, respec-
tively, we require that

�D�X� − D�S
2 = Tr��D�X� − D�S�D�X� − D�S	

= 2N − 2 Tr�DSD�X�S� �15�

is equal to some real parameter � that characterizes the trust
region of ERH.

When the trust-region algorithm36 is used for ERH, the
Newton step is taken only if the Hessian is positive definite
and the Newton step is inside the trust region; otherwise, the
minimum is determined on the boundary of the trust region
of the second-order Taylor expansion of ERH�X�. This is
achieved by setting up the Lagrangian where the step-size
constraint in Eq. �15� is added, multiplied by an undeter-
mined multiplier �:

LRH�X� = Tr�FD�X�� − 2��N − Tr�DSD�X�S� − �	 . �16�

Expanding this Lagrangian in orders of X, we obtain

LRH�X� = Tr�FD� + Tr�FvoX − FovX�

+ Tr�FooXSvvX − FvvXSooX�

+ 2��Tr�SooXSvvX� − �� + O�X3� . �17�

To obtain Eq. �17�, we have used Eq. �13� where M is re-
placed by F and SDS, respectively, for the first and second
terms of Eq. �16�, recognizing that the only nonzero compo-
nent of SDS is Po

TSDSPo=Soo. Differentiating this Lagrang-
ian with respect to the elements X, we obtain

�LRH�X�
�X

= Fov − Fvo − SvvXFoo − FooXSvv + FvvXSoo

+ SooXFvv − 2��SvvXSoo + SooXSvv� + ¯ ,

�18�

where we have used the relation

�Tr�AX�
�X

= AT. �19�

Since XT=−X, the right-hand side of Eq. �18� is antisymmet-
ric. Finally, setting the right-hand side equal to zero and ig-
noring higher-order contributions, we obtain the matrix equa-
tion

FvvXSoo − FooXSvv + SooXFvv − SvvXFoo − 2��SvvXSoo

+ SooXSvv� = Fvo − Fov �20�

for the stationary point of the RH energy function.
We note that for each nonredundant solution X=P�X�,

Eq. �20� has redundant solutions X+XR, where XR contains
only redundant elements, that is, P�XR�=0. Restricting our-
selves to the nonredundant solutions and introducing the no-
tation
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G = Fov − Fvo, �21�

H��� = Fvv − Foo − �S �22�

for the RH gradient and level-shifted Hessian, we may write
these matrix equations more compactly as

H���X̃S + SX̃H��� = − G , �23�

where it is assumed that X̃ is a pure matrix in the sense that

X̃=P�X̃�. These equations are solved iteratively, in a manner
to be discussed shortly, so as to minimize the RH energy �Eq.
�14�� subject to the constraint �D�X�−D�S=�. In passing, we
note that the RH Newton equations �Eq. �23�� may be viewed
as a special case of the generalized Lyapunov equation of
control theory AXB+BXA=Q, where X is �anti�symmetric
for �anti�symmetric Q.

C. Vectorization transformation of the Roothaan-Hall
Newton equations

In discussing the solution of the RH Newton matrix
equations �Eq. �23��, it is instructive to rewrite it in a differ-
ent form. For this purpose, we introduce the vec operator,
which vectorizes a matrix by stacking its columns, for ex-
ample,

vec
a11 a12

a21 a22
� =�

a11

a21

a12

a22


 . �24�

For three arbitrary, conformable matrices A, B, and C, we
note the relationship

vec�ABC� = �CT
� A�vec B . �25�

Applying the vec operator to both sides of Eq. �23�, we ar-
rive at the RH Newton linear equations

H���vec X̃ = − vec G , �26�

with a level-shifted Hessian matrix given by

H��� = H��� � S + S � H��� . �27�

The Newton matrix equations �Eq. �23�� for X̃ are thus

equivalent to the Newton linear equations for vec X̃. We em-
phasize, however, that in practice the more compact matrix
form �Eq. �23�� is used rather than the linear equations �Eq.
�26��.

D. The transformed preconditioned conjugate-gradient
method

For large dimensions, linear equations such as Eq. �26�
are typically solved iteratively using the conjugate-gradient
�CG� method, the convergence depending critically on the
condition number of the level-shifted Hessian ��H����,
where ��A� is the condition number of A. To accelerate con-
vergence, the preconditioned CG �PCG� method is used, re-
placing the linear equations �Eq. �26�� by the preconditioned
equations

W−1H���vec X̃ = − W−1 vec G , �28�

where W is a symmetric, positive-definite matrix that ap-
proximates H��� but is easy to invert. We can now solve the
linear equations more quickly with the CG method provided
that ��W−1H�������H����. A disadvantage of this ap-
proach is that W−1H��� is, in general, neither symmetric
nor positive definite, even for symmetric and positive-
definite W and H���. To avoid this problem, we factorize
the preconditioner

W = VTV , �29�

where the positive-definite matrix V may or may not be
symmetric. Inserting Eq. �29� into Eq. �28� and rearranging,
we obtain the similarity-transformed linear equation

�V−TH���V−1��V vec X̃� = − V−T vec G , �30�

which constitutes the basis for the transformed PCG method.
Returning to the matrix equations �Eq. �23��, we write

the preconditioner factor V in Eq. �29� as a Kronecker prod-
uct

V = V � V �31�

and we find

V−T�A � B�V−1 = AV � BV, �32�

V vec A = vec AV, �33�

V−T vec A = vec AV, �34�

where we have used Eq. �25� and introduced the notation

AV = V−TAV−1, �35�

AV = VAVT. �36�

We may therefore write the preconditioned RH Newton ma-
trix equations as

HV���X̃VSV + SVX̃VHV��� = − GV, �37�

where

GV = FV
ov − FV

vo, �38�

HV��� = FV
vv − FV

oo − �SV. �39�

The application of the transformed PCG method for the
Newton equations is thus equivalent to carrying out similar-
ity transformations of the Fock/KS and overlap matrices with
V−1. Our task now is to identify a useful preconditioner V.

E. Choice of preconditioner

For large values of the level-shift parameter �, the ma-

trix Newton equations �Eq. �37�� take the form �SVX̃VSV

=GV, suggesting that a suitable preconditioner V is obtained
by factorizing the �positive-definite� overlap matrix
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S = VTV , �40�

since then SV=I in Eq. �37�. Such a factorization may be
accomplished in infinitely many ways, for example, by intro-
ducing a Cholesky factorization37 �VC� or the Löwdin
decomposition38 �Vs, also called the principal square root�

VC = U , �41�

Vs = S1/2, �42�

where U is an upper triangular nonsingular matrix and where
S1/2 is a positive-definite symmetric matrix. With these pre-
conditioners, the RH Newton equations �Eq. �37�� take the
form

HV���X̃V + X̃VHV��� = − GV, S = VTV , �43�

where

HV��� = FV
vv − FV

oo − �I . �44�

These matrix equations, which are a special case of the con-
tinuous Lyapunov equation AX+XAT=Q, are equivalent to
the following Newton linear equations:

HV���vec X̃V = − vec GV, �45�

HV��� = HV��� � I + I � HV��� , �46�

which are the orthonormal counterpart of Eq. �26�. A further
improvement is possible by extracting the diagonal part of
the similarity-transformed RH Hessian:

VH = diag��HV����11
1/2,�HV����22

1/2, . . . �V , �47�

which is trivially set up, requiring only the extraction of the
diagonal elements of the Hessian

�HV��	,�	 = �FV
vv − FV

oo��� + �FV
vv − FV

oo�		 − � , �48�

where we have assumed an orthonormal basis.
The Cholesky and symmetric �square-root� precondition-

ers are equivalent in the sense that they yield the same con-
dition number ��W−1H����. Indeed, since the structures of
F and S are broadly similar �with similar eigenvalues�, these
preconditioners typically reduce the condition number by
several orders of magnitude, greatly improving CG conver-
gence and reducing the overall computational effort. In pass-
ing, we note that, in any orthonormalized AO basis, the con-
dition number of the RH Newton equations is the same as the
condition number in the canonical orbital basis, to which it is
related by an �condition-number conserving� orthonormal
transformation.

An advantage of the Löwdin preconditioner over the
Cholesky preconditioner is that it is often more diagonally
dominant, as we shall see in some of the examples in Sec.
III. Moreover, among all possible orthogonal bases, the Löw-
din basis is the one that most closely resembles the original
�local� AO basis, ensuring that locality is preserved to the
greatest possible extent.16 A possible misgiving about the
Löwdin preconditioner is the practicality of generating S1/2

and S−1/2 in linear time. However, in Ref. 17, we demonstrate

that S1/2 and S−1/2 can always be calculated at linear cost, in
an iterative manner. Unless otherwise specified, we use the
Löwdin basis in our calculations.

We conclude this section by noting that the use of an
orthonormal Löwdin or Cholesky AO basis also simplifies
the evaluation of the matrix exponential �Eq. �8�� to

exp�X� = �
n=0

�
Xn

n!
. �49�

However, this series converges rapidly only for small X. To
accelerate convergence for large arguments, we can use the
relation

exp�X� = �exp�2−kX��2k
, �50�

where on the right-hand side X is scaled by some suitably
small parameter 2−k such that the Frobenius norm of X is
small enough for Eq. �49� to be rapidly convergent. In this
way, the transformed density matrix can be evaluated in
about ten matrix multiplications, regardless of the magnitude
of X. Furthermore, since X is antisymmetric, exp�−X� is
given by �exp�X��T.

F. The level-shifted Newton equations in the canonical
molecular-orbital basis

To gain insight into the convergence of the PCG algo-
rithm and, in particular, to understand how the level-shift
parameter should be chosen, it is instructive to express Eq.
�37� in the unoptimized canonical molecular-orbital �MO�
basis. In this basis, the Fock/KS matrix has diagonal
occupied-occupied and virtual-virtual blocks with the
pseudo-orbital energies 
P on the diagonal, whereas the
occupied-virtual and virtual-occupied blocks are nonzero.
The level-shifted Hessian elements are then given by �using
indices A, B, C, and D for virtual MOs and I, J, K, and L for
occupied MOs�

HAIBJ��� = �AB�IJ�
A − 
I − �� , �51�

and the virtual-occupied elements of Eq. �37� become

�
A − 
I − ��XAI = FAI, �52�

where XAI is the solution vector in the canonical MO basis.
The step-length function

�X�S
2 = �

AI

FAI
2

�
A − 
I − ��2 �53�

has k+1 branches, where k is the number of eigenvalues

A−
I of the �unshifted� Hessian �see Fig. 1�. The function is
positive for all � with asymptotes at the eigenvalues. For
��min�
A−
I�, the RH energy is lowered to both first and
second orders.8,36 In the trust-region formalism, the step
length is taken to be the stationary point that corresponds to
the minimum on the boundary of the trust region. The sta-
tionary point is therefore given by the intersection marked by
a cross in Fig. 1.

In the canonical MO basis, the Hessian is diagonal and
the solution to the level-shifted Newton equations is trivial.
In the AO basis, by contrast, the Hessian is not diagonal and
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the equations must be solved iteratively. The PCG conver-
gence is then critically dependent on the judicious choice of
preconditioner.

G. The level-shifted Newton equation as an eigenvalue
problem

The solution to the level-shifted Newton equations �Eq.
�45�� may alternatively be found by solving the eigenvalue
problem39–41

A���
1

x̃
� = �
1

x̃
� , �54�

where we have introduced the short-hand notation

x̃ = vec X̃ , �55�

gV = vec GV, �56�

and where the dimension of the augmented Hessian

A��� = 
 0 �gV
T

�gV HV�0� � �57�

is one larger than that of the Hessian HV���. To see that the
solution of Eq. �54� determines the solution to the level-
shifted Newton equations, we write the second component of
Eq. �54� as

HV�0�x̃ + �gV = �x̃ , �58�

or equivalently,

HV����−1x̃ = − gV. �59�

Thus, the solution to the Newton equations �Eq. �45�� with
the level-shift parameter � is given by �−1x̃, where �1, x̃�T is
the eigenvector that belongs to the eigenvalue � of the
augmented-Hessian eigenvalue problem �Eq. �54��. Since the
dimension of the augmented Hessian A��� in Eq. �57� is one
larger than that of HV���, the Hylleraas-Undheim theorem42

predicts that the lowest eigenvalue of A��� is lower than the
lowest eigenvalue of HV���. Therefore, by selecting the
lowest eigenvalue of Eq. �54�, we generate a step in the
left-hand branch of Fig. 1. Moreover, by adjusting � so that
��−1x̃�2�h2, we generate a step to the minimum on the
boundary of the trust region with trust radius h.

The augmented-Hessian eigenvalue problem �Eq. �54��
may be solved iteratively, updating � in the course of the
iterations to give a step of length h. Assume that, during the
iterative procedure, we have obtained a set of n+1 trial vec-
tors


1

0
�,
 0

b1
�,
 0

b2
�, . . . ,
 0

bn
� , �60�

where the bi=vec Bi are orthonormal

bi
Tb j = Tr�BiB j� = �ij , �61�

and where b1 is the normalized gradient vector

b1 = �gV�−1gV. �62�

The augmented-Hessian eigenvalue problem �Eq. �54�� for
the lowest eigenvalue may be set up in the basis of the n
+1 trial vectors

AR���
 1

x̃R���
� = �R
 1

x̃R���
� , �63�

where

A00
R ��� = 0, �64�

A10
R ��� = A01

R ��� = �b1
TgV = ��gV� , �65�

A0i
R ��� = Ai0

R ��� = 0 �i � 1� , �66�

Aij
R��� = bi

T
 j , �67�

and � j is the linearly transformed vector

� j = HV�0�b j . �68�

The first component in the reduced eigenvalue problem �Eq.
�63�� spans the augmented dimension and is normalized to 1
according to Eq. �54�. The solution to the level-shifted New-
ton equations �Eq. �45�� with �=�R is given by �−1x̃R ex-
panded in the basis of the trial vectors. By adjusting � so as
to satisfy

��−1x̃R�2 = h2, �69�

we obtain a step of length h in the reduced space. When the
lowest eigenvalue of Eq. �54� is determined iteratively, we
may straightforwardly adjust � until it satisfies Eq. �69�.
Storing AR�1� with �=1, we obtain AR��� for ��1 by a
simple scaling of A10

R �1� and A01
R �1� according to Eq. �65�.

To solve the augmented-Hessian eigenvalue problem, we
may use the Davidson algorithm.43 When the lowest eigen-
value is determined in the reduced space, � may be dynami-
cally updated. In this manner, the minimum on the boundary
of the trust region may be determined in the same number of
iterations as required for solving the eigenvalue equation
with a fixed � parameter.

To determine the lowest eigenvalue of the augmented
Hessian efficiently, a good initial guess is required. However,
since the augmented Hessian is not strongly diagonally
dominant, such a guess is usually not readily available. In
practice, therefore, we use the augmented-Hessian eigen-
value equation only to update �, so as to ensure that the level

FIG. 1. The step length in Eq. �52� as a function of the level-shift parameter.
The asymptotes indicated by vertical dashed lines occur at the eigenvalues
of the Hessian for the RH energy. The trust region �h� is marked by the
horizontal dotted line. The crossing between the dotted line and the step
length function marked with a cross represents the chosen level shift.
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shift is in the proper interval and of the correct size. The
improved trial vectors are themselves obtained by solving
the level-shifted Newton equations in the same reduced
space �b1 ,b2 , . . . ,bn	 as for the eigenvalue equation but with
an updated level-shift parameter. Essentially, we perform a
sequence of PCG iterations, dynamically updating the level-
shift parameter in the subspace generated by the PCG itera-
tions.

In the PCG minimization, we first determine a solution
with the step-size constraint �XV�=0.6, where �XV� is the
Frobenius norm. Next, the subspace generated during this
minimization is utilized as the starting point for a subsequent
minimization, now with the step-size constraint Xmax

V =0.35,
where Xmax

V is the largest component of XV. Unlike the con-
straint on �XV�, the constraint on Xmax

V is size-intensive. The
algorithm is not sensitive to the choice of the �XV� param-
eter, whereas Xmax

V should be chosen carefully. We have
found �XV�=0.6 and Xmax

V =0.35 to be suitable parameters.
The first level shift is obtained by solving the

augmented-Hessian eigenvalue problem in a two-
dimensional subspace, corresponding to a reduced space
containing only one trial vector, namely, the normalized gra-
dient in Eq. �62�. The PCG iterations are terminated when
the level shift has converged and when the residual has been
reduced by a factor of 100 relative to the residual in the
two-dimensional reduced space.

The RH SCF iterations are continued until the gradient
norm �gV� is smaller than some preset threshold. However,
just like �XV�, the norm �gV� is an extensive property. Indeed
for two noninteracting, identical systems, the total squared
norm is equal to twice the norm of each subsystem:

�gA+B�2 = �
i

�gi
A�2 + �

i

�gi
B�2 = �gA�2 + �gB�2. �70�

A size-intensive requirement on the SCF convergence is thus
to use the gradient norm divided by the square root of the
number of electrons �gV� /�N.

H. Diagonalization of the level-shifted Fock/KS matrix
by Newton’s method

The minimum of the RH energy subject to the step-size
constraint �Eq. �15�� may alternatively be determined by us-
ing the MO coefficients as variational parameters. In this
parametrization, the density matrix may be expressed as

D�X� = CoccCocc
T , �71�

where the coefficients of the occupied MOs Cocc satisfy the
orthonormality constraint

Cocc
T SCocc = I . �72�

Imposing this orthonormality constraint simultaneously with
the step-size constraint �Eq. �15�� on the energy ERH, we
obtain the Lagrangian

LRH�Cocc� = Tr�FD�X�� − ��2N − 2 Tr�DSD�X�S� − �	

− Tr ��Cocc
T SCocc − I� . �73�

Differentiation of this Lagrangian with respect to the MO
coefficients gives

�F − �SDS�Cocc��� = SCocc������� , �74�

where ���� is chosen to be diagonal ������ since the energy
is invariant with respect to rotations among the occupied
MOs. The density matrix for the new RH iteration becomes

D��� = Cocc���Cocc
T ��� , �75�

where Cocc��� are the eigenvectors of the generalized eigen-
value problem �Eq. �74�� with the level-shifted Fock/KS ma-
trix F−�SDS.

In the local part of the RH SCF optimization, where �
=0 and X is small, the solution of the Newton matrix equa-
tions �Eq. �23�� and the diagonalization of the Fock matrix
�Eq. �74�� give essentially the same step and the same den-
sity matrix. To first order in X, the solution of the Newton
equations then corresponds to a diagonalization of the
Fock/KS matrix. By contrast, in the global part of the RH
SCF optimization, where X is larger, the steps obtained by
diagonalizing the Fock/KS matrix �Eq. �74�� and by solving
the Newton equations �Eq. �23�� differ.

In our implementation, the Newton step is always taken
in the local region, where �=0. In the global region, each
SCF iteration begins by solving the Newton eigenvalue
equation �Eq. �54�� to determine the level-shift parameter
�max by requiring that the largest step-length component is
equal to Xmax

V . The minimization of

E�max

RH = Tr�F − �maxSDS�D�X� �76�

is represented by the solution of the Fock/KS eigenvalue
equation �Eq. �74�� with �=�max. The solution of the level-
shifted Newton equations with level-shift parameter �max

then represents a first-order diagonalization of the level-
shifted Fock/KS matrix in Eq. �74�, whereas the full minimi-
zation of E�max

RH requires a complete diagonalization and may
be accomplished by a sequence of level-shifted Newton it-
erations with �=�max. In practice, a partial rather than exact
minimization of E�max

RH is sufficient in the global region. Thus,
in our implementation, no more than one or two level-shifted
Newton iterations �Eq. �23�� with �=�max are taken since,
after two iterations, the Newton steps have become so small
that they no longer affect the global SCF convergence. In-
deed, our standard procedure is to take only one level-shifted
Newton step although we also report some calculations
where two level-shifted Newton steps are taken at each SCF
iteration.

I. Evaluation of the Coulomb contribution

The Coulomb contributions to the Fock/KS matrix and
the energy are given by

Jab = �ab��� , �77�

J = 1
2 ����� , �78�

in terms of the one-electron density

114110-7 Linear-scaling SCF theory J. Chem. Phys. 126, 114110 �2007�



��r� = �
cd

�c�r��d�r�Dcd. �79�

In density fitting,44,45 the computational cost is significantly
reduced by evaluating these contributions as

J̃ab = �ab��̃� , �80�

J̃ = ����̃� − 1
2 ��̃��̃� = J − 1

2 �� − �̃�� − �̃� �81�

from an approximate density �̃ expanded in an atom-centered
auxiliary basis:

�̃�r� = �
�

���r�c�. �82�

We determine the c� by minimizing the fitting error ��
− �̃�w��− �̃� with metric w subject to the charge-conserving
constraint ��̃�r�dr=Ne, leading to the linear equation

�
	

���w�	�c	 = ���w��� + ���� , �83�

where the one-center overlaps are given by ���=����r�dr,
and with

� =
Ne − ��	������w�	�−1�	���

��	������w�	�−1�	�
. �84�

From Eq. �81�, we see that the fitted Coulomb repulsion
energy is always lower than the regular repulsion energy. The
smallest fitting error is obtained by an unconstrained mini-
mization �=0 in the Coulomb metric w=r12

−1 in Eq. �83�. The
use of constraints or of a non-Coulomb metric increases the
error, lowering the Coulomb energy.

With density fitting, large speedups are observed, but
scaling becomes a problem for large systems—the inversion
�Eq. �83�� scales cubically in time, whereas the memory re-
quirements for the �� �	� matrix scale quadratically. To
achieve linear scaling, there are two main strategies. One is
to fit the density in a metric different from the long-range
Coulomb metric, so that ���w�	� of Eq. �83� becomes

FIG. 2. The error in the energy in HF LS-TRSCF �top�
and SCF/DIIS �bottom� optimizations.
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sparse.45–47 Alternatively, the density is partitioned into lo-
calized parts, which are fitted separately.48–50 We use an ap-
proach similar to that of Ref. 48. The system is divided into
localized parts i using the density partitioning51 of Yang and
Lee

��r� = �
i

��i��r� = �
i

�
ab

�a�r��b�r�Dabxab
�i� , �85�

where xab
�i� =1 for both a and b in i, xab

�i� =1/2 for either a or b
in i, and xab

�i� =0 otherwise. With this decomposition, some of
the overlap distributions belonging to subsystem i may in
fact be centered outside this subsystem �by the Gaussian
product rule�, but these decay exponentially with the square
of the separation between the two Gaussian functions.

Each subsystem density ��i� is fitted using auxiliary func-
tions located within an extended subsystem i, comprising the
original subsystem i padded with a buffer zone �i around the
subsystem

�
	�i+�i

���	�c	
�i� = �

cd

���cd�Dcdxcd
�i� − ��i���� . �86�

The multipliers are given by

��i� =
Q�i� − ��	�i+�i

������	�−1�	���i��

��	�i+�i
������	�−1�	�

, �87�

with the subsystem charge

Q�i� =� ��i��r�dr = �
ab

SabDabxab
�i� . �88�

The cost of solving Eq. �86� depends on the size of the sub-
system rather than on the size of the full system. Given that
the number of subsystems increases linearly with system
size, the full density is fitted in linear time. In our calcula-
tions, the total system is put in a rectangular box, which is
recursively bisected until no subbox contains more than 5000
auxiliary basis functions. In the fitting, a buffer zone of width
5 Bohr is used. In the applications presented here, we used
the optimized basis set developed by Eichkorn et al.52,53 with
no charge constraints imposed on the fitted density.

III. SAMPLE CALCULATIONS

In the HF and KS calculations reported here, we use the
LS-TRSCF method, combining the LS-TRRH algorithm for
the RH iterations of Sec. II B with the TRDSM algorithm for
density averaging �implemented in a local version of DALTON

FIG. 3. The error in the energy in LDA KS optimizations using the one-step Newton LS-TRSCF �top left�, two-step Newton LS-TRSCF �top right�, and
SCF/DIIS �bottom� methods.
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�Ref. 54��. First, in Sec. III A, we compare the LS-TRSCF
scheme with the traditional SCF/DIIS scheme. Next, in Sec.
III B, we examine the CG solution of the RH Newton equa-
tions �Eq. �45��. Finally, in Sec. III C, we consider the cost of
the LS-TRRH optimization, demonstrating that linear scaling
may be obtained within this framework.

A. Convergence of the LS-TRSCF method

To compare the LS-TRSCF and SCF/DIIS methods, we
use the following five molecules which represent a variety of
bonding situations: the water molecule in the d-aug-pVTZ
basis with the bonds stretched to twice their equilibrium
value; the rhodium complex of Ref. 19, with the STO-3G
basis for rhodium and the Ahlrichs VDZ basis for the other
atoms;55 the cadmium-imidazole complex of Ref. 18 in the
3-21G basis; a 438-atom polysaccharide in the 6-31G basis;
and a 992-atom polypeptide of 99 alanine residues in the
6-31G basis. For all systems, we have carried out calcula-
tions at the HF and KS levels of theory, using the local
density approximation �LDA� and B3LYP functionals. As

initial guesses for the optimization, we used the one-electron
core Hamiltonian for water and for the metal complexes,
while the Hückel model was used for the large polysaccha-
ride and polypeptide molecules. Unless otherwise indicated,
only one Newton step is taken in each TRRH iteration. In the
DIIS and TRDSM density-averaging steps, a maximum of
eight density matrices and Fock/KS matrices are used. In
Figs. 2, 3, and 4, we have plotted the error in the energy �on
a logarithmic scale� at each SCF iteration for the HF model,
the LDA model, and the B3LYP model, respectively.

In the LS-TRSCF calculations, we observe a smooth
convergence to an error of 10−8 a.u. in 10-30 iterations. The
only exceptions are the the KS rhodium calculations, where a
significant energy lowering is observed in the first few itera-
tions, followed by a large number of iterations with no ap-
parent progress, in particular, for the LDA functional. Even-
tually, the local region is reached and fast convergence is
established. In Fig. 3, we have also included plots for LDA
calculations that take two Newton steps in each SCF itera-
tion. In general, there is little difference between the one-
and two-step calculations, but a striking improvement is ob-

FIG. 4. The error in the energy in B3LYP KS LS-
TRSCF �top� and SCF/DIIS �bottom� optimizations.
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served for the rhodium complex. This improvement is not yet
understood �it may be accidental�, and we continue to use
one Newton iteration as the default in our optimizations.

A comparison of the SCF/DIIS plots with the LS-TRSCF
plots in Figs. 2–4 clearly reveals the poorer SCF/DIIS per-
formance, in particular, for the KS calculations. However,
some differences are also observed in the HF calculations—
unlike the LS-TRSCF method, the SCF/DIIS method di-
verges for the rhodium complex and performs erratically in
the global part of the polyalanine optimization. In general,
we note that the SCF/DIIS and LS-TRSCF differences are
largest in the global region, where the SCF/DIIS scheme
suffers from the fact that it is not based on the principles of
energy minimization and step-size control, sometimes lead-
ing to an erratic behavior. In the local region, size constraints
become irrelevant, since both methods use the quasi-Newton
condition to speed up the local convergence, which becomes
very similar for the two methods.

The SCF/DIIS LDA calculations in Fig. 3 show a strik-
ingly erratic behavior. The cadmium and polyalanine calcu-

lations both diverge; for the polysaccharide, no convergence
is observed until iteration 25. Surprisingly, the LDA calcula-
tion on the rhodium complex converges, unlike the Hartree-
Fock calculation. Finally, concerning the B3LYP functional
in Fig. 4, we note that the SCF/DIIS polyalanine optimiza-
tion diverges. Interestingly, for the cadmium complex, the
horizontal line that begins at iteration 10 indicates conver-
gence to a stationary point of higher energy than that ob-
tained with the LS-TRSCF algorithm. Indeed, a closer ex-
amination of this stationary point reveals that it is a saddle
point with the lowest Hessian eigenvalue of −0.0147 a.u.
From an inspection of the corresponding LS-TRSCF curve, it
appears that the LS-TRSCF approaches the same saddle
point in iterations 15-20. At iteration 17, however, TRDSM
detects a negative Hessian eigenvalue, and from iteration 20,
convergence is established towards the minimum �lowest
Hessian eigenvalue of 0.0275 a.u.�, which is reached in 32
iterations.

B. The solution of the Roothaan-Hall Newton equations

To examine the convergence of the RH Newton equa-
tions, we consider the stretched water molecule of Sec. III A
at the LDA/d-aug-cc-pVTZ level of theory, solving Eq. �45�
in the Cholesky and Löwdin bases with and without the di-
agonal preconditioner �Eq. �48��. Although small, this ex-
ample is representative of the present calculations. We begin
by noting that the SCF convergence illustrated in Fig. 3 is the
same in the Cholesky and Löwdin bases. In both cases, the
electronic gradient is reduced to less than 10−5 a.u. after 13
SCF iterations—see Table I, where we have also listed the
number of PCG iterations required to solve a set of RH New-
ton equations at each SCF iteration. Typically, 10-20 PCG
iterations are needed to solve the Newton equations, with an
average number of 17 iterations needed in the Cholesky basis
and 16 iterations in the Löwdin basis.

To understand better the performance of the CG method
in the Cholesky and Löwdin bases, we have selected for
closer examination one level-shifted SCF iteration in the glo-

TABLE I. H2O stretched, LDA/d-aug-cc-pVTZ. SCF convergence and
number of microiterations needed to get the new density in the Löwdin and
Cholesky bases, respectively.

Iteration Energy Gradient norm nit Löwdin nit Cholesky

1 −60.173 329 477 53 17.278 869
2 −71.778 669 286 89 12.938 274 10 9
3 −75.418 451 510 91 3.170 448 16 15
4 −74.234 639 836 42 11.774 826 22 18
5 −75.549 995 553 04 2.278 892 21 14
6 −75.539 701 417 42 2.994 470 17 19
7 −75.562 908 067 61 2.070 197 13 17
8 −75.579 986 850 34 0.903 419 16 18
9 −75.583 777 493 19 0.093 106 17 21

10 −75.583 817 470 68 0.004 338 18 17
11 −75.583 817 561 34 0.000 448 14 20
12 −75.583 817 562 31 0.000 051 18 19
13 −75.583 817 562 33 0.000 008 13 18

TABLE II. Global H2O LDA/d-aug-cc-pVTZ convergence, second SCF iteration. Convergence of the RH
Newton equations �Eq. �43�� in the Cholesky basis with and without a diagonal preconditioner. The constrained
step-size parameter is marked with an asterisk.

Iteration

No preconditioner Diagonal preconditioner

�R� � Xmax
v �Xv� �R� � Xmax

v �Xv�

1 3.31 −9.51 0.190 0.592* 3.31 −9.51 0.190 0.592*

2 1.09 −11.78 0.174 0.562* 0.34 −11.85 0.163 0.573*

3 0.28 −11.47 0.175 0.590* 0.17 −11.48 0.179 0.592*

4 0.06 −12.23 0.171 0.557* 0.05 −12.23 0.170 0.558*

5 0.02 −11.83 0.176 0.576* 0.01 −11.83 0.176 0.576*

6 0.13 −6.68 0.315* 1.048 0.18 −6.05 0.346* 1.193
7 0.08 −6.48 0.323* 1.091 0.06 −6.42 0.323* 1.104
8 0.06 −6.28 0.332* 1.137 0.03 −6.22 0.336* 1.151
9 0.06 −6.09 0.344* 1.186 0.02 −6.60 0.314* 1.065

10 0.02 −6.46 0.322* 1.096
11 0.02 −6.26 0.334* 1.142
12 0.02 −6.07 0.347* 1.192
13 0.01 −6.44 0.324* 1.100
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bal region �iteration 2� and one unshifted SCF iteration in the
local region �iteration 7�; see Tables II–V, each of which
contains the following information on each �P�CG iteration
needed for the solution of the RH Newton equations: the
residual �R�, the level-shift value �, the largest component
Xmax

V , and the norm �XV� of the current solution vector XV.
In the global SCF iteration of Table II, we first solve the

RH Newton equations �Eq. �45�� in the Cholesky basis with
the constraint �XV�=0.6 imposed, followed by solution with
the new constraint Xmax

V =0.35. The level shift that gives a
total step length of about 0.6 ��=−11.8� is quickly estab-
lished, as is subsequently the shift that gives the final step
XV with the largest component of about 0.35
��=−6.6�. Note how the step size increases as we change the
constraint from �XV� to Xmax

V . The reason that we determine a
step of total length 0.6 before attempting a step with the
largest component 0.35 is that it gives a more robust algo-
rithm. In a small subspace, the individual components of XV

may change strongly in the first few iterations, making the
identification of � difficult; after a few iterations where �XV�

is determined to be equal 0.6, the individual components
become more stable and the application of the constraint on
the individual components more straightforward.

The CG iterations are terminated when the residual has
been reduced by a factor of 100 in the �XV�-constrained
search and by a factor of 50 in the Xmax

V -constrained search.
The overall SCF convergence is not sensitive to the choice of
these convergence thresholds. At each iteration, only one ma-
trix multiplication is required to carry out the linear transfor-
mation �Eq. �45��. When using a diagonal preconditioner,
two additional multiplications are needed for projection of
each trial vector, giving a total of three matrix multiplica-
tions in each iteration.

From Table II, we see that the use of a diagonal precon-
ditioner improves the convergence in the global SCF itera-
tion slightly, reducing the number of iterations from 13 to 10.
In the local iteration of the same SCF optimization in Table
III, the preconditioner is even more effective, almost halving
the number of iterations. Clearly, the best strategy for solving
the RH equations is to always apply a diagonal precondi-
tioner, giving a more robust CG algorithm at the modest cost
of a single projection. In passing, we note that the optimiza-
tion in the left-hand column of Table III corresponds to the
curvy-step method of Shao et al.15 where the unshifted New-
ton equations are solved in the Cholesky basis without a
diagonal preconditioner.

TABLE III. Local H2O LDA/d-aug-cc-pVTZ convergence, seventh SCF iteration. Convergence of the RH
Newton equations �Eq. �43�� in the Cholesky basis with and without a diagonal preconditioner.

Iteration

No preconditioner Diagonal preconditioner

�R� Xmax
v �Xv� �R� Xmax

v �Xv�

1 0.163 0.014 0.076 0.089 0.006 0.036
2 0.138 0.025 0.132 0.081 0.020 0.103
3 0.138 0.043 0.214 0.049 0.034 0.160
4 0.127 0.053 0.259 0.040 0.041 0.181
5 0.120 0.065 0.309 0.029 0.044 0.194
6 0.090 0.072 0.338 0.023 0.046 0.204
7 0.078 0.080 0.367 0.019 0.047 0.212
8 0.080 0.085 0.384 0.015 0.050 0.217
9 0.047 0.092 0.407 0.015 0.052 0.220

10 0.055 0.096 0.416 0.011 0.055 0.224
11 0.028 0.103 0.430 0.007 0.058 0.226
12 0.040 0.106 0.435 0.007 0.059 0.228
13 0.027 0.111 0.441 0.005 0.060 0.228
14 0.031 0.115 0.447 0.003 0.061 0.229
15 0.020 0.117 0.449 0.002 0.061 0.229
16 0.023 0.121 0.454 0.001 0.061 0.230
17 0.018 0.123 0.455 0.001 0.061 0.230
18 0.019 0.124 0.457
19 0.018 0.126 0.459
20 0.013 0.127 0.461
21 0.019 0.129 0.463
22 0.011 0.130 0.465
23 0.016 0.131 0.466
24 0.009 0.132 0.468
25 0.010 0.133 0.468
26 0.005 0.133 0.469
27 0.007 0.134 0.469
28 0.004 0.134 0.470
29 0.005 0.134 0.470
30 0.003 0.134 0.470
31 0.003 0.134 0.470
32 0.002 0.134 0.470
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Tables IV and V contain the same information as do
Tables II and III, respectively, but for the Löwdin rather than
Cholesky basis. The convergence is similar to that observed
in the Cholesky basis. Again, the preconditioned iterations
converge faster—especially in the local SCF iteration, where
we save more than 50% of the CG iterations by precondi-
tioning. Also, in this SCF iteration, the CG convergence is

slightly faster in the Löwdin basis than in the Cholesky basis.
In the following, we use the Löwdin basis with a diagonal
preconditioner.

C. Linear scaling using the TRSCF algorithm

To demonstrate that linear scaling is obtained with the
LS-TRSCF algorithm, we here carry out polyalanine peptide

TABLE IV. Global H2O LDA/d-aug-cc-pVTZ convergence, second SCF iteration. Convergence of the RH
Newton equations �Eq. �43�� in the Löwdin basis with and without a diagonal preconditioner. The constrained
step-size parameter is marked with an asterisk.

Iteration

No preconditioner Diagonal preconditioner

�R� � Xmax
v �Xv� �R� � Xmax

v �Xv�

1 3.31 −9.51 0.198 0.592* 3.31 −9.51 0.198 0.592*

2 1.09 −11.78 0.188 0.562* 0.49 −11.85 0.189 0.571*

3 0.28 −11.47 0.199 0.590* 0.15 −11.48 0.197 0.593*

4 0.06 −12.23 0.184 0.557* 0.04 −12.23 0.183 0.558*

5 0.02 −11.83 0.190 0.576* 0.00 −11.83 0.190 0.576*

6 0.13 −6.68 0.324* 1.04 0.16 −6.68 0.325* 1.04
7 0.07 −6.48 0.334* 1.09 0.07 −6.48 0.333* 1.09
8 0.06 −6.28 0.343* 1.13 0.03 −6.28 0.344* 1.13
9 0.03 −6.67 0.326* 1.05 0.02 −6.67 0.325* 1.05

10 0.02 −6.46 0.336* 1.09 0.01 −6.46 0.335* 1.09
11 0.02 −6.26 0.345* 1.14
12 0.01 −6.65 0.326* 1.05

TABLE V. Local H2O LDA/d-aug-cc-pVTZ convergence, seventh SCF iteration. Convergence of the RH
Newton equations �Eq. �43�� in the Löwdin basis with and without a diagonal preconditioner.

Iteration

No preconditioner Diagonal preconditioner

�R� Xmax
v �Xv� �R� Xmax

v �Xv�

1 0.0381 0.0012 0.007 0.0331 0.001 0.006
2 0.0279 0.0018 0.011 0.0263 0.003 0.018
3 0.0344 0.0029 0.018 0.0227 0.005 0.032
4 0.0206 0.0036 0.023 0.0172 0.009 0.047
5 0.0316 0.0047 0.029 0.0142 0.011 0.057
6 0.0220 0.0068 0.038 0.0088 0.013 0.063
7 0.0204 0.0079 0.043 0.0064 0.014 0.066
8 0.0175 0.0089 0.047 0.0050 0.015 0.068
9 0.0174 0.0111 0.055 0.0023 0.015 0.068

10 0.0171 0.0122 0.059 0.0018 0.015 0.069
11 0.0120 0.0138 0.065 0.0008 0.015 0.069
12 0.0132 0.0144 0.067 0.0004 0.015 0.069
13 0.0072 0.0150 0.069 0.0003 0.015 0.069
14 0.0102 0.0154 0.071
15 0.0048 0.0159 0.072
16 0.0054 0.0160 0.073
17 0.0032 0.0163 0.074
18 0.0027 0.0164 0.074
19 0.0018 0.0164 0.074
20 0.0018 0.0164 0.074
21 0.0013 0.0164 0.074
22 0.0008 0.0164 0.074
23 0.0009 0.0164 0.074
24 0.0006 0.0164 0.074
25 0.0009 0.0164 0.074
26 0.0003 0.0164 0.074
27 0.0005 0.0164 0.074
28 0.0003 0.0164 0.074
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calculations with up to 119 alanine residues �1192 atoms�
using the HF and B3LYP models in the 6-31G basis. Each
SCF optimization converges as the 99-residue calculations in
Figs. 2 and 4.

In Fig. 5, we have plotted the CPU times spent in the
different parts of the LS-TRSCF algorithm in the Hartree-
Fock/6-31G calculations using sparse-matrix algebra. The
timings are obtained using a single processor on an IBM
RS6000 pSeries 690 �1.3 GHz�. Except for the DSM step,
the timings in this and later plots are for the first local SCF
iteration. However, since the time spent in the DSM step
depends on the number of density matrices included in the
density subspace, the DSM timings are always given for an
SCF iteration where the subspace contains the maximum
number of density matrices �eight�.

The CPU times for the Coulomb and exchange parts of
the Fock matrix in Fig. 5 both increase linearly with system
size, but with a slight kink as the system increases from 1000
to 1200 atoms. The exchange part is about four times more
expensive than the Coulomb part. The LS-TRRH and
TRDSM optimization steps are dominated by matrix multi-

plications. The linearity of the LS-TRRH and TRDSM tim-
ings in Fig. 5 therefore indicates that sparsity is exploited
efficiently in the matrix multiplications. The importance of
efficient sparse-matrix algebra is evident in Fig. 6, where we
compare the timings of Fig. 5 with those obtained with
dense-matrix algebra. The different behaviors of sparse-
matrix algebra �linear scaling� and dense-matrix algebra �cu-
bical scaling� are well illustrated. Some fluctuations are ob-
served in these plots since the LS-TRRH and TRDSM steps
both involve iterations, whose number may vary slightly
from system to system. The benefits of sparse-matrix algebra
are first noticed for TRDSM, since each TRDSM step con-
tains more matrix multiplications than does each LS-TRRH
step.

Finally, Fig. 7 shows the CPU timings for B3LYP opti-
mizations with sparse-matrix algebra. This figure differs
from Fig. 5 in that it also contains contributions from the KS
exchange-correlation potential. In these calculations, the
exchange-correlation step is about twice as expensive as the

FIG. 5. Timings for the first local iteration of Hartree-
Fock calculations on polyalanine peptides. The timings
given are for the Coulomb �Fock J� and exchange �Fock
X� parts of the Fock matrix and for the LS-TRRH and
TRDSM parts �sparse-matrix algebra.�

FIG. 6. The timings for the LS-TRRH and TRDSM
contributions from Fig. 5 shown with the corresponding
timings when full matrices are used.
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Coulomb step and about half as expensive as the exact-
exchange step. The cost of the exchange-correlation step
clearly scales linearly with system size.

IV. CONCLUSIONS

We have described a linear-scaling implementation of
the trust-region self-consistent field �LS-TRSCF� method. In
the LS-TRSCF method, each iteration consists of a minimi-
zation of the RH energy �equivalent to a minimization of the
sum of the orbital energies in canonical HF theory� to gen-
erate a new AO density matrix in the trust-region RH �LS-
TRRH� step, followed by the determination of an improved
averaged density matrix in the subspace of the current and
previous density matrices using the trust-region density-
subspace minimization �TRDSM� algorithm. A linear-scaling
algorithm is obtained by using iterative methods to solve the
level-shifted Newton equations and by exploiting the sparsity
of the involved matrices.

In the solution of the RH Newton matrix equations, we
have shown that the Löwdin and Cholesky orthonormaliza-
tions yield similar performances, with a slight preference for
the Löwdin orthonormalization since it resembles most
closely the original AO basis set �preserving sparsity to the
largest possible extent� and since it leads to marginally fewer
CG iterations than the Cholesky orthonormalization. We
have, moreover, demonstrated that, in the Löwdin and
Cholesky bases, use of a diagonal preconditioner signifi-
cantly improves convergence, typically reducing the number
of CG iterations by a factor of 2 in the local SCF iterations.
In each LS-TRRH step, a single Newton step is sufficient for
the minimization of the RH energy, although we have ob-
served one case where two Newton steps give �perhaps for-
tuitously� a significantly improved SCF convergence.

When comparing LS-TRRH to the curvy-step method of
Shao et al.15 the main differences are the diagonal precondi-
tioning of the CG iterations and the level shifting of the SCF
iterations. Without a diagonal CG preconditioner, the conver-
gence of the level-shifted Newton equations is at best much
slower than the solution of the preconditioned equations; of-

ten, the equations do not converge without preconditioning.
Indeed, the latter is almost always the case for molecules
with an electronic structure more complicated than those of
water clusters or linear alkanes, typically used as test cases.
For robust and fast convergence of the SCF and Newton
iterations, it is essential to choose a level shift that is neither
too small �which will introduce wrong directions and cause
divergence� nor too large �which will cause very slow con-
vergence�. An important feature of the LS-TRRH algorithm
is that the optimal level shift is determined dynamically at no
extra cost.

We have demonstrated that the LS-TRSCF method
yields a smooth and robust convergence for small and large
systems, often converging where the traditional SCF/DIIS
scheme fails. For small systems, a TRSCF implementation
based on an explicit diagonalization of the Fock/KS matrix
may be more efficient. However, since the time spent in the
optimization of such systems is insignificant compared with
the time spent constructing the Fock/KS matrix, we recom-
mend the LS-TRSCF method as the standard method for
systems of all sizes.
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Density fitting is an important method for speeding up quantum-chemical calculations.
Linear-scaling developments in Hartree–Fock and density-functional theories have highlighted the
need for linear-scaling density-fitting schemes. In this paper, we present a robust variational
density-fitting scheme that allows for solving the fitting equations in local metrics instead of the
traditional Coulomb metric, as required for linear scaling. Results of fitting four-center two-electron
integrals in the overlap and the attenuated Gaussian damped Coulomb metric are presented, and we
conclude that density fitting can be performed in local metrics at little loss of chemical accuracy. We
further propose to use this theory in linear-scaling density-fitting developments. © 2008 American
Institute of Physics. �DOI: 10.1063/1.2956507�

I. INTRODUCTION

In molecular electronic-structure theory, an essential step
is the evaluation of two-electron integrals over one-electron
basis functions, typically taken to be linear combinations of
atomic orbitals or other local or semilocal basis functions.
Examples of such semilocal basis functions are Gaussian-
type orbitals �GTOs� and Slater-type orbitals �STOs�. The
expansion coefficients are found by applying the variation
principle, which ensures that all first-order variations in the
energy with respect to the variations in the density are zero.
Although a finite basis-set expansion may introduce quite
large absolute errors, the variational property leads to high
accuracy in the calculated chemical properties.

In a similar fashion, the product of two such basis func-
tions may again be expanded in one-center auxiliary orbitals.
Such density-fitting or resolution-of-the-identity �RI� ap-
proximations are introduced to speed up calculations involv-
ing four-center two-electron integrals, the traditional bottle-
neck of ab initio and density-functional calculations. In
effect, the evaluation of four-center two-electron integrals is
replaced by the evaluation of two- and three-center two-
electron integrals and the solution of a set of linear equa-
tions. The speed-up resulting from this approach depends on
the system studied and the basis set used; typically, a
speed-up by a factor of 3–30 is observed.1 The auxiliary
basis sets introduced for density fitting are about three times
larger than the regular basis set, while the errors introduced
by the auxiliary basis are about two orders of magnitude

smaller than the errors introduced by the regular basis. In this
paper, we employ the auxiliary basis sets developed in
Refs. 2 and 3.

The next section gives an introduction to density fitting.
Next, in Sec. III, we present a robust variational scheme for
approximating four-center two-electron integrals in a non-
Coulomb metric, demonstrating how it can be used for the
two-electron Coulomb and exchange contributions appearing
in Hartree–Fock �HF� theory and Kohn–Sham �KS� density-
functional theory. Implementational details are given in
Sec. IV, whereas results are presented and discussed in
Sec. V. Section VI contains some concluding remarks.

II. DENSITY FITTING

Density fitting was introduced independently in the Cou-
lomb metric by Whitten4 and in the overlap metric by Baer-
ends et al.5 In Ref. 4, Whitten established bounds on indi-
vidual integrals, and later Jafri and Whitten6 applied density
fitting in self-consistent field �SCF� calculations, where indi-
vidual integrals are either fitted or calculated directly de-
pending on whether the predicted error in the fit is below a
certain threshold or not. In the paper by Baerends et al.,5 the
electron density ��r� is approximated by an expansion in
atom-centered auxiliary basis functions ���r�,

��r� = �
ab

Dab�a�r��b�r�

= �
ab

Dab�ab�r� � �̃�r�

= �
�

Naux

c����r� . �1�
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Here tilde denotes a density-fitted quantity, the Dab are the
matrix elements of the electron density expanded in the
atomic orbitals �AOs� �a�r�, �ab�r� is the product �overlap
distribution� between �a�r� and �b�r�, and c� are the fitting
coefficients. The fitted density �̃�r� is used to construct an
approximate Coulomb potential

VC�r1� =� ��r2�
r12

dr2 � ṼC�r1� =� �̃�r2�
r12

dr2, �2�

which is in turn used for the construction of the Coulomb
part of the Fock or KS matrix

J̃ab =� �ab�r�ṼC�r�dr =� �ab�r1�
1

r12
�̃�r2�dr1dr2. �3�

Baerends et al. obtained the fitting coefficients c� by mini-
mizing the fitting error

Dw = �� − �̃�w�� − �̃� , �4�

in the overlap metric, w�r1 ,r2�=��r1−r2�. We here use the
notation

�f �w�g� =� f�r1�w�r1,r2�g�r2�dr1dr2. �5�

The fitted density is further constrained to conserve charge,

� ��r�dr =� �̃�r�dr = Ne, �6�

where Ne is the number of electrons, leading to the following
set of linear equations for the fitting coefficients

�
	

���w�	�c	 = �
cd

���w�cd�Dcd + ���� , �7�

with the Lagrange multiplier

� =
Ne − ��	������	�−1�	���

��	������	�−1�	�
. �8�

We use the notation �f �g���f �1 /r12�g�,

�f �g� =� f�r1�
1

r12
g�r2�dr1dr2 �9�

and

��� =� ���r�dr . �10�

The density-fitting scheme of Baerends et al. was further
developed by Dunlap et al.,7,8 who replaced the overlap op-
erator, ��r1−r2�, with the Coulomb operator, 1 /r12. In these
two papers, Dunlap et al. established that the Coulomb met-
ric is superior to the overlap metric, noting that the error in
the energy is about one order of magnitude smaller in the
Coulomb metric than in the overlap metric.

A. Linear-scaling density fitting

Density fitting offers significant speed-ups for the calcu-
lation of four-center integrals at little loss of accuracy. Re-
cent developments toward large systems have highlighted the
need for a linear-scaling density-fitting scheme. We note that

the fitting equations �Eq. �7�� in the Coulomb metric cannot
be solved straightforwardly for large systems, as the compu-
tational time scales cubically with system size. In this sec-
tion, we give a brief overview of different linear-scaling
density-fitting schemes presented in the literature. We first
discuss methods based on the spatial partitioning of electron
density; next, we consider methods based on the use of a
local metric.

The partitioning approach has been explored by several
authors;1,9–11 all of them effectively enforce sparsity of the
solved fitting equations in different ways. In the paper by
Gallant and St-Amant,9 the density is partitioned using
Yang’s scheme.12 Each of these densities is fitted separately
by including fitting functions within some predefined vicinity
of the density. The fitted density is further constrained to
preserve charge. The resulting errors are small, but the fitted
density is not variational and the procedure does not provide
a continuous potential energy surface. The same is true for
the method presented by Salek et al. in Ref. 10, although
here the energy is correct to second order.

In the partitioning approach by Fonseca Guerra et al.,11

the density is partitioned into diatomic densities, generated
by overlaps between basis functions centered on two atoms.
The diatomic densities are fitted in the overlap metric subject
to charge conservation. The resulting energy is neither varia-
tional nor correct to second order. It is worth noting that
STOs are used rather than GTOs and that the fitted density is
used to build an approximate Coulomb potential that is in-
cluded in the numerical evaluation together with the
exchange-correlation contribution.

In the partitioning approach known as local atomic den-
sity fitting �LADF� or atomic resolution of the identity
�ARI�, Sodt et al.1 partition the density into atomic regions
by localizing the individual product overlaps between two
basis functions to one of the two atoms that the basis func-
tions originate from. These atomic densities are fitted indi-
vidually by including fitting functions in some predefined
vicinity of the atom and by introducing a bump function on
the boundary to turn off smoothly which fitting functions to
include. The bump function is important in order for the
potential energy surface to be continuous. By including
first-order Dunlap corrections,13 the fitted energy is made
variational.

Of the above partitioning schemes, the LADF scheme
offers the most elegant and balanced way to obtain the fitted
density, although the bump function does represent an arti-
fact. Clearly, in all partitioning schemes, some cutoff scheme
must be adopted. A criticism of these partitioning schemes is
that impact of the fitting error on the calculated energies is
difficult to predict.

We now turn our attention to fitting methods based on
the use of a local metric.5,14,15 In the approach of Baerends
et al.,5 the electron density is fitted in the overlap metric,
giving errors one order of magnitude greater than in the Cou-
lomb metric.7 This result was confirmed by Vahtras et al.,14

who compare three different ways of fitting the four-center
integrals in the overlap metric to the corresponding fit in the
Coulomb metric. In the paper by Jung et al.,15 the expansion
coefficients obtained in the Coulomb metric, the overlap
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metric, and the complementary error-function attenuated
metric w�r1 ,r2�=erfc��r12� /r12 are compared. The attenu-
ated metric bridges the Coulomb and the overlap metrics by
varying the value of the damping parameter �. The coeffi-
cients obtained in the overlap metric decay more or less ex-
ponentially with distance, whereas the coefficients obtained
in the Coulomb metric decay more slowly at long distances.
For a one-dimensional test system studied in that paper, the
fitting coefficients decay as �r−1.25 in the Coulomb metric,
with a faster decay observed for two- and three-dimensional
systems. The authors further provide statistics on atomization
energies for the G2 benchmark set using RI second-order
Møller–Plesset perturbation theory in the cc-pVDZ basis, re-
porting errors six to seven times larger in the overlap metric
than in the Coulomb metric.

The scheme of Jung et al.15 is neither robust nor varia-
tional. In Sec. II D, we present an extended scheme that is
both robust and variational, providing an accurate and reli-
able linear-scaling density-fitting alternative to the LADF
scheme by Sodt et al.1

B. Density-fitting exchange

Density fitting was originally introduced to approximate
the full density ��r� and in this way accelerate Coulomb
evaluation. Similar methodology can be used in the exchange
part and is also here termed density-fitting or RI approxima-
tions.

The exact-exchange matrix is given by

Kab = �
cd

�ac�bd�Dcd = �
i

�ai�bi� . �11�

Subscript i here denotes an occupied molecular orbital �MO�
�i�r�, expanded in AOs with coefficients Cai,

�i�r� = �
a

Cai�a�r� . �12�

The density-matrix elements Dab are related to the MO
coefficients according to

Dab = �
i

CaiCbi
* . �13�

Density fitting of the exact exchange was introduced by
Weigend.2 In this paper, the exchange matrix of Eq. �11� was
approximated as

K̃ab = �
cd

�
�	

�ac������	�−1�	�bd�Dcd

= �
cd

�
��

�ac��������bd�Dcd, �14�

where the last step constitutes a transformation to an or-
thogonal auxiliary basis

����r� = �
�

������−1/2���r� . �15�

C. Linear-scaling density fitting of exchange

Linear-scaling aspects of density fitting in the evaluation
of exchange contribution were first considered by Polly
et al.16 The fitted exchange matrix,

K̃ab = �
i

�ai���c�
bi, �16�

is computed in linear time. This is achieved using localized
orbitals �a�r� and �i�r� that interact with auxiliary functions
���r� only in some local domain. Localization of the MOs is
achieved through the Pipek–Mezey localization.17 The
density-fitted exchange energy,

K̃ = �
ij

�
�

�ij���c�
ij , �17�

is computed without use of local fitting domains. It is argued
that the fitted exchange energy depends sensitively on the
size of the fitting domains, whereas the optimized MO coef-
ficients do not—reported errors are in the microhartree
range. In effect the MOs are not optimized variationally, al-
though the energy is corrected through first order. It should
be noted that the final step of Eq. �17� does not scale linearly
with system size, i.e., without the use of local fitting
domains.

The ARI exchange method �ARI-K� of Sodt et al.18 is an
extension of the LADF or ARI approach of Ref. 1, applied to
the exchange rather than the Coulomb contribution. In this
approach, the product overlaps �ai�r� are approximated by
auxiliary basis functions ���r� in the local domain �A� near
the parent atom of AO �a�r�,

�̃ai�r� = �
���A�

c�
ai���r� , �18�

with

c�
ai = �

	��A�
���	�A

−1�	�ai� . �19�

As in the LADF scheme, continuity of the potential energy
surface is ensured by the use of individual inverses �� �	�A

−1

associated with the centers A �see Ref. 18 for details�. The
exchange matrix of Eq. �11� is further approximated accord-
ing to

K̃ab =
1

2�
i

 �

���A�
c�

ai���bi� + �
	��B�

�ai�	�c	
bi� . �20�

We note that this approach is nonvariational, which is justi-
fied by reporting errors in energies using Eq. �20� that are
typically only twice those of regular density fitting of
exchange.

D. Local robust and variational fitting of four-center
integrals

Let us consider the robust and variational fitting of the
two-electron integrals �ab �cd� in a general metric. We denote
the fitted overlap distributions and their �negative� errors by

�ab˜� = �
�

c�
ab���, ��ab� = �ab� − �ab˜� , �21�
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�cd˜� = �
	

c	
cd�	�, ��cd� = �cd� − �cd˜� . �22�

Following Dunlap,13 a robust integral fitting is given by

�ab�cd˜ � = �ab�cd˜� + �ab˜�cd� − �ab˜�cd˜�

= �ab�cd� − ��ab��cd� , �23�

which is manifestly quadratic in the fitting errors. The fitting
coefficients c�

ab are obtained by minimizing the self-
interaction energy of the fitting errors,

Dabcd
w = ��ab�w��cd� , �24�

in a metric w, possibly different from the Coulomb metric,
leading to the linear equations

��ab�w�	� = 0, ���w��cd� = 0. �25�

These equations are sparse when local metric and basis func-
tions are used, allowing for an iterative solution in time pro-
portional to system size. To make the integral �Eq. �23��
variational in the fitting coefficients, we use Lagrange’s
method of undetermined multipliers, treating Eq. �25� as
constraints on the integral. Multiplying these constraints by
c̄�

ab and c̄	
cd and adding the resulting expressions to Eq. �23�,

we obtain

�ab�cd˜ � = �ab�cd˜� + �ab˜�cd� − �ab˜�cd˜� − �ab�w��cd�

− ��ab�w�cd� , �26�

in the notation

�ab� = �
�

c̄�
ab���, �cd� = �

	

c̄	
cd�	� . �27�

Differentiating Eq. �26� with respect to the fitting coefficients
and setting the result equal to zero, we obtain the following
linear equations for the multipliers:

�ab�w�	� = ��ab�	�, ���w�cd� = ����cd� , �28�

that must be solved to make the integrals variational in all
parameters. Because of Eq. �25�, these terms do not make a
contribution to the unperturbed integrals �Eq. �26��. How-
ever, they do become important for the calculation of mo-
lecular properties, as discussed in Sec. III, where we consider
the linear-scaling evaluation of the two-electron contribu-
tions to molecular gradients.

III. LOCAL FITTING OF COULOMB AND EXACT
EXCHANGE

The variational fitting of four-center integrals �Eq. �26��
can be applied to all ab initio methods. We here establish
explicit expressions for this approach applied to the two-
electron Coulomb and exact-exchange contributions in HF
and KS theories. The developed theory allows for linear
scaling robust variational density fitting of these two contri-
butions in local metrics. We further show how this theory
applies to molecular properties.

A. Coulomb energy and the Coulomb matrix

In the notation

��� = �
ab

Dab�ab� , �29�

the Coulomb repulsion energy is given by

J =
1

2 �
abcd

Dab�ab�cd�Dcd =
1

2
����� . �30�

To obtain the corresponding expression with fitted integrals,

we replace the integrals �ab �cd� by �ab �cd˜� of Eq. �26� and
obtain

J̃ =
1

2 �
abcd

Dab�ab�cd˜ �Dcd = ����̃� −
1

2
��̄��̄� − ��̄�w���� ,

�31�

where ����= ���− ��̃� and

��̃� = �
ab

Dab�ab˜� = �
�

c����, c� = �
ab

c�
abDab, �32�

��̄� = �
ab

Dab�ab� = �
�

c̄����, c̄� = �
ab

c�
abDab. �33�

In Eq. �31�, the last term vanishes by Eq. �25� but it is re-
tained to obtain a variational expression for the fitted two-
electron Coulomb repulsion energy, which is important for
the calculation of, for example, molecular gradients.

The Fock/KS matrix is the first derivative of the HF/KS
energy with respect to the density matrix elements. There-
fore, the two-electron Coulomb contribution to the Fock/KS
matrix, the Coulomb matrix, is given by

Jab = �J/�Dab = �ab��� . �34�

We get the fitted Coulomb matrix by differentiation of the
approximate Coulomb repulsion energy of Eq. �31� or simply
by replacing the four-center integrals of Eq. �34� with the
approximate integrals �Eq. �26��, giving

J̃ab = �J̃/�Dab = �ab��̃� + �ab˜��� − �ab˜��̃� , �35�

where we have omitted the w terms, which do not contribute.
The fitted Coulomb matrix can be calculated in linear time
by standard direct integral evaluation routines, using
Cauchy–Schwarz screening and the continuous fast multiple
method �see, for example, Ref. 19 and references therein�. A
linear-scaling implementation also requires that the coeffi-
cients c	

ab are determined as accurately as possible, with a
resource usage proportional to system size, as can be
achieved by solving Eq. �25� in a local metric.

B. Exchange energy and exchange contribution
to Fock/KS matrix

We now turn our attention to exchange. The exchange
energy is given as

K =
1

2 �
abcd

Dab�ac�bd�Dcd =
1

2�
ij

occ

�ij�ij� , �36�

where i and j denote the occupied MOs. Proceeding as for
the Coulomb energy, we obtain
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K̃ =
1

2 �
abcd

Dab�ac�bd˜ �Dcd

=
1

2�
ij

�2�ij�i j̃� − �i j̃�i j̃� − 2�ij�w��ij�� , �37�

where we have introduced ��ij�= �ij�− �i j̃� and

�i j̃� = �
�

c�
ij���, c�

ij = �
ab

c�
abCaiCbj , �38�

�ij� = �
�

c̄�
ij���, c̄�

ij = �
ab

c̄�
abCaiCbj . �39�

As for the Coulomb energy �Eq. �31��, the last term in
Eq. �37� is zero but is retained since it contributes to gradi-
ents. The exchange matrix is the derivative of the exchange
energy �Eq. �36�� with respect to the density-matrix elements
Dab,

Kab = �K/�Dab = �
cd

�ac�bd�Dcd = �
i

occ

�ai�bi� . �40�

In the same manner as for the Coulomb energy, we obtain the
density-fitted expressions for the exchange energy and
matrix,

K̃ab = �K̃/�Dab

= �
cd

�ac�bd˜ �Dcd

= �
i

��ai�bi˜� + �aĩ�bi� − �aĩ�bi˜�� , �41�

where the notation for �aĩ� and �ai� is analogous to that of
Eqs. �38� and �39�. When the fitting coefficients c�

ai are ob-
tained in the Coulomb metric, the last two terms vanish to
give the expression of the fitted exchange matrix of Polly
et al.16 given by Eq. �16�.

The density-matrix elements couple basis functions on
the two electrons. This coupling, together with screening, is
exploited for insulators in the order-N exchange20 and in the
linear-scaling exchange21 �LinK� algorithms to achieve linear
scaling with system size in Eq. �40�. An alternative approach
is to use localized molecular orbitals �LMOs� �see Ref. 22
and references therein�. Linear scaling then follows by using
these LMOs and Cauchy–Schwarz screening since, provided
that the AOs �a and �b are sufficiently far away from each
other, a given LMO will not overlap with both AOs. To see
this, we apply the Cauchy–Schwarz inequality twice,

��ai�bi�� � ��ai�ai���bi�bi�

� ��
c

�Cci���ac�ac����
c

�Cci���bc�bc�� , �42�

where we have used

�ai�ai� = �
cd

CciCdi�ac�ad�

� �
cd

�Cci��Cdi���ac�ac���ad�ad�

= ��
c

�Cci���ac�ac��2
, �43�

and so on.
For insulators, linear-scaling density-fitted exchange-

matrix construction can be achieved in a local metric by
following the same arguments as for the regular exchange
matrix and by pretabulating which three-center Coulomb re-
pulsion integrals �ab ��� �or �ai ���� to calculate. First, we
note that, in a local metric, the number of fitting coefficients
c�

ab scales linearly with system size, as auxiliary basis func-
tions ���r� sufficiently far away from the product overlaps
�ab�r� do not contribute to the fitted product overlap

�̃ab�r�.15 Second, since Dcd couple basis functions on two
different electrons, �c�r1� and �d�r2�, we can neglect all in-
tegrals �ac �bd� where the density-matrix elements become
sufficiently small for example, using Cauchy–Schwarz
screening

��ac�bd�Dcd� � ��ac�ac���bd�bd��Dcd� . �44�

Therefore, the fitted integrals �ac �bd˜� of �ac �bd� need only
be calculated whenever

��ac�ac���bd�bd��Dcd� � 
 , �45�

for a given threshold 
. For insulators, the density-matrix
elements decrease in magnitude with increasing distance,
which means, for instance, that �ac�r1� only interact with

�̃bd�r2� provided that �c�r1� and �d�r2� are within some fi-
nite distance of each other. As a result, �a�r1� and �b�r2�
must also be close to each other. The same argument applies

to the fitting functions since ���r2�, included in �̃bd�r2�, have
a limited extent from the center of �bd�r2�, from which

�̃bd�r2� originates. The combined effects of locality in the
density matrix and locality in the fit imply that the number of
contributing three-center integrals �ac ��� scales linearly with
system size. The same argument holds for the two-center
integrals appearing in the last term of Eq. �41�.

C. Contributions to gradient

To conclude this section, we make a note on how to
achieve linear scaling for the exchange contribution when
calculating properties �such as the molecular gradient� that
involve explicit differentiation of the four-center integrals
�ac �bd�. Let � denote some variable, for example, a nuclear
coordinate. Differentiation of the fitted exchange energy of
Eq. �37� with respect to � gives

dK̃

d�
= �

ab

Dab
� K̃ab + �

ab

DabK̃ab
� + �

ab

DabK̄ab
� , �46�

with
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Dab
� =

dDab

d�
�47�

and

K̃ab
� = �

cd

�

	

��ac	��	�c	
bd + �

�

c�
ac�����bd��Dcd, �48�

and the term including the Lagrangian multipliers

K̄ab
� = �

cd

�

�

��
ac�����w��bd� + ���w���bd	����Dcd.

�49�

In the last two equations the superscript � denotes differen-
tiation with respect to �, so that, for example,

����w��bd� =� d���r1�
d�

w�r1,r2���bd�r2�

− �̃bd�r2��dr1dr2. �50�

Linear scaling of the two first terms of Eq. �46� follows the
same arguments as for the undifferentiated case, whereas
linear scaling of the third term requires insertion of the
expression for the Lagrangian multipliers of Eq. �28�,

K̄ab
� = �

cd

�

�	

��ac������w�	�−1��	��w��bd�

+ �	�w���bd	����Dcd. �51�

Linear scaling can be achieved by letting the inverse
���w�	�−1 matrix work to the right rather than the left—
thereby bypassing explicitly solving for the Lagrangian
multipliers.

IV. IMPLEMENTATION DETAILS

Figure 1 outlines the algorithm employed in this paper
for the construction of the fitted Coulomb and exchange ma-
trices following Eqs. �35� and �41�, respectively. To condi-
tion the linear set of equations optimally, we orthonormalize
the auxiliary basis functions—that is, we normalize in metric
w using g�

w=����w��� and orthogonalize by multiplication of
the inverse square root of the auxiliary two-center integrals
Vw,

V�,	
w = ���w�	� . �52�

The inverse square root �Vw�−1/2 is obtained with the scheme
presented in Ref. 23. In the orthogonal basis ���
=�������w����−1/2, we thus have

FIG. 1. Outline of the algorithm employed for fitting
the Coulomb and exchange matrices in local metrics.
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V��,	�
w = ����w�	��

= �
�	

����w���−1/2���w�	��	�w�	��−1/2

= ���,	�. �53�

The three center integrals are calculated using Cauchy–
Schwarz screening,

����w�ab�� � gab
w g�

w, �54�

with

gf
w = ��f �w�f� . �55�

More specifically, we only calculate the three-center integrals
���w�ab� if gab�� /g�

w for a given threshold �. Furthermore,
the three-center integrals are packed in triangular form to
exploit the symmetry of the integrals �a�w�ab�= ���w�ba�. We
do not, in the current implementation, exploit the sparsity
obtained in a local metric, although, in Sec. V, we report this
sparsity for a selected system.

In the orthogonal basis, the fitting coefficients of
Eq. �25� reduce to the three-center integrals,

c��
ab = ����w�ab� . �56�

The construction of the fitted Coulomb and exchange matri-
ces, given by Eqs. �35� and �41�, respectively, follows
straightforwardly by contracting the fitting coefficients with
the three-center integrals ��� �ab� and ��� �	��. However, to
speed up the construction of the fitted exchange matrix, we
first MO half-transform both the fitting coefficients,

c��
ai = �

b

c��
abLbi, �57�

and the three-center Coulomb repulsion integrals,

�ai���� = �
b

�ab����Lbi, �58�

using the localized Cholesky MO coefficients Lai obtained by
the incomplete Cholesky decomposition of the density
matrix,22

Dab = �
i

LaiLbi. �59�

A. Integral evaluation

In this subsection, we provide a brief overview on how
we evaluate the molecular integrals in the different metrics
w�r1 ,r2� used to determine the fitting coefficients of
Eq. �25�. Several general integration schemes are available in
literature �see, for instance, Ref. 24�. The current implemen-
tation is part of a development version of DALTON, in which
the McMurchie–Davidson scheme forms the basis for inte-
gral evaluation.25 In the McMurchie–Davidson scheme, the
product overlap distribution between two �spherical-
harmonic� basis functions is expanded in Hermite Gaussian
primitives �tuv

P �r�, according to

�ab�r� = �
tuv

Etuv
ab �tuv

P �r�, �tuv
P �r� =

�t+u+ve−prP
2

�Px
t �Py

u�Pz
v , �60�

with p=a+b, and P= �aA+bB� / p �see Ref. 24 for details�.
The two electron integral between two such overlap

distributions is, in metric w�r1 ,r2�, given by

�ab�w�cd� =
2�5/2

pq�p + q
�
tuv

Etuv
ab

��
���

�− 1��+�+�E���
cd Wt+�,u+�,v+���,RPQ� ,

�61�

with �= pq / �p+q� and where RPQ refers to the distance be-
tween the two overlap distributions. In this expression, only
the Hermite two-electron integral,

Wt,u,v��,RPQ� =
�t+u+vW��,RPQ�

�Px
t �Py

u�Pz
v , �62�

depends on the metric w�r1 ,r2� with, for example,

W��,RPQ� = �
F0��RPQ

2 � for w�r1,r2� = 1/r12

�/�2��exp�− �RPQ
2 � for w�r1,r2� = ��r1 − r2�

F0��RPQ
2 � − ��F0���RPQ

2 � for w�r1,r2� = erfc��r12�/r12

�F0���RPQ
2 �exp�− ��RPQ

2 � for w�r1,r2� = exp�− �r12
2 �/r12.

� �63�

Here �=�2 / ��+��, �=� / ��+��, F0�x� is the zeroth order
Boys function, and � is the attenuation parameter. The
Hermite two-electron integral Wt,u,v�� ,RPQ� can be found by
reccurence.24,26 Note that for both the attenuated Coulomb
metrics of Eq. �63�, the complementary error-function
Coulomb metric erfc��r12� /r12, and the Gaussian damped

Coulomb metric exp�−�r12
2 � /r12, we retain the Coulomb in-

tegrals in the limit �→0, whereas in the limit �→�, we get
scaled overlap integrals �with prefactors � /�2 and 2� /�,
respectively�. Also note that the auxiliary basis functions
used for density fitting may, similarly to the expansion of the
overlap distributions Eq. �60�, be expanded in Hermite
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Gaussians. Therefore, the arguments given in this subsection
also apply to two-electron integrals involving auxiliary basis
functions. Finally note that to speed up the integral evalua-
tion, we use Hermite instead of Cartesian primitive functions
for the auxiliary basis functions according to Ref. 27.

V. RESULTS AND DISCUSSION

To assess the presented method with respect to accuracy,
we shall now examine the errors introduced in the calculated
energies, atomization energies, and reaction enthalpies for a
set of test systems. We demonstrate that local density fitting
can be applied to molecular energies, at little cost of accu-
racy. We also take a look at energy differences, presenting
results for both atomization energies and reaction enthalpies.
The errors in energy differences are more sensitive than the
errors in molecular energies when making the transition from
Coulomb to overlap density fitting. Although the density-
fitting errors are still small, compared to, for example, orbital
basis-set errors, the somewhat larger errors for energy differ-
ences may constitute a criticism of the presented method. We
therefore discuss these issues in greater detail. We finally
make a note on computation performance as well as on the
sparsity for different screening thresholds.

A. Molecular errors

Figures 2 and 3 display the effect of attenuation on
Coulomb, exchange, and total energies at different levels of
attenuation �. Results are for the benchmark set of Ref. 28 at
the B3LYP/cc-pVTZ�df-pVTZ� and B3LYP/6-31G�df-def2�

levels of theory. The auxiliary basis sets used for density
fitting are given in parentheses; df-pVTZ is the triple-zeta
valence plus polarization basis set of Ref. 2 and df-def2 is
the standard “RI-JK auxiliary basis set” of Ref. 3. Mean
errors in the Coulomb �J, exchange �K, and total energies
�E for the full benchmark set are plotted together with the
corresponding standard deviations, maximum errors, and
minimum errors. The plots were obtained using the Gaussian
damped Coulomb metric exp�−�r12

2 � /r12. The limit of a
small � corresponds to Coulomb fitting, while a large attenu-
ation factor � approaches overlap fitting. Concerning the
choice of a local metric, we note that the performance of the
Gaussian and error-function damping is similar with respect
to size of the errors. Since Gaussian damping gives rise to
more sparsity, it is recommended over error-function damp-
ing for large systems.

Inserting Eq. �23� into Eqs. �31� and �37�, we obtain

J̃ = J + �J = J − 1
2 ������� , �64�

K̃ = K + �K = K −
1

2�
ij

��ij��ij� , �65�

and conclude that the density-fitting errors in the Coulomb
and exchange energies are both negative. The sign of the
total fitting error �E=�J−�K therefore depends on the rela-
tion between the Coulomb �J and the exchange �K errors.

In the B3LYP calculations examined here, the density-
fitting error in the Coulomb contribution is larger than the
error in the exchange contribution. In Hartree–Fock calcula-

FIG. 2. Average value and standard deviations for the fitting errors in
Coulomb �J, exchange �K, and total energy �E as computed for the bench-
mark molecule set as a function of varying attenuation strength �. The
basis-set combination cc-pVTZ�df-pVTZ� was used. Errors are computed
per nonhydrogen atom, and results were obtained using the Gaussian
damped Coulomb metric exp�−�r12

2 � /r12. Maximal and minimal deviations
are marked with bars.

FIG. 3. Average value and standard deviations for the fitting errors in
Coulomb �J, exchange �K, and total energy �E as computed for the bench-
mark molecule set as a function of varying attenuation strength �. The
basis-set combination 6-31G�df-def2� was used. Errors are computed per
nonhydrogen atom, and results were obtained using the Gaussian damped
Coulomb metric exp�−�r12

2 � /r12. Maximal and minimal deviations are
marked with bars.
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tions, where the contribution from exact exchange is five
times larger than in the B3LYP calculations, the exchange
error is two to three times larger than the Coulomb error.
Since the Coulomb and exchange errors are both negative,
the total error is never larger than the error in one of the
contributions. As seen from Figs. 2 and 3, attenuation in-
creases the molecular fitting errors but never by more than
50%. Since the fitting errors are much smaller than the basis-
set error, we conclude that attenuated local fitting can be
used instead of Coulomb fitting, in molecular calculations,
without adversely affecting the resulting total energies.

B. Atomic errors

In this section we address both atomic and atomization
density-fitting energies. These two quantities are more sensi-
tive than molecular energies to the transition from Coulomb
to overlap density fitting. We attribute this to an auxiliary
basis-set superposition error.

In Fig. 4, we have plotted the density-fitting error as a

function of attenuation parameter � for the atoms in the
benchmark set.28 Clearly, the atomic calculations behave dif-
ferently from the molecular ones. In the atomic calculations,
the transition from the Coulomb to the overlap metric in-
creases the fitting error by up to a factor of 8. Moreover, the
atomic errors do not increase monotonically as we approach
the overlap metric. Instead, the largest fitting error occurs for
some intermediate value of �. Clearly, the attenuation error
depends strongly on the auxiliary basis set.

In molecules, auxiliary basis functions on neighboring
atoms help to lower the fitting error. These additional func-
tions are unavailable in atomic calculations, giving an unbal-
anced description of atomic and molecular systems and an
associated basis-set superposition error �BSSE� in the ener-
gies. The BSSE can, at least to some extent, be corrected for
by application of the counterpoise �CP� correction of Ref. 29.

In the case of density fitting such a BSSE effect would
be prominent due to limited flexibility of the auxiliary basis
set. To examine the BSSE associated with the auxiliary basis
set, we have applied the CP correction to atomization-energy
calculations on N2 and CO. The results in Table I show that
auxiliary BSSE is more prominent in the overlap metric than
in the Coulomb metric. In the Coulomb metric, the CP cor-
rection has little effect on the atomization energies, whereas
overlap density-fitting errors are reduced from
46 to 26 �hartrees for N2 and from 52 to 1 �hartree for CO.
Clearly, the latter value is an example of a fortuitous cancel-
lation of errors.

FIG. 4. Total density-fitting error �E obtained for hydrogen, carbon, nitro-
gen, oxygen, and chlorine atoms at B3LYP density-functional level as a
function of Gaussian attenuation strength �. Top panel displays the fitting
error obtained for 6-31G�df-def2� basis-set combination—bottom panel for
cc-pVTZ�df-pVTZ� combination. Error for hydrogen and 6-31G�df-def2�
combination was scaled down five times.

TABLE I. Errors in atomization energies ��hartree� arising from Coulomb
and overlap density fitting for N2 and CO at the B3LYP/cc-pVTZ�df-pVTZ�
level of theory, with and without use of the CP correction. The calculations
have been carried out at the experimental bond distances of 109.768 pm for
N2 and 112.8323 pm for CO.

Molecule

Coulomb Overlap

No CP CP No CP CP

N2 21 20 46 26
CO 22 20 52 1

FIG. 5. Variation of the total density-fitting error �E
with the attenuation parameter � for the N2 molecule
and the N atom at B3LYP/cc-pVTZ�df-pVTZ� level of
theory. The experimental bond length of 109.768 pm
was used for N2. Results were obtained using the
Gaussian damped metric exp�−�r12

2 � /r12. The atomic
calculations labeled “ghost fitting” involve regular �or-
bital� basis functions for one of the atoms and auxiliary
basis functions at the positions of both atoms.
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Figures 5 and 6 show the B3LYP/cc-pVTZ�df-pVTZ�
density-fitting errors at different levels of attenuation for the
two molecules, as well as atomic energies calculated with
and without ghost fitting functions at the positions of the
bonding partners. The atomic fitting errors are reduced sub-
stantially once the flexibility of the auxiliary basis set is en-
hanced. In particular, for the oxygen atom, the ratio between
the overlap and Coulomb density-fitting errors is reduced
from 7.7 to 2.7 when the ghost fitting functions are included.
Moreover, with ghost functions in the atomic calculations,
the dependency of the fitting errors of the attenuation param-
eter is less pronounced, as seen from the reduced slope of the
corresponding curves in Figs. 5 and 6.

In summary, the BSSE is more pronounced in the attenu-
ated and overlap metrics than in the Coulomb metric. How-
ever, we note that the auxiliary basis set used in this inves-
tigation were optimized with respect to density fitting in the

Coulomb metric. The use of auxiliary basis sets optimized in
the overlap metric may reduce the BSSE. However, even
with the standard auxiliary basis sets used here, the density-
fitting error is small compared with the orbital basis-set error.

C. Reaction energies

From a chemical point of view, relative energies are
more important than total energies. To obtain reliable reac-
tion energies for a given method, the errors of products and
reactants must be balanced. We tested our approach on 11
reaction energies �A–K� at the B3LYP/6-31G�df-def2� level
of theory �see Table II�. The test set includes isomerization
reactions �A–C�, bond-breaking reactions leading to closed-
shell species �D–G�, and bond-breaking reactions leading to
open-shell species �H–K�. The geometries for all species

FIG. 6. Variation of the total density-fitting error �E
with the attenuation parameter � for the CO molecule
and the C and O atoms at B3LYP/cc-pVTZ�df-pVTZ�
level of theory. The experimental bond length of
112.8323 pm was used for CO. Results were obtained
using the Gaussian damped metric exp�−�r12

2 � /r12. The
atomic calculations labeled “ghost fitting” involve regu-
lar �orbital� basis functions for the atom in question and
auxiliary basis functions at the positions of both atoms.

TABLE II. Densit-fitting errors �E ��hartree� of reaction energies for reactions A–K in the overlap and
Coulomb metris. Also listed are the sum of the density-fitting error of the reactants �Ereac and of the products
�Eprod. Calculations were carried out at the B3LYP/6-31G�df-def2� level of theory.

�E �Ereac �Eprod

Over. Coul. Over. Coul. Over. Coul.

A: C12H12 �1� →C12H12 �2� 66 17 −268 −144 −202 −127
B: C12H12 �1� →C12H12 �3� 13 25 −268 −144 −254 −119
C: �CH3�3CC�CH3�3 →n−C8H18 −33 −21 −113 −103 −146 −124
D: n−C6H14+4 CH4 →5 C2H6 37 3 −287 −199 −250 −195
E: n−C8H18+6 CH4 →7 C2H6 59 5 −410 −280 −350 −273
F: adamantane →3 C2H4+2 C2H2 −90 −8 −132 −117 −222 −125
G: bicyclo�2.2.2�octane →3 C2H4+C2H2 −63 −8 −133 −101 −195 −109
H: CH3OCH3 →CH3O+CH3 29a 4b −101c −59d −72e −55f

I: CH3OCH2CH3 →CH3O+CH2CH3 18a 4b −104c −70d −87e −66f

J: CH3OCH�CH3�2 →CH3O+CH�CH3�2 22a 4b −121c −83d −99e −78f

K: CH3OC�CH3�3 →CH3O+C�CH3�3 34a 10b −135c −95d −100e −85f

a�E using cc-pVTZ�df-pVTZ� for H, I, J, K: 18, 17, −0.4, and −6, respectively.
b�E using cc-pVTZ�df-pVTZ� for H, I, J, K: −3, −0.4, 3, and 4, respectively.
c�Ereac using cc-pVTZ�df-pVTZ� for H, I, J, K: −61, −72, −71, and −71, respectively.
d�Ereac using cc-pVTZ�df-pVTZ� for H, I, J, K: −31, −39, −47, and −53, respectively.
e�Eprod using cc-pVTZ�df-pVTZ� for H, I, J, K: −43, −54, −71, and −77, respectively.
f�Eprod using cc-pVTZ�df-pVTZ� for H, I, J, K: −34, −39, −44, and −49, respectively.
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were taken from Ref. 30. Figure 7 shows the three isomers
1–3 of C12H12 considered in reactions A and B.

The absolute values of the overlap density-fitting errors
of the reaction energies are between 13 and 90 �hartrees, to
be compared with the Coulomb density-fitting errors be-
tween 3 and 25 �hartrees. Moreover, the fitting errors in
reaction energies are typically one order of magnitude
smaller than the total fitting errors of the products and reac-
tants. A comparison of the fitting errors in the overlap and
Coulomb metric reveals that both approaches differ less for
isomerization reactions than for bond-breaking reactions, as
expected from the interpretation that the fitting error in the
overlap metric suffers from BSSE. A reduction in the abso-
lute value of the fitting error is observed when switching
from the small 6-31G�df-def2� to the large cc-pVTZ�df-
pVTZ� basis set. The very small overlap fitting errors for
reaction I �0.4 �hartree� and the Coulomb fitting error for
reaction J �−0.4 �hartree� at B3LYP/cc-pVTZ�df-pVTZ�
level of theory arise from error cancellation.

To test for auxiliary BSSE, we corrected the interaction
energies of H, I, and K at the B3LYP/cc-pVTZ�df-pVTZ�
level of theory by applying the CP correction. Interaction
energies are defined as the difference between a molecular
energy and the sum of the fragment energies with the frag-
ments at the same geometries as in the molecule. Interaction
energies thus differ from reaction energies in that the frag-
ment geometries are not relaxed.

For reactions H and I, the fitting errors in the overlap
metric of the resulting CP-corrected interaction energies are
reduced from 18 to 0.6 �hartree and from 17 to
−2 �hartree, respectively. By contrast, for reaction K, the
fitting error increases slightly in magnitude, from 11 to
−14 �hartree, when the CP correction is included. Thus,
when density fitting is performed in the overlap metric, the
auxiliary BSSE clearly influences the quality of reaction en-
ergies, in agreement with the discussion of the atomization
energies. We stress that specifically tuned auxiliary basis sets
are expected to reduce the effect of BSSE. Even with the
auxiliary basis sets used here, the absolute error in the reac-
tion energies because of density fitting in the overlap metric
does not exceed 90 �hartrees.

D. Timings and sparsity

The purpose of this paper is mainly to show that it is
possible to perform density fitting in local metrics rather than
than in nonlocal Coulomb metric. However, to illustrate that
this method is indeed practicable; we present some timings
and sparsity results.

As is well known, the application of integral fitting to
the calculation of Coulomb and exchange matrices provides
a dramatic speed-up of the calculations. Table III contains
timings for a B3LYP/cc-pVTZ�df-pVTZ� calculation on
naphthalene, with and without density fitting, using a devel-
opment version of DALTON.31 The calculation was carried out
on a 2200 MHz SUN X2200 AMD Opteron machine, and the
code was compiled with ifort 9.0 linked with mkl-libraries
�version 8.1�. For both Coulomb and exchange matrices, the
evaluation is accelerated by almost a factor of 30. The ini-
tialization step of 269 s consists of the following main con-
tributions: three-center integral evaluation �ab ��� �89 s�, cal-
culation of the inverse square root �� �	�−0.5 �12 s�, and
transformation to the orthonormal basis �164 s�. The remain-
ing 5 s consists of calculating g�

w=��� ���, gab
w =��ab �ab�,

and, after renormalization of the auxiliary basis, the �� �	�
integrals.

Table IV lists the sparsity of two- and three-center inte-
grals for acene �n=5� of Ref. 28, in the Coulomb and the
overlap metrics. Sparsity is listed at different screening
thresholds ���. Also listed are the ratios between the number
of integrals in the overlap and Coulomb metrics. The num-
bers of significant two- and three-center integrals are reduced
by a factor of 3–4 in the overlap metric compared to the
Coulomb metric. The fitting coefficients c�

ab as obtained in
the overlap metric show only a slow onset of sparsity in the
nonorthogonal auxiliary basis, reducing the number of sig-
nificant fitting coefficients in the overlap metric by 5%–14%,
for thresholds in range of 10−10–10−6 hartree. In the orthogo-
nal basis, the sparsity in the fitting coefficients c��

ab is main-
tained, reducing the number of significant fitting coefficients
by 20%–58%.

TABLE III. Timings for a complete HF/cc-pVTZ�df-pVTZ� calculation of
the naphthalene molecule. The calculation converged in 14 SCF iterations.

Method Initialization �s�
Coulomb

�s/iter�
exchange

�s/iter�

J-engine+LinK 408 1394
Coulomb and exchange fitting 269 1.2 33.1

TABLE IV. Sparsity of fitting integrals in the overlap and Coulomb metrics
at different thresholds � for the acene-5 molecule of Ref. 28 in the
cc-pVTZ�df-pVTZ� basis. Also listed is the ratio between the sparsities of
the overlap and Coulomb integrals. The prime on the auxiliary basis-set
index denote an orthogonal basis.

Integral �=10−10 �=10−8 �=10−6

�� �	� 52% 52% 47%
��	� 16% 14% 11%
Ratio ��	� / �� �	� 0.31 0.27 0.23

�ab ��� 26% 21% 15%
�ab�� 7.5% 5.4% 3.2%
c�

ab= �ab	��	��−1 25% 20% 13%
Ratio �ab�� / �ab ��� 0.29 0.25 0.22
Ratio c�

ab / �ab ��� 0.95 0.93 0.86

�ab ���� 26% 21% 15%

c��
ab = �ab��� 21% 14% 6.4%

Ratio �ab��� / �ab ���� 0.80 0.64 0.42

FIG. 7. Structures of three different isomers of C12H12: 1, 2, and 3.
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VI. CONCLUSIONS AND OUTLOOK

In this paper, we have studied the variational density-
fitting technique for the calculation of Coulomb and ex-
change matrices, with emphasis on the locality of the fitting
metric. Such local metrics yield a sparse linear set of equa-
tions for the fitting coefficients, allowing for their determi-
nation in time proportional to the system size. We have
shown that local metrics can be chosen such that the accu-
racy of the calculation does not suffer as demonstrated by
our test implementation. In the derivation of the formulas,
we have paid special attention to aspects of density fitting
relevant for property calculations �variation principle, etc.�.
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Abstract: A linear scaling implementation of the trust-region self-consistent field (LS-
TRSCF) method for the Hartree-Fock and Kohn-Sham calculations is described. The con-
vergence of the method is smooth and robust and of equal quality for small and large sys-
tems. The LS-TRSCF calculations converge in several cases where conventional DIIS cal-
culations diverge. The LS-TRSCF method may be recommended as the standard method
for both small and large molecular systems.
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1 Introduction

In Hartree-Fock (HF) and Kohn-Sham (KS) density functional theory (DFT), the electronic energy
ESCF is minimized with respect to the density matrix of a single-determinantal wave function. In its
original formulation, the minimization was carried out using the self-consistent field (SCF) method
consisting of a sequence of Roothaan-Hall iterations. At each iteration, the Fock/KS matrix F is
constructed from the current atomic-orbital (AO) density matrix D; next, the Fock/KS matrix is
diagonalized and finally an improved AO density matrix is determined from the molecular orbitals
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2 P. Jørgensen

(MOs) obtained by this diagonalization. Unfortunately, this simple SCF scheme converges only in
simple cases.

To improve upon the convergence, the optimization is modified by constructing the Fock/KS
matrix not directly from the AO density matrix of the last iteration, but rather from an averaged
density matrix, obtained as a linear combination of the density matrices of the current and previous
iterations. Typically, the averaged density matrix is obtained using the DIIS method of Pulay [1],
by minimizing the norm of the linear combination of the gradients. The SCF/DIIS method has
been implemented in most electronic-structure programs and has been successfully used to obtain
optimized HF/KS energies. However, in some cases the DIIS procedure fails to converge.

During the last decade, much effort has been directed towards developing linear scaling SCF
methods. In particular, the computational scaling for the evaluation of the Fock/KS matrix has
been successfully reduced by use of the fast multipole method (FMM) for the Coulomb contribution
[2]–[6], the order-N exchange (ONX) method and the linear exchange K (LinK) method for the
exact (Hartree–Fock) exchange contribution [7]–[12], and efficient numerical quadrature methods
for the exchange–correlation (XC) contribution [13]–[15]. Our SCF code uses FMM combined with
density fitting for the Coulomb contribution, LinK for the exact exchange contribution, and linear-
scaling numerical quadrature for the XC contribution. In the optimization of the SCF energy,
the diagonalization of the Fock/KS matrix, which scales cubically with the system size (N3), may
therefore become the time dominating step for large molecules. In this paper, we discuss how the
SCF method with DIIS may be improved upon by using an algorithm where the diagonalization
of the Fock/KS matrix is avoided in favour of a method of linear complexity.

In the SCF/DIIS method, the minimization of the energy is carried out in two separate steps:
the diagonalization of the Fock/KS matrix and the averaging of the density matrix. In neither step
an energy lowering is enforced on ESCF. It is simply hoped that, at the end of the SCF iterations,
an optimized state is determined. We discuss improvements to both the diagonalization and
the density matrix averaging, where a lowering of the energy ESCF is enforced at each iteration.
For both steps, we construct a local energy model to ESCF with the current density matrix as
the expansion point. At the expansion point, these models have the true gradient, but only an
approximate Hessian. They are therefore valid only in a restricted region about the expansion
point - the trust region. When these local models are used, it is essential that steps are only
generated within the trust region, as otherwise no energy lowering is guaranteed.

Diagonalization may be avoided by recognizing that the density matrix obtained by diagonal-
izing the Fock/KS matrix represents the global minimum of the Roothaan-Hall energy function
ERH = TrFD (with fixed F) [16, 17]. The diagonalization may therefore be replaced by a mini-
mization of ERH. However, since ERH is only a crude model of the true energy ESCF, a complete
minimization of ERH (as obtained for example by diagonalization) may give steps that are too long
to be trusted. When minimizing ERH, we require the steps to be inside the trust region, solving a
set of level shifted Newton equations where the level shift controls the size of the steps. The level
shifted Newton equations may be solved using iterative algorithms where the time-dominating step
is the multiplication of the Hessian by trialvectors. Linear complexity therefore may be obtained by
using sparse matrix algebra. The obtained algorithm will be denoted the linear scaling trust-region
Roothaan-Hall (LS-TRRH) method.

To improve on the DIIS scheme we construct an energy function where the expansion coefficients
of the averaged density matrix are the variational parameters. Carrying out a second-order expan-
sion of this energy, using the quasi-Newton condition and neglecting terms that require evaluation
of new Fock/KS matrices, we arrive at the density subspace minimization (DSM) approximation
to the energy EDSM [18, 19]. At the expansion point, EDSM has the same gradient as ESCF and
a good approximation to the Hessian. Again, trust-region optimization may be used to determine
the optimal expansion coefficients, ensuring also an energy lowering at this step of the iterative
procedure. The obtained algorithm is denoted the trust-region density subspace minimization
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(TRDSM) method. Combining the LS-TRRH and TRDSM amethods we obtain the LS-TRSCF
method.

In the next section we describe the LS-TRRH algorithm while in section 3 the TRDSM al-
gorithm is discussed. Section 4 contains numerical results which demonstrate the convergence
of LS-TRSCF calculations and that linear scaling is obtained. The last section contains some
concluding remarks.

2 Optimization of the Roothaan–Hall energy

2.1 Parametrization of the density matrix

Let D be a valid Kohn–Sham density matrix of an N -electron system, which together with the
AO overlap matrix S satisfies the symmetry, trace and idempotency relations:

DT = D (1)
TrDS = N (2)
DSD = D (3)

Introducing the projectors Po and Pv on the occupied and virtual spaces

Po = DS (4)
Pv = I − DS (5)

we may, from the reference density matrix D, generate any other valid density matrix by the
transformation [17, 21, 22]

D(X) = exp [−P(X)S]D exp [SP(X)] (6)

where X is an anti-Hermitian matrix and where

P(X) = PoXPT
v + PvXPT

o (7)

projects out the redundant occupied-occupied and virtual-virtual components of X.
The density matrix D(X) may be expanded in orders of X as

D(X) = D + [D,P(X)]S + 1
2 [[D,P(X)]S ,P(X)]S + · · · (8)

where we have introduced the S commutator

[A,B]S = ASB − BSA (9)

2.2 The Roothaan–Hall Newton equations in the AO basis

In an SCF optimization, the diagonalization of the Fock/KS matrix F is equivalent to the mini-
mization of the Roothaan–Hall energy [17]

ERH(X) = Tr [FD(X)] (10)

in the sense that both approaches yield the same density matrix. Inserting the S-commutator
expansion of the density matrix D(X), we obtain

Tr [FD(X)] = Tr (FD) + Tr (FvoX− FovX)
+ Tr (FooXSvvX− FvvXSooX) + · · · (11)
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where we have made repeated use of the idempotency relations P2
o = Po and P2

v = Pv and of
the orthogonality relations PoPv = PvPo = 0 and PT

o SPv = PT
v SPo = 0 and introduced the

short-hand notation
Fab = PT

a FPb (12)

Note that, whereas the off-diagonal projections Fov and Fvo of F contribute to the terms linear in
X, the diagonal projections Foo and Fvv contribute to the quadratic terms.

The Roothaan-Hall energy ERH is only a crude model of the true HF/KS energy ESCF, having
the correct gradient but an approximate Hessian at the point of expansion; this can be understood
from the observation that ERH depends linearly on D(X), whereas the true energy ESCF depends
quadratically on D(X). Therefore, a complete minimization of ERH (as achieved, for example,
by diagonalization of the Fock/KS matrix), may give steps that are too long to be trusted. Such
steps may, for example, increase rather than decrease the total SCF energy. We therefore impose
on the energy minimization the constraint that the new occupied space does not differ appreciably
from the old occupied space. The step must therefore be inside or on the boundary of the trust
region of ERH, which we define as a hypersphere with radius h around the density at the current
expansion point. In the S metric norm, the length of the step

||P(X)||2S = Tr[P(X)SP(X)S] (13)

is thus restricted to h2. To satisfy this constraint, we introduce an undetermined multiplier μ and
set up the Lagrangian

LRH(X) = Tr [FD(X)] −
1
2
μ
(
Tr[P(X)SXS] − h2

)
(14)

Expanding this Lagrangian to second order in X using Eq. (11), we obtain

LRH(X) = Tr (FD) + Tr (FvoX− FovX)

+ Tr (FooXSvvX− FvvXSooX) + μ

[
Tr (SooXSvvX) −

1
2
h2

]
· · · (15)

Differentiating this function with respect to the elements of X, we obtain

∂LRH(X)
∂X

= Fov − Fvo − SvvXFoo − FooXSvv + FvvXSoo + SooXFvv

− μ (SvvXSoo + SooXSvv) + · · · (16)

where we have used the relation
∂ Tr(AX)

∂X
= AT (17)

Finally, setting the right-hand side equal to zero and ignoring higher-order contributions, we obtain
the matrix equation

FvvXSoo − FooXSvv + SooXFvv − SvvXFoo

− μ (SvvXSoo + SooXSvv) = Fvo − Fov (18)

for the stationary points on the trust sphere of the Roothaan–Hall energy function.
Eq. (18) is equivalent to a level shifted set of Newton equations

(H − μM)x = G (19)
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where

H = Fvv ⊗ Soo − Foo ⊗ Svv + Soo ⊗ Fvv − Svv ⊗ Foo (20)
M = Svv ⊗ Soo − Soo ⊗ Svv (21)
G = Vec(Fvo − Fov) (22)
x = VecX (23)

2.3 The Roothaan–Hall Newton equations in an orthonormal basis

The conditioning number of the level shifted Hessian matrix in Eq. (19) is greatly reduced by
transforming the equation to an orthogonal basis. We consider transformations based on the
factorization of the overlap in the form

S = VTV (24)

Such a factorization may be accomplished in infinitely many ways – for example, by introducing a
Cholesky factor (as employed by Shao et al. [23] in the curvy step method) or the principal square
root

Vc = U (25)

Vs = S1/2 (26)

where U is an nonsingular upper triangular matrix and where S1/2 is a positive-definite symmetric
matrix. In the chosen orthonormal basis, the Roothaan–Hall Newton equations Eq. (18) take the
form

(Fvv
V − Foo

V − μI)XV + XV(Fvv
V − Foo

V − μI) = Fvo
V − Fov

V (27)

where we have introduced the notation

AV = V−TAV−1 (28)

AV = VAVT (29)

and where we have further assumed that XV contains only non-redundant components.
Eq. (27) represents the solution of a level shifted Newton set of linear equations

(HV − μI)xV = GV (30)

where

HV = (Fvv
V − Foo

V ) ⊗ I + I ⊗ (Fvv
V − Foo

V ) (31)

xV = VecXV (32)
GV = Vec(Fvo

V − Fov
V ) (33)

When solving Eq. (30) by the conjugate gradient method, it is advantageous to use a diagonal
preconditioner.

In the global region of an SCF optimization, the boundary of the trust region is represented
by Xmax

V = k, where Xmax
V is the largest component of XV and k is 0.35. Unlike ||XV||S , Xmax

V is
size-intensive.

To ensure that the minimum is determined on the boundary of the trust region, the level shift
must be restricted to the interval −∞ < μ < εmin where εmin is the lowest eigenvalue of the
Hessian Eq. (31). In principle, the lowest Hessian eigenvalue should therefore be determined and
a line search carried out in the interval −∞ < μ < εmin to find the level shift μ with Xmax

V = 0.35.



6 P. Jørgensen

However, a simpler strategy is obtained by recognizing that the solution of the level shifted Newton
equations can be determined from the eigenvectors of the augmented Hessian eigenvalue equation
[24, 25, 26]. If the solution with the lowest eigenvalue is determined, the level shift is restricted to
the interval −∞ < μ < εmin.

The level shifted Newton equations may be solved using an iterative procedure where the
reduced space Hessians and gradients are set up in each iteration. At each iteration, the augmented
Hessian may therefore also be set up in the subspace at essentially no cost and the lowest eigenvalue
determined. Consequently the level shift may be updated by solving the reduced space augmented
Hessian eigenvalue problem at no extra cost. With the updated level shift, a new Newton iteration
may be carried out and the iterations continued until convergence is obtained with respect to level
shift and the residual of the Newton equations (see Ref. [27]).

When the level shifted Newton equations are solved using iterative algorithms, the time con-
suming step is the linear transformation of the Hessian matrix on trial vectors. Using sparse matrix
algebra, linear scaling may be obtained in these linear transformations.

3 The density subspace minimization (DSM) algorithm

After a sequence of Roothaan–Hall iterations, we have determined a set of density matrices Di

and a corresponding set of Fock/KS matrices Fi = F(Di). We now discuss how to make the best
use of the information contained in these matrices.

3.1 Parametrization of the DSM density matrix

Using D0 as the reference density matrix, the improved density matrix may be expressed as a
linear combination of the current and previous density matrices [18, 19]

D = D0 +
n∑

i=0

ciDi. (34)

Ideally D should satisfy the symmetry, trace and idempotency conditions Eqs. (1-3). The symmetry
condition Eq. (1) is trivially satisfied while the trace condition Eq. (2) holds only if

c0 = −

n∑
i=1

ci. (35)

Using ci with 1 ≤ i ≤ n as independent parameters the density matrix D may be expressed as

D = D0 + D+, (36)

where we have introduced the notation

D+ =
n∑

i=1

ciDi0, (37a)

Di0 = Di − D0. (37b)

While D satisfies the symmetry and trace conditions Eqs. (1) and (2), the idempotency condition
Eq. (3) is not fulfilled. A smaller idempotency error may be obtained using the purified density
matrix of McWeeny [20, 28]

D̃ = 3DSD − 2DSDSD. (38)
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Emphasizing that D0 is the reference density matrix, the first-order purified density matrix may
be expressed as

D̃ = D0 + D+ + Dδ. (39)

where we have introduced the idempotency correction

Dδ = D̃ − D. (40)

3.2 Construction of the DSM energy function

Expanding the energy for the purified averaged density matrix, Eq. (39), around the reference
density matrix D0, we obtain to second order

E(D̃) = E(D0) + (D+ + Dδ)
T E(1)

0 +
1
2

(D+ + Dδ)
T E(2)

0 (D+ + Dδ) (41)

To evaluate the terms containing E(1)
0 and E(2)

0 , we first recall that the Fock/KS matrix is defined
as

E(1)
0 = 2F0 (42)

Next we carry out an expansion of E(1)
i with D0 as expansion point

E(1)
i = E(1)

0 + E(2)
0 (Di − D0) + O

(
Di − D0

)2 (43)

Neglecting terms of order O
(
Di − D0

)2 we obtain the quasi–Newton condition

E(2)
0 (Di − D0) = 2Fi − 2F0 = 2Fi0 (44)

which may be used to obtain

E(2)
0 D+ = 2F+ + O

(
D2

+

)
, (45)

where we have generalized the notation Eq. (37a) to the Fock/KS matrix

F+ =
n∑

i=1

ciFi0 (46)

Using Eq. (42) and Eq. (45) and ignoring the terms quadratic in Dδ in Eq. (41) and quadratic in
D+ in Eq. (45), we then obtain the DSM energy

EDSM(c) = E(D0) + 2 TrD+F0 + TrD+F+ + 2 TrDδF0 + 2 TrDδF+. (47)

Note that EDSM(c) is expressed solely in terms of the density and Fock/KS matrices of the current
and previous iterations. For a more compact notation, we introduce the weighted Fock/KS matrix

F = F0 + F+ = F0 +
n∑

i=1

ciFi0 (48)

and find that the DSM energy may be written in the form

EDSM(c) = E(D) + 2 TrDδF, (49)
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where the first term is quadratic in the expansion coefficients ci

E(D) = E(D0) + 2 TrD+F0 + TrD+F+, (50)

and the second (idempotency correction) term is quartic in these coefficients:

2 TrDδF = Tr(6DSD− 4DSDSD − 2D)F. (51)

The derivatives of EDSM(c) are straightforwardly obtained by inserting the expansions of F and D,
using the independent parameter representation and the minimization of EDSM(c) may straight-
forwardly be carried out using the trust-region method.

4 Numerical Illustrations

4.1 Convergence of test calculations

We now describe the convergence of test calculations for Hartree-Fock and DFT LDA using the
LS-TRSCF algorithm where the level shifted Newton equations are solved in the basis defined by
the principal square root in Eq. (26). For comparison, the convergence of the standard SCF/DIIS
calculations (diagonalization + DIIS, no level shift) will also be reported. In both DIIS and
TRDSM a maximum of eight densities and Fock/KS matrices are stored.

In Fig. 1 we display the convergence (the difference between the energy of a given iteration and
the converged energy) of Hartree-Fock calculations using LS-TRSCF (left panel) and SCF/DIIS
(right panel) on six molecules representing different types of chemical compounds: 1). Water,
stretched: H2O where the O−H bond is twice its equilibrium value (d-aug-pVTZ basis). 2). Rh
complex: The rhodium complex of Ref. [18] (AhlrichsVDZ basis [29], STO-3G on Rh). 3). Cd
complex: The cadmium-imidazole complex of Ref. [19] (3-21G basis). 4). Zn complex: The
zinc-EDDS complex of Ref. [19] (6-31G basis). 5). Polysaccharide: A polysaccharide containing
438 atoms (6-31G basis). 6). Polyalanine, 24 units: A polypeptide containing 24 alanine residues
(6-31G basis). As initial guess we have used H1 core for molecules 1–3 and Hückel for molecules
4–6. Smooth convergence to 10−8 a.u. is obtained in all LS-TRSCF calculations. Convergence
is obtained in 12-30 iterations. The convergence is very similar for the SCF/DIIS and the LS-
TRSCF calculations except for the rhodium complex, where the SCF/DIIS calculation diverges
while smooth convergence is obtained using the LS-TRSCF algorithm. The local convergence
is very similar for SCF/DIIS and LS-TRSCF reflecting that in both DIIS and DSM, the local
convergence is determined by the fact that the quasi-Newton condition is satisfied [19]. In Fig. 2,
we report calculations similar to those in Fig. 1 but where the Hartree-Fock model is replaced by
LDA. The convergence of the LS-TRSCF Hartree-Fock and LDA calculations is very similar with
the exception of the Rh complex where the LDA calculation has a rather erratic behaviour from
about iteration 20 to 80 after which fast convergence is obtained. The SCF/DIIS LDA calculations
in the left panel in Fig. 2 show a rather erratic convergence behaviour in particular for the Cd
complex and polyalanine where the calculations diverge, and for the polysaccharide calculation
in the initial 25 iterations. The erratic behaviour which in general is observed in the initial
iterations of SCF/DIIS calculations reflects that energy lowering is not an issue in the SCF/DIIS
scheme. Surprisingly, the SCF/DIIS LDA calculation on the rhodium complex converges, while
the corresponding Hartree-Fock calculation diverges.

To sum it up, similar convergence is seen in Hartree-Fock SCF/DIIS and the LS-TRSCF cal-
culations, whereas for LDA, a much more smooth and robust convergence is obtained by using the
LS-TRSCF scheme. Particularly in the initial iterations, a more erratic behaviour is seen with the
SCF/DIIS algorithm. In several cases the LS-TRSCF calculations converge, where the SCF/DIIS
calculations diverge.
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Figure 1: Convergence of the Hartree-Fock LS-TRSCF (left panel) and SCF/DIIS (right panel)
calculations for the rhodium complex, the zinc complex, the cadmium complex, the stretched
water, the polysaccharide and the polyalanine. The energy error (a.u.) in each iteration is plotted
versus number of iterations.

Figure 2: Convergence of the LDA LS-TRSCF (left panel) and SCF/DIIS (right panel) calcula-
tions for the rhodium complex, the zinc complex, the cadmium complex, the stretched water, the
polysaccharide and the polyalanine. The energy error (a.u.) in each iteration is plotted versus
number of iterations.
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4.2 Linear scaling using the LS-TRSCF algorithm

In this subsection, we will illustrate that linear scaling is obtained using the LS-TRSCF algorithm.
We consider calculations on a polyalanine peptide where we extend the number of alanine residues.
We consider both Hartree-Fock and B3LYP calculations in the 6-31G basis. The largest alanine
peptide contains 119 alanine residues (a total of 1192 atoms). The convergence of the alanines is
similar to the one for the 24 residue peptide given in Figs. 1-2.

In Fig. 3 we have shown the CPU time used in the different parts of the LS-TRSCF algorithm
for the Hartree-Fock calculations using sparse matrix algebra In all figures, the timings are for the
first iteration in the local region, except for the DSM time, which is dependent on the number of
previous densities. Therefore, the DSM time is always given for iteration 8, where we have the
maximum number of previous densities involved. The timings are given for the evaluation of the
Coulomb (Fock J) and exchange (Fock X) parts of the Fock matrix, respectively, and for the LS-
TRRH step and for the TRDSM step. The curve for the most expensive step – the exchange part of
the Fock matrix – has a bend probably due to an N2 scaling sorting routine. For both the LS-TRRH
and TRDSM steps, the time consuming part consists of matrix multiplications. Both LS-TRRH
and TRDSM scale linearly with system size in the calculations in Fig. 3, showing that sparsity is
efficiently exploited in the matrix multiplications. The benefits from exploiting the sparsity of the

Figure 3: CPU timings for one iteration of a Hartree-Fock calculation using a 6-31G basis plotted
as a function of the number of atoms in a polyalanine peptide. The considered contributions are
the exchange (X) and Coulomb (J) contributions to Fock matrix in addition to the LS-TRRH and
TRDSM optimization steps where sparse matrix algebra is used.

involved matrices are evident from Fig. 4, where we have plotted the CPU times for the LS-TRRH
and TRDSM steps from Fig. 3 in combination with timings for calculations where the matrix
multiplications involve full (dense) matrices. The timings for full matrix representations increase
with system size in accorcance with cubic scaling, but become linear when sparsity is exploited.
As seen on the figure, the advantage of going to the sparse matrix representation has an earlier
onset for TRDSM than for LS-TRRH, because TRDSM contains more matrix multiplications
than LS-TRRH. Fig. 5 shows the CPU timings for the B3LYP calculations in the sparse matrix
representation. The timings shown are the same as in Fig. 3, with the addition of the timing
for the exchange-correlation (Kohn-Sham XC) contribution. Like the other contributions to the
KS matrix (Coulomb and exchange), the exchange-correlation contribution has reached the linear
scaling regime. In general, the behaviour of the B3LYP curves is similar to the one observed for
the Hartree-Fock curves.
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Figure 4: CPU timings for one iteration of a Hartree-Fock calculation using a 6-31G basis for the
LS-TRRH and TRDSM steps for sparse and dense matrices plotted as a function of the number
of atoms in a polyalanine peptide.

Figure 5: CPU timings for one iteration of a B3LYP calculation using a 6-31G basis plotted as a
function of the number of atoms in a polyalanine peptide. The same contributions as in Fig. 3 are
considered, in addition to the exchange correlation (XC) contribution.
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5 Conclusion

We have described a linear scaling implementation of the trust-region self-consistent field (LS-
TRSCF) method. In the LS-TRSCF method, each iteration consists of a incomplete optimization
of the Roothaan-Hall energy giving a new density matrix (see Section 2.3) followed by the determi-
nation of an improved density matrix in the subspace containing the current and previous density
matrices. A linear scaling algorithm is obtained using iterative methods to solve the level shifted
Newton equations and sparse matrix algebra.

The convergence of the LS-TRSCF method is examined and for comparison the convergence
of conventional SCF/DIIS calculations have been reported. The LS-TRSCF calculations show
smooth and robust convergence, and in several cases the LS-TRSCF calculations converge where
the SCF/DIIS calculations diverge. The convergence of the LS-TRSCF method is in general
equally good for small and large systems. For small systems, a TRSCF implementation based
on an explicit diagonalization of the Fock/KS matrix may be more efficient. However, for small
systems the computational time for optimizing the density matrix is insignificant compared to
the computational time for setting up the Fock/KS matrix. Consequently we recommend using
LS-TRSCF as standard method for calculations on both small and large systems.
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A linear-scaling implementation of Hartree-Fock and Kohn-Sham self-consistent field theories for
the calculation of frequency-dependent molecular response properties and excitation energies is
presented, based on a nonredundant exponential parametrization of the one-electron density matrix
in the atomic-orbital basis, avoiding the use of canonical orbitals. The response equations are solved
iteratively, by an atomic-orbital subspace method equivalent to that of molecular-orbital theory.
Important features of the subspace method are the use of paired trial vectors �to preserve the
algebraic structure of the response equations�, a nondiagonal preconditioner �for rapid convergence�,
and the generation of good initial guesses �for robust solution�. As a result, the performance of the
iterative method is the same as in canonical molecular-orbital theory, with five to ten iterations
needed for convergence. As in traditional direct Hartree-Fock and Kohn-Sham theories, the
calculations are dominated by the construction of the effective Fock/Kohn-Sham matrix, once in
each iteration. Linear complexity is achieved by using sparse-matrix algebra, as illustrated in
calculations of excitation energies and frequency-dependent polarizabilities of polyalanine peptides
containing up to 1400 atoms. © 2007 American Institute of Physics. �DOI: 10.1063/1.2715568�

I. INTRODUCTION

Quantum chemistry has evolved in a spectacular fashion
during the last two decades. Using quantum-chemical meth-
ods, it is nowadays possible to investigate a large number of
molecular properties of increasing complexity, from compu-
tationally simple energy differences such as reaction enthal-
pies to more involved high-order frequency-dependent polar-
izabilities and multiphoton strengths, with control over the
accuracy of the results.1 Molecular properties are fundamen-
tal quantities underlying the macroscopic behavior of matter
and their determination constitutes one of the most fruitful
areas of interplay between experiment and theory.2

A difficulty in the application of quantum chemistry to
compute molecular properties is the restriction on the size of
systems that can be treated by current technology. Even with
the recent dramatic improvements in computer technology

and introduction of Kohn-Sham theory, the routine study of
systems such as myoglobin, containing 150 amino acids, is
still beyond our capabilities. This situation is particularly un-
fortunate in view of the considerable academic and industrial
interest in macromolecules containing thousands of atoms
such as polymers, proteins, enzymes, and nucleic acids.

The bottleneck for quantum-mechanical methods in their
application to large systems is the scaling of the cost—in
other words, the increase of CPU usage with increasing sys-
tem size. Formally, Hartree-Fock and Kohn-Sham self-
consistent field �SCF� methods scale as O�N4�, where N re-
fers to the system size. Moreover, wave-function-based
correlated methods typically scale as O�N5� or higher. With
such a steep scaling, advances in computer hardware alone
will never allow us to treat large systems such as myoglobin.
During the last decade, a large effort has been directed to-
wards the development of new algorithms with a better
scaling—see, for instance, Refs. 3–5 and references therein.
The goal is to develop “linear-scaling” methods—that is,
methods where the computational cost scales linearly with
the system size, O�N�.

In Hartree-Fock and Kohn-Sham theories, the two major
obstacles for the optimization of the energy have now been
eliminated—namely, the construction of the Fock/Kohn-
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Sham �KS� matrix and the generation of a new density ma-
trix from the current Fock/KS matrix, see Ref. 3 for a recent
overview. With these obstacles removed, it has become ap-
propriate to address the problem of calculating molecular
properties at linear cost.

In this paper, we describe a linear-scaling method for the
calculation of molecular properties that may be expressed in
terms of frequency-dependent response functions and their
poles and residues. In particular, we consider properties cal-
culated from the linear response function such as frequency-
dependent polarizabilities, excitation energies, and one-
photon transition moments. Molecular properties that are
expressed in terms of higher-order response functions6 can
be obtained by a straightforward extension of the presented
scheme.

In our linear-scaling response implementation, the ex-
pressions for the response functions are derived using a non-
redundant exponential parametrization of the density matrix
in the atomic-orbital �AO� basis. The formal derivation of the
response functions and their residues is given in Refs. 7–9;
for perturbation-dependent basis sets �used to calculate geo-
metrical derivatives with atom-fixed AOs and magnetic prop-
erties with London AOs�, the theory is given in Ref. 8. In this
paper, we only discuss computational aspects that exclu-
sively refer to property calculations; the strategy adopted for
linear-scaling energy optimizations is described in Ref. 3.

Since all key computational steps of response theory pre-
sented here consist of multiplications of density, Fock/KS,
and property matrices in the AO basis, matrix sparsity must
be explored to achieve linear scaling. First, the response ei-
genvalue equations and linear sets of equations are solved.
Their solution constitutes the major challenge with respect to
linear scaling. We describe here how this may be achieved
with iterative AO techniques, generalizing the algorithm pre-
viously developed to solve the response equations in the
molecular-orbital �MO� basis at various levels of theory.10,11

An important feature of the response solver is that it
maintains the paired structure of the response generalized
Hessian and metric matrices. By adding trial vectors in pairs,
the solver imposes the paired structure of the full-space re-
sponse equations on the reduced-space equations, ensuring
that complex eigenvalues do not arise during their solution.
Furthermore, monotonic convergence is ensured towards the
lowest eigenvalues. Another important feature of our algo-
rithm is that we take over, in the AO basis, the preconditioner
that has been so successfully employed in the MO basis.
However, this preconditioner cannot be applied directly in
the AO basis as the generalized AO Hessian has a large con-
dition number and is not diagonally dominant. Rather, it is
applied in an orthogonalized AO basis such as those defined
by the Cholesky or Löwdin symmetric decomposition of the
overlap matrix. In such a basis, the generalized Hessian be-
comes diagonally dominant and the condition number is sig-
nificantly reduced. For the optimization of Hartree-Fock and
Kohn-Sham energies, the Newton equations have previously
been successfully solved when transformed from the AO ba-
sis to the Löwdin basis3 or the Cholesky basis.12

The evaluation of static molecular properties within a
linear-scaling framework has previously been considered by

Ochsenfeld and Head-Gordon,13 adopting a parametrization
of the density matrix where idempotency is taken care of by
replacing the density matrix with its McWeeny-purified
counterpart,14 as suggested by Li et al.15 Using this ap-
proach, Ochsenfeld et al. have reported a linear-scaling
implementation of NMR shifts for linear alkanes and pre-
sented results for three-dimensional systems with more than
1000 atoms.16 An alternative strategy for static molecular
properties, based on a purification of the density matrix, has
recently been proposed by Weber et al.17

The remainder of this paper is divided into three main
sections. In Sec. II, we present the theory and implementa-
tion of linear-scaling SCF linear response theory. Section III
contains some numerical examples of calculations of
frequency-dependent polarizabilities and excitation energies.
Finally, Sec. IV contains some concluding remarks.

II. THEORY

The present section consists of four parts. First, in Sec.
II A, the basic expressions of AO-based linear response
theory are given, in a manner suitable for linear-scaling
implementation. In Sec. II B we discuss the iterative algo-
rithm used for solving the response equations. Finally, in
Secs. II C and II D, respectively, we describe preconditioning
and initial guesses of the iterative algorithm.

A. AO-based SCF linear response theory

In Hartree-Fock and Kohn-Sham theories, response
functions may be efficiently calculated in the AO basis, ex-
pressing the AO density matrix in the exponential
form1,7,18–21

D�X� = exp�− XS�D exp�SX� , �1�

where S is the AO overlap matrix and X is an anti-Hermitian
matrix that contains the variational parameters, with the re-
dundant parameters projected out:

X = P�X� . �2�

We have here introduced the projection operator on a matrix
M,

P�M� = PoMPv
T + PvMPo

T, �3�

where Po and Pv are projectors onto the occupied and virtual
orbital spaces, respectively,

Po = DS , �4�

Pv = I − DS , �5�

fulfilling the idempotency �Po
2=Po and Pv

2=Pv� and orthogo-
nality relations �PoPv=PvPo=0 and Po

TSPv=Pv
TSPo=0�. Us-

ing the above exponential parametrization of the AO density
matrix, the linear response function associated with the time-

independent operators Â and B̂ becomes7

��Â;B̂��� = Tr�A�1�NB���� , �6�
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�E�2� − �S�2��vec NB��� = − vec B�1�, �7�

where M�1� is the property gradient of the operator M̂ repre-
sented by the AO matrix M:7

M�1� = SDM − MDS = Po
TM − MPo. �8�

In Eq. �7�, the vec operator transforms a matrix M into a
column vector vec M by stacking its columns. Since the lin-
ear equations are solved iteratively, the generalized Hessian
matrix E�2� and the metric matrix S�2� are not needed explic-
itly but may instead be defined in terms of their linear trans-
formations of an arbitrary trial vector vec b. Thus, in the
notations

vec E�2��b� = E�2� vec b , �9�

vec S�2��b� = S�2� vec b , �10�

the Hessian and metric linear transformations are given by7

� = E�2��b�
�11�

=PT�FDbS − SDbF + G�Db�DS − SDG�Db�� ,

� = S�2��b� = − PT�SDbS� . �12�

Here the Fock/KS matrix takes the form

F = h + G�D� , �13�

where G�D� denotes the Coulomb and exact-exchange con-
tributions. In Kohn-Sham theory, there is an additional con-
tribution from the exchange-correlation potential, not in-
cluded here. All formulas, however, are equally valid for
Kohn-Sham theory. We have furthermore introduced the pro-
jector

PT�M� = Po
TMPv + Pv

TMPo �14�

by analogy with Eq. �3� and the transformed density matrix

Db = �P�b�,D�S = P��b,D�S� = PvbPo
T − PobPv

T �15�

in terms of the S commutator �M ,N�S=MSN−NSM. As-
suming that P�b�=b, we may also write the linear transfor-
mations Eqs. �11� and �12� in the form

E�2��b� = �Fvv − Foo�bS + Sb�Fvv − Foo� + Gvo�Db�

− Gov�Db� , �16�

S�2��b� = − SvvbSoo + SoobSvv, �17�

where we have introduced the notation

Mmn = Pm
T MPn, �18�

noting that Svo=Sov=0.
Excitation energies—that is, the poles of the linear re-

sponse function in Eq. �6�—are the eigenvalues of the gen-
eralized eigenvalue problem

�E�2� − �n0S�2��vec Xn = 0 , �19�

where �n0 is the excitation energy from the ground state �0�
to the excited state �n�. The corresponding transition moment

of Â is obtained from the residue of the linear response func-
tion

�0�Â�n� = Tr�A�1�Xn� . �20�

In this paper, we describe how linear response functions,
excitation energies, and transition moments �one-photon
transition strengths� may be evaluated at a cost that, for suf-
ficiently large systems, scales linearly with system size.

In iterative algorithms, which are here used to solve the
response equations, the Hessian and metric linear transfor-
mations Eqs. �11� and �12� require the AO overlap matrix S,
the AO density matrix D, and the AO Fock/KS matrix F, all
of which are also needed for the �linear-scaling� AO-based
optimization of the energy.3 The additional contribution from
G�Db� in Eq. �11�, which is not needed for energy optimiza-
tions, can also be calculated at linear cost. The transforma-
tions Eqs. �11� and �12� consist entirely of sparse-matrix al-
gebra and may for sufficiently large systems be carried out in
linear time. We now turn our attention to the linear-scaling
iterative solution of the linear set of equations Eq. �7� and the
eigenvalue problem Eq. �19�. Once their solutions have been
found, molecular properties are straightforwardly obtained as
the trace of sparse matrices Eqs. �6� and �20�.

B. Iterative solution of response equations

Before describing the iterative algorithm, we note the
relations

�E�2��b��T = E�2��bT� , �21�

�S�2��b��T = − S�2��bT� . �22�

Therefore, if the transformations Eqs. �11� and �12� are
known for a given trial matrix bi,

�i = E�2��bi� , �23�

�i = S�2��bi� , �24�

they are also known for the transposed trial matrix,

�i
T = E�2��bi

T� , �25�

− �i
T = S�2��bi

T� . �26�

Since the transformations of bi and bi
T are related to each

other in such a simple manner, new trial matrices are always
added in pairs bi and bi

T.
Let us now assume that we solve the response equations

Eq. �7� iteratively and that, in the course of the iterations, n
pairs of trial matrices have been generated. These matrices
constitute a 2n-dimensional reduced basis:

b2n = �b1,b1
T,b2,b2

T, . . . ,bn,bn
T	 . �27�

We assume that the trial matrices are orthonormal,

Tr�bib j� = Tr�bi
Tb j

T� = �ij , �28�

Tr�bi
Tb j� = Tr�bib j

T� = 0, �29�

and that they satisfy the projection relation
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bi = P�bi� . �30�

The transformed trial matrices �i=E�2��bi� and �i=S�2��bi�
are then given by

�2n = ��1,�1
T,�2,�2

T, . . . ,�n,�n
T	 , �31�

�2n = ��1,− �1
T,�2,− �2

T, . . . ,�n,− �n
T	 . �32�

The basis of trial matrices and their transformed counterparts
are then used to set up the response equations in a reduced
space of dimension 2n:

�ER
�2� − �SR

�2��XR = − BR
�1�, �33�

where the reduced-space gradient elements are given as

�BR
�1��i = Tr��B�1��Tbi

2n� , �34�

whereas the reduced-space generalized Hessian and metric
matrices become

�ER
�2��ij = Tr��bi

2n�T� j
2n� , �35�

�SR
�2��ij = Tr��bi

2n�T� j
2n� . �36�

The reduced equations Eq. �33� are easily solved since the
dimension 2n is small.

From the solution to the reduced problem Eq. �33�, we
may expand the current optimal solution matrix X as

X = �
i=1

2n

�XR�ibi
2n, �37�

whereas the residual is evaluated from the transformed ma-
trices Eqs. �31� and �32�:

R = E�2��X� − �S�2��X� + B�1�

�38�

=�
i=1

2n

�XR�i��i
2n − ��i

2n� + B�1�.

To accelerate convergence, this residual is preconditioned as

M vec Rp = vec R , �39�

where the preconditioner M is an easily constructed approxi-
mation to E�2�−�S�2� as discussed in the next section. From
the projected preconditioned residual P�Rp�, a new pair of
trial matrices bn+1 and bn+1

T is generated by orthogonalization
against the previous basis matrices Eq. �27�, ensuring that the
new vector pair is normalized and orthogonal,

Tr�bn+1bn+1� = 1, Tr�bn+1
T bn+1� = 0, �40�

These iterations are continued until the residual is smaller
than some preset threshold, using the right-hand side B�1� of
Eq. �7� as an initial guess.

The eigenvalue problem Eq. �19� is solved in the same
manner as the response equations, setting up the reduced
equations in the space of the 2n trial vectors Eq. �27�:

�ER
�2� − �n0

R SR
�2��XR,n = 0 . �41�

These low-dimensional equations may be solved straightfor-
wardly, yielding an optimal excitation energy �n0

R and eigen-
vector XR,n. The corresponding residual is given by

R = E�2��Xn� − �n0
R S�2��Xn� , �42�

where Xn is the expansion of the reduced-space eigenvector
XR,n in the trial vectors Eq. �37�. This residual may be pre-
conditioned as in Eq. �39� �with �n0

R replacing � in M� to
generate the new pair of trial vectors bn+1 and bn+1

T , and the
iterations are continued until convergence. We discuss below
how the initial guess of the excitation vector is obtained.

The strategy of adding trial vectors in conjugate pairs
�rather than one at a time� not only accelerates the solution
by adding two vectors at the cost of one. More importantly, it
imposes the correct paired structure on ER

�2� and SR
�2�, thereby

avoiding complex eigenvalues and ensuring monotonic con-
vergence.

C. Preconditioning

1. The AO basis

The preconditioner M in Eq. �39� should be a good ap-
proximation to the response matrix in the sense that the con-
dition number of M−1�E�2�−�S�2�� should be significantly
smaller than that of E�2�−�S�2�. Moreover, the cost of solv-
ing the preconditioning equation Eq. �39� should be signifi-
cantly smaller than that of solving the original response
equation Eq. �7�. The most expensive step in the solution of
Eq. �7� is the evaluation of G�Db�, which contributes to the
two last terms in Eq. �11�. Since these terms are small com-
pared with the other terms in Eq. �11�, a good preconditioner
is given by

M = EF
�2� − �S�2�, �43�

where EF
�2� is an approximation to E�2� with the last two

terms in Eq. �11� neglected:

�F = EF
�2��b� = PT�FDbS − SDbF� . �44�

The equations for the preconditioned residual Rp Eq. �39�
may be solved iteratively in the same manner that we solved
the response equations Eq. �7�.

In solving the response eigenvalue problem Eq. �16�, the
residual Eq. �42� may be preconditioned as in Eq. �39�, using
Eq. �43� with � replaced by �n0

R . However, the solution of
the preconditioning equation Eq. �39�,

�EF
�2� − �n0

R S�2��vec Rp = vec R , �45�

in the AO basis is difficult since the condition number of
EF

�2�−�n0
R S�2� is large. For a solution to this problem, we ex-

amine in the next section the preconditioner in the MO basis.

2. The MO basis

An iterative algorithm for solving response eigenvalue
and linear equations similar to that presented for the AO
basis above has been successfully used in the MO basis,10,11

where E�2� and S�2� are diagonally dominant. In the MO ba-
sis, the preconditioner Eq. �43� becomes diagonal,
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MMO = �EF
�2��MO − ��S�2��MO = 
�� 0

0 ��
� − �
I 0

0 − I
� ,

�46�

where the diagonal matrix �� contains the differences be-
tween virtual and occupied orbital energies,

�
AI,AI = 
A − 
I. �47�

In the MO basis, therefore, the preconditioning may be car-
ried out in a simple manner, dividing the residual R by the
diagonal elements of Eq. �46�.

In the AO basis, by contrast, neither EF
�2� nor S�2� are

diagonally dominant. Furthermore, the condition number of
EF

�2� is significantly larger in the AO basis than in the MO
basis, making the iterative solution of Eq. �39� difficult.
Since the condition number of a matrix is unaffected by a
similarity transformation, we may dramatically improve the
conditioning of the equations �reducing the condition number
to that of the MO basis� by transforming them to an orthogo-
nal AO basis �OAO� such as the Cholesky basis or the Löw-
din basis. Furthermore, in the OAO basis, the preconditioner
MOAO is much more diagonally dominant than in the original
AO basis. In Sec. II C 3, we consider how the preconditioned
equations may be solved in the OAO basis. However, we
first discuss here how an initial guess of an excitation vector
may be obtained.

In the MO basis, the initial guess of an excitation vector
has previously been successfully obtained as the solution to
the simplified response eigenvalue equations

�
�� 0

0 ��
� − �
I 0

0 − I
��
Yvo

Yov
� = 0 , �48�

where we recognize the simplified response matrix of Eq.
�46�. In Eq. �48�, Yvo and Yov are the virtual-occupied and
occupied-virtual blocks, respectively, of the matrix

Y = 
 0 Yvo

Yov 0
� . �49�

The solution of Eq. �48� has zero elements in Yvo and Yov

except for a unit element in Yvo corresponding to the con-
sidered orbital-energy difference 
A−
I. In Sec. II D, we
shall discuss how an equivalent initial vector may be set up
in the OAO basis.

3. The orthogonal AO basis

In the OAO basis, the AO overlap matrix is factorized as

S = VTV , �50�

where V is either an upper triangular matrix U �in the
Cholesky basis� or the principal square-root matrix S1/2 �in
the Löwdin basis�:

VC = U , �51�

VL = S1/2. �52�

In Ref. 3, we found that both schemes give diagonally domi-
nant Hessians, with a slight preference for the Löwdin basis.
An advantage of the Löwdin basis is that, among all possible

orthogonal bases, it resembles most closely the original AO
basis, ensuring that locality is preserved to the greatest pos-
sible extent. Furthermore, the transformation to the Löwdin
basis can be performed straightforwardly within a linear-
scaling framework.22 Except as noted, we use the Löwdin
basis in our calculations.

In the OAO basis defined by Eq. �50�, the linear trans-
formations entering Eq. �39� become

��F�V = �FV
vv − FV

oo�XV + XV�FV
vv − FV

oo� , �53�

�V = DVXV − XVDV, �54�

where we have used the notations

AV = V−TAV−1, �55�

AV = VAVT. �56�

The preconditioning of the residual for the response equa-
tions Eq. �39� is performed in the OAO basis and the
conjugate-gradient algorithm may be used with the diagonal
preconditioner

M�	,�	 = �FV
vv − FV

oo��� + �FV
vv − FV

oo�		

− ���DV��� − �DV�		� . �57�

The preconditioning of the residual of the eigenvalue equa-
tions may be carried out in the same manner but with the
frequency � replaced by the excitation energy �n0

R .

D. Initial vectors for the response eigenvalue equation

In the MO basis, the Y matrix in Eq. �49� has been
successfully used to obtain an initial guess of the excitation
vector in the iterative solution of the response eigenvalue
equations. The Y matrix is zero except for a unit element YAI

corresponding to the considered orbital-energy difference

A−
I. If the lowest excitation energy is determined, the low-
est orbital energy difference �i.e., the highest occupied mo-
lecular orbital �HOMO�–lowest unoccupied molecular or-
bital �LUMO� gap� is considered and similarly for higher
excited states. In the OAO basis of Eq. �50�, the initial vector
becomes

YOAO = CYMOCT, �58�

where C contains the eigenvectors of the Fock/KS matrix in
the OAO basis,

FVC = �C . �59�

For an initial guess that is represented by a unit element YAI

in the MO basis, the OAO initial vector becomes

�YOAO��� = C�AC�I, �60�

where indices � and � refer to OAO basis. In this basis, the
projectors onto the occupied and virtual spaces become

Po
OAO = DV, �61�

Pv
OAO = 1 − DV. �62�

The Fock/KS eigenvalue equation in Eq. �59� may then be
written as
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�Po
OAOFVPo

OAO + Pv
OAOFVPv

OAO�C = �C , �63�

since Po
OAOFVPv

OAO=Pv
OAOFVPo

OAO=0 for an optimized state.
Projecting Eq. �63� onto the occupied and virtual spaces, we
obtain

Po
OAOFVPo

OAOC = �Po
OAOC , �64�

Pv
OAOFVPv

OAOC = �Pv
OAOC , �65�

demonstrating that the orbital energies and eigenvectors of
the occupied and virtual spaces can be obtained from Eqs.
�64� and �65�, respectively. Using iterative techniques, we
may thus determine the eigenvectors of the highest occupied
orbitals from Eq. �64� and of the lowest virtual orbitals from
Eq. �65�. Subsequently, Eq. �60� may be used to generate
start vectors in the OAO basis.

III. ILLUSTRATIVE RESULTS

In this subsection, we report calculations of excitation
energies and frequency-dependent polarizabilities for poly-
alanine peptides of increasing size. The polyalanines are one-
dimensional systems and thus ideal systems for demonstrat-
ing that linear scaling is approached. The largest peptide
contains 139 alanine residues and 1392 atoms. We use CAM-
B3LYP/6-31G to calculate the lowest excitation energy and
Hartree-Fock/6-31G to calculate the frequency-dependent
polarizability at a frequency of 0.1 a.u. The CAM-B3LYP
�Ref. 23� functional is chosen because it gives significantly
improved molecular properties compared with the B3LYP
functional.24 For each type of property calculation, we ana-
lyze both the scaling with respect to increasing molecular
size and the convergence characteristics of the algorithm on
one selected peptide—namely, ALA119 �containing 119 ala-
nine residues� for the frequency-dependent polarizability and
ALA59 for the excitation energy calculation. The SCF con-
vergence is similar to that described for the ALA99 calcula-
tions in Ref. 3. All calculations have been carried out using a
local version of DALTON.25 The timings are obtained using a
single processor on a SUN Fire X4600 �Opteron, 2.6 GHz�.

A. The frequency-dependent polarizability
of a peptide with 119 alanine residues

In this section, we describe a typical frequency-
dependent polarizability calculation using ALA119 as an ex-
ample. First, the response equations Eq. �7� are solved at a
frequency of 0.1 a.u., after which the polarizability is ob-
tained as the trace of the property gradient and the solution
matrix according to Eq. �6�. The linear equations are solved
in the AO basis, using the iterative algorithm of Sec. II B. At
each iteration, the residual is transformed to the Löwdin ba-
sis and preconditioned as described in Sec. II C. As initial
trial vector for the response equations, the property gradient
is used.

In Table I, we have listed the residual at each iteration in
the solution of the linear equations Eq. �7�. Convergence to a
Frobenius norm of 10−2 of the residual is obtained in ten
iterations. At each linear-response iteration, the residual is
preconditioned by solving the linear equations Eq. �39� with

M given in Eq. �43� in the Löwdin basis, using the linear
transformations Eqs. �53� and �54� and the diagonal precon-
ditioner Eq. �57�. The iterations are terminated when the re-
sidual of Eq. �39� �in the Löwdin basis� has been reduced by
a factor of 100 �the overall convergence of the response
equations is not sensitive to the choice of this threshold.� As
seen from Table I, for all response iterations, the precondi-
tioning equations converge in seven iterations, which is the
case in all polarizability calculations presented here.

We now consider in more detail the preconditioning of
the first trial vector of the ALA119 calculation. In Table II,
we have listed the residual of the preconditioning equations
Eq. �39�, with and without the diagonal preconditioner Eq.
�57�. Although the diagonal preconditioner dramatically im-
proves convergence, its use requires that the trial vectors are
projected, since the preconditioning introduces redundant
components. The projection requires four additional matrix

TABLE I. The residual norm �R� and the number of preconditioning itera-
tions npre for the calculation of the frequency-dependent polarizability at
�=0.1 a.u. of ALA119 at the Hartree-Fock/6-31G level of theory.

It. �R� npre

1 28.10 7
2 12.71 7
3 3.967 7
4 1.776 7
5 0.746 7
6 0.326 7
7 0.125 7
8 0.060 7
9 0.027 7
10 0.011 7

TABLE II. Convergence of the preconditioning equations in the first re-
sponse iteration of the Hartree-Fock/6-31G calculation of the frequency-
dependent polarizability �=0.1 a.u. of ALA119. The residual norms are
given in the Löwdin and Cholesky bases, with and without diagonal precon-
ditioning.

It.

Löwdin basis Cholesky basis

No. prec. Dia. prec. No. prec. Dia. prec.

1 82.20 82.20 82.20 82.20
2 42.15 19.39 41.94 19.27
3 41.16 7.36 41.12 9.11
4 27.82 5.04 27.96 5.56
5 13.47 2.26 13.19 2.68
6 18.05 0.98 18.05 1.24
7 8.44 0.43 8.41 0.59
8 6.59 6.61
9 7.18 7.16
10 3.87 3.88
11 2.90 2.89
12 2.19 2.19
13 1.48 1.48
14 1.29 1.29
15 0.82 0.81
16 0.56
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multiplications per iteration, making preconditioning less at-
tractive. We nevertheless recommend its use since otherwise
the equations sometimes do not converge.

We use the Löwdin OAO basis by default but have also
included in Table II information about convergence in the
Cholesky basis. Although the Löwdin basis sometimes gives
faster convergence than the Cholesky basis, the situation il-
lustrated in Table II is fairly typical, with a nearly identical
behavior in the two bases.

The convergence of the response equations reported here
is typical of polarizability calculations and similar to that of
the standard MO-based iterative algorithm of Ref. 11 �imple-
mented in DALTON �Ref. 25��. Any difference in convergence
arises because the preconditioning equations are terminated
when the residual has been reduced by a factor of 100. If the
preconditioning equations were converged to full accuracy,
identical results would be obtained in the AO and MO bases.

B. Linear-scaling frequency-dependent polarizability
calculations

In Fig. 1, the frequency-dependent dipole longitudinal
polarizability �xx��� at �=0.1 a.u. is plotted as a function of
the number of atoms in polyalanine peptides, calculated at
the Hartree-Fock/6-31G level of theory. As expected, the lon-
gitudinal polarizability depends linearly on the number of
atoms. In Fig. 2, we have plotted the CPU times of the dif-
ferent parts of the polarizability calculations, using the block
sparse-matrix scheme described by Rubensson and Sałek in
Ref. 26. The timings are for the following contributions in
the first response iteration: the Coulomb part �“Fock J”� and
the exchange part �“Fock X”� of the G�Db� contribution to
the linear transformation Eq. �11�, the remainder of the linear
transformations Eqs. �11� and �12� �“Lintra”�, and the pre-
conditioning of the trial vectors �“Precond”�.

FIG. 1. The xx component of the
Hartree-Fock/6-31G frequency-
dependent dipole polarizability ��
=0.1 a.u.� for polyalanines �atomic
units�.

FIG. 2. Timings for the different parts
of a Hartree-Fock/6-31G response it-
eration in a frequency-dependent po-
larizability calculation ��=0.1 a.u.�
for polyalanines. Sparse-matrix alge-
bra is used.
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The Hartree-Fock polarizability calculations are domi-
nated by the exchange contribution to the linear transforma-
tion, whose calculation approaches linearity for systems con-
taining more than 600 atoms. The Coulomb evaluation �by
density fitting� is several times faster than the exchange
evaluation. For the remaining two contributions in Fig. 2, the
time-consuming parts consist of matrix multiplications and
scale linearly with system size, showing that matrix sparsity
is efficiently exploited in our calculations.

C. The lowest excitation energy for a peptide
with 59 alanine residues

In this section, we consider the calculation of excitation
energies for large systems using ALA59 in full-matrix alge-
bra as an example. Excitation energies are eigenvalues of the
response eigenvalue problem Eq. �19�, which is solved in the
AO basis using the iterative algorithm of Sec. II B. At each
iteration, the residual is transformed to the Löwdin basis and
preconditioned as described in Sec. II C. As an initial eigen-
vector guess, we use Eq. �60�, where the eigenvectors of the
Fock/KS matrix in the occupied and virtual spaces are deter-
mined from Eqs. �64� and �65�, respectively.

In Table III, we have listed the residual at each iteration
of the solution of the response eigenvalue problem Eq. �19�.
The response iterations are terminated when the residual
norm has been reduced by a factor of 100, which is obtained
in five iterations. At each iteration, the residual is precondi-
tioned by solving the simplified response equations Eq. �45�
in the Löwdin basis, using the linear transformations of Eqs.
�53� and �54� and the diagonal preconditioner Eq. �57�. The
preconditioning iterations are also terminated when the re-
sidual of Eq. �45� �in the Löwdin basis� has been reduced by
a factor of 100 or after a maximum of 20 iterations. As
indicated in Table III, the preconditioning equations always
terminated at the maximum number of iterations, which is
true for all excitation energy calculations presented here.

We now consider in more detail the preconditioning of
the first trial vector of the ALA59 calculation. Full-matrix
rather than sparse-matrix algebra was used in this calcula-
tion, since the residual is very small already in the first re-
sponse iteration, and the efficiency of the preconditioner be-
comes blurred by numerical noise when sparse-matrix
algebra is used. In Table IV, we have listed the residual of
the preconditioning equations Eq. �45�, with and without the
diagonal preconditioner Eq. �57�. Without preconditioning,
the equations do not converge. With preconditioning, the re-
sidual decreases slowly until, after the maximum number of

allowed iterations, it has been reduced by about an order of
magnitude. Clearly, it is much more difficult to converge the
preconditioning equations for the response eigenvalue equa-
tions than for the response linear equations.

To understand this difference between the response lin-
ear and eigenvalue equations, consider the carrier matrix Eq.
�43� for the preconditioning equations EF

�2�−�S�2�, where �
is either the frequency of the applied field �linear equations�
or a reduced-space eigenvalue �eigenvalue equations�. The
approximate generalized electronic Hessian EF

�2� is positive
definite provided the optimized Hartree-Fock or Kohn-Sham
energy is a minimum—it is a well-behaved matrix that
�when preconditioned� has a relatively small condition num-
ber. Consequently, rapid convergence is observed when the
linear equations are solved in the static limit; moreover, since
the applied frequency is typically small �0.1 a.u. in Sec.
III A�, the addition of −�S�2� to EF

�2� does not affect the con-
vergence of the linear equations.

By contrast, in the solution of the response eigenvalue
problem, the addition of �n0

R S�2� changes the structure
of the carrier matrix, making EF

�2�−�n0
R S�2� nearly singular

and ill conditioned. As a result, the preconditioning equa-
tions are much more difficult to converge for the response
eigenvalue equations than for the linear equations. However,
as seen from Table III, the eigenvalue equations can never-
theless be converged in a few iterations, because of the good
starting guess of Eq. �60�. When the Cholesky rather than the
Löwdin basis is used for the preconditioning equations, the
convergence is similar to that in the Löwdin basis.

D. Linear-scaling calculations of excitation energies

In Fig. 3, the lowest excitation energy, the lowest Hes-
sian eigenvalue, and the HOMO-LUMO gap are plotted as

TABLE III. The residual norm �R��103 and the number of preconditioning
iterations npre for the calculation of the lowest excitation energy of ALA59
at the CAM-B3LYP/6-31G level of theory �full-matrix algebra�.

It. �R��103 npre

1 0.197 20
2 0.057 20
3 0.066 20
4 0.014 20
5 0.008 20

TABLE IV. Convergence of the preconditioning equations in the first re-
sponse iteration of the CAM-B3LYP/6-31G calculation of the lowest exci-
tation energy of ALA59 �full-matrix algebra�. The residual norms are given
with and without diagonal preconditioning

It.

�R��103

No prec. Dia. prec.

1 0.309 0.309
2 0.364 0.253
3 0.235 0.349
4 0.413 0.303
5 0.368 0.262
6 0.276 0.249
7 0.429 0.201
8 0.272 0.161
9 0.335 0.135

10 0.321 0.135
11 0.230 0.122
12 0.370 0.122
13 0.258 0.118
14 0.241 0.107
15 0.368 0.091
16 0.201 0.073
17 0.230 0.060
18 0.226 0.047
19 0.153 0.042
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functions of the number of atoms in polyalanine peptides at
the CAM-B3LYP/6-31G level of theory. As expected, the
excitation energy decreases with increasing system size.
More surprisingly, the lowest Hessian eigenvalue and the
lowest excitation energy are equal to the number of signifi-
cant digits. To understand this behavior, consider the evalu-
ation of excitation energies in the MO basis, where the re-
sponse eigenvalue equation in a notation similar to that of
Eq. �48� becomes

�
A B

B A
� − �
I 0

0 − I
��
Yvo

Yov
� = 0 . �66�

The B matrix contains Hamiltonian matrix elements between
the Kohn-Sham determinant and a doubly excited configura-
tion. If it vanishes, the eigenvalues � of Eq. �66� become
equal to the eigenvalues of the electronic Hessian A−B. The
exact exchange in CAM-B3LYP gives a nonzero B matrix
contribution but is too small to be detected. The HOMO-
LUMO gap is slightly above the calculated excitation ener-

gies, as expected from the form of the A matrix, which con-
tains the orbital-energy difference of Eq. �48� with Coulomb
and exchange-correlation contributions subtracted.

In Fig. 4, we have plotted the CPU times of excitation-
energy calculations when sparse-matrix algebra is used, for
the following contributions to the first response iteration: the
Coulomb contribution to the linear transformation Eq. �11�
�“Kohn-Sham J”�, the exact-exchange contribution �“Kohn-
Sham X”�, the exchange-correlation contribution �“Kohn-
Sham XC”�, the remainder of the linear transformations Eqs.
�11� and �12� �“Lintra”�, and the preconditioning of the trial
vectors �“Precond”�.

The excitation energy calculations are dominated by the
exchange-correlation contribution. Comparing with the
Hartree-Fock polarizability calculations in Fig. 2, we note
that the evaluation of the Coulomb and exact-exchange con-
tributions is much faster in the Kohn-Sham excitation energy
calculations in Fig. 4. The difference arises since the timings
are given for the first response iteration, for which the start-

FIG. 3. The HOMO-LUMO gap, the
lowest Hessian eigenvalue, and the
lowest excitation energy for polyala-
nines, calculated at the CAM-B3LYP/
6-31G level of theory.

FIG. 4. Timings for different parts of a
response iteration in a CAM-B3LYP/
6-31G excitation energy calculation
for polyalanines. Sparse-matrix alge-
bra is used.
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ing guess for excitation energies is more sparse than the one
for polarizabilities. Also, preconditioning is more expensive
for excitation energies than for polarizabilities since about
three times more iterations are needed. As a result, precon-
ditioning becomes more expensive than the evaluation of the
Coulomb and exact-exchange contributions.

As seen from Fig. 4, the cost of the exchange-correlation
contribution to the linear transformation scales linearly with
system size. The same is true for the Coulomb contribution,
while the evaluation of exact exchange is nonlinear, at least
for small systems. For the Lintra and Precond contributions
to the response equations, the time-consuming parts consist
of matrix-matrix multiplications. The scaling of these contri-
butions shows that sparsity is efficiently exploited, although
the Precond contribution shows signs of nonlinear scaling.
Investigation of the time spent in the preconditioning shows
that the matrices involved in the linear transformation have
not yet reached the regime of linear scaling in the number of
nonzero elements. The benefits of sparse-matrix algebra are
nevertheless evident from Fig. 5, where we compare the Lin-
tra and Precond timings of Fig. 4 with those obtained using
full-matrix algebra. Whereas the cost increases cubically
when full-matrix algebra is used, linear scaling is approached
with sparse-matrix algebra.

IV. CONCLUSIONS

Using the nonredundant exponential parametrization of
the density matrix introduced in Refs. 1 and 18, we have
presented a linear-scaling implementation of excitation ener-
gies and frequency-dependent second-order molecular prop-
erties. The response eigenvalue and linear equations are
solved using an iterative subspace method equivalent to the
one that has been successfully used in the MO basis. Impor-
tant features of the subspace method are the use of paired
trial vectors �to preserve the structure of the full equations in
the reduced space�, a nondiagonal preconditioning �for rapid
convergence�, and good start vectors �for robust and fast so-
lution�. The performance is similar to that in the MO basis,
with five to ten iterations needed for convergence. The pre-

conditioning is carried out in the Löwdin basis, solving a
simplified version of the response equations with an iterative
method similar to the one used for the full response equa-
tions. To reduce the residual of the preconditioning equations
by a factor of 100, less than ten iterations are typically
needed for the response linear equations. For the response
eigenvalue equations, the preconditioning equations are more
difficult to converge, easily requiring 20 iterations.

As for the optimization of the Hartree-Fock and KS den-
sity matrices, the solution of the response equations is domi-
nated by the construction of the Fock/KS matrix, once at
each iteration of the subspace algorithm. The solution of the
preconditioning equations is dominated by matrix-matrix
multiplications, for which linear scaling is approached by
using sparse-matrix algebra. Calculations of the frequency-
dependent polarizability at �=0.1 a.u. and of the lowest ex-
citation energy have been presented for polyalanine peptides
containing up to 1400 atoms, demonstrating the efficiency
and robustness of the presented algorithm and that linear
scaling can be obtained in such calculations.
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