Errata for Master’s Thesis - Defects and conductivity in Sr-doped LaNb₃O₉
Jaran Wood 04.10.07

Page 7 – Line 10 from the bottom
SrₓLa₁₋ₓNb₃O₉₋α should be:
La₁₋ₓSrₓNb₃O₉₋α

Page 9 – Line 2 from the top
…several ordered point defects can compose line defects and shear defects. should be:
…several ordered point defects can compose line defects.

Page 15 – Line 12 from the top
…oxide is called an n-type semiconductor… should be:
…oxide is called a p-type semiconductor…

Page 16 – Equation (2.22)
\[
\frac{d \ln K}{d(1/T)} = -\frac{\Delta H}{R} \quad \text{should be:}
\]
\[
\frac{d \ln K}{d(1/T)} = -\Delta H^0 \quad \frac{1}{R}
\]

Page 16 – Equation (2.28) and (2.29)
\[
2O₂(g) = V^{IV}_{La} + V^{V}_{Nb} + 4O^X_O + 8h^*
\]
\[
K_{V_{Nd}} = \left[V^{IV}_{La} \right] \left[V^{V}_{Nb} \right] p^8 p_{O_2} \quad \text{should be:}
\]
\[
3O₂(g) = \frac{V^{IV}_{La}}{3} + \frac{3V^{V}_{Nb}}{2} + 6O^X_O + 18h^*
\]
\[
K_{V_{Nd}} = \left[\frac{V^{IV}_{La}}{3} \right] \left[\frac{3V^{V}_{Nb}}{2} \right] p^{18} p_{O_2}^{-3}
\]

Page 19 – Line 4 from the top
…(see section (2.4.3). should be:
…(see section (2.4.3)).

Page 22 – Equation (2.47)
\[
p = \left[\frac{Sr^\\prime}{La} \right] = \text{constant should be:}
\]
\[
\left[\frac{Sr^\\prime}{La} \right] = p = \text{constant}
\]

Page 23 – Equation (2.52)
\[
\left[V^{IV}_O \right] = \frac{1}{p} \quad \text{should be:}
\]
\[
\left[V^{IV}_O \right] = \frac{1}{p} \quad ^{\frac{1}{2}}
\]

Page 53 – Text under Figure 4.4 the last sentence
The peas at the bottom… should be:
The peaks at the bottom…
Page 53 – *Text under Picture 5.2*
EDT-picture representing the average… *should be:*
ETD-picture representing the average…

Page 67 – Erase sentence
- Reciprocal measurements (see equation 4.3) require a symmetrical sample.

Page 82 – Line 7 to 10 from the top
Thus, at low pO2 the electroneutrality is $3[V_{La}^\omega] = [D_{La}^\star]$. At high pO2 the dependence of the conductivities changes and shows a minimum, which is also consistent with the suggested model. The electroneutrality is $[D_{La}^\star] = n$ and the model relates the minimum of the pO2 the dependence to p-type conductivity… *should be:*

Thus, at low pO2 the electroneutrality is $[D_{La}^\star] = n$. At high pO2 the dependence of the conductivities changes and shows a minimum, which is also consistent with the suggested model. The electroneutrality is $3[V_{La}^\omega] = [D_{La}^\star]$ and the model relates the minimum of the pO2 the dependence to p-type conductivity.