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I. Abstract 
 
 

Rheological, dynamical, turbidity, and structural features during the cross-

linking process of dilute and semidilute hydroxyethylcellulose (HEC) solutions in the 

presence of the cross-linker agent divinylsulfone (DVS) have been investigated at 

different polymer and cross-linker concentrations. For the semidilute system, a 

macroscopic gel evolves in the course of time if the cross-linker addition is 

sufficiently high, and the gelation time decreases as the cross-linker concentration or 

polymer concentration increases, while for the dilute polymer solution, only small 

non-connected aggregates, microgels, are formed. For dilute solutions under shear 

flow, intramolecular interactions dominate initially, followed by intermolecular 

associations and the formation of aggregates at longer times. Depending on the shear 

rate, the aggregates continue to grow until they reach a certain size where an incipient 

breakup of interaggregate chains can be observed. The delicate interplay between 

intramolecular and intermolecular association effects is governed by factors such as 

the magnitude of the shear rate, polymer concentration, and cross-linker density. At 

quiescent state, dynamic light scattering detected only interchain aggregation of HEC 

during the cross-linker reaction, and the magnitude and start of this effect depend on 

the cross-linker concentration. The growth of clusters has been investigated at various 

stages in the course of the cross-linking process by quenching the reaction mixture to a 

lower pH. The rheological results favor the percolation model for the semidilute 

sample at the gel point. The slow relaxation time determined from dynamic light 

scattering experiments increases and the sample becomes more heterogeneous in the 

course of gelation. In the post-gel region, the gels shrink during a long time and this 
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phenomenon is accompanied by a strong turbidity enhancement. Small angle neutron 

scattering results from samples quenched to a certain stage in the post-gel regime, 

disclose growth of the heterogeneity in the gel with increasing level of cross-linker 

addition. At smaller length scales, no effect of cross-linker addition could be detected 

on the structural organization, and the wave vector dependence of the scattered 

intensity in this domain suggests that the HEC chains are locally stretched.                                               
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Persian abstract: 
 

 خلاصه

 هیدروکسی 4 محلول رقیق و نیمه غلیظ3 ، ساختاری و کدری2 ، رئولوژیکی1پویائیخواص 
اتصال و   با غلظتهای متفاوت پلیمر6اتصالات عرضی  ، تحت فرآیند (HEC)5اتیل سلولز 

 اضافه شده به محلولها ، دی وینیل سولفون  اتصال دهندهعامل .   بررسی شده است7دهنده
8(DVS)در حضور میزان کافی در سیستم نیمه غلیظ9 پیدایش تدریجی ماکروژل. می باشد  

اتصال  قابل مشاهده می باشد و زمان تشکیل ژل با افزایش غلظت پلیمر و اتصال دهنده، 
    کاهش می یابد ، در حالیکه در سیستم رقیق ، تنها توده های کوچک اتصال نیافته ،دهنده

 12در مراحل اولیه جریان برشی.  ، تشکیل می شوند11لمیکروژ )10درون مولکولیاتصالات  (
اعمال شده برای سیستم رقیق ، فعل و انفعالات درون مولکولی غالب است و با گذشت زمان 

 و پیدایش توده های بهم پیوسته قابل 13و افزایش جریان برشی ، پیوستگی بین مولکولی
مشخصی ادامه   می یابد ، که در آن پیدایش این تجمعات تا مرحلۀ زمانی . مشاهده می باشد

 می 14زمان تفکیک بین زنجیره ای در سیستم اتفاق می افتد و این امر تابع شدت برشی
 نبرد حساس بین تجمعات بین مولکولی و درون مولکولی در محلولها ، وابستگی زیاد به .باشد

  تکنیک تفرق نور محلولها باارساخت.  دارداتصال دهندهشدت برش ، غلظت پلیمر و غلظت 
 بررسی شده است و نتایج بدست آمده فقط تجمعات بین مولکولی را برای (DLS)15پویا 

  ، تحت فرایند ژل شدن نشان می دهداتصال دهنده در حضور  محلول هیدروکسی اتیل سلولز
رشد توده ها در مراحل .  دارداتصال دهندهکه میزان و زمان شروع آن بستگی به غلظت 

   (pH) خاصیت اسیدی  توسط متوقف کردن واکنش با کاهشاتصالات عرضیایند مختلف فر

                                                 
1 Dynamic 
2 Rheological 
3 Turbidity 
4 Semidilute 
5 Hydroxyethylcellulose (HEC) 
6 Cross-Linking 
7 Cross-Linker 
8 Divinylsulfone (DVS) 
9 Macrogel 
10 Intramolecular 
11 Microgel 
12 Shear Flow 
13 Intermolecular 
14 Shear Rate 
15 Dynamic Light Scattering 
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 را برای سیستم نیمه غلیظ در نقطه ژل 16 پرکولهنتایج رئولوژیکی ، مدل. قابل بررسی است
 تعیین (DLS) پویا که توسط تکنیک تفرق نور 17سایش مولکولی کندآزمان . تأئید می کند 

 سیستم قابل نتیجه گیری 18یش می یابد و رشد ناهمگنیشده، تحت فرایند ژل شدن افزا
 می شود و این پدیده همراه 20 ، در بلند مدت، ژل جمع و کوچک19در مراحل فرا ژل. است

 در مرحلۀ اتصالات عرضیبرای نمونه هایی که واکنش . با افزایش کدری محلول می باشد
در آنها متوقف شده ،   (pH) خاصیت اسیدیفرا ژل ، توسط اضافه کردن اسید و کاهش 

نتایج بدست آمده رشد .  انجام شده است(SANS)21 ینوترونزاویه   کمتکنیک تفرق
    در مقیاس طولی کوچکتر.  را تأئید می کند اتصال دهندهناهمگنی در ژل با افزایش میزان 

، و  بر ساختار سیستم نمایان نمی باشد اتصال دهندهاثر افزایش ) بزرگ 22بردار موجی( 
نسبت به شدت تفرق در این ناحیه نشان  می دهد که زنجیره های ) q(وابستگی بردار موجی 

HECارتجاع می یابند23  به صورت موضعی . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                 
16 Percolation Model 
17 Slow Relaxation Time 
18 Heterogeneous  
19 Post-gel Regime 
20 Shrink 
21 Small Angle Neutron Scattering (SANS) 
22 Wave Vector 
23 Locally 
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II. Introduction 
 

A. Hydrogels 
 
 
 Hydrogels are three-dimensional networks made of cross-linked hydrophilic or 

amphiphilic polymers. Cross-links can result from physical1,2 or chemical bonding.3,4 

Hydrogels (the polymer concentration is usually low (typically 1 wt %)) are materials 

which, when placed in excess water, are able to swell and retain large volume of water 

in its swollen three-dimensional structure without dissolution. This particular behavior 

makes them very attractive for many biomedical applications including contact 

lenses5, time controlled drug delivery systems6, but also for ion exchange7, and 

separating membrane8 superabsorbents. The hydrophilicity is due to the presence of 

water-solubilizing groups, such as OH− , COOH− , 2CONH− , −− CONH , 

HSO3− ,etc. The stability of the structure is due to the presence of a three-dimensional 

network. The swollen state results from a balance between the dispersing forces acting 

on hydrated chains and cohesive forces that do not prevent the penetration of water 

into the network. Cohesive forces are most often due to covalent cross-linking. 

Physical interactions are electrostatic, hydrophobic, or dipole-dipole in character. The 

degree and nature of cross-linking and the tacticity and crystallinity of the polymer are 

responsible for its characteristics in the swollen state9. The ability to imbibe water and 

ions without the loss of shape or mechanical strength is valuable in many natural 

hydrogels, such as those found in muscle, tendons, cartilage, intestines, and blood.  
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B. Microgels 
 
 
 The gelation of a semidilute polymer solution results from the formation of a 

connected network via intermolecular cross-links that can be established by various 

mechanisms, such as attractive interactions between hydrophobic groups10,11, 

temperature-induced attraction between polymer chains12-14 , and cross-links mediated 

by a chemical cross-linking agent.3,15,16 However, if a dilute polymer solution is, e.g., 

chemically cross-linked, the connectivity is lost and non-linked aggregates of finite 

size are formed, which may be referred to as microgels.17 

 Microgels are cross-linked colloidal particles that can swell by the absorption 

of many times their weight of solvent and exhibit a behavior ranging from that of 

polymer solutions to that of hard spheres.18,19 From an application point of view, the 

microgel particles can respond to the environmental change much faster than bulk gels 

due to much smaller size of the particles. Unusual properties of microgels lead to 

various applications including the automotive surface coatings, and controlled drug 

delivery.18 Many methods have been developed for preparing microgels, including 

emulsion polymerization, inverse microemulsion polymerization, anionic 

copolymerization, and cross-linking of neighboring polymer chains.18 

 

C. Cellulose Derivatives 
 
 

Cellulose is an −−→− D41β anhydroglucopyranose copolymer that serves as 

the major structural component of plants (Figure 1). When the cellulose molecule 

is extended, it is a flat ribbon with hydroxyl groups protruding laterally and capable 
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of forming both intra- and intermolecular hydrogen bonds. This form allows the 

strong interaction with neighboring chains that makes dissolution difficult. In fact, 

strongly interactive solvents are necessary for solubilization. Molecular weights 

range from 5 ×105 to 1.5 × 106, depending on the source.20      
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  Figure 1. The chemical structure of cellulose. 

 

 The anhydroglucose moiety contains three reactive hydroxyl functions: one 

primary at the C-6 position, and two secondary at the C-2 and C-3 positions. These 

hydroxyl functions provide the sites for alkylation to yield cellulose ether derivatives. 

 The abundance of hydroxyl groups leads to the formation of an intricate array 

of intramolecular and intermolecular hydrogen bonds during biosyntheses. 

Intramolecular hydrogen bonding between adjacent anhydroglucose rings enhances the 

linear integrity of the polymer chain. Such intramolecular hydrogen bonding not only 

affects chain rigidity, but also the reactivity of the hydroxyl functions, particularly of 

the C-3 hydroxyl groups which hydrogen bond strongly to the ring oxygen atoms on 

adjacent anhydroglucose units. 
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Figure 2. Conformational structure representation of cellulose depicting intramolecular 
hydrogen bonding between OH at C-3 and ring oxygen.  
 

 The regular rod-like cellulose chains allow an efficient close-packing 

arrangement, permitting intermolecular hydrogen bonding to yield a fibrillar tertiary 

structure of high order. Several methods have been reported for determining the 

ordered fraction of cellulose. The high degree of order and cohesive energy among 

chains is responsible for cellulose being insoluble in most solvents, including water, 

and is the main obstacle to overcome in synthesizing soluble derivatives,
 so it is 

necessary to make modifications to improve its solubility in aqueous media. This is 

accomplished by making cellulose derivatives, which are more hydrophilic in nature.21 

In the present study the hydrophilic hydroxyethylcellulose (HEC) is employed. 

 

D. Hydroxyethylcellulose (HEC) 
 

1. Structure and Preparation 
 
 
HEC is a hydrophilic non-ionic polymer, typically prepared by the reaction of 

cellulose with ethylene oxide.    
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Figure 3. HEC is white or yellowish powder.  

 

 

 Hydroxyethylcellulose (HEC) is prepared by nucleophilic ring opening of 

ethylene oxide, by the hydroxyl anions on the anhydroglucose ring of cellulose. HEC 

has a little surface activity in solution and is compatible with a wide range of 

surfactants and salts. To quantify the substitution of ethylene oxide (EO) groups 

along the cellulose backbone, the notations DS and MS have been introduced. The 

degree of substitution (DS) denotes the number of hydroxyl groups that have been 

substituted on each anhydroglucose unit, and can thus vary between 0 and 3. Due to 

the ability of ethylene oxide to form short oligo (ethylene oxide) chains, the molar 

substitution (MS) is employed. MS is equal to the total number of ethylene oxide 

groups per anhydroglucose unit.22 Figure 4 shows a schematic representation of 

preparation and structure of HEC. 
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Figure 4. (a) HEC is formed by the reaction of alkali cellulose with ethylene-oxide; (b) 
schematic representation of the chemical structure of HEC. 
 
 
 

2. Applications 
 
 
 Because of its broad compatibilities, HEC is widely used in applications and 

products that require thickening, water binding, lubricating, film forming, and 

protective colloid or stabilizing properties (See Table 1).20,21  
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Table 1. Uses of Hydroxyethylcellulose21. 

Property 
 

Applications 

Vinyl acetate and vinyl chloride 
polymerization 
Pharmaceutical emulsions 

Protective colloid 

Latex paints 
Wallpaper adhesives 
Pharmaceutical gels 

Lubricity 

Welding rods 
Plastics 
Cements, also as set retarder 
Texture paints 
Foundry cores 
Ceramic glaze 
Welding rods 
Printing pastes 

Water binding 

Size-press solutions 
Fabric finishes 
Aerosol starches 

Film forming 

Glass-fiber size 
Adhesives 
Latex paints 
Shampoos and hair dressings 
Toothpaste 
Cosmetic creams and lotions 
Printing pastes  
and inks 
Completion and work-over fluids 

Thickener 

Joint cements 
 
 
 

E. Divinylsulfone (DVS) 
 
 
 The agent divinylsulfone (DVS) has been widely used to cross-link hydroxyl 

containing polymers to prepare gels, microgels, and nanoparticle networks in alkaline 

solutions (around pH = 12 or higher). The chemical structure of DVS is given in 

Figure 5a and the function of the cross-linker is indicated in Figure 5b. This reaction 
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is an example of Michael addition chemistry, so in principle no byproducts should be 

generated. However, in practice DVS is hydrolyzed by water (slowly at neutral pH and 

more rapidly in alkaline solution; see Figure 5c).23  
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Figure 5. (a)  The chemical structure of DVS; (b) Reaction scheme for cross-linking of the 
hydroxyl-functional polymers with DVS; (c) Side reaction of DVS in aqueous solution at 

neutral and alkaline pH. 
  

 One advantage of using DVS as a cross-linker is that, in principle, the extent 

of incorporation of the DVS can be assessed by sulfur microanalyses.23  
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1. Cross-linking Process 
 
 
 There are two types of cross-linking processes, that is, inter- and intrapolymer 

cross-linking. The former allows the increase of the molecular weight (MW) of a cross-

linked polymer via the coupling of two or more polymer chains. The latter does not 

alter MW but affects the quantities relating to a polymer chain dimension, e.g., 

hydrodynamic radius (Rh) as well as radius of gyration (Rg), because the cross-linking 

should take place within the same polymer chain.24 

 A proposed scheme for the cross-linker reaction and the formation of a cross-

linked network for dilute and semidilute HEC solutions in the presence of DVS are 

illustrated in Figure 6 and Figure 7, respectively. 

 

Dilute system 

 

 

Figure 6. An illustration of cross-linking reaction for a dilute HEC solution, in the presence 
of DVS as a cross-linker. 
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Semi-dilute system 

The mechanism is the same as in Figure 5b but in this case a connected network is 

formed. 

 

 

Figure 7. An illustration of cross-linking reaction for a semidilute HEC solution, in the 
presence of DVS as a cross-linker 
 
 

F. Gelation 
 
 
 The problem of the transition of polymer solutions into gels (gelation) has 

always been considered as a classical subject of colloid chemistry.25 Gelation of a 

polymer solution can be characterized as a process involving a continuous increase in 

viscosity accompanied by a gradual enhancement of elastic properties. Gelation results 

in ‘freezing’ of the whole system into a uniform non-flowing elastic mass, which is a 

gel resulting from the formation of a polymer structural network, encompasses the 

whole bulk of the system, and retains the solvent. The main cause of gelation in 

polymer systems is the enhancement of interactions between the dissolved polymer 

macromolecules or their aggregates. Gelation is usually related to poorer 

thermodynamic conditions and phase separation.26,27 In this work, gelation occurs 
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through a chemical reaction with the aid of a chemical cross-linker agent. In this 

investigation, two different types of gels have been studied, namely microgels, which 

are made by the intramolecular associations in dilute polymer solutions, and 

macroscopic gels, which are prepared by the intermolecular associations in semidilute 

polymer solutions. The word ‘gel’ refers to ‘macroscopic gel’ in this thesis.   

       

G. Gel Point 
 
 
 A polymer at its gel point (GP), the critical gel, is in a transition state between 

liquid and solid. Its molecular-weight distribution is infinitely broad (MW / Mn → ∞) 

and molecules range from the smallest un-reacted monomer to the infinite cluster. The 

molecular motions are correlated over large distances but the critical gel has no 

intrinsic size scale. The polymer reaches the GP at a critical extend of reaction (p → 

pc). The liquid polymer before the GP (P < Pc) is called a sol because it is soluble in 

good solvents. The solid polymer beyond the GP (Pc < P) is called a gel, which is not 

soluble, even in a good solvent (only valid for chemically cross-linked gels). However, 

low molecular weight molecules (sol fraction) are still extractable.28 

 

III. Experimental Techniques 
 

A. Turbidimetry 
 
 

Turbidity is a measure of how opaque the sample is, and this technique is a 

powerful method to characterize the thermodynamic and associative properties of 
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polymer solutions. To measure the turbidity, a spectrophotometer is used. In this 

instrument, a light source illuminates the sample with light of a certain wavelength and 

the intensity of the transmitted light (It) is registered.   

 

 

 

Figure 8. The spectrophotometer 

The spectrophotometer that has been used for this system is a computer-

controlled Thermo Spectronic Helios Gamma with a good temperature control in the 

range (0-100 °C). It is a single beam UV-Vis spectrophotometer with a wavelength 

range 190 -1100 nm and a fixed 2 nm bandwidth.  

It can measure in two modes: 

- Absorbance ( how much light is absorbed by the sample) 

- Transmittance (the percentage of the incoming light that goes through the sample)  

The transmittance was measured in this study. 

To calculate the turbidity from the measured transmittance, the following equation is 

used 4: 
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B. Rheology 
 

Rheology is the science of the deformation and flow of matter. It is concerned with 

the response of materials to mechanical force. That response may be irreversible flow, 

reversible elastic deformation, or a combination of both. Deformation is the relative 

displacement of points of a body. It can be divided into two types: flow and elasticity. 

Flow is an irreversible deformation; when the stress is removed, the material does not 

revert to its original configuration. This means that work is converted into heat. 

Elasticity is almost a reversible deformation; the deformed body recovers its original 

shape, and the applied work is largely recoverable. Viscoelastic materials show both 

flow and elasticity features.29  

The Paar-Physica MCR 300 rheometer, utilized in this study, is a very accurate 

instrument to monitor various rheological quantities. It is equipped with a Peltier plate 

temperature unit that gives a very good temperature control (± 0.05) over an extended 

Turbidity 
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        intensity 

Light path 
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Incident light   
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time. A cone-and-plate geometry, with a cone angle of 1o and a diameter of 75 mm has 

been used in this study (See Figure 9). 

 

Figure 9. The Rheometer 

 

1. Steady Shear Measurements 
 

In steady shear measurements, the cone will rotate, and each point is measured 

at a different shear rate, giving us the shear rate (γ& ) dependency. In this mode, the 

viscosity of the sample can be determined. For some systems the viscosity is shear rate 

independent; giving a viscosity (η) that does not vary with the shear rate. These 

systems are called Newtonian systems. Some polymer systems will exhibit a shear-

thinning behavior (the viscosity decreases with increasing shear rate). This behavior 

can often be attributed to intermolecular associations and/or entanglements that are 

disrupted by the shear forces. A shear-induced viscosity drop can also be observed in 

dilute solution through alignment of the polymer chains in the shear field. In addition, 

some systems exhibit shear thickening at low shear rates, and shear-thinning at higher 

shear rates. Stretching and alignment of the polymer chains, giving rise to easier 
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access for intermolecular associations, usually cause shear-thickening. At high shear 

rates, the associations breakup and the system exhibits shear thinning behavior.30 At 

low shear rates, the viscosity assumes a constant value, which yields the zero-shear 

viscosity. The shear rate dependency of the viscosity can be represented by eq. 2: 

)1( −∝ αγη &  

 

 

                                                                                                                          (2) 

 The intrinsic viscosity, [η], and Huggins coefficient, k´, can be determined 

from a measurement series in dilute polymer solutions.  

The specific viscosity, ηsp, is given by: 
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0
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where η z is the zero-shear viscosity of the polymer solution, and η0 is the viscosity of 

the solvent. 

The reduced viscosity, ηred, is given by:  
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where cP is the polymer concentration. 

Power law 
    index 

α <1  Shear thinning system 

α = 1  Newtonian system  

α > 1  Shear thickening system 
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The intrinsic viscosity is given by: 
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 The intrinsic viscosity and Huggins coefficient (k´ ) can be determined from 

eq. 6. 
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2. Oscillatory Shear Measurements 
 

In oscillatory shear measurements, the cone or plate may oscillate and each 

point is measured at a different angular frequency (ω).  

 

                              Figure 10. A schematic picture of the rheometer. 
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In order to determine the dynamic properties of the system, oscillatory shear 

measurements are conducted. When a sample is constrained in a cone and plate 

assembly, an oscillating strain at a given frequency can be applied to the sample. After 

an initial start-up period, a stress develops in direct response to the applied strain due 

to transient sample and instrumental responses. If the strain has an oscillating value 

with time, the stress must also be oscillating in time. These two waveforms can be 

represented as in the following way: 

 

Figure 11.  An illustration of oscillating strain and stress response. 

When a tangential displacement is applied to the lower plate, a strain in the 

sample is produced. That displacement is transmitted directly through the sample. The 

upper cone will react in proportion to the applied strain to give a stress response. If the 

viscoelastic material is in the instrument, some energy is stored and some dissipated, 

the stored contribution will be in phase whilst the dissipated or loss contribution will 

be out of phase with the applied strain31. The stress and strain can be written as:  

 tωγγ sin0=  (7)                      
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 ttt ωδσωδσδωσσ cossinsincos)sin( 000 +=+=  (8)                      

where t is the time and 0γ and 0σ are the maximum amplitudes for the strain and stress, 

respectively. 

The stress can also be expressed as: 

 [ ]tGtG ωωωωγσ cos)(sin)(0 ′′+′=  (9)                      

where G′(ω) is the storage modulus (elastic response) and G″(ω) is the loss modulus 

(viscose response). G′ and G″ vary with the phase angle as: 

 
G
G

′
′′

=δtan  (10)                     

δ is the phase difference in radians between the peak value of the stress, and the peak 

value of the strain, which is constant with time at any given frequency.3 

The absolute value of the complex viscosity can be determined from 4: 

 ω
η

22
* GG ′′+′

=  (11)                      

ω is the angular frequency, which is equal to 2πf where f is the applied frequency 

measured in Hertz. 
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a) Angular Frequency Dependency  

         of the Complex Viscosity 
 

The angular frequency dependency of the complex viscosity gives information 

about the solid-like or liquid-like behavior of the system, and can be expressed in 

terms of a power law 4:  

 

mωη ∝*
 

                                                                                                                         (12)  

b) Determination of the Gel Point 
 
 

The gel point can be determined by oscillatory shear measurements. According 

to the model of Chambon and Winter32,33, the gel point is characterized by a frequency 

independency of tan δ, and the following power-law of G′ and G″ is valid: 

 
nGG ωωω ∝′′∝′ )()(  (13)                         

where n ( 0 < n < 1 ) is the relaxation exponent.  

The gel point can be determined by plotting tan δ at several frequencies against 

the gel forming parameter (e.g., time and temperature), and determining the point where 

tanδ is frequency independent. The gel point can be also determined by finding the point 

where the slopes of G′ and G″ versus ω are the same in a log-log plot.3  

m = 0     Liquid-like behavior 

-1 < m < 0  Viscoelastic behavior 

m = -1    Solid-like behavior  
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nG ′′∝′′ ω   (14)                         

At the gel point:    nnn =′′=′  

c) Gel Strength Parameter (S) 
 

To characterize how stiff a sample is at the gel point, the gel strength parameter 

(S) is determined, which is dependent on the cross-linking density and the molecular 

chain flexibility.33 The values of n and S for an incipient gel can be determined from a 

power law describing the frequency dependency of the absolute value of the complex 

viscosity.34    
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  (15)                     

 m = n-1  (16)                     
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where Γ(n) is the gamma function and m is the complex viscosity relaxation exponent 

and is directly related to the relaxation exponent n. 

 

d) Theoretical Models for the Interpretation of n 
 
 
 A number of theoretical models 35-43 have been developed to predict the value 

of the relaxation exponent. The present understanding of the phenomenology of 
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gelation is essentially based on concepts such as dynamic scaling, fractal analysis, and 

percolation of clusters. The growing clusters, which appear as the connectivity 

increases near the gelation threshold, may be described in terms of the fractal 

geometry on the length scales between the monomer size and the correlation length of 

the connectivity.  

 The structure of the incipient gel can be described by a fractal dimension, df, 

which is defined by: 

 MR fd
g ∝  (18)                         

 

 where Rg is the radius of gyration and M is the mass of a molecular cluster. A 

dynamical scaling analysis of flexible fractals in the Rouse limit (no hydrodynamic 

interaction), taking into account the effect of screening of excluded-volume and 

hydrodynamic interactions but ignoring entanglement effects, yield for a monodisperse 

solution of polymers of fractal dimension df  a viscoelastic exponent of 3,37,38: 
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 If we assume that the fractal dimension is located in the range 1 ≤ df  ≤ 3, then 

eq. 19 predicts that the relaxation exponent is restricted for 1/3 ≤ n ≤ 3/5. When 

polydisperse clusters near the gelation threshold are considered and Rouse dynamics 

prevails, the relationship for non-entangled systems can be described as: 
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where r is a scaling exponent describing the cluster size distribution function near the 

gel point: 

 
fd

dr += 1  (21)       

                                                                                                                      

 where d (d = 3) is the space dimension. From percolation statistics (df = 2.5 & 

r ≈ 2.2), it follows that n = 2/3. On the other hand, based upon a suggested37,38 

isomorphism between the complex modulus and the electrical conductivity of a 

percolation network with randomly distributed resistors and capacitors, a value of n = 

0.72 has been predicted. Since these values are close to each other, dynamic 

rheological experiments do not allow distinguishing between these predictions. In a 

number of oscillatory shear studies on incipient gels of various natures, values of n in 

the whole range 0 < n < 1 have been reported44. To rationalize these values, 

Muthukumar developed a theoretical model41 in which it is assumed that variations in 

the strand length between cross-linking points of the incipient gel network give rise to 

changes of the excluded volume interactions. It is anticipated that increasing strand 

length should enhance the excluded volume effect. To account for this effect, 

Muthukumar suggested that, if the excluded volume interaction is fully screened, the 

relaxation exponent for a polydisperse system can be expressed as: 
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  In the framework of eq. 22, all values of the scaling exponent 0 < n < 1 are 

possible for a fractal in the physically realizable domain 1 <  df  < 3. In the case of 

unscreened excluded volume interactions; 1 ≤ n ≤ 3/5 as df  varies from 1 to 3 (eq. 20 

and 21). Incipient gel networks with high values of n, have low fractal dimensions and 

are said to be “open”, whereas networks with low values of n have higher fractal 

dimensions and are called “tight”. (See Figure 12) 

 

 

 

Figure 12. An illustration of an open and tight network.  
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   Table 2 shows n value for different systems: 

 

           Table 2. A list of relaxation exponent for different systems 

n System 

0.5 End-linking networks with balanced stoichiometry 

0.5-0.7 End-linking networks with imbalanced stoichiometry 

≈0.7 Epoxies 

≈0.8 PVC plastisol 

≤0.3 Radiation cross-linked polyethylene 

 

It is evident from Table 2, that the value of the relaxation exponent can vary depending 

on the type of the system.28  

 

e) Stress Relaxation Experiments 
 

In a relaxation experiment, the system is subjected to a fixed small strain, and 

the decay of the stress in the sample is probed as a function of time. This technique is 

applied on quite viscous samples with elastic properties, since in a viscous solution the 

relaxation is too fast and cannot be measured. However, some very rigidly cross-linked 

networks might not relax at all within a reasonable time scale.   

The relaxation modulus, G(t), follows a power-law behavior at the gel point32: 

 
ntStG −⋅=)(  (23)                       
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C.  Small Angle Neutron Scattering (SANS) 
 

The scattering process allows us to explore a system on a length scale of q-1. 

The wave vector q is defined as: 

 λ
θπ )2/sin(4 ⋅⋅

= refn
q   (24)                         

where λ  is the wavelength, θ   is the scattering angle, and nref is the refractive 

index of the solution. The same scattering equation can be used for a given value of q, 

regardless of whether visible light, neutrons or X-rays are employed in a scattering 

experiment. The information obtained from scattering depends on the quantity qL 

(where L is a characteristic length; Rg in the dilute regime or the screening length ξ in 

semidilute solutions), and there is an inverse relationship between the size of the 

scattering object and the q values at which scattering is observed. The value of the 

quantity qL indicates whether global (qL < 1) or local dimension (qL > 1) scales are 

probed.45    

Small angle scattering (SAS) is the collective name given to the techniques of 

small angle neutron (SANS) and small angle X-ray scattering (SAXS). In each of these 

techniques, radiation is elastically scattered by a sample and the resulting scattering 

pattern is analyzed to provide information about the size, shape and orientation of 

some component of the sample. In addition, thermodynamic information may be 

extracted and enhanced aggregation or association of systems can be revealed at low q 

values. 
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                              Figure 13.  Small angle neutron scattering (SANS) equipment at IFE. 

Neutron radiation can be produced to cover a range of wave vectors 0.005≤ 

q(Å-1) ≤ 0.8 (the SANS spectrometer at IFE), which makes the instrument able to 

probe the structure of the system on a more local scale. At large q (qL >> 1) a power 

law is observed:   

 
fdqqI −∝)(  (25) 

 

fd  

                                

  

At low q value (qL < 1), a plateau can be observed, which is called the ‘Guinier 

regime’. In systems forming large association complexes, a strong upturn of the 

scattered intensity is observed at low q values that can be described by a power law: 

df  ≈ 1       Rod-like 

df ≈ 1.7    Random Coil 
                   (good condition) 

df ≈ 2       Random Coil 
                   (θ condition) 

df  ≈ 3      Sphere   
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I(q) ∼ q -z 

In the ‘Porod Scattering’ regime, the value of the exponent is equal to z = 445-49, and it 

has been reported that the exponent can vary between 2 and 4. (See Figure 14)   

Guinier approximation:  

 )
3

exp()(
22
gRq

qI −∝  (26) 

 

              Figure 14. An illustration of the SANS scattering intensity over an extended q range. 

D. Light Scattering 
 

Light scattering has been used in this study as a method for determining 

polymer molecular weights, radius of gyration and some information about the mesh 

size of the network.50 Both static (intensity) and dynamic light scattering are used to 
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determine these properties.51-54 In this thesis, dynamic light scattering has been 

discussed, while the results from static light scattering are shown in Table 3. (See the 

appendix) 

 

 

Figure 15. Light Scattering instrument of the Polymer Group at the University of Oslo (UiO), 
and a schematic illustration of it.  

 

1. Dynamic Light Scattering (DLS) 
 

A dynamic light scattering experiment probes the relaxation times of processes, 

which relax on some length scale q-1. If the scattered field obeys Gaussian statistics, 

the measured homodyne intensity autocorrelation function, g(2)(q,t), can be related to 
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the theoretically amenable first-order electric field correlation function; g(1)(q,t), by the 

Siegert relation 55: 

 
2)1()2( ),(1),( tqgBtqg +=   (27)                         

where B (≤ 1) is an empirical factor. The Siegert relation is valid under ergodic 

conditions; that is the time averaged intensity correlation function is equal to the 

ensemble averaged intensity correlation function. In other words, the decay curves of 

the time correlation function do not depend on the scattering position of the incident 

light in the sample. A frequent consequence of non-ergodic features is that the 

parameter B in the Siegert relation decreases; B < 0.6. In DLS studies of associating 

and gelling systems, it is usually observed 51, that the decay of the correlation function 

can initially be described by a single exponential, followed at longer times by a 

stretched exponential:  

 [ ] [ ]βττ )/(exp/exp),(1
sesff tAtAtqg −+−=  (28)                     

 1=+ sf AA , 0<β≤1  (29)                       

where Af and As are amplitudes for the fast and slow relaxation modes, 

respectively. τf is the fast relaxation time and τse is some effective slow relaxation 

time. β is a measure of the width of the distribution of relaxation times. 

The mean relaxation time (τs) can be defined from the slow relaxation mode by: 
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where Γ is the gamma function. The fast relaxation mode is a measure of how 

the whole network fluctuates and moves around, while the slow relaxation mode 

defines the movement of individual chains in the network.  

The coupling model of Ngai56 introduced the value of the coupling parameter (ncoup) 

related to the value of the stretch exponent (β) by:   

coupn−= 1β       (31)                         

As the associations increase, the number of couplings in the network increases, 

and the stretch exponent (β) decreases.  This model addresses the problem of how the 

relaxation of a specific chain or cluster is slowed down due to the interaction or 

coupling to complex surroundings, and it is in a good agreement with the results from 

several systems, as well as cross-linked semidilute HEC solutions.  

The fast relaxation time can be determined by 51,57: 

21 qDf =−τ       (32)                          

where D is the diffusion coefficient (Dm, mutual diffusion coefficient in a dilute 

solution, and Dc, the cooperative diffusion coefficient in a semidilute system; a 

measure of how the collective polymer network fluctuates in the solution). The 

diffusion coefficients can be determined by: 
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where kB is Boltzmann’s constant, (1.38×10-23 JK-1), T is the temperature, η0 is 

the viscosity of solvent. The quantity X is identified as ξh, the hydrodynamic 

correlation length, for semidilute solutions, which is a measure of the mesh size in the 

polymer network, and X≡Rh, the hydrodynamic radius, for dilute solutions.  

The q dependency of the fast and slow mode can be expressed 58,59 by: 

 
fqf

ατ ∝−1
 ,  sqs

ατ ∝−1
   (34)                         

A diffusive mode is q2 dependent.  

 

IV. Experimental Section 
 
 

In this study both dilute and semidilute samples have been examined by 

different experimental techniques.  

A. Materials and Solution Preparation 
 
 

A sample of hydroxyethylcellulose with the commercial name Natrosol 250 GR 

(Lot no. V-0403) was obtained from Hercules, Aqualon Division. The degree of 

substitution of hydroxyethyl groups per repeating anhydroglucose unit of the polymer is 

2.5 (given by the manufacturer). Dilute HEC solutions were dialyzed against Millipore 
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water for at least 1 weak to remove low molecular weight impurities. As a dialyzing 

membrane, regenerated cellulose with a molecular weight cutoff of 8000 (Spectrum 

Medical Industries) was used. After the dialysis, the samples were freeze-dried. After 

freeze-drying, the polymer was re-dissolved in aqueous alkaline (NaOH) media with pH 

of 11.8, and solution with the desired polymer concentrations were prepared by 

weighing the components and the solutions were homogenized by stirring at room 

temperature for one day. 

The cross-linker agent, DVS, was purchased from Merck and utilized without 

further purification. Millipore water was used for the preparation of all solutions. 

Shortly before the commencement of experiment, the prescribed amount of DVS was 

added to the sample and a fast homogenization of the solution was performed. The same 

procedure to obtain homogeneous solutions was repeated for all samples to ensure good 

reproducibility of the measurements.   

     

B. Turbidity Measurements 
 
 
 

Time evolution of the transmittance of dilute and semidilute alkali solutions of 

HEC in the presence of various amounts of cross-linker (DVS) was measured with a 

spectrophotometer at a wavelength of 500 nm. The results will be presented in terms 

of turbidity (See eq. 1). For all samples, cells with 1 cm light path length have been 

used. 
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C. Rheology 
 
 

Oscillatory sweep, stress relaxation and steady shear measurements were 

performed for semi-dilute samples, while for the dilute solutions only steady shear 

experiments were carried out. The cross-linker (DVS) was added to the HEC solution 

and the sample was homogenized during a short time and was then rapidly transferred 

to the plate and the measurements were started immediately. To prevent evaporation of 

the solvent, the free surface of the sample was always covered with a thin layer of low-

viscosity silicone oil (the viscoelastic response of the sample is virtually not affected 

by this layer).  

 

D. Small Angle Neutron Scattering (SANS) 
 
 
 

The SANS measurements were performed on the SANS installation at the IFE 

reactor at Kjeller, Norway. These kinds of experiments were only preformed on the 

semidilute samples, since the scattered intensity of the dilute samples is too weak to 

obtain a good enough signal. The wavelength was set by the aid of a selector 

(Dornier), using a high FWHM for the transmitted beam (∆λ/λ = 20%), and 

maximized flux on the sample. The neutron detector was a 128x128 pixel, 59 cm 

active diameter, He-filled RISØ-type detector, which is mounted on rails inside an 

evacuated detector chamber. The samples were investigated in 2 mm Hellma quartz 

cells, using D2O as a solvent to minimize incoherent scattering and to maximize the 

scattering contrast between the HEC and the solvent.  
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Standard reductions of the scattering data, including transmission corrections, 

were conducted by incorporating data collected from empty cell, beam without cell, 

and blocked-beam background to obtain the scattered intensities in absolute scale (cm-

1). Subtraction of the solvent scattering was then done to obtain the coherent 

macroscopic scattering cross section dΣ/dΩ (q) of the system, which is proportional to 

the scattered intensity (I(q)). 

 

E. Dynamic Light Scattering (DLS) 
 
 
 

The sample solutions were filtered through filters of different pore size (0.22 

µm for dilute and 0.8 µm for semi-dilute solutions) into pre-cleaned 10 mm NMR tubes 

(Wilmad Glass Company) of highest quality. The full homodyne intensity 

autocorrelation function g2(t) was measured mostly at a scattering angle of 70° for dilute 

and 90° for semidilute solutions. All correlation functions were analyzed with the aid of 

eq. 28. 

 

V. Results & Discussion 
 
 
 

The results are presented in two sections: dilute and semidilute solutions. In this way, 

the presentation of the results should be more transparent. 

 

 



 50

A. Dilute Solutions 
 

1. Turbidimetry 
 
 
 In Figure 16 the time evolution of the turbidity for dilute HEC solutions at 

different cross-linker concentrations is depicted. It is evident that the solutions become 

turbid in the course of the cross-linking reaction at all cross-linking densities, except 

the lowest cross-linker concentration. The cloud point (CP) is the point at which a 

definite lack of clarity, cloudiness, appears in the solution, which is due to the decrease 

in the solubility of the polymer, caused by poorer thermodynamic conditions or 

aggregation. The cloud points can be determined by observing the start point of 

increasing in turbidity (See the inset plot). No cloud point is observed for the solution 

with the lowest cross-linker concentration. The turbidity results indicate that the 

formation of large aggregates starts at earlier times when the cross-linker 

concentration increases and the value of the cloud point time decreases as the level of 

cross-linker addition increases (See the inset). This finding demonstrates that, at 

quiescent conditions, the inter-polymer cross-linking behavior, with the formation of 

large aggregates, constitutes a dominant feature in the process. The generation of a 

microgel is assumed to take place through inter- and intrachain cross-linking. By 

intrapolymer cross-linking, microgel particles will formed. This process accompanies 

phase separation, and solution turbidity appears.24 
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Figure 16. Time evolution of the turbidity (eq. 1) for 0.1 wt % HEC solutions with different 
cross-linker concentrations. The inset plot shows the values of the cloud point determined from 
the incipient rise of the turbidity curve. 

 

2. Rheology 
 

a) Intrinsic Viscosity and Huggins Coefficient 
 
 

The intrinsic viscosity [η] and Huggins coefficient k´ can be determined from a 

measurement series on dilute polymer solutions. ηsp can be determined by eq. 3. The 

intrinsic viscosity [η] and Huggins coefficient k´can be determined by plotting ηsp/cp 

versus cp:  
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Figure17. (a) Plot of the viscosity as a function of shear rate for different polymer 
concentrations. (b) Plot of the zero-shear viscosity as a function of polymer concentration. The 
viscosity increases with increasing HEC concentration. (c) Plot of the reduced viscosity as a 
function of polymer concentration. The intrinsic viscosity and Huggins coefficient can be 
determined by using the eq. 6.  
 
 
The overlap concentration C* can be determined from eq. 35: 

 [ ]η
1* =C   (35)                         

For the HEC solution in the presence of NaOH solvent )8.11( ≈pH , the overlap 

concentration is C* = 0.25 wt %. This shows that the concentration (0.1 wt %) employed 

in the study on dilute solutions are well below C*, while the concentrations (1 wt % and 

2 wt %) utilized in the project on the formation of macroscopic gels are in the semidilute 

regime. The zero-shear viscosity increases with increasing the polymer concentration. 
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The value of Huggins coefficient (k´= 0.42) confirms the good thermodynamic condition 

of the system. (k´< 0.5 → good conditions)  

b) Shear Viscosity Measurements 
 
 

Figure 18 shows the time evolution of the viscosity for a reaction mixture of 

0.1 wt % HEC and DVS of a concentration of 30 µl/g under the influence of different 

shear rates. At the highest shear rate, the rotation and stretching of the chains induced by 

strong mechanical shear stresses prevent the intra- and inter-polymer cross-linking 

reactions from occurring, but slight increase of the viscosity at very long times may be a 

harbinger of incipient inter-chain aggregation. At lower shear rates, the general behavior 

is characterized by a minimum followed by a rise of the viscosity (a minimum of the 

transition area is depicted in the inset) at longer times. The former finding suggests 

contraction of the species and this behavior is a signature of intra-molecular cross-

linking, whereas the latter feature announces inter-chain aggregation. 

Intra-chain compaction of the molecules was never detected from the DLS 

measurements (see the discussion on DLS results below), probably because of the 

dominance of inter-polymer cross-linking at quiescent conditions.     
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Figure 18. Time dependencies of the shear viscosity for a 0.1 wt % solution of HEC in the 
presence of 30 µl/g DVS that is exposed to the shear rates indicated. The inset shows a 
magnification of the data around the transition zone.  
 
 

At moderate shear rates, the rotation of the chains may initially be more 

favorable to intra-chain contacts than inter-chain reactions because the large number of 

hydroxyl groups on a single chain, and its rotational motion may facilitate intra-

molecular contacts and cross-linking. At longer times, the repeated collisions between 

the contracted species may lead to inter-polymer cross-linking reactions and the 

formation of multichain aggregates. A scrutiny of the magnitude of the viscosity raise 

for the lower two shear rates unveils that the breakup of the interconnected aggregates 

depends on the shear rate.  

It is obvious from Figure 18 that a lower shear rate promotes the buildup of 

larger clusters before rupture sets in. The scatter of the data points at the peaks of the 

viscosity curves signalizes the competition between the buildup and breakup of inter-

aggregate chains when the complexes are sufficiently large. This size-limitation step 
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begins as soon as the aggregates reach a size large enough to be broken by the applied 

shear forces. 

The enhancement of the viscosity takes place at earlier times at low shear rate 

and the steepness of the rise becomes weaker as the shear rate increases. This result is 

expected because at a lower shear rate inter-polymer association is promoted. A close 

inspection of the viscosity (η) enhancement at various shear rates discloses that the time 

dependence of the viscosity raise can be portrayed by a power law ϕη t∝ (See Figure 

19). The inset plot shows that the raise of the viscosity becomes weaker as the shear rate 

increases. It can be argued that augmented shear rates should inhibit the growth of large 

association complexes since mechanical disturbances will obstruct the cross-linker 

reaction between functional groups on the polymer chains.    
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Figure 19. Time evolution of the shear viscosity in the regime where multichain aggregates are 
formed at the shear rates indicated for a 0.1 wt % HEC solution with 30 µl/g DVS. The inset 
shows the shear rate dependence of the power law exponent φ, describing the time dependence 
of the viscosity (η ~ tφ) in the region of formation of inter-molecular aggregates. 
 
 

In Figure 20, the time dependence of the viscosity at a constant shear rate (20 s-

1) for a 0.1 wt % HEC solution in the presence of different cross-linker concentrations is 
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depicted. The profile of the viscosity curves at the higher two DVS concentrations is 

similar to that observed above, that is, a minimum followed by an enhancement of the 

viscosity. The upturn of the viscosity takes place at an earlier time for the sample with 

the highest level of DVS addition, because the probability of forming inter-molecular 

cross-links is higher. A close inspection of the viscosity curves representing the two 

lower cross-linker densities reveals a decreasing tendency at long times, which may 

reflect an incipient intra-molecular cross-linking effect. In this case, the cross-linker 

concentrations are too low to provoke inter-chain aggregation over the time interval 

considered. 
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 Figure 20. Time dependencies of the shear viscosity for 0.1 wt % solutions of HEC in the 
presence of the cross-linker densities indicated and at a shear rate of 20 s-1. The inset shows a 
magnification of the data around the transition zone.   
 
  

Figure 21 shows the time evolution of the viscosity at a fixed shear rate (20 s-1), 

and a constant amount of DVS (30 µl/g) in solutions of different HEC concentrations. 

The general picture that emerges is that the polymer concentration plays an important 

role for the shear-induced development of intra-molecular and inter-molecular 
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structures. At the lowest HEC concentration, only a slight increase of the viscosity is 

visible at long times. This trend may be a message of incipient aggregation after several 

collisions of the entities.  

At the higher two polymer concentrations, the general appearances of the 

viscosity curves are similar as discussed above, with a minimum and viscosity 

enhancement. The raise of the viscosity occurs at an earlier time for the higher polymer 

concentration, because the probability that inter-chain cross-links are developed is 

increased. The results in Figure 21 show that the rheometer is capable to detect viscosity 

differences even between these low polymer concentrations. The average size of the 

inter-polymer complex before it disintegrates is larger for the highest polymer 

concentration. The conjecture is that a high polymer concentration promotes the creation 

of strong multi-chain aggregates.   
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Figure 21. Time evolution of the shear viscosity during the cross-linker reaction for dilute 
solutions of HEC of the concentrations indicated in the presence of a cross-linker concentration 
of 30 µl/g and at a shear rate of 20 s-1. The inset shows a magnification of the data around the 
transition zone.  
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The time dependence of the viscosity at a constant shear rate (20 s-1) and at the 

same HEC/DVS composition is illustrated in Figure 22. By keeping the value of the 

HEC/DVS ratio fixed, the state of the cross-linker reaction should be the same for all the 

samples. At the lower two polymer concentrations, only a slight decrease of the 

viscosity can be traced over time, but no inter-molecular association is visible. The 

reason is probably that the polymer concentration is too low to buildup inter-connected 

aggregates.  At the higher polymer concentrations, compacted intra-molecular entities 

are formed and the subsequent creation and breakup of inter-aggregated chains are 

observed. Again the magnitude of the viscosity increases and a short induction time 

before the growth of the aggregates commences are promoted by a high polymer 

concentration. 
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Figure 22.  Time evolution of the shear viscosity during cross-linker reaction for mixtures of 
HEC and DVS at the cross-linker and polymer concentrations indicated and at a fixed shear rate 
of 20 s-1. These compositions give a constant value of the HEC/DVS ratio. The inset shows a 
magnification of the data around the transition zone.   
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3. Dynamic Light Scattering (DLS) 
 

a) Correlation Functions 
 
 

Figure 23 shows the time evolution of the correlation function for alkali HEC 

solutions (pH ≈ 11.8) of a polymer concentration of 0.1 wt % in the presence of different 

amounts of the cross-linker. The general trend is that the relaxation function is shifted 

toward longer times as the cross-linking process proceeds and this effect is more 

pronounced with increasing cross-linker concentration. The slower decay of the 

relaxation function at longer reaction times announces the growth of large clusters. The 

same effect has also been observed for other systems of different natures.51,60,61  
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Figure 23. Plot of the first-order electric field correlation function versus time (every third data 
point is shown) at a scattering angle of 70 oC for 0.1 wt % HEC solutions with various cross-
linker concentrations at different stages during the cross-linking reaction.  
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The growth of the aggregates has not been monitored over very long times in 

the light scattering experiments to avoid floc sizes for which multiple scattering effects63 

may be significant (multiple scattering is usually observed in turbid samples). This 

effect is usually accompanied with a decrease of the value of B in the Siegert relation 

(eq. 27).  

b) Fast and Slow Relaxation Times 
 
 
 

The time dependencies of the reduced intensity (scattered intensity divided by 

the intensity of the incoming light) and the fast (τf) and the slow (τs) relaxation times are 

displayed in Figure 24 for an alkali 0.1 wt % HEC concentration in the presence of 

various amounts of cross-linker. At the lowest DVS concentration, only a slight increase 

of the reduced intensity at very long times can be traced (Figure 24a), whereas for the 

other cross-linking densities abrupt upturns can be observed, suggesting that large 

association complexes are gradually formed. The rise of the reduced intensity occurs at 

earlier times when the cross-linker concentration increases. Similar trends are displayed 

for the relaxation times. The fast relaxation time probably reflects the motion of 

individual molecules and small associations of chains, whereas τs monitors the growth of 

large clusters. The growth of the aggregates starts at earlier times for high cross-linker 

densities and the rise of the relaxation times is stronger as the DVS concentration 

increases. Theses findings clearly demonstrate that at sufficiently high cross-linker 

concentrations, large inter-molecular complexes are evolved during the reaction in dilute 

alkali HEC solutions at quiescent conditions, and the kinetic features depend on the 

cross-linker concentration. This is expected, because at increasing level of cross-linker 
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addition the probability for inter-polymer associations is favored. The same trend has 

also been found for other systems. 51,59,63   
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Figure 24. Time evolution of the reduced intensity, fast relaxation time, and slow relaxation 
time during the cross-linker process for a 0.1 wt % HEC solution in the presence of different 
amounts of cross-linker.  
 
 

c) Quenching the reaction by HCl 
 
 

To study the growth of the clusters under stationary conditions, 0.1 wt % 

solutions of HEC in the presence of a fixed amount of cross-linker (30 µL/g DVS) were 

quenched by a rapid acidification of the reaction mixture at different stages during the 

association process, and the correlation functions were recorded (See Figure 25a). To 

scrutinize the fitting procedure and to endorse the functional form of eq. 28 that is used 
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to portray the correlation functions, residual plots at two different conditions for 0.1 wt 

% solutions of HEC are displayed in Figure 25b. The random distribution and small 

values of the residuals indicate good agreement between the fitting expression and the 

correlation function data. The results in Figure 25c show that the fast and the slow 

relaxation times increase with increasing quenching time, as well as the hydrodynamic 

radius (See the inset plot), calculated from the diffusion coefficient of the fast mode via 

the Stokes-Einstein relationship. These results demonstrate that the clusters grow as 

long as the cross-linker reaction continues.  
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Figure 25. (a) First-order electric field correlation function versus time for 0.1 wt % HEC 
solutions without cross-linker and with 30 µl/g DVS at different times of quenching (every third 
data point is shown). (b) Residuals obtained by fitting the correlation function data with the aid 
of eq. 28 at different stages of quenching. (c) Evolution of the fast and slow relaxation time at 
different times of quenching. The inset plot shows the effect of quenching time on the 
hydrodynamic radius (eq. 33), calculated from the fast relaxation time via the Stokes-Einstein 
relationship.  
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(1)  q Dependencies of the Fast  

        and Slow Relaxation Modes 
 
 

A diffusive mode is q2 dependent. To define it more accurate, the power law parameter 

can be determined by eq. 34. As the cross-linking reaction demands a basic condition ( 

pH ≈ 12 ), it can be stopped by quenching with HCl and make a lower pH (≈ 1.5) in the 

solutions. The q dependencies of the correlation functions are demonstrated in Figure 26 

for the samples, which have been quenched at different times. 
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Figure 26. Plot of first-order electric field correlation function as a function of q2t.  The results 
show the q2 dependency (diffusive mode) of the fast mode for the systems. As the cross-linking 
process proceeds, the q dependency of the slow mode is stronger than of a diffusive process.  
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By fitting the curves with the aid of eq. 28, and determining the fast and slow 

relaxation times, the inverse fast and slow relaxation times can be plotted as a function 

of q.    
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Figure 27.Plot of the inverse fast and slow relaxation time as a function of q.  
 
 
 

For each curve, a straight line through the points of the different q values is 

fitted. The slopes of these lines yield values of αf and αs (cf. eq. 34). The results reveal 

that the fast relaxation process is always diffusive, and the slow mode is diffusive for 

the solutions with the two longest quenching times, whereas for the sample without 

DVS and the one quenched after 15 min a stronger q-dependence is observed. If the 

mode is diffusive, the mutual diffusion coefficient (Dm) can be determined. (eq.32). 

(See Figure 28)  
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Figure 28. Plot of the mutual diffusion coefficient as a function of time of quenching for 0.1 wt 
% HEC in the presence of 30 µl/g DVS. 
 
 
                As the cross-linking reaction proceeds (time of quenching increases), the 

mutual diffusion coefficient decreases, because of the formation of larger clusters.  

 

(2) q Dependency of the Reduced Intensity 
 
 
 

The q dependency of the reduced intensity for 0.1 wt % solutions of HEC is 

illustrated at different quenching times during the cross-linker reaction in Figure 29. In 

the limited q range covered in these measurements, the wave vector dependency of the 

reduced intensity Ired can be described by a power law Ired ~ q-1 , where the value of the 

scaling exponent may reflect the rod-like behaviour of the semi-rigid polysaccharide 

chains64. It is interesting to note that the value of the exponent does not vary as the 

association complex grows, which suggests that on this dimensional scale the structure 

is not affected by the inter-polymer cross-linking process. The inset of Figure 29 shows 

that the reduced intensity rises strongly with the quenching time, announcing significant 
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inter-chain aggregation and increased molecular weight of the clusters because for a 

given polymer concentration the reduced intensity is proportional to MW.  
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Figure 29. Wave vector dependencies of the reduced intensity for 0.1 wt % HEC solutions 
without cross-linker and with 30 µl/g DVS at different times of quenching. The inset shows the 
reduced intensity at a scattering angle of 30° at different times of quenching.  
 
 
 

To examine whether the aggregation process continues after quenching arrested 

the cross-linking reaction, correlation functions were recorded over a long time (Figure 

30). It was suspected that the quenched species might possess an enhanced stickiness 

that could lead to further aggregation. However, the collapse of the correlation function 

data onto a single curve suggests that the quenched clusters exhibit no tendency to 

further associate into larger complexes. This means that decrease of pH is an efficient 

method to interrupt the inter-chain aggregation process.  
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Figure 30. First-order electric field correlation function versus time for a 0.1 wt % HEC 
solution with 30 µl/g DVS (every second data point is shown). The correlation functions have 
been recorded over a long time after the sample was quenched. This demonstrates that no 
further aggregation takes place after quenching.  
 
 

B. Semidilute Solutions 
 

1. Turbidimetry 
 
 

In the post-gel region, all gels exhibit syneresis effects, that is, the strong 

shrinkage of the gel samples over time cause expulsion of solvent. A systematic 

examination of this de-swelling effect is in progress65. An illustration of this effect is 

displayed in Figure 31: 

 

 

 

Figure 31. An illustration of gel shrinkage and appearance of turbidity during the cross-linker 
reaction of 1 wt % HEC sample with a DVS concentration of 15 µl/g.  
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   In the analysis of the time evolution of the gelation process it is convenient to 

introduce the quantity ε, which is the relative distance from the gel point and can be 

defined by: 

 GP
GPt −

=ε   (36)        

  

where t is the reaction time and GP is the gel point (for the determination of the gel 

point, see the discussion in section 2b(3) below). 

 The degree of turbidity depends on both the cross-linker concentration and the 

distance from the gel point (See Figure 32). The growth of the turbidity is promoted by 

high cross-linker concentration, and the cloudiness of the gel increases in the post gel 

region during a long period of time after the formation of the gel.                                                        
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Figure 32. Time evolution of the turbidity for 1 wt % HEC solutions with the cross-linker 
concentrations indicated. Every 15 data point is shown.   
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The turbidity starts to increase in the post-gel region for all polymer solutions. 

It is shown in Figure 31 and 32 that the samples are very clear at the gel point (ε = 0), 

and some time after the gel point. The samples in the post-gel become more turbid as the 

concentration of DVS increases, which is due to the larger cross-linking zones in the 

presence of higher amount of the cross-linker at a constant polymer concentration. The 

same results have been found for other systems.4   

According to the cross-linking mechanism mentioned above (Figure 5), the 

cross-linking reaction proceeds at basic condition, therefore the growth of the turbidity 

can be quenched at an earlier stage by adding a few drops of concentrated HCl to the 

samples to lower the pH to acid conditions (pH ≈ 1.5) and thereby terminate the cross-

linker reaction. 

2. Rheology 
 

a) Steady Shear Measurements 
 
 

Steady shear measurements have been conducted on 4 different concentrations 

of HEC in the semidilute regime. When the shear rate is raised and then lowered again, 

for some systems, it takes time to re-arrange, and as a result hysteresis effects may 

arise.   
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Figure 33. Plot of viscosity as a function of shear rate for different HEC concentration. The 
curves showed with stars (*) are measured from low to high shear rates, while the curves 
showed with triangles (∆) are measured from high to low shear rates. Every second data point 
is shown. 

 

It is evident from Figure 33 that the hysteresis effect is small for all the 

considered polymer concentrations, which suggests that no complex association 

structures are formed. The shear rate dependency of the viscosity for all the systems 

has been determined by finding the slope of the curves at high shear rate, using eq. 2. 

(See Figure 34c) 
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Figure 34. (a) Plot of viscosity as a function of shear rate for different HEC concentrations. 
Every second data point is shown. (b) Plot of Zero-shear viscosity as a function of polymer 
concentration. (c) Plot of the power law index as a function of polymer concentration. 
According to eq.2, the system shows shear thinning effect in all conditions, and it is more 
pronounced for the higher HEC concentrations. 
 

The zero-shear viscosity increases with increasing the polymer concentration. 

(Figure 34b). For the two lower polymer concentrations (0.5 wt % and 1 wt %), 

Newtonian behavior is observed, whereas for the higher two concentrations of HEC 

solutions (2 wt % and 3 wt %), Newtonian behavior is observed at low shear rate, and 

the shear thinning effect is found at higher shear rates. The decreasing trend of α in 

Figure 34c, which has been plotted with the aid of eq. 2 shows that the shear thinning 
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effect is stronger for higher polymer concentrations. Because of enhanced associations 

and more entanglements in the solutions at higher polymer concentration, the effect of 

breaking them up at high shear rate is more pronounced. 

The same measurement has been performed for a constant polymer concentration (1 wt 

% HEC) at different temperatures. (See Figure 35) 
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Figure 35. (a) Plot of viscosity as a function of shear rate for 1 wt % HEC concentration at 
different temperatures. Every second data point is shown. (b) Plot of zero-shear viscosity as a 
function of temperature. (c) Plot of the power law index as a function of temperature.  
 
 

Because the mobility of the polymer chains increases with increasing 

temperature the viscosity decreases. The shear thinning behavior has also been observed 

for other systems with different conditions.30  
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b) Oscillatory Shear Measurements 
 
 

The viscoelastic behavior of the system has been examined for 4 different HEC 

concentrations. (See Figure 36)  
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Figure 36. Frequency dependencies of the storage modulus G′ and the loss modulus G ′′ for the 
systems indicated. The curves have been shifted horizontally by a factor ρ of the value 
mentioned in the graph.   
 
 

For the lowest polymer concentration, the loss modulus is much higher than the 

storage modulus, and the distance between the storage and loss modulus becomes less 

and less by increasing the HEC concentration, which shows a higher contribution of the 

elastic response as the polymer concentration rises. These results reveal that the 

viscoelastic behavior becomes stronger as the concentration of polymer increases, due to 

the stronger interactions and formation of entanglements in the system.3,66  
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(1) Angular Frequency Dependency 

         of the Complex Viscosity 
 
 

The frequency dependency of the absolute value of the complex viscosity has 

been examined for HEC solutions of different concentrations. (See Figure 37) 
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Figure 37. (a) Frequency dependencies of the complex viscosity for different HEC 
concentrations. Every second data point is shown. (b) Plot of the complex viscosity as a 
function of polymer concentration at a constant value of the angular frequency ω (3.98 rad/s). 
 
 

The complex viscosity at a low value of the angular frequency rises as the 

polymer concentration increases (Figure 37b), and at higher values of angular 

frequency, shear thinning effect is observed for the two higher concentration of HEC (2 

wt % and 3 wt %), while turbulence67 (the upturn in viscosity at high angular 

frequencies) can be seen for the lowest concentration (0.5 wt %). The viscosity of the 1 

wt % HEC solution (the concentration that is focused on in this thesis) is almost plateau-

like, showing a Newtonian behavior.   
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Figure 38. Frequency dependencies of the absolute value of the complex viscosity (η*) at 
different stages during the gelation process of 1 wt % HEC solutions with different levels of 
cross-linker addition.  
 
 

The frequency dependence of the absolute value of the complex viscosity, as 

measured in small amplitude oscillatory shear experiments, at different stages during 

the gelation process for a 1 wt % HEC solution at different cross-linker concentrations 

is displayed in Figure 38. The general trend is that at early stages in the pre-gel 

domain, weak frequency dependence of |η*| is found (liquid-like behavior), whereas as 
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the gel evolves, a progressively stronger dependence is observed and a solid-like 

response is approached for gels far into the post-gel region. A higher cross-linker 

concentration favor the growth of more effective intermolecular bridges during the 

cross-linking reaction, and a stronger gel beyond the gel point with an almost solid-

like response (m close to –1) is found. These results clearly show that the chemical 

cross-linking reaction in HEC solutions proceeds far beyond the gel point. The same 

trend for the value of m has also been found for other systems. 4,34  

 

(2) Testing of the Cox-Merz Rule 
 
 
 

According to the Cox-Merz rule68, the viscosity as a function of shear rate is identical to 

the complex viscosity as a function of frequency, f (ω = 2πf). Deviations from this rule 

are often observed for more complex polymer systems. (See Figure 39) 

At very low frequencies/shear rates, no difference between the methods is observed. 

However, as the polymer concentration is increased there is a deviation at higher 

frequencies/shear rates between the complex viscosity and the shear viscosity. The most 

pronounced deviations from the Cox-Merz rule are observed for the most entangled 

solutions. This type of behavior has been reported for many associating polymer systems 

that display shear thinning effect.69 
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Figure 39. Plot of viscosity as a function of shear rate and the complex viscosity as a function 
of frequency for three different HEC concentrations. 
 
 

(3) Determination of the Gel Point  
 

 
In a semi-dilute solution of HEC in the presence of a sufficiently amount of the 

cross-linker DVS, the system will gradually form a gel. The gel point can be 

determined34 by observation of a frequency-independent value of tan δ (= G″/G′) 

obtained from a multi-frequency plot of tan δ versus time. The gel point has been 

determined for two different HEC concentrations (1 wt % and 2 wt %) with different 

amounts of divinylsulfone (DVS) as a cross-linker. For the sample with 1 wt % HEC, 3 

different concentrations of DVS (5, 10 and 15 µl/g) have been added to the polymer 
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solution (Figure 40), while for the 2 wt % HEC, the measurement has been done by 

adding only 5 µl/g DVS to the sample.(Figure 41)   

 

0 2 4 6 8 10 12 14 16
0
1
2
3
4
5
6

2 3 4 5
0
2
4
6
8

10
12
14

1 2 3 4 5 6
-1
0
1
2
3
4
5

3
0 .1

1

1 0

 

 

ta
n

 δ

T im e  (h )

 

 
ta

n 
δ

GP : 221min 

1 wt % HEC, 5 µl/g DVS

1 wt % HEC, 10 µl/g DVS

 

 

ta
n 

δ

    ω (rad/s)
  100
  63.1
  39.8
  25.1
  15.8
  10
  6.31
  3.98
  2.51
  1.58
  1
  0.631
  0.398
  0.251
  0.158
  0.1

GP: 157 min

( c )

( b )

GP : 129 min

 

 

ta
n 

δ

Time (h)

1 wt %HEC, 15 µl/g DVS 

( a )

 

Figure 40.  Time dependency of tan δ at various angular frequencies for 1 wt % HEC solutions 
in the presence of different  cross-linker concentrations; (a) 5 µl/g DVS, (b) 10 µl/g DVS, (c) 15 
µl/g DVS. At the gel point, tan δ is frequency independent.  The gel points (GP) are indicated. 
The inset plot of Figure 40b shows the magnification of the area around the intersection.  
 
 

The gel point decreases as the concentration of the cross-linker increases, 

because the probability of cross-linking increases and enhanced cross-linking zones 
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evolve. The polymer concentration plays also an important role in the gelation process, 

and gelation occurs at earlier times (cf. Figure 41) as the polymer concentration is 

increased because more reaction sites are available for intermolecular cross-linking. The 

same results have also been found for other systems.3 
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Figure 41. Viscoelastic loss tangent (tan δ) as a function of time for 2 wt % HEC solution with 
a cross-linker concentration of 5 µl/g DVS. The inset plot shows the magnification of area of 
intersection. 
 
 

Figure 42 shows the angular frequency independency of tan δ at the gel point 

for 1 wt% HEC with different DVS concentration. Since tan δ is independent of the 

angular frequency3 at the gel point (ε = 0), the plateau is observed at this point by 

plotting  tan δ versus ω.  Depending on the viscoelastic behavior of the solution and the 

relation between storage (G′) and loss modulus (G″), the value of tan δ is different for 

different systems. In the present work, the value of loss modulus is always larger than 
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the storage modulus (Figure 44) at the gel point. As a result tan δ > 1 (eq. 10) is 

observed for all HEC solutions in the presence of different DVS concentrations. 
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Figure 42. Plot of tan δ versus angular frequency (ω) for 1 wt % HEC in the presence of 
different cross-linker concentrations. The graph at the gel point is independent of ω. 
 
 
 

An alternative method 3,32 to determine the gel point is the observation of the 

crossover of n' and n'' (eq. 14) (See Figure 43). The results from this procedure are in a 

very good agreement with the results from the observation of the crossover of tan δ 

versus ω (Figure 41). The same agreement is also observed for incipient gels with 1 wt 

% HEC with different DVS concentrations. 
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Figure 43. (a) Frequency dependencies of the storage and loss modulus for 2 wt % HEC with 5 
µl/g DVS at the gel point, showing the power law behavior. (b) Time dependency of n' and n'' 

during the gelation.  
 
 

The lower value of the relaxation exponent (n) for 2 wt % HEC as compared 

with 1 wt % HEC at the gel point (Figure 45), support the hypothesis of enhanced 

associations and more entanglements in the system with the higher polymer 

concentration.32 The same features have also been found for other systems.3,66 

Up to the gel point, G′ is always smaller than G″, and liquid-like behavior is 

observed. After the gel point, G′ becomes larger than G″, which is a characteristic 

feature of the elastic response that is dominant in the post-gel region. The elastic 

response in the post-gel domain becomes stronger as the cross-linker concentration 

increases. (See Figure 44)  
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Figure 44. Plot of the storage and loss modulus as a function of ε (eq. 36) for 1 wt % HEC 
solution in the presence of different amounts of DVS. The loss modulus is higher than the 
storage modulus at the gel point (ε = 0).    
    
 

(4) Gel Strength Parameter (S)  

and the Relaxation Exponent (n)  
 
 

Effects of cross-linker concentration on the gel point, n, and S for incipient gels 

(1 wt %) are illustrated in Figure 45. The incipient gel is formed when the connectivity 



 83

of the sample-spanning network has been established. The time of gelation decreases 

as the level of cross-linker addition increases. This suggests that the number of ‘active 

sites’ for cross-linking of the polymer network increases. It has been observed3,4,51  that 

both increasing cross-linker density and polymer concentration favor a faster gelation, 

because the kinetics of gel-formation is controlled by the probability of forming cross-

links in the system.  

The values of n ( ≈ 0.7) observed for the present incipient gels at different 

cross-linker concentrations (See Figure 45b), are consistent with the percolation model 

37,38,70, which describes the fraction of chemical bonds at the gel point to establish the 

connectivity of a sample-spanning cluster. This finding is parallel with that 

reported3,4,33,71 for other incipient gels that have been chemically cross-linked. The gel 

strength parameter (calculated from eq.15 in combination with eq.17) is found (Figure 

45c) to rise steadily with increasing level of DVS addition. This is intuitively 

expected, because a higher cross-linker concentration should promote a more efficient 

cross-linked network with higher gel strength. It has been observed 3,4,26 for other 

gelling systems that at higher polymer concentrations, where the polymer 

entanglements contribute to the strength of the network, the excess of cross-linker 

concentration has reduced the impact on the gel strength parameter and a value of n 

lower than 0.7 is usually reported .70 
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Figure 45. Effect of cross-linker concentration on the gel point, exponent n (eqs.15 and 16), 
and the gel strength parameter (eq.15) for incipient gels of 1 wt % HEC solution in the presence 
of various cross-linker concentrations. 

 
 

(5) Zero-Shear Viscosity 
 
 

Figure 46 shows the evolution of the shear viscosity at low shear rates in the 

course of gelation of a 1 wt % HEC solution in the presence of 10 µl/g DVS. To probe 

the viscosification of the system during the gelation process, the value of the shear rate 

was continuously lowered as the gelation proceeds to monitor an apparent zero-shear 

viscosity. At the gel point, a sharp transition of the viscosity to higher values is 

observed. The pronounced viscosity enhancement beyond the gel point announces the 

development of a strong gel network. The strengthening of the network proceeds over 
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a long time, and the scattering of the viscosity values detected at long times may 

reflect effects of syneresis (See the discussion above). As a result of this effect, solvent 

is expelled from the gel sample and this may lead to slippage during measurement and 

scatter of the viscosity values. These results demonstrate that it is possible to probe the 

evolution of the gel by steady shear measurements if the magnitude of the shear rate is 

adjusted as the viscosification of the system is enhanced. This is the first time this is 

demonstrated. 
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Figure 46. Time evolution of the apparent zero-shear viscosity during the gelation of 1 wt % 
HEC solution at a cross-linker concentration of 10 µl/g. The shear rate has continuously been 
shifted toward lower values to be in the apparent zero-shear regime. 
 

c)   Stress Relaxation Experiments 
 
 

The decay of the relaxation mode (determined from stress relaxation 

measurements) is shown in Figure 47 for a cross-linker concentration of 10 µl/g. Similar 

results are observed at the other considered cross-linker concentrations. Up to the gel 

point the relaxation process is so fast that it is not possible to monitor it with a 

mechanical technique such as rheology. In the post-gel region the slow decay can be 
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captured, and at sufficiently large values of ε almost no relaxation of G(t) is detected in 

the considered time window. Figure 47c shows the change of the initial relaxation 

modulus G(i) during the gelation process. The results demonstrate that beyond the gel 

point the elastic response increases because more cross-links are established in the post-

gel region. The gel network is strengthened during a long time after the gel point, and a 

more solid-like material evolves. The same results have been found for other 

systems.32,57 
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Figure 47. Shear relaxation modulus versus time at different stages of gelation for 1 wt % and 
2 wt % HEC solutions at a cross-linker concentration of 10 µl/g and 5 µl/g, respectively 
(every 5th point is shown). Graph (c) shows changes of the initial shear relaxation modulus 
during the gel evolution.  
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3. Small Angle Neutron Scattering (SANS) 
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Figure 48. SANS scattered intensity plotted versus the scattering vector q for 1 wt % HEC 
samples with different cross-linker concentrations at various stages of gelation.  
 
 

To shed light on the structure of HEC networks on a mesoscopic dimensional 

scale, SANS measurements on gelling samples with different levels of cross-linker 

addition, and on gels that have been quenched at a certain stage, have been carried out. 

The q dependencies of the scattered intensity during the gelation process for a 1 wt % 

HEC solution with different amounts of DVS are depicted in Figure 48. To be able to 

monitor the gelation process at various stages, and to maintain a sufficiently strong 
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signal with good statistics from the SANS measurements, it was necessary to limit the 

considered q range. The intention was to probe possible changes of the network 

structure in the course of gelation. The general feature that can be traced in the spectra 

is the stronger upturn of the scattered intensity at low q values for gels that have been 

cured for a long time. This is again an indication of that the heterogeneities within the 

gels grow during the curing process.  

 

Figure 49 shows SANS results over a broader q-range for gels with different 

cross-linker concentrations that have been quenched after a certain time (ε ≈ 0.4). A 

salient feature is the progressively stronger upturn of the scattered intensity at low q 

values as the level of cross-linker addition is increased. This upturn can be described 

by a power law, with a slope of approximately -2.1 for the sample with the highest 

cross-linker concentration. In this q regime the scattered intensity is determined by 

large-scale fluctuations of the polymer concentration and this feature has been ascribed 

to the formation of multichain domains.72 A higher value (-3.6) of the slope has been 

observed for charged73 and neutralized74 polyacrylate hydrogels. It was argued74 that 

this value reflects the presence of surfaces (an exponent z of 4 suggests a Porod 

scattering law75 from surfaces), and the behavior was attributed to the presence of 

large frozen-in structural inhomogeneities. The upturn in the scattering profile at low q 

values has previously been reported72,76,77 for polymer systems of various natures and 

values of  the power law exponent z from approximately 2 to 4 have been found. In the 

light of these observations, the results in the low q regime indicate the existence of 

large association complexes, which likely originate from cross-link zones. 
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Figure 49. SANS scattered intensity plotted versus the scattering vector q for 1 wt % 
nongelling and gelled HEC samples with different cross-linker concentrations. For the gels, 
the cross-linker reaction has been quenched at a certain stage (ε ≈ 0.4). 

 

In the higher q-range, all the curves display an intensity that varies 

approximately as q-1.1. This dependency corresponds virtually to the characteristic rod-

like behavior of semirigid polymer chains when we look at smaller distances than the 

persistence length. This suggests that the HEC chains are locally stretched, and it 

seems that the cross-linker reaction does not affect the local structure of the network. 

The only visible effect is the higher values of the scattered intensity as the cross-linker 

concentration is increased. The q-1 dependency of the scattered intensity at higher q 

values has been reported64,78 previously from SANS experiments on various 

polysaccharide systems. In this context, it is interesting to note that a q-1 dependency 

of the scattered intensity was observed from light scattering measurements on a dilute 

HEC solution with DVS at different stages of quenching (See the discussion above).  
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4. Dynamic Light Scattering (DLS) 
 
 

The highest cross-linker concentration (15 µl/g), employed in the other 

experiments, has not been included in the DLS study because the fast gelation of HEC 

at this DVS level causes alterations of the sample in the course of measurement and 

this may yield unreliable data. 
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Figure 50.  Plot of the first order electric field correlation function as a function of time for 1 wt 
% HEC with 5 and 10 µl/g DVS.  
 

 
Figure 50 displays the correlation functions for 1 wt % HEC with 5 and 10 µl/g 

DVS. The curves are fitted with the aid of eq. 28. The correlation functions can be 

described by a single exponential, followed by a stretched exponential at longer times. 

The curves reveal a gradually increase of the slow relaxation times as the cross-linking 
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proceeds in the solutions. This behavior has been observed before in many other 

systems in different conditions.60,61,79 

Figure 51 shows the normalized time correlation data, together with some 

curves fitted with the aid of eq. 28, at various stages during the gelation process for a 1 

wt % HEC solution at two different levels of cross-linker addition. The general trend 

at all stages is that the long-time tail of the correlation function is shifted toward 

longer times as the gel evolves, and this effect is more pronounced at the highest cross-

linker concentration. At all conditions, the correlation functions can be well described 

by means of eq. 27 and the samples exhibit ergodic features (B > 0.6).  
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Figure 51. First-order electric field correlation function versus time (every third data point is 
shown) at a scattering angle of 90o for 1 wt % HEC solutions with two cross-linker 
concentrations at different stages (ε) during the cross-linking reaction. 
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The variations of the cooperative diffusion coefficient Dc (τf 
-1 = Dcq2), the slow 

relaxation time τs, and the reduced intensity as a function of ε are depicted for the two 

considered DVS concentrations in Figure 52. The value of Dc drops as the gel is 

formed, and in the post-gel region the decrease of Dc is stronger for the sample with 

the higher level of cross-linker addition. These features can probably be associated 

with nonuniformities of the network.3  It has been reported80 that nonuniformities in the 

network structure play an important role for the diffusion properties. This model 

predicts a reduction of the diffusion coefficient for a gelling system with increasing 

nonuniformity. In the light of this approach, the present diffusion results suggest that 

the nonuniformities of the network increase as the gelation process proceeds, and the 

effect is enhanced as the cross-linker concentration is increased. This is consistent with 

the overall picture that emerges from this investigation. The influence of cross-linker 

addition on the slow relaxation time during gelation is illustrated in Figure 52b. The 

results reveal that the slow relaxation process is slowed down as the cross-linking 

reaction proceeds, and this trend becomes more pronounced with increasing DVS 

concentration. This is expected because as more and more chains are cross-linked the 

chain relaxation should be hampered, and longer relaxation times are foreseen. The 

same results have also been reported for other systems.51,57 
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Figure 52. Variations of the cooperative diffusion coefficient (a), the slow relaxation time (b), 
the ratio As/Af (c), and the reduced intensity (d) as a function of ε for 1 wt % HEC at the 
cross-linker concentrations indicated. 
 
 

The results for the ratio As/Af during gelation (Figure 52c) show that the 

contribution from the slow mode increases slightly in the course of gelation and higher 

values of the ratio are observed at the highest cross-linker density. At both cross-linker 

concentrations, the value of the stretched exponential β decreases from about 0.4 to 0.3 

as the gelation process proceeds, suggesting a broader distribution of relaxation times. 

These features are probably a result of enhanced structural heterogeneity of the 

samples and that a connected gel-network is established.  

 Figure 52d shows the effect of cross-linker density on the reduced scattered 

intensity during the time evolution of the gel. The results indicate that the large-scale 

structural inhomogeneities of the samples grow during the gelation process, and this 
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growth is promoted by increasing cross-linker concentration. The gelation induces 

large-scale heterogeneities, probably arriving as a result of formation of cross-linker 

zones. An increase in relaxation time during the gelling process has also been observed 

for various gelling systems.59,82  
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VI. Conclusions 
 
 

In this work, some novel information about the influence of steady shear flows 

on intramolecular and intermolecular association in dilute aqueous solutions of 

hydroxyethylcellulose in the presence of a cross-linker agent have been reported. 

Dynamic light scattering results at quiescent conditions reveal no intrachain 

contraction but only multichain aggregation. The weak perturbation caused by the 

Brownian dynamics will favor intermolecular association and possible intramolecular 

association is overshadowed. The growth of the aggregates starts at earlier times when 

the cross-linker concentration increases. After quenching to a lower pH, the growth of 

the species is arrested. 

 At moderate shear rates, the large number of hydroxide groups on the 

individual chain will come close to each other through rotation of the chains and form 

intramolecular cross-links. As time goes by, the moieties will collide with each other 

many times and gradually large aggregates will be buildup via interpolymer cross-

linking. The commencement and magnitude of these features depend on factors such 

as shear rate, polymer concentration, and cross-linker density. 

 Rheological, dynamical, and structural changes of semidilute HEC samples 

during the chemical gelation of these systems have been examined. The steady shear 

measurements reveal that the shear rate dependency increases by increasing the 

polymer concentration. The rheological findings have clearly demonstrated that higher 

polymer and cross-linker concentrations promote a faster gelation and a stronger 

incipient hydrogel. Both shear viscosity and relaxation measurements reveal that 

strong gel-network structures are formed far beyond the gel points.  
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 The general picture that emerges from SANS is that the formation of cross-

linker zones during the gelation process gives rise to large-scale heterogeneities in the 

gels, which grow in intensity as the cross-linker reaction proceeds. The slow relaxation 

process is slowed down as the gel evolves, because more chains are cross-linked.  

 The SANS experiments carried out in this study allowed us to access 

information concerning the structural organization of hydrogels in terms of 

concentration fluctuations on mesoscopic length scales. In the low q-range, an upturn 

in the scattered intensity is detected and this effect becomes more pronounced as the 

cross-linker concentration in the gel is increased, due to the growth of the 

heterogeneities in the gel by increasing the cross-linker concentration. In the high q-

range, no effect of cross-linker concentration on the morphology can be detected on 

this short length scale. The q dependency of the scattered intensity in this regime 

signalizes that the polymer chains are locally stretched. This work has shown that by 

changing the cross-linker density and the curing time, the mechanical and structural 

features of the hydrogel can be tuned for certain applications in e.g., pharmaceutical 

formulations. 
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VII. Appendix 
 
 

Table 3 shows some characteristic results for HEC samples.  

 

Table 3. Some Results from Different Techniques 
C*:    0.25 wt %     

 
C* = 1/ [η]                                             See page 52 

CP :   100oC 
 

Ref. 22 

MW ≈ 400,000  
 

By the aid of Zimm-plot 

A2 : 7.41E-4 
 

By the aid of Zimm-plot/ Showing a good 
thermodynamic condition ( A2 = 0 → θ Condition) 

 
 
 
       Some 
Characteristics 
    of   HEC 

Rg : 1089 Å 
 

By the aid of Zimm-plot 

Semidilute HEC 
 
1 wt % HEC 
 

5 µl/g DVS 10 µl/g DVS 15 µl/g DVS  

GP 
 

221 min 157 min 129 min See Page 34 
 

m 
 

-0.28 -0.37 -0.38 See Page 34 

n 
 

0.72 0.67 0.67 See Page 35 

S 
 

0.08 0.13 0.19 See Page 35 

2 wt % HEC 
 

5 µl/g DVS 

GP 
 

39 min 

m 
 

-0.46 

n 
 

0.54 

S 
 

1.05 

 
 The polymer concentration plays an important role 

for the dynamical structure of the network. 
 GP decreases with increasing HEC and DVS 

concentrations. 
 Higher S and lower m lower values of m suggest a 

stronger network. 
  Lower value of n reveals a higher aggregation 

and entanglements in the solution. 
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