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Abstract. Double eigenvalues are not generic for matrices without any particular structure. A matrix
depending linearly on a scalar parameter, AþμB, will, however, generically have double eigenvalues for some
values of the parameter μ. In this paper, we consider the problem of finding those values. More precisely, we
construct a method to accurately find all scalar pairs ðλ;μÞ such that AþμB has a double eigenvalue λ, where
A andB are given arbitrary complex matrices. The general idea of the globally convergent method is that ifμ is
close to a solution, then Aþ μB has two eigenvalues which are close to each other. We fix the relative distance
between these two eigenvalues and construct a method to solve and study it by observing that the resulting
problem can be stated as a two-parameter eigenvalue problem, which is already studied in the literature. The
method, which we call the method of fixed relative distance (MFRD), involves solving a two-parameter eigen-
value problem which returns approximations of all solutions. It is unfortunately not possible to get full ac-
curacy with MFRD. In order to compute solutions with full accuracy, we present an iterative method
which returns a very accurate solution, for a sufficiently good starting value. The approach is illustrated with
one academic example and one application to a simple problem in computational quantum mechanics.
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1. Introduction. For two arbitrary, given matrices A, B ∈ Cn×n, we will look for
pairs ðλ;μÞ ∈ C2 such that the matrix Aþ μB has a double eigenvalue at λ. More pre-
cisely, we will consider this problem and present a globally convergent, accurate method
for all the solution pairs ðλ;μÞ. The set of pairs ðλ;μÞ for which λ is an eigenvalue of
Aþ μB of multiplicity two or greater will be denoted by BðA;BÞ, i.e.,

BðA;BÞ ≔ fðλ;μÞ ∈ C2∶λ is a nonsimple eigenvalue of Aþ μBg:

In the same way that double eigenvalues for matrices without a particular structure are
not generic, we also have that an element of BðA;BÞ corresponding to an eigenvalue of
multiplicity greater than two is not generic. That is, λ is generically an eigenvalue of
Aþ μB with multiplicity two if ðλ;μÞ ∈ BðA;BÞ. We will see (in section 2) that the
degenerate situation corresponds to a badly conditioned problem and there is little hope
to construct a very accurate algorithm. We will for this reason focus the study on the
generic situation where λ is a double eigenvalue of Aþ μB, although the algorithm is
applicable to the degenerate case.

Our study is in a sense a simultaneous numerical characterization of the perturba-
tion of several double eigenvalues for a structured perturbation. Repeated eigenvalues
have received a lot of attention in the field of perturbation theory. See, e.g., the standard
works [16], [5], [13]. Despite the fact that the research field related to repeated eigen-
values is quite mature, there appears to be no globally convergent numerical method for
the problem of finding all elements of BðA;BÞ.
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There exist, for instance, the results on generalizations of condition numbers for
repeated eigenvalues [17], [22], [28], [15], [7], [6], which provide a theory for small per-
turbations of the repeated eigenvalue. Note that these results do not provide information
about all the elements of BðA;BÞ. In our problem formulation, μ is generally not small,
and the set BðA;BÞ is not well approximated by an asymptotic characterization for μ
close to zero.

There is also recent research on the Wilkinson distance [2], [26], [9], [18], [19], [20],
which is defined as the size of the smallest perturbation E such thatAþ E has a multiple
eigenvalue. Suppose the direction of the perturbation is known, i.e., E ¼ μB, where B is
a known matrix and μ is unknown. It is easy to compute this structured Wilkinson dis-
tance with a method which computes BðA;BÞ by choosing the smallest μ in BðA;BÞ.
Note, however, that with the methods in this paper, we can compute all elements of
BðA;BÞ and not only the smallest μ. Moreover, although there are estimates and nu-
merical methods for the Wilkinson distance (see, e.g., the references in [2]), they do not
seem to be easily restricted or extended to this structured case. In particular, there exist
local iterative methods such as [18]. The method in [18] is for an unstructured problem
and designed for repeated eigenvalues with an a priori known Jordan structure. There is
also a method in [19] which is a min-max formula for the Wilkinson distance. Note that
the optimization problem is possibly difficult to solve in a reliable way. We present a
method which is globally convergent and only involves linear algebra operations.

For general matrices, double eigenvalues correspond to a degenerate case, and the
study of double eigenvalues has traditionally been somewhat theoretically oriented.
However, the results of this paper were initiated and motivated by an application.
In quantummechanical perturbation theory, the radius of convergence of a perturbation
series in powers of μ for eigenvalues of AþμB are determined by certain points in
BðA;BÞ [27]. These points are of course not known for realistic problems, and a method
to actually estimate the radius of convergence for different perturbations is of great uti-
lity. The points where there is a repeated eigenvalue are also used in the analysis of root
loci in control theory. For other applications of repeated eigenvalues, see the references
in [18].

In order to outline the contents of the paper, we first briefly introduce some termi-
nology. Perturbations of double eigenvalues are considerably different from the theory of
simple eigenvalues. For instance, the eigenvalues typically do not behave in an analytic
way. Throughout this paper we will make use of the fact that λ as a function of μ is an
algebraic function and can be expanded in a Puiseux series [16, Chapter II, section 1.2.]

λðμþ ΔÞ ¼ λðμÞ þ cΔα þ oðΔαÞ;ð1:1Þ

where α is a rational number and μ such that λðμÞ is a repeated eigenvalue. For double
eigenvalues, we have α ∈ ð1 ∕ 2ÞZ and c can be chosen nonzero. If α is not an integer, then
(1.1) characterizes a branch point of the eigenvalue map λðμÞ.

Before presenting the numerical schemes, we prove some properties of the problem
in section 2. It turns out that the problem is numerically well posed in the generic case.
We motivate this by proving preservation of existence of solutions for infinitesimal per-
turbations as well as continuity and conditioning properties. It turns out that if λ is an
eigenvalue of AþμB with multiplicity higher than two, the problem is not well con-
ditioned. Although the theory only supports the generic case that λ is a double eigen-
value, the construction of the methods is, however, such that they are expected to work
also in these situations.
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It follows from the continuity of eigenvalue paths that if a matrix is a sufficiently
small perturbation of a matrix having a double eigenvalue, it will have two eigenvalues
close to each other. In the method presented in section 3, we will use this property to
construct a globally convergent method, based on fixing the relative distance between
two eigenvalues to a small value. This turns out to be equivalent to a so-called two-
parameter eigenvalue problem and can be solved with methods in the literature.

The construction of the method in section 3 is such that it will not yield an exact
solution, not even in exact arithmetic. Hence, in practice, the solution will not be of full
precision. Since we wish to have an accurate solution, an iterative Newton type method
for elements of BðA;BÞ is presented (in section 4). The starting value of the iterative
method is taken as the result of the algorithm in section 3. The combined algorithm is
globally convergent and produces accurate solutions. We illustrate the methods and
theory with some examples in section 5.

2. Properties of the problem. In later sections, we will construct numerical al-
gorithms for BðA;BÞ. One can only expect numerically relevant results if the problem is
posed in a numerically reasonable way. For this reason, we will in this section demon-
strate some important properties of BðA;BÞ. Without these, one could not expect to
reliably solve the problem numerically. We study

• the cardinality of BðA;BÞ;
• the continuous preservation of elements under perturbation; and
• the conditioning of the problem.

The conclusion of the study is that the elements of BðA;BÞ are generically finite, that the
elements are always preserved under sufficiently small perturbations, and that the sen-
sitivity is generically finite.

In the technical reasoning, we will make use of the property that if ðλ;μÞ ∈ BðA;BÞ,
then μ is explicitly given as the root of a polynomial. To this end let

fðλ;μ;A;BÞ ≔ detðλI − A− μBÞ:ð2:1Þ

Since λ is a double eigenvalue, a pair ðλ;μÞ ∈ BðA;BÞ can now equivalently be
characterized as

fðλ;μ; A;BÞ ¼ 0;ð2:2aÞ
f λðλ;μ; A;BÞ ¼ 0;ð2:2bÞ

where f λ is the short notation for ∂f ∕ ∂λðλ;μ; A;BÞ. Let μ ↦ M 1ðμ; A;BÞ ∈ Cn×n, re-
spectively, μ ↦ M 2ðμ; A;BÞ ∈ Cðn−1Þ×ðn−1Þ represent the companion matrices corre-
sponding to the polynomial fð·;μ; A;BÞ, respectively, f λð·;μ; A;BÞ. Then we can
write (2.2) as

λ ∈ σðM 1ðμ; A;BÞÞ;ð2:3aÞ
−λ ∈ σð−M 2ðμ; A;BÞÞ;ð2:3bÞ

which allows us to eliminate one of the variables, say λ.
PROPOSITION 2.1 (explicit form). Let μ� ∈ C. The following assertions are

equivalent.
1. ðλ;μ�Þ ∈ BðA;BÞ for some λ ∈ C.
2. μ� is a solution of the polynomial eigenvalue problem
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det ðM 1ðμ; A;BÞ ⊕ ð−M 2ðμ; A;BÞÞÞ ¼ 0:ð2:4Þ

Here, we have as usual (in, e.g., [13]) denoted the Kronecker sum by ⊕. The
Kronecker sum is defined as A ⊕ B ¼ A ⊗ I 1 þ I 2 ⊗ B, where I 1, I 2 are the identity
matrices of appropriate size. We have used the property of the Kronecker sum that
any eigenvalue of A ⊕ B is the sum of an eigenvalue of A and an eigenvalue of B.

Remark 2.2 (numerical stability of the explicit form). Proposition 2.1 directly gives
rise to a conceptual algorithm for the computation of BðA;BÞ, which consists of first
solving (2.4) for μ and, next, computing the corresponding values of λ from (2.3). From
a numerical point of view this approach is to be avoided as it requires the explicit com-
putation of the scalar characteristic equation, i.e., the symbolic computation of the de-
terminant (in (2.1)) and the derivative. ▯

2.1. Cardinality. It is not reasonable to expect that a numerical algorithm can
find all solutions of a problem if the problem has an infinite number of solutions. For-
tunately, the generic situation is that BðA;BÞ contains only a finite number of elements.

PROPOSITION 2.3 (cardinality). The following classifications hold.
1. If the nondegeneracy condition

detðM 1ðμ; A;BÞ ⊕ ð−M 2ðμ; A;BÞÞÞ ≢ 0

is satisfied, then the set BðA;BÞ consists of a finite number of isolated pairs
ðλ;μÞ in C× C.

2. Conversely, if

detðM 1ðμ; A;BÞ ⊕ ð−M 2ðμ; A;BÞÞÞ≡ 0;ð2:5Þ
then for all μ ∈ C there exists a λ ∈ C such that ðλ;μÞ ∈ BðA;BÞ.

In this work, we will focus on the first case since it is generic and the second case can
be easily handled in practice by computing the eigenvalues of AþμB for several μ.

2.2. Continuity. A numerical algorithm will always introduce rounding errors. If
the output is not continuous with respect to the input or (more critically) solutions ap-
pear or disappear under sufficiently small perturbations, there is little hope to construct
a robust numerical scheme. The problem we are considering fulfills this necessary
condition, as the set BðA;BÞ is continuous with respect to changes in A and B in
the following sense.

PROPOSITION 2.4 (continuity). Let ðλ�;μ�Þ be an isolated pair of BðA;BÞ. Then there
exists a number γ̂ > 0 such that for all γ ∈ ð0; γ̂Þ there is a number δ > 0 such that
BðAþ ΔA;B þ ΔBÞ contains at least one pair ðλ;μÞ satisfying jλ− λ�j < γ and
jμ− μ�j < γ, whenever kΔAk < δ and kΔBk < δ.

Proof. The proof follows from the continuous dependence of the solutions of
(2.4), a one-parameter polynomial eigenvalue problem, with respect to A and B,
combined with the continuous dependence of the zeros of f ð·;μ; A;BÞ with respect
to A, B, and μ. ▯

2.3. Conditioning. Continuity with respect to changes in the input is not suffi-
cient for the problem to be numerically well posed. If the output is highly sensitive to
perturbations in the input, the problem is also considered very difficult from a numerical
point of view. This comes from the fact that the first operation in a numerical algorithm
will introduce rounding errors. In the following, we present a characterization of the case
that such ill-conditioning, i.e., high sensitivity with respect to input, occurs.
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Let ðλ�;μ�Þ be an isolated pair of BðA;BÞ, and consider the corresponding solutions
of BðAþ ϵEa; B þ ϵEbÞ, where ϵ > 0 is a small perturbation parameter and Ea and Eb

are n-by-n arbitrary complex matrices. The characterization (2.2) brings us to the
equations

f ðλ� þ Δλ;μ� þ Δμ; Aþ ϵEa; B þ ϵEbÞ ¼ 0;ð2:6aÞ
f λðλ� þ Δλ;μ� þ Δμ; Aþ ϵEa; B þ ϵEbÞ ¼ 0;ð2:6bÞ

where we made the substitutions λ ¼ λ� þ Δλ andμ ¼ μ� þ Δμ. From the implicit func-
tion theorem, we conclude that if the Jacobian matrix

Cðλ�;μ�Þ ≔
"

0 fμðλ�;μ�; A;BÞ
f λλðλ�;μ�; A;BÞ f λμðλ�;μ�; A;BÞ

#
ð2:7Þ

is invertible, then (2.6) locally defines a unique function ϵ ↦ ðΔλðϵÞ;ΔμðϵÞÞ that can be
expanded as

� Δλ
Δμ

�
¼ −Cðλ�;μ�Þ−1

"
∂
∂ϵ f ðλ�;μ�; Aþ ϵEa; B þ ϵEbÞjϵ¼0

∂
∂ϵ f λðλ�;μ�; Aþ ϵEa; B þ ϵEbÞjϵ¼0

#
ϵþOðϵ2Þ:ð2:8Þ

We note that the matrix Cðλ�;μ�Þ is invertible if and only if

f λλðλ�;μ�Þfμðλ�;μ�Þ ≠ 0:ð2:9Þ

This condition corresponds to the generic situation where λ� is a double, nonsemisimple
eigenvalue of Aþ μ�B that satisfies the completely regular splitting property. The local
behavior of a perturbation is said to have a completely regular splitting if the order of the
root in the first nonvanishing term in the Puiseux series of the eigenvalue coincides with
the partial multiplicities in the Jordan structure; see, e.g., [14] and the references therein
for literature on completely regular splitting. Here we will use only the fact that com-
plete regular splitting is the generic case. We summarize it as follows.

PROPOSITION 2.5. Let ðλ�;μ�Þ be an isolated pair of BðA;BÞ.
1. If (2.9) holds, then the sensitivity of the pair ðλ�;μ�Þ is determined by

kCðλ�;μ�Þ−1k;

where Cðλ�;μ�Þ is defined by (2.7). Furthermore, the expansion (2.8) is
applicable.

2. The pair ðλ�;μ�Þ is ill conditioned if f λλðλ�;μ�Þ ¼ 0; i.e., the eigenvalue λ� of
Aþ μ�B has multiplicity larger than two.

3. The pair ðλ�;μ�Þ is ill conditioned if fμðλ�;μ�Þ ¼ 0. This includes the case where
λ� is a double semisimple eigenvalue of Aþ μ�B.

3. A method of fixed relative distance. Consider for the moment a fixed scalar
μ ∈ C. Suppose λ ∈ C is a complex scalar fulfilling two conditions; it is an eigenvalue of
Aþ μB, i.e.,

λ ∈ σðAþ μBÞð3:1Þ

and ð1þ εÞλ is also an eigenvalue of Aþ μB, i.e.,
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ð1þ εÞλ ∈ σðAþ μBÞ;ð3:2Þ

for a fixed nonzero complex scalar ε. The fundamental idea of the method we will present
in this section is that the solutions of (3.1) and (3.2), where λ and μ are the unknowns,
approximate the elements of BðA;BÞ for sufficiently small ε. We will denote the set of all
solutions of (3.1) and (3.2) by DðA;B; εÞ, i.e.,

DðA;B; εÞ ≔ fðλ;μÞ ∈ C2∶ð3.1Þ and ð3.2Þ holdg:

Note that if ðλ;μÞ ∈ DðA;B; εÞ, then the matrix Aþ μB has two eigenvalues with rela-
tive distance ε. The conceptual method to estimate BðA;BÞ by computing DðA;B; εÞ for
sufficiently small ε will be referred to as the method of fixed relative distance (MFRD).

We will first see thatDðA;B; εÞ can be computed by solving a generalized eigenvalue
problem, and then we will study the elements of DðA;B; εÞ as a function of ε. In
section 3.1, we show that the finite limits (as ε → 0) correspond to the elements of
BðA;BÞ. We study the case where an element is unbounded as ε → 0 in section 3.2.
The error of the approximation is characterized in section 3.3 and used to find a reason-
able choice of ε in section 3.4.

In Proposition 2.1, we saw that if ðλ;μÞ ∈ BðA;BÞ, then μ was a root of a polyno-
mial. The direct method to compute the roots of this polynomial is not attractive from a
the point of view of numerical stability. This is resolved with the regularized formulation
ofDðA;B; εÞ. We will now see that determining DðA;B; εÞ is a problem of the type called
two-parameter eigenvalue problems, which are solvable in a numerically stable way. The
relations (3.1) and (3.2) can be reformulated as follows.

Problem 3.1 (the associated two-parameter eigenvalue problem). Given A,
B ∈ Cn×n, and ε ∈ C, find ðλ;μÞ ∈ C2 and a pair of nontrivial vectors ðu; vÞ ∈ Cn×2

such that

Au ¼ ðλI −μBÞu; Av ¼ ðλð1þ εÞI −μBÞv:
▯
There is a general theory for the two-parameter eigenvalue problem available in the

classical works [4], [3]. There are also more recent results which are more numerically
oriented [12]. Some results are focused on the singular problem [24], and some are for
different types of generalizations [23]. We also note that multiparameter eigenvalue pro-
blems have been used for (relative) placement of eigenvalues [8].

There are several ways to numerically solve two-parameter eigenvalue problems,
e.g., the Jacobi–Davidson type method in [11]. For further methods, see the references
in [11]. The most common way to solve and analyze two-parameter eigenvalue problems
is by means of three matrices Δ0, Δ1, and Δ2 ∈ Cn2×n2

, called the matrix determinants.
In the case of Problem 3.1, the matrix determinants are

Δ0ðεÞ ¼ −I ⊗ B þ ð1þ εÞB ⊗ I ¼ ðð1þ εÞBÞ ⊕ ð−BÞ;ð3:3Þ
Δ1 ¼ −A ⊗ B þ B ⊗ A;ð3:4Þ

Δ2ðεÞ ¼ I ⊗ A− ð1þ εÞA ⊗ I ¼ ð−ð1þ εÞAÞ ⊕ A:ð3:5Þ

One reason why the matrix determinants are important in the context of two-parameter
eigenvalue problems stems from the fact that the two-parameter eigenvalue problem is
(under sufficient nonsingularity conditions) equivalent to the solutions of two coupled
generalized eigenvalue problems. In this case,
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λðεÞΔ0ðεÞz ¼ Δ1zð3:6Þ
and

μðεÞΔ0ðεÞz ¼ Δ2ðεÞz;ð3:7Þ
where z is a decomposable tensor z ¼ u ⊗ v. Although not always very efficient, we will
solve the relative distance problem by solving (3.6) and (3.7). It follows from the general-
ized eigenvalue problems (3.6) and (3.7) that the setDðA;B; εÞ is (generically) a union of
a finite number of functions in ε. For this reason, we have denoted the solutions by λðεÞ
and μðεÞ when we wish to stress the dependence on ε. Note that since all eigenvalue
paths are continuous (but not necessarily differentiable), the elements of DðA;B; εÞ
are also continuous with respect to ε.

A two-parameter eigenvalue problem for which Δ0ðεÞ is nonsingular is completely
characterized by the eigenvalues ofΔ0ðεÞ−1Δ1 andΔ0ðεÞ−1Δ2ðεÞ and hence somewhat ea-
sier from a theoretical and numerical perspective. The condition that Δ0ðεÞ is singular is
oneway to define singularity of the two-parameter eigenvalue (also used, e.g., in [24]).The
two-parameter eigenvalue problem in Problem 3.1 is in this sense indeed generically non-
singular for sufficiently small nonzero ε ∈ C \ f0g, as can be seen in the following lemma.

LEMMA 3.2 (nonsingularity). The two-parameter eigenvalue problem (Problem 3.1)
is singular, i.e., det ðΔ0ðεÞÞ ¼ 0, if and only if there is γ ∈ σðBÞ such that
γð1þ εÞ ∈ σðBÞ.

Remark 3.3 (the nonzero regularization parameter ε). If ε is set to zero, it is easy to
see from Lemma 3.2 that the two-parameter eigenvalue problem is singular. Although
there are results on singular two-parameter eigenvalue problems [24], such an approach
seems impossible for this problem. Note that if ε ¼ 0, then the two eigenvalue problems
(3.1) and (3.2) are identical and the solution corresponds to the eigenvalue curves
λðμÞ ∈ σðAþ μBÞ. The points on these curves do, generically, not correspond to double
eigenvalues.

The two-parameter eigenvalue problem for ε ¼ 0 is singular, and the corresponding
problem for DðA;B; εÞ is not singular. Hence, the problem associated with MFRD is
in a sense a regularized problem and we will call the parameter ε a regularization
parameter. ▯

In the remaining parts of this section, we wish to show properties of DðA;B; εÞ and
in particular in what sense DðA;B; εÞ approximates BðA;BÞ.

3.1. Consistency. The first property which we will illustrate in a remark and a
theorem is that the method is consistent in the sense that (generically) all finite limits
of DðA;B; εÞ as ε → 0 belong to BðA;BÞ. Moreover, this limit is independent of the
angle of ε.

Remark 3.4 (the angle of ε). Since ε is the relative distance, fixing the complex angle
of ε fixes the angle of the separation of the eigenvalues λðεÞ and ð1þ εÞλðεÞ. We will now
see that the angle of ε will asymptotically only influence the angle of the approximation
error. The asymptotic effect of changing φ where ε ¼ jεjeiφ can be roughly motivated as
follows. Consider the first terms in a completely regular square root splitting,
λðμðεÞÞ ¼ λ� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ� −μðεÞp

. The condition that the relative distance is ε implies that
μ� −μðεÞ ¼ cε2 ¼ cjεj2ei2φ. This in turn implies that the error of the approximation is
given by λðμðεÞÞ− λ� ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ� − μðεÞp ¼ �c1∕ 2jεje�iφ. Now note that φ, i.e., the angle
of the relative distance ε, changes only the angle of the error and not the magnitude. The
phenomenon is illustrated in Figure 3.1. The same reasoning holds for an arbitrary split-
ting of the eigenvalue. ▯
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In the following theorem, we formalize the argument above and see that the set of
finite limits of DðA;B; εÞ as ε → 0 is generically equal to the set BðA;BÞ.

THEOREM 3.5 (consistency). Consider the pair A, B ∈ Cn×n. The sets DðA;B; εÞ and
BðA;BÞ are related by the following statements.

(i) If B is nonsingular, the set DðA;B; εÞ is the union of n2 pair of functions
ðλðεÞ;μðεÞÞ for sufficiently small ε ≠ 0.

(ii) If ðλðεÞ;μðεÞÞ ∈ DðA;B; εÞ and ðλðεÞ;μðεÞÞ → ðλ�;μ�Þ ∈ C2 as jεj → 0 and
λ� ≠ 0, then ðλ�;μ�Þ ∈ BðA;BÞ.

(iii) If ðλ�;μ�Þ ∈ BðA;BÞ is an isolated pair and λ� ≠ 0, then there exists a path
ε ↦ ðλðεÞ;μðεÞÞ such that ðλðεÞ;μðεÞÞ ∈ DðA;B; εÞ for every ε > 0 in a
neighborhood of ε ¼ 0 and such that ðλðεÞ;μðεÞÞ → ðλ�;μ�Þ as ε → 0.

Proof. The paths λðεÞ andμðεÞ are solutions of the generalized eigenvalue problems
corresponding to the pencils Δ1 − λðεÞΔ0ðεÞ and Δ2ðεÞ− μðεÞΔ0ðεÞ. The eigenvalues of
a matrix depending continuously on a parameter is a collection of paths, where the num-
ber of paths equals the dimension of the matrix, here n2 (see, e.g., [10, Corollary 4.2.4]).
The generalized eigenvalue problems can be rewritten as standard eigenvalue problems
if Δ0ðεÞ is nonsingular. Hence, to show statement (i), it is sufficient to show that Δ0ðεÞ is
nonsingular for sufficiently small ε.

It follows from the sum-property of Kronecker sums that the eigenvalues of Δ0ðεÞ
are ð1þ εÞbi − bj for i, j ¼ 1; : : : n, where bi are the eigenvalues of B. Since bi ≠ 0, all
eigenvalues of Δ0ðεÞ are nonzero for sufficiently small ε ≠ 0. This proves statement (i).

Let f ðλ;μÞ ¼ detð−λI þ AþμBÞ. In order to show statement (ii), we will show
that f λðλ�;μ�Þ ¼ 0. First note that

fðλðεÞ;μðεÞÞ ¼ fðλðεÞð1þ εÞ;μðεÞÞ ¼ 0:

Hence, by Taylor expansion,

0 ¼ f ðλðεÞð1þ εÞ;μðεÞÞ ¼ f ðλðεÞ;μðεÞÞ þ λðεÞεf λðλðεÞ;μðεÞÞ þOðλðεÞεÞ2:
Since λðεÞ → λ� ∈ C \ f0g when ε → 0, we have that f λðλ�;μ�Þ ¼ 0.

FIG. 3.1. The approximations rotate around the solutions λ� andμ� as the angle of ε is changed. The plots
show the curves for φ ∈ ½0;π�. We have denoted λ1ðφÞ ≔ λðjεjeiφÞ and λ2ðφÞ ≔ λ1ðφÞð1þ jεjeiφÞ. The dashed
line corresponds to φ ¼ 0. In subfigure (a), the same dashed line (asymptotically) corresponds to the line to the
origin.
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In order to show statement (iii), let λ0ðr; θÞ and λ1ðr; θÞ be two eigenvalues of Aþ
ðμ� þ reiθÞB with λið0; 0Þ ¼ λ�. We have an expansion

λ1ðr; θÞ ¼ λ� þ Crαeiθα þ oðrαÞ;ð3:8Þ

where C ≠ 0 and α > 0, and a similar expansion for λ0ðr; θÞ. Since the double eigenvalue
is isolated, the difference does not vanish identically, and we have an expansion

λ1ðr; θÞ− λ0ðr; θÞ ¼ Drβeiθβ þ oðrβÞð3:9Þ

for some D ≠ 0. (Note that λi can be chosen as different branches from one expansion or
from different Puiseux expansions.)

We first construct a function θðrÞ such that the relative distance function gðr; θðrÞÞ
is real,

gðr; θðrÞÞ ≔ λ1ðr; θðrÞÞ− λ0ðr; θðrÞÞ
λ0ðr; θðrÞÞ

∈ R:

The angle of the relative distance is

argðgðr; θÞÞ ¼ argðDÞ þ θβþ oðrβÞ− argðλ�Þ þ oðrαÞ:ð3:10Þ

If argðgðr; θÞÞ ¼ 0, then gðr; θÞ ∈ R. We use the implicit function theorem on this con-
dition and ð ∂

∂θ ðargðgðr; θÞÞÞÞr¼0 ¼ β ≠ 0, which shows that there is a function θðrÞ such
that gðr; θðrÞÞ is real for every r in a neighborhood of r ¼ 0. Without loss of generality,
we can impose that gðr; θðrÞÞ is positive since switching λ1 and λ0 corresponds to switch-
ing sign of gðr; θðrÞÞ for r → 0.

We now use 1 ∕ ð1þ xÞ ¼ 1− xþ oðxÞ, where x ¼ λ−1� λ0ðr; θðrÞÞ− 1 and the expan-
sion (3.9) and find that

gðr; θðrÞÞ ¼ λ−1� DrβeiθðrÞβ þ oðrβÞ ¼ jλ�j−1jDjrβ þ oðrβÞ;ð3:11Þ
where in the last step we used the explicit formula for θðrÞ from (3.10). Now consider

hðr; εÞ ≔ ε1∕ β −
�
λ1ðr; θðrÞÞ− λ0ðr; θðrÞÞ

λ0ðr; θðrÞÞ
�

1 ∕ β
¼ ε1 ∕ β − jλ�j−1 ∕ βjDj1 ∕ βr þ oðrÞ:

ð3:12Þ

We again use the implicit function theorem; now on hðr; εÞ. Since ∂h∕ ∂rð0; 0Þ ≠ 0, there
exists a function rðεÞ such that

ε ¼ λ1ðrðεÞ; θðrðεÞÞÞ− λ0ðrðεÞ; θðrðεÞÞÞ
λ0ðr; θðrðεÞÞÞ

ð3:13Þ

for every ε > 0 in a neighborhood of ε ¼ 0. By construction, λ0ðrðεÞ; θðrðεÞÞÞ and
λ1ðrðεÞ; θðrðεÞÞÞ are eigenvalues of Aþ ðμ� þ rðεÞeiθðrðεÞÞÞB and from (3.13) the relative
distance is ε. Hence, ε ↦ ðλ1ðrðεÞ; θðrðεÞÞÞ;μ� þ rðεÞeiθðrðεÞÞÞ is a function correspond-
ing to an element of DðA;B; εÞ. ▯

Remark 3.6 (λ� ¼ 0). Note that the case λ� ¼ 0 has to be explicitly excluded in
Theorem 3.5. This stems from the fact that the relative distance is defined by (3.1)
and (3.2), which are trivially fulfilled if λ ¼ 0 (and ifμ is an eigenvalue of the generalized
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eigenvalue problem Aþ μB) for any ε. The special case where λ ¼ 0 is a double eigen-
value can be easily handled by hand, and the solutions corresponding to λ ¼ 0 can be
safely and easily excluded from the solution set in the implementation. ▯

3.2. Unbounded limits. We now know (from Theorem 3.5) that the finite limits
of DðA;B; εÞ form, in a relevant way, the set BðA;BÞ. At this point, it is important to
note that this does not necessarily imply that the elements of DðA;B; εÞ always approx-
imate a corresponding element of BðA;BÞ as ε → 0. It turns out that some elements of
DðA;B; εÞ can be unbounded as ε → 0. This is illustrated in Theorem 3.8, for which we
first need the following result which relates DðA;B; εÞ with the converse problem
DðB;A; εÞ.

LEMMA 3.7 (a converse identity). Let ε;μ ∈ C \ f0g be given. Then

ðλ;μÞ ∈ DðA;B; εÞ ⇔ ðλ ∕ μ; 1 ∕ μÞ ∈ DðB;A; εÞ:

Proof. Define f ðλ;μÞ ¼ detðAþ μB − λI Þ and gðγ; νÞ ¼ detðB þ νA− γI Þ. Now,
ðλ;μÞ ∈ DðA;B; εÞ if and only if f ðλ;μÞ ¼ f ðð1þ εÞλ;μÞ ¼ 0 if and only if
gðλ ∕ μ; 1 ∕ μÞ ¼ gðð1þ εÞλ ∕ μ; 1 ∕ μÞ ¼ 0, since f ðμ; λÞ ¼ μngðλ ∕ μ; 1 ∕ μÞ. Since the re-
lative distance between λ ∕ μ and ð1þ εÞλ ∕ μ is ε, ðλ ∕ μ; 1 ∕ μÞ ∈ DðB;A; εÞ as
claimed. ▯

THEOREM 3.8 (unbounded elements). Suppose B is invertible and BðA;BÞ only con-
sists of isolated elements. Let γ� ∈ C \ f0g. Then these statements are equivalent:

1. γ� is a multiple eigenvalue of B.
2. There exists a punctured disk D ¼ fε∶jεj < ε̂g∶f0g ⊂ C and functions

ε ∈ D ↦ ðλðεÞ;μðεÞÞ ∈ C× C

satisfying ðλðεÞ;μðεÞÞ ∈ DðA;B; εÞ for all ε ∈ D with

limε→0jλðεÞj ¼ limε→0jμðεÞj ¼ ∞

and

limε→0

λðεÞ
μðεÞ ¼ γ�.

Proof. Let f ðλ;μÞ and gðγ; νÞ be as in Lemma 3.7. We first prove that statement 1
implies statement 2. Since B is invertible, we have γ� ≠ 0. By point (iii) of Theorem 3.5,
there exists a small punctured disk D and functions γ; ν∶D → C× C with ðγðεÞ; νðεÞÞ ∈
DðB;A; εÞ and limε→0ðγðεÞ; νðεÞÞ ¼ ðγ�; 0Þ.

By Lemma 3.7,

ðλðεÞ;μðεÞÞ ≔
�
γðεÞ
νðεÞ ;

1

νðεÞ
�

∈ DðA;B; εÞ ∀ ε ∈ D:

Moreover,

limε→0jλðεÞj ¼ limε→0

���� γðεÞνðεÞ
���� ¼ ∞

and
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limε→0jμðεÞj ¼ limε→0

���� 1

νðεÞ
���� ¼ ∞

since νðεÞ → 0 and γðεÞ → γ� ≠ 0. We also have

limε→0

λðεÞ
μðεÞ ¼ limε→0 γðεÞ ¼ γ�:

The implication is thus proven.
To prove that statement 2 implies statement 1, we suppose that the functions

λ;μ∶D → C× C exists, with the desired limits. Define γðεÞ ≔ λðεÞ ∕ μðεÞ and
νðεÞ ≔ 1 ∕ μðεÞ. By Lemma 3.7, ðγðεÞ; νðεÞÞ ∈ DðB;A; εÞ. Since λðεÞ ∈ σðAþ μðεÞBÞ
and λðεÞ → ∞, we must also have μðεÞ → ∞ as ε → 0.

Consequently,

limε→0 νðεÞ ¼ limε→0

1

μðεÞ ¼ 0;

and ðγðεÞ; νðεÞÞ → ðγ�; 0Þ as ε → 0. By statement (ii) of Theorem 3.5, γ� is then a double
eigenvalue of B. This concludes the proof. ▯

This illustrates that there are situations where some elements of DðA;B; εÞ do not
converge to a (finite) value. However, from statement (iii) of Theorem 3.5, we have that
elements which do not converge, also do not correspond to elements of BðA;BÞ. This
justifies that although elements of DðA;B; εÞ are not always convergent, we still capture
all solutions of BðA;BÞ.

3.3. Regularization error. Since ε must be chosen nonzero and not too small in
practice (see Remark 3.3), the construction with relative distance will always generate
some error, which we will call the regularization error. In this section, we will see that
this error is reasonably behaved.We show this by proving some results about the asymp-
totic error as a function of the regularization parameter ε. In particular, if the repeated
eigenvalue has a completely regular square root splitting, which is the generic case, the
accuracies are λðεÞ− λ� ¼ OðεÞ, i.e., linear, and μðεÞ− μ� ¼ Oðε2Þ, i.e., quadratic.

We will later use this result to propose a rough argument for how to choose ε in
practice.

THEOREM 3.9 (regularization error). Let ðλ�;μ�Þ be an isolated pair in BðA;BÞ, then
there exists a pair of functions ðλðεÞ;μðεÞÞ ∈ DðA;B; εÞ such that

limε→0

jλðεÞ− λ�j
jεjα ¼ C1jλ�jαð3:14Þ

and

limε→0

jμðεÞ− μ�j
jεjβ ¼ C 2jλ�jβ;ð3:15Þ

where C1, C 2 ∈ R, and α;β ∈ Rþ are independent of ε. Moreover, if λð·Þ has a comple-
tely regular square root splitting with λðεÞ ¼ λ� � Cðμ� − μðεÞÞ1∕ 2 þ oðμ� − μðεÞÞ and
C ≠ 0, then the constants are α ¼ 1, β ¼ 2, C 1 ¼ 1

2, and C2 ¼ 1
j4C2j.

Proof. The proof of (3.14) and (3.15) is done for the general setting where the ei-
genvalue λðεÞ has a Puiseux expansion
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λðεÞ ¼ λ� þ CðμðεÞ−μ�Þq þ oððμðεÞ− μ�ÞqÞ;ð3:16Þ
and λ2ðεÞ is either a different branch from the same Puiseux series or a different Puiseux
expansion. First, consider the Puiseux expansion of the difference

λðεÞ− λ1ðεÞ ¼ DðμðεÞ− μ�Þp þ oððμðεÞ− μ�ÞpÞ;
where C;D ∈ C. Note that C andD can be chosen nonzero since ðλ�;μ�Þ is isolated. The
two equations can now be solved by eliminating ðμðεÞ−μ�Þqp,

ððλðεÞ− λ�Þp ∕ Cp þ oðμðεÞ− μ�ÞqÞp ¼ ðμðεÞ− μ�Þqp
¼ ðλðεÞ− λ2ðεÞÞq ∕ Dq þ oððμðεÞ− μ�ÞpÞq:

The relative distance is ε by construction, i.e., λ2ðεÞ ¼ λðεÞð1þ εÞ. Inserting
λ2ðεÞ ¼ λðεÞð1þ εÞ into the second equality yields that

jλðεÞ− λ�jp ∕ jC jp ¼ jεjqjλðεÞjq ∕ jDjq þ oððμðεÞ− μ�ÞpÞ:
Hence, by taking the pth root,

jλðεÞ− λ�j
jεjq∕ p ¼ jC j

jDjq ∕ pjλðεÞj
q ∕ p þ oðμðεÞ− μ�Þ:

This proves (3.14). From (3.16) we find that

jμðεÞ− μ�j ¼
ðjλðεÞjjεjÞ1∕ p

jDj1 ∕ p þ oðjεj1∕ pÞ:

This implies (3.15). For a completely regular square root splitting, we can choose
p ¼ q ¼ 1 ∕ 2 and D ¼ 2C . Hence, α ¼ 1, β ¼ 1 ∕ p ¼ 2, C 1 ¼ jC ∕ 2C j ¼ 1 ∕ 2, and
C 2 ¼ 1 ∕ ð4C 2Þ. ▯

Remark 3.10 (extrapolation). The algebraic convergence of the solution as ε → 0

can be used to accelerate convergence by evaluating for several ε. This extrapolation
technique will not be used in this work since evaluating ðλðεÞ;μðεÞÞ is the most com-
putationally dominating part of the method. In order to gain full accuracy, we will (in
section 4) instead use a local iterative method to gain high accuracy. ▯

3.4. The regularization parameter trade-off. In practice, we must fix the reg-
ularization parameter ε before the carrying out the algorithm. If ε is chosen too large,
the regularization error will (according to Theorem 3.9) be large. If ε is chosen too small,
it is natural to expect that rounding errors will destroy the accuracy of the solution since
the problem is very close to singular. We now wish to derive a rough estimate of ε pro-
viding a reasonable resolution to the trade-off. We will restrict the study to the generic
case where λ is a double (not triple) eigenvalue of AþμB.

In this subsection, we will also restrict the error analysis to the matrix determinant
approach to solve the two-parameter eigenvalue problem; i.e., we will solve the general-
ized eigenvalue problem corresponding to the pencil

DεðλÞ ≔ Δ1 − λΔ0ðεÞ:

We now wish to outline in what way the magnitude of ε affects the condition of the
eigenvalue problem of Dε for ε ≠ 0. This will lead us to a reasonable choice of ε to
be used in the implementation.
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We start with a technical lemma showing that the structure of the problem is such
that the first terms in the expansion of detðDεðλÞÞ (in powers of ε) vanish.

LEMMA 3.11. The following expansion holds:

det DεðλÞ ¼
Xn2

k¼2

εkf kðλÞ;

where the functions fk; k ¼ 2; : : : ; n2 are polynomials of degree smaller than or
equal to n2.

Proof. By explicitly computing the determinant it follows that

det DεðλÞ ¼
Xn2

k¼0

εkf kðλÞ;

where f k; k ¼ 0; : : : ; n2 are polynomials. Due to the fact that the pencil D0ðλÞ is
singular, we have f 0 ≡ 0. It remains to prove that f 1 ≡ 0.

For an arbitrary fixed value of λ, we get

f 1ðλÞ ¼
∂ det DεðλÞ

∂ε

����
ε¼0

¼ Tr

�
adjðD0ðλÞÞ

∂DεðλÞ
∂ε

����
ε¼0

�
:

We can express

D0ðλÞ ¼ ð−A ⊗ B þ B ⊗ AÞ− λð−I ⊗ B þ B ⊗ I Þ
¼ B ⊗ ðA− λI Þ− ðA− λI Þ ⊗ B:

If (A− λI ) is invertible, then we get from LemmaA.1 in the appendix that adjD0ðλÞ ¼ 0.
We conclude that f 1ðλÞ ¼ 0 for all λ ∈= σðAÞ. Because f 1 is a polynomial, this implies that
f 1 ≡ 0 and the proof is completed. ▯

In what follows, we investigate the condition of the eigenvalue problem of the pencil
Dε, for a fixed value of ε ≠ 0. In order to assess the effect of perturbations of the matrices
Δ0 and Δ1 on the eigenvalues of Dε, we consider the pseudospectra ΛγðDεÞ, γ > 0, de-
fined here as

ΛγðDεÞ ≔
�
λ ∈ C: det fðΔ1 þ δΔ1Þ− λðΔ0ðεÞ þ δΔ0Þg ¼ 0 for some

δΔ0;δΔ1 ∈ Cn2×n2
; satisfying

kδΔ0ðεÞk2
kΔ0k2

< γ and
kδΔ1k2
kΔ1k2

< γ

�
:

ð3:17Þ

Thus, the pseudospectrum ΛγðDεÞ is a subset of the complex plane consisting of all
possible positions of the eigenvalues of Dε when the system matrices are subject to per-
turbations with relative size smaller than γ. From [21, Theorem 1] the following com-
putational formula can be derived:

ΛγðDεÞ ¼
�
λ ∈ C: kðDεðλÞÞ−1k2ðkΔ0ðεÞk2 þ jλjkΔ1k2Þ >

1

δ

�
:ð3:18Þ
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Now, let λε be an isolated eigenvalue of Dε, that is,

det DεðλεÞ ¼ 0;
d

dλ
det DεðλÞ

����
λ¼λε

≠ 0:

If jλ− λεj is small, we can approximate

kðDεðλÞÞ−1k2ðkΔ0ðεÞk2 þ jλjkΔ1k2Þ

≈
kadjDεðλεÞk2��� ddλ det DεðλÞjλ¼λε

���jðλ− λεÞj
ðkΔ0ðεÞk2 þ jλεjkΔ1k2Þ:ð3:19Þ

From (3.18) and (3.19), we conclude that for sufficiently small values of γ, the pseudos-
pectrum Λγ contains a disk centered around λε, with radius equal to rðλεÞδ, where

rðλεÞ ≔
kadjDεðλεÞk2��� ddλ det DεðλÞjλ¼λε

��� ðkΔ0ðεÞk2 þ jλεjkΔ1k2Þ:ð3:20Þ

In other words, the number rðλεÞ is the growth rate of the pseudospectrum ΛγðDεÞ
around the eigenvalue λε when δ is increased from zero.

Remark 3.12. The number rðλεÞ corresponds to the (structured) condition number
for the eigenvalue λε as defined in [1, equation (4)]. We will now use the property
adjDεðλεÞ ¼ cuv�, where u and v are normalized right and left null vectors of DεðλεÞ
and c ∈ C. Moreover,

d

dλ
det DεðλÞ

����
λ¼λε

¼ trðD  0
εðλεÞadjDεðλεÞÞ ¼ cv�D  0

εðλεÞu:

The expression (3.20) can now be simplified to

rðλεÞ ¼
1

jv�D  0
εðλεÞuj

ðkΔ0ðεÞk2 þ jλεjkΔ1k2Þ;

which is consistent with the expression formulated in [1, Lemma 2.1]. ▯
Taking into account Lemma 3.11, we can simplify (3.20) to

rðλεÞ ¼
1

ε2
kadjDεðλεÞk2���Pn2

k¼2 fk
 0ðλεÞεk−2

��� ðkΔ0ðεÞk2 þ jλεjkΔ1ðλεÞk2Þ:

Hence, if limε→0λε is finite, say λ�, then the pseudospectral growth rate increases
inversely proportional to ε2 as ε → 0. We will now reach the main point of this section.
If we apply a stable algorithm to compute the eigenvalues of Dε (for instance, the cele-
brated QZ algorithm), it is expected that the computational error on the result is com-
parable to the error induced by rounding errors on the data. Therefore, for a fixed
value of ε, the worst-case computational error on the eigenvalue λε is expected to be
proportional to

EcðεÞ ≔ rðλεÞεmach ∼
εmach

ε2
;ð3:21Þ
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where εmach is the machine precision. On the other hand, recall from Theorem 3.9 that
the approximation error, that is Ea ≔ ðλðεÞ− λ�Þ ∕ λ�, satisfies

EaðεÞ∼ ε;ð3:22Þ

which needs to be small in order to obtain good approximations of all solutions of
BðA;BÞ. The optimal choice of ε involves a trade-off between (3.21) and (3.22). It leads
us to the choice

ε∼ ε
1∕ 3
machð3:23Þ

for which both

Ec ∼ ε
1 ∕ 3
mach; Ea ∼ ε

1 ∕ 3
mach:

As demonstrated in section 5, this must be treated as a rule of thumb.

4. Local methods. The method in section 3 (MFRD) has the attractive property
that it approximates all solutions of BðA;BÞ. A drawback of the method is that a reg-
ularization error is introduced dependent on the parameter ε which cannot be chosen
zero or too small. In this section, we show how, in a postprocessing step, approximations
can be improved using local iterative methods. These methods are based on solving sys-
tems of nonlinear equations that fully characterize the elements of BðA;BÞ. Since they
are iterative methods, they rely on having reasonable starting values. These can be gen-
erated from the solutions of DðA;B; εÞ, i.e., MFRD.

4.1. An augmented system of equations. A double eigenvalue can either be
semisimple or nonsemisimple. If it is semisimple, then

ðAþ μB − λI Þv1 ¼ 0;ð4:1aÞ
ðAþμB − λI Þv2 ¼ 0ð4:1bÞ

for nonparallel v1 and v2, whereas, for nonsemisimple eigenvalues, we have a generalized
eigenvector u associated with the eigenvector v such that

ðAþ μB − λI Þv ¼ 0;ð4:2aÞ
ðAþμB − λI Þu ¼ v:ð4:2bÞ

In our setting, we do not know a priori which case occurs. In order to construct a local
iterative method which works for both semisimple and nonsemisimple eigenvalues, we
will consider the null-space of ðAþ μB − λI Þ2. It is easy to verify, by multiplying (4.1)
and (4.2) from the left by ðAþ μB − λI Þ, that ðAþ μB − λI Þ2 must have a null-space of
at least dimension two, if λ is an eigenvalue of AþμB of multiplicity two. The converse
also holds [19, Lemma 1]. That is, we have that Aþ μB has a multiple (semisimple or
nonsemisimple) eigenvalue λ if and only if ðAþ μB − λI Þ2 has a null-space of at least
dimension two.

One common approach to the standard eigenvalue problem is to write it as a system
of equations by introducing a normalization condition, e.g., a�v ¼ 1, where the normal-
ization vector a can be arbitrary but not orthogonal to the eigenvector. We will use a
similar construction, where we need several normalization constraints.
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We will use the following general property of a matrix E ∈ Cn×n with a two-
dimensional null-space. For almost any a1; a2 ∈ Cn, the set of equations

Ev1 ¼ 0;ð4:3aÞ
Ev2 ¼ 0;ð4:3bÞ
a�1v1 ¼ 1;ð4:3cÞ
a�2v1 ¼ 1;ð4:3dÞ
a�1v2 ¼ 1;ð4:3eÞ
v�1v2 ¼ 0ð4:3fÞ

uniquely defines an orthogonal basis ðv1; v2Þ ∈ Cn×2 of the null-space of E.
This can be directly derived from the singular value decomposition of E. Let

W ∈ Cn×ðn−2Þ denote the (right) singular vectors corresponding to the n− 2 nonzero
singular values of E. The singular vectors are orthonormal, and hence, Ev1 ¼ 0 is
equivalent to W �v1 ¼ 0. The equations (4.3a), (4.3c), (4.3d) can now be written as
a linear system 2

64
W �

a�1
a�2

3
75v1 ¼

2
64
0

1

1

3
75;

which has a unique solution v1, provided that

rank

2
64
W �

a�1
a�2

3
75 ¼ n:ð4:4Þ

From the same reasoning with (4.3b), (4.3e), and (4.3f), we have that v2 is unique, pro-
vided that

rank

2
64
W �

a�1
v�1

3
75 ¼ n:ð4:5Þ

We will now combine this result with [19, Lemma 1], stating that E ¼ ðAþ
Bμ− λI Þ2 has a null-space of dimension at least two, if and only if λ is a nonsimple
eigenvalue of AþμB. This leads us to the following equations, which characterize a
multiple eigenvalue λ of Aþ μB:

ðAþ Bμ− λI Þ2v1 ¼ 0;ð4:6aÞ
ðAþ Bμ− λI Þ2v2 ¼ 0;ð4:6bÞ

a�1v1 ¼ 1;ð4:6cÞ
a�2v1 ¼ 1;ð4:6dÞ
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a�1v2 ¼ 1;ð4:6eÞ

v�1v2 ¼ 0ð4:6fÞ

for any a1 and a2 satisfying (4.4) and (4.5), i.e., for almost any choice of a1 and a2.

4.2. A zero-residual Gauss–Newton iteration. If we consider ðλ;μ; v1; v2Þ as
unknowns, the system (4.6a) has 2ðnþ 1Þ unknowns and consists of 2ðnþ 2Þ conditions.
It is hence an overdetermined system. The Gauss–Newton (GN) method is the standard
approach to solve overdetermined systems of equations, and we propose to use GN to
solve (4.6). We briefly summarize GN for our setting. The GN method is a method to
find the minimum of a residual in the two-norm sense. Given a function r∶Rp → Rq,
which will correspond to the difference between the left- and right-hand sides of
(4.6), we wish to find the minimum of

f ðxÞ ¼ 1

2
rðxÞTrðxÞ:ð4:7Þ

By denoting the Jacobian of r by J∶Rp → Rq×p, the GN iteration can be seen as an
iteration of the following steps.

• For the kth iterate xðkÞ, compute the update ΔxðkÞ as the least-squares solution
to the overdetermined system

rðxðkÞÞ þ JðxðkÞÞΔxðkÞ ¼ 0:ð4:8Þ

• Update the iterate xðkþ1Þ ¼ xðkÞ þ ΔxðkÞ.
See, e.g., [25, section 10.2] for further details about GN including termination criteria.

We will use a relation with Newton’s method in order to illustrate and predict the
convergence of the method. The important property we will use is that (4.6) has an exact
solution, and the minimum of f ðxÞ is also a zero of rðxÞ. In this situation (called the zero-
residual case), GN has some nice convergence properties. In particular, the convergence
is very similar to the convergence of Newton’s method.

THEOREM 4.1. Let Δ ~xðkÞ be one step of the (standard) Newton method for the mini-
mization of the function (4.7). Suppose f ðx�Þ ¼ 0 and that r is sufficiently smooth. Then

ðJðxðkÞÞTJðxðkÞÞ þ RkÞΔ ~xðkÞ ¼ −JðxðkÞÞTrðxðkÞÞ;ð4:9Þ

where

Rk ¼ OðxðkÞ − x�Þ:

Proof. The Newton iteration to minimize f ðxÞ can be written as

HkΔ ~xðkÞ ¼ −JðxðkÞÞTrðxðkÞÞ;ð4:10Þ

where Hk is the Hessian of f in xðkÞ. A straightforward computation (see also
[25, equation (10.5)]) yields

Hk ¼ JðxðkÞÞTJðxðkÞÞ þ Rk;ð4:11Þ

where the element in position ði; jÞ of Rk is given by
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ðRkÞi;j ¼
Xq
l¼1

rlðxðkÞÞ
∂2rlðxðkÞÞ
∂xixj

; i; j ¼ 1; : : : ; p:

In the zero-residual case, the matrixRk vanishes in the solution x�, and from the smooth-
ness of r, we can write Rk ¼ OðxðkÞ − x�Þ. ▯

Now note that the correction ΔxðkÞ in a GN step fulfills the normal equations; i.e.,
the least-squares solution to (4.8) satisfies

JðxðkÞÞTJðxðkÞÞΔxðkÞ ¼ −JðxðkÞÞTrðxðkÞÞ:ð4:12Þ

By comparing (4.12) and (4.9), we see that one step of GN is equal to one step of
Newton’s method in an asymptotic sense. Due to this result, we expect that the con-
vergence of the GN method is similar to that of Newton’s method. This is consistent
with the following results, which are partially formalized in [25, section 10.2].

• If Jðx�ÞTJðx�Þ is nonsingular, i.e., Jðx�Þ has full column rank, then the GN
method applied to r exhibits quadratic convergence to x ¼ x�.

• If Jðx�ÞTJðx�Þ is singular, i.e., Jðx�Þ is rank-deficient, then the GN method
applied to r is expected to generically exhibit linear convergence to x ¼ x�.

We now turn to our specific case, i.e., the application of GN to solve the overde-
termined system (4.6). The rank of the Jacobian at the solution for this set of equations
is discussed in Appendix B, where we find that the generic situation for nonsemisimple
eigenvalues is that the Jacobian has full rank. For semisimple eigenvalues, the Jacobian
is rank deficient and we observe linear convergence in examples.

It remains to propose choices of initial values (for the vectors v1 and v2) and con-
stant vectors a1 and a2. The characterization (4.6) is based on the assumption that a1
and a2 are given and fulfill the generic conditions (4.4) and (4.5). It is, in fact, possible to
construct an appropriate choice for a1 and a2 from a sufficiently good approximate solu-
tion. Consider an approximation generated by MFRD, ð~λ; ~μÞ ∈ DðA;B; εÞ, for a small
value of ε. Then an approximate basis ð ~v1; ~v2Þ for the two-dimensional null-space of
ðAþ Bμ− λI Þ2, with the property

~v�1 ~v1 ¼ 1; ~v�2 ~v2 ¼ 1; ~v�1 ~v2 ¼ 0;

can be generated from the singular value decomposition of ðAþ B ~μ− ~λI Þ2. In light of
this, an appropriate choice for a1 and a2 in (4.6) is given by

a1 ¼ ~v1 þ ~v2; a2 ¼ ~v1 − ~v2:ð4:13Þ
In conclusion, a local correction can be performed by solving (4.6), with, e.g., the choice
(4.13) for the normalization constraints and with the starting values ð~λ; ~μ; ~v1; ~v2Þ.

Remark 4.2 (semisimple). In the case where the double eigenvalue is semisimple, the
Jacobian is rank-deficient. As mentioned above, a loss of quadratic convergence of GN is
observed in the examples. As outlined also in Appendix B, this inconvenience can be
overcome by instead applying GN to the equations

ðAþ Bμ− λI Þv1 ¼ 0;ð4:14aÞ

ðAþ Bμ− λI Þv2 ¼ 0;ð4:14bÞ

a�1v1 ¼ 1;ð4:14cÞ
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a�2v1 ¼ 1;ð4:14dÞ
a�1v2 ¼ 1;ð4:14eÞ
v�1v2 ¼ 0;ð4:14fÞ

which directly characterize the presence of a two-dimensional eigenspace of the matrix
Aþ Bμ. ▯

Remark 4.3 (relation with Newton’s method). In this paper, we propose to use an
iterative correction method based on solving an overdetermined system of equations. It
is possible to characterize a double eigenvalue with a fully determined system of equa-
tions. Consider (4.6a), (4.6c), and (4.6d). With these conditions, we require that the
vector v1 satisfies two normalization constraints simultaneously. A situation where this
occurs is when v1 belongs to a two-dimensional subspace, here, the null-space of
ðAþ μB − λI Þ2. Since (4.6a), (4.6c), and (4.6d) do not involve v2, we have nþ 2 equa-
tions and nþ 2 unknowns. It is a fully determined system and one could apply Newton’s
method to this set of equations. In this paper, we do not suggest using such an approach
but instead propose using the overdetermined system (4.6) since GN applied to (4.6)
appears to have several favorable numerical properties. The system (4.6) is a character-
ization of a two-dimensional null-space using two vectors which are orthogonal, whereas
the fully determined system (4.6a), (4.6c), and (4.6d) is a characterization using only one
vector. These intuitive arguments and our numerical experiments serve as motivation
for us to propose solving the overdetermined system instead of the fully determined
system. ▯

Remark 4.4. In the case where λ� is a nonsemisimple eigenvalue of Aþμ�B, an
alternative method consists of applying the algorithm of [18]. The latter is based on
an application of Newton’s method to solve a system of equations that characterizes
the presence of a Jordan block of at least 2-by-2 in the canonical representation. In
our experiments, it yields a performance comparable to solving (4.6) with GN. ▯

5. Examples.

5.1. A 3-by-3 test problem. Suppose

A ¼

2
64
−1 2 1

0 2 −i

i 1 −i

3
75; B ¼ ðC − AÞ ∕ μ0; C ¼

2
64
1 0 0

0 2 0

0 0 2

3
75;ð5:1Þ

where μ0 ¼ 1þ i. This problem is constructed such that for μ ¼ μ0, λ ¼ 2 is a semisim-
ple eigenvalue of Aþ μB. It can be solved explicitly with software for symbolic manip-
ulations by simultaneously solving f λðλ;μÞ ¼ 0 and f ðλ;μÞ ¼ 0 as in Remark 2.2. The
solution is BðA;BÞ≈ fð1þ i; 2Þ; ð0.60þ 0.40i; 0.50− 0.39iÞ; ð0.98þ 1.4i; 1.6þ 0.32Þ;
ð1.1þ 1.3i; 2.1þ 0.21iÞ; ð1.5þ 1.2i; 1.9− 0.2iÞg. We will use this solution (with suffi-
ciently high precision) for reference.

This example will now be used to illustrate how the accuracy of the solution com-
puted with MFRD depends on the regularization parameter ε. We will also illustrate the
predicted behavior of the local iterative method of section 4. The error of MFRD for the
solutions is given in Figure 5.1. We observe V-shaped error curves (as predicted in sec-
tion 3.4) for the nonsemisimple eigenvalues, corresponding essentially to the maximum
of the rounding error (dominating for small ε) and regularization error (dominating for
larger ε).
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Note also that there is no optimal choice of ε in the sense that the errors of the
individual approximations will never be simultaneously minimized. This holds in par-
ticular for the semisimple eigenvalue for which the regularization error is of order jμ−
μðεÞj ¼ OðεÞ (unlike the other error curves, for which jμ− μðεÞj ¼ Oðε2Þ). Hence, there
is no choice of ε such that MFRD returns full precision solutions. This problem is not
present when we combine MFRD with the individual treatment of the approximations
with the iterative method of section 4.

The convergence of the iterative method is illustrated in Figure 5.2. For illustrative
purposes, we used ε ¼ 0.01 instead of the estimate of a good choice given in section 3.4.
We clearly see that the convergence is superlinear for the nonsemisimple eigenvalues and

FIG. 5.1. Logarithmic plot of the accuracy in the MFRD approach as a function of ε for the example in
section 5.1. The figures show the error in μ� (left) and λ� (right), respectively. The lines with markers are the
errors for the semisimple point ðμ0; λ0Þ, while the other lines are the nonsemisimple points.

FIG. 5.2. Illustration of local iterative methods applied to the example in section 5.1.
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linear for the semisimple. Note that we can achieve essentially full precision for all
eigenvalues, although it requires more iterations for the semisimple eigenvalue. We also
observe (in Figure 5.2b), that the quadratic convergence for the semisimple eigenvalue
can, as predicted, be restored by instead solving (4.14).

5.2. Application to quantum mechanical perturbation theory. An impor-
tant problem in computational quantum mechanics is to characterize the smallest
eigenvalues, assuming these exist, of a self-adjoint partial differential operatorH ¼ Aþ
μphysB (with μphys ∈ R) over some infinite dimensional Hilbert space. Standard discre-
tization techniques produce a (Hermitean) matrix approximation H ¼ Aþ μphysB to
this operator. The matrix dimensions may be very large, and direct computation of
the eigenvalues may be infeasible. For the simplest case, where the smallest eigenvalue
λ1ðμÞ is to be determined, one considers the pencil Aþ μB and forms a Taylor series
expansion

λ1ðμÞ ¼
X∞
k¼0

ckμ
k;ð5:2Þ

which is to be evaluated at μ ¼ μphys. Clearly, c0 ¼ λ1ð0Þ, which is the smallest eigen-
value of A (assumed to be simple), and c1 ¼ u�Bu, with u being a normalized eigenvec-
tor of A corresponding to λ1ð0Þ [16, Chapter II, Remark 2.2]. The expressions
for ck, k > 1, become increasingly complicated, and they are typically evaluated using
diagrammatic rules.

The eigenvalue functions λjðμÞ are algebraic functions having only branch point
type singularities, which is generic for nonsemisimple eigenvalues, at complex values
of μ. These may occur only when λjðμ�Þ ¼ λkðμ�Þ ¼ λ� for j ≠ k [27]. It can be shown
that the (in general unknown) radius of convergence of (5.2) is given by

R ¼ min fjμ�j∶λ1ðμ�Þ ¼ λkðμ�Þ; k > 1g:ð5:3Þ

We note that R ≥ minfjμ�jg; i.e., the bifurcation point μ� that actually limits R is not
necessarily the smallest. However, it is usually among the few smallest points.

FIG. 5.3. The set BðA;BÞ for a discretized partial differential operator from quantum mechanics. The left
plot shows μ� with the inset figure showing a magnification of the points closest to 0, while the right plot shows
λ�. The radius of convergence of the perturbation series is limited by the magnitude of the marked point in the
μ� plot, for which λ1ðμ�Þ ¼ λ2ðμ�Þ ¼ λ�, the marked point in the λ� plot.
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For the more complicated problem of determining several of the smallest eigenva-
lues λjðμÞ via so-called partitioning techniques [27], the limiting singularity is also
among the branch points but usually of much larger magnitude.

We visualize the set BðA;BÞ in Figure 5.3 for a simple example of dimension n ¼ 15.
The branch point limiting the radius of convergence is highlighted. (In this case, R ¼
minfjμ�jg and λ� ¼ λ1 ¼ λ2.) The example is that of two electrons in a harmonic oscil-
lator trap with the discretization described in [29]. The matrixA is diagonal with equally
spaced eigenvalues 1; 3; 5; : : : ; while B is dense with elements that decay algebraically,
i.e., Bij ¼ O½ðijÞ−β�, β > 0. The matrices thus have a high degree of structure clearly
reflected in Figure 5.3.

6. Conclusions and outlook. An important and unusual property of the method
in this paper is the global convergence to all solutions, which can be combined with an
iterative method to get full accuracy. The global convergence property comes from the
observation that the fixed relative distance problem is a two-parameter eigenvalue
problem.

The method can be adapted in many ways. Note that the elements of BðA;BÞ are
characterized by a generalized eigenvalue problem (GEP) in section 3. There are many
methods to solve GEPs, and the right choice of method depends on the application. If
only a small number of solutions are of interest in the application, e.g., those solutions
where jμ�j is small, we can use an eigenvalue solver which focuses on these solutions. As
an alternative promising approach, one can solve the two-parameter eigenvalue problem
directly with methods which allow focusing on a target, e.g., [11].

We conclude this paper with some straightforward extensions following from the
connection with the two-parameter eigenvalue problem. The method of fixed relative
distance can be adapted to generalized eigenvalue problems. That is, the problem of
finding ðλ;μÞ such that λCx ¼ ðAþ μBÞx, x ∈ Cn \ f0g, where λ is a double eigenvalue,
can also be solved by considering the fixed relative distance and solving a two-parameter
eigenvalue problem.

The multiparameter eigenvalue problem is a generalization of the two-parameter
eigenvalue problem. Consider the problem of finding λ;μ1;μ2; : : : ;μk such that λ is
an eigenvalue of multiplicity kþ 1 of the eigenvalue matrix of Aþ B1μ1þ
· · · þBkμk. This problem can also be solved with an approach based on fixed relative
distance. By considering a relative disturbance of each of the parameters μ1; : : : ;μk, we
have a system of equations which can be interpreted as a ðkþ 1Þ-parameter eigenvalue
problem.

Appendix A. A technical lemma.
LEMMA A.1. For all U;V ∈ Cn×n, where either U or V is invertible, we have

adj ðU ⊗ V − V ⊗ UÞ ¼ 0:ðA:1Þ
Proof. Because the role of U and V can be interchanged, we assume, without loos-

ing generality, that V is nonsingular. We further assume that n ≥ 2 since the result is
trivial for n ¼ 1.

First, we characterize the null-space of

U ⊗ V − V ⊗ U:ðA:2Þ

From the invertibility of V , we have
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ðU ⊗ V − V ⊗ UÞX ¼ 0; X ∈ Cn2×1;

if and only if

ððV−1UÞ ⊗ I − I ⊗ ðV−1UÞÞX ¼ 0;

i.e.,

ððV−1UÞ ⊕ ð−V−1UÞÞX ¼ 0:ðA:3Þ

If V−1U has (at least) two linearly independent eigenvectors, E1 and E2, then it follows
by inspection that X ¼ E1 ⊗ E1 and X ¼ E2 ⊗ E2 are linearly independent solutions of
A.3. In the other case, there always exists an eigenvalue λ, an eigenvector E, and a gen-
eralized eigenvector H satisfying

ðV−1UÞE ¼ λE; ðV−1UÞH ¼ λH þ E;

and it can be verified that X ¼ E ⊗ E and

X ¼ E ⊗ H þ H ⊗ E

are linearly independent solutions of (A.3). Hence, in both cases, we conclude that the
null-space of (A.2) has at least dimension two. This implies that there exists a matrix
T ∈ Cn2×n2

such that

TðU ⊗ V − V ⊗ UÞT−1 ¼
�
R11 R12

0 R22

�
;

where R22 is the two-by-two null matrix. We get

adjðT−1Þ adjðU ⊗ V −V ⊗ U Þ adjðTÞ ¼ adj

��
R11 R12

0 R22

��
¼ 0:

The statement of the lemma follows. ▯

Appendix B. The column rank of the Jacobian of (4.6) and (4.14). The
Jacobian matrix of (4.6) in the solution, is given by

J ≔

2
66666666664

M 2 0 ðMB þ BM Þv1 −2Mv1

0 M 2 ðMB þ BM Þv2 −2Mv2

a�1 0 0 0

a�2 0 0 0

0 a�1 0 0

vT2 v�1 0 0

3
77777777775
;ðB:1Þ

where M ¼ λI − A− μB. The column rank of the Jacobian will be studied for two im-
portant cases.

Case 1. λ is a double, nonsemisimple eigenvalue of Aþ Bμ.
Since a double nonsemisimple eigenvalue corresponds to a Jordan block of dimen-

sion two, we know that there exists a matrix T such that
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~M ≔ T−1MT ¼

2
64
0 1

0 0

R

3
75;

where R ∈ Cðn−2Þ×ðn−2Þ is invertible. By premultiplying J with diagðT−1; T−1; 1; 1; 1; 1Þ
and postmultiplying with diagðT;T; 1; 1Þ, we obtain

~J ≔

2
66666666664

~M 2 0 ð ~M ~Bþ ~B ~M Þ ~v1 −2 ~M ~v1

0 ~M 2 ð ~M ~Bþ ~B ~M Þ ~v2 0

~a�1 0 0 0

~a�2 0 0 0

0 ~a�1 0 0

wT
2 w�

1 0 0

3
77777777775
;

where

~B ¼ T−1BT; ~v1 ¼ T−1v1; ~a�1 ¼ a�1T; ~a�2 ¼ a�2T; w�
1 ¼ v�1T; wT

2 ¼ v�2T:

Note that

~M 2 ¼

2
64
0 0

0 0

R2

3
75:ðB:2Þ

It is easy to see that with a random choice of vectors a1 and a2 in the normalization
constraints in (4.6), the matrix obtained by taking the first two block columns of ~J

has full column rank with probability one, and, in addition, ~M ~v1 ≠ 0. Therefore, taking
into account the structure of (B.2), the matrix ~J (and thus J) has full column rank if the
two-by-two matrix obtained by considering the first two rows of

½ð ~M ~Bþ ~B ~M Þ ~v1 − 2 ~M ~v1�

is invertible. This is the case (with probability one for a random choice of a1 and a2) if
and only if the element at position (2,1) is nonzero, that is,

eT2 ð ~M ~Bþ ~B ~M Þ ~v1 ≠ 0;ðB:3Þ

where e2 ¼ ½ 0 1 0 · · · 0 �T is a unity vector in Cn. Considering that eT2 ~M ¼ 0, the
condition (B.4) becomes, in terms of the original matrices,

U �
0BV 0 ≠ 0;ðB:4Þ

whereU 0 ≔ T−�e2 is the left null vector ofM and V 0 ≔ Mv1 the right null vector ofM .
The condition (B.4) can be rephrased as

∂
∂μ

detðλI −A−μBÞ ≠ 0;
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which is a necessary and sufficient condition for the complete regular splitting property
of the eigenvalue λ of Aþ μB; see [14].

Recapitulating the above results, we arrive at the following proposition.
PROPOSITION B.1. Let ðλ;μÞ ∈ BðA;BÞ be such that λ is a double, nonsemisimple ei-

genvalue of Aþ μB satisfying the completely regular splitting property. Then the
Jacobian matrix of (4.6) corresponding to ðλ;μÞ generically has full column rank.

We should note here that the value of the condition number of the Jacobian depends
on the choice of the vectors a1 and a2 in the normalization.

Case 2. λ is a double semisimple eigenvalue of AþμB.
The Jacobian (B.1) cannot be of full column rank in the solution of (4.6) because

Mv1 ¼ 0. However, using the same arguments as used in the case above, it can be shown
that the Jacobian of (4.14) in the corresponding solution generically has full
column rank.
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