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Chapter 1

Introduction

With their famous paper in 1965, Kohn and Sham [1] provided the chemistry and physics
communities with a practical manner of applying density functional theory (DFT),
to medium and even large molecules and solids. The development of a large number
of approximate exchange-correlation functionals, the central quantity of Kohn—Sham
theory, has enabled the study of molecular systems, with a reasonable accuracy and at
much lower computational cost compared to wave function methods. However, even
though DFT describes covalent interactions well, it struggles to give a good description
of non-covalent interaction. The description of long-range dispersion interaction has
been a particular challenge to Kohn—-Sham density functional methods. The failure of
these methods to describe dispersion has been discussed widely in the literature [2-7].

This failure has meant that more computationally demanding wave function methods
such as Mgller—Plesset perturbation theory (MP2) or coupled cluster theory, are the
preferred methods to apply to non-covalent interactions, despite their higher compu-
tational cost. In view of the high scaling of the computational cost of these wave
function methods, which typically varies between N° — N® N being the number of
basis functions, it is highly desirable to obtain an exchange-correlation functional which
can accurately describe long-range interactions, the scaling of DFT being only N3 — N4,
There have therefore been several attempts to include the dispersion energy within
DFT.

The most fundamental of these attempts consist in determining an exchange—
correlation functional such that a non-local dependence on the density is included
in the correlation-functional. This approach has been taken by several authors through
the use of the adiabatic connection [8-11]. Both Langreth et al. [12] and Dobson et
al. [13-15] devised exchange—correlation functionals which incorporate dispersion, with
the adiabatic connection fluctuation dissipation theorem as their starting point. In the
case of range-separated hybrid exchange—correlation functionals, which will be discussed
later in the thesis, this non-locality is included in the correlation functional through
long-range contributions from wave function methods such as, MP2 [16] or coupled-
cluster theory [17, 18]. These long-range contributions are applied in combination with
short-range exchange-correlation functionals.

There have also been numerous empirical and semi—empirical attempts at the
calculation of dispersion interactions in DFT. Becke and Johnson [19-21] derived a
DFT model in terms of the exchange hole. This method, based upon the Becke-Roussel
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functional [22], depends upon the occupied Hartree-Fock or Kohn-Sham orbitals, and
the dipole-moment of the exact exchange hole. Completely empirical corrections
to the Kohn—Sham energy such as the ones devised by Grimme et al. [23, 24] and
Courminbeuf [25] have proven popular and effective over recent years in a variety of
studies. These corrections are parametrized in terms of the approximate pairwise
dispersion coefficients and are calibrated to suit each exchange—correlation functional
individually. Their form resembles the term used in molecular mechanics for the van
der Waals interaction. An example of such a van der Waals correction is demonstrated
in Chapter 4 of this work.

The focus of this thesis is the investigation of stable self-consistent orbital dependent
exchange-correlation functionals, which will be able to give a rigorous account of the
dispersion interaction. Unfortunately, in DF'T there is no systematic route towards the
exact density functional. However, by providing a seamless connection between the
non-interacting system used in Kohn-Sham DFT and the physical system described by
wave function models, the adiabatic connection [8-11] provides a means to gain insight
into the behaviour of the exchange—correlation functional, using the systematically
improvable wave function theory. In this context, the formulation of Lieb is particularly
convenient and is discussed in detail in Chapter 2. The numerical optimization methods
used in this thesis are described in Chapter 3, as well as some of the key methods to
which they are applied. In Chapter 4 follows a discussion of dispersion interactions
in the Kohn—Sham framework with the Hellmann—Feynman electrostatic theorem [26]
providing the link between the density and the dispersion force. We then proceed in
Chapter 5 to consider the aforementioned evolution from the non-interacting system to
the physical system, which allows us to obtain the dispersion interaction energy.

Having determined a method for recovering the dispersion energy and the corre-
sponding Kohn—Sham components, the following two chapters focus on the investigation
of self-consistent orbital-dependent density functionals, which may in the future be used
to describe dispersion interactions. In this context we start by considering post-SCF
corrections, including a novel application of degeneracy corrected perturbation theory
(DCPT?2) [27] in Chapter 6. We carry out this analysis using the newly implemented
methods highlighted in Chapter 3. Then in Chapter 7, we investigate the use of the
Random Phase Approximation (RPA), which has attracted a great deal of interest
recently due to its low cost and ability to describe dispersion effectively [28]. Concluding
remarks will be made in Chapter 8.



Chapter 2

Electronic Structure Theory

This chapter outlines the electronic structure methods used in this thesis, starting with
the wave function methods, and continuing on to density functional theory (DFT). The
reader is referred to the literature [29, 30] for a more detailed account.

2.1 Wave function methods

2.1.1 The electronic Schrodinger equation

Within the Born-Oppenheimer approximation, where the nuclei are viewed as stationary
sources of Coulomb potentials, the time-independent Schrodinger equation for N
particles is given by

HU = EV. (2.1.1)

where the spin-free non-relativistic Hamiltonian in atomic units (a.u.), H for a system

of N electrons takes the form
. 1 74 1 ZaZp

H—=_= 2 _ — 2.1.2

Iy vyl y Loy 4 212

i iA i<j Y A<B

where 7 and j denote the electrons of the system, and A and B denote the nuclei and
Z 4 is the charge of the nucleus A. The terms in Eq. (2.1.1) are as follows: the electronic
kinetic, the nuclear-electronic attraction, the electron-electron repulsion and the nuclear
nuclear repulsion energies respectively. The operator V? in the kinetic energy term is
the Laplacian defined as , ) )
, 0 0 0
Vi = dx? i dx? N dy?
The wave function ¥, in Eq. (2.1.1) is an antisymmetric function of all the spatial and
spin coordinates of the N electrons.

(2.1.3)

2.1.2 Hartree-Fock Theory

Within ab initio wave function theory one can systematically improve the wave function
towards at the exact solution. At the simplest level of wave function theory, the Hartree-
Fock approximation describes the wave function in terms of a single determinant,
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known as a Slater determinant. A Slater determinant is an antisymmetric product of
N orthonormal spin orbitals which in turn are products of the spatial orbital of the
electron and its spin function

Uyp = [HF) = L

bi(ax) alan) - on(ow)

One of the properties of a determinant is that when two columns are interchanged there
is a change in sign which guarantees an antisymmetric wave function. Consequently,
the determinant obeys the Pauli principle.

The spin orbitals which make up the best wave function are found by minimization
of the Rayleigh ratio,

Ut (2 R)HVyp(z; R)d
minf HF(xaR) HF(x,R)x

Eur(R) =
e () Ve [ Uhp(z; R)Uhp(z; R)dx

(2.1.4)

where the HF energy, Eyr(R), depends upon the nuclear coordinates subject to the
orthonormality constraints on the orbitals. When the lowest possible value of ¢ is found,
the corresponding energy is identified as an upper bound to the ground state energy of
the system.

The resulting minimization leads to a set of equations known as the Hartree-Fock
equations. These are single-electron equations of the form:

Fi%(l) = eihi(1) (2.1.5)

where ¢; is the orbital energy and the Fock-operator is given by

1, Zy .
Fi=—5Vi— %: —+ Z( ij = Kij) (2.1.6)

The integral J;; is the representation of the Coulombic repulsion between the electrons.
Antisymmetry gives rise to the exchange integral K;;. This is evident from their integral
forms:

" Lo,
Jij ://% (:El)wi(xl)r_nwj($2)¢j($2)dﬂ?1dl’2 (217)

K= [ [ ottt w)ands, (218

There is an apparent dilemma in the Hartree-Fock scheme: in order to find the solutions
to the Hartree-Fock equations one must already have the set of orbitals which give the
lowest expectation value. Therefore the problem is solved self-consistently. A trial set
of orbitals is chosen and the corresponding set of Hartree-Fock equations are set up.
This gives a new set of orbitals which are used to calculate a new ratio. This procedure
is repeated until a convergence criteria is met.
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2.1.3 Beyond the Hartree—Fock approximation: electron cor-
relation

The Hartree-Fock wave function |HF) provides us with an approximate description of
the electronic system, where all the electronic interactions are described in an averaged
manner, and all correlation and instantaneous interactions between the electrons are
neglected. This description will be qualitatively correct for electronic systems where
the exact wave function is dominated by one configuration, but it breaks down when
there are more than one dominant configurations present in the exact wave function.

The best approximation for the exact wave function within a given orbital basis is
provided by full configuration interaction (FCI) theory, where the wave function can be
expressed as a linear combination of all Slater determinants that can be constructed
from the orbitals in the orbital basis

IFCI) = (1+ZC§%§+ > Cg%;;%...) IHF) (2.1.9)

a>bi>j

where 77 and %i‘;b are the operators which construct excited determinants through
replacing the occupied spin orbitals ¢ and 7 with the virtual spin orbitals a and b. The
coefficients C and C’fjb are determined by minimizing the expectation value of the
electronic Hamiltonian in the eigenvalue equation

Hycr |[FCI) = Epep |FCI) . (2.1.10)

The exact electronic Schrodinger equation can be approached systematically by increas-
ing the number of virtual spin orbitals. However, this is approach is problematic as
it becomes increasingly difficult to include a sufficient number of virtual spin orbitals
as the number of electrons in the system increases. If the excitations included are
truncated at e.g. the doubles level, then the FCI model will not return an energy
that scales correctly with the size of the system. Therefore, truncated configuration
interaction (CI) for systems containing more than 10 electrons is not a valid approach.

The correlation energy being the difference between the FCI and Hartree—Fock
energies, can be calculated using many body perturbation techniques such as Mgller—
Plesset perturbation theory, or coupled cluster theory. In second-order Mgller—Plesset
perturbation theory (MP2) the unperturbed system is described by the Hartree—Fock
determinant and the zero-order Hamiltonian operator, ]:Io => FZ The second order
MP2 energy is

e _ 1y oD RAailh) — (aslo)] .
4,. 51'_'_5]'_5(1_56

iajb

The cost of evaluating this expression is scales as N° where N is the number of basis

functions. Whereas MP2 theory is able to recover a large amount of the correlation

energy it does not provide a highly accurate representation of the electronic system. To
obtain higher accuracy, coupled cluster theory is often a recommended method.

Coupled cluster theory calculates the correlation energy in a non-perturbative

manner, but at a lower computational cost than the FCI method. The wave function is
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parametrized in the following way

ICC) = [H(l+t§%{‘)] [ [T @+

ai a>b,i>j

.. [HF) (2.1.12)

where t4 and t#2 are the singles and doubles excitation amplitudes. When all excitations
are included in Eq. (2.1.12), this becomes equal to the FCI wave function of Eq. (2.1.9).
Truncation yields a size-extensive approximation to the FCI wave function, where all
determinants of the FCI wave function contribute but have approximate coefficients
that are obtained as products of coupled cluster amplitudes. Whereas the FCI wave
function is optimized variationally by the minimization of the expectation value of the
Hamiltonian, the coupled-cluster wave function is optimized by a projection technique,
which lowers the computational cost significantly.

In the coupled-cluster singles-and-doubles (CCSD) model, triple and higher excitation
operators are omitted from the expansion in Eq. (2.1.12). The CCSD model, which
scales as N® has a similar level of accuracy as the MP2 model, but is more robust since
it is not based on perturbation theory. To obtain higher accuracy, triple excitations
may be included, yielding the coupled-cluster singles-doubles-triples (CCSDT) model,
which provides a highly accurate representation of the electronic systems, but a cost
proportional to N®, which makes it unsuitable except for small systems. The coupled-
cluster singles-doubles-perturbative-triples (CCSD(T)) model, where the effect of the
triples excitations are included in a perturbative manner offers a good compromise
between accuracy and cost, scaling as N7. The CCSD(T) model is often regarded to as
the gold standard of ab initio theory since it represents the most accurate electronic
structure model in widespread use.

2.2 Density Functional Theory

The purpose of this section is to give an overview of DFT. The Hohenberg-Kohn
theorems [31] (HK) provide the backbone of the theory, providing the proof that the
external potential is determined by the ground-state density. Following the discussion
of Hohenberg—Kohn theory, we proceed to consider Levy-Lieb [32], which provides a
more general DFT scheme. Lieb convex—conjugate theory [33] will be discussed as a
way to get the ground-state energy when certain requirements are fulfilled. Finally, a
practical scheme for obtaining the energy will be discussed.

2.2.1 Hohenberg—Kohn Theory

The first HK-theorem from 1964 [31] states that the external potential v(r) is determined
up to an additive constant, by the ground state electron density p(r). The electronic
Hamiltonian

1 & Ten 1
- _ 2, - _ .
H[v] = 2Zv" + 22% —I—Zv(rl) (2.2.1)
i=1 i#£j =1
is a functional of the external potential v. In Eq. (2.1.2) v(r) = =) ., f—}; Consider

now two different external potentials v; and v, and assume that the wave functions



2. Electronic Structure Theory 8

differ at the most by a phase factor
\Ifo[’Ul] = ’Y\P()[UQ] = \110. (222)

The Schrodinger equation for the two cases then gives:

H[Ul]\l’o = E()[Ul]\llo (223)
Hvo| Vg = Eplva] ¥y (2.2.4)

when subtracted yields
(H[vi] — H[va]) ¥ = Z['Ul(ri) — 0o(1;)|Wo = Ep[v1] — Eplva]Wo (2.2.5)

which, since the wave function W, is multiplicative leads to the simplification
(H[v] = Hlvo]) = > [o1(r:) = va(rs)] = Eo[on] — Eolvs] (2.2.6)
This implies that the two potentials must be equal up to an additive constant

v = v + ¢, (2.2.7)

Hence, if two potentials are chosen such that they differ by more than an additive con-
stant, then the two wave functions must differ by more than a phase factor. Employing
the Rayleigh—Ritz variation principle for such systems gives

Eolv1] < (Wolvo]|[H[v1][Wo[va]) = (Wo[va]|H[va] + Z[m(ri) — va(r;)]|Wo[va])

= Eplva] + (v1 — v2|p2) (2.2.8)
Ey[va] < (To[vr] [ H[va][Wo[vr]) = (Wo[vn]|[H[vr] = Y _[va(xs) — va(r:)] | To[vr])

i

= Eo[’Ul] — (Ul - U2|p1> (229)
Adding together the inequalities we obtain the following relationship
EO[UI] + Eo[UQ] < Eo['l}l] + Eo[Ug] —+ (Ul — Ug|p2 — pl) (2210)

which is a contradiction unless p; # po. It is then follows that two potentials differing
by more than an additive constant must have different densities, which proves that the
ground state density determines the external potential up to a constant.The implication
of this result is that the electronic Hamiltonian and all possible wave functions are
determined by the density [34]. The “strong form” of the Hohenberg—Kohn theorem
obtained from Eq. (2.2.10),

(Av|Ap) <0 (2.2.11)

demonstrates how two potentials cannot share the same density, as well as the relation-
ship between the density and the potential. From Eq. (2.2.11) it is follows that the
density typically increases in the areas where the potential decreases.
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Having outlined the Hohenberg—Kohn theorem, we will now assume p to be a ground
state density with the associated wave function W[p|. According to the Hohenberg—Kohn
theorem there exists a universal density functional

Farclpl = (¥lol [T+ Vi

\Il[p]> , (2.2.12)

where 7" and V. are the kinetic energy and electron repulsion parts of the Hamiltonian
in Eq. (2.1.2), which is uniquely defined (even in the case of degeneracies). We then
continue by choosing a potential v which belongs to a ground state, but not necessarily
U[p]. It follows from the Rayleigh-Ritz variation principle that the energy of the ground
state can be expressed as

Eole] < (Vo | T+ Ve

ol = Fia[o] + (v]p) (2.2.13)

where the last term in (2.2.13) is defined as

(v]p) = / o(r)p(r)dr (2.2.14)
It follows directly that we have the two inequalities:
Eol] < Faxlp] + (v1p) (2:2.15)

Falp] > Bolv] — (v]p) (2.2.16)

which become equalities when p is the ground-state density of the external potential v,
resulting in the Hohenberg-Kohn and Lieb variation principles respectively.

Eole] = min (Fuxlpl + (0lp), v eV (2.2.17)
Fialp) = max(Bole] — (0]p).  p € A (2.2.18)

where we have introduce the sets and Ay and Vy. The set Ay consists of all pure state
densities which belong to a ground state, and Vy is the set containing all ground state
potentials . The densities in Ay are known as v-representable, whereas the potentials
belonging to the set Vy are referred to as p-representable.

The restriction of Fyk|p| and Enk|v] to the domains p € Ay and v € Vy presents
a serious limitation since these sets are unknown. The HK wvariation principle of
Eq. (2.2.37) enables us to calculate the ground state energy of an N-electron system as
long as the density functional Fuk[p] in Eq. (2.2.18) is known. We note that Fyx|[p]
can be obtained from the Lieb variation principle, but that this would require solving
the many body problem in order to determine the ground state energy Enk[v]. In light
of these difficulties we instead proceed by modelling Fyk[p] from the density. As a
contrast, the wave function methods can be systematically improved to approach the
exact solution, whereas no such systematic approach exists in DF'T, due the problems
highlighted in this section. This provides the motivation for the work presented in
Chapter 5 with the adiabatic connection [8-11].



2. Electronic Structure Theory 10

2.2.2 Levy—-Lieb constrained search

The HK-variation principle [31] provides a way to solve the many—body problem through
a minimization with respect to the density rather than the wave function. However, the
problem with this variation principle is that the sets Ay and Vy are unknown. To solve
this problem Levy and Lieb [32] formulated a more general approach of minimizing
with respect to the density.

From the previous section describing the HK—theorems the ground state energy was
given as the minimum over all the v—representable densities. However, a minimum only
exists when the potential belongs to Vy. To lift this restriction, the ground state energy
is instead reformulated as a greatest lower bound, the infimum, to the expectation value
of the Hamiltonian

Eyfv] = \plerll/\f} (V|H[v]|¥), veln (2.2.19)

where the sets Wy and Uy are the sets of normalized N-electron wave functions of
finite kinetic energy, and the potentials which provide a finite expectation value for the
Hamiltonian, respectively.

We now proceed to introduce the N-representable densities, p € Zy, which belong
to some antisymmetric N-electron wave function of finite kinetic energy ¥ € Wy. The
densities that are N-representable fulfil the following requirements; all the densities are
nonnegative, they integrate to N, and they have a finite von Weizsacker kinetic energy.

p >0, /p(r)dr = N, Twlpl <oo, p€eln (2.2.20)

The von Weizsacker kinetic energy

Tlo] = 5 / Vo r)dr = § / IV p(x) 2ot (2.2.21)

represents a lower bound to the true kinetic energy of an N-particle system, and is
exact for the case of N=1. The above requirements in Eq. (2.2.20) make it possible
to check whether a density belongs to Zy or not, whereas in Hohenberg—Kohn theory,
there is no way of determining whether a density belonged to Ay .

We note that Zy is not a vector space. However, it can be shown that the relationship

InCX=L*nNnL (2.2.22)

holds where X is a proper vector space and LP is the Lebesgue space of p-integrable
functions with norm:

111, = ( / |fp(r)!dr>;, pell o). (2.2.23)

The vector space of the potentials Uy, is the dual, X* of X, thereby ensuring a finite
interaction, (v|p), for all p € Zy.

(v]p) = /v(r)p(r)dr <oo, peEINCX=LNL', vely=X"=L"*+L>
(2.2.24)
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Since Uy is independent of the number of electrons in a given system it is henceforth
denoted as U.

Having identified the sets of densities and potentials, we return to the energy
expression of Eq. (2.2.19). The minimization can be done by first minimzing with
respect to a wave function in Wy for a fixed p, and then finally, minimizing with respect
to all allowed densities, p € Zy.

Eofo] = inf [3nf (VT + Vel ¥) + (olp)], 0 €U (2.2.25)
pEIN

where we have introduced the Levy—Lieb constrained search functional, also referred to
as the Levy constrained search functional

Fuilp] = min(U|T + Vi ) p € Ty, (2.2.27)
—p

where the infimum is replaced by a minimum since the a minimizing ¥ can be shown to
exist for each p € Zy. It is important to note that in the case of p € Ay, the Levy-Lieb
functional becomes equal to the Hohenberg—Kohn functional.

To summarize, Levy-Lieb theory removes the restriction of having to know whether
a density is v—representable or a potential is p-representable. This is done by expanding
the domain of the densities from Ay to Zy, and the potentials from Vy to U. Fur-
thermore, whether a density is N-representable can be checked, as well as whether the
potential belongs to U.

2.2.3 Lieb convex conjugate theory

The representability problem of Hohenberg—Kohn theory is solved by Levy-Lieb theory,
by the replacement of the unknown sets Ay, Vy with the known sets Zy and U
respectively. However, a problem which remains is the existence of several minima,
which may not be global in Eq. (2.2.26). This is effectively solved in Lieb theory by
the introduction of Lieb’s convex universal density functional which guarantees the
existence of a single global minimum.

To this end the Legendre—Fenchel transform is the central mathematical tool. This
transform takes a function f(x) and returns the conjugate of the function at y, where
the conjugate function is the supremum over z of all the affine functions (z|y) — f(z):

() = sup((aly) ~ F(@) (22.28)

It can be shown that the conjugate function f*(y) is convex, meaning that it is always
overestimated by a linear interpolation:

frlepp+ (1T =0oye) >cf (1) + (1 —c)f (y2), 0<c<1 (2.2.29)

If we perform a second Legendre—Fenchel transformation, we obtain the biconjugate
of the original function f(z)

[ (@) = Sgp(<$\y> - f(v) (2.2.30)



2. Electronic Structure Theory 12

which by construction of the transformation is also convex. Furthermore, the relation
between the function and its biconjugate can be shown to be

() < f(@) (2.2.31)
which is sharpened into an equality when f(x) is a convex function:
" (x) = f(z) (f convex) (2.2.32)

To summarize, if f(z) is a convex function, it can be represented by its conjugate
function f*(y) in the form

[ y) = Slip(@fly) — f(z)) (2.2.33)
f(z) = Sl;p((xlw — f(v)) (2.2.34)

The convex functions f(x) and f*(z) are then said to be mutually conjugate. We will
now follow the work of Lieb and apply these relations to DFT.

Returning to the Rayleigh-Ritz variational principle in Eq. (2.2.19), we obtain for
0<c<1

Eylcvy + (1 —c)vg] = mf((\IJ]H[cvl + (1 = c)vs] | 1))
= f(c(U[H[v,][P) + (1 = ) (V[ H[v]|T))
> 01nf<\I/|H[ )+ (1 - )1an[vg]|\I/>
= cEplv1] + (1 — ¢)Ep[vo] (2.2.35)

This demonstrates the concavity of the ground state energy FEy[v] with respect to the
potential v. It follows directly that —Ey[v] is convex in v and as Eq. (2.2.34) and
Eq. (2.2.33), it may be represented exactly by its conjugate functional, here being the
Lieb functional F[p]:

Frlp] = SGU)R(Eo[v] —(vlp)) peX (2.2.36)
Eolv] = inf (Fi[p] + (vlp)) v e X (2.2.37)

which are the Lieb and Hohenberg-Kohn variation principles respectively. The only dif-
ference to the general relationship between mutually conjugate functionals in Eq. (2.2.34)
and Eq. (2.2.33) is in sign, and therefore the ground state energy Fy[v] and the Lieb
functional Fy[p] are mutually conjugate functionals. Due to being mutually conjugate
they both represent the same quantity, namely the electronic energy, in two different
ways with respect to the dual variables v and p. A comparison can be made between
this relationship to that between the total energy of a classical system represented by
the Lagrangian, being a function of the velcocity, and the Hamiltonian, which is a
function of the momentum.

The convexity of the Lieb universal density functional, F} [p] means that the the
quantity F1[p] + (v|p) is convex, and as a consequence the minimization of the ground
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state energy, Fo[v] in Eq. (2.2.37) only having one, possibly degenerate, stationary
point which is the global minimum. This circumvents the complications one might
encounter with the Levy-Lieb universal functional, Fip[p|, due to the possible the
existence of several minima or saddle points. As a final note, the Lieb variation principle
in Eq. (2.2.36) provides us with a way to calculate the Lieb universal density functional
F1[p|, using wave function techniques.

We will now consider the conditions which will result in the Hohenberg-Kohn and
Lieb variation principles becoming equal. A rigorous treatment of these conditions
would require an introduction of subdifferentials and subgradients from convex analysis.
This is beyond the scope of this thesis, and we will therefore not discuss these concepts,
but present the main result: The Lieb functional is differentiable on By:

_ 0F[p]
op(r)
where By is the set of ensemble v-representable densities that can be written as a convex

combination of degenerate v-representable densities belonging to Ay. The relation
between the subset By and Zy and Ay is

Ev] = Flp] + (v|p) <= o(r) vE VN, pE By (2.2.38)

.AN C BN CIn (2239)

The Lieb functional is thus not differentiable everywhere, but only for the v-representable
densities p € By C Zy. It can be shown that the subset By is dense in Zy. Hence,
any N-representable density can be approximated arbitrarily close by an ensemble
v-representable density. This means that although not all N-representable densities
are v-representable, any N-representable density can be approximated accurately by
an v-representable density. We further note that the Hohenberg—Kohn functional is
only defined for v-representable densities, but the Lieb functional is defined over all
N-representable densities, but as pointed out, is only differentiable for p € By. As a
final note, the Levy—Lieb functional is also defined for all N-representable densities,
but little is known about its differentiability.

2.2.4 Kohn—-Sham theory

Up to now the discussion has been the background for DFT. However, no practical
way of obtaining the universal functional, F, has been brought up so far. The set of
equations derived by Kohn and Sham [1] in 1965 became the foundation for the practical
modelling of the density functional F[p]. These equations contained in principle the
full exchange and correlation effects of a real, physical system and could in principle be
solved self-consistently.

The ground state energy of a N—electron system, can be expressed as:

Eo[v] = (Flp] + (v|p)), v € VN, p€ Ax (2.2.40)

The universal density functional may be further decomposed as:

Flp] = %/ %drdr’ + G[p] (2.2.41)
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where the first term is the classical part of the Coulomb repulsion, denoted from here
as Ulp|, and the final term is a density functional containing the kinetic energy and
the exchange-correlation effects. Kohn and Sham then went on to introduce a non-
interacting system with the same density as a fully interacting system, i.e a real physical
system.

Within this framework G[p] can be expressed as [1]

Glpl = Tilp] + Te[p] + Veelp] — Ulp] (2.2.42)

where Ti[p] is the kinetic energy of the non—interacting system, T¢[p| is the difference
between the kinetic energy of the non—interacting and interacting system, V. is the
electron—electron repulsion and Up] is the Coulomb repulsion. The known and unknown
terms can be further separated into

Glp] = Tilp] + Exe[p] (2.2.43)

The last term is known as the exchange—correlation energy and contains the remaining
unknown contributions to the total energy.

Due to the use of a non-interacting system with the density equal that of an
interacting system, the Hamiltonian can be expressed as

H=T+ Z v, () (2.2.44)

where vg(r) is the Kohn—Sham effective potential which is made up of the external
potential due to the nuclei, the Coulomb potential and the unknown exchange—correlation
potential

(')

—r

Vs(1) = Vet (1) + / P

= dr’ + vy (1) (2.2.45)

{
The exchange-correlation potential is then further defined as [35]

0B [p]
uelr) = op(r)

The form of the Hamilton-operator and the fact that we are working with a non-
interacting system leads to the Schrodinger equation being expressed as simple one
electron equations [1]

(2.2.46)

57+ ) = (2247

where the ground state energy of the non-interacting system is the sum of all the
eigenvalues.

N
Y ei=E, (2.2.48)

It follows that the wave functions can be expressed as single determinants as was done
for Hartree-Fock, the difference being that in Kohn-Sham DFT the wave function is
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an antisymmetric product of all the Kohn-Sham orbitals. The density of the system is
then a sum of all the densities of the occupied KS-orbitals

p(r) = Z |0i(r)]? (2.2.49)

which is the same as the density of the physical system. However, so far only the
energy of the non-interacting system has been accounted for. The goal of KS-DFT
is to determine the energy of the real system. This is done by inserting G[p| into
the expression for the total energy in Eq. (2.2.40). The ground state energy of the
Kohn-Sham system is expressed as

N

Ey = Z€izz<%’ Ts + vs <Pi>zz<<ﬁi 90¢>
i=1 i=1 i=1

= f;—#//%drdr’—|—/p(r)vext(r)dr+/p(r)vxc(r)dr (2.2.50)

N
Ts + Vext + ] + Uxe

and the ground state energy for the physical system is from this recovered as

FExslp] = Zei + Eyelp] — %//%drdr' - /vxc(r)p(r)dr (2.2.51)

where the classical Coulomb repulsion has been halved in order to prevent double—
counting. The interaction between the exchange—correlation potential and the density
is also subtracted, and the exchange—correlation energy put in its place.

The Kohn-Sham formalism contains the exact energy of the ground state for any
system. The challenge that remains is to find good approximations to the exchange—
correlation energy. Examples of such approximations will be discussed in the following
sections.

2.2.5 The local density approximation

The simplest approximation for the exchange—correlation functional is the Local Density
Approzimation (LDA). The LDA is based upon the model system of a uniform electron
gas. Within this model the electrons are distributed in a uniform fashion in a cube of
infinite volume and with a similarly distributed positive charge, such that the system
is neutral. This system has by construction a fixed density, and as a result, the
exchange—correlation is a functional of the local density. Hence the form is given as

B = [ ptw)eclptmlir (2.2.52)

where ex.[p(r)] is the exchange—correlation energy per electron. This can be divided up
into exchange and correlation parts:

Exe[p(r)] = exlp(r)] + ec[p(r)]. (2.2.53)
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It has been shown [36, 37] that the exchange part can be expressed as,

1/3
sl =5 (2) o (2254)

(e

Hence the unknown part is e.[p(r)], and is approximated in various ways by different
LDA-approximation. The LDA—approach can be highly suitable when investigating
metals, however, the electron density is strongly non-uniform in a molecule, leading to
the need for a different approach.

2.2.6 The generalized gradient approximation

The generalized gradient approximation (GGA) attempts to take into account the
changing density, by depending upon both the gradient of the density as well as local
density.

ESMpu():pa(6)) = [ Slpa(r).pate). Vipa(r), Vpa(o)ldr (2:2:59)

The exchange and correlation part of a GGA functional can be treated in a separate
manner

ECGCA — pOGA 4 pOGA (2.2.56)

The functional of Becke, Lee, Yang and Parr [38, 39] is an example of a GGA functional
that will be used in this thesis. The exchange contribution used is the Becke functional,
(B88X) [38], and the correlation is obtained by the LYP—functional [39]

4paps
ELYP _ _/
c [p] @ p(l_{_dpfl/d)
AT 7
- &b/w{/)apﬁ {211/3Cf(02/3+p2/3) + (1_8 - —5> Vol
5 5~ 11 (pa ps
— ———5 Vool? + |V ——<—Va2+—v 2)]
(3 )(IVpal® +[Vosl*) 5 plpl p!pa!

2 2
— gpzlvl2 + <§p2 - pi) [Vpsl® + (gp2 - p%) \Vpa|2} dr  (2.2.57)

_ eXp(_Cpil/B) —11/3 (2 2 58)
L4 dp 173 2
/3

1 + dp—1/3

The different numerical parameters a, b, ¢ and d are as follows: a = 0.04918, b = 0.132,
¢ =0.2533 and d = 0.349. This functional will be used later on in Chapter 5, for the
adiabatic connection, and we will return to its explicit form then.

However, a problem which remains for both LDA and GGA functionals is the
self-interaction error. Within Hartree-Fock theory, the exact exchange cancels the
self-energy in the classical Coulomb contribution, avoiding an electron repelling itself.

S=cp P44 (2.2.59)
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However, LDA and GGAs contain approximations to the exchange contribution and
these often do not adequately cancel the spurious self-interaction. One consequence of
this is that exchange—correlation potential will not have a correct asymptotic behaviour,
decaying exponentially instead of as —2 [38].

2.2.7 Hybrid Density Functional Approximations

The hybrid functionals were motivated by the adiabatic connection [8-11] as a manner
to include fractional orbital exchange into the GGA exchange-correlation functional.
These resulting functionals have the general form

EHYBRID _ pGGA 4 pGGA | 0 (2.2.60)

where the first two terms are the exchange and correlation from a GGA functional, and
the last term is the orbital dependent exchange functional from Hartree—Fock

B =- Z/ / A INB ) gy (2.2.61)

v — |

which is evaluated with the Kohn—Sham orbitals ;. The original hybrid functional was
the so called “Half and Half” of Becke [40], which contained 50% orbital dependent
Hartree—Fock exchange. Several approximations have followed since this functional.
However, in practical calculations having more than one parameter can be an advantage.
The three-parameter BSLYP functional of Stevens et al. [41] has gained popularity over
the years due to having a wide range of applicability [42],

EBYP = qEEPA 4 (1 — a)EQ + bED + cEXYP + (1 — ¢)EXPA (2.2.62)

where the parameters are as follows: a = 0.80, b = 0.72, ¢ = 0.81.

2.2.8 The Optimized Effective Potential Method

In 1953 Sharp and Horton [43] proposed replacing the non—multiplicative potential
in Hartree—Fock by a local effective potential veg(r) determined through a variational
optimization of the orbital-dependent energy E[{p;}]

0E{pi}] _
Sonle) =" (2.2.63)
where veg(r) is given by
Veft (T) = Vext () + v5(T) + (1) (2.2.64)

where v (r) is the external potential, vy(r) is the Coulomb potential, and vy (r) is
the local exchange potential, as opposed to the non-local Hartree-Fock potential. The
effective potential enters the one—electron equations

[TA + 'Ueff(r)-‘ 0; = €i0; (2.2.65)

L J
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Talman and Shadwick [44] devised in 1979, the first practical application of this method
to spherical atoms. The impact of their approach to Kohn—-Sham theory was recognized
by Sahni, Gruenebaum and Perdew [45], who recognised that the effective potential
was equal to the Kohn—Sham potential, v,; the potential v,(r) being the functional
derivative of the Hartree—Fock energy with respect to the density. A direct implication
of this is that the method proposed by Sharp and Horton [43] can be regarded as an
exchange-only density functional method. This method, became known as the optimized
effective potential (OEP). This OEP-procedure can be applied to any energy expression
providing a rigorous way to handle orbital-dependent functionals in the Kohn—Sham
framework, although early approaches such as the one by Talman and Shadwick [44]
focused on the Hartree—Fock expression for the energy.

Through the chain rule for functional differentiation, the OEP for an orbital-
dependent energy functional may be written as [46]

_ 5EXC[90 5Exc 1 5901( ) 5Exc[90;k(r)] 590i*(r,) v
o) = Z/ Seir) op(n) T opr) oprn) 3200

Further application of the chain rule gives the

/

5901 5901 ) "
Z / Sor dr (2.2.67)

yielding for the exchange—correlation potential, vy.(r)

0Exc[pi(r)] 0pi(r')  OExc[pi(r)] 87 (x)] dus(x”) -,
elr Z/ / [ S vs(r”)+ St () o7 | op(r) T (2:2.68)

The common factor in Eq. (2.2.68), being the inverse of the static density response
function, which is a measure of the response of the density to an infinitesimal small
change in the Kohn—Sham potential.

Yo(r, 1) = (;Z gj) (2.2.69)

Acting on both sides of Eq. (2.2.68) with y,(r,r’) and integrating, yields an integral
equation for the exchange—correlation potential vy.(r),

0 Exc[pi(r)] 0pi(r') | 0Bk [l (r)] 09 (x) ] .
/vxc( xs(r, r')dr’ _Z/{ 5901 e + 5ot ) Bo(D) dr’ (2.2.70)

First order perturbation theory gives

(2.2.71)

which can be inserted into Eq. (2.2.70), simplifying it further, and giving an expression
which may be implemented computationally. The integral equation for vy.(r), can be
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solved in each iteration of a Kohn—Sham equation. We note that it can be proven that
this is equivalent to the minimization proposed by Sharp and Horton [43]. In Chapter
3 we will proceed to outline the scheme of Wu and Yang [47] to perform practical OEP
calculations in finite Gaussian basis sets. This optimization method is directly related
to the energy minimization proposed by Sharp and Horton [43].
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Chapter 3

Potential based methods

Chapter 2 outlined the conjugate relationship between the energy functional Ey[v] and
the density functional F[p]. The Hohenberg—Kohn and the Lieb variation principles
were introduced, where the first was a minimization over the densities to obtain Fjy[v],
and the latter a maximization with respect to the potential to obtain Fy,[p]. In this
chapter we examine methods for performing these optimizations in a practical manner.
The methods we will discuss are the Nelder-Mead and the quasi-Newton techniques for
optimization of the functionals.

3.1 The Direct Optimization Approach

Up to this point there has been no mention of a practical manner to perform the Lieb
maximization or the minimization of the energy through the OEP. Yang and Wu [47]
introduced the idea of directly optimizing the external potential in a finite basis. This
is carried out by expanding the potential in a finite set of Gaussian functions. As an
example, the Kohn—Sham effective potential may be represented in the following way:

Vs (1) = Vet () 4 03(r) + Ve (1)
= Vet (1) + Vret (1) + D byg(r) (3.1.1)

where vy (r) denotes the external potential due to the nuclei, vy(r) denotes the Coulomb
potential and v,.(r) is the exchange—correlation potential. The potential v¢(r) in the
second line of Eq. (3.1.1) denotes a fixed reference potential, which represents the bulk
of the rest of the effective potential, namely the exchange-correlation and the Coulomb
potential. There are several possible choices for the reference potential. The reference
here is given as the Fermi-Amaldi potential, and was chosen by Wu and Yang following
work done by Zhao, Morrison and Parr [48]:

N -1 po(r’)
dr’.
N lr — /| '

Uref(T) = (3.1.2)

where po(r’) is the fixed reference density. This potential is used for the reference to
ensure that the exchange—correlation potentials has correct —% asymptotic decay. The
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last term on the same line is an expansion in Gaussian functions, g;, with coefficients
b;, which must be determined. Herein lies the simplification of the direct optimization
approach; the potential depends solely upon the expansion coefficients b, in a linear
manner. This simple technique can be applied to minimize an orbital dependent
energy functional in the OEP—method discussed in Chapter 2, or to perform the Lieb
maximization discussed in Section (2.2.3) as well as to determine the Kohn—Sham
potential corresponding to a supplied density through the Wu—Yang approach, which
will be discussed in Section (3.3.1).

3.2 Optimization Techniques

Once the effective potential is cast into a form similar to that of Eq. (3.1.1), standard
optimization procedures may be applied to determine the optimal set of coefficients b;.
This set of coefficients may be obtained through standard optimization techniques such
as the quasi-Newton method. However, these techniques require explicit expressions
for the gradients and the Hessian associated with the given problem, which may prove
cumbersome to implement in the case of complicated functionals. In the work presented
in this thesis we investigate the application of a variety of functionals and for the
purposes of prototyping we have implemented the Nelder—-Mead simplex method and
the quasi-Newton method with finite difference evaluation of the gradients, in the
DALTON quantum chemistry program [49].

3.2.1 Nelder—-Mead Simplex algorithm

The Nelder-Mead Simplex algorithm [50] was implemented in the DALTON quantum
chemistry program [49] for prototyping purposes since it offers the advantage of circum-
venting the requirement of evaluating gradients or Hessians to perform an optimization.
The search performed with this algorithm is based on the repeated evaluation of the
function to be minimized. The method is therefore easy to implement and the possi-
bly time consuming task of obtaining the derivatives is avoided, making the simplex
algorithm highly useful for the investigation of new techniques and methods. The same
method was employed in Refs. [51, 52] when studying two and four electron systems,
where it was recognized that this method did not have a high degree of efficiency and
required thousands of steps for a small system.

The simplex algorithm constructs an initial guess F, from the n variables to be
optimized and constructs a simplex of (n + 1) dimension from the vertices

where each P; is a vertex of the simplex, A is a problem—dependent adjustable parameter
and e; are the unit vectors for the n variables. The search is performed by translating
one vertex at at time along the surface of the function until an acceptable stationary
point is located. The simplex first locates this stationary point through three operations;
reflection, expansion and contraction. Considering the case of minimizations, the vertex
with the highest value, P, is reflected through the opposite side of the simplex to a
point. This volume of the simples is kept constant under the operation. The acceptance
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of this point and the other operations of this method, namely contraction and expansion
are performed in accordance to the heuristic rules of Nelder and Mead [50]. Through
these operations the simplex eventually locates and zooms in on the minimum value
of the function in question. The algorithm which was implemented in this work is the
amoeba algorithm outlined in Numerical Recipes. [53]

3.2.2 Quasi-Newton Methods

The quasi-Newton family of methods represents robust and generally efficient approaches
to optimize functions given their gradient and approximate Hessian. In the Newton
method, the function to be optimized is expanded in a Taylor series around the current
point b,,. The function at the new point will then be

E(b)=E, + (b—b,)Tg, + %(b —b,)"H,(b - b,) + ... (3.2.2)

where FE,, g, and H are the function, the gradient and the Hessian, respectively,
evaluated at the current point. Truncating this expression at second order, and setting
the gradient at this order to zero, we obtain the Newton step:

b,y1 = b, — H.'g,. (3.2.3)

The Newton step will yield the exact stationary point if the function to be evaluated is
quadratic. However, in general an approximation to this stationary point is returned.
To ensure that global convergence is achieved, constraints on the allowed step size in
Eq. (3.2.3) can be imposed. These constraints lead to the level shifted step. Alterna-
tively, a line search may be performed along the Newton step, also resulting in global
convergence. When properly implemented, the full Newton step provides an efficient
optimization for many functions, with convergence typically occurring in five to ten
iterations, and exhibiting second-order convergence close to the minimum. However,
an exact evaluation of the Hessian at each step is highly computationally demanding.
Therefore, when this is the case, an approximate Hessian, which has a lower cost than
the exact, can be applied. The application of such a Hessian leads to the step in
Eq. (3.2.3) also becoming approximate, which can lead to slower convergence in the
global and local regions. However, through choosing an appropriate approximation to
the exact Hessian, the total computational cost can be reduced in comparison to the
exact Newton method, these approaches are called quasi-Newton methods.

In this thesis, the choice of the Hessian is motivated by the following considerations;
when studying the adiabatic connection a good approximation is to apply the Hessian
for the non—interacting system to the interacting systems, due to this dramatically
reducing the cost associated with the evaluation whilst not increasing the number of
iterations significantly. A similar Hessian may also be applied in the OEP procedure.

The problem pertaining to both approaches is that the Hessian can become singular.
In order to prevent this from causing optimization problems, regularization procedures
are applied. Generally, these procedures involve determining the singular values of the
Hessian and subsequently removing the smallest of these values. The approach applied
in the present work is a singular value decomposition of the Hessian

H=UWU" (3.2.4)
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where U is an orthogonal matrix and W a diagonal matrix which contains the singular
values. The singular values are removed according to a filter, f;, which is set either to 0
or 1 depending on whether the values are below or above a given threshold. This scheme
is known as the truncated singular value decomposition (TSVD). An approximate
Hessian may then be constructed as

H ' = U - [diag(f;/w;)] - UT (3.2.5)

where w; are the singular values of H, and the diagonal elements of W. A typical choice
for the threshold below which the filter is set to zero is 107° — 1078,

The method of finite difference

The quasi-Newton methods requires the gradient to be calculated at each step. For
prototyping it is important that this can be done easily, also for complicated functionals.
Therefore we consider the method of finite difference [53]. Each element of the gradient
g, in Eq. (3.2.3) is approximated by the central finite difference

E(b;+h) — E(b; — h)

i = 3.2.6
g A (3.2.6)

where i=1 up to the number of parameters in the set b and h is the step length. Hence,
each element of the gradient is determined by two function evaluations. In practice
the use of this gradient together with an approximate Hessian results in a more rapid
convergence than what is obtained with the Nelder-Mead method. The same gradient
was also calculated at the end of the Nelder—-Mead evaluations in order to verify that a
stationary point had been located.

3.3 Applications of the Direct Optimization Approach

The direct optimization procedure discussed in Section 3.1 represents an efficient
method for optimizing a variety of functionals. In the interest of prototyping and
investigating a variety of energy functionals the numerical derivatives and the Nelder—
Mead optimization scheme discussed in Sections (3.2.1) and (3.2.2) represents practical
tools. In this context, each method represents a different objective functional and set
of corresponding derivatives to be evaluated. In this section we proceed to discuss
how the direct optimization method can be applied in the OEP method to minimize
the energy. Then we will continue with outlining how the direct optimization can be
applied to determine the Kohn—Sham potentials, and the densities which correspond to
an accurate input wave function density. Finally, a practical manner of performing the
Lieb maximization originally discussed in Section (2.2.3) will be outlined.

3.3.1 The Optimized Effective Potential Method

Th first method to which Yang and Wu [47] applied their direct optimization scheme
was the OEP—method discussed in Chapter 2. This approach is in line with the



3. Potential based methods 24

original proposal of Sharp and Horton, to determine en effective potential, v, under the
stationary condition SEle)]
El{p
o, 0 (3.3.1)
Using the potential expansion discussed in Section 3.1 and applying the chain rule for
functional derivation yields the following expression for the functional derivative of the
energy with respect to the Kohn—-Sham potential becomes

8E {901 5E {901 5% )81)8(1‘/) /
. Z// Sor) God) o drdr’ + c.c. (3.3.2)

dvs(r’)
oby,

which can be computed. The expression then becomes

9ERwi) Z// OF| {4'01 gpa(r)Mgt(r’)drdr’ + c.c.

8bt dpi(r . € — Ea

where = g;(r") and first order perturbation theory provides an expression for

Spi(r)
dvs(r!)

This expression is only valid for energy functionals of occupied orbitals. In the case of
energy functionals dependent upon all eigenvalues and orbitals, extra terms must be
included. The reader is referred to the discussion in Ref. [54] for additional information.
Therefore expressions based on perturbation theory, or the random phase approximation,
which will be discussed in Chapter 6 become more difficult to evaluate. However, for
preliminary investigations and prototyping the implementation of these gradients may
be circumvented by the application of the techniques presented in Sections (3.2.1) and
(3.2.2). As a final note, the approximate Hessian proposed by Wu and Yang in Ref. [47]

is of the form
OCC. unocc.

Z Z (ilgu(r Isoa (©alge(r)lpi) (3.3.3)

— &g

51) 5bt

which is simple to evaluate and demonstrates reasonable convergence rates.

3.3.2 Determining Kohn—Sham quantities from accurate den-
sities

The ability to determine Kohn-Sham quantities corresponding to a prescribed density
can often be a useful tool for analysis. For example in the case of such a prescribed
density having been obtained through a highly accurate wave function method, the
corresponding Kohn—Sham quantities such as the non—interacting kinetic energy, the
Coulomb and exchange energies, and the exchange—correlation potentials represent
accurate data which may be used to test new approximations. Wu and Yang [55]
applied their direct optimization method to the determination of the aforementioned
Kohn—Sham quantities. They based their approach on the Levy constrained search
of Eq. (2.2.27) which was discussed in Section 2.2.2. To ensure the fulfilment of the
constraint p(r) = piyp(r), where p(r) is the Kohn-Sham density determined from the
occupied orbitals p(r) = 2 va/ ?Ji(r)[2, and pinp(r) is the prescribed density, Wu and
Yang defined the following functional
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N/2

Wollan, o) =23 (olTlod + [ dro@ o) - pu). (339

where the first term is the non—interacting kinetic energy, and the second term contains
the constraint on the density with the potential v(r) acting as the Lagrange multiplier.
Furthermore, it can be shown that W[Wae], v(r)] is a concave functional with respect
to any variation in v(r). We note from the discussion of Lieb-theory in Section (2.2.3),
that a maximization of a concave functional with respect to the potential, v(r) will lead
to a single global stationary point. In this respect Wu and Yang developed a method
to determine the Kohn-Sham non-interacting kinetic energy, which is an unconstrained
maximization with respect to the potential:

T [ pinp (r)] = max W, [W e [v(r)]]. (3.3.5)

v(r)

where T} is the noninteracting kinetic energy and Wge is a single determinant wave
function and itself a function of the external potential. Their method is thus a special
application of the Lieb maximization to A = 0.

Inserting the potential expansion of Eq. (3.1.1) into Eq. (3.3.4) yields

N/2

W[ Waet [v(r)], 0(x)] =2Z<soz-lflso@-> + / dr{vext (r) + vo(r) Hp(r) — pnp(r)}
o [ @b o) - () (330

where the first and second derivatives can then be obtained with respect to the set of
coefficients b; as outlined by Wu and Yang [55]

D 0] 00 [ g LR LR SN ) — )1 01
(3.3.7)

52WS \I/det,l) r occ. unocc. g (r . Ja(r .
(aste) oS58 telntled(olatiled (3

This simple form for the Hessian allows for the application of the Newton method in a
direct manner for all cases where the WY procedure is applied.

3.3.3 The Lieb Functional Maximization

The final application of the direct optimization method of Wu and Yang [55] we will
consider is to the Lieb maximization previously discussed in Section 2.2.3. Wu and
Yang made the realization that the procedure outlined in the previous section to obtain
Ts[pinp(r)] could be generalized by scaling the two electron interaction by a coupling
strength, A, in the electronic Hamiltonian:

Hy[v] =T+ AW+ > v(r;) (3.3.9)
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where T' is the kinetic energy operator, W is the electron interaction operator and v(r)
is the external potential. We remember from Lieb convex conjugate theory that for full
(A = 1) interaction strength

F, = sup (E[v] — (v]p)), peX (3.3.10)

veX™

From the Hamiltonian in Eq. (3.3.9) we note that the energy for each interaction
strength is
Ex[v] = (Ux[v] |HA[v]| Yalv]) (3.3.11)

where W, is the wave function optimized at a given coupling strength A. Inserting this
into Eq. (3.3.10) and denoting the supplied density as pi,, and the density associated
with Wy as p, we obtain the Lieb functional at interaction strength A

FLlpinp] = sup [(W[o] [T Wo]) + A (W] [W][o]) + (v]p) = (vlpmp)]  (3.3.12)

veX*

We note that for the Kohn—Sham system, where A = 0 the Lieb functional becomes

Foalpw] = sup [([] 7190 + (vlp = puy)]
= max{W,] = T.[piny) (3.3.13)

where the last two equalities hold if ¥q is a single Slater determinant. The idea of
turning the interaction on in a regular manner through a coupling strength between
A =0 and A = 1 will be further discussed in Chapter 5 for the adiabatic connection.
For the time being we note that inserting the potential expansion of Eq. (3.1.1) into
Eq. (3.3.12) and evaluating the gradient yields

aFc;éi[p] B / [P26:(r) = p(r)] g (x)dr (3.3.14)

which can be evaluated easily. The Hessian which is obtained
P o (3.3.15)

0 F1,x[p] "0
-%Eaz//%mmme

is more complicated to evaluate, and therefore we apply in practice the gradient based
in conjunction with the approximate quasi-Newton optimization techniques discussed
in Section (3.2.2) with the Hessian for the non-interacting system of Eq. (3.3.8) at all
A. Convergence to a gradient norm less than 107 is typically reached in less than 10
iterations.
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Chapter 4

Intermolecular interactions in DFT

Weak non—covalent intermolecular interactions such as dispersion play a central role in
many areas of chemistry and biology, including protein folding, enzyme and catalytic
reaction mechanisms, the way in which base pairs are stacked in the DNA molecule and
in guest-host supramolecular chemistry. At the same time, DFT struggles to describe
non-covalent interactions and in particular dispersion. In the present chapter we discuss
dispersion within the framework of DFT. We first examine the DFT-D methods of
Grimme et al. [23, 24] and then perform a more in-depth analysis of how dispersion
could be treated in the Kohn—Sham framework by employing the Hellmann—Feynman
electrostatic theorem [26] as a natural starting point.

4.1 Empirical dispersion corrections in DFT

As discussed in Chapter 2, one popular manner of introducing dispersion into DFT is
by an empirical correction. The DFT-D corrections of Grimme [23, 24] have earlier
been implemented in the linear scaling branch of DALTON by Andreas Krapp for a
set of standard functionals. For the work presented here, they have also been added to
the OEP branch of the DALTON-code and extended to include the B2PLYP-D and
B97-D functionals. The B97-D functional is a GGA-type functional as discussed in
Section 2.2.6. This functional has the form of Becke’s B97 approximation, which was
optimized and fitted with respect to thermochemical data [56]. Grimme et al. [23]
performed a re-optimization of the coefficients which define Becke’s B97 functional in
order to account for the DFT-D corrections and avoid the possibility of double counting
of the correlation effects. The B2PLYP functional of Ref. [57] includes in addition to
Hartree—Fock and B88X exchange contributions [40], correlation contributions from the
LYP functional [39] and MP2. This functional will be discussed in greater detail in
Chapter 6. We note that this functional can also be corrected to account for dispersion
in a similar manner to B97-D and this correction has been implemented as part of the
work presented in this thesis.
The dispersion energies are long-ranged and the energy is given by

oo On
Edisp = Z Rin (4].].)

n=3
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where R is the internuclear separation, and C,, are the dispersion coefficients. The total
energy in the DFT-D methods is the usual Kohn—Sham energy plus an extra term,
which accounts for the dispersion energy in an approximate manner

EPYT-D — Fys + Fgip (4.1.2)

where

Edisp ng Z C: fd (413)

i=1 j=t+1

Here we note that sg is a scaling factor which is parametrized for each individual
exchange—correlation functional, 7 and j are labels for the nuclei, N is the total number
of nuclei and CGJ is the pairwise approximate dispersion coefficients defined in Ref. [23]
and R;; is the internuclear separation. The last term is a damping function, fq(R;;),
which is applied in order to avoid any near singularities for separations 2;; much Smaller
than the van der Waals radii. The form chosen for this damping function is

1
fd(Rij> = 1+ e—d(Rij/Rr—l)

(4.1.4)

where R, is the sum of the van der Waals radii of atom ¢ and j and d is a parameter set
equal to 20 in the case of B2PLYP. Looking at the expressions one notes that there is no
dependence on the density. Therefore the functional of Eq. (4.1.2) will not explicitly take
into account the charge-rearrangement induced by long-ranged interactions, effectively
ignoring an important aspect of the dispersion interaction.

The interaction energy, Fgp, is defined as the difference between the energy of
the dimer and the two separate atoms. Throughout this work the entire interaction
curve is referred to as the van der Waals interaction, whereas the long-ranged part
of the interaction is called the dispersion region. The interaction energy curves for
the helium dimer of Fig 4.1 demonstrate the performance of the B97-D and B3LYP-D
functional, as well as the double hybrid B2PLYP with a dispersion correction, as the
separation, R, is increased. The dispersion region for the dimer starts at approximately
7.5 a.u. The dashed line is the dispersion energy calculated using Eq. (4.1.1) applying
the coefficients from Korona et al. [58] and hence represents an accurate reference
value. The B2PLYP-D and B3LYP-D functionals do not bind in the van der Waals
region, although they display significantly less repulsive behaviour than the uncorrected
B2PLYP and B3LYP. The functional B97-D overbinds in the van der Waals region.
However, although it is shown in Figure 4.1 that the B97-D functional does approach
correct behaviour at very long-range it is also demonstrated in the same figure that
the dispersion interaction energy is still too low in the region between 7.5 to 9.0 a.u.
This simple example demonstrates the weakness of empirical corrections. Whilst they
perform well for the large organic and biological systems they are parametrized for,
they are not universally applicable. Furthermore, the correction term will not enter the
Kohn—Sham equations since they are density-independent and therefore have no direct
influence on the electronic structure. In the next section we consider how dispersion
should affect the electronic density and how this occurs in a Kohn—-Sham framework.
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Figure 4.1: The interaction energy in a.u. between two helium atoms as a function
of internuclear separation, R, calculated with uncontracted d-aug-cc-pVQZ basis set.
The B97-D functional is the green line, BSLYP-D is red and B2PLYP-D is blue. The
dashed line is the dispersion energy calculated using Eq. (4.1.1) with the coefficients of
Korona et al. [58]

4.2 Dispersion within the Kohn—Sham framework

The Hellmann—Feynman electrostatic theorem presents a clear link between the density
and the dispersion force, and is hence an ideal starting point for any investigation
into dispersion within a Kohn—Sham framework. The work performed by Allen and
Tozer [59] on the dispersion forces in the helium dimer within the Hartree-Fock—Kohn—
Sham (HFKS) formalism represents the starting point of this discussion of dispersion
treated in a Kohn—Sham framework. The difference between their work and the analysis
presented here is that whereas they only treated a correlation potential v.(r), the full
exchange—correlation potential is employed in this work, bringing the formulation within
the Kohn-Sham framework. Throughout this chapter the Hellmann-Feynman force
will be used as a measure of the quality of the Kohn-Sham density obtained through
the application of the WY-procedure discussed in Section (3.3.2) to a CCSD(T) input
density. Following the work of Allen and Tozer [59], the density distortions which arise
for two helium atoms located a distance of 8.0-9.0 a.u. apart, will be presented. These
density distortions are defined as

Ap(r) = pT™(r) — p*™ (r) — p*™(x) (4.2.1)

How these density distortions are obtained in a practical manner will be discussed in
the section on computational details.
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4.2.1 The Hellmann—Feynman electrostatic theorem

In 1939 Feynman proposed [26] a way to calculate intermolecular forces directly from
the electronic density. It was shown that the force on the nucleus could be described
with classical electrostatics provided that the correct quantum-mechanically determined
electronic density is supplied. The total energy of the system is given by the expectation
value of the electronic Hamiltonian in Eq. (2.1.2)

> (4.2.2)

:< _—ZV2+Z—+Z r; +Zzé‘i3

7>t A<B
The force on a given nucleus can be calculated via differentiation. For example the
x-component of the force on nucleus A is given by

oFE
0X 4

Fya=— (4.2.3)

Substituting Eq. (4.2.2) into Eq. (4.2.3) gives

Foa= —<¢ % ¢> <8XA )H‘¢> <¢‘H‘ 8XA> (4.2.4)
_ _<¢ % ¢> iy K A |\p> <\p| ik >} (4.2.5)

where the last term vanishes because of constant normalisation. Hence we are left with

one term
Fx,A = - <¢

Due to the kinetic energy and the electron electron repulsion being independent of the
nuclear coordinates, the only terms that will remain are the nuclear—nuclear repulsion
and the external potential, giving the following force

X
Yz
A>B

oH
0Xa

¢> (4.2.6)

(4.2.7)

where X 4 and X 4p are the x-coordinates of nucleus A relative to the origin and nucleus
B respectively. Similarly x4 is the coordinate of the electron relative to nucleus A.
Hence the force on a given nucleus is due to the charge of the electric field generated by
the electrons times the charge of the nucleus, and the sum of all the other fields arising
from the other nuclei present. The conjecture made by Feynman in his paper was that
just as valence bonds are formed by a high concentration of charge between nuclei, van
der Waals forces also arise when there is a higher level of charge concentrated between
the nuclei. Two atoms separated by a large distance R, experience a distortion in
their respective charge distributions towards each other, and hence a dipole moment of
% is induced. Feynman furthermore conjectured that a large part of the dispersion
interaction force of magnitude %, arose from the attraction of each nucleus to its own
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local distortion in the electronic charge distribution. This attraction being greater than
the repulsion between the nuclei. Illustrations of this will be presented in the results
section of the helium dimer at R =8.0, 8.5 and 9.0 a.u. The conjecture was later verified
by Hunt et al. [60] and discussed further by Allen and Tozer [59].

4.2.2 Ensuring the validity of the Hellmann—Feynman theo-
rem

A.C. Hurley [61, 62] investigated the calculation of molecular energies through the
electrostatic theorem of Hellmann and Feynman. He examined the necessary conditions
for the theorem to hold. In this section we follow his argument to outline how we can
ensure that the electrostatic theorem holds. Here, ¥ is a given normalized electronic
wave function, such as those discussed in the chapter on electronic structure theory.
This wave function may be represented in terms of a set of parameters, denoted by .,
which in theory constitutes an infinite set. The complication which occurs when the
Hellmann—Feynman force is evaluated is that the set of parameters p, may themselves
depend on the nuclear coordinates. An example where this is the case is for wave
functions expressed in terms of molecular orbitals, which are described by nuclear
centred atomic orbitals. The wave function and parameters

W= W (py; ) (4.2.8)

My = ,UT(XAaYA,ZA) (429)

where X 4, Y4, Z 4 are the Cartesian nuclear coordinates, and x4 denote the spatial and
spin coordinates of the electrons with respect to nucleus A. Taking the expectation
value of the electronic Hamiltonian, where according to the BO—-approximation the
nuclei coordinates are stationary, H(Xa, Y4, Za) gives

E(Xa,Ya,Za) = E(Xa,Ya, Za, ptr) = (Y(ir; va) [H(Xa, Ya, Za)| ¥(pr;240)) (4.2.10)

where E (X4, Ya, Za, p) represents the energy for a wave function dependent upon the
parameters p,.. The force on a given nucleus is minus the derivative of the energy with
respect to the nuclear coordinate X 4

O0E aE+°° OF op,
0Xa  0Xa = 0 0Xa

(4.2.11)

From the derivative it is evident that this reduces to the Hellmann—Feynman electrostatic
theorem if the last term vanishes. By having the basis functions detached from the
nuclei, and optimizing their positions to obtain their lowest energy, something which
will be referred to as “floating functions” in this work, we make all the parameters
independent of the nuclear coordinates and so,

Oy
= 4.2.12
ax, 0 ( )

Hurley formulated the generalized electrostatic theorem, stating that: in the case of all the
parameters satisfying the Rayleigh Ritz variation principle, then there will be complete
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agreement between the conventional method and the electrostatic theorem. The use
of floating Gaussians [63] would ensure that the Hellmann-Feynman theorem held for
a variational method. However, this thesis uses the CCSD(T) density, and coupled
cluster is a non—variational method. The way to circumvent this remaining problem is
through the use of the Lagrangian approach of Helgaker and Jgrgensen [64—67]. The
combined use of the Lagrangian method and floating Gaussian functions ensures the
validity of the Hellmann-Feynman theorem for the non—variational CCSD(T) method.

4.2.3 Computational details

One physical motivation in support of using floating functions, is that when two atoms
interact, there will be a deformation of the charge density surrounding each nucleus.
When using basis functions that are situated on the nuclear centre, this deformation
is not well accounted for without the aid of augmenting and higher angular momenta
functions. By floating, a smaller basis set may be used to achieve the same effect.
Floating functions had previously been used in the DALTON code [63], however this
implementation had not been maintained, and therefore a new implementation had to
be carried out. The necessary changes to allow for the optimization of the basis function
positions were performed inside the geometry optimizer in the development OEP branch
of the DALTON code, along with the construction of a more flexible molecular input,
where any general system could in principle be used with floating basis functions.

The atom was defined to be a nuclear charge, with no basis functions and an
additional centre with orbital basis functions, but zero charge. For the calculations
which employed an auxiliary basis, such as the OEP or the WY methods described
in Section 2.2.70 and 3.3.2, these basis functions were placed on the nuclear centre.
Floating these sets had no observable effect on the calculated forces. The helium dimer
studied here consists of two centres with nuclear charge Z, separated by a fixed distance
R, and two centres with Z = 0 containing the orbital basis functions, whose positions
are optimized to give the lowest energy. To correct for the basis set superposition error
all calculations presented in this chapter are counterpoise corrected according to the
scheme of Boys and Bernardi [68]. The procedure is as follows:

1. The redundant internal coordinates were determined and constraints introduced
to ensure a rigid nuclear framework.

2. The positions of the floating functions were optimized at the CCSD(T)/un-
contracted d-aug-cc-pVQZ level.

3. The energy of the atoms was then calculated with the use of the same optimized
basis as the dimer, but with one nuclear centre removed.

4. The interaction energy was calculated by subtracting the energies of each atom
calculated in the basis set of the dimer, from the dimer energy.

The BSSE—correction of Boys and Bernardi [68] is defined for the energy. A similar
definition may be obtained for the forces by differentiation of the BSSE-correction of
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the energy. The correction for the forces was obtained by calculating the Hellmann—
Feynman force in the dimer, and in the same basis, calculating the molecular gradient
on the individual atom in the same basis. The standard molecular gradient was applied
for the atomic systems since removing one nuclear centre leads to the electrostatic
theorem no longer being valid.

The Hellmann—Feynman theorem was used throughout this work to measure the
accuracy of the Kohn-Sham densities. The forces calculated at CCSD(T) level were
compared with the forces calculated from Kohn-Sham densities, providing a way of
quantifying the accuracy of the density. The Kohn—Sham densities corresponding to the
accurate densities calculated with the CCSD(T) method, were obtained by the scheme
of Wu and Yang discussed in Section (3.3.2) of Chapter 3.

The Kohn—-Sham potentials were also obtained utilizing the WY method. The
Heaton-Burgess smoothing norm approach [69] with a regularization parameter of 10~°
was employed to ensure well behaved potentials. The correlation potentials for the
dimer were obtained by applying the direct optimization method of Wu and Yang
to a supplied Hartree—Fock density and then subtracting this approximate exchange
potential from the full exchange—correlation potential.

Due to the small magnitude of the density distortions, capturing the charge—
rearrangements proved a challenging task, and required careful thought with respect
to the choice of basis sets used. Furthermore, due to the floating functions only being
slightly displaced off the nuclear centres, as was noted by Hurley [61, 62], a high degree
of accuracy was required in the initial optimization. Hence very tight convergence
criteria on the nuclear gradient and energy were applied for all three geometries.

4.2.4 Results and Discussion
Choice of basis set

A range of correlation consistent basis sets developed by Dunning [70, 71] were considered
in this work. Important factors considered when choosing the basis set, included the
level of augmentation, the cardinal number, and whether the orbital and auxiliary
potential expansion basis in the WY calculation should be kept equal. Figure 4.2, shows
that the best agreement is found by having a large auxiliary basis set, in this case with
cardinal number six. Figure 4.3 shows the counterpoise, and non—counterpoise corrected
forces at an increasing level of augmentation, with the cardinal number being three and
six for the orbital and auxiliary basis respectively. For the augmentation level, Figure 4.3
illustrates that the best agreement between the forces of the input density and the
forces for the resulting Kohn—Sham density are found at the double augmentation level.
Furthermore, the plot illustrates the significance of the BSSE—correction, particularly
for basis sets with double or greater augmentation. The figure illustrates that the
forces based on the CCSD(T) density and the Kohn-Sham density are closest at double
augmentation. Dunning investigated the binding energy of the neon dimer [72] using
CCSD(T), and concluded that the use of a d-aug-cc-pVQZ recovered 96 % of the binding
energy.

The interaction energy for two helium atoms as a function of their internuclear
separation R is displayed in Figure 4.4. An accurate reference for comparison is
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Figure 4.2: The Hellmann-Feynman forces calculated for a helium dimer at R=9.0 a.u.,
as a function of the cardinal number, X, for the auxiliary basis, where X = 3,4,5 and
6. The orbital basis is un—contracted d-aug-cc-pVTZ, and the auxiliary un—contracted
d-aug-cc-pVXZ. The red line are the forces calculated with the CCSD(T) densities,
whereas the blue are the corresponding forces obtained with Kohn—-Sham densities.
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Figure 4.3: The Hellmann—Feynman forces calculated for the helium dimer at R=9.0
a.u., as a function of the level of augmentation, starting at single augmentation (labelled
as 1 on the z-axis) and ending with quadruple augmentation (labelled by 4). The basis
sets were un—contracted naug-cc-pVTZ and naug-cc-pV6Z for the orbital and auxiliary,
respectively, where n is the level of augmentation. The BSSE-corrected forces are
displayed with thick lines, and the un—corrected with dot-dashed lines. The red lines
correspond to the forces obtained from the CCSD(T) densities, and the blue lines are
the corresponding forces obtained with the Kohn—-Sham densities.
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Figure 4.4: The interaction energy curve of two helium atoms where the red curve is

calculated with d-aug-cc-pVTZ and the green is calculated with d-aug-cc-pVQZ, both

uncontracted. The red dashed line is Fg;s, evaluated by the coefficients of Korona et
al. [58] using Eq. (4.1.1). All quantities are in a.u.

provided by the dispersion energy calculated using Eq. (4.1.1) with accurate dispersion
coefficients from Korona et al. [58]. It is clear from studying this figure that the onset
of the dispersion region is approximately 8.0 a.u. Furthermore, a significant change is
observed in the van der Waals minimum of the curve arising from the highest cardinal
number in comparison with the lowest, the cardinal number of four providing a lower
minimum.

4.2.5 Dispersion forces from electronic densities

In the rest of the work presented we will concentrate on the dispersion region, defined
by internuclear separations beyond 8.0 a.u., and employ the d-aug-cc-pVQZ basis set to
study the dimer at the three geometries R =8.0, 8.5 and 9.0 a.u. In order to provide
an estimate of the accuracy of the WY method employed to investigate interactions of
such a small magnitude we consider the forces acting on the nuclei. These forces are
presented in Table 4.1. The forces are calculated at the CCSD(T) level through the
standard geometrical derivative, and the Hellmann-Feynman theorem of Eq. (4.2.7).
This provided an effective measure of whether the electrostatic theorem was satisfied
by the use of floating functions. As can be observed in the table, the forces calculated
at the CCSD(T) level agree to better than 10~7, which surpasses the level of precision
required in this work, and is a strong indication that the method is effective. For
comparison the forces also were calculated using Eq. (4.2.13) with accurate dispersion
coefficients of Korona et al. [58].

o0

dE is n
Figp=——52=—2n) Cs (4.2.13)
n=3

dR R2n+1
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Comparing these accurate forces with the ones obtained from relaxed CCSD(T) densities
provides insight into the accuracy of the CCSD(T) results obtained at this level of
theory. Through the WY procedure, the Kohn—-Sham densities which should correspond
to the relaxed CCSD(T) densities are obtained. The resulting Hellmann—Feynman
forces obtained from these densities, show a discrepancy with the forces calculated with
CCSD(T) densities. This discrepancy is of the order 5 x 10~7 and provides an estimate
of the accuracy of reproduction of the CCSD(T) densities. However, the forces obtained
with the Kohn—Sham densities preserve the trend displayed across the three geometries
for the accurate forces. We now go on to discuss the electronic charge density distortions
that arise with long—ranged interactions.

Table 4.1: The analytic, Hellmann—Feynman and accurate forces calculated using
the dispersion coefficients of Korona et al. [58] which range from n = 3 to n = 8 in
Eq. (4.2.13). calculated for the three geometries at uncontracted d-aug-cc-pVQZ/d-aug-
cc-pV6Z level. Results are presented for the CCSD(T) method and the WY[CCSD(T)]

approach. All the forces are of the magnitude 107% a.u.

R Fo¥pm Fgg'sgz% F\I}\;\léfc;%gb(T)] Faisp
8.0 -4.9 -4.9 -4.4 -5.4
8.5 -3.8 -3.8 -3.3 -3.4
9.0 -2.8 -2.8 -2.4 -2.2

Density and potential differences

Figures 4.5, 4.6 and 4.7 are plots of the charge rearrangement as a result of the
interaction between two helium atoms at R=8.0, 8.5 and 9.0 a.u. separation respectively.
These are calculated by taking the difference between the density of dimer and that
of each atom, calculated in the dimer basis set. The nuclei are then located at 44.0
, +£4.25 and +4.5 a.u. The plots demonstrate that there is a significant buildup of
charge density on the side of each nucleus that is closest to the other. This corresponds
to the image portrayed by Feynman [26], and is consistent with the existence of an
attractive force. The resulting forces which were calculated for the interaction at the
aforementioned separations are all attractive, demonstrating that distortions at the 10~7
level induce an attractive force which outweighs the nuclear nuclear repulsion. Looking
back at Eq. (4.2.7), the only attractive term is the one containing the interaction
between the charge density p(r) and the nuclear charge, Z. Comparing with the plots
obtained by Allen and Tozer [59], there is a larger discrepancy between the CCSD(T)
and Kohn-Sham density differences presented here, than the BD(T) and HFKS ones in
Ref. [59]. This is reflected in the resulting forces calculated for the three geometries.
However, it is important to keep in mind that the potential utilized in this work is
Uxe(r), rather than only the correlation potential. The explanation for the difference
with the results of Allen and Tozer is that the expansion used in the effective potential
of Wu and Yang [55] is not sufficiently flexible, whereas the approach employed in
Ref. [59] did not require the auxiliary functions to be expanded.

The density difference plots show how the interaction decreases with an increasing
distance R, the distortions close to the nucleus becoming smaller in magnitude. Through
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Figure 4.5: The CCSD(T) (in red) and the Kohn-Sham (in blue) density differences of
two helium atoms at R=8.0 a.u., obtained by applying the WY scheme to the CCSD(T)
relaxed density with uncontracted d-aug-cc-pVQZ/d-aug-cc-pV6Z basis sets for the

orbital and potential expansion, respectively.
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Figure 4.6: The density difference CCSD(T) (in red) and the Kohn—-Sham (in blue) of
two helium atoms at R=8.5 a.u., obtained by applying the WY scheme to the CCSD(T)
relaxed density with uncontracted d-aug-ce-pVQZ/d-aug-cc-pV6Z basis sets for the

orbital and potential expansion, respectively.

the application of the WY approach we are able to investigate the exchange—correlation
part of the Kohn—-Sham potential that reproduces the CCSD(T) densities. In the plots
presented in this work, the spurious oscillations in the potential which are located at the
nuclei have been removed through the smoothing norm procedure of Heaton Burgess [69].

The potentials displayed in Figure 4.8 and Figure 4.9 are the exchange—correlation
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Figure 4.7: The density difference CCSD(T) (in red) and the Kohn—-Sham (in blue) of
two helium atoms at R=9.0 a.u., obtained by applying the WY scheme to the CCSD(T)
relaxed density with uncontracted d-aug-cc-pVQZ/d-aug-cc-pV6Z basis sets for the
orbital and potential expansion, respectively.
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Figure 4.8: The exchange-correlation potential, vy (r) for the helium dimer at R=9.0
a.u., obtained by applying the WY scheme to the CCSD(T) relaxed density with
uncontracted d-aug-cc-pVQZ/d-aug-cc-pV6Z basis sets for the orbital and potential
expansion, respectively.

and correlation potential respectively, of the dimer at R=9.0 a.u.

The correlation potential obtained by subtracting the approximate exchange potential
determined in a WY (HF) calculation has a structure which closely resembles the accurate
quantum Monte Carlo atomic potentials by Umrigar and Gonze in Ref. [73].
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Figure 4.9: The correlation potential, v.(r) for the helium dimer at R=9.0 a.u., obtained
by applying the WY scheme to the HF density with uncontracted d-aug-cc-pVQZ/d-
aug-cc-pV67Z basis sets for the orbital and potential expansion and subtracting it from
the exchange—correlation potential, vy(r) .

Energy components

The picture of the dispersion interaction given in this chapter is that subtle density
distortions induced by the presence of a far away atom were the dominant contribution
to the dispersion force. However, no information was retrieved concerning the resulting
dispersion energy. Through studying the energy components one can form an under-
standing of how the total interaction energy is composed from the contributions to
the Kohn—Sham energy, as well as gain insight into how the interaction arises. Table
4.2 displays the energy components for the dimer, and each atom and the subsequent
BSSE corrections for the interactions. These Kohn—Sham quantities, Ty, F,., £ and
E,, were obtained using the scheme of Wu and Yang, as described in the computational
section of this chapter. The total kinetic energy, T', the electronic interaction, W, and
the total energy of the system are determined by a CCSD(T) calculation. Finally the
Kohn-Sham correlation energy is calculated via,

E.=W —Ey— E.+T, (4.2.14)

with Tt being the difference between the total and the non—interacting kinetic energy
of the system and thus representing the correlation contribution to the kinetic energy.
The total two—electron contribution then becomes by simple rearrangement, the sum of
the Coulomb energy, the exchange energy and the difference E. — T,

W=FE;+E;,+ E,—T, (4.2.15)

By looking at the BSSE—corrected interaction energies of Table 4.2 it becomes clear
that the dominant term in the above expression is the Coulomb energy, the exchange
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and correlation terms being several orders of magnitude smaller. Looking again at
the components for the interaction it is observed that the nuclear electron attraction
energy E,. is twice the magnitude of the Coulomb energy and the nuclear repulsion
energy. The two latter quantities being similar to 10~® a.u for all three geometries.
The picture that is forming is one where the the large separation R leads to the dimer
closely resembling two completely separated atoms. Hence the Coulomb interaction for
the dimer will upon subtraction of two separate atoms, be the inter-atomic Coulomb
repulsion. This repulsion, given by

JIp] = %//%drdr’. (4.2.16)

where r denotes the position of electron 1 and r’ denotes the position of electron 2. We
consider that electron 1 is localized to atom 1, and electron 2 is localized to atom 2.
This allows us to approximate the denominator of Eq. (4.2.16) with the internuclear
separation R. Assuming further that there is no density overlap between the atoms
in the dimer, we may approximate the electron densities in Eq. (4.2.16) to be point
charges, both of value -2. Taking the sum over the atoms for R = 8.0 a.u. returns a
value of 0.5 a.u., which is exceedingly close to the Coulomb interaction energy in Table
4.2 and consequently, the two-electron interaction. This implies that the long-range
Coulomb interactions dominate the two-electron interaction energy by inducing charge
density distortions which are localized to each atom. As conjectured by Feynman [26],
these local distortions give rise to the main part of the dispersion force on each nucleus.
The small differences of each term from the idealized values in this discussion reflect
the small density distortions discussed in Section 4.2.5.

Having understood the relative magnitudes of the interaction energy components
by the simple analysis above, we note that the total interaction energy is close to
the correlation energy recovered by DFT. Having differences of approximately 0.6, 0.3
and 0.1 pH for the geometries R=8.0, 8.5 and 9.0 a.u. This indicates that the other
contributions essentially cancel, their sum reduces to approximately —107¢E}, for each of
the geometries considered here. This emphasizes the delicate balance and cancellations
between the various energy components.

To summarize, we have observed that the subtle density distortions which arise due
to long—ranged dispersion interactions may be captured within a reasonable accuracy
with the direct optimization procedure of Wu and Yang for determining the Kohn—Sham
densities and potentials. The discrepancies between the CCSD(T) and Kohn—-Sham
density differences were larger than the ones reported by Allen and Tozer for the
BD(T) and HFKS densities in Ref. [59]. This is due to considering the total exchange—
correlation potential, v,. instead of the correlation potential, v., and may be attributed
to numerical difficulties associated with the expansion of the auxiliary basis. Further
investigation of this effect is ongoing. In the present work, the level of accuracy is
accepted, considering the small magnitudes of the dispersion interactions. The WY
procedure has allowed us to investigate the Kohn—Sham energy components, and a
comparison of the interaction energy components revealed subtle cancellations leading
to a total interaction energy resembling the interaction correlation energy component
in magnitude. We proceed in the following chapter to investigate the transition from a
non—interacting Kohn—Sham system to the physical system.
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Table 4.2: Total and interaction energies in a.u. calculated by applying the WY scheme
of Wu and Yang [55] to an input CCSD(T) density using the uncontracted d-aug-cc-
pVQZ/d-aug-cc-pV6Z basis set. CCSD(T) energy components are also included.

R Eiot T w B T Ee Ey Ey E.
Dimer Total Energies
8.0 -5.805422392  5.802474344 2.393153977 0.500000000  5.729960999 -14.501050713 4.596356038 -2.048177379 -0.082511337
8.5 -5.805420069  5.802485101 2.363749593 0.470588235  5.729973638 -14.442242998 4.566950851 -2.048180899 -0.082508896
9.0 -5.805418269  5.802492615 2.337610272 0.444444444  5.729982357 -14.389965601 4.540810648 -2.048182817 -0.082507301
Atomic Total Energies with Only the Near Atom Functions Included at the Dimer Optimized Positions
8.0 -2.902706854  2.901250419 0.946586071 0.000000000  2.864996812  -6.750543344 2.048182941 -1.024091471 -0.041251792
8.5 -2.902706854  2.901250419 0.946586071 0.000000000  2.864996812  -6.750543344 2.048182941 -1.024091471 -0.041251792
9.0 -2.902706854  2.901250419 0.946586071 0.000000000  2.864996812  -6.750543344 2.048182941 -1.024091471 -0.041251792
BSSE Corrections
8.0 -0.000001144  0.000003302 0.000002472 0.000000000  0.000003120  -0.000006918 0.000006109 -0.000003055 -0.000000400
8.5 -0.000000986  0.000003723 0.000002527 0.000000000  0.000003555  -0.000007236 0.000006015 -0.000003007 -0.000000313
9.0 -0.000000745  0.000004015 0.000002382 0.000000000  0.000003866  -0.000007141 0.000005525 -0.000002762 -0.000000232
BSSE Corrected Interaction Energies
8.0 -0.000006396 -0.000033099 0.499976892 0.500000000 -0.000038863  -0.999950189 0.499977938  0.000011672 -0.000006953
8.5 -0.000004389 -0.000023184 0.470572397 0.470588235 -0.000027096  -0.941141837 0.470572940  0.000008057 -0.000004688
9.0 -0.000003071 -0.000016253 0.444433367 0.444444444 -0.000018999  -0.888864630 0.444433717  0.000005648 -0.000003252
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Chapter 5

A study of the helium dimer
through the adiabatic connection

Chapter 4 examined the dispersion interaction for the helium dimer in the Kohn—Sham
framework. We followed the work of Allen and Tozer [59], and studied the subtle density
distortions which were the result of the presence of a distant atom, but carried out
this analysis with respect to the full exchange—correlation potential, v,.(r) bringing the
results into the full Kohn—Sham framework. Through these results we gained insight
into the dispersion interaction, and how it arises. However, we are interested in attaining
more information into the behaviour of the various Kohn—Sham components of the
interaction energy. In order to achieve this we must go beyond the non—interacting
Kohn—-Sham system and approach the physical system. In order to connect the non—
interacting system, and the physical system we employ the adiabatic connection [8-11],
which will be introduced in the following section. Two manners of switching on the
electronic interactions will be discussed, one applying a simple linear scaling of the
interactions and another more complicated scaling based on the error function, which
may be used to emphasize the range of the interactions.

5.1 The Adiabatic Connection

The Lieb theory discussed in Chapter 2 provides us with the necessary tools to study
the evolution from the non—interacting Kohn—Sham system to the physical system with
full interaction between the electrons. We begin by considering a system which can be
described by the Hamiltonian:

1 N 1 N N
H,[v] = —§ZV?—I—§ZW,\(TU)+ZU(Q) (5.1.1)
i=1 i#j i=1

where the first term is the kinetic energy operator, the second is the electron—electron
repulsion operator with a dependence on the parameter A\, and the last term contains
the external potential v(r). By introducing a dependence upon X for the two-electron
operator we may vary the electronic interactions, changing the system from non-—
interacting at A = 0 to the fully interacting at A = 1 with wy(r;;) = 0 and wy (r;;) = =

7'7/]
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respectively. We will consider two paths for connecting these two systems, the linear
path and a range-dependent error-function path, which are defined by the choice of the
two—electron interaction wy(r;;) as

: A
wkn(rij) = 7"_ (linear) (512)
ij
erf (27
wf\rf(rzj) = (;—’\]) (error function) (5.1.3)
ij

where the linear dependence on A\ represents the conventional choice, and the range of
the electronic interactions can be investigated by the use of the error function.
The ground state energy as a functional of the external potential, v may be written
as
E\[v] = inf TrH,[v]4 (5.1.4)
Y—N

where the infimum is performed over all ensemble density matrices 4 containing N
electrons. Lieb [33] showed that the ground state energy, E\[v] is continuous and
concave with respect to v. Therefore it can be represented in an alternate way by
its convex conjugate, the Lieb universal density functional, F)\[p]. The latter being a
functional of the electronic density p. The conjugate relationship of Fy[v] and F)\[p]
may be generalized for all interaction strengths A:

Exle] = inf [FAlp] + (vlp)] (5.1.5)
Eilp] = sup [Exlu] ~ (v} (5.1.6)

where tX* is dual to X. This quality ensures that the interaction (v|p) is finite for all
external potentials, v € X* and densities p € X. It was further shown by Lieb that
the universal density functional in Eq. (5.1.6) may be expressed as a density-matrix
constrained-search functional,

Fy\[p] = inf TrH,[0)4 (5.1.7)
F=p

It is important to note that the minimizations of the ground state energy functional in
Eq. (5.1.4) and the density functional in Eq. (5.1.7) can be expressed in terms of the
orbitals in an exact manner for A = 0. For the cases of A\ > 0 the equations become
complicated many—body problems. The goal is to be able to study the link between
the non—interacting system and the physical system and we therefore consider the
relationship between F)[p] for a general A and its non—interacting limit Fy|p],

*dRy[p]

RMI%M+A—ETM (5.1.8)

Applying the Hellmann—Feynman theorem to Eq. (5.1.8)
dFy|[p]

d\
un

= TeW/ 7% = Whp] (5.1.9)
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where W) is the electron—electron repulsion operator in Eq. (5.1.1), with the prime
denoting differentiation with respect to A, and 44 is the minimizing density-matrix of
Eq. (5.1.7) and noting that for the Kohn-Sham system the Lieb functional reduces to

Folp] = Ti[p] (5.1.10)

where T}[p] is the non—interacting kinetic energy, the universal density functional can
then be formulated as

F\lp] = Ts[p] —l—/o W, [pldv (5.1.11)

where the integral gives the sum of the electronic interaction energies and a small
correction to the non-interacting kinetic energy 7. = T — Ty, where T) is the kinetic
energy at interaction strength \. This in turn can be decomposed into the following
components

/0 W, lpldv = Jy[o] + Exalg] + Eenlo (5.1.12)

where the first term is the classical Coulomb contribution given by

1
J\lp] = 5//wA(ru)p(rl)p(rg)drldrg (5.1.13)
the second term is the exchange energy given by
Eyalp] = TeWayg — J,lp] (5.1.14)

and the correlation energy is

A
Bl = [ Weslplir (5.0.15)

The exchange and correlation energies may be combined into the exchange—correlation
energy given by

Erelp] = / Wi ol (5.1.16)

We have now defined the three integrals, Wi [p], Wkealp] and W, \[p], which repre-
sent the Coulomb-exchange-correlation, exchange—correlation and correlation energies
respectively. These integrands can be recovered by supplying a highly accurate approxi-
mation of the physical density at A = 1 to the universal Lieb functional in Eq. (5.1.6)
for all values of A, and calculating F)[p] from A =0 to A = 1.

5.2 An interaction adiabatic connection

The last section of Chapter 3 concerned the practical calculation of the Lieb maximization
which was performed by employing the direct optimization technique of Wu and
Yang [55]. For the work carried out in this thesis we apply this technique as implemented
in Refs. [74, 75], for both the conventional linear and the error function adiabatic
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connection paths. In order to evaluate the dispersion interaction it is necessary to
consider how this interaction energy may be represented in terms of the adiabatic
connection integrands. We do this by defining the helium dimer as a supermolecule
(SM) and its two constituent atoms as subsystems (SS). This allows us to write the
interaction energy as

By = B 3B = B [T - YT [ -3
A
+ [JfM -3 st] + / [WEM -3 Wiﬂ dv (5.2.1)
0

which is in terms of the exchange—correlation integrands defined in the previous section.
Analogous expressions may be derived for the other integrands W, [p] and W, ,[p]. The
calculation of these integrands for the super and subsystems are carried out by applying
the methodology of Refs. [74, 75], with the same d-aug-cc-pVQZ/d-aug-cc-pV6Z basis
sets for the orbital and potential expansion as employed in Chapter 4. Uncontracted
basis sets are used for all calculations. The expression of Eq. (5.2.1) allows us to write
the interaction integrands as

Waklpl = Wanlel = > _ Wislo) (52.2)

where “typ” denotes which energy components the integrand represents. In the following
sections we will investigate these integrands for the linear and error—function paths and
make a comparison with the standard density functional BLYP.

5.3 The linear adiabatic connection

In the present section we discuss the linear adiabatic connection, where the electronic
interaction is modified by a linear scaling of the two electron operator according to
Eq. (5.1.2). The Figures 5.1, 5.2 and 5.3 present the adiabatic connection integrands,
Wi\, Wit and Wi for the interaction at the three geometries. The curves for all
the interactions were calculated using CCSD(T) relaxed densities as pip(r) for the Lieb
maximization in Eq. (3.3.12). As discussed in the theory, integrating these quantities
recovers the Coulomb—exchange—correlation, exchange—correlation and the correlation
energies for the interaction, respectively. However, as was discussed in Chapter 4, the
relatively small magnitudes for these interactions make it necessary to establish the
level of accuracy achieved in practice.

Furthermore it was discussed in Chapter 4 that the accuracy to which the Kohn—
Sham densities reproduced the CCSD(T) densities was limited by numerical difficulties
associated with performing the Lieb maximization. It was suggested that the discrep-
ancies could be attributed to applying a Gaussian expansion in the representation of
the effective potential vs(r). Whereas the analysis in Chapter 4 was performed for the
non-interacting system, (A = 0), we here obtain the values for the integrands at each
interaction strength, A\. As for the non—interacting case the counterpoise correction of
Boys and Bernardi [4] has been applied, but to each given value A in order to account
for the basis-set superposition error.
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The Coulomb-exchange—correlation integrand W shown in Figure 5.1 for the
geometries R = 8.0, 8.5 and 9.0 a.u., is clearly dominated by the Coulomb contribution,
which is constant for the linear AC. The three integrands appear as horizontal lines
on the scale presented in the figure. We note that the decay which was observed for
the Coulomb interaction energy in Table 4.2 for an increasing R is consistent with the
curves in Figure 5.1, which are separated by between 0.025-0.03 a.u.

The exchange—correlation integrands are presented in Figure 5.2, and correspond
to subtracting the dominant Coulomb contribution from Wik . All three curves
demonstrate a subtle curvature as the interaction strength increases from A = 0 to
A = 1. From the energy components studied in Chapter 4, it is clear that the exchange
component of the interaction energy dominates the exchange—correlation contribution.

This contribution is constant for the linear AC and therefore implies that the
curvature displayed in Figure 5.2 is a result of the correlation contribution. The
correlation only integrands are presented in Figure 5.3. Their curvature reflects the
suggestion that the correlation contribution to the interaction energy arising from
long ranged dispersion effects is mainly of a dynamical nature. Another argument for
the correlation contribution being dynamical is found in Goérling—Levy perturbation
theory [76, 77], where the correlation integrand can be presented by a Taylor expansion
around \ = 0,

Wer = 3 N+ 1D)EVG ] (5.3.1)
n=1

where E(ETELLl )[p] are the Gorling-Levy correlation energies to order n. In the case of
dynamical correlation energies, the expansion of Eq. (5.3.1) can be truncated at low
order to yield an accurate approximation. Truncating at second order would result
in a linear AC with a correct initial slope. Since the curves bend upwards this would
represent an overestimate, but the subtle curvature suggests a low order approximation
is reasonable.

The W' and W curves in Figure 5.2 and Figure 5.3 display small irregularities
around A = 1. We investigated the possible causes of these features, and stress that the
convergence of the Lieb optimization was found to be adequate for all values of A. In
order to rule out the possibility of the BSSE introducing these errors, the uncorrected
curves for the Wi were presented along with the corrected curves for the two geometries
R =38.0 and R = 8.5 a.u. in Figure 5.4, where the solid lines represent the corrected
curves, and the dotted lines are the un—corrected. It is evident from the curves that
even without the BSSE-correction irregularities still arise around A = 1. The errors
are consistent with the discrepancies between the CCSD(T) and Kohn—Sham densities
found in Chapter 4.

5.3.1 Comparison with BLYP

We now proceed to examine the standard density functional BLYP. Consistent with
the previous calculations presented in this work, floating basis functions and the BSSE
counterpoise correction are employed for all values of X\. The energies for the dimer, the
atom and the interactions are all presented in Table 5.1. The short sighted nature of
standard density functionals, due to depending on the local density, or the density and
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Figure 5.1: The Wj,. integrand for the interaction at R=8.0-9.0 a.u. The red curve is
R = 8.0 a.u., the blue is R = 8.5 a.u. and the green is R = 9.0 a.u.
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Figure 5.2: The W,. integrand for the interaction at R=8.0-9.0 a.u. The red curve is
R = 8.0 a.u., the blue is R = 8.5 a.u. and the green is R = 9.0 a.u.

its gradient, such as for GGAs, leads to an inability to recover the long—ranged dispersion
energy. Comparing Tables 4.2 and 5.1 the total interaction energies whilst negative
for CCSD(T) are positive for BLYP. Hence, whereas CCSD(T) yields an attractive
dispersion interaction energy, BLYP returns a repulsive energy. The interaction energies
for the exchange component, E™ that are approximated by BLYP have an incorrect sign
in comparison to the CCSD(T) values obtained in Table 4.2, and therefore demonstrate
a high degree of error. The interaction correlation energies, E™ recovered by BLYP
show a similar trend to the ones obtained by CCSD(T) having the correct sign and the
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Figure 5.3: The W, integrand for the interaction at R==8.0-9.0 a.u. The red curve is
R = 8.0 a.u., the blue is R = 8.5 a.u. and the green is R = 9.0 a.u.
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Figure 5.4: Comparison of BSSE corrected and uncorrected W, integrands at R=8.0
and 8.5 a.u. The red curve is R = 8.0 a.u., the blue is R = 8.5 a.u. The dashed lines
are the uncorrected curves which have the same colour scheme.

same order of magnitude, but are significantly smaller.

Since the exchange contribution to the interaction AC, W™ is constant for the BLYP
functional, we will consider the contributions from the correlation component, which
changes in a non—trivial manner with A. In the case of standard density functionals,
the correlation integrand can be constructed from uniform coordinate scaled density
relations, employing the general formula

OEc|p1/x]

c =2)\E. A2
Wealp1/l [p1a] + 23

(5.3.2)
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Table 5.1: Kohn—Sham total and interaction energies (and their components) in a.u.
calculated for the BLYP density functional approximation.

R Etot Enn T:s Ene EJ Ex Ec
Dimer Total Energies
8.0 -5.813802281 0.500000000 5.746874997 -14.494935890 4.558197620 -2.036537982 -0.087401026
8.5 -5.813808651 0.470588235 5.746835150 -14.436057990 4.528758550 -2.036532668 -0.087399930
9.0 -5.813812214 0.444444444 5.746809026 -14.383733680 4.502595613 -2.036528192 -0.087399426
Atom Energies in the Dimer Optimized Basis Set
8.0 -2.906908404 0.000000000 2.873382836  -6.747391171 2.029058560 -1.018259261 -0.043699368
8.5 -2.906907768 0.000000000 2.873381093  -6.747388877 2.029058585 -1.018259190 -0.043699379
9.0 -2.906907722 0.000000000 2.873381199  -6.747388862 2.029058509 -1.018259187 -0.043699381
BSSE Corrected Interaction Energies
8.0 0.000014527 0.500000000 0.000109324  -1.000153549 0.500080500 -0.000019460 -0.000002289
8.5 0.000006885 0.470588235 0.000072963  -0.941280235 0.470641380 -0.000014288 -0.000001171
9.0 0.000003230 0.444444444 0.000046628  -0.888955955 0.444478594 -0.000009818 -0.000000663

where the integrand is dependent upon the coordinate scaled density p1/5(r) = A 2p(r/X) [78].
Applying this scaling relation to the LYP correlation functional was shown in Ref. [79]
to yield

4papp
ELYP - _ /
c [pl/)\] a p(l—Fd)\p*l/S)dr
— ab/wu,\ {Papg {211/3Cf(pi/3 8/3 ( 51/,\> |Vp\2
5 1 (51 A P
= G- STl + [9p) — P2 (L0 + 29
2 2
— 3P (G- ) 19+ (G0 —p@) Vnlha (533

with w and 0 now being
exp(—cAp~'/?) ~11/3
1+ d\p~1/3
p1/3

1+ d/\p i3

The resulting correlation integrands derived for LYP from Eq. (5.3.2) are presented in
Figure 5.5 for the three geometries.

They display an erratic behaviour in comparison to the accurate curves of Figure 5.3,
which could be due to the discrepancy between describing the atoms and the dimer using
the BLYP functional, having a larger accuracy for the atoms, and failing to describe
the dimer to similar accuracy. This can be attributed to the the short-sighted nature of
the standard density functionals. BLYP fails to describe long-range interactions, but
in the case of atoms, these are much less significant. Hence BLYP has good accuracy
for the atoms, however, the accuracy of the dimer is much more greatly compromised
by missing the long-range interactions. It should be noted that all the AC—curves for
BLYP were calculated using a self-consistent BLYP density. However, evaluating the
curves with a CCSD(T) input density lead to nearly indistinguishable results.

Wi/x =

(5.3.4)

S =cp P+ d (5.3.5)
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Figure 5.5: The W, integrand for the interaction at R=8.0-9.0 a.u. with BLYP. The
red is 8.0, the blue 8.5 and the green is 9.0 a.u.

5.4 Range dependent contributions

The linear adiabatic connection plots discussed in the previous section demonstrated
that the correlation contribution to the dispersion energy in the helium dimer was of
a dynamic nature. In the present section we proceed to investigate the range (inter-
electronic separations) for which the interactions important to dispersion occur. To this
end the adiabatic connections for the interaction, Wint Wint and Wint are constructed
for the error-function path [80] according to Eq. (5.1.3). The electronic interactions
are modified with the coupling strength parameter A, and the error-function results in
all ranges initially being treated simultaneously, but for higher values of A only the
short-ranged interactions contribute. The choice of emphasizing the range is highly
relevant to range-separated approaches [81, 82], where the division between short-range
and long-range interactions is controlled by the parameter p = ﬁ Density functionals
are then employed in the description of the short-range interactions, and wave function
methods applied for the long-range interactions.

The integrands for the Coulomb-exchange—correlation energy for the dimer are
presented in Figure 5.6. The curves for the three geometries, R = 8.0,8.5 and 9.0
a.u., become indistinguishable after A ~ 0.35, such that the differences between the
internuclear separations only arise for the long-range part. The direct Coulomb
interaction is the dominant contribution to WM and the splitting of the curves below
A = 0.35 can be attributed to the long-ranged part of this interaction.

The curves for the error—function based integrands Witue™ yintert - ypintert =y
winter are presented in Figures 5.7-5.10, respectively. Turning our attention first to
Figure 5.7, where the scale reflects the dominant Coulomb contribution, we note that
the contributions approach zero between A ~ 0.25 and A ~ 0.35. The interactions
below this point appear to decay for an increasing internuclear separation, the repulsive

Coulomb contribution being largest for R = 8.0 a.u. and smallest for R = 9.0 a.u. The
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curves approach zero in the approximate area where we observed that the curves for
Wilimer hecame indistinguishable. The values for A where the interactions approach
zero correspond to a range of approximately u = 0.33 — 0.5a;"'. We note that this
range includes the inverse of the van der Waals radius of the helium atom, 0.37a;".
Goll [16, 83, 84] suggested the use of this criteria to determine a useful value for p in
range-separated calculations.

The exchange-correlation integrand for the error—function curves, wintert ig obtained
by removing the classical Coulomb contribution from Wj?(tc’erf. In the case of range—
separated methods, these exchange—correlation integrands are to be approximated, in
part, by short-range density functionals. In comparison to the curves for W' the
shape is not completely localized to the short or long—range, displaying a large negative
contribution for approximately A = 0.15 to A = 0.25 and a positive contribution which
dominates the curve from A =~ 0.3. In the interest of gaining more understanding of
this behaviour we present the exchange integrand separately in Figure 5.9 by removing
the correlation contribution, thus obtaining Wirt*f. This plot reflects the E, values
from Table 4.2 which were found to be positive for all the internuclear separations.
Furthermore, the shape of the plot indicates that the positive area of Figure 5.8 is the
exchange contribution, which is dominant after A\ = 0.3, and hence for the short-range
interactions.

The correlation integrands for the error-function curves, Wi " are presented in
Figure 5.10. The shape of the curves makes it evident that the correlation contribution is
purely long-ranged, and clearly dominates the Wint*r curve for low values of . Taking
the values for which the correlation contribution is dominant into consideration, a higher
range of ;1 = 0.5 — 0.65a, " could be suggested as optimal values for a range-separated
method. This coincides with the chosen value of u = 0.5a;" employed in studies of
non—covalent interactions [80]. However, the choice of the optimal value of p is system
and geometry dependent, and will in addition be influenced by the choice of density
functional to describe the short-range effects. The latter has not been taken into
consideration in this work.

The results so far have highlighted many of the features of the dispersion interaction
and the manner in which it can be treated in KS—DFT. The dispersion interaction
was found to be long-ranged and with the dominant contribution being dynamical
correlation, but being dependent upon several subtle cancellations between the energy
terms. As an example, a poor approximation of the exchange term in BLYP led to
the total interaction energy becoming repulsive rather than attractive. The findings
of this chapter reflect the results in Chapter 4 as well as those of Allen and Tozer in
Ref. [59]; the dispersion force arising from the long-ranged Coulomb interaction of a
distant atom which induces a charge-rearrangement, resulting in an attraction between
the nucleus and its own distorted density distribution.

5.5 The accuracy of the adiabatic connection for
the interaction

It was briefly mentioned in the beginning of this chapter that the level of accuracy
achieved in recovering the integrands had to be assessed. We therefore present some
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Figure 5.6: The W,x¢ integrand for the dimer at R=8.0-9.0 a.u. The red curve is
R = 8.0 a.u., the blue is R = 8.5 a.u. and the green is R = 9.0 a.u.
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Figure 5.7: The W, x¢ integrand for the interaction energies at R=8.0-9.0 a.u. The red
curve is R = 8.0 a.u., the blue is R = 8.5 a.u. and the green is R = 9.0 a.u.

comments regarding this topic. In connection with the linear connections it was
mentioned that numerical difficulties associated with the Lieb maximization could have
been a factor in the resulting discrepancies of the curves as well as the discrepancies
found for the density differences in Chapter 4. We will make a comparison between the
energy components obtained in Chapter 4, and listed in Table 4.2, to the integrated
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Figure 5.8: The W, integrand for the interaction energies at R==8.0-9.0 a.u. The red
curve is R = 8.0 a.u., the blue is R = 8.5 a.u. and the green is R = 9.0 a.u.
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Figure 5.9: The W, integrand for the interaction energies at R=8.0-9.0 a.u. The red
curve is R = 8.0 a.u., the blue is R = 8.5 a.u. and the green is R = 9.0 a.u.

quantities from both the linear and range-dependent adiabatic connection curves.
Tables 5.2 and 5.3 present the integrated values of Wit Wit and Wit for the linear

Jxcy
and range-dependent curves, yielding B - FI'® and E™ respectively, along with the
same components from Table 4.2. For the linear connections, we observe discrepancies of
approximately 5 x 10~ "a.u for the F'"* and E™ components, the components derived in
Chapter 4 being more positive in both cases. The range-dependent integrated exchange—
correlation components lie above the corresponding components from Chapter 4, and
the integrated values for the correlation display a smaller discrepancy. It is interesting to

note that for the interaction connections the BSSE varies with the interaction strength
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Figure 5.10: The W, integrand for the interaction energies at R=8.0-9.0 a.u. The red
curve is R = 8.0 a.u., the blue is R = 8.5 a.u. and the green is R = 9.0 a.u.

A. We note from Figure 5.4 that the difference between the corrected and un—corrected
curves for the linear ACs increases with an increasing A\. The consequence of this
is that the definition for the counterpoise correction applied in Chapter 4 for A = 0
and A = 1 is different from taking the counterpoise correction at each value of A for
the integrands, e.g Wtlin This becomes evident when the BSSE for E™ in Chapter
4 is compared to the corresponding correction for the integrated values. Looking at
the internuclear separation of R = 8.5 a.u. for the correlation energy we find that in
Chapter 4 the BSSE accounts for an energy increase of 3.12 x 10~7 a.u, whereas for
the adiabatic connections it accounts for 6.06 x 10~7 and 6.23 x 10~7 a.u for the linear
and range—dependent ACs respectively. Here as previously discussed, we have applied
the counterpoise correction to each value of A for both the linear and range-dependent
path. The discrepancy between the integrated results and those in Table 4.2 is of the
order 5 x 1077 a.u and we regard this as a measure of the accuracy achieved. This level
of accuracy is sufficient for the qualitative discussion presented here and investigations
are ongoing to improve the accuracy further.

Table 5.2: The energy integrands of the linear interaction calculated for the three
geometries at uncontracted d-aug-cc-pVQZ/d-aug-cc-pV67Z level. All the energies are
in a.u., and E,. and E, are of the order 1076 a.u.

R=8.0 R=8.5 R=9.0
Energy Components  [W  Components [  Components [ W
Eige 0.49998 0.49998 0.47058 0.47058 0.44444 0.444436
E.. 4.72 4.34 3.37 2.97 2.40 1.84
E. -6.95 -7.33 -4.69 -5.08 -3.25 -3.80%*
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Table 5.3: The energy integrands of the range-dependent interaction calculated for the
three geometries at uncontracted d-aug-cc-pVQZ/d-aug-cc-pV6Z level. All the energies
are in a.u., and F,. and E. are of the order 107% a.u.

R=8.0 R=8.5 R=9.0
Energy Components [ W  Components  [W  Components [ W
Ejxe 0.49998 0.49991 0.47058 0.47051 0.44444 0.44438
FEy. 4.72 4.95 3.37 3.54 2.40 2.55

E. -6.95 -6.72 -4.69 -4.52 -3.25 -3.10
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Chapter 6

Orbital dependent functionals

Chapters 4 and 5 presented a detailed analysis of the dispersion interaction for the
helium dimer. The problems displayed by standard density functionals to describe the
dispersion interaction were highlighted by the failure of BLYP to recover the correlation
energy. One possible solution to deal with the “short-sighted” nature of density
functional approximations, is to introduce non—locality by incorporating contributions
from orbital dependent correlation terms in the exchange—correlation functional. The
double hybrid functionals of Grimme et al. [23, 24| serve as typical examples. These
functionals include contributions from post-SCF perturbation theory. Here we consider
the double hybrid B2PLYP functional and a new form denoted B2-DC-PLYP, based
on the degeneracy corrected perturbation theory (DCPT2) of Ref. [27]. A family of
functionals based on random phase approximation (RPA) correlation energies are also
investigated. The focus of this chapter will be to investigate these forms to determine
their stability when evaluated in a self-consistent manner. This will be performed with
the use of the numerical procedures outlined in Chapter 3.

6.1 The B2PLYP double hybrid functional

One of the most notable examples of a double hybrid functional is the B2PLYP functional
of Grimme et al. [23]. This exchange—correlation functional has the form

E}}?CQPLYP — (1 _ CL)E)I(_IF + aE}I?eckeBS + bEgJYP + (1 _ b)E}jv[P2 (611)

where the first term is the Hartree—Fock exchange energy, the second is the exchange
functional devised by Becke [40], the third term is the correlation functional of Lee, Yang
and Parr [39], and the last term is the MP2 correlation energy. Grimme determined
the two parameters a and b by fitting over the G2/97 set of experimental data [23], the
resulting values being a = 0.47 and b = 0.73. The calculations are performed by first
running a self-consistent Kohn—Sham calculation applying the GGA functional defined
by the first three terms of Eq. (6.1.1) and then using the resulting set of orbitals to
evaluate the MP2 correlation energy,

EMP2 ZZ Za|jb Zb|ja)]2 (612)

Ei+Ej —Ea—Ep
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here given in spin orbital notation. It should be noted that the application of many—
body perturbation techniques to the Kohn—Sham system results in a single excitation
contribution to the second-order energy. This term is neglected in the application of
B2PLYP since the doubles term typically represents the dominant contribution to the
correlation energy.

As a part of the work presented in this thesis, the B2PLYP functional was im-
plemented in the DALTON program [49]. The performance of this functional for
calculating the energy of the diatomic molecules Hsy, Liy, Fy and Ny as a function of
an increasing internuclear separation R was investigated, and the results are presented
in Figure 6.1. All of the calculations were performed using the correlation consistent
cc-pCVTZ basis set of Dunning [70, 71]. We included core—correlated functions since the
MP2 contribution correlates all the orbitals in our B2PLYP calculations. The resulting
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Figure 6.1: The B2PLYP (red) and B2-DC-PLYP (blue) energies as a function of
internuclear separation, R, for the diatomic molecules (a) Hy (b) Lis (c) Fo and (d) Ns.
All calculations were performed in the cc-pCVTZ basis set. All quantities are in a.u.

potential energy curves obtained with B2PLYP display the problems associated with
MP2 to describe quasi—degenerate systems, as the internuclear separation is increased.
As the occupied and virtual orbital energies approach each other, the correlation energy
for all of the systems in Figure 6.1 becomes much too negative, resulting in a too
negative total energy. This causes divergence for large R, such that the functional
can only describe the systems reliably near the equilibrium geometry. The most rapid
divergence is observed for the triply bonded Ns.



6. Orbital dependent functionals 58

The failure of B2PLYP at large internuclear separations, R, is due to the orbital
eigenvalue differences in the denominator of Eq. (6.1.2). As R increases, the HOMO
and LUMO orbital energies become increasingly similar, resulting in near degeneracies.
Therefore we are motivated to consider other alternatives for the orbital dependent
correlation functional such that this problem is circumvented, as discussed in the
following subsection.

6.2 Double-hybrid functionals based on DCPT2

The DCPT2 method devised by Assfeld, Almlof and Truhlar [27] built upon the approach
of Kuhler et al. [85] to deal with quasi-degeneracies occurring in the quantum theory
of molecular vibrations. We will here give a brief outline the method. Because of
Brillouin’s theorem, only doubly excited states couple to the ground state in MP2
theory. We denote the ground state as ¥y, and the doubly excited configurations as \If?;’
(where i and j are the occupied and a, b are unoccupied orbitals) as s. Each contribution
to the second order correlation energy may then be expressed in spin orbital notation
as,

2
ER, = —g—j (6.2.1)
where V2 is
Voo = [(ialjb) — (iblja)] (6.2.2)
and
Eg = Dapij = €4 +€p — € — € (6.2.3)

The effective Hamiltonian is given as

(E, 0 0 Vi
H_< . E0+Eso>+)\<Vso o) (6.2.4)

where FEj is the unperturbed ground state energy, and A is the perturbation parameter.
The application of second-order perturbation theory to this Hamiltonian gives the
result of Eq. (6.2.1) for each contribution to the correlation energy. Assfeld, Almlof
and Truhlar [27] proposed to treat them in an exact manner by diagonalizing the
Hamiltonian in Eq. (6.2.4) for each double excitation contribution, which may be

written as |
B =33 (Ba B+ 4V3). (6.2.5)

s

We recover the total DCPT2 correlation energy by summing over all possible contribu-
tions, switching to spatial orbital notation gives

1
EPCPT2 _ 5 Z <Dabz‘j - \/ngij + 4(m|jb)>
ijab

+ iz (Dabij - \/ngij + 4[(ialjb) — (ib|ja)]2> (6.2.6)

ijab
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The above expression is easy to implement in any code which can perform calculations
using MP2, and has been implemented in the DALTON program as part of this work.
The lack of an orbital energy difference denominator means that the expression should
be more applicable in the case of quasi—degeneracy.

Considering the failure of the B2PLYP double hybrid for obtaining potential energy
curves for stretching even simple bonds as is observed in Figure 6.1, we now investigate
whether a new double hybrid with DCPT2 correlation energy offers any improvement.
In Figure 6.1 we note how DCPT2 and MP2 have similar correlation energies far from
any degeneracies which implies that DCPT2 is a convenient choice as a replacement
for the MP2 correlation component in B2PLYP. The parameters for B2PLYP were
obtained through optimization over the G2/97 set which contains molecules close to
their equilibrium geometries, such that there is a low probability of any degeneracies
occurring. We therefore make the assumption that the same parameters a and b in
Eq. (6.1.1) may be employed as for B2PLYP, and the correlation contribution using
MP2 theory may be replaced by the DCPT2 correlation energy from Eq. (6.2.6).

The potential energy curves obtained employing this new functional, which we will
refer to as B2-DC-PLYP, are presented in Figure 6.1 along with the curves obtained
with standard B2PLYP for the diatomic molecules, Hs, Lis, Fo and Ny. The results show
that for short to intermediate values of R, there is close agreement between the two
methods. As the internuclear separation is increased, the Kohn—Sham orbital energies
used in the perturbation expression of Eq. (6.1.2) start to become degenerate. When
this occurs the potential energy curves obtained with the two methods begin to display
significant differences. In the case of the only triple bond included in the molecular
set, Ng, B2-DC-PLYP does not result in a complete divergence, but still displays an
unphysical maximum around 6.0 a.u. and and an asymptote which is much too low.
The single bonds on the other hand appear reasonable, having no divergence for a large
internuclear separation, and displaying a qualitatively correct behaviour with regard to
having a flat, plateau as the dissociation limit is approached. However, it should be
noted that the dissociation limits approached are not accurate. For example, in the
case of Hy this limit is too high, being —0.9 a.u instead of —1.0 a.u.

Having found promising results for the B2-DC-PLYP functional stretching single
bonds, we now consider the limiting case of « = 0 and b = 0 in Eq. (6.1.1) for the
standard B2PLYP and B2-DC-PLYP functionals. This choice of parameters represents
pure MP2 and DCPT2 calculations respectively. These parameters were applied to Fo
and the results are shown in Figure 6.2. In comparison with Figure 6.1 MP2 diverges at
a quicker rate as R increases than B2PLYP. This reflects the fact that only 27% of MP2
is included in B2PLYP. However, B2PLYP does not offer a substantial improvement,
since the MP2 correlation component included is evaluated using Kohn—Sham orbitals,
which have a smaller HOMO-LUMO gap than Hartree-Fock. Hence, as the bond is
stretched, degeneracies are approached at a faster rate than if Hartree—Fock orbitals
had been employed. The potential energy curves for Fy evaluated using pure DCPT?2
do not reflect the qualitatively correct behaviour of B2-DC-PLYP, but instead gives
an unphysical maximum and finite but too low asymptote. The relative success of
B2-DC-PLYP can be attributed to the small fraction of DCPT2 correlation (27%)
included as well as the relatively high amount of Hartree-Fock exchange (53%). Still,
the qualitatively reasonable results obtained for B2-DC-PLYP for the dissociation of
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single bonded species are remarkable considering the sensitivity of the results to the
parameters of Eq. (6.1.1).
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Figure 6.2: Dissociation of Fy with full Hartree-Fock exchange and MP2/DCPT2
correlation contributions. The red curve is MP2 and the blue is DCPT2. The calculations
were performed in the the cc-pCVTZ basis.

6.3 A self-consistent DCPT2 double hybrid

Despite the B2-DC-PLYP functional of the previous section only demonstrating limited
success for obtaining the potential energy curves of single bonded molecules, it is
important to note that a finite value is obtained for EP°FT2 in the case of degenerate
orbital energies. In order to have a fully rigorous treatment of B2PLYP and B2-DC-
PLYP within the Kohn—Sham framework, the OEP method has to be employed. Several
authors have reported difficulties associated with evaluating functionals derived from
perturbation theory when applying the OEP approach [86-88]. As described in Chapter
2, these methods minimize the energy functional with respect to variations in the Kohn—
Sham potential, vs(r). Therefore, if a potential is constructed which forces the orbital
eigenvalues to become degenerate, then this will lead to unphysical correlation energies
in the case of MP2 in Eq. (6.1.2). Solutions to avoid this have been proposed, notably
by Bartlett et al. [86, 87, 89] who introduced a series of alternative perturbation theories
especially designed to avoid this problem. These theories employ a re-summation of
the perturbation series which results in a denominator shift in Eq. (6.1.2), and hence
avoid the issue of divergence. The DCPT?2 correlation energy expression would appear
to be an alternative solution which removes the problem of degeneracies from the OEP
calculations. We therefore proceed to investigate the possibility of a self-consistent
DCPT2 double hybrid, starting with the case of @ = 0 and b = 0, and employing the
numerical optimization techniques described in Chapter 3.
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Initially, we chose to consider the simple example of the helium atom in Pople’s [90]
3-21G basis set. The direct optimization techniques which were discussed in Chapter
3 were used with the basis set in the potential expansion in Eq. (3.1.1) set equal to
the 3-21G orbital basis such that the OEP(DCPT2) energy is a function of only the
two expansion parameters by and by,. The OEP optimization was carried out using the
Nelder-Mead algorithm outlined in Chapter 3. The energy may therefore be plotted as
a surface in these two parameters, and this has been carried out over the range -50 to
+50.

The resulting surfaces are presented in Figure 6.3. The effect of a smoothing norm
regurlarization procedure on these surfaces has also been considered. The technique of
Heaton—Burgess et al. [69] was chosen , where the term,

[Av@IF =D bibu (g:(x) [ V| gu(r)) (6.3.1)

weighted by a parameter, A, modifies the energy functional which is to be minimized.
This term measures the smoothness of the potential in Eq. (3.1.1) and raises the
energy in the regions where the potential is oscillatory. The size of the parameter
A determines how smooth the potential will be in the evaluation of the energy, the
larger this parameter is, the larger the extent to which a smooth behaviour is enforced.
The subsequent values of A considered in Figure 6.3 are 1072,1074,1073,1072. The
smallest smoothing norm of 1075 results in a surface similar to the unregularized
case which resembles a long narrow valley, presenting a difficult optimization problem.
However, given sufficient iterations the Nelder—-Mead approach does find a minimum.
By increasing the parameter, we note how the surface smoothens, making it easier for
the optimizer to locate a proper minimum, until at 1072 the surface displays a clear
minimum. Table 6.1 lists the behaviour of the DCPT2 correlation energy as a function
of the smoothing norm parameter, A, at the optimal values of the expansion parameters
by and b5. A large number of iterations, typically between 5000-10000, are required to
reach convergence.

Table 6.1: The self-consistent DCPT?2 correlation energy contributions for several values
of the parameter A used in the smoothing-norm method. The values of the optimal
expansion parameters b] and b} are given, along with the HOMO-LUMO gap. All
calculations use the 3-21G basis set and all quantities are in a.u.

A E. HOMO-LUMO gap by b3
107° -0.26216 1.3 x 107 -10.081 50.160
107*  -0.01559 2.19 0.334  1.591
107* -0.01515 2.26 0.035  0.140
1072 -0.01511 2.26 0.035  0.013

The results demonstrate how the optimal expansion parameters in the case of a
norm of 107 are located in the top left of the valley in Figure 6.3. The minimum
value of —0.26216 a.u is much too negative when compared to the FCI for helium of
—0.01490 a.u for the correlation energy. The associated value for the HOMO-LUMO
gap is essentially zero. The correlation energies and associated gaps for the larger values
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Figure 6.3: The energy of the helium atom in the 3-21G basis set as a function of the
potential expansion parameters b; and by for a range of a smoothing-norm parameter,
A, values from 107° to 1072, calculated using the Nelder-Mead algorithm.

of A reflect how the use of the smoothing norm regularization avoids these degeneracies,
resulting in more reasonable correlation energies and HOMO-LUMO gaps. The optimal
point on the surface, given by (b3, b%), moves down the valley and into the centre of the
surface, which is fully consistent with the behaviour of a smooth potential for which b,
and b, have reasonable values, as opposed to the large values at A = 107°. However,
without the use of a smoothing norm, the resulting correlation energies will be below
the correct value.

In order to highlight the difficulties associated with using either DCPT2 or MP2 to
account for the correlation energy, the respective energies for the helium atom were
examined as a function of the HOMO-LUMO gap. For a two electron system, the
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DCPT?2 energy expression in Eq. (6.2.6) reduces to

1 y
P2 = = (Dasig = \/ D2y + 4lial6)°) (6.3.2)
Because of the existence of only one occupied and one virtual orbital in the case of
helium, the second term in Eq. (6.2.6) is cancelled since (ia|jb) = (ib|ja). It becomes
evident from Eq. (6.3.2) that when the occupied and virtual orbitals become degenerate,
the expression simply becomes

EPCPT2 — _(ja|jb). (6.3.3)
the corresponding divergent MP2 term is given by
. . .b)2
ez _ Z(1alib)” 6.3.4
Dabij ( )

The behaviour for both these energy expressions is shown in Figure 6.4, where the
DCPT2 and MP2 are evaluated for a fixed set of orbitals.

The two energies remain similar in the area where there are no degeneracies, having
negative correlation energies when the HOMO-LUMO gap is positive. Both energies
decay as the gap closes, but DCPT?2 displays a slow decline towards the value of —(ia|jb),
as opposed to MP2 which diverges sharply towards —oo. The MP2 correlation energies
become positive for the negative HOMO-LUMO gaps, whereas the DCPT2 energies
become increasingly negative. However, since we enforce occupations corresponding to
the aufbau principle in our calculations we are restricted to the lower right quadrant in
our DCPT2 calculations.

The results presented in this section concerning DCPT2 demonstrate that this
energy expression does not solve the difficulties associated with the use of perturbation
expressions as self-consistent orbital dependent functionals, even though bounded
energies are obtained for degenerate HOMO-LUMO gaps. The simple removal of the
energy denominator does not prevent the evaluation of the energy expression with the
OEP method leading to unphysically negative values. However, the analysis presented
does highlight the advantage of applying numerical techniques for prototyping new
methods. The derivation of the analytical gradients needed to optimize EP“FT? is
straight-forward, but their efficient implementation may be time consuming and their
energy expressions can prove cumbersome see Refs. [86, 88] for similar expressions.

6.4 Correlation functionals from the random-phase
approximation

Correlation energy functionals based on the RPA have received a great deal of attention
recently [28, 91, 92]. Many variants have been developed, for an overview of the different
correlation energy expressions the reader is referred to Ref. [93]. We begin this section
by outlining the RPA methods applied in this thesis, starting from the closed-shell RPA

eigenvalue problem
A B X X
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where 2, A, B, X and Y are matrices with the dimension ov X ov, o representing the
total number of occupied orbitals and v being the number of virtual. The diagonal
matrix €2 contains the approximate excitation energies of the system, and the elements
of the matrices A and B are given in spin-orbital notation as:

Aiajb = (€0 — €:)0ij0a + [(ialbj) — (ijlab)] (6.4.2)
and
Biajo = (ialjb) — (ib|ja) (6.4.3)
The Tamm-Dancoff approximation (TDA) sets B = 0 reducing the problem to
Az =zv (6.4.4)

where v are the Tamm-Dancoff excitation energies. Since the RPA problem includes
de-excitation operators in addition to the excitation operators in the TDA it may be
considered to have a correlated ground state. To extract an RPA correlation energy we
take the difference between the RPA and TDA excitation energies,

RPA _ 1 1
B = 5 Z (wi —v1) = 5 Tr(w — A) (6.4.5)
where the prime denotes that only the positive eigenvalues w; in €2 are used.

It was noted by Sanderson [94] and Freeman [95], and more recently by Scuseria et
al. [28] and Kresse and Griineis [92] that the RPA correlation energy can be obtained
through the ring-coupled-cluster-doubles approach (RCCD) by solving the Riccati
equation

B+AT+TA+TBT =0 (6.4.6)

for T, which are the coupled cluster amplitudes. This yields the correlation energy
1
ERCCD — 5 Tr(BT) = ERPA, (6.4.7)

This procedure has been implemented in the DALTON program by Coriani et al. [96]
for closed shell systems. The full RPA/RCCD correlation energy in Eq. (6.4.7) can
be viewed as a relatively inexpensive orbital dependent correlation functional, but is
plagued by instabilities when the closed shell reference state contains triplet instabilities.

A much more robust variant of the RPA correlation energy is the direct RPA
(dRPA), which coincides with the RPA correlation energy derived through the adiabatic
fluctuation dissipation theorem by Furche [91] for pure density functionals. This form
of RPA can also be expressed through a RCCD formulation with a modification to the
matrices A and B, such that their matrix elements become

A?af,{jb = (g4 — €i)0ij0ap + (1a]bj) (6.4.8)
By, = (ialjb) (6.4.9)

The difference between Eq. (6.4.8) and (6.4.9) and (6.4.2) and (6.4.3) is that the integrals
are not antisymmetrized. Solving the Riccati Eq. (6.4.6) with the above integrals yields
the direct-RCCD (dRCCD) correlation energy,

1
EMCCP = ~Tr(BarTar) = B (6.4.10)

P
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where the amplitudes Tqg are the solution to Eq. (6.4.6) using A and B of Eq. (6.4.8)
and (6.4.9). The advantage of the dRPA correlation energy over RPA is that it is not
affected by the triplet instabilities in the ground state. A further advantage, which
was observed by Furche [91] is that it should by construction be free of the problems
pertaining to the use of the OEP to evaluate perturbation type correlation energies,
which were discussed in Section (6.3).

The application of non-antisymmetrized integrals in the Eq. (6.4.10) can be viewed
as a drastic step, however, the correlation energy is guaranteed to be real if the orbitals
follow the aufbau principle. This is in contrast to the full RPA which may have complex
solutions in the case of having an unstable reference. Still it is of interest to improve the
accuracy of the dRPA correlation energy. Freeman proposed to add a term containing
second-order screened exchange (SOSEX) contribution to the energy expression for the
dRPA, and Griineis et al. [92] investigated this proposed method. In the work presented
here, the dRPA+SOSEX method, referred to from here as SOSEX, is evaluated within
the framework of the dRCCD approach. The Eq. (6.4.6) is solved using A and B of
Eq. (6.4.8) and (6.4.9) to obtain the amplitudes Tqg, and the correlation energy is then

1
ESOSEX — 5 Tr(BTar) (6.4.11)

where B is defined by Eq. (6.4.3).

Before investigating the suitability of the dRPA and SOSEX correlation energy
functionals for use in a self-consistent manner through the application of the OEP
method, it is first of interest to investigate how orbital dependent functionals influence
the choice of suitable basis sets. We begin by considering the work of Jiang and
Engel [97], who reported benchmark dRPA results for atoms using a basis set free
numerical implementation. The manner in which these calculations were preformed
was by first minimizing the Hartree-Fock energy functional using the OEP method,
which we will denote OEP(HF'), and then using the resulting set of orbitals and orbital
energies to evaluate the dRPA correlation energy. We carried out this procedure using
the DALTON code, but with finite basis sets. The total energy expression for the dRPA
method then becomes

ESOFEPA — EHF[QOSEP(HF)] + ESRPA [SOZ?EP(HF)

, eQFPHR)] (6.4.12)

The correlation energy of the Ne atom was found by Jiang and Engel [97] to be -0.597
a.u for the term EJIRPA [gp,? EP(HF), 6,9 EP(HF) |. The corresponding value obtained through
DALTON at the un—contracted aug-cc-pVQZ level was -0.5535 a.u, and for aug-cc-pV5Z
this value was -0.5743 a.u. This demonstrates the problem of slow basis set convergence
associated with the use of orbital dependent correlation energy functionals. We therefore
apply the extrapolation formula of Helgaker et al. [98],

X3Ex — Y3Ey
X3 Y3

EYy = (6.4.13)
where X and Y are the cardinal numbers, in this case 4 and 5 respectively. This
results in the value of —0.596 a.u for the correlation energy of Ne, which is in close
agreement with the number of Jiang and Engel [97]. The slow basis set convergence
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towards the extrapolated value is emphasized in Figure 6.5, where it becomes evident
that a much larger basis set than aug-cc-pV57Z must be employed to match Engel’s
numbers. The focus of the work presented in this chapter is to investigate whether
using the OEP methods to evaluate the dRPA and SOSEX correlation energies will
lead to stable results, unlike those found for the case of DCPT2. Hellgren et al [99]
evaluated the dRPA energies of a set of closed shell atoms using the OEP approach
with a numerical method based on cubic splines. The reported results showed that
dRPA consistently gives much too negative correlation energies, which is consistent
with the values we found for the post—SCF evaluation of Ne. The post—SCF correlation
energy we calculated was —0.596 a.u, the value of Jiang and Engel [97] was —0.597 a.u
and the value reported by Hellgren et al. [99] was -0.598 a.u, all of which represent an
overestimation of the accurate correlation value obtained by Chakravorty et al [100]
of —0.390 a.u. We do not have corresponding values to compare with for SOSEX,
as to our knowledge the OEP method has not been applied to evaluate the SOSEX
energy functional. Furthermore, we have not discovered any studies of OEP(dRPA) or
OEP(SOSEX) for molecules.

We applied the numerical optimization techniques outlined in Chapter 3 to evaluate
the energy expression of dRPA and SOSEX with the OEP method for a small set of
molecules. The numerical techniques employed allow us to perform these calculations
without having to derive the analytic gradients. Preliminary investigations used the cc-
pVTZ basis set. The calculations used the quasi-Newton approach with the approximate
Hessian of Eq. (3.3.3) and the central finite difference formula of Eq. (3.2.6). The step
length in the finite difference evaluation was chosen following preliminary calculations
to be 1072 and the geometries of all the molecules considered were optimized at the
CCSD(T)/cc-pVTZ level.

Table 6.2 contains the results for the self-consistent OEP(dRPA) calculations, the
dRPA calculations obtained using a post—-SCF method based on a Hartree—Fock reference
for the orbitals and orbital eigenvalues, and for comparison, coupled-cluster-doubles
(CCD). The stability of the OEP(dRPA) results are in sharp contrast to the ones
observed for DCPT2. Furthermore, the OEP(dRPA) results are in close agreement
to the post-SCF dRPA values, with differences on the order of 10~* a.u. This is an
indication that performing a self-consistent calculation with dRPA will have a minimal
effect on the resulting total energies. Both the energies obtained from self-consistent
dRPA and post—SCF dRPA are too negative in comparison to the values calculated
using the CCD method. This reflects the findings of Hellgren et al. [99] that dRPA
correlation energies are much more negative than the corresponding accurate values.
The HOMO-LUMO gaps are included in Table 6.2, and are compared with the results
obtained by applying the WY method [55] to the relaxed CCD density. The resulting
HOMO-LUMO gaps are here denoted as WY (CCD). The trend observed is that HOMO-
LUMO gaps for OEP(dRPA) are relatively close to the ones of WY (CCD). Table 6.3
contains the similar values for the SOSEX energy functional, performed in post—SCF
and self—consistent manners. As for the dRPA results, the two manners of evaluating
the SOSEX energy functionals yields relatively similar energies, although they display
larger differences than in the case of dRPA. The HOMO-LUMO gaps presented for
OEP(SOSEX) remain close to the gaps for OEP(dRPA), but demonstrating a small but
consistent increase in value, the largest difference being found for the case of Fy. As
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Table 6.2: Single—point energy calculations with OEP(dRPA) in the cc-pVTZ basis set
in a.u. The geometries of all molecules were optimized with CCSD(T)/cc-pVTZ

OEP(dRPA) OEP(dRPA)

Molecule  Convergence &;yyvo — €fioMO OEP(dRPA) dRPA CCD ezVUX;\,(,[%CD) - sggﬁg@)
CcO 1.42E-05 0.271 -113.2141  -113.2136 -113.1589 0.265
H,O 2.29E-07 0.280 -76.3849  -76.3851  -76.3368 0.270
C.H, 9.16E-08 0.266 -77.2550  -77.2557  -77.1984 0.260
HCN 1.02E-04 0.307 -93.3356  -93.3358  -93.2814 0.302
Fy 3.64E-05 0.165 -199.3811 -199.3796 -199.2971 0.146
NH; 5.49E-07 0.244 -56.5287  -56.5297  -56.4795 0.239
Ny 2.30E-04 0.323 -109.4289 -109.4288 -109.3771 0.314

expected from Eq. (6.4.10) and (6.4.11), the largest difference in the quantities reported
for dRPA and SOSEX are the total energies. This matches the trend observed by
Klopper et al [93] that dRPA yields too negative correlation energies, whereas SOSEX
yields too positive values. This is consistent with the values presented in Tables 6.2
and 6.3, where dRPA results in too negative total energies compared to the CCD
results, and the values of SOSEX lie above the corresponding CCD results. Taken

Table 6.3: Single—point energy calculations with OEP(SOSEX) in the cc-pVTZ basis
set in a.u. The geometries of all molecules were optimized with CCSD(T)/cc-pVTZ

Molecule Convergence SSS;gOSEX) — sggil(cs)OSEX) OEP(SOSEX)  SOSEX CCD EYS&,(I%CD) — 5;’1\8(1\(’1(2513)
CO 2.51E-06 0.274 -113.0573 -113.0588 -113.1589 0.265
H,O 6.87E-07 0.282 -76.2658  -76.2667  -76.3368 0.270
C,H, 5.06E-06 0.271 -77.1003  -77.1024  -77.1984 0.260
HCN 1.18E-04 0.309 -93.1769  -93.1791  -93.2814 0.302
Fy 2.52E-06 0.178 -199.1580 -199.1598 -199.2971 0.146
NH; 3.04E-06 0.247 -56.4103  -56.4117  -56.4795 0.239
Ny 3.60E-07 0.327 -109.2679 -109.2699 -109.3771 0.314

together, the results for dRPA and SOSEX demonstrate enough stability to be applied
as correlation functionals in Kohn—Sham OEP calculations. However, this comes at
the cost of slow basis set convergence. Further investigation is needed to determine
their absolute accuracy and whether they may profitably be combined with density
functional approximations within a self-consistent framework. However, as opposed to
the results for DCPT2, implementation of the analytic gradients would in this case be
a worthwhile endeavour.

6.5 An adiabatic connection analysis of dRPA and
SOSEX

The final part of this chapter is dedicated to the investigation of the relevance of the
adiabatic connection to the dRPA and SOSEX functionals discussed in the previous
section. The adiabatic connection was previously employed in Chapter 5 for the
study of the dispersion interaction in the helium dimer. The relevance of the dRPA
correlation energy to density functional calculations has previously been demonstrated
by Furche [91], who derived the dRPA correlation energy via a consideration of the
adiabatic connection. It was shown in Ref. [91] that the correlation integrand W2EPA|p]
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can be expressed through the eigenvectors of Eq. (6.4.1) as
WIRPA )] = Tr(BP,)dA (6.5.1)

where
P,= X\ + Y )X+ Y"1 (6.5.2)

where I is the identity matrix. There exists no such corresponding explicit expression
for SOSEX integrand. However, we may apply the techniques used to carry out the Lieb
maximization approach to calculate the SOSEX AC consistent with the OEP(SOSEX)
energy.
As a simple example we consider the helium atom and write the Lieb functional for
the model energy as
Fyed(p] = Sgp(FFOd[v] — (v]p)) (6.5.3)

where mod will denote either dRPA or SOSEX. The density is determined by performing
an OEP(dRPA) or OEP(SOSEX) calculation and is constructed from the resulting
Kohn—-Sham orbitals. It is then used as an input density into Eq. (6.5.3) for all
interaction strengths, A\. By performing the Lieb maximization for lambda values in
the interval 0 < A <1 we can determine the correlation integrand through

d Fmod [ p]

WRlel = —

G,

— BJJp] - Eslp) (6.5.4)

where the F; and Ej are the exchange and Coulomb energies respectively. By applying
the OEP(dRPA) and OEP(SOSEX) methods to calculate the input density, integration
of the resulting AC curves between A = 0 and A = 1 returns the exact correlation
energies of the OEP calculations.

The correlation energies as a function of the interaction strength, A, for the dRPA
and SOSEX model energies are presented in Figure 6.6. The curves demonstrate how
the correlation energy is switched on in a smooth manner for an increasing interaction
strength, and are consistent with the dynamical correlation in this simple system. All
calculations were performed in the aug-cc-pVTZ basis set. The corresponding adiabatic
connection curves are presented in Figure 6.7, and have the shape one would expect for
dynamical correlation. Furthermore, the curves for both methods integrate to recover
the correlation energy for the full interaction strength consistent with the results of
self-consistent evaluations. The analysis presented here could, when refined, provide a
valuable tool for the construction of new functional forms incorporating both density-
functional and dRPA /SOSEX components, giving valuable insight into the practical
performance of these functionals and providing guidance as to how best to combine
them with standard density-functional approximations.
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Figure 6.4: The DCPT2 and MP2 correlation energies of the helium atom in the 3-21G
basis set as a function of the HOMO-LUMO gap. All quantities are in a.u.
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Figure 6.5: The correlation energy (in a.u.) of the neon atom calculated with the
dRPA method using the uncontracted aug-cc-pCV XZ family of basis sets, with cardinal
number X = 2,3,4 and 5. The extrapolated value is shown by the red line.
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SOSEX is in red and dRPA in blue.
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Chapter 7

Conclusions and Future Work

The central theme of this thesis has been the understanding of how dispersion inter-
actions should be treated in Kohn—Sham theory. We have shown how long-ranged
Coulombic interactions between the helium atoms in the helium dimer induce subtle
density distortions, which give rise to the dispersion forces. The work here brings the
observations of Tozer and Allen [59], made in the context of Hartree-Fock—Kohn-Sham
theory, into the full Kohn—-Sham framework where most practical DFT calculations
are performed. These calculations provide support for Feynman’s conjecture that the
dispersion force arises as a result of the attraction of each nucleus towards its own
distorted density.

The calculations also provided a stern test of the WY optimization technique [55]
employed throughout this thesis. Overall, the accuracy was found to be sufficient for a
qualitative analysis of the dispersion interaction. Further improvement of the accuracy
of the technique is one area in which future work is required, in particular, with respect
to the balance between the basis sets used to represent the molecular orbitals and the
Kohn—Sham potential. Very recent calculations as part of this work have demonstrated
that substantial improvements are possible using alternative basis sets.

Whilst the perspective offered by the dispersion forces is informative, it does not
offer insight into how the dispersion interaction energy behaves and how it should
be approximated in the Kohn—Sham approach. The central work in this project was
therefore to consider the link between the Kohn—Sham non-interacting system and
the physical system via the adiabatic connection. Considering this connection for the
helium dimer and the individual atoms from which it is composed, it was possible
to construct a function of the electronic interaction strength, which upon integration
yields the exchange and correlation contributions to the interaction energies. These
components are the central quantities for which approximations must be derived to
allow a practical treatment of dispersion interactions in the Kohn—Sham approach.

The Lieb formulation of DFT [33] allowed us to study the evolution from the Kohn—
Sham system to the physical system as a function of the electronic interaction strength
in some detail. From these calculations it was possible to gain a great deal of insight into
the dispersion interaction energy. In the first instance, we considered switching on the
interactions in a simple linear fashion. The shape of the resulting adiabatic connection
curve clearly revealed that the dispersion interaction energy is dominated by a dynamical
correlation contribution. To gain further insight the electronic interactions were also
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introduced in a range-dependent fashion. In this case the electronic interactions were
weighted by an error-function contribution such that as the interaction parameter was
increased the contributions considered arise from shorter and shorter inter-electronic
distances. In this manner the long-ranged nature of the correlation contribution to the
dispersion interaction energy was emphasized.

Whilst the failures of standard density functionals are well documented for dispersion
interactions, a similar analysis of the linear adiabatic connection for the BLYP functional
showed that failures due to the “short-sighted” nature of the approximations involved
are also manifested in the interaction adiabatic connections. Taken together these results
illustrate the long-ranged dynamically correlated nature of the dispersion interaction
energies. The error-function based range-dependent adiabatic connections provide
support for the use of range-separated approaches, which mix short-ranged density-
functional and long-ranged wave-function based contributions, as a way to perform
calculations with a reasonable treatment of dispersion interactions. However, they also
highlight the point that some care must be taken in choosing the parameter used to
define the separation in these methods and that this quantity may be strongly system
and functional dependent. A draft manuscript based on the study of the helium dimer
carried out in this thesis is included as an appendix.

In future work we hope to improve the accuracy of the calculations further and
apply the same technique to a range of larger systems. The resulting interaction
adiabatic connection curves should provide valuable data for the calibration of existing
dispersion corrections and range-separated treatments, as well as being useful to guide
the development of new approximations.

The hybridization of Kohn—Sham and wave function theories, as is done in range-
separated approaches, represents one route towards a reliable treatment of dispersion in-
teractions. A more fundamental solution, however, which remains within the framework
of Kohn—-Sham theory, is to introduce greater non-locality into the exchange—correlation
approximations that are used. This can be achieved by the use of explicitly orbital
dependent correlation functionals. The final part of this thesis was dedicated to the
investigation of functionals of this type. Whilst in future these functionals may be
applied to the dispersion interactions, here the emphasis was on prototypical implemen-
tations to determine their stability and suitability for use in self-consistent Kohn-Sham
calculations.

We first analyzed a typical example of a functional including an orbital dependent
correlation component, named B2PLYP. The MP2 contribution in this functional
was found to cause the energy to become un-physically negative as orbital energy
degeneracies are approached. This was illustrated by studying the potential energy
curves for a variety of simple diatomic molecules. To improve the behaviour of this
functional form the replacement of the MP2 contribution by the DCPT2 energy of
Assfeld, Almlof and Truhlar [27] was investigated. This new form, named B2-DC-PLYP
gave qualitatively better potential energy curves, particularly for the dissociation of
single bonds. Further investigation revealed however, that this behaviour is a result
of a fortuitous and delicate balance between the density functional, Hartree-Fock and
perturbation theory based contributions to this functional.

It has been widely reported that orbital dependent correlation functionals based on
perturbation theory expressions are particularly unsuitable for self-consistent use in
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the Kohn—Sham scheme, owing to denominators that contain orbital energy differences
which cause the correlation energy to diverge as orbitals become degenerate in energy.
However, the DCPT2 contribution contains no such denominators and as such its self-
consistent evaluation was investigated. Unfortunately, despite the lack of orbital energy
denominators, it was found that this contribution gives un-physically low, although
bounded, correlation energies in the case of orbital degeneracies. It was demonstrated
that self-consistent calculations converge to solutions with orbital degeneracies in
practice and so the DCPT2 approach does not represent a useful correlation functional
for use in Kohn—-Sham calculations.

Recently, a great deal of attention has been paid to functionals based on the random-
phase approximation. In the final part of the thesis we examined the self-consistent
use of the most popular and robust dRPA and SOSEX variants of these methodologies.
Calculations were performed in a fully self-consistent fashion for a variety of small
molecular systems. To our knowledge these calculations represent the first self-consistent
evaluation of these functionals for molecular systems. The results demonstrate that
these orbital dependent correlation functionals do not suffer from instabilities, which
plague perturbation-theory based forms and represent good candidates for further
development. It was also demonstrated that both of these forms may be analyzed in
terms of their associated adiabatic connections. In future work we hope to develop
these prototype calculations to enable us to use this adiabatic connection analysis to
guide the development of new density-functional approximations containing dRPA and
SOSEX contributions. The aim for these functionals is to simultaneously deliver a
reliable treatment of dispersion interactions and a good description of thermo-chemical
properties, on which the performance of density functional approximations are usually
evaluated.
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Appendix A

Appendix: Draft Manuscript

A draft manuscript entitled “Dispersion interactions in Density-Functional Theory: An
Adiabatic Connection Analysis” prepared using the results contained in this thesis is
attached in the following pages.



