

MATLAB Implementation of a Multigrid

Solver for Diffusion Problems:

Graphics Processing Unit vs. Central Processing Unit

Kristin Paulsen

Thesis submitted for the degree

Master of Science

Physics of Geological Processes

Department of Physics

University of Oslo

Norway June 2010

Acknowledgements
First of all I would like to thank my supervisors Dani Schmid and Marcin Dabrowski for

inspiring discussions and the large amount of knowledge that they have sheared with

me. I have never been pushed as hard and given so many challenges in a year. I would

never have gotten this far without your help. Thank you!

There are many at PGP that deserve my gratitude for all the knowledge they have given

me. I would especially like to thank Marcin Krotkiewski for helping me developing my

programming skills, for all the technical information he has given to me and the pro-

grams he developed for testing the CUDA.

I would like to thank the “the lovely master students”, Kristin, Elvira, Øystein, Håkon and

Bodil, for their friendship and for taking care of me through hard times. I would like to

thank them for all the interesting discussions, but most of all for making most days at

the university a joy and for all the laughter. I hope we will stay friends for years after my

time at PGP.

My soccer team, OSI (Oslo Studentenes Idrettsforening), has helped me to not loose fo-

cus on the life outside the university. I have never met a group of people with such a

variety of interests, which allows me to gain incite to other subjects. Further more I

would like to thank my other friends both in Oslo and back home in Trondheim.

I would like to thank my boyfriend Sigfred Sørensen for all the love he has given me. I

would never have overcome the frustrations and challenges without his support.

Last but not least I would like to thank my family. My parents Anne Margrethe Paulsen

and Tore Paulsen for making me believe I can manage anything I want, and for all their

love and support. There are many things I would like to thank my brother for. The most

important of which is helping me to keep focus on what I want to do, and not only on

what is expected of me.

Contents
1 Introduction .. 1

2 Discretization Approach .. 3

2.1 Finite Difference Method ... 4

2.2 Heat Diffusion Equation .. 8

3 Direct Methods ...15

3.1 Gaussian Elimination...17

3.2 Methods for Band Diagonal Matrices ...18

3.3 Factorization ..21

3.4 Limitations of Direct Methods ...23

4 Iterative Methods ...25

4.1 Classic Iterative Methods ...26

4.2 Krylov Subspace Methods ..35

5 Multigrid ..39

5.1 Multigrid Cycle ...41

5.2 Inhomogeneous Systems ..48

5.3 Implementation ...51

5.4 Convergence Tests ...55

5.5 Future Outlook ...62

6 GPU Programming ..63

6.1 Components in a PC ...64

6.2 The GPU ..66

6.3 CUDA ..70

6.4 GPU Libraries for MATLAB ..71

6.5 Limitations of GPU Programming ..73

7 Standard Finite Difference Implementations on the GPU75

7.1 Heat Diffusion Equation ...76

7.2 Performance Measurements ...78

7.3 Results..79

7.4 Conclusion ...83

8 Applications ...85

8.1 Poisson Solver ...85

8.2 Porous Convection ..87

9 Conclusion ...97

10 Bibliography ...99

11 Appendix .. 101

11.1 Multigrid Solver for Poisson Problems .. 101

11.2 Porous convection .. 103

Introduction 1

1 Introduction
Graphics Processing Units are immensely powerful processors and for variety applications

they outperform the Central Processing Unit, CPU. The recent generations of GPU‟s have

a flexible architecture than older generations and programming interface more user

friendly, which makes them better suited for general purpose programming. A high end

GPU can give a desktop computer the same computational power as a small cluster of

CPU‟s.

Speedup of applications by using the GPU has been shown in a variety of research fields,

including medicine, finance and earth science. 3D seismic imaging is extensively used in

oil exploration, and imaging complex geological areas is heavy computational task involv-

ing terabytes of data. Seismic imaging software that utilizes GPU‟s is being developed by

companies such as SeismicCity. They found that 20x performance increase can be

achieved by utilizing GPU‟s in their computer setup.

In this thesis it is shown that the GPU architecture is well suited for solving partial differ-

ential equations on structured grids. A parallel multigrid method algorithm is imple-

mented using Jacket that can harness the computational power of the GPU. Jacket uses

MATLAB syntax, which allow for more rapid development of algorithms. This does, how-

ever, come at a price, implementations that are developed in high level languages is not

as efficient as implementations developed in low level languages such as C.

The ideas used in multigrid have been adapted to solve a broad spectrum of problems

that involves structures that do not necessarily resemble any form of physical grid. They

can for example be used to solve problems characterized by matrix structures, particle

structures and lattice structures. The collection of methods that build on the same ideas

as the multigrid method is often called multilevel methods, but there is no official unified

term for these methods.

The multigrid algorithm implemented in this thesis efficiently solves Poisson problems for

homogenous systems in 2 and 3 dimensions. The GPU implementation is 60 to 70 times

faster than the equivalent CPU implementation, and can solve systems of size 2573 in

less than a second.

2 Finite Difference Method

Figure 1.1: Simulation of porous convection made in this thesis.

Poisson solvers can be used to solve a variety of physical problems either as a stand

alone solver or as a part of another solver. In this thesis it is shown that it can be used in

an application where porous convection is simulated, see Figure 1.1. Porous convection

can describe migration of ground water and hydrocarbons in the earth‟s crust.

The main aim of the thesis is to show how partial differential equations can be solved

with the use of the multigrid algorithm and accelerated with the use of the graphics proc-

essing unit. The first chapter describes how a partial differential equation can be discre-

tized on a regular grid, and solved using finite difference methods. In this chapter the

heat diffusion equation is introduced, which is extensively used as an example through-

out the text.

The rest of the thesis is divided into three main sections. The first one describes a series

of both direct and iterative methods for solving linear sets of equations is presented and

their strengths and weaknesses are discussed. The emphasis is on the multigrid algo-

rithm that is implemented in the thesis. The second part describes the architecture of the

GPU and techniques used to utilizing it. In the third part the applications made for this

thesis is described and results are presented.

Discretization Approach 3

2 Discretization Approach

In this thesis the focus is on solving partial differential equations, PDE‟s, numerically.

PDE‟s describe the rate of change of various physical quantities in relation to space and

time. They can be used to describe a large variety of problems in science and engineer-

ing; for example physical phenomena such as propagation of sound or heat, fluid flow

and electrodynamics. There are a limited number of systems described by partial differ-

ential equations that can be solved analytically. More complex systems can be analysed

using a numerical approximations.

There are three main classes of partial differential equations,

 Elliptic, such as the Poisson equation
𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2 = 𝑓.

 Hyperbolic, such as the wave equation
𝜕2𝑢

𝜕𝑡2 =
𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2.

 Parabolic, such as the diffusion equation
𝜕𝑢

𝜕𝑡
=

𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2.

Elliptic partial differential equations result in boundary value problems, i.e. the solution is

defined by the boundary conditions. Hyperbolic and parabolic equations describe time

evolution problems. The solution of time evolution problems is defined by both the initial

values and the boundary conditions. Whether the problem is a time evolution problem or

a boundary value problem is more decisive for the numerical implementation of it than

which class of equation it is.

There are several techniques that are used to solve partial differential equations, two of

them are the finite difference and the finite element method. In this thesis the finite dif-

ference method is used, the reason for this choice of technique is elaborated on in the

following subsection. The heat diffusion equation is chosen as a specific example for the

finite difference discretization; it is presented in subsection 2.2. The heat diffusion equa-

tion can be solved as both a time evolution problem, i.e. transient heat diffusion, and as

a boundary value problem, i.e. steady state heat diffusion see section 2.2.3.

4 Finite Difference Method

2.1 Finite Difference Method

Finite difference and finite element methods are techniques for solving partial differential

equations numerically. In the finite difference method the values of the function are de-

fined at certain points in the domain and the derivatives are approximated locally using

equations derived from Taylor expansion. In the finite element method the function is

piecewise defined by polynomial functions. The partial differential equations are solved in

integral form; using the weak formulation of the integrals reduces the restrictions on the

polynomials.

Figure 2.1: A) Body fitted mesh that can be applied when using finite element discretization PDE’s,

see figure. B) For finite differences a regular grid must be used. Source www.augsint.com
/MeshGeneration.

http://www.augsint.com/

Discretization Approach 5

The main argument for applying the finite element method is that it can handle complex

geometries. This is because it allows for the use of body fitted meshes, see Figure 2.1A.

A larger number of grid points in certain regions allow the complex geometry to be well

represented, and computational power can be saved by having less grid points in simpler

regions. The finite difference method is restricted to the use of regular grids, meaning

that it is built up of rectangular blocks see Figure 2.2b.

A larger number of grid points are needed to represent a complex geometry using regular

grids and finite difference methods. Finite difference approximations do, however, result

in linear sets of equations were the coefficient matrix has more favourable properties,

which allow for the use of more efficient solvers.

The discretization of a problem on a regular grid does in many ways resemble pixels in a

digital image. This motivates the idea of them being well suited to the architecture of the

graphics processing units; the graphics processing unit is a specialised processor that

handles rendering of images on the computer screen.

In the multigrid algorithm a hierarchy of discretizations are used, with different levels of

coarsening. Finding a reasonable set of coarser grids is more feasible for a regular grid

than for body fitted meshes. There is ways to get around this problem, but this is beyond

the scope of this thesis.

2.1.1 Discretization Grid

To solve the equations numerically on the computer they must be discretized on a grid,

some examples of regular grids are shown in Figure 2.2. The vertices, i.e. the junctions

between the blocks, are called grid points or nodes. Each node is numbered so that it can

be identified. The function values are only defined at these nodes, as shown in Figure

2.2C.

Figure 2.2: Different regular grids, all built up of rectangular blocks of different sizes with nodes at

their junctions. (A) The distance between the nodes are at regular intervals in both spatial direc-
tions (𝑥 and 𝑦), i.e. ∆𝑥 and ∆𝑦 are constant. (B) Anisotropic grid, irregular spacing in both of the

spatial directions. (C) The interval between the nodes in both of the spatial dimensions is constant
and equal to each other. The physical quantity, for example temperature, is defined at the nodes.
The values at the nodes are numbered.

6 Finite Difference Method

2.1.2 Approximation of the Derivative

In the finite difference method partial differential equations are solved by replacing the

derivatives with finite difference approximations of the derivatives. The approximations

are derived from a Taylor expansion of the function

𝑻 𝑥 + ∆𝑥 = 𝑻 𝑥 +

𝑻′ 𝑥

1!
∆𝑥 +

𝑻′′ 𝑥

2!
 ∆𝑥 2 +

𝑻′′′ 𝑥

3!
 ∆𝑥 3 + ⋯

(2.1)

∆𝑥 is the distance between where the function value is approximated and the point where

the function value is known. 𝑻(𝑥) could be any function describing the behaviour of some

physical quantity in the system, for example temperature. Rearranging this expression

for the Taylor expansion of the function yields the following approximation for the first

derivative

𝑻′ 𝑥 =

𝑻 𝑥 + ∆𝑥 − 𝑻 𝑥

∆𝑥
+ 𝒪(∆𝑥)

(2.2)

𝒪(∆𝑥) means that the error caused by the truncation of the Taylor expansion is in the

order of ∆𝑥. In the finite difference method this expression is used to approximate the

derivative using the values at the grid points

𝜕𝑻

𝜕𝑥
 𝑖+1/2 =

𝑻𝑖+1 − 𝑻𝒊

∆𝑥
+ 𝒪(∆𝑥)

(2.3)

𝜕𝑻

𝜕𝑥
 𝑖+1/2 means that the derivative is analysed between the grid points 𝑖 and 𝑖 + 1. The

truncation error decreases as the distance between the nodes decreases. This does, how-

ever, increase the chance to get round-off error as 𝑻𝑖+1 − 𝑻𝒊 → 0. This approximation for

the first derivative is called forward differences or forward Euler. The backward Euler

method is given by the following expression

𝜕𝑻

𝜕𝑥
 𝑖−1/2 =

𝑻𝑖 − 𝑻𝒊−𝟏

∆𝑥
+ 𝒪(∆𝑥)

(2.4)

In the forward and backward Euler method the derivatives are evaluated at the midpoint

between the grid points. To find the derivative in the nodes the central finite difference

approximation can be used

𝜕𝑻

𝜕𝑥
 𝑖 =

𝑻𝑖+1 − 𝑻𝒊−𝟏

2∆𝑥
+ 𝒪(∆𝑥2)

(2.5)

The central finite difference method has a smaller truncation error, which is in the order

of ∆𝑥2.

Discretization Approach 7

By combining the Taylor expansion used to find the forward and backward Euler method

we find a central finite difference approximation of the second derivative

𝜕2𝑻

𝜕𝑥2
 𝑖 =

𝑻𝑖+1 − 2𝑻𝑖 + 𝑻𝒊−𝟏

∆𝑥2
+ 𝒪(∆𝑥2)

(2.6)

Higher order derivatives may be used to find finite difference approximations that have a

better accuracy.

The discretization approach can be applied to functions of several variables. In two di-

mensions this is the origin of the 5-point stencil for the derivative. Assuming that the

intervals between the grid points are the same in both spatial directions, i.e. ∆𝑥 = ∆𝑦 = 𝑕,

and using equation (2.6) to approximate the derivatives yields the following expression

∆𝑇 =

𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2
=

𝑻𝑖+1,𝑗 + 𝑻𝑖−1,𝑗 + 𝑻𝑖,𝑗+1 + 𝑻𝑖,𝑗−1 − 4𝑻𝑖,𝑗

𝑕2
+ 𝒪(𝑕2)

(2.7)

It can be written in stencil notation

∆5=

1
1 −4 1

1

 + 𝒪(𝑕2)
(2.8)

Some higher order approximations for the Laplacian, ∆, are discussed in section 2.2.4.

8 Heat Diffusion Equation

2.2 Heat Diffusion Equation

The heat diffusion equation is here used as an explicit example of a problem that can be

solved using the algorithms implemented in this thesis, it is defined as

Where 𝑐𝑝 , 𝑘 and 𝜌 are the specific heat capacity, thermal conductivity and density respec-

tively. These are material dependent properties. The specific heat capacity is a measure

of how much energy is needed to rise temperature of the material, it has the units joule

per kilogram per Kelvin (𝐽/(𝑘𝑔𝐾)). Thermal conductivity is a measure of the materials

ability to conduct heat, it has the units watts per Kelvin per metre (𝑊/(𝐾𝑚)).

Heat diffusion is only one example of a problem that can be solved using an equation of

this form. The Darcy law describes pressure driven flow through a porous media. By as-

suming that the fluid is incompressible it can be formulated on the same form as the heat

diffusion equation. Darcy law is used to describe hydrocarbon and water flows through

reservoirs, and it can be used to find material parameters of the reservoir rocks such as

permeability.

In the subsequent sections the discretization is done for the heat diffusion equation in

two dimensions as an example

𝑐𝑝𝜌

𝜕𝑇

𝜕𝑡
=

𝜕

𝜕𝑥
𝑘

𝜕

𝜕𝑥
𝑇 +

𝜕

𝜕𝑦
𝑘

𝜕

𝜕𝑦
𝑇 + 𝑞

(2.10)

2.2.1 Homogeneous Case

The material properties are constant in the whole domain for homogeneous materials.

The thermal conductivity is therefore unaffected by the spatial derivatives, which yields

the simpler form of the heat diffusion equation

𝑐𝑝𝜌

𝜕𝑇

𝜕𝑡
= 𝑘∆𝑇 + 𝑞

(2.11)

Equation (2.6) is used to discretize spatial derivatives and forward Euler, equation (2.2),

is used to approximate the time derivative. This yields the following discretized expres-

sion of the heat diffusion equation for homogeneous materials

𝑐𝑝𝜌

𝑻𝑖𝑗
𝑙+1 − 𝑻𝑖𝑗

𝑙

∆𝑡
 ≈ 𝑘

𝑻𝑖+1𝑗
𝑙 − 2𝑻𝑖𝑗

𝑙 + 𝑻𝑖−1𝑗
𝑙

∆𝑥2
+

𝑻𝑖𝑗 +1
𝑙 − 2𝑻𝑖𝑗

𝑙 + 𝑻𝑖𝑗 −1
𝑙

∆𝑦2 + 𝑞𝑖𝑗
(2.12)

𝑐𝑝𝜌

𝜕𝑇

𝜕𝑡
= ∇ ∙ 𝑘∇𝑇 + 𝑞

(2.9)

Discretization Approach 9

𝑖 and 𝑗 are the indices for the nodes in the 𝑥- and 𝑦-direction respectively. 𝑙 denotes the

indices for the time steps. The discretized equation has second order accuracy for spatial

derivatives and first order accuracy for the time derivative, see section 2.1.2.

This is an explicit scheme, meaning that the unknowns, 𝑻𝑖𝑗
𝑙+1, are explicitly given by the

equation. The truncation error from the Taylor expansion will be amplified if the constant

in front of the approximation scheme is larger than unity, this results in an unstable

scheme. The explicit scheme is therefore stable if the following inequality is upheld

∆𝑡 ≤

𝑐𝑝𝜌

𝑘
∆𝑥2 (2.13)

An implicit scheme for the equation is found by using backward Euler approximation for

the time derivative, which results in the following scheme

𝑻𝑖+1𝑗
𝑙 − 2𝑻𝑖𝑗

𝑙 + 𝑻𝑖−1𝑗
𝑙

∆𝑥2
+

𝑻𝑖𝑗 +1
𝑙 − 2𝑻𝑖𝑗

𝑙 + 𝑻𝑖𝑗 −1
𝑙

∆𝑦2
+

1

𝑘
𝑞𝑖𝑗 =

𝑐𝑝𝜌

𝑘

𝑻𝑖𝑗

𝑙 − 𝑻𝑖𝑗
𝑙−1

∆𝑡

(2.14)

The unknowns 𝑻𝑖𝑗
𝑙 are found by solving a set of linear equations given by

𝑻𝑖𝑗

𝑙 −
𝑘∆𝑡

𝑐𝑝𝜌

𝑻𝑖+1𝑗

𝑙 − 2𝑻𝑖𝑗
𝑙 + 𝑻𝑖−1𝑗

𝑙

∆𝑥2
+

𝑻𝑖𝑗 +1
𝑙 − 2𝑻𝑖𝑗

𝑙 + 𝑻𝑖𝑗 −1
𝑙

∆𝑦2 +
∆𝑡

𝑐𝑝𝜌
𝑞𝑖𝑗 = 𝑻𝑖𝑗

𝑙−1
(2.15)

The implicit scheme is stable even if the inequality in equation (2.13) is not upheld, and

can therefore be used to solve steady state problems (see section 2.2.3).

2.2.2 Heterogeneous Case

In heterogeneous materials the material properties, that is the specific heat capacity,

thermal conductivity and density, vary in space. The thermal conductivity is therefore

affected by the spatial derivatives. The spatial derivatives are given by the following ex-

pressions for heterogeneous materials

𝜕2𝑇

𝜕𝑥2
 𝑖𝑗 =

𝑘
𝑖+

1
2
𝑗

𝑻𝑖+1𝑗
𝑙 − 𝑻𝑖𝑗

𝑙

∆𝑥 − 𝑘
𝑖−

1
2
𝑗

𝑻𝑖𝑗
𝑙 − 𝑻𝑖−1𝑗

𝑙

∆𝑥

∆𝑥

(2.16)

𝜕2𝑇

𝜕𝑦2
 𝑖𝑗 =

𝑘
𝑖𝑗 +

1
2

𝑻𝑖𝑗 +1
𝑙 − 𝑻𝑖𝑗

𝑙

∆𝑦 − 𝑘
𝑖𝑗 −

1
2

𝑻𝑖𝑗
𝑙 − 𝑻𝑖𝑗 −1

𝑙

∆𝑦

∆𝑦

(2.17)

10 Heat Diffusion Equation

𝜕2𝑇

𝜕𝑥2
 𝑖𝑗 means that the derivative is approximated in the grid point specified by the indexes

𝑖 and 𝑗, and 𝑘
𝑖+

1

2
𝑗
 and 𝑘

𝑖𝑗 +
1

2

 means that the thermal conductivity is defined in the midpoint

between the grid points in the 𝑥-direction and 𝑦-direction respectively. The time deriva-

tive is unaffected by the varying thermal conductivities. The complete discretized expres-

sion for the heat diffusion equation for a heterogeneous system using an implicit scheme

is given by

𝑘
𝑖+

1
2
𝑗
𝑻𝑖+1𝑗

𝑙 − (𝑘
𝑖+

1
2
𝑗

+ 𝑘
𝑖−

1
2
𝑗
)𝑻𝑖𝑗

𝑙 − 𝑘
𝑖−

1
2
𝑗
𝑻𝑖−1𝑗

𝑙

∆𝑥2
+

𝑘
𝑖𝑗 +

1
2
𝑻𝑖𝑗 +1

𝑙 − (𝑘
𝑖𝑗 +

1
2

+ 𝑘
𝑖𝑗 −

1
2

)𝑻𝑖𝑗
𝑙 − 𝑘

𝑖𝑗 −
1
2
𝑻𝑖𝑗 −1

𝑙

∆𝑦2
+

1

𝑘
𝑞𝑖𝑗 =

𝑐𝑝𝜌

𝑘

𝑻𝑖𝑗

𝑙 − 𝑻𝑖𝑗
𝑙−1

∆𝑡

(2.18)

The conductivities must be defined between the nodes to evaluate the derivatives. This

can be done by using a staggered grid, meaning that the material properties are defined

where they are needed, or by using averages of conductivities defined in the nodes.

2.2.3 Steady State Heat Diffusion

In many cases we are not interested in how a system evolves with time but rather how

the end result is going to be. This can not be found directly using the explicit scheme

since the scheme is unstable for large time steps. For the implicit scheme, however, this

is not a problem.

As the length of the time step approaches infinity we get the following equation based on

the implicit scheme for the heat diffusion, see equation (2.14)

𝑻𝑖+1𝑗
𝑙 − 2𝑻𝑖𝑗

𝑙 + 𝑻𝑖−1𝑗
𝑙

∆𝑥2
+

𝑻𝑖𝑗 +1
𝑙 − 2𝑻𝑖𝑗

𝑙 + 𝑻𝑖𝑗 −1
𝑙

∆𝑦2
+ 𝑐𝑝𝜌𝑞𝑖𝑗 = 0

(2.19)

2.2.4 Boundary Conditions

The boundary nodes must be treated separately since the schemes to approximate the

derivatives utilize the values in the neighbouring points. There are three main types of

boundary conditions, which are Dirichlet, von Neumann and periodic boundary condi-

tions.

Dirichlet boundary condition specifies the function value, i.e. temperature for the heat

diffusion equation, at the boundary. The first derivative of the function value is specified

if von Neumann boundary conditions are used. The physical interpretation of von Neu-

mann boundary conditions are that the flux at the boundary is set to some value, usually

zero. Periodic boundary conditions are often used to simulate a system that is infinitely

large.

Discretization Approach 11

Dirichlet boundary conditions are implemented by setting the values at the boundaries to

the specified boundary values directly. To keep symmetry in the coefficient matrix it is

useful to remove equations for the boundary points from the set of linear equations.

Von Neumann boundary conditions are handled by introducing ghost points just outside

the domain, see Figure 2.3. The central finite difference scheme, equation (2.5), is used

to approximate the first derivative at the boundary. The flux is set to zero at the bound-

ary if the values in the ghost points are equal to the grid points inside the domain. This

yields the following expression for the approximation of the second derivative in the 𝑥-

direction at the left boundary

𝜕2𝑇

𝜕𝑥2
 𝑖𝑗 =

2𝑻𝑖+1𝑗
𝑙 − 2𝑻𝑖𝑗

𝑙

∆𝑥2
+ 𝒪(∆𝑥2)

(2.20)

Figure 2.3: The normal stencil for the Laplacian is used for the grid points marked with filled circles
and Dirichlet boundary conditions is applied to the grid points marked with open circles. For Neu-

mann boundary conditions the values at the ghost points, open squares in the figure, are equal to
the values to the right of the boundary points on the left side. The flux at the boundary is defined

by the right hand side.For periodic boundary conditions this values are equal to the values to the
left of the boundary grid points at the right side of the domain. Source Trottenberg et al. (2001).

Periodic boundary conditions can be implemented by setting the values at the boundary

on one side of the domain equal to the values on the opposite side of the domain. Ghost

points, which have the same values as the points just inside the domain on the opposite

side of the domain see Figure 2.3, are used to calculate the values on the left side of the

domain. The values at the right boundary are handled as Dirichlet boundary points when

the values on the left side are known.

2.2.5 Higher Order Schemes for the Laplacian

The Laplace operator is a differential operator is used in the modelling of many physical

problems such as wave propagation, heat diffusion and fluid mechanics. The standard 5-

point stencil presented for the Laplacian has a truncation error of 𝒪(𝑕2). Stencils of higher

order accuracy have been found. Numerical implementations favour using only the

neighbouring nodes to approximating the derivatives, such stencils are called compact

stencils.

An example of a compact stencil for the Laplacian with fourth order accuracy, 𝒪(∆𝑥4), is

the Mehrstellen discretization, see Trottenberg et al. (2001). For the steady state prob-

lem in two dimensions it yields the following stencil

12 Heat Diffusion Equation

∆9𝑇 = −𝑅𝑞

where ∆9=
1

6𝑕2
1 4 1
4 −20 4
1 4 1

 , and 𝑅 =
1

12

0 1 0
1 8 1
0 1 0

(2.21)

Notice that the stencil has a correction for the right hand side. The Mehrstellen discretiza-

tion in three dimensions is given by the following stencil

∆19𝑇 = −𝑅𝑞

where ∆19=
1

6𝑕2
0 1 0
1 2 1
0 1 0

 ,
1 2 1
2 −24 2
1 2 1

 ,
0 1 0
1 2 1
0 1 0

 and 𝑅 =
1

12

0 1 0
1 6 1
0 1 0

(2.22)

∆19 is a stencil of size 3x3x3 here each of the 3x3 matrixes is a plane in the stencil. Other

stencils that were tested in 3 dimensions see Table 2.1.

 Stencil

Hale (2008)

1/48 1/8 1/48
1/8 5/12 1/8

1/48 1/8 1/48
 ,

1/8 5/12 1/8
5/12 −25/6 5/12
1/8 5/12 1/8

 ,

1/48 1/8 1/48
1/8 5/12 1/8

1/48 1/8 1/48

Patra et. al (2005)

1/30 1/10 1/30
1/10 7/15 1/10
1/30 1/10 1/30

 ,

1/10 7/15 1/10
7/15 −64/15 7/15
1/10 7/15 1/10

 ,

1/30 1/10 1/30
1/10 7/15 1/10
1/30 1/10 1/30

Finite element

1/6 1/3 1/6
1/3 0 1/3
1/6 1/3 1/6

 ,

1/3 0 1/3
0 −16/3 0

1/3 0 1/3
 ,

1/6 1/3 1/6
1/3 0 1/3
1/6 1/3 1/6

Table 2.1: Higher order stencils for the Laplacian.

2.2.6 Matrix Properties

Property Description

Positive definite A matrix 𝐴 is positive definite if 𝑥𝑇𝐴𝑥 > 0, for all nonzero vectors

𝑥. All eigenvalues are positive.

Diagonally dominant A matrix is diagonally dominant if

 𝑎𝑗𝑗 ≥ 𝑎𝑖𝑗 for 𝑗 = 1, . . . , 𝑛

𝑖=𝑛

𝑖=1
𝑖≠𝑗

Where 𝑎𝑖𝑗 are the values in the matrix A. The matrix is strictly

diagonally dominant if

 𝑎𝑗𝑗 > 𝑎𝑖𝑗 for 𝑗 = 1, . . . , 𝑛

𝑖=𝑛

𝑖=1
𝑖≠𝑗

Band matrix All non-zero entries in the matrix are confined to diagonal bands
in the matrix.

Symmetric A matrix is symmetric if 𝐴 = 𝐴𝑇.

Sparse The matrix is mostly populated by zeros.

Table 2.2: Properties of matrices that arise when solving partial differential equations using finite
difference.

Discretization Approach 13

Linear sets of equations must be solved when applying implicit schemes to partial differ-

ential equations. The coefficient matrices in the set of linear equations that arise from

finite difference approximations of partial differential equations usually have some useful

properties. Some of these properties are listed in Table 2.2. Linear sets of equations that

have coefficient matrices with these properties can be solved more efficiently than linear

sets of equations were the coefficient matrix is a full matrix.

14 Heat Diffusion Equation

Direct Methods 15

3 Direct Methods
There are a large number of different methods that can be used to solve linear sets of

equations. There are two main types of methods; the direct methods discussed here and

the iterative methods which are discussed in the subsequent chapter. Direct methods use

a finite number of operations to find a solution to a finite set of linear equations. In the-

ory these methods would find an exact solution to a set of linear equations, provided that

such a solution exists for the equations. However, round off errors will always arise when

the methods are implemented numerically. Direct methods for solving linear sets of

equations are based on Gaussian elimination.

Figure 3.1: Decision tree for finding an algorithm that solves a set of linear equations. For band
diagonal matrices a simplified version of Gaussian elimination can be used that only applies the row
operations to the non-zero diagonals. For a tridiagonal matrix this approach is called Thomas algo-
rithm. Cyclic reduction algorithm is a parallelizable algorithm that can be applied to all Toeplitz
matrices, i.e. matrices where all elements on the same diagonal have the same value The Cyclic
reduction algorithm is especially effective at solving tridiagonal matrices. Factorization is especially

useful when several sets of equations with the same coefficient matrix are solved, as done when
solving the transient diffusion equation (see section 2.2). Cholesky factorization can be carried out
if the matrix is symmetric and positive definite. Indefinite factorization can be applied to symmetric
non-positive definite systems. For non-symmetric systems LU factorization can be applied or Gaus-
sian elimination on the full matrix can be carried out directly.

There is a variety of different direct solvers that can be used to solve linear sets of equa-

tions with coefficient matrices with different properties (see Figure 3.1). As discussed in

section 2.2.6 the matrices that arise from the discretization of partial differential equa-

tions usually have the following properties; they are sparse, symmetric, positive definite,

diagonally dominant and band diagonal. Band diagonal matrices have non-zero values

only on diagonals within a certain range around the main diagonal. The total number of

diagonals within the range is called the bandwidth of the banded matrix.

16 Heat Diffusion Equation

The efficiency of the algorithms depends on their complexity and their degree of parallel-

ism. The complexity is the number of operations that is needed to solve the set of equa-

tions. The degree of parallelism is set by the number of processes the algorithm can be

divided into, which can run simultaneously. Only cyclic reduction is directly parallelizable

of the algorithms presented in Figure 3.1. Iterative methods are in general better suited

for parallel processing.

Direct Methods 17

3.1 Gaussian Elimination

Gaussian elimination uses elementary row operations to reduce the matrix to its reduced

row echelon form. The algorithm has two main steps. The first one is forward elimination,

which reduces the matrix to an upper triangular matrix, i.e. echelon form. The second

step is backward substitution which reduces the matrix to a reduced row echelon form.

Both the forward elimination and the backward substitution are done with elementary

row operations.

Gaussian elimination is always stable for matrices that are diagonally dominant or posi-

tive definite. The algorithm is generally stable for other matrices as well, when used in

combination with partial or full pivoting. Full pivoting means to interchange rows and col-

umns such that the largest absolute values are found at the pivot positions. Only the

rows are interchanged when using partial pivoting. The pivot positions correspond to the

positions of the leading ones in the echelon form. It is preferable to have large values at

these positions to avoid division by numbers that are close to zero.

18 Methods for Band Diagonal Matrices

3.2 Methods for Band Diagonal Matrices

The values at the nodes in finite difference discretization of partial differential equations

are only coupled to the values at the neighbouring nodes. This result in banded diagonal

matrices when they are discretized, see section 2.2. Discretization using finite differences

of one dimensional problems results in matrices that are tridiagonal. Such systems can

be solved with the Thomas algorithm and the cyclic reduction algorithm presented in the

following two subsections.

Discretization of systems in two and three dimensions results in banded matrices that

tend to be sparse, i.e. only a few of the diagonals contain non-zero values. Discretization

of the Laplacian in two dimensions on a system with 𝑛 × 𝑛 nodes using a five-point sten-

cil results in a matrix with a bandwidth of 2𝑛 + 1 where only five of the bands contain

non-zero values. Applying Gaussian elimination or factorizing matrices does, however, fill

up many of the diagonals with only zeros.

3.2.1 Thomas Algorithm

The algorithm is a stripped down version of Gaussian elimination, it has a complexity of

2𝑛 for tridiagonal matrices. The algorithm consists of one forward sweep which eliminates

the lower diagonal, and the second step is backward substitution which solves the sys-

tem. The algorithm will always succeed if the matrix is diagonally dominant. Only the

non-zero diagonals are stored to save space in the computer memory. The algorithm is

strictly sequential, i.e. all operations depend on values calculated in the previous step.

3.2.2 Cyclic Reduction

The cyclic reduction algorithm has roughly the same complexity as the Thomas algorithm

for tridiagonal systems. The algorithm is applicable to all Toeplitz matrices, but the focus

here is on tridiagonal matrices. For more general systems see Gander (1997).

The advantage of using cyclic reduction is that the algorithm is relatively easy to parallel-

ize. This makes it suitable for processor architectures with several processing cores, such

as the graphics processor architecture.

The idea is to eliminate the unknowns that have odd-numbered indices, regroup and re-

peat the process until there is one unknown left. Find this value and then retrace to find

the other unknowns. Consider a set of equations, 𝐴𝒙 = 𝒃, of the following form

𝑑1 𝑓1

𝑒2 𝑑2 𝑓2

𝑒3 ⋱ ⋱

⋱ ⋱ 𝑓𝑛−1

𝑒𝑛 𝑑𝑛

𝑥1

𝑥2

⋮
⋮
𝑥𝑛

=

𝑏1

𝑏2

⋮
⋮
𝑏𝑛

(3.1)

The outline of the cyclic reduction algorithm is presented here, with 𝑛 = 7 as an exam-

ple.

Direct Methods 19

1. Permute the matrix with the following permutation

𝛱 =

1 2 3 4 5 6 7
1 3 5 7 2 4 6

 (3.2)

This means that rows are interchanged such that all odd numbered rows are

placed at the top of the matrix, and all even numbered rows are placed at the bot-

tom. The same is done for the columns such that the coefficients that correspond

to the unknowns with odd numbered indices are to the left in the matrix and even

numbered ones are to the right.

 This yields the following matrix,

𝐴𝛱 =

𝑑1 𝑓1

𝑑3 𝑒3 𝑓3

𝑑5 𝑒5 𝑓5

𝑑7 𝑒7

𝑒2 𝑓2 𝑑2

𝑒4 𝑓4 𝑑4

𝑒6 𝑓6 𝑑6

(3.3)

2. The permuted matrix can then be row reduced such that all elements in the lower-

left quadrant is eliminated; which changes the values in the lower-right quadrant

and generates new elements on the diagonal just over and under the main diago-

nal. The linear set of equations is of the following form after the row reduction

𝑑1 𝑓1

𝑑3 𝑒3 𝑓3

𝑑5 𝑒5 𝑓5

𝑑7 𝑒7

𝑑1
 1

𝑓1
 1

𝑒2
 1

𝑑2
 1

𝑓2
 1

𝑒3
 1

𝑑3
 1

𝑥1
𝑥3
𝑥5
𝑥7
𝑥2
𝑥4
𝑥6

=

𝑏1

𝑏3

𝑏5

𝑏7

𝑏1
 1

𝑏2
 1

𝑏3
 1

(3.4)

Where the values 𝑙𝑖 , 𝑚𝑖 , 𝑑𝑖
 1

, 𝑒𝑖
 1

 and 𝑓𝑖
 1

 are given by the following expressions

when there is an odd number of unknowns

𝑙𝑖 =
𝑒2𝑖

𝑑2𝑖−1
, 𝑚𝑖 =

𝑓2𝑖

𝑑2𝑖+1
, 𝑑𝑖

 1
= 𝑑2𝑖 − 𝑙𝑖𝑓2𝑖−1 − 𝑚𝑖𝑒2𝑖+1

where 𝑖 = 1,2, … ,
𝑛−1

2
.

𝑒𝑖+1
 1

= −𝑒2𝑖+1𝑙𝑖+1 , 𝑓𝑖
 1

= −𝑓2𝑖+1𝑚𝑖

20 Methods for Band Diagonal Matrices

where 𝑖 = 1,2, … ,
𝑛−1

2
− 1

The row reductions yields the following corrections to the values of the right hand

side, whose indices are even numbers

𝑏𝑖
 1

= 𝑏2𝑖 − 𝑙𝑖𝑏2𝑖−1 − 𝑚𝑖𝑏2𝑖+1 (3.5)

Where 𝑖 = 1,2, … ,
𝑛−1

2
. The set of equations for the unknowns with even numbered

indices can now be solved independently of the unknowns with odd numbered in-

dices. The set of equations for the unknowns with even numbered indices has the

same form as the original set of equations, see (3.1).

3. Half of the unknowns in the set of equations for the unknowns with even num-

bered indices can now be removed since the coefficient matrix is tridiagonal. This

can be done by repeating points 1 and 2 for this set of equations. This will in turn

result in a matrix of the same form and the process of removing half of the un-

knowns can be repeated arbitrary many times.

4. Solve for the unknowns in the final system of equations.

5. Assuming that 𝑥2 , 𝑥4 and 𝑥6 are known the unknowns with odd indices can be

found with the following equations

𝑥1 = 𝑏1 − 𝑓1𝑥2

𝑥𝑖 = 𝑏𝑖 − 𝑓𝑖𝑥𝑖+1 − 𝑒𝑖𝑥𝑖−1

𝑥𝑛 = 𝑏𝑛 − 𝑒𝑛𝑥𝑛−1

 Where 𝑖 = 1,3, … , 𝑛.

Direct Methods 21

3.3 Factorization

Factorization of a matrix is often used in numerical linear algebra; it means to write the

matrix as a product of two or more matrices. Each of the matrices in the factorization has

a useful structure that can be exploited to make more efficient algorithms to solve the

linear set of equations. Factorization is especially useful when several sets of equations

with the same coefficient matrix are solved.

Two commonly used factorizations are presented here; LU factorization and Cholesky

factorization. Both of them factorize the matrix into an upper and a lower triangular ma-

trix, called 𝐿 and 𝑈 respectively. Instead of solving the original equation, 𝐴𝒙 = 𝒃, the fol-

lowing set of equations is solved

 𝐿𝒚 = 𝒃 (3.6)

𝑈𝒙 = 𝒚 (3.7)

Solving this set of equations is preferable since 𝑈 and 𝐿 are triangular matrices and

therefore efficient to solve.

3.3.1 LU Factorization

The complexity of finding the LU factorization and then solve the set of equations is

higher than applying Gaussian elimination directly. The LU factorization of a matrix of

size 𝑛 × 𝑛 requires about 2𝑛3/3 operations, and equation (3.6) and (3.7) can be solved

with 2𝑛2 operations when the LU factorization is known. Applying Gaussian elimination

directly solves the system of equations with approximately 2𝑛3/3 operations. The number

of operations used by each algorithm has been obtained from Lay (2006).

The solution obtained by using LU factorization is often more accurate since the factoriza-

tion accumulate less round off errors. The 𝐿 and 𝑈 matrix is quite likely to be sparse if

the matrix 𝐴 itself is sparse, but the inverse of 𝐴 is likely to be dense. LU factorization is

far more efficient than direct Gaussian elimination if this is the case.

The upper triangular matrix is found by reducing the matrix 𝐴 to an echelon form with

row operations. The lower triangular matrix is formed such that the same sequence of

row operations reduces the lower triangular matrix to the identity matrix. The factoriza-

tion is unique if the values on the diagonal for either the upper or the lower triangular

matrix are all ones.

A LU factorization exist for a matrix if and only if the all the principal minors are non-

zero. A minor is the determinant of some smaller matrix obtained by removing one or

more rows and columns from the matrix. The principal minors of a matrix are the deter-

minants of the matrices formed by removing the 𝑖‟th column and row, for 𝑖 = 1,2, … , 𝑛. A

LU factorization may exist for a singular matrix.

3.3.2 Cholesky Factorization

Cholesky factorization can be applied to a matrix A, of size 𝑛 × 𝑛, if it is symmetric and

positive definite. The upper triangular matrix 𝑈 is equal to the conjugate transpose of the

lower triangular matrix 𝐿 for the Cholesky factorization. The number of operations

22 Factorization

needed to calculate the Cholesky factorization is about 𝑛3/3, that is half of the number

operations needed to find the LU factorization or solving the system using Gaussian

elimination.

The Cholesky factorization has the same advantages as the LU factorization when it

comes to limiting round off errors and keeping the matrix sparse. The Cholesky factoriza-

tion is more efficient than the LU factorization and it requires that less data is stored in

the computer memory. The Cholesky factorization is always unique.

Direct Methods 23

3.4 Limitations of Direct Methods

The complexity for the algorithms described in this chapter is summarized in Table 3.1.

The number of operations needed to solve the equation sets increases rapidly as the size

of the coefficient matrix increases. Iterative methods are usually the preferred choice for

large systems where direct methods would be to computationally expensive. The system

can be so large that it would be impossible to fit data needed in the computer memory or

solve the system in a reasonable amount of time.

 FULL MATRIX

Gaussian elimination 2𝑛3/3

 TRIDIAGONAL MATRIX

Thomas algorithm 2𝑛

Cyclic reduction ~2.7 ∙ 2𝑛

 FACTORIZATION

 Factorization Solving equation (3.6) and (3.7)

LU factorization 2𝑛3/3 2𝑛2

Cholesky factorization 𝑛3/3 2𝑛2

Table 3.1: Number of operations needed to solve a system of equations with 𝑛 unknowns. e.g.

Gander (1997) and Lay (2006).

The direct methods presented here, with the exception of cyclic reduction, are tradition-

ally perceived as sequential. Sequential algorithms are inefficient on processors with sev-

eral cores and they tend to accumulate large round-off errors, which can make the final

solution unusable for large systems.

However, in later years parallel implementations of direct methods has been developed.

Packages that includes parallel implementations of factorizations and direct solvers are

available, see for example,

 a MUltifrontal Massively Parallel sparse direct Solver, MUMPS

 superLU

 PETSc

 PARADISO

24 Limitations of Direct Methods

Iterative Methods 25

4 Iterative Methods

Iterative methods can be used to solve system of equations that arise from finite differ-

ence approximation of partial differential equations, which have large and sparse coeffi-

cient matrices. In the previous chapter it was shown that as the system become increas-

ingly large and complex it is no longer feasible to solve the systems with direct methods

due to limitations of computer memory and the number of arithmetic operations that

must be carried out.

Another incentive for using iterative methods is that they are far easier to implement on

parallel computers. This is becoming increasingly important as inexpensive powerful par-

allel computers become broadly available.

Iterative methods aim at finding a solution to a set of linear equations, 𝐴𝒙 = 𝒃, by finding

successive approximations for its solution, until a sufficiently accurate one is found. As

for the direct methods there are a large number of iterative methods to choose from, see

Figure 4.1.

Figure 4.1: There are two main branches of iterative methods. The first is the stationary or classic
methods, which include Jacobi, Gauss-Seidel and the Successive OverRelaxation method (SSOR).
The other branch is the Krylov subspace methods, which include the Conjugate Gradient method
(CG), the BiConjugate Gradient (BiCG) and Generalized Minimal RESidual method (GMRES).

There are two main types of iterative methods, which are the stationary or classic itera-

tive methods and Krylov subspace methods. All the stationary methods that are pre-

sented in Figure 4.1 are described in the following subsection. There are several Krylov

subspace methods as well, but the focus will be on the Conjugate Gradient (CG) method.

26 Classic Iterative Methods

4.1 Classic Iterative Methods

The classic iterative methods are built on the principle that the matrix A can be written as

a sum of other matrices. There are several ways to divide the matrix; two of them are

the origin of the Jacobi and the Gauss-Seidel method. The successive overrelaxation

method is an improved version of the Gauss-Seidel method. The classic iterative methods

do in general have a quite low convergence rate compared to the Krylov subspace meth-

ods. They do, however, smooth the error efficiently and this makes them an important

part of the Multigrid algorithm that is presented in the subsequent chapter. The smooth-

ing effect of the classic iterative methods is elaborated on in subsection 4.1.6.

4.1.1 Jacobi Method

In the Jacobi method the matrix 𝐴 is divided into two matrices 𝐷 and 𝐸 such that

𝐷 + 𝐸 = 𝐴. 𝐷 is a diagonal matrix with the same entries as 𝐴 has on the main diagonal,

and 𝐸 has zeros on the diagonal and the off diagonal entries are equal to the rest of the

entries in 𝐴. Applying this to the to set of linear equations we find that

𝐴𝒙 = 𝒃

 𝐷 + 𝐸 𝒙 = 𝒃

𝐷𝒙 = −𝐸𝒙 + 𝒃

𝒙 = −𝐷−1𝐸𝒙 + 𝐷−1𝒃

𝒙 = 𝐵𝒙 + 𝐷−1𝒃 (4.1)

Where 𝐵 = −𝐷−1𝐸. This expression may be used to find an iterative method based on re-

cursion,

𝒙 𝑖+1 = 𝐵𝒙 𝑖 + 𝐷−1𝒃 (4.2)

Where 𝒙 𝑖 and 𝒙 𝑖+1 are successive approximations for the solution of the linear set of

equations. From equation (4.2) we find that the exact solution, 𝒙, is a stationary point,

i.e. if 𝒙 𝑖 is equal to the exact solution of the equation set then 𝒙 𝑖+1 will be equal to the

exact solution as well. Solvers based of this principle, such as the Jacobi and the Gauss-

Seidel methods, are therefore called stationary methods.

Equation (4.2) may be written in component form, which yields the following expression

𝑥𝑘
(𝑖+1)

= −
1

𝑎𝑘𝑘
 𝑎𝑘𝑗 𝑥𝑗

(𝑖)

𝑛

𝑗=1
𝑗≠𝑘

+
1

𝑎𝑘𝑘
𝑏𝑘

(4.3)

Iterative Methods 27

Where 𝑎𝑘𝑘 denotes the entries in the matrix 𝐴, 𝑥𝑘
(𝑖)

 and 𝑏𝑘 are the entries in the approxi-

mation vector 𝒙 𝑖 and the right hand side vector 𝒃 respectively.

The error is defined as the difference between the approximation of the solution and the

exact solution

𝒆 𝑖 = 𝒙 𝑖 − 𝒙 (4.4)

The Jacobi method can be analysed further using this definition of the error. From equa-

tion (4.1) the following equation is found

𝒙 𝑖+1 = 𝐵(𝒙 + 𝒆 𝑖) + 𝐷−1𝒃

𝒙 𝑖+1 = 𝐵𝒙 + 𝐵𝒆 𝑖 + 𝐷−1𝒃

𝒙 𝑖+1 = 𝒙 + 𝐵𝒆 𝑖

𝒆 𝑖+1 = 𝐵𝒆 𝑖 (4.5)

Equation (4.5) shows that each iterative step only affects the error, i.e. the incorrect part

of the approximation. Whether or not the Jacobi method converges to the exact solution

will therefore depend on the properties of the iteration matrix, 𝐵. To analyse how the

operation in equation (4.5) affects the error we can decompose the error vector using the

eigenvectors of 𝐵, provided that 𝐵 which is of size 𝑛 × 𝑛 has 𝑛 independent eigenvectors.

The eigenvectors are denoted 𝒗1, 𝒗2 , … , 𝒗𝑛 with corresponding eigenvalues 𝜆1 , 𝜆2, … , 𝜆𝑛.

Rewriting equation (4.5) yields the following expression

𝒆 𝑖+1 = 𝐵(𝑘1𝒗1 + 𝑘2𝒗2 + ⋯ + 𝑘𝑛𝒗𝑛 (4.6)

Where 𝑘1 , 𝑘2, … , 𝑘𝑛 are constants. The eigenvalues satisfies the eigenvalue equation,

𝐴𝒗𝒊 = 𝜆𝑖𝒗𝒊. Multiplying the equation with a scalar gives 𝑘𝐴𝒗 = 𝑘𝜆𝒗. Adding this result to

equation (4.6) yields the following expression

𝒆 𝑖+1 = 𝜆1𝑘1𝒗1 + 𝜆2𝑘2𝒗2 + ⋯ + 𝜆𝑛𝑘𝑛𝒗𝑛 (4.7)

From this equation we find that the method will converge to the exact solution if all ei-

genvalues are less than unity, i.e. the spectral radius of 𝐵 is less than unity. The spectral

radius is defined as

𝜌 𝐵 = max 𝜆𝑖 (4.8)

𝜆𝑖 are the eigenvalues of 𝐵. This gives the condition for whether or not the Jacobi algo-

rithm will converge, but does not specify rate of convergence. The Jacobi method will

converge for linear systems of equations with coefficient matrices that are diagonally

28 Classic Iterative Methods

dominant; this is usually the case for the set of equation that arises from finite difference

and finite element discretizations of partial differential equations. Finding the rate of con-

vergence requires a more detailed study. The convergence of the classic iterative meth-

ods is discussed in section 4.1.4.

4.1.2 Gauss-Seidel Method

In the Jacobi method all entries in the approximation are updated based on the values in

the previous approximation, see equation (4.3). The Gauss-Seidel method on the other

hand uses the previously updated values in the current approximation to find the rest of

them.

This corresponds to dividing the matrix 𝐴 into three matrices, 𝐷, 𝐹 and 𝐺. Where 𝐷 matrix

is the same diagonal matrix as in the Jacobi method, which contains the diagonal entries

in 𝐴. 𝐹 is a lower triangular matrix and the 𝐺 matrix is an upper triangular matrix con-

taining the entries 𝐴 has below and above the diagonal respectively. Carrying out the

same derivations as for equation (4.2) for this splitting of the matrix 𝐴 leads to the ma-

trix form of the Gauss-Seidel method

𝒙 𝑖+1 = − 𝐷 + 𝐹 −1𝐺𝒙 𝑖 + 𝐷 − 𝐹 −1𝒃 (4.9)

Writing it out in component form this yields

𝒙𝑘

(𝑖+1)
= −

1

𝑎𝑘𝑘
 𝑎𝑘𝑗 𝒙𝑗

(𝑖+1)

𝑘−1

𝑗=1

−
1

𝑎𝑘𝑘
 𝑎𝑘𝑗 𝒙𝑗

(𝑖)

𝑛

𝑗=𝑘+1

+
1

𝑎𝑘𝑘
𝑏𝑘

(4.10)

Figure 4.2: In the linear sets of equations that arise from the finite difference discretization of par-
tial differential equations, such as the heat diffusion equation, the function values in the nodes are
only coupled to the function values in their neighbouring nodes. In section 2.2.5 different stencils
for the Laplacian were discussed. The 5 point and the 9 point stencil are visualized on the left hand
side figure. For the 5 point stencil red-black ordering (see middle figure) can be used. The updated

values in every grid point marked with red are found first then all values in the grid points marked
with black are found. For the 9 point stencil four colour ordering (see figure on the right hand side)
can be used.

Iterative Methods 29

In equation (4.10) the entries are solved for in the order they are numbered, called lexi-

cographic ordering. In principal it is possible to solve for the entries in any order. In the

equation sets formed by finite difference discretization of partial differential equations,

such as the diffusion equation, the unknowns are found based on the values of the clos-

est neighbours. This observation leads to the idea of the so called red-black ordering, see

Figure 4.2. For the 5 point stencil for the Laplacian all grid points marked in red are un-

coupled with the other red grid points and grid points marked in black are uncoupled with

each other as well. This means that the values in the red grid points can be solved for

first and then all values in the black grid points can be solved using the updated values in

the red grid points. Solving for all red grid points can be done in parallel since they are

independent of each other and the same goes for the black ones. For the 9 point stencil

for the Laplacian four colour-ordering must be used to get the same effect.

4.1.3 Successive Overrelaxation Method

An improvement to the Gauss-Seidel method can be made by anticipating future correc-

tions to the approximation by making an overcorrection at each iterative step. The

method is called the successive overrelaxation method (SOR). The SOR method was the

standard iterative method until the 1970s. This method is based on the matrix splitting

𝜔𝐴 = 𝐷 + 𝜔𝐹 + (𝜔𝐺 + (𝜔 − 1)𝐷) (4.11)

The matrices 𝐷, 𝐹 and 𝐺 are the same as for the Gauss-Seidel method, and 𝜔 is the suc-

cessive overrelaxation parameter. This matrix splitting results in the following iterative

method

 𝐷 + 𝜔𝐹 𝒙 𝑖+1 = − 𝜔𝐺 + 𝜔 − 1 𝐷 𝒙 𝑖 + 𝜔𝒃 (4.12)

This is equivalent to the following expression

𝒙 𝑖+1 = 𝒙𝐺𝑆 +(1 − 𝜔)𝒙 𝑖 (4.13)

𝒙𝐺𝑆 is the approximation found with the Gauss-Seidel method, see equation (4.10).

To obtain convergence for symmetric, positive definite matrices the value of the overre-

laxation parameter must be in the range 0 < 𝜔 < 2. For values smaller than one it is

called underrelaxation. Only values larger than one result in a performance gain. There is

an optimal value for the relaxation parameter where the rate of convergence is at its

maximum. The weak point of the method is finding the optimal value of the relaxation

parameter since the much of the performance gain is lost if the value is not chosen form

a narrow window around the optimal value. Methods for finding the optimal values are

discussed in section 4.1.5.

4.1.4 Convergence

The convergence rate indicates the number of iterations that is needed for an iterative

method to find an approximation of the solution that is within a certain range of the ex-

act solution. Both the rate of convergence and the choice of optimal overrelaxation pa-

30 Classic Iterative Methods

rameter are heavily dependent on finding the spectral radius of the iteration matrix, or at

least an upper bound for it. This section starts with a general discussion the convergence

rates. The convergence is analysed for the steady state diffusion equation in one dimen-

sion with Dirichlet boundary conditions. Discretization of this equation is shown in section

2.2.1.

All the iterative methods discussed in the previous sections are on the form

𝒙 𝑖+1 = 𝐵𝒙 𝑖 + 𝒃 (4.14)

The matrix 𝐵 is the iteration matrix, and 𝒃 is a vector. The iteration matrices for the

three methods are given in table Table 4.1.

Method Iteration matrix

Jacobi −𝐷−1𝐸

Gauss-Seidel − 𝐷 + 𝐹 −1𝐺

SOR − 𝐷 + 𝜔𝐹 −1 𝜔𝐺 + 𝜔 − 1 𝐷

Table 4.1: The iteration matrices of the classic iterative methods.

The iterative methods will converge if the spectral radius of the iterative matrix is less

than unity; this fact is well documented, see for example Saad (2003). This was also

shown in section 4.1.1 for the Jacobi method.

The number of iterations needed to reduce the error by a factor 10−𝑑, where 𝑑 is a posi-

tive integer, is used to compare the efficiency of the different methods, i.e.

 𝑒 𝑚

 𝑒(0)
< 10−𝑑

(4.15)

𝑒(0) is the initial error and 𝑚 is the smallest integer that satisfies the inequality. Equation

(4.5) yields the following relation between error at the 𝑚𝑡𝑕 iteration and the initial error

 𝑒 𝑚 = 𝐵𝑚𝑒(0) (4.16)

Using that 𝐴𝐵 ≤ 𝐴 𝐵 for any matrix A and B yields the following inequality

 𝑒 𝑚 ≤ 𝐵 𝑚 𝑒(0) (4.17)

For any matrix norm the following inequality is upheld see Saad (2003)

𝜌(𝐵) ≤ 𝐵 (4.18)

Where 𝜌(𝐵) is the spectral radius of the matrix 𝐵. The condition in equation (4.15), (4.17)

and equation (4.18) gives the following equation

Iterative Methods 31

 𝜌 𝐵 𝑚 ≤ 10−𝑑 (4.19)

Solving for the number of iterations yields

𝑚 ≥ −

𝑑

log10 𝜌 𝐵

(4.20)

The quantity log
10
 𝜌 𝐵 is called the asymptotic convergence rate. As 𝜌 𝐵 approaches 1

the convergence deteriorates.

The iteration matrix of the Jacobi method can be rewritten as a sum of the identity ma-

trix, 𝐼, and the matrix A from the linear set of equations that is solved, 𝐴𝒙 = 𝒃,

𝐵 = −𝐷−1𝐸 = 𝐼 +

1

2
𝐴

(4.21)

All eigenvectors of the identity matrix equal to one. This means that the eigenvalues of 𝐵

are given by

𝜆 𝐵 =

1

2
𝜆 𝐴 + 1

(4.22)

This means that finding the eigenvectors of the iteration matrix is really a question of

finding the eigenvalues of the 𝐴 matrix.

For steady state heat diffusion in a homogeneous material in one dimension, where heat

capacity, conductivity, grid spacing and density are all set to unity for simplicity, the ma-

trix 𝐴 is of the form

The eigenvalues of matrix 𝐴, which is of size 𝑛 × 𝑛, is given by the following equation

𝜆(𝐴) = −2 − 2 cos

𝑘𝜋

𝑛 + 1

(4.24)

Where 𝑘 = 1,2, . . . , 𝑛. Using equation (4.22) we find that the eigenvalues of 𝐵 are given by

the following equation,

𝐴 =

−2 1
1 ⋱ ⋱

⋱ ⋱ 1
1 −2

(4.23)

32 Classic Iterative Methods

𝜆 𝐵 = − cos

𝑘𝜋

𝑛 + 1

(4.25)

The spectral radius is given by the largest absolute value of the eigenvalues,

𝜌 𝐵 = max | − 1 cos

𝑘𝜋

𝑛 + 1
 | = −1 cos

𝑛𝜋

𝑛 + 1

(4.26)

The asymptotic convergence rate is log10 −1 cos
𝑛𝜋

𝑛+1
 . Number of iterations needed to

achieve the predetermined level of convergence can now be found by the following equa-

tion,

𝑚 ≥ −
𝑑

log10 −1 cos
𝑛𝜋

𝑛 + 1

(4.27)

It is shown that the spectral radius of the iteration matrix of Gauss-Seidel method is sim-

ply the square of the spectral radius of the iteration matrix of the Jacobi method, see

Young (1971), Stoer et al. (2002) and Varga (2000).

𝜌𝐺𝑆 = 𝜌𝑗𝑎𝑐𝑜𝑏𝑖

2 (4.28)

The spectral radius of the SOR method is found in the following subsection since it is de-

pendent on the choice of overrelaxation parameter.

4.1.5 Overrelaxation Parameter

The overelaxation parameter must be within a narrow range around the optimal value for

the SOR algorithm to convergence considerably faster than the standard Gauss-Seidel

algorithm. The optimal value for the overrelaxation parameter can be found based on the

following analytical expression see Press et al. (2007)

𝜔 =

2

1 + 1 − 𝜌𝐺𝑆

(4.29)

The spectral radius of the SOR iteration matrix for the optimal choice of 𝜔 is given by the

following expression,

𝜌𝑆𝑂𝑅 =
𝜌𝐺𝑆

 1 + 1 − 𝜌𝐺𝑆
2

(4.30)

The overrelaxation parameter can be found experimentally. Finding it numerically is often

the only choice since it is not always possible to derive the spectral radius of the Gauss-

Seidel iteration matrix analytically.

Iterative Methods 33

4.1.6 Smoothing Properties

Figure 4.3: The image series shows how the error is smoothed as after certain numbers of itera-
tions using the Gauss-Seidel algorithm with red-black ordering and a 5 point stencil for the Lapla-

cian.

The classic iterative methods do not necessarily reduce the error of an approximation

efficiently, but it does have a strong smoothing effect on it (see Figure 4.3). The smooth

error term is well represented on a coarse grid. This property is exploited in the Multigrid

algorithm where we solve for the error on the coarser grid to find a better approximation

for the exact solution. It is clear from Table 3.1 that solving the equation on a coarser

grid requires a substantially smaller number of operations.

4.1.7 Tests

For the Gauss-Seidel method convergence is tested for systems of different sizes, see

Figure 4.4. The plot clearly shows that the rate of convergence deteriorates rapidly as the

system size increases. It is this adverse affect on the convergence rate from the system

size that can be avoided by using the multigrid algorithm.

34 Classic Iterative Methods

Figure 4.4: The number of iterative steps required to reach the maximum accuracy for the different
grid sizes using the Gauss-Seidel method. Both the x- and the y-axis are plotted on logarithmic
scales. The legend shows which colours corresponds to the different number of grid points in each
spatial direction. The number of iterative steps needed to reach the stagnation point does increase

with the number of grid points.

Iterative Methods 35

4.2 Krylov Subspace Methods

The Krylov subspace iterative methods are rated as one of the “Top 10 Algorithms of the

20th Century”, see Cipra (2000) and Dongarra et al. (2000). As the other algorithms

presented thus far these methods aim at solving equations of the form, 𝐴𝒙 = 𝒃, where A

is a large and sparse matrix. The Krylov subspace is spanned by vectors formed by pow-

ers of the matrix 𝐴 a being multiplied by the residual vector, 𝒓0 = 𝐴𝒙 − 𝒃,

The most prominent algorithm of the Krylov subspace methods is the Conjugate Gradient

algorithm, which can be applied to matrices that are symmetric and positive definite. A

brief introduction to the idea behind this algorithm is presented in the following subsec-

tion. Generalizations of this method for non-symmetric matrices lead to the Generalized

Minimum Residual (GMRES) method and BiConjugate Gradient method (BiCG), neither of

which is covered in this thesis.

4.2.1 Conjugate Gradients

Figure 4.5: 𝑥1 and 𝑥2 indicates the possible values of the unknowns in a system with two un-

knowns. A) Shape of the quadratic form of a positive definite system. B) For a negative definite
system is the shape of the quadratic form an “upside-down bowl”. C) A singular (positive definite)

matrix has an infinite number of solutions that are found in the bottom of the “valley” formed by
the quadratic form. D) The solution of a linear set of equations with an indefinite coefficient matrix
is at the saddle point of the quadratic form. Source Shewchuk (1994).

The Conjugate Gradient method (CG) method is built on the same ideas as the Steepest

Decent (SD) method. As usual the aim is to solve an equation on the form, 𝐴𝒙 = 𝒃. For

both the CG and SD method the matrix A must be positive definite or positive indefinite.

The reason for this is that both methods exploit the shape of the quadratic form function

𝒦𝑟 𝐴, 𝒓0 = span{𝒓0 , 𝐴𝒓0 , 𝐴2𝒓0 , … , 𝐴𝑛𝒓0} (4.31)

36 Krylov Subspace Methods

𝑓 𝑥 =

1

2
𝑥𝑇𝐴𝑥 − 𝑏𝑇𝑥 + 𝑐

(4.32)

𝑐 is some scalar. The quadratic function has its minimum value when 𝒙 is the solution of

the linear set of equations, 𝐴𝒙 = 𝒃, if the matrix 𝐴 is positive definite. The quadratic form

function is shaped as a “bowl” for positive definite systems, see Figure 4.5.

The SD method searches for the solution of the equation in the direction of the steepest

decent, i.e. the direction that has the largest negative gradient. The gradient of the form

function is given by

𝑓 𝒙 ′ = 𝐴𝒙 − 𝒃 (4.33)

For a symmetric matrix 𝐴. For the exact solution this gradient is zero. Each new approxi-

mation for the solution is found in the direction of the largest negative gradient in the SD

method. Forming a line, called a search line, in the direction of the largest gradient the

new approximation is found at the point of this line which has the smallest gradient. The

gradient is orthogonal to the search line at the point where the gradient is at its mini-

mum. This technique repeatedly applied until a sufficiently accurate approximation for

the solution is found, but what is a sufficiently accurate approximation?

To find an answer to this question some definitions are needed. The error is still defined

as

𝒆 𝑖 = 𝒙 𝑖 − 𝒙 (4.34)

Where 𝒆 𝑖 is the error and 𝒙 𝑖 is the approximate solution at some iteration 𝑖, and 𝒙 is

the exact solution. In addition to the error the definition of the residual is needed

𝒓 = 𝐴𝒙 𝑖 − 𝒃 (4.35)

Notice that the residual points in the direction that is opposite of the steepest gradient.

For each successive approximation the residual and the error is reduced. Ideally the error

should be reduced to zero before stopping the iterations. Finding the error is, unfortu-

nately, as hard as finding the solution it self. Restrictions are therefore set on the resid-

ual instead. For the exact solution the residual is zero. The customary stopping criteria

for the SD and CG method are the same as for the multigrid algorithm, the iterations are

stopped when the residual is a small fraction of the initial error or when the norm of the

residual divided by the norm of the right hand side is below some predefined value.

The convergence of the SD method is highly dependent on the condition number, κ, of

the matrix 𝐴, which is the ratio between the largest and the smallest eigenvalue of 𝐴. For

large condition numbers the shape of the quadratic form is close to a ”Valley”, and for

small ones it is shaped like a perfect “bowl”. In the case of where the condition number is

Iterative Methods 37

large the convergence will be bad if the choice of starting point for the iterations is un-

lucky. This is illustrated in Figure 4.6.

Figure 4.6: 𝑣1 and 𝑣2 is the eigenvectors of the matrix. 𝜇 is the slope of the error at the current

iteration 𝒆 𝑖 , i.e. the “quality” of the initial guess. 𝜅 is the condition number of the matrix A. (a)

large 𝜅, i.e. bad condition number, and small 𝜇, i.e. a lucky initial guess. (b) large 𝜅 and large 𝜇,

result in bad convergence. (c) small 𝜅 and 𝜇, and (d) small 𝜅 and large 𝜇 both yields a good con-

vergence. Source Shewchuk (1994).

As illustrated in Figure 4.6 (b) the SD method can end up searching for the solution sev-

eral times in the same direction, this is not the case for the CG method. Instead of

searching in the direction of the largest negative gradient the CG method searches for

the solution in directions, 𝒅 𝑖 , that are A-orthogonal to each other, which means that

𝒅 𝑖 𝐴𝒅 𝑗 = 0 (4.36)

For 𝑖 ≠ 𝑗. Each new approximation of the solution is found at the point where the gradient

on the search line is at its minima, as for the SD method. The CG algorithm avoids

searching in the same direction several times as the SD can do since the search direc-

tions are predefined and span the same space as 𝐴. In the CG algorithm the initial resid-

ual is used as a basis for finding the search directions, and they are given by the vectors

that span the Krylov subspace

𝒦𝑟 𝐴, 𝒓 𝑖 = span{𝒓 𝑖 , 𝐴𝒓 𝑖 , 𝐴2𝒓 𝑖 , … , 𝐴𝑛𝒓 𝑖 } (4.37)

38 Krylov Subspace Methods

This concludes the short introduction to the idea behind CG method. The full explanation

of this prominent algorithm is well presented in Shewchuk (1994). The outline of the al-

gorithm is presented in the here:

If one has a good estimate for 𝒙 one may use this as an initial step 𝒙 0 . Otherwise use

𝒙 0 =0 as an initial guess.

1. 𝒅 0 = 𝒓 0 = 𝑏 − 𝐴𝒙 𝑖 , find initial residual, i.e. the search direction

2. 𝛼 𝑖 =
 𝒓 𝑖

𝑇
𝒓 𝑖

 𝒅 𝑖
𝑇

A𝒅 𝑖
, Constant needed to find the step length

3. 𝒙 𝑖+1 = 𝒙 𝑖 + 𝛼𝒅 𝑖 , find the next approximation

4. 𝒓 𝑖+1 = 𝒓 𝑖 − 𝛼 𝑖 𝐴𝒅 𝑖 , find residual for the new approximation

5. 𝛽 𝑖+1 =
 𝒓 𝑖+1

𝑇
𝒓 𝑖+1

 𝒓 𝑖
𝑇
𝒓 𝑖

6. 𝒅 𝑖+1 = 𝒓 𝑖+1 + 𝛽 𝑖+1 𝒅 𝑖 , find search direction

Repeat 2-6 until convergence is achieved.

The convergence of the CG algorithm is heavily dependent on the condition number of

the matrix 𝐴. Convergence can be improved by applying a technique called precondition-

ing. The idea is to multiply both sides of the equation, 𝐴𝒙 = 𝒃, with a matrix, i.e. 𝑀−1𝐴𝒙 =

𝑀−1𝒃, to obtain a more favourable condition number. The matrix 𝑀 should be easy to

invert and 𝑀−1𝐴 should have a significantly better condition number to get a performance

gain from the preconditioning. The multigrid can in fact be used as preconditioner for the

CG and the convergence of multigrid preconditioned CG is superior to the convergence of

multigrid method in many cases, e.g. Trottenberg et al. (2001), Tatebe (1993) and

Braess (1986).

Multigrid 39

5 Multigrid

In this thesis they are used to solve elliptic as well as parabolic equations. Multigrid algo-

rithms are among the most efficient solvers for boundary value problems, see Trotten-

berg (2001). In recent years, however, multigrid methods have been used to solve a

broad spectrum of problems, see section 5.5.

Figure 5.1: Classic iterative methods smooth the error efficiently and a smooth error term can be
well represented on a coarse grid.

The remarkable feature of the multigrid algorithms is that the convergence rate does not

deteriorate as the grid size increases, which is the problem for classic iterative problems.

The computational cost of solving the partial differential equations with the multigrid al-

gorithm is therefore roughly proportional with the number of unknowns 𝒪(𝑁 log 𝜀), where

𝜀 refers to the achieved accuracy of the solution. The drawback of the multigrid method

is that it must be tailored to the specific problem at hand, as opposed to for example the

conjugate gradient method.

Figure 5.2: Shows a hierarchy of grids, where the grid spacing is halved for each level of coarsen-
ing.

This classic iterative method does have a central role has in the Multigrid algorithms. On

their own these methods have a quite poor convergence, but they do have a strong

smoothing effect on the error. The high frequency modes, corresponding to the large

eigenvalues, are dampened rapidly. The low frequency modes on the other hand are

dampened quite slowly. By transferring the problem to a coarser grid many of the low

frequency modes are mapped onto the high frequency modes and can be efficiently

dampened on the coarse grid, see Figure 5.1. By transferring the problem unto coarser

40 Krylov Subspace Methods

and coarser grids more and more of the low frequencies can be dampened. This is done

with a hierarchy of coarser grids, see Figure 5.2.

Multigrid 41

5.1 Multigrid Cycle

The first step is to smooth the error using one of the classic iterative methods. The

smooth error term is well represented on a coarser grid, which can be exploited by trans-

ferring the problem to a coarser grid. Consider a set of linear equations

𝐴𝒙 = 𝒃 (5.1)

The solution of equation (5.1) is in general not a smooth function and is not necessarily

well represented on a coarse grid. Some steps must be made to find an equation that is

well defined on a coarse grid, which exploits the smooth error terms.

For the continued discussion the definition of the error and the residual is needed. As

presented in the previous chapter these quantities are given by the following two expres-

sions respectively

𝑟 = 𝐴𝒙 𝑖 − 𝒃 (5.2)

𝒆 = 𝒙 𝑖 − 𝒙 (5.3)

𝒙 𝑖 is an approximation of the solution. Combining equation (5.1), (5.2) and (5.3) the

residual equation can be found

𝐴𝒆 = 𝒓 (5.4)

The residual is restricted from the fine grid to the coarser grids. The restriction is usually

done in steps and the error is smoothed before each restriction, see section 5.1.1. The

interval between the grid points is usually doubled for each step.

The equation is solved at the coarsest grid using one of the direct methods discussed in

chapter 3 or one of the classic iterative methods. Solving the system on the coarsest

level is efficient since the number of unknowns is small. The solution of the residual

equation is interpolated back to the finest level, see section 5.1.2. This process is also

done in steps and the solution is smoothed with one of the classic iterative methods on

each coarsening level.

The process of restricting the equation down to the coarsest level, solving it and then

interpolating it back to the finest level is called a V-cycle, see Figure 5.3. Multigrid is an

iterative method and the V-cycle is repeated several times to find a sufficiently accurate

approximation of the solution. Other possible cycles are the W-cycle and the full multigrid

cycle, see Trottenberg et al. (2001).

42 Multigrid Cycle

Figure 5.3: V-cycle. The residual is restricted from the finest grid to the coarsest grid at which
equation (5.4) is solved and the solution is interpolated to the finest grid.

The goal of the algorithm is to minimize the error, 𝒆, but finding the error is impossible

without knowing the exact solution, see equation (5.3). In practice a norm of the residual

is the measure of the quality of the approximation, as for the conjugate gradient algo-

rithm. It is customary to stop running the cycles when the norm of the residual is a small

fraction of the initial error or when the norm of the residual divided by the norm of the

right hand side is below some predefined value. One should be aware that even if the

residual is small the error is not necessarily so, a nice example of this is presented in

Briggs et al. (2000) and reproduced here

Consider the following two linear equations

1 −1
21 −20

𝑢1

𝑢2
 =

−1
−19

 (5.5)

1 −1
3 −1

𝑢1

𝑢2
 =

−1
−1

 (5.6)

The exact solution to both of these equations is 𝒖 = 1,2 𝑇. Suppose we have calculated

the approximation 𝒗 = 1.95,3 𝑇. The error for this approximation is 𝒆 = −0.95, −1 𝑇, for

which 𝒆 2 = 1.379. The norm of the residual for the first set of equations is 𝒓𝟏 2 = 0.071,

while the residual norm for the second system is 𝒓𝟐 2 = 1.851. Clearly the relative small

residual found for the first system does not reflect the rather large error.

An overview of the algorithm is presented as a flowchart in Figure 5.4. As indicated in the

figure the restriction and the interpolation are described in further detail in the subse-

quent subsections. The direct solvers which are used on the coarsest level and the

smoothers are discussed in chapter 3 and 4 respectively.

Multigrid 43

Figure 5.4: An overview of the multigrid cycle. The restriction and the interpolation are elaborated

on in the following subsections. To get a sufficiently accurate approximation several multigrid cy-
cles are run.

Pre-smoothing

Smoothes the residual with 1 or more iterative

steps of the classic iterative methods.

Restrict residual

Restricts the residual to a coarser grid. Typically with

double grid step size. See section 5.1.1.

Calculate residual

Using equation (5.4).

Solve the residual equation

The residual equation, (5.4), is solved on the coarsest

grid.

Interpolate

The solution of the residual equation is inter-

polated to a finer grid. See section 5.1.2.

Compute the corrected

solution

Evaluate equation (5.3).

Post-smoothing

Smoothes the solution with 1 or more iterative steps of

the classic iterative methods.

Coarsest level

Finest level

Start

44 Multigrid Cycle

5.1.1 Restriction

Figure 5.5: Choices for coarse grids. The whole grids show the fine grid and the blue part is the
first coarsening level. The first image shows standard coarsening where the grid spacing is halved,
the second one show semi-coarsening in the y-direction, and the last one shows coarsening where
the grid spacing is four times larger than for the fine grid.

After the smoothing of the error term is transferred to a coarser grid. The multigrid algo-

rithm uses a transfer operator that restricts the residual from a fine grid to a coarser

grid. The choice of operator depends on the type of coarsening, see Figure 5.5. The

transfer operators used in this thesis are applied to standard coarsening, where the grid

spacing is doubled for each coarsening level. Semi-coarsening can be used in cases

where there is a strong coupling between the unknowns in one direction and not the

other.

In one dimension a common choice is the full weight operator (FW)

𝑢𝑖

2𝑕 =
1

4
(𝑢2𝑖−2

𝑕 + 2𝑢2𝑖−1
𝑕 + 𝑢2𝑖

𝑕)
(5.7)

𝑢𝑖
𝑕 is the function values on the fine grid at grid point 𝑖 with grid spacing 𝑕 and 𝑢𝑖

2𝑕 is the

function values on the coarse grid where the grid spacing is 2𝑕. Equation (5.7) can be

written with stencil notation

𝐼𝑕

2𝑕 =
1

4
 1 2 1 𝑕

2𝑕
(5.8)

Where 𝐼𝑕
2𝑕 is a restriction operator that restricts the function values from a grid with

where the interval between the grid points is 𝑕 to one where the interval is of length 2𝑕.

In 2 dimensions the full weight operator is given as

𝐼𝑕

2𝑕 =
1

16

1 2 1
2 4 2
1 2 1

𝑕

2𝑕

(5.9)

Another choice in 2 dimensions is to use the half weight operator (HW)

Multigrid 45

𝐼𝑕

2𝑕 =
1

8

0 1 0
1 4 1
0 1 0

𝑕

2𝑕

(5.10)

One should be aware that the half weight operator yields an incorrect scaling at the

boundaries when periodic and Neumann boundary conditions are implemented. The re-

striction operator must be modified before applying them to the boundary points when

periodic or Neumann boundary conditions is used. In 1 and 2 dimensions the Neumann

boundary conditions on the left side of the domain gives the following restriction opera-

tors respectively

𝐼𝑕

2𝑕 =
1

4
 0 2 2 𝑕

2𝑕
(5.11)

𝐼𝑕

2𝑕 =
1

16

0 2 2
0 4 4
0 2 2

𝑕

2𝑕

(5.12)

For periodic boundary conditions the grid point values at the opposite side of the domain

are required.

5.1.2 Interpolation

Figure 5.6: Values on the coarse, black, grid is interpolated to the fine grid, green, using linear

interpolation.

The multigrid algorithm employs a transfer operator that interpolates a values at the

gridpoints, 𝑢𝑕(𝑥), from a coarse grid to a finer grid. In the context of the multigrid algo-

rithm the interpolation operator is often called a prolongation operator. As for the restric-

tion there are several interpolation operators to choose from, in this thesis linear, bilinear

and trilinear interpolation is used for 1, 2 and 3 dimensions respectively. Standard coars-

ening is still assumed, see Figure 5.5. For linear interpolation in 1 dimension, see Figure

5.6, is given by the following equations

𝑢2𝑖−1
𝑕 = 𝑢𝑖

2𝑕

𝑢2𝑖
𝑕 =

1

2
 𝑢𝑖

2𝑕 + 𝑢𝑖+1
2𝑕

(5.13)

Written in stencil notation this yields

𝐼2𝑕
𝑕 =

1

2
 1 2 1 2𝑕

𝑕
(5.14)

46 Multigrid Cycle

In two dimensions a bilinear interpolation scheme is used. This yields the following ex-

pression for the values on the grid points on the fine grid,

𝑢2𝑖−1,2𝑗−1
𝑕 = 𝑢𝑖,𝑗

2𝑕

𝑢2𝑖,2𝑗−1
𝑕 =

1

2
 𝑢𝑖,𝑗

2𝑕 + 𝑢𝑖+1,𝑗
2𝑕

𝑢2𝑖−1,2𝑗
𝑕 =

1

2
 𝑢𝑖,𝑗

2𝑕 + 𝑢𝑖,𝑗+1
2𝑕

𝑢2𝑖,2𝑗
𝑕 =

1

4
 𝑢𝑖,𝑗

2𝑕 + 𝑢𝑖,𝑗+1
2𝑕 + 𝑢𝑖+1,𝑗

2𝑕 + 𝑢𝑖+1,𝑗+1
2𝑕

The colour coding is connected with the visualization of the fine grid in two dimensions in

Figure 5.7. The black grid points are the grid points on the coarse grid.

Figure 5.7: Fine grid in two dimensions. The grid points that exist on the coarser grid as well are
marked in black.

The operator is then given by

𝐼2𝑕
𝑕 =

1

4

1 2 1
2 4 2
1 2 1

2𝑕

𝑕

(5.15)

The interpolation is unaffected by the choice of boundary conditions.

Multigrid 47

5.1.3 Coarse grid operator

The equation system must be solved on the coarsest grid. There are two main ap-

proaches to find the coarse grid operator that is used to build the system of equations on

the coarsest level. The first one is to simply use the same finite difference operator as on

the finest grid just corrected for the coarser grid spacing.

The other option is to use the so-called Galerkin coarse grid operator, which is defined by

𝐿𝐻 = 𝐼𝑕

𝐻𝐿𝑕𝐼𝐻
𝑕 (5.16)

Where 𝐿𝐻 is the finite difference operator on the coarse grid, and 𝐿𝑕 is the finite differ-

ence operator on the fine grid. 𝐼𝑕
𝐻 and 𝐼𝐻

𝑕 are the restriction and the interpolation operator

respectively. The Galerkin coarse grid operator must be used when solving partial differ-

ential equation on an unstructured grid.

48 Inhomogeneous Systems

5.2 Inhomogeneous Systems

The materials that are of interest in earth sciences are inhomogeneous even down to the

crystal scale. Their large degree of heterogeneity influences their bulk behaviour. Digital

reconstruction of rock samples from oil reservoirs are being used in the petroleum indus-

try to find material properties of the rocks, see Figure 5.8. The rock samples are hetero-

geneous down to microscopic levels, and the heterogeneity influences the material prop-

erties of the rock, such as porosity and permeability. These properties are in turn used to

describe fluid flow through the rock samples.

Figure 5.8: The images are found in a case study carried out by numericalRocks. To the left there is
a micro-CT image of sandstone sample from an oil reservoir in the North Sea. The black areas are
pore spaces. Micro-CT image is one of several cross sections that are used to create a 3D represen-

tation of the rock sample, as shown on the right hand side of the figure.

The heterogeneity of the material that is simulated has an adverse affect on the conver-

gence of the multigrid algorithms. The smoothing properties of the classic iterative meth-

ods are strongly affected by this. Assuming for example that we have a strong coupling

of unknowns in one direction, in the system where steady state heat diffusion is calcu-

lated. The equation is given as

𝜀
𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2
= 0

(5.17)

In the equation the unknowns in the 𝑥-direction is weakly coupled if 𝜀 ≪ 1. The stencil for

this equation is given as follows

1

𝑕2
1

𝜀 −2(1 + 𝜀) 𝜀

1

 = 0
(5.18)

Multigrid 49

Applying point wise smoothing with one of the classic iterative methods will smooth the

error as efficiently as normal in the 𝑦-direction, but due to the weak coupling in the 𝑥-

direction the error will hardly be affected by the smoothing in this direction. The result is

illustrated in Figure 5.9.

Figure 5.9: Pointwise Gauss-Seidel smoothing of a system with strong coupling of the unknowns in
one direction.

This motivates the idea of line smoothing where smoothing is done in each spatial direc-

tion separately. In three dimensions there is the possibility to use plane smoothers as

well. Both line smoothers and plane smoothers are implemented in this thesis for three

dimensional systems.

The line and plane smoothers work well for systems where the unknowns are strongly

coupled in one direction. In rocks, however, the strongly coupled unknowns are in gen-

eral not restricted to certain spatial directions, which is clear from Figure 5.8. For cases

were there are heterogeneities in all directions alternating line relaxation is a possibility.

In alternating line relaxation smoothing a combination of line smoothing in all spatial di-

rections is used. Alternating line relaxation efficiently smoothes the error when there is

strong coupling in various directions.

5.2.1 Line smoothers

Line smoothers collectively update unknowns in lines in the grid. The contributions to the

stencil in the other spatial directions go into the right hand side in the set of equations;

this result in linear systems of equations with tridiagonal coefficient matrices. These sets

50 Inhomogeneous Systems

of equations can be solved with for example cyclic reduction, Thomas algorithm or with

one of the classic iterative methods.

The lines can be updated in a lexicographic order or using so called zebra line smoothing,

for which all odd numbered lines are updated first and then all even numbered lines are

updated. Both types of ordering are illustrated in Figure 5.10.

Figure 5.10: Line smoothers update all values in one line at the time. The figure to the left illus-

trates line smoothing with lexicographic ordering; and the figure to the right illustrates line

smoothing with zebra ordering. Using the zebra ordering would be the analogue to Gauss-Seidel
red-black ordering for point wise smoothers.

5.2.2 Plane smoothers

Plane smoothers are the analogue to line smothers in three dimensions, where unknowns

in planes are updated collectively. Contributions from the final spatial dimension would

be moved to the right hand side of the equation as for the line smoothers. The coefficient

matrix that arises from this technique is banded with a bandwidth, see chapter 3, of

2𝑛 + 1, where 𝑛 is the number of unknowns in one spatial direction. As discussed in chap-

ter 3, matrices with this bandwidth is considerably slower to solve than tridiagonal ones

with direct methods. For large systems iterative methods is the preferable choice. As for

the line smoothers it is possible to choose between lexicographic ordering and zebra or-

dering when smoothing the planes.

5.2.3 Alternating line relaxation

For systems where the heterogeneity is not connected to a certain direction, but rather to

specific regions the line smoothing in specific directions will fail to smooth the error suffi-

ciently. A remedy for this is to smooth the error with line smoothers in alternating direc-

tions. In the version that is implemented in this thesis the smoothing is done in all spatial

directions with zebra ordered line smoothing. In two dimensions this means that smooth-

ing is done for all odd numbered lines and then for all even numbered lines in the 𝑥-

direction once; then the same procedure is done for the 𝑦-direction.

Using alternating line smoothers yields an efficient convergence for systems where the

inclusions causing the heterogeneities have a larger thermal coefficient than the sur-

rounding grid. For systems where the thermal coefficients in the inclusion are several

orders of magnitude smaller than the thermal coefficients in the bulk the convergence

starts to deteriorate.

Multigrid 51

5.3 Implementation

As mentioned in the introduction to this chapter the implementation of multigrid solvers

must be tailored to the problem at hand. Several versions are therefore implemented in

this thesis, which can handle different boundary conditions and for homogeneous and

heterogeneous systems.

The multigrid function takes input parameters that define the problem and technical pa-

rameters that specify how the algorithm should solve the system. Tweaking the technical

parameters is necessary to find the best possible convergence and the most efficient im-

plementation. The input parameters are listed in Table 5.1.

Variable name Iteration matrix

u Previous approximation for the solution, i.e. temperature values

b Right hand side

L L is the finite difference stencil

v1 Number of pre-smoothing steps

v2 Number of post-smoothing steps

cl Parameter which sets the maximum number of grid points on the coarsest
grid level.

Table 5.1: Descriptions of the input variables to the multigrid function.

Figure 5.11: An overview of the multigrid algorithm.

A variety of different implementations was tested to find an efficient implementation of

the multigrid algorithm. An overview of the multigrid algorithm is shown in Figure 5.11.

52 Implementation

As shown in the figure there is 7 main components of the algorithm, where two of them

are the same operation. These are the pre- and post smoothing.

The standard approach for implementing the smoothers, the calculation of the restriction

and calculating the residual would be to use indexing and vector notation. For the inter-

polation the built in function interp3 is commonly used. Implementation with indexing is,

unfortunately, inefficient when in Jacket and interp3 is not supported.

The solution to this problem was to use convolution which is supported by both MATLAB

and Jacket. This function applies a stencil, often called a kernel, to the matrix. The stencil

that should be applied to the matrix, A, can for example be the 5-point stencil, 𝐿, for the

Laplacian in 2 dimensions

𝐴 =

𝑎11 𝑎12 𝑎13 𝑎14 𝑎15

𝑎21 𝑎22 𝑎23 𝑎24 𝑎25

𝑎31 𝑎32 𝑎33 𝑎34 𝑎35

𝑎41 𝑎42 𝑎43 𝑎44 𝑎45

𝑎51 𝑎52 𝑎53 𝑎54 𝑎55

𝐿 =
 0 −1 0
−1 4 −1
 0 −1 0

(5.19)

The convolution function will than calculate

𝑎𝑖𝑗
𝑛𝑒𝑤 = 4𝑎𝑖𝑗 − 𝑎𝑖−1𝑗 − 𝑎𝑖+1𝑗 − 𝑎𝑖𝑗 −1 − 𝑎𝑖𝑗 +1 (5.20)

It is called in the following way in MATLAB and Jacket

u_new = convn(u,L)

The convolution is used to calculate the residual, by applying the stencil for the Laplacian

directly. The stencil used in the convolution for the smoothers is modified to have zero in

the middle, which allow for the splitting of the matrix, 𝒙 𝑖+1 = −𝐷−1𝐸𝒙 𝑖 + 𝐷−1𝒃. The

boundaries are handled separately.

Calculating the interpolation and the restriction was also fount to be far more efficient

when using convolution. For the restriction the convolution is applied to the fine grid us-

ing the full weight operator as a kernel, after which the grid points that exist on the

coarser grid is used and the rest of them is discarded. For a regular grid we found that it

is possible implement the interpolation using convolution. This was done by first creating

a matrix with zeros where the values on the fine grid should be placed. The next step is

to fill in the values that existed on the coarse grid as well, i.e. the grid points marked in

black in Figure 5.7. On this finer grid now consisting of zeros and the values that existed

on the coarser grid convolution is applied using the interpolation operator, see (5.15).

For the Gauss-Seidel method the convolution needs to be applied 2, 4 or 8 times depend-

ing on which stencil is used. Number of iterations needed to achieve convergence is less

when using Gauss-Seidel method for the smoother in 2 dimensions, the difference is very

Multigrid 53

small in 3 dimensions. In both 2 and 3 dimensions the total number of times convolution

applied to the grid to achieve the selected convergence was less when using Jacobi

method for the smoothing. Introducing over relaxation results in a faster convergence,

but the effect is too small to justify the number of extra mathematical operations that

must be done in the multigrid cycle. Over relaxation was therefore removed in the final

implementations. In the final implementations standard Jacobi method without overre-

laxation is used as a smoother.

At the coarsest level the equation must be solved. This can be done by using one of the

smoothers, by a direct solver or using conjugate gradient method. For singular systems

direct solvers without modifications cannot be used. It was found that using smoothers

yielded the fastest solver on the coarsest level since only a few iterations are needed to

solve the system of equations on such a coarse grid. Solving the system that is singular

on the coarsest level is more efficient if the solution is shifted by a constant such that the

mean of it is zero.

Solving a singular system means that there are infinitely many solutions to the set of

equations, these solutions are shifted by different constants. For the pressure solver used

in the porous convection application this is not a problem since only the gradient of the

pressure is needed to find the velocities.

5.3.1 Parallel properties of the multigrid components

The multigrid algorithm as a whole is not directly parallelizable, since it runs through the

different grids sequentially and because the degree of parallelism changes from grid level

to grid level. The smoothers, restriction, residual and interpolation functions do, how-

ever, have a large degree of parallelism.

 Smoothers: The Jacobi method is “fully 𝛺𝑕 parallel”, meaning that the value in

each grid point can be calculated independently of all others. 𝛺𝑕 means for all

points on the grid level where the grid spacing is 𝑕. The notation of degree of par-

allelism is here introduced for the Jacobi method

par − deg 𝐽𝑎𝑐𝑜𝑏𝑖 = #Ω𝑕 (5.21)

For Gauss-Seidel method with lexicographic ordering the degree of parallelism is

relatively low, since the updating of the value each grid point is dependent on

previously calculated ones. The Gauss-Seidel method with red-black ordering, see

Figure 4.2, on the other hand has a large degree of parallelism; the values in the

red grid points can be updated simultaneously since they are uncoupled with each

other and then al values in the black grid points can be updated simultaneously.

The parallel degree of the Gauss-Seidel (GS) method is,

par − deg 𝐺𝑆𝑟𝑒𝑑−𝑏𝑙𝑎𝑐𝑘 =

1

2
#Ω𝑕

(5.22)

 Residual: The residual in each grid point can be calculated independent of the

values in all other grid points. The calculation of the residual is therefore “fully 𝛺𝑕

parallel”

54 Implementation

par − deg Residual = #Ω𝑕 (5.23)

 Restriction: The restriction operator is applied independently to all grid points on

the coarser grid level, this goes for both the half weight and the full weight opera-

tor. Meaning that if the restriction operator is applied to the restriction from a grid

𝛺𝑕 to a coarser grid 𝛺2𝑕 then the degree of parallelism is

par − deg Restriction = #Ω2𝑕 (5.24)

 Solver: A parallelizable solver can be used on the coarsest grid level for example

the Gauss-Seidel method.

 Interpolation: The interpolation operator act differently on different grid points,

but each operation can be done independently of the others.

The complexity of the multigrid algorithm is for a two dimensional Poisson solver, i.e.

steady state heat diffusion, is 𝒪(𝑁 log 𝜀) for the sequential algorithm and 𝒪(log 𝑁 log 𝜀) for

the parallel implementation; when Gauss-Seidel red-black ordering is used for the

smoothers. The complexities for this algorithm are found in Trottenberg et al. (2001).

It is preferable to divide the discretization grid into partitions since the communication

within each partition is efficient. The idea of partitioning is discussed in section 7.1 for

the standard implementation of the finite difference discretized heat diffusion equation on

the graphics processing unit. The size of the grid should be chosen such that the grid on

each grid level can be divided into partitions.

Multigrid 55

5.4 Convergence Tests

The efficiency of the multigrid algorithm is depended on the various input values, such as

the relaxation parameter, and number of pre- and post-smoothing steps (see TBL) and

the choice of smoother. Each parameter must be tweaked to find the best convergence

rate to the problem at hand. In this chapter the effect of changing each of the parame-

ters are explored to find optimal values for problems in 2 and 3 dimensions with different

boundary conditions for steady state heat diffusion. The results are used for the porous

flow application presented in the following chapter. The different boundary conditions are

listed in Table 5.2.

Boundary conditions 2 dimensions

Dirichlet Dirichlet boundary conditions on all walls.

Neumann Dirichlet Dirichlet boundary conditions on top and bottom wall and Neumann
boundary conditions on lateral walls.

Periodic Dirichlet Dirichlet boundary conditions on top and bottom wall and periodic
boundary conditions on lateral walls.

Pure Neumann Neumann boundary conditions on all walls.

Pure Periodic Periodic boundary conditions on all walls.

Neumann periodic Neumann boundary conditions on top and bottom wall and periodic
boundary conditions on lateral walls.

 3 dimensions

Dirichlet Dirichlet boundary conditions on all walls.

Neumann Dirichlet Neumann boundary conditions on two lateral walls and Dirichlet
boundary conditions on the other walls.

Periodic Dirichlet Periodic boundary conditions on two lateral walls and Dirichlet
boundary conditions on the other walls.

2 Neumann Dirichlet Dirichlet boundary conditions on top and bottom wall and Neumann
boundary conditions on lateral walls.

2 periodic Dirichlet Dirichlet boundary conditions on top and bottom wall and periodic
boundary conditions on lateral walls.

Pure periodic Periodic boundary conditions on all walls.

Pure Neumann Neumann boundary conditions on all walls.

Neumann periodic Neumann boundary conditions on top and bottom wall and periodic
boundary conditions on lateral walls.

Table 5.2: Notation and descriptions of the different boundary conditions discussed in this chapter.
The flux is set to zero at the Neumann boundaries.

The multigrid algorithm was tested for a system with a random source term, with the

mean value equal to zero. The same random source term was used to analyse each of

the different boundary conditions for each system size. The Jacobi method is used as a

smoother and a solver at the coarsest level. One pre-smoothing and one post-smoothing

step is used. Based on preliminary test it was found that the ideal relaxation parameter

was in the interval 0.7 to 1.0 of for 2 dimensional systems and between 1.0 and 1.3 for 3

dimensional systems.

Several different stencils for approximating the Laplacian can be used; some of these

stencils are presented in section 2.2.5. The convergence rate is tested for four different

stencils in 3 dimensions where Dirichlet boundary conditions were used. That is the

Mehrstellen stencil, a stencil derived from the finite element approximation of the Lapla-

cian on a regular grid, one presented by Hale (2008) and one presented by Patra et. al

(2005). The relative residual after 10 iterations using different relaxation parameters is

shown in Figure 5.12. The relative residual is the difference between the norm of the re-

56 Convergence Tests

sidual at the current iteration and the norm of the initial residual. Based on these results

we chose to use the Mehrstellen stencil for the Laplacian.

Figure 5.12: Relative residua after 10 iterations for different stencils for approximating the Lapla-
cian. The different stencils are presented in section 2.2.5. The convergence is tested for a system
of size 129x129x129.

The effect of the relaxation parameter is studied for all boundary conditions using the

Mehrstellen stencil for the smallest system size, which is 1025x1025 in 2 dimensions and

129x129x129 in 3 dimensions. The relative residual after 10 iterations using different

relaxation parameters is shown in Figure 5.13 and Figure 5.14, for 2 and 3 dimensions

respectively.

Figure 5.13: The relative residual, norm of the residual divided by the norm of the initial residual,

after 10 iterations of the multigrid cycle for different relaxation parameters is shown for different
boundary conditions in 2 dimensions. There is a slight difference between the convergence rate of
the systems with Dirichlet boundary conditions and systems with no walls with Dirichlet boundary
conditions, but it this effect is negligible in 2 dimensions and does not affect the choice of relaxa-
tion parameter.

1,00E-07

1,00E-06

1,00E-05

1,00E-04

1,00E-03

0
,7

0
,7

4

0
,7

8

0
,8

2

0
,8

6

0
,9

0
,9

4

0
,9

8

1
,0

2

1
,0

6

1
,1

1
,1

4

1
,1

8

1
,2

2

1
,2

6

1
,3

R
e
la

ti
v
e
 r

e
s
id

u
a
l

(
1

0

it
e
r
a
ti

o
n

s
)

Over relaxation parameter

Convergence (stencil)

Mehrstellen

Finite element

D. Hale

Patra and Karttunen

(2005)

1,00E-07

1,00E-06

1,00E-05

1,00E-04

0,7 0,74 0,78 0,82 0,86 0,9 0,94 0,98

R
e
la

ti
v
e
 r

e
s
id

u
a
l

(
1

0
 i
te

r
a
ti

o
n

s
)

Relaxation parameter

Convergence (boudary conditions, 2D)

Dirichlet

Neumann

Dirichlet

Periodic

Dirichlet

Pure periodic

Pure Neumann

Neumann

periodic

Multigrid 57

Figure 5.14: The relative residual after 10 iterations of the multigrid cycle for different relaxation

parameters is shown for different boundary conditions in 3 dimensions. There is a clear difference
in convergence for systems with Dirichlet boundary conditions at any of the walls and systems with
no walls with Dirichlet boundary conditions. This has an effect on which relaxation parameter that
yields the best convergence.

There is a small difference in the convergence between systems with Dirichlet boundary

conditions on any of the walls and systems with no Dirichlet boundary conditions, but the

difference it too small to affect the choice of relaxation parameter in 2 dimensions. Re-

laxation parameter equal to 0.91 yields the most efficient convergence for all boundary

conditions that were tested. In 3 dimensions there is a distinct difference between the

convergence rates of systems with Dirichlet boundary conditions on any of the walls and

systems with no Dirichlet boundary conditions see Figure 5.14Figure 5.14. The best re-

laxation parameter when using Dirichlet boundary conditions is 1.1 and for systems with

no Dirichlet boundary conditions the convergence is most efficient when the relaxation

parameter is equal to 1.07.

Figure 5.15: Relative residual is shown after 10 iterations for different system sizes with Dirichlet
boundary conditions on all walls and a combination of Neumann and periodic boundary conditions
in 2 dimensions. The convergence is hardly affected by the choice of boundary conditions or system
size in 2 dimensions.

1,00E-08

1,00E-07

1,00E-06

1,00E-05

1,00E-04

1,00E-03

1 1,04 1,08 1,12 1,16 1,2 1,24 1,28

R
e
la

ti
v
e
 r

e
s
id

u
a
l

(
1

0
it

e
r
a
ti

o
n

s
)

Over relaxation parameter

Convergence (boundary conditions) Dirichlet

Neumann

Dirichlet
Periodic Dirichlet

2 Neumann

dirichlet
2 periodic

dirichlet
Pure periodic

Pure Neumann

Neumann

periodic

1,00E-07

1,00E-06

1,00E-05

1,00E-04

0,7 0,74 0,78 0,82 0,86 0,9 0,94 0,98

R
e
la

ti
v
e
 r

e
s
id

u
a
l

(
1

0
 i

te
r
a
ti

o
n

s
)

Relaxation parameter

Covergence (system size, 2D)

Dirichlet

(1025x1025)
Neumann periodic

(1025x1025)
Dirichlet

(2049x2049)
Neumann periodic

(2049x2049)
Dirichlet

(4097x4097)
Neumann periodic

(4097x4097)

58 Convergence Tests

Figure 5.16: Relative residual is shown after 10 iterations for different system sizes with Dirichlet
boundary conditions on all walls and a combination of Neumann and periodic boundary conditions
in 3 dimensions. The convergence is affected by the choice of boundary conditions, but is relatively
unaffected by the system size.

To find the best choice of relaxation parameter for larger systems a system with only

Dirichlet boundary conditions and a system with periodic boundary conditions on the lat-

eral walls and Neumann boundary conditions on the top and bottom wall was used. The

same is done for the tests using Gauss-Seidel method as a smoother. This choice was

made since the convergence for different relaxation parameters was only affected by

whether or not there were Dirichlet boundary conditions in the system. The combination

with Neumann and periodic boundary conditions was specifically chosen since it is used in

the porous flow application presented in the following chapter.

Figure 5.17: Relative residual is shown after 10 iterations for different system sizes with Dirichlet

boundary conditions on all walls and a combination of Neumann and periodic boundary conditions
in 3 dimensions. Gauss-Seidel with four colour ordering is used as a smoother. The convergence of
the multigrid algorithm is best for when using a relaxation parameter equal to 1.04 and 1.24 for a
system with Dirichlet and a combination of Neumann and periodic boundary conditions.

The convergence for different relaxation parameters is studied for three system sizes in

both 2 and 3 dimension (see Figure 5.15 and Figure 5.16), that is 129x129x129,

257x257x257 and 513x513x257 in 3 dimensions and 1025x1025, 2049x2049 and

1,00E-08

1,00E-07

1,00E-06

1,00E-05

1,00E-04

1,00E-03

1 1,04 1,08 1,12 1,16 1,2 1,24 1,28

R
e
la

ti
v
e
 r

e
s
id

u
a
l

(
1

0
 i

te
r
a
ti

o
n

s
)

Relaxation parameter

Convergence (system size)

Dirichlet

(129x129x129)
Neumann periodic

(129x129x129)
Dirichlet

(257x257x257)
Neumann periodic

(257x257x257)
Dirichlet

(513x513x257)
Neumann periodic

(513x513x257)

1,00E-08

1,00E-07

1,00E-06

1,00E-05

1 1,04 1,08 1,12 1,16 1,2 1,24 1,28

R
e
la

ti
v
e
 r

e
s
id

u
a
l

(
1

0

it
e
r
a
ti

o
n

s
)

Relaxation parameter

Convergence (Gauss-Seidel, 2D)

Dirichlet

Neumann

periodic

Multigrid 59

4097x4097 in 2 dimensions. The convergence is hardly affected by changing the system

size.

Figure 5.18: Relative residual is shown after 10 iterations for different system sizes with Dirichlet
boundary conditions on all walls and a combination of Neumann and periodic boundary conditions
in 3 dimensions. Gauss-Seidel with four colour ordering is used as a smoother. The relaxation pa-
rameter that yields the best convergence is 1.16 for a system with Dirichlet boundary conditions

and 1.18 for a system with a combination of Neumann and periodic boundary conditions.

Test were carried out to find the best relaxation parameter when using the Gauss-Seidel

method as a smoother. This was done in both 2 and 3 dimensions using one pre- and one

post-smoothing step. The results are shown in Figure 5.17 and Figure 5.18, for 2 and 3

dimensions respectively. The relaxation parameters that yielded the best convergence

are 1.04 and 1.24 in 2 dimensions for Dirichlet boundary conditions and a combination of

Neumann and periodic boundary conditions respectively. The corresponding values in 3

dimensions are 1.16 and 1.18.

Using Gauss-Seidel method for the smoother yields a better convergence in 2 dimensions

than the use of the Jacobi method for the smoother. In 3 dimensions the number of it-

erations needed to achieve convergence is relatively unaffected by the choice of

smoother.

The efficiency of the algorithm is mainly dependent on the number of times convolution is

applied on the finest level. Four colour ordering was used in the Gauss-Seidel method,

since a 19 point stencil in 3 dimensions and a 9 point stencil in 2 dimensions was used to

approximate the Laplacian. Convolution must be applied 4 times per smoothing step

when four colour ordering is used, whereas the Jacobi method only requires that convolu-

tion is applied once. The calculating of the residual, restriction the residual and interpola-

tion requires that the convolution function is applied three times. The efficiency of the

implementation using Gauss-Seidel and four colour ordering will therefore roughly be

proportional to

𝑛 ∙ (𝑣1 ∙ 4 + 𝑣2 ∙ 4 + 3) (5.25)

Where 𝑣1 is the number of pre-smoothing steps, 𝑣2 is the number of post-smoothing

steps and 𝑛 is the number of iterations that is needed to achieve the selected conver-

1,00E-07

1,00E-06

1,00E-05

1 1,04 1,08 1,12 1,16 1,2 1,24 1,28

R
e
la

ti
v
e
 r

e
s
id

u
a
l

(
1

0
 i
te

r
a
ti

o
n

s
)

Relaxation parameter

Convergence (Gauss-Seidel, 3D)

Dirichlet

60 Convergence Tests

gence. The number of times the convolution function is applied on the finest grid using

the Jacobi method is used as a smoother is given by the following expression

𝑛 ∙ (𝑣1 + 𝑣2 + 3) (5.26)

Tests were carried out using from 0 to 2 pre- and post-smoothing steps using both the

Gauss-Seidel method and the Jacobi method to find the ideal number of pre- and post-

smoothing steps for each method and the results were than compared to find out which

method used for the smoothing resulted in the most efficient algorithm. The results are

presented in Table 5.3 and Table 5.4 for 2 and 3 dimensions respectively. The relaxation

parameters that was fount to give the best convergence were used.

It is clear from the tables that using Jacobi method as a smoother is more efficient in

both 2 and 3 dimensions. With the Jacobi method it is preferable to use a total of 3

smoothing steps for both types of boundary conditions in 2 dimensions. In 3 dimensions

it is most efficient to use two pre- and one post-smoothing step when solving a system

with a combination of periodic and Neumann boundary conditions. When solving a sys-

tem with Dirichlet boundary conditions on any of the walls it is most efficient to use a

total of 3 pre- and post-smoothing steps.

𝒗𝟏 𝒗𝟐 Number of times convolution is applied on the finest level (2D)

 Gauss-Seidel (four colour) Jacobi

 Dirichlet Neumann
Periodic

Dirichlet Neumann
Periodic

1 0 98 140 80 -

0 1 84 133 80 76

1 1 77 132 55 55

1 2 90 150 54 54

2 1 90 150 54 54

2 2 95 171 56 56

Table 5.3: Total number of times convolution is applied on the finest level to achieve a relative
convergence of 1E-7 using Gauss-Seidel with four colour ordering and Jacobi method as smooth-
ers. A 2 dimensional system with 1025x1025 unknowns is tested with Dirichlet boundary conditions
and a combination of Neumann and periodic boundary conditions. 𝑣1 and 𝑣2 is the number of pre-

and post-smoothing steps respectively.

𝒗𝟏 𝒗𝟐 Number of times convolution is applied on the finest level (3D)

 Gauss-Seidel (four colour) Jacobi

 Dirichlet Neumann
Periodic

Dirichlet Neumann
Periodic

1 0 126 203 80 72

0 1 112 196 80 76

1 1 121 121 55 50

1 2 180 180 48 50

2 1 150 150 48 48

2 2 209 209 49 49

Table 5.4: Total number of times convolution is applied on the finest level to achieve a relative
convergence of 1E-7 using Gauss-Seidel with four colour ordering and Jacobi method as smooth-
ers. A 3 dimensional system with 129x129x129 number of unknowns is tested with Dirichlet

boundary conditions and a combination of Neumann and periodic boundary conditions. In 3 dimen-
sions the implementations using Jacobi method as a smoother is far more efficient.

Multigrid 61

Figure 5.19: Convergence rate for a system with periodic boundary conditions on the lateral walls
and Neumann boundary conditions on the top and bottom wall. Having one node, in this case the
corner node, with a fixed value (Dirichlet boundary condition) resulted in poor convergence.

For the application presented in the following chapter, where flow through a porous ma-

terial is studied, a combination of Neumann and periodic boundary conditions are used.

The set of equations that results from using these boundary conditions is singular, i.e. it

has infinitely many solutions. To find the correct solution one could fix one point in the

domain using a Dirichlet boundary point or shift the solutions such that its mean value is

zero. Using one Dirichlet point resulted in poor convergence for the multigrid algorithm,

see Figure 5.19. A system with no Dirichlet point was therefore used in this application.

1,00E-08

1,00E-07

1,00E-06

1,00E-05

1,00E-04

1,00E-03

1,00E-02

1,00E-01

1,00E+00

1 3 5 7 9 11 13 15 17 19

R
e
la

ti
v
e
 r

e
s
id

u
a
l

Iterations

Convergence (Dirichlet corner node)

Dirichlet corner

Neumann

periodic

62 Future Outlook

5.5 Future Outlook

As mentioned briefly in the introduction to this chapter, the multigrid algorithms have

successfully been applied to a variety of problems.

Algebraic multigrid is designed to handle problems with unstructured grids and can in-

deed handle problems with no grid at all. The idea is that the coarsening is not defined

by the grid, but rather from the properties of the matrix itself. Galerkins technique is

used to define the set of equations on the coarser grid. The technique was mentioned in

section 5.1.3 where the coarse grid operator where discussed, but it is not implemented

in thesis. The idea is to algebraically define the coarse grid operator based on the inter-

polation and restriction operators. Implementing algebraic multigrid to solve PDE‟s using

body fitted meshes and finite element discretization of the derivatives would be the natu-

ral step in further developing the work in this thesis. This type of implementation might,

however, not be well suited for the GPU.

The multigrid method can be used to precondition the matrix for use in the conjugate

gradient method. It would be useful to compare the convergence of direct multigrid and

preconditioned conjugate gradients using multigrid for different physical problems. This

is, however, beyond the scope of this thesis.

GPU Programming 63

6 GPU Programming

Software applications have traditionally been written for serial computation, where one

instruction could be executed at a time. Serial applications are limited by the number of

instructions, the average runtime of each instruction and the rate at which the data can

be transferred to the processing core.

Modern computers employ parallel computation to speed up applications. In parallel

computing a large problem is divided into smaller ones that are divided between multiple

processing cores. The hardware producers agree that parallel computing is the way of the

future. Graphic Processing Unit, GPU, is a prime example of hardware that is designed for

parallel computing where instructions are divided between the hundreds of processing

cores in the GPU.

The GPU is a specialized processor which handles rendering of 2D and 3D graphics. The

computational power of the GPU has increased rapidly in recent years due to the demand

for ever more realistic computer games. Modern GPU‟s are therefore very powerful proc-

essors; they are in fact far more powerful than the Central Processing Unit, CPU. The

GPU can give a desktop computer the computational power of a small to a medium sized

cluster of CPU‟s.

The GPU has traditionally only handled graphics computations, but in recent years the

interest for using GPU for general purpose programming has sky rocketed. Especially

after NVIDIA released CUDA, which allowed users to use standard programming lan-

guages to utilize the GPU. Third party producers have opened up for utilizing the GPU

through high-level languages such Python and MATLAB. This has made the computational

power of the GPU available for more end users. Writing an efficient algorithm that utilizes

the GPU does, however, require a solid understanding of its architecture.

There is a large range of algorithms that can exploit the highly parallel architecture of the

GPU. Large speedups of simulations using GPU‟s have been shown in a variety of re-

search fields, such as fluid dynamics, molecular dynamics, medicine, computational

chemistry and finance.

Software that exploits the computational power of the GPU has been developed for use in

oil exploration, where detailed geological models of the subsurface are needed. The in-

formation is based on large-scale seismic surveys. A few hundred square kilometres are

covered in a typical marine survey, and this result in several terabytes of recovered data.

By using GPU‟s in a hardware cluster, NVIDIA has shown speedups of a factor of 10 in

the processing of these data, see Hubert Nguyen (2008).

Using finite differences to do simulations of geological processes is very well suited for

the architecture of the GPU. The problem can easily be divided in to smaller problems,

since it is discretized on a structured mesh and the operations done on each node are

only directly affected by the nearest nodes.

64 Components in a PC

6.1 Components in a PC

A computer is made up of a few basic components, as shown in Figure 6.1. A short de-

scription of these components is presented here. The hardware and operating system of

the computer where the applications are tested out in this thesis is shown in Table 6.1.

Figure 6.1: Main components in a computer. Adapted from limousincomputers and
www.tncpcs.com.

 The Case, contains the following hardware components

o Central Processing Unit, CPU: Basically the “brain” of the system. It

carries out most of the instructions and does most of the computations. It

will administer tasks to the GPU if it is utilized.

o Motherboard: The centrepiece of the computer, it connects the compo-

nents. It contains the interface between the CPU and the other compo-

nents.

o Video Card: It contains the Graphics Processing Unit, GPU, and a separate

memory space dedicated to it. It is connected to the motherboard through

a PSI express buss in the newest motherboards. Some computers may not

have a dedicated Video Card for the GPU, but these GPU‟s are not suitable

for general purpose programming.

o Random Access Memory, RAM: stores data that is used by the CPU in

all running applications on the computer.

o Hard Drive: It stores data over a long period of time. The data is trans-

ferred to the RAM before it is used in the applications.

o Power SUpply, PSU: It supplies power to the other hardware components

in the case.

 The monitor is a visual interface between the user and the computer.

 The keyboard and mouse are used to issue commands to the computer.

GPU Programming 65

 HARDWARE

Motherboard HP 0A1Ch

Processor 2x Dual-Core AMD Opteron(tm) Processor 2220 (2.8GHz)

Video Card NVIDIA GeForce GTX 285

RAM (DDR2) 4 x Samsung M3 93T5750EZA-CE6 (2GB)

Hard disk 2 x Seagate ST3500630AS (500 GB)

 SOFTWARE

Operating System Microsoft Windows 7 Ultimate 6.01.7600 (x64)

Table 6.1: Hardware configuration for the test computer and operating system used.

66 The GPU

6.2 The GPU

The two major producers of dedicated video cards are NVIDIA and ATI/AMD. Both of

which have recognised that there is an increasing interest for using GPU‟s for general

purpose programming and released API‟s, Application Programming Interface, especially

designed for this. The major producers of CPU‟s are Intel and AMD. There are a large

number of different models of both CPU‟s and GPU‟s with various number of processing

cores and memory layout. The NVIDIA platform was chosen in this thesis since we had

access one of an NVIDIA GeForce GTX 285 video card. An additional advantage is that

NVIDIA‟s API, CUDA (which is described in section 6.3), is well documented and more

commonly used than ATI/AMD‟s API, Brook+. AMD‟s 2.8GHz Opteron processor is used in

the test computer and therefore used here as a specific example for comparison between

the CPU and the GPU processor architecture.

The architecture of the GPU differs largely from the architecture of the CPU. The GPU is

highly parallelized and the newest models contains hundreds of processing cores as ap-

posed to the CPU which generally consist of 1,2, 4 or 8 powerful processing cores. The

memory layout of the GPU is also unlike that of the CPU, which allows it to utilize the

large number of processing cores more efficiently.

Figure 6.2: Schematic overview of the architecture of the NVIDIA Tesla C1060 video card, to the
left, and an Opteron dual-core processor from AMD, to the right. The Tesla video card has 4 GB of
dedicated memory (DRAM) and the video card is connected to the motherboard with a PCI express

port (x 16 PCIe). The GPU can handle hundreds of threads, which are controlled by the thread dis-
patcher. The cores in the GPU are divided into groups of 8 cores which share a fast 16-kbyte on-

chip memory space, called Thread Processor Arrays (TPA). This allows each group of cores to share
data efficiently. There are a total of 30 thread processor arrays in the processor. To communicate
to the other groups they have to use the DRAM. The Opteron processor has two powerful cores.
They have access to their separate L1 and L2 caches. The CPU needs to use the RAM to store the
data if it works on large systems and is in those cases limited by the memory bandwidth between
the processor and the RAM. Adapted from images on electronicdesign.com and amd.com.

GPU Programming 67

Both the GPU and the CPU can store small amounts of data on-chip, i.e. inside the proc-

essor. Data can be transferred very efficiently between the processor and these memory

spaces. These memory spaces are often called caches in the CPU, and there can be sev-

eral layers of caches with varying sizes. The caches are numbered L1, L2 ... etc. from the

smallest and fastest to the slowest and largest cache. The GPU does also have several

layers of on-chip memory. The on-chip memory is used to reduce so called latency prob-

lems. Latency is the amount of time it takes from the processor request data until it has

access to it.

The specifications of the NVIDIA GeForce GTX 285 video card and the Opteron processor

are presented in Table 6.2 and a schematic overview of the architecture of NVIDIA‟s

Tesla C1060 and the Opteron processor is shown in Figure 6.2.

Table 6.2: Specifications for the CPU and the GPU in the hardware configuration of the test com-

puter.

The memory bandwidth is the rate at which data can be transferred from storage to the

processor. It is usually measured in GigaBytes per second, GB/s. There are several

benchmarks for measuring effective memory bandwidth. In this thesis the maximum ef-

fective bandwidth is measured by copying data from one location in the memory to an-

other.

 SPECIFICATIONS

(Video Card)

Graphics Processor NVIDIA GeForce GTX 285

Number of GPU processors 1

Number of Streaming Processor Cores 240

Frequency of processor cores 1.48 GHz

Single Precision floating point performance (peak) N/A GFLOP

Double Precision floating point performance (peak) N/A GFLOP

Total Dedicated Memory (GDDR3) 1 GB

Memory Bandwidth 159 GB/s

Max Power Consumption 204 W

System Interface PCI express x16 (gen 2.0)

Bandwidth (System Interface) 8 GB/s

 SPECIFICATIONS (CPU)

 Dual-Core AMD Opteron (tm)
Processor 2220

Number of processing cores 2

Speed 2.8 GHz

Double Precision floating point performance (peak) 22.4 GFLOPS

Max Power Consumption 96.55W

Socket Socket F

Integrated Data Cache 2x 64kB

L2 On-board Cache 2x 1MB

Memory Bandwidth 8.6 GB/s

68 The GPU

Floating point is a computer representation of a number. The double floating point needs

twice as much space in memory as single floating point, which also yields twice the preci-

sion. FLoating point OPerations Per Second, FLOPS, is a performance measurement for a

processor which shows the number of arithmetic operations a processor can carry out per

second.

The key difference between the processors is the number of cores and the memory lay-

out. The cores in the GPU are arranged into groups, called Thread Processor Arrays

(TPA), which can communicate efficiently with each other. Tasks run by the GPU must be

divided into a large number of processes, often called threads, to utilize all the cores in

the GPU. The threads should be run in groups to exploit the efficient communication be-

tween the cores in one TPA. This is illustrated in Figure 6.3, the memory spaces the

threads and the blocks have access to are also shown. Finite difference methods are very

well suited for the GPU architecture.

Figure 6.3: Adapted from www.ixbt.com. The host, i.e. the CPU, issues tasks that are to be solved
by the GPU, called kernels. The kernels are divided into a large number of blocks that are handled

by the TPA’s. Each kernel must consist of 30 blocks or more to utilize all of them. The blocks con-

sist of a series of threads which are handled by each of the 8 cores in the TPA. Each thread has
access to a separate memory space (register), the shared memory for the TPA and the DRAM.

It is the division of the threads into groups which makes the development of algorithms

for the GPU different from development of algorithms for the CPU. The thread switching

on the GPU is also faster than on the CPU which means that implementations on the GPU

benefits more from having a large number of light weight threads, i.e. simple processes.

Many algorithms can benefit from utilizing both the CPU and the GPU in the same imple-

mentations. These are typically algorithms that have portions of serial operations that

http://www.ixbt.com/

GPU Programming 69

can be run efficiently on the powerful cores in the CPU and parallel portions that can be

run on the hundreds of processors in the GPU. Combining the use of the GPU and the

CPU in the same application is called heterogeneous computing.

70 CUDA

6.3 CUDA

NVIDIA has developed Compute Unified Device Architecture, CUDA, and it was released

in November 2006. CUDA exploits the parallel architecture of the Graphics Processing

Unit to solve complex numerical problems. It allows the user to facilitate the computa-

tional power of the GPU for general-propose computing. Before CUDA the only API‟s

available for making applications that tapped into the GPU resources were graphics APIs,

such as OpenCL and DirectX. OpenCL and DirectX are very useful for working with graph-

ics and developing computer games, but not suited for general-purpose computing.

The new API is supported by NVIDIAs graphics cards in the G8X series and onwards,

which includes cards from the Fermi, Tesla, Quadro and GeForce series. The hardware in

the newest video cards is designed to facilitate the use of CUDA.

CUDA enables the user to access the GPU through the programming language, C.

NVIDIA‟s new Fermi series has support for C++, and NVIDIA is currently working on add-

ing support for FORTRAN. A series of CUDA specific extensions is added to the C pro-

gramming language that allows the user to run code on the GPU. Users that are familiar

with the C programming structure should be able to learn CUDA syntax relatively quickly.

The challenge is to find applications that can benefit from using the GPU and to develop

codes that utilize the processor power efficiently.

One of the main advantages CUDA has over pre-existing APIs is that the memory access

is a lot more flexible. Each thread may access any memory location on the graphics card

as often as required at a certain cost. Threads in a block can cooperate efficiently with

little penalty from latency since the architecture of the GPU is divided into blocks of proc-

essors which share a fast on-chip memory. This results in high effective memory band-

width.

GPU Programming 71

6.4 GPU Libraries for MATLAB

High-level programming languages such as MATLAB and Pyton are useful for rapid devel-

opment and prototyping of algorithms. Third party developers have focused on accelerat-

ing functions in these languages using the GPU. CUDA provided the tools needed for

rapid development of GPU accelerated functions for MATLAB and Pyton. Accelerated MAT-

LAB functions were developed before CUDA using OpenCL, see Brodtkorb (2008), but

only a handful of functions where supported.

Tech-X, Accelereyes and GP-you Group are three developers that have made MATLAB

engines that support a large number of MATLAB functions. Tech-X and Accelereyes have

commercialized their engines called GPUlib and Jacket, whereas GP-you Group distributes

their engine called GPUmat as freeware1. Accelereyes‟ Jacket is used in this thesis since it

has support for the largest number of MATLAB functions.

These GPU accelerated MATLAB engines allow the user to tap into the resources of the

GPU through the user friendly interface of MATLAB. In this way the user can avoid the

complexities of programming on a lower level programming language, such as C. This

opens for rapid development of applications that make use of both the CPU and the GPU.

The algorithms are developed in the native M-language and run in the framework of

MATLAB. Some specific engine commands are needed in addition to the normal MATLAB

syntax to implement algorithms that utilize the GPU. The drawback of the CUDA based

MATLAB engines is that they have support of only a fraction of the functions in MATLAB.

1 Freeware is software which is available for use without cost or optional fees.

72 GPU Libraries for MATLAB

6.4.1 Implementation using MATLAB Engines that utilize the GPU

In this section we will focus on Accelereyes‟ engine, Jacket, since it is used for the im-

plementations in this thesis. GPUmat and GPUlib engines do, however, work in much the

same way. Jacket replaces some of the basic functions in MATLAB engine that run on the

CPU. To use Jacket the user simply cast the variables into GPU data structures. This can

be done with the functions listed in Table 6.3.

Jacket MATLAB func-
tion

Description Example

gsingle
Casts a MATLAB matrix to a single preci-
sion floating point GPU matrix.

A = gsingle(B);

gdouble
Casts a MATLAB matrix to a double pre-

cision floating point GPU matrix.
A = gdouble(B);

glogical

Casts a MATLAB matrix to a binary GPU
matrix. All non-zero values are set to „1‟.

The input matrix can be a GPU or CPU
data type.

A = glogical(B);

A = glogical(0:4);

guint32,gint32

Cast a MATLAB matrix to a signed and
unsigned 32 bit integer GPU matrix re-
spectively.

A = gunit32(B);

A = gint32(B);

gzeros
Creates a matrix of zeros analogous to
the MATLAB zeros function.

A = gzeros(5);

A = gzeros(2,6);

gones
Creates a matrix of ones analogous to

the MATLAB ones function.

A = gones(5);

A = gones([3 9]);

geye
Creates an identity matrix analogous to
the MATLAB eye.

A = geye(5);

Table 6.3: All included variables must be cast to GPU data structures before operations can run on
the GPU; this is done with the listed functions. Notice that the library has support for double preci-
sion, which can be used by some of NVIDIA’s top models.

All operations applied to GPU data structures are computed on the GPU, granted that

Jacket has support for the function. Here is an example of how the code may be written

to carry out an arithmetic operation using Jacket:

Normal MATLAB approach: Jacket approach:

A = rand(100);

B = rand(100);

C = A + B;

A = rand(100);

B = rand(100);

A = gsingle(A);

B = gsingle(B);

C = A + B;

C = single(C);

Table 6.4: After the A and B matrices are given values they must be cast to GPU data structures

when using Jacket, this is done with the gsingle statements. C will be calculated on the CPU in
normal MATLAB, but in Jacket the computation is done on the GPU. When calculations are done on
the GPU the matrix C will be a GPU data structure. It may be cast to a CPU data structure with the
final statement.

Source codes written in for Jacket may be found in the Appendix, see chapter 11. For

more extensive information see the Jacket User Guide2.

2 http://www.accelereyes.com/doc/JacketUserGuide.pdf.

GPU Programming 73

6.5 Limitations of GPU Programming

It is clear that the GPU is a very powerful processor compared to the CPU. There is, how-

ever, a large range of applications where utilizing the GPU does not yield a speed up. The

applications must be;

 Parallelizable. The application must be parallelizable as outlined in section 6.2

since each of the cores in the GPU is considerably weaker than each of the cores

in the CPU. The application must be dividable into hundreds of threads that can

run concurrently to utilize the full power of the GPU.

 Partitioned. The threads should be divided into blocks to exploit the shared

memory spaces to reduce latency problems. There should be a multiple of 30

blocks in an application to utilize all thread processor arrays and there should be a

multiple of 8 numbers of threads in each block.

In addition to the requirements on the applications there are a few technical issues that

hinders the implementation process and execution of the applications;

 Single precision. The Tesla series was the first GPU‟s that had support for dou-

ble precision floating points. It could be used, but it resulted in a considerable

performance loss. The new Fermi series does, however, have full support for dou-

ble precision.

 Bandwidth between the CPU and the GPU. Many applications rely on compu-

tations on both the CPU and the GPU. These applications are limited by the rate at

which data can be transferred between the processors.

 Programming limitations in CUDA. The version of C that is used in CUDA does

not have support for recursion of function pointers.

 No unified standard. NVIDIA and ATI/AMD does not support the same API for

general purpose programming.

74 Limitations of GPU Programming

Standard Finite Difference Implementations on the GPU 75

7 Standard Finite Difference Implementations on the

GPU

Performance gain from utilizing the GPU has been shown in a variety of research fields,

and it is clear from the specifications that there computational power of the GPU is im-

mense. We wanted to carry out a few preliminary tests to get an idea of the potential

performance gain when utilizing the GPU in our applications. The test was a strait for-

ward implementation of the heat diffusion equation in two dimensions, i.e. without the

use of multigrid.

As for traditional applications on the CPU the user can choose to either implement the

applications using an efficient low-level language such as C or user-friendly high-level

languages such as MATLAB or Python. Development time is considerably faster in high-

level languages, but at it comes at the cost of severe performance loss.

The heat diffusion equation was implemented in MATLAB and C for tests on the CPU and

in CUDA and Accelereyes‟ MATLAB engine Jacket for tests of the GPU. It was clear early

on that implementations using Jacked suffered severe performance loss when indexing

was used in the vector notations. A performance enhancement was achieved by using

convolution for the homogeneous problems.

76 Heat Diffusion Equation

7.1 Heat Diffusion Equation

Implementations of the transient heat diffusion equation for both heterogeneous and

homogeneous systems are carried out. The discretization of the heat diffusion equations

are done as presented in chapter 0, which resulted in the following stencils for the homo-

geneous and the heterogeneous materials respectively

𝑘

𝑐𝑝𝜌

𝑻𝑖+1𝑗

𝑙 − 2𝑻𝑖𝑗
𝑙 + 𝑻𝑖−1𝑗

𝑙

∆𝑥2
+

𝑻𝑖𝑗 +1
𝑙 − 2𝑻𝑖𝑗

𝑙 + 𝑻𝑖𝑗 −1
𝑙

∆𝑦2 + 𝑞𝑖𝑗 ≈
𝑻𝑖𝑗

𝑙+1 − 𝑻𝑖𝑗
𝑙

∆𝑡

(7.1)

𝑘
𝑖+

1
2
𝑗
𝑻𝑖+1𝑗

𝑙 − (𝑘
𝑖+

1
2
𝑗

+ 𝑘
𝑖−

1
2
𝑗
)𝑻𝑖𝑗

𝑙 − 𝑘
𝑖−

1
2
𝑗
𝑻𝑖−1𝑗

𝑙

∆𝑥2
+

𝑘
𝑖𝑗 +

1
2
𝑻𝑖𝑗 +1

𝑙 − (𝑘
𝑖𝑗 +

1
2

+ 𝑘
𝑖𝑗 −

1
2

)𝑻𝑖𝑗
𝑙 − 𝑘

𝑖𝑗 −
1
2
𝑻𝑖𝑗 −1

𝑙

∆𝑦2
+

𝑐𝑝𝜌

𝑘
𝑞𝑖𝑗 =

𝑐𝑝𝜌

𝑘

𝑻𝑖𝑗

𝑙 − 𝑻𝑖𝑗
𝑙−1

∆𝑡

(7.2)

The material properties 𝑐𝑝 and 𝜌 are set equal to unity and there are no heat sources or

sinks in the system. The thermal conductivity is set equal to unity for the homogeneous

system.

As mentioned in chapter 0 the thermal conductivity values in the heterogeneous system

are either stored where they are needed, i.e. staggered grid, or they are defined in the

nodes and averages are used in the calculations. The first approach is more memory

bandwidth intensive and the second one requires that more arithmetic operations are

carried out. The performance of an implementation is capped by one of these two re-

quirements, and the type of implementation can therefore affect the results.

7.1.1 Implementation on the GPU

The complexity of adapting the algorithm to exploit the full potential GPU, i.e. manually

allocating memory ant utilizing processing cores, can be avoided with the use of Jacket.

For the CUDA implementations, however, the adaptations from the CPU implementation

must be made manually.

This means that for the CUDA implementations the system must manually be divided into

blocks and threads. Dividing the algorithm into blocks is often referred to as partitioning.

Each block consists of a series of threads that is handled by the cores in a thread proces-

sor array. The system should be divided into blocks that consist of a multiple of 8 nodes,

which allows for all 8 cores in thread processor array to be utilized simultaneously. There

is a total of 30 tread processor arrays, which means that it would be preferable to have a

multiple of 30 blocks in the system. In the CUDA implementations that were made for

these tests the blocks consists of 16 x 16 nodes. It is clear from the stencils that the

thread processor array must have access to the values in the nodes nearest to the do-

main it is working on; these nodes are called the “halo” of the small domain. The idea is

illustrated in Figure 7.1.

Standard Finite Difference Implementations on the GPU 77

Figure 7.1: The heat diffusion equation is discretized on the grid shown in the bottom-left corner of
the figure. To solve the system using the GPU it is divided into smaller domains, each of which is
solved by one thread processor array. The stencil is applied to each node, illustrated with a green
cross in the figure. The calculations for each node are carried out by one of the cores. Each thread
processor array has access to their “halo”.

78 Performance Measurements

7.2 Performance Measurements

The bottle neck of the implementations is the memory bandwidth between the

RAM/DRAM to the processor. The effective memory bandwidth is calculated from the op-

timal memory load, which is the minimum amount of bytes that must be read and writ-

ten by the processor to carry out the calculations, and the time it took to carry out them

out. The amount of time it takes to carry out the equations is normalized by the number

of time steps that the temperatures are calculated for.

Based on the stencils, see equation 6 and (7.2) for the homogeneous and heterogeneous

materials respectively, the optimal memory load can be found. A two dimensional grid,

where the number of grid points in the 𝑥- and 𝑦-direction is 𝑛𝑥 and 𝑛𝑦 respectively. For

the homogeneous systems all material properties are set to unity and are therefore not

needed for the computations. This means that the data needed to carry out the calcula-

tions are the temperature values in the nodes.

For heterogeneous materials the thermal conductivity values are needed in addition to

the temperature values. Using a staggered grid requires that about twice as many ther-

mal conductivity values must be transferred to the processor than if the thermal conduc-

tivity values are stored in the nodes. Only the temperature values must be written to

memory after the calculations for both the heterogeneous and the homogeneous system

since the thermal conductivity values are unaffected by the computations.

The optimal memory load is calculated in bytes. Single precision floating point numbers

occupies 32 bits on binary format, i.e. 4 bytes. The memory load for the different sys-

tems is listed in Table 7.1.

System Optimal memory load (bytes)

Homogeneous 8 ∙ 𝑛𝑥 ∙ 𝑛𝑦

Heterogeneous (Staggered grid) ~16 ∙ 𝑛𝑥 ∙ 𝑛𝑦

Heterogeneous (On nodes) 12 ∙ 𝑛𝑥 ∙ 𝑛𝑦

Table 7.1: The optimal memory load for the heat diffusion equation on two dimensions, the number
of grid points is 𝑛𝑥 × 𝑛𝑦. For the heterogeneous systems the thermal conductivity values are stored

either at the points where they are needed, staggered grid in the table, or at the nodes, on nodes
in the table.

Standard Finite Difference Implementations on the GPU 79

7.3 Results

7.3.1 Heat Diffusion

Utilizing the GPU, Graphics Processing Unit, instead of the CPU, Central Processing Unit,

resulted in considerably more efficient implementation in both MATLAB and C for all test

systems. Implementations on the GPU were up to 20–30 times more efficient than the

equivalent implementations on the CPU using C for the large systems. The MATLAB im-

plementations were about 15–25 times more efficient on the GPU than on the CPU. The

Jacket implementations are about 4 times faster than the C implementations for the GPU.

The ratios of execution time between the different implementations are presented in Ta-

ble 7.2 for the homogeneous system.

Homogeneous

N
C:

GPU vs. CPU
MATLAB:

GPU vs. CPU
CPU:

C vs. MATLAB
GPU:

C vs. MATLAB

C on CPU

vs.
MATLAB on

GPU

16 0.16 0.06 17.47 46.43 294.66

32 0.54 0.09 8.02 47.62 88.79

64 0.69 0.19 12.25 43.63 63.15

128 3.28 0.54 8.27 49.92 15.23

256 9.42 1.90 6.52 32.31 3.43

512 26.20 7.59 4.33 14.94 0.57

1024 30.82 15.72 3.85 7.54 0.24

2096 23.48 23.14 5.07 5.15 0.22

4096 19.38 24.70 5.94 4.66 0.24

Table 7.2: Comparison between the implementations in both C and MATLAB show that there is a
large performance gain when utilizing the GPU.

The efficiency of the different implementations of the heat diffusion equation for a homo-

geneous systems are presented in Figure 7.2, it shows the number of grid points the

stencil is calculated for per second for various grid sizes. Notice that there is a logarith-

mic scale on the y-axis.

The implementations on the GPU are considerably more efficient than the implementa-

tions on the CPU for large systems; the situation is, however, reversed for the small sys-

tems. For the efficiency of the GPU implementations to surpass those on the CPU the sys-

tem size must be over 64 x 64 for the C implementations and 256 x 256 for the MATLAB

implementations.

Cache effects cause the efficiency to peak for grid sizes of about 128 x 128 for the CPU.

For this grid size and smaller ones all data required for the calculations will fit in the

cache. This reduces the latency considerably. For the GPU implementations we observe

that the efficiency of codes improves rapidly for the smaller grids, but stagnates for grid

sizes larger than 512 x 512 for C and 1024 x1024 for MATLAB.

80 Results

Figure 7.2: For small systems the CPU implementations are faster than the GPU implementations,
but the situation is reversed for the large ones. The CPU implementations have a peak performance
on grid sizes of about 128 x 128 due to cache effects. The efficiency of the GPU implementations

stagnates for large systems.

The tests done on the heterogeneous systems are presented in Figure 7.3 and Figure

7.4. The performance peak for the CPU is on lower grid sizes since the material property

values take up space in the cache. For the CUDA implementations the same curves are

observed as for the homogeneous system. The efficiency of the Jacket implementation is

reduced since indexing must be used to solve the problem. There is no clear difference in

the performance of the two implementations of the heterogeneous system, but for the

MATLAB implementations slightly more efficient when the thermal coefficients are defined

on a staggered grid and the C implementations are slightly more efficient when they are

defined at the nodes.

Figure 7.3: In these implementations the material properties are stored on a staggered grid; this
requires two arrays with material properties. For the heterogeneous systems we see the same

trend as for the homogeneous systems with the exception of the Jacket implementation were the
efficiency is reduced, see Figure 7.2. The peak performance for the CPU is at a lower grid size for
this system since the material properties takes up some space in the cache.

0,01

0,1

1

10

100

1000

10000

16 32 64 128 256 512 1024 2096 4096

M
il
li
o

n
 p

o
in

ts
/

s

Grid Dimension

Homogeneous

C (CPU)

C (GPU)

MATLAB (CPU)

MATLAB (GPU)

0,01

0,1

1

10

100

1000

10000

16 32 64 128 256 512 1024 2096 4096

M
il
li
o

n
 p

o
in

ts
/

s

Grid dimension

Heterogeneous (staggered grid)

C (CPU)

C (GPU)

MATLAB (CPU)

MATLAB (GPU)

Standard Finite Difference Implementations on the GPU 81

Figure 7.4: In this implementation the material properties are defined on the grid points, this re-
quires one array with material properties. Here we see the same trends as for the staggered grid
system, see Figure 7.3. The peak performance for this system on the CPU is wider for this system

since it is more depended on floating point operations than on memory bandwidth compared to the
heterogeneous system where a staggered grid is used.

The efficiency of the implementations is capped by the memory bandwidth. The meas-

ured effective memory bandwidth is presented for the different implementations for the

CPU and the GPU in Table 7.3.

 Effective Memory Bandwidth (GB/s)

C MATLAB

CPU GPU CPU GPU

Homogeneous 1.7 41.1 0.35 7.43

Heterogeneous (off nodes) 1.5 43.2 0.13 0.98

Heterogeneous (on nodes) 1.3 34.9 0.07 0.61

Table 7.3: The values show the ratio between the effective memory bandwidth and the theoretical
memory bandwidth in percentages. The Opteron CPU the theoretical memory bandwidth is 2.8
GB/s and for the Tesla C1060 GPU the maximum measured memory bandwidth is 75 GB/s. All val-
ues are averages for the three largest grid sizes for the respective implementations.

 Million Points per Second

C MATLAB

CPU GPU CPU GPU

Homogeneous 217 5131 44 929

Heterogeneous (off nodes) 95 2699 8 61

Heterogeneous (on nodes) 106 2912 6 58

Table 7.4: All values are averages for the three largest grid sizes for the respective implementa-
tions. Points per second are the number of grid points the diffusion stencil is applied to per second.
Here we clearly see the speedups we achieved by executing the codes on the GPU instead of the

CPU. For the C implementations it is slightly more effective to define the material properties on the
grid points and for the MATLAB implementations it is the other way around.

0,01

0,1

1

10

100

1000

10000

16 32 64 128 256 512 1024 2096 4096

M
il
li
o

n
 p

o
in

ts
/

s

Grid dimension

Heterogeneous

C (CPU)

C (GPU)

MATLAB (CPU)

MATLAB (GPU)

82 Results

Table 7.4 shows how many grid points the heat diffusion was calculated for per second.

From the values we clearly see that the GPU implementations are faster than the CPU

implementations. The homogeneous code is far more efficient than the implementation of

diffusion in a inhomogeneous system. For the heterogeneous implementations in C with

the material properties defined on the nodes we calculate the diffusion for more points

per second, but the difference is quite small. For the MATLAB implementations we see

the opposite trend. This is probably due to the difference in how the data is placed in the

fast on chip memory spaces.

Standard Finite Difference Implementations on the GPU 83

7.4 Conclusion

Implementations are considerably faster to execute on the GPU instead of on the CPU for

both MATLAB and C implementations. For the C implementations the execution time is up

to 30 times faster on the GPU and for the MATLAB implementation the execution time is

about 25 times faster for the GPU.

The MATLAB implementation of diffusion in homogeneous systems is far more efficient

than the implementations of diffusion in inhomogeneous systems. This is a result of them

being implemented with convolution which is very efficient in both native MATLAB and

Jacket.

The Jacket implementation for the homogeneous systems is 4 – 5 times faster than the

equivalent C implementation. Despite the speedups found for the GPU implementations in

MATLAB the execution time not faster than that for the CPU implementations in C for

inhomogeneous systems.

84 Conclusion

Applications 85

8 Applications

8.1 Poisson Solver

In this thesis an efficient Poisson solver is developed. It is implemented using the multi-

grid algorithm and accelerated by utilizing the GPU. It can be used as a solver or a part

of a solver for a variety of problems in earth sciences as discussed previously. In the fol-

lowing section it is used to solve for the pressure in a simulation of porous convection.

The Poisson solver implemented in this thesis is very efficient and it can solve a system

of size 257 cubed, that is roughly 16 million unknowns, in less than a second. This is pos-

sible through the utilization of the GPU. The function that was implemented for solving

the Poisson problem with Dirichlet boundary conditions is relatively short, i.e. 75 lines,

and transparent. It can be found in the appendix, section 11.1.

Dirichlet boundary conditions are imposed on all walls in the test system used in this ap-

plication. The efficiency of the algorithm that utilizes the GPU is tested for various system

sizes and the results are compared with a similar implementation for the CPU. The

speedups achieved from utilizing the GPU is immense, see Table 8.1. Implementations

utilizing the GPU are about 60 to 70 times faster than the corresponding implementations

on the CPU.

N CPU GPU Speed up

129x129x129 8.55 sec 0.13 sec x 66

257x257x257 69.36 sec 0.93 sec x 74

257x257x513 143.30 sec 2.32 sec x 62

321x321x257 119.25 sec 1.74 sec x 68

Table 8.1: The computation time for solving a Poisson problem on systems with various resolutions

is shown in the table and the speedups is calculated.

The GPUs that are available to day is best suited for use of single precision. Some have

support for double precision, but the performance when using double precision is not sat-

isfactory. Implementations written with double precision for the CPU are about half as

efficient as corresponding implementations using single precision. The performances loss

from using double precision on the GPU is far greater than this. NVIDIA does, however,

claim that full support for double precision is going to be fully supported the next genera-

tion of video cards.

The multigrid method is an iterative method and the quality of the approximation of the

solution found by it is measured with the relative residual, i.e. the ratio between the ini-

tial residual and the residual at the current approximation. As the number of operations

needed to calculate the solution increases the round off errors in the solution increases.

For traditional iterative methods such as Gauss-Seidel or conjugate gradient method the

number of iteration needed to find a solution of the problem increases as the system size

is increased. This can make the solution found for large systems unusable due to large

round off errors, especially when single precision is used. The multigrid method is likely

to be less vulnerable by round off errors since the number of iterations needed to achieve

the selected accuracy is relatively unaffected by the system size. This means that the

number of mathematical operations applied to the value in each grid point is independent

of the system size.

86 Poisson Solver

Convergence rates for different system sizes using single precision are shown in the

graph in Figure 8.1, and the convergence rate is compared to the convergence rate for a

system solved with double precision. The rate of convergence and accuracy of the final

solution appear to be relatively unaffected by the system size. The accuracy that can be

achieved is as expected much smaller when using single precision than when using dou-

ble precision, but the rate of convergence is the unaffected. The system sizes that could

be tested were limited by the amount of dedicated memory on the graphics card. The

NVIDIA GeForce GTX 285 video card that is used in these tests has 1 GB of dedicated

memory. It is therefore not possible to test the level of accuracy that can be achieved for

larger system than those presented in the graph.

Figure 8.1: Convergence rates for different system sizes using single and double precision. The
convergence does not deteriorate as the system size increases. The accuracy that can be achieved
is of the same magnitude for all system sizes that can be solved on the NVIDIA GeForce GTX 285
video card with the multigrid algorithm. In these tests 2 pre- and 2 post-smoothing steps is used.

Video cards produced for scientific purposes such as the Tesla c1060 does, however,

have 4 GB of dedicated memory and could therefore be used to solve larger systems.

The price on the video cards produced for games are considerably less than the price of

the video cards made for scientific calculations, i.e. the NVIDIA GeForce GTX 285 video

card costs $450 whereas the Tesla c1060 costs $1 300. The extra expense can be justi-

fied since it is likely that larger systems can be solved efficiently with an acceptable accu-

racy. To get equivalent efficiency using CPU‟s would require a cluster of processors,

which is far more expensive and power consuming than a graphics card that can be util-

ized directly from a desktop computer.

1,00E-16

1,00E-14

1,00E-12

1,00E-10

1,00E-08

1,00E-06

1,00E-04

1,00E-02

1,00E+00

1 3 5 7 9 11 13 15 17 19

R
e
la

ti
v
c
e
 r

e
s
id

u
a
l

iterations

Convergence

double 129x129x129

single 65x65x65

single 129x129x129

single 257x257x257

single 513x513x257

Applications 87

8.2 Porous Convection

Sedimentary rocks are naturally porous. The matrix porosity together with fractures and

voids in the rock allow water, oil and gas to migrate through the earths crust. To con-

sider the rock as homogeneous the factures and voids must be relatively evenly distrib-

uted and relatively small compared to the scale of the flow.

Flow in a porous medium is driven by pressure gradients, and the flow is characterized

by the permeability of the rock and the viscosity of the fluid. The permeability is a meas-

ure of the porous rocks ability to transmit fluids, which is the dependent on the number

and size voids and pathways in the rock. The viscosity is a measure of a fluids resistance

to being deformed.

The flow through a porous material is in many cases found to be proportional to the

pressure gradient and the permeability, and inversely proportional to the viscosity of the

fluid migrating through it. Fluid flow that exhibits this behaviour can be described by the

Darcy law. It can be used to model a variety of problems in earth sciences, such as flow

of hydrocarbons in reservoirs, flow of groundwater and migration of magma.

It is believed that the heat from magma bodies triggers hydrothermal circulation. The

heated fluid expands, and due to the decreased density, it raises up trough the earths

crust, whereas the cooler fluids will sink. This process is called convection. In this appli-

cation convection in a porous material is simulated and other transport phenomena.

The equations used here for simulating flow though porous media are well documented in

literature see for example Turcotte (2002). In the simulations incompressible flow is as-

sumed, meaning that the divergence of the velocity (𝑉) is zero

𝜕𝑉𝑥
𝜕𝑥

+
𝜕𝑉𝑦

𝜕𝑦
+

𝜕𝑉𝑧
𝜕𝑧

= 0
(8.1)

We do, however, allow for thermal expansion resulting in buoyancy driven flow. The

model includes transfer of heat and the conservation of energy law therefore applies, for

a homogeneous material it is written as

𝜕𝑇

𝜕𝑡
+ 𝑉𝑥

𝜕𝑇

𝜕𝑥
+ 𝑉𝑦

𝜕𝑇

𝜕𝑦
+ 𝑉𝑧

𝜕𝑇

𝜕𝑧
 = 𝜆(

𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2
+

𝜕2𝑇

𝜕𝑧2
)

(8.2)

Where 𝑉𝑥 , 𝑉𝑦 and 𝑉𝑧 is the velocity components and 𝜆 is the thermal diffusivity constant

(which has the units [𝑚2/𝑠]). The conservation of energy law is a coupled advection and

transient heat diffusion equation. The fluid is driven by the pressure gradient and its ve-

locity is found with Darcy‟s law. It is found to be given by the following equations in 3D

𝑉𝑥 = −

𝜅

𝜇

𝜕𝑃

𝜕𝑥

(8.3)

88 Porous Convection

𝑉𝑦 = −

𝜅

𝜇

𝜕𝑃

𝜕𝑦

(8.4)

𝑉𝑧 = −

𝜅

𝜇

𝜕𝑃

𝜕𝑧
− 𝛼𝑇𝜌𝑔𝑇

(8.5)

Where 𝜅 is the permeability and 𝜇 is the dynamic viscosity, 𝛼 is the thermal expansion

coefficient, 𝑔 is the gravitational constant and 𝑃 is the pressure.

Equations 1, (8.2), (8.3), (8.4) and (8.5) are the governing equations for the problem.

These equations are non-dimensionalized based on the following non-dimensional quanti-

ties

𝑇∗ =

𝑇

∆𝑇

(8.6)

𝑉𝑥

∗ =
𝑉𝑥
𝜆

𝐻, 𝑉𝑦
∗ =

𝑉𝑥
𝜆

𝐻, 𝑉𝑧
∗ =

𝑉𝑥
𝜆

𝐻
(8.7)

𝑑𝑥∗ =

𝑑𝑥

𝐻
, 𝑑𝑦∗ =

𝑑𝑦

𝐻
, 𝑑𝑧∗ =

𝑑𝑧

𝐻

(8.8)

𝑑𝑡∗ =

𝑑𝑡

𝐻2
𝜆

(8.9)

𝑅𝑎 =

𝛼𝑇𝜌𝑔𝐻𝜅∆𝑇

𝜇𝜆

(8.10)

Where H is the height of the system, and 𝑅𝑎 is the Rayleigh number. For small Rayleigh

numbers the heat transfer is mainly driven by convection whereas for large Rayleigh

number it is mainly driven by diffusion. Rewriting equation 1, (8.2), (8.3), (8.4) and

(8.5) with the dimensionless variables yields

𝜕2𝑃

𝜕𝑥∗2 +
𝜕2𝑃

𝜕𝑦∗2 +
𝜕2𝑃

𝜕𝑧∗2 = 𝑅𝑎
𝜕𝑇

𝜕𝑧∗

(8.11)

𝜕𝑇∗

𝜕𝑡∗
+ 𝑉𝑥

∗
𝜕𝑇∗

𝜕𝑥∗
+ 𝑉𝑦

∗
𝜕𝑇∗

𝜕𝑦∗
+ 𝑉𝑧

∗
𝜕𝑇∗

𝜕𝑧∗
 =

𝜕2𝑇∗

𝜕𝑥∗2 +
𝜕2𝑇∗

𝜕𝑦∗2 +
𝜕2𝑇∗

𝜕𝑧∗2
(8.12)

𝑉𝑥 = −

𝜕𝑃∗

𝜕𝑥∗

(8.13)

Applications 89

𝑉𝑦 = −

𝜕𝑃∗

𝜕𝑦∗

(8.14)

𝑉𝑧 = −

𝜕𝑃∗

𝜕𝑧∗
− 𝑅𝑎𝑇

(8.15)

The equations are solved for the system which is shown in Figure 8.2. The transient dif-

fusion is decoupled from the advection in equation (8.12). This means that the primary

variables in the problem are temperature and pressure. The velocities directly with equa-

tion (8.13), (8.14) and (8.15) which means that boundary conditions can not be applied

directly on the velocities.

Figure 8.2: The system setup for the simulations. The temperature is one at the bottom wall and

zero on the top wall, the velocity in the z-direction at both of them is zero. There are periodic
boundary conditions on all lateral walls.

To solve for the porous flow both pressure and temperature is discretized in the following

way

𝑃 = 𝑁𝑗𝑃𝑗

𝑛

𝑗=1

(8.16)

𝑇 = 𝑁𝑗𝑇𝑗

𝑛

𝑗=1

(8.17)

Where 𝑁1 , 𝑁2, . . , 𝑁𝑛 are shape functions and 𝑇1 , 𝑇2 , 𝑇3 , … and 𝑃1 , 𝑃2 , 𝑃3 , … are the temperature

and the pressure in the nodes. Shape functions are simple functions we use to approxi-

mate the variables inside each of the elements.

To solve the problem we want to evaluate the integral of the weighted residual. For

equation (8.11) this yields

 𝑤

𝜕2𝑃

𝜕𝑥∗2 +
𝜕2𝑃

𝜕𝑦∗2 +
𝜕2𝑃

𝜕𝑧∗2
Ω

𝑑𝑥𝑑𝑦𝑑𝑧 = 𝑅𝑎 𝑤
𝜕𝑇

𝜕𝑧∗
Ω

𝑑𝑥𝑑𝑦𝑑𝑧
(8.18)

90 Porous Convection

The Ω implies that the integral should be taken over the whole domain. As weighting

functions, 𝑤, we use the shape functions 𝑁1, 𝑁2, . . , 𝑁𝑛 , i.e. Galerkin‟s method. Appling this

and substitution of the pressure and temperature by their discretized version yields

 𝑁𝑖

𝜕2𝑁𝑗

𝜕𝑥∗2 +
𝜕2𝑁𝑗

𝜕𝑦∗2 +
𝜕2𝑁𝑗

𝜕𝑧∗2 𝑃𝑗
Ω

𝑑𝑥𝑑𝑦𝑑𝑧 = 𝑅𝑎 𝑁𝑖

𝜕𝑁𝑗

𝜕𝑧∗
𝑇𝑗

Ω

𝑑𝑥𝑑𝑦𝑑𝑧
(8.19)

The second derivative of the shape function must differ from zero for this integral to be

meaningful. By applying integration by part we may reduce the constraints on the shape

functions. Applying this technique yields,

−
𝜕𝑁𝑖

𝜕𝑥∗

𝜕𝑁𝑗

𝜕𝑥∗ 𝑃𝑗
Ω

𝑑𝑥𝑑𝑦𝑑𝑧 + 𝑁𝑖

𝜕𝑁𝑗

𝜕𝑥∗ 𝑃𝑗
dΩ

𝑑𝑥𝑑𝑦𝑑𝑧

−
𝜕𝑁𝑖

𝜕𝑦∗

𝜕𝑁𝑗

𝜕𝑦∗ 𝑃𝑗
Ω

𝑑𝑥𝑑𝑦𝑑𝑧 + 𝑁𝑖

𝜕𝑁𝑗

𝜕𝑦∗ 𝑃𝑗
dΩ

𝑑𝑥𝑑𝑦𝑑𝑧

−
𝜕𝑁𝑖

𝜕𝑧∗

𝜕𝑁𝑗

𝜕𝑧∗ 𝑃𝑗
Ω

𝑑𝑥𝑑𝑦𝑑𝑧 + 𝑁𝑖

𝜕𝑁𝑗

𝜕𝑧∗ 𝑃𝑗
dΩ

𝑑𝑥𝑑𝑦𝑑𝑧

= −𝑅𝑎
𝜕𝑁𝑖

𝜕𝑧∗
𝑁𝑗𝑇𝑗

Ω

𝑑𝑥𝑑𝑦𝑑𝑧 + 𝑅𝑎 𝑁𝑖𝑁𝑗𝑇𝑗
dΩ

 𝑑𝑥𝑑𝑦𝑑𝑧

(8.20)

⇒
𝜕𝑁𝑖

𝜕𝑥∗

𝜕𝑁𝑗

𝜕𝑥∗ 𝑃𝑗
Ω

𝑑𝑥𝑑𝑦𝑑𝑧 +
𝜕𝑁𝑖

𝜕𝑦∗

𝜕𝑁𝑗

𝜕𝑦∗ 𝑃𝑗
Ω

𝑑𝑥𝑑𝑦𝑑𝑧 +
𝜕𝑁𝑖

𝜕𝑧∗

𝜕𝑁𝑗

𝜕𝑧∗ 𝑃𝑗
Ω

𝑑𝑥𝑑𝑦𝑑𝑧

= 𝑅𝑎
𝜕𝑁𝑖

𝜕𝑧∗
𝑁𝑗𝑇𝑗

Ω

𝑑𝑥𝑑𝑦𝑑𝑧 + 𝑁𝑖

𝜕𝑁𝑗

𝜕𝑥∗ 𝑃𝑗
dΩ

𝑑𝑥𝑑𝑦𝑑𝑧 + 𝑁𝑖

𝜕𝑁𝑗

𝜕𝑦∗ 𝑃𝑗
dΩ

𝑑𝑥𝑑𝑦𝑑𝑧

+ 𝑁𝑖

𝜕𝑁𝑗

𝜕𝑧∗ 𝑃𝑗
dΩ

𝑑𝑥𝑑𝑦𝑑𝑧 − 𝑅𝑎 𝑁𝑖𝑁𝑗𝑇𝑗
dΩ

𝑑𝑥𝑑𝑦𝑑𝑧

(8.21)

The integral over 𝑑Ω means that the integral is taken over the boundaries. If we discre-

tize and take the integral over the weighted residuals of the velocities in the x- y- and z-

direction, see equation (8.13), (8.14) and (8.15), we find the following expressions

𝑉𝑥 = − 𝑁𝑖

𝜕𝑁𝑗

𝜕𝑥∗ 𝑃𝑗
Ω

𝑑𝑥𝑑𝑦𝑑𝑧
(8.22)

𝑉𝑦 = − 𝑁𝑖

𝜕𝑁𝑗

𝜕𝑦∗ 𝑃𝑗
Ω

𝑑𝑥𝑑𝑦𝑑𝑧
(8.23)

𝑉𝑧 = − 𝑁𝑖

𝜕𝑁𝑗

𝜕𝑧∗ 𝑃𝑗
Ω

𝑑𝑥𝑑𝑦𝑑𝑧 + 𝑅𝑎 𝑁𝑖𝑁𝑗𝑇𝑗
dΩ

𝑑𝑥𝑑𝑦𝑑𝑧
(8.24)

As described in Figure 8.2, the velocity in the z-direction is set to zero on the top and

bottom boundary and periodic boundary conditions is applied to the lateral walls. This

means that the last four terms in equation (8.21) will cancel out. This result in the follow-

ing discretized version of equation (8.11)

Applications 91

𝜕𝑁𝑖

𝜕𝑥∗

𝜕𝑁𝑗

𝜕𝑥∗
+

𝜕𝑁𝑖

𝜕𝑦∗

𝜕𝑁𝑗

𝜕𝑦∗
+

𝜕𝑁𝑖

𝜕𝑧∗

𝜕𝑁𝑗

𝜕𝑧∗ 𝑃𝑗
Ω

 𝑑𝑥𝑑𝑦𝑑𝑧

= 𝑅𝑎
𝜕𝑁𝑖

𝜕𝑧∗
𝑁𝑗𝑇𝑗

Ω

𝑑𝑥𝑑𝑦𝑑𝑧

(8.25)

The multigrid algorithm requires that the stencils are assembled into compact stencils;

this can be done when the finite element discretization is done on a regular grid.

In the implementation the advection and the diffusion is handled in two separate steps.

The first step is to calculate the advection directly by using velocities found with equation

(8.22), (8.23) and (8.24). In the second step diffusion is calculated by with the following

equation

𝜕2𝑇∗

𝜕𝑥∗2 +
𝜕2𝑇∗

𝜕𝑦∗2 +
𝜕2𝑇∗

𝜕𝑧∗2 =
𝜕𝑇∗

𝜕𝑡∗

(8.26)

A finite difference discretization is applied to the heat diffusion equation as described in

section 2.2.

8.2.1 Implementation

To implementation of the solver for the porous convection consist of four main steps,

which is

1. Solve the pressure equation (8.25).

2. Find the velocities implicitly with equation (8.22), (8.23) and (8.24).

3. Calculate the advection.

4. Solve the heat diffusion equation (8.26).

Before the pressure equation can be solved the right hand side of the equation must be

calculated. It is found by applying the assembled stencil based on the finite element dis-

cretization of the equation. The pressure equation is solved using the implementation of

the multigrid algorithm as described in section 5.3. Both of these are implemented using

convolution for the heaviest calculations which is efficiently calculated by the GPU.

The velocities are using a central finite difference approximation of the derivatives of the

pressure in equation (8.13), (8.14) and (8.15).

Implicit markers are used to calculate the advection. The idea is to find the position

where the point that now is in the node would have been before the advection. Interpola-

tion is used to find the value in that point and this value is set in the node. The built in

function in MATLAB used for the interpolation is not supported Jacket and this calcula-

tions must therefore be done with the use of the CPU. Developing an algorithm to solve

the advection on the GPU would be the natural next step in the further development of

the code.

The heat diffusion equation is well conditioned and can be solved efficiently with the use

of a few iterations with the Jacobi smoother.

92 Porous Convection

8.2.2 Results

Porous convection is one of the main processes for heat transfer in sedimentary basins.

The influence of the different parameters characterizing the fluid flow in sedimentary ba-

sins can be better understood by systematically analysing and quantifying the patterns in

simulations of porous convection.

As mentioned, the Rayleigh number indicates whether diffusion or advection is the pri-

mary process for transferring heat through the rocks. For small Rayleigh numbers the

heat transfer is mainly driven by advection. A large number of simulations with different

parameter values must be run and analysed before conclusions can be drawn. A detailed

study of the patterns formed in the simulations is beyond the scope of this study.

Simulations of porous convection have traditionally required heavy calculations that were

to run on clusters of CPU‟s to be solved in a reasonable amount of time. A considerable

amount of server time had to be devoted to the simulations. This is expensive, both in

terms of time and power consumption.

Relatively efficient implementations of porous convection can be developed in low level

languages such as C or FORTRAN. Compared to MATLAB this does require a longer devel-

opment time. The implementation in this thesis was made using Jacket, which allows for

relatively fast development since MATLAB syntax can be used. Jacket utilizes the GPU to

accelerate the computations. Solving for one time step is done in just under 8 seconds

for the largest system that was studied, 321x321x81. Between 1000 and 2000 time steps

should be calculated to get well developed features that are unaffected by the initial con-

ditions and allow for pattern analysis. This means that a 2-3 simulations with this resolu-

tion can be made in one day on a desktop computer.

The initial conditions for the simulations are a linear temperature profile from the top to

the bottom wall, with small random perturbations. In this section the results from three

simulations are presented. The simulations are run with different Rayleigh numbers. De-

tails for each run are presented in Table 8.2.

Results from the simulations are presented in Figure 8.3 to Figure 8.5 for Rayleigh num-

ber equal to 250, 500 and 1000 respectively. Three visualizations of the system are

shown for each of the simulations. An iso-surface for the temperature is presented in

figure A. On top of the surface the magnitude of the velocities are visualized in colours.

The magnitude of the temperature and velocity are visualized in figures B and C.

Simulation 1 Simulation 2 Simulation 3

Resolution 321x321x81 257x257x65 321x321x81

Rayleigh number 250 500 1000

Time step 1E-5 5E-5 1E-5

Table 8.2: Details on the simulations presented in this section.

Applications 93

Figure 8.3: Simulation 1, Rayleigh number is 250. A) An iso-surface of the temperature, at T =
0.75, is visualized and the magnitude of the velocity on this surface is shown in colours. B) The
magnitude of the temperature is visualized in colours. The top layers of the domain are removed.
C) The magnitude of the velocity is shown in colours. The top layer of the domain is removed.

94 Porous Convection

Figure 8.4: Simulation 2, Rayleigh number is 500. A) An iso-surface of the temperature, at T =
0.75, is visualized and the magnitude of the velocity on this surface is shown in colours. B) The
magnitude of the temperature is visualized in colours. The top layers of the domain are removed.
C) The magnitude of the velocity is shown in colours. The top layer of the domain is removed.

Applications 95

Figure 8.5: Simulation 3, Rayleigh number is 1000. A) An iso-surface of the temperature, at T =
0.75, is visualized and the magnitude of the velocity on this surface is shown in colours. B) The
magnitude of the temperature is visualized in colours. The top layers of the domain are removed.
C) The magnitude of the velocity is shown in colours. The top layer of the domain is removed.

96 Porous Convection

Conclusion 97

9 Conclusion
A series of both direct and iterative methods for solving linear sets of equations have

been presented and their strengths and weaknesses have been discussed. The choice fell

on the multigrid algorithm for the main implementation in this thesis. The multigrid algo-

rithm is written in Jacket, which utilizes the GPU.

Some preliminary tests using Jacket were carried out to find out if substantial speedups

for numerical partial differential equation solvers on regular grids can be achieved. In

these tests a straight forward implementation, i.e. without the use of multigrid, of tran-

sient diffusion was tested. The results showed that the heat diffusion equation for homo-

geneous systems could be solved efficiently by using convolution for the stencil applica-

tion. The usually used indexing performs badly in both MATLAB and Jacket. This repre-

sents a problem for heterogeneous systems, where convolution cannot be employed.

The bad performance of indexing in MATLAB and Jacket made it necessary to avoid this

as much as possible. We found that it was possible to implement all the major compo-

nents of the multigrid algorithm using convolution. The efficiency of the multigrid algo-

rithm is also strongly dependent on it being tailored to the problem at hand. In this the-

sis several implementations are developed for solving elliptic and parabolic equations

with different boundary conditions. Each of the algorithm parameters must be tweaked

as well. The convergence for different input parameters are tested and presented in sec-

tion 5.4. Based on these results the speed tests for the Poisson solver and porous con-

vection application were implemented.

The Poisson solver developed in this thesis is efficient and can solve for a system of size

2573 in less than one second on a desktop computer. The Jacket implementation was 60

– 70 times more efficient than the implementation of the algorithm in native MATLAB.

These speedups were achieved by harnessing the computational power of the GPU.

The Poisson solver can be used as a part of the porous convection solver which is devel-

oped in this thesis. Simulations of this phenomenon have traditionally required heavy

computations that have been run on clusters of CPU‟s. An understanding of the patterns

that are formed in the simulations can give insight to the physical processes that forms

them. This can in turn be used to understand the history of sedimentary basins and to

find parameters such as permeability of the rocks and the viscosity of the fluids that mi-

grate through them.

A large number of simulations are required to study the physical parameters in porous

convection. For traditional implementations much server time must be used for the simu-

lations. This is expensive from a time and power consumption point of view. The imple-

mentation presented here uses less than 8 seconds to solve one time step when looking

at a system of size 321x321x81. This means that roughly 3 simulations can be done in a

day on a desktop computer and therefore large parameters studies become feasible.

Overall the developed Multigrid-MATLAB-Jacket-GPU approach reduces project time and

cost drastically. Not only does it take less resources for code development, but also the

run times and hardware requirements are substantially reduced.

98 Porous Convection

Bibliography 99

10 Bibliography

BRAESS, D. 1986. On the combination of the multigrid method and conjugate gradients Multigrid
Methods II.

BRIGGS, W. L., HENSON, V. E. & MCCORMICK, S. F. 2000. A multigrid tutorial, Philadelphia, Siam.
BRODTKORB, A. R. 2008. The Graphics Processor as a Mathematical Coprocessor in MATLAB.

International Conference on Complex, Intelligent and Software Intensive Systems, 2008.
CIPRA, B. 2000. The Best of the 20th Century: Editors Name Top 10 Algorithms. SIAM News. SIAM

News.
DONALD L. TURCOTTE, G. S. 2002. Geodynamics, New York, USA, Cambridge University Press.

HALE, D. 2008. Compact finite-difference approximations for anisotropic image smoothing and
painting.

HUBERT NGUYEN, C. Z., EVAN HART, IGNACIO CASTAÑO, KEVIN BJORKE, KEVIN MYERS, AND
NOLAN GOODNIGHT 2008. GPU Gems 3, Boston, Pearson Education, Inc.

JACK DONGARRA, F. S. 2000. Guest Editors' Introduction: The Top 10 Algorithms. Computing in
Science and Engineering.

JOSEF STOER, R. B. 2002. Introduction to numerical analysis, New York, Springer.

LAY, D. C. 2006. Linear Algebra and its applications, Addison-Wesley.
PATRA, M. & KARTTUNEN, M. 2005. Stencils with Isotropic Discretization Error for Differential

Operators. Wiley InterScience.
PRESS, W. H., TEUKOLSKY, S. A., VETTERLING, W. T. & FLANNERY, B. P. 2007. Numerical Recipes

Third Edition, New York, Cambridge University Press.
SAAD, J. 2003. Iterative Methods for Sparse Linear Systems, Philadelphia, Society for Industrial

and Applied Mathematics.

SHEWCHUK, J. R. 1994. An Introduction to the Conjugate Gradient Method Without the Agonizing
Pain

TATEBE, O. 1993. The Multigrid Preconditioned Conjugate Gradient Method.
TROTTENBERG, U., OOSTERLEE, C. & SCHÜLLER, A. 2001. Multigrid, London, Academic Press.
VARGA, R. S. 2000. Matrix iterative analysis, Berlin Springer.
WALTER GANDER, G. H. G. 1997. Cyclic Reduction - History and Applications.

YOUNG, D. M. 1971. Iterative Solution of Large Linear Systems, New York, Academic Press.

100 Porous Convection

Appendix 101

11 Appendix

11.1 Multigrid Solver for Poisson Problems

This code solves Poisson problems with Dirichlet boundary conditions. With small changes

it can be adapted to solving system with other boundary conditions and transient heat

diffusion problems. CUDA and Jacket must be installed on the computer run the codes.

The implementation is divided into two functions. The first one, diffusion_dirichlet,

only contains the algorithm parameters presented in Table 5.1. The first input parameter

for this function is the source term, and the second one is the initial guess for the solu-

tion. The second function,mgcyc_dir , is the multigrid cycle, the implementation of it is

described in section 5.3. An additional script is needed to define the problem that should

be solved. An example of such a script is presented in the following section, for the po-

rous convection application.

function [u] = diffusion_dirichlet(b,u)
 % Algorithm parameters
 v1 = 2; % Number of pre smoothing steps.
 v2 = 2; % Number of post smoothing steps.
 cl = 5; % Coarsest level
 n_it = 5;

 % Stencil
 L = zeros(3,3,3);
 L(:,:,1) = [0 -1 0; -1 -2 -1; 0 -1 0];
 L(:,:,2) = [-1 -2 -1; -2 24 -2; -1 -2 -1];
 L(:,:,3) = [0 -1 0; -1 -2 -1; 0 -1 0];
 L = (1/6)*L;

 % Iteration loop
 for i = 1:n_it
 [u] = mgcyc_dir(u, b, L, v1, v2, cl);
 end
end

function [u] = mgcyc_dir(u, f, L, v1, v2, cl)
 [m n o] = size(u);

 % Boundary values
 Ux = u([1 m],:,:);
 Uy = u(:,[1 n],:);
 Uz = u(:,:,[1 o]);

 %% Pre-smoothing
 L_sm = L;
 L_sm(2,2,2) = 0;

 for j = 1:v1
 u = 1/L(2,2,2)*(f - convn(u,L_sm,'same'));

 % Dirichlet boundary conditions
 u([1 m],:,:) = Ux;
 u(:,[1 n],:) = Uy;
 u(:,:,[1 o]) = Uz;
 end

102 Multigrid Solver for Poisson Problems

 %% Compute the residual
 df = f - convn(u,L,'same');

 %% Restriction
 % Define restriction operator
 KER = zeros(3,3,3);
 KER(:,:,1) = 1/28*[0 1 0;1 2 1;0 1 0];
 KER(:,:,2) = 1/28*[1 2 1;2 4 2;1 2 1];
 KER(:,:,3) = 1/28*[0 1 0;1 2 1;0 1 0];

 df = convn(df,KER,'same');
 df = 4*df(1:2:end,1:2:end,1:2:end);

 vc = gzeros(size(df));
 if (ceil(numel(u).^(1/3)) > cl) % Continue coaresning
 [vc] = mgcyc_dir(vc, df, L, v1, v2, cl);
 else % Solve the restriction equation.
 n_it = 3;
 [mc nc oc] = size(vc);
 for i = 1:n_it
 vc = 1/L(2,2,2)*(df - convn(vc,L_sm,'same'));
 % Dirichlet boundary conditions
 vc([1 mc],:,:) = 0;
 vc(:,[1 nc],:) = 0;
 vc(:,:,[1 oc]) = 0;
 end
 end

 clear df
 %% Interpolation
 vf = gzeros(size(u));
 vf(1:2:end ,1:2:end ,1:2:end) = vc;
 clear vc

 % Define interpolation operator
 KER(:,:,1) = 1/8*[1 2 1;2 4 2;1 2 1];
 KER(:,:,2) = 1/8*[2 4 2;4 8 4;2 4 2];
 KER(:,:,3) = 1/8*[1 2 1;2 4 2;1 2 1];

 vf = convn(vf,KER,'same');

 %% Compute the corrected approximation
 u = u + vf;

 %% Post-smoothing
 for j = 1:v2
 u = 1/L(2,2,2)*(f - convn(u,L_sm,'same'));

 % Dirichlet boundary conditions
 u([1 m],:,:) = Ux;
 u(:,[1 n],:) = Uy;
 u(:,:,[1 o]) = Uz;
 end
end

Appendix 103

11.2 Porous convection

This is the script for the porous convection algorithm. It utilizes a modified version of the

functions presented in the previous section, where a combination of periodic and Neu-

mann boundary conditions are used. Details on how the code is implemented are pre-

sented in section 8.2.1.

%% Numerics
n = 8; % Grid size
nx = 2^n + 2; % Nr of grid points
n = 8; % Grid size
ny = 2^n + 2; % Nr of grid points
n = 6; % Grid size
nz = 2^n + 1; % Nr of grid points
h = 1/(nz-1); % Spatial step length
nt = 2000;

x = linspace(0,(nx-1)/(nz-1) ,nx);
y = linspace(0,(ny-1)/(nz-1) ,ny);
z = linspace(0,1 ,nz);

LX = max(X(:)) - min(X(:)) - h;
LY = max(Y(:)) - min(Y(:)) - h;

%% Physics
dt = 5e-5;
Ra = 5e2;

%% Initialize
PRE = zeros(nx,ny,nz);
RHS_PRE = zeros(size(PRE));
V = zeros(size(PRE));
TEMP = (1-Z);
TEMP(2:end-1,2:end-1,2:end-1) = TEMP(2:end-1,2:end-1,2:end-1) + .1*rand(nx-

2,ny-2,nz-2)-.05;

% Periodic boundary conditions
TEMP(1,:,:) = TEMP(end-1,:,:);
TEMP(:,1,:) = TEMP(:,end-1,:);

%% Stencils velocity
[GCOORD, ELEM2NODE] = generate_mesh_8_brick(x,y,z);
[Y X Z] = meshgrid(y,x,z);
[Kzs] = thermal3d_brick_mat(ELEM2NODE, GCOORD);
clear ELEM2NODE GCOORD

KERvx = zeros(3,3,3);
KERvx(1,2,2) = -1/(2*h);
KERvx(3,2,2) = 1/(2*h);

KERvy = zeros(3,3,3);
KERvy(2,1,2) = -1/(2*h);
KERvy(2,3,2) = 1/(2*h);

KERvz = zeros(3,3,3);
KERvz(2,2,1) = -1/(2*h);
KERvz(2,2,3) = 1/(2*h);

104 Porous convection

L = 1+(dt/(6*h^2))*24;

L_temp = zeros(3,3,3);
L_temp(:,:,1) = [0 -1 0; -1 -2 -1; 0 -1 0];
L_temp(:,:,2) = [-1 -2 -1; -2 24 -2; -1 -2 -1];
L_temp(:,:,3) = [0 -1 0; -1 -2 -1; 0 -1 0];
L_temp = (1/(6*h^2))*L_temp;
L_temp(2,2,2) = 0;

[KzsaT KzsaT_bot KzsaT_top] = Stencil_brick_3d(Kzs');

%% Boundary conditions
% Temperature (dirichlet)
TEMPz = TEMP(:,:,[1 nz]);

%% Allocate memory on the GPU
TEMP = gsingle(TEMP);
PRE = gsingle(PRE);
gforce(TEMP);
gforce(PRE);
%% Time loop
for i = 1:nt
 i
 %% Right hand side pressure
 TEMP(end ,:,:) = TEMP(2,:,:);
 TEMP(:,end ,:) = TEMP(:,2,:);

 DTDz = convn(TEMP,KzsaT,'same');

 % Periodic boundary conditions
 DTDz(1 ,:,:) = DTDz(end-1,:,:);
 DTDz(:,1 ,:) = DTDz(:,end-1,:);
 DTDz(end,:,:) = DTDz(2 ,:,:);
 DTDz(:,end,:) = DTDz(:,2 ,:);

 tmp = conv2(TEMP(:,:,1), KzsaT_top(:,:,2),'same') +

 conv2(TEMP(:,:,2), KzsaT_top(:,:,3),'same');
 DTDz(:,:,1) = tmp;

 tmp = conv2(TEMP(:,:,end-1), KzsaT_bot(:,:,1),'same') +

 conv2(TEMP(:,:,end), KzsaT_bot(:,:,2),'same');
 DTDz(:,:,end) = tmp;

 DTDz(1 ,:,1) = DTDz(end-1,:,1);
 DTDz(:,1 ,1) = DTDz(:,end-1,1);
 DTDz(1 ,:,end) = DTDz(end-1,:,end);
 DTDz(:,1 ,end) = DTDz(:,end-1,end);

 %% Pressure solver
 PRE = pressure_solver(-Ra/h*DTDz,0*PRE);

 %% Velocity field
 PRE(:,end,:) = PRE(:,2 ,:);
 PRE(end,:,:) = PRE(2 ,:,:);

 % x-direction
 % ---
 V = -convn(PRE,KERvx,'same');

Appendix 105

 % Periodic boundary conditions
 V(1 ,:,:) = V(end-1,:,:);
 V(:,1 ,:) = V(:,end-1,:)
 xadv = X-V*dt;

 % y-direction
 % ---
 V = -convn(PRE,KERvy,'same');

 % Periodic boundary conditions
 V(1 ,:,:) = V(end-1,:,:);
 V(:,1 ,:) = V(:,end-1,:);
 yadv = Y-V*dt;

 % z-direction
 % ---
 V = -(convn(PRE,KERvz,'same') - Ra*TEMP);

 % Dirichlet boundary conditions
 V(:,:,1) = 0;
 V(:,:,end) = 0;
 % Periodic boundary conditions
 V(1 ,:,:) = V(end-1,:,:);
 V(:,1 ,:) = V(:,end-1,:);

 zadv = Z-V*dt;

 TEMP_OLD = TEMP;

 %% Heat diffusion
 for j = 1:50
 TEMP(:,end,:) = TEMP(:,2,:);
 TEMP(end,:,:) = TEMP(2,:,:);

 TEMP = 1/L*(TEMP_OLD - dt*convn(TEMP,L_temp,'same'));

 % Dirichlet boundary conditions
 TEMP(:,:,[1 nz]) = TEMPz;

 % Periodic boundary conditions
 TEMP(1,:,:) = TEMP(end-1,:,:);
 TEMP(:,1,:) = TEMP(:,end-1,:);
 TEMP(:,end,:) = TEMP(:,2,:);
 TEMP(end,:,:) = TEMP(2,:,:);
 end

 %% transfere data to the CPU
 TEMP = single(TEMP);

 xadv = single(xadv(1:end-1,1:end-1,:));
 yadv = single(yadv(1:end-1,1:end-1,:));
 zadv = single(zadv(1:end-1,1:end-1,:));

 %% Advection
 % Periodic boundary conditions
 xadv(xadv<min(X(:))) = xadv(xadv<min(X(:))) + LX;

106 Porous convection

 xadv(xadv>max(X(:))-h) = xadv(xadv>max(X(:))-h) - LX;
 yadv(yadv<min(Y(:))) = yadv(yadv<min(Y(:))) + LY;
 yadv(yadv>max(Y(:))-h) = yadv(yadv>max(Y(:))-h) - LY;

 TEMP(1:end-1,1:end-1,:) = interp3(Y,X,Z,TEMP,yadv,xadv,zadv,'linear');

 %% Save temperature
 if (mod(i,30) == 0)
 filename = ['temperature' num2str(i) '_257.mat'];
 %tmp_temp = TEMP(1:end-1,1:end-1,:);
 save(filename,'TEMP', 'V');
 end

 TEMP = gsingle(TEMP);
end

