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Abstract

Relative dispersion concerns the statistical calculations of pairs of particles
released in flows. This is directly relevant to the dispersal of pollutants,
whether in the form of a pollutant suddenly being discharged into the at-
mosphere, or an oil slick accidentally spilled into the ocean, as the mean
drift and the spread can be derived from the calculations. Relative disper-
sion has additional value, due to the link to the energy spectrum of the
underlying flow in which the particles are released, so that the behaviour of
the particle trajectories can be used to infer characteristics about the flow.
Two model data sets, each corresponding to an individual range of the en-
ergy spectrum: the energy cascade range (c–tank) and the enstropy cascade
range (d–tank), together with one atmospheric observation data set from the
EOLE balloon experiment, and one ocean surface observation data set from
the SCULP experiment, have been examined in light of these relations. Two
different statistical measures have been calculated: the relative dispersion
and the diffusivity of pairs of particles in order to investigate which of the
energy ranges the underlying turbulence for each of the data sets exhibit.
The model data sets both show a dispersion growth in agreement with the
predetermined wavelength intervals forced; the relative dispersion for c–tank
has a dependency on time cubed, and the diffusivity has a dependency of dis-
tance in the 4/3 power, both results corresponding to the κ

−5

3 spectrum; the
relative dispersion for d-tank has an exponential dispersion growth and the
diffusivity has a dependency of distance squared, corresponding to the κ−3

spectrum. The SCULP drifter data presents an exponential growth for the
first 10–11 days, followed by a power law growth of t2.2 for the longest times.
The EOLE balloon data, however, are the subject of discussion; the results
calculated here show either an exponential growth or a power law growth
for the relative dispersion, depending on which balloon pairs are taken into
consideration.
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Chapter 1

Introduction

The world’s oceans and atmosphere are constantly on the move. The cur-
rents flow in complex patterns and are affected by many forces. One of the
oldest methods for studying the circulation is to release something into the
ocean or atmosphere and let the flow carry it wherever it may go. Using
such oceanic devices known as drifters or floats, scientists have increased the
understanding of the complexities of global ocean currents, and, in turn, the
many systems that they influence. For the atmosphere meteorological bal-
loons can provide similar understanding of the atmospheric circulation.

The data garnered from these devices allow scientists to design models of
climate and weather patterns, such as El Niño and hurricanes, as well as
predict where pollutants, such as oil or sewage, will drift if they are dumped
or accidentally spilled into the ocean. In the event of toxic substances or
pollutants being discharged into the atmosphere or ocean e.g. through the
emission of sulphur dioxide (SO2) from volcanic eruptions or oil spill from
ships, the most important responsibilities for the authorities in charge are to,
if possible, limit the damages caused by the pollutant, and to warn the popu-
lation in the case of a potential hazard. The spread of such a pollutant in the
form of a “cloud of tracer” (collection of particles), is caused by the turbulent
flow features of the total stream, and the ability to cause dispersion is de-
termined by the energy spectrum of the underlying turbulence. An in–depth
knowledge of the dynamics causing the stirring, and the various outcomes
depending on which energy regime the turbulence occupies, is therefore of
vital importance, as this can make us better suited for controlling and pre-
dicting the movement and spread of a cloud of tracer.

The mean drift of such a cloud of tracer, whether it is a pollutant cloud in
the atmosphere or an oil slick in the ocean, is reflected through the displace-
ment of the centre of mass. Of equal importance is the cloud dispersion, i.e.
how the particles spread out about the centre of mass, which can be meas-
ured by the variance (mean square) of the displacements of the individual
particles that constitute the cloud (also referred to as the relative dispersion)
(LaCasce, 2008). As will be shown in chapter 2, the relative dispersion is
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4 CHAPTER 1. INTRODUCTION

related to the statistics of pairs of particles released in flows (Lagrangian
trajectories), in addition to being linked to the energy spectrum of the flow,
so that several measuring methods can be combined when studying the dis-
persal of a cloud of tracer in the attempt to gain a better understanding of
the underlying eddy turbulence and the pertaining energy spectrum.

Scientists have ever since Taylor (1915) first recognized eddy turbulence in
the atmosphere, studied the subject of both atmospheric and oceanic dis-
persion with various results. At first, the difficulties regarding sampling and
monitoring either fluid limited the studies both in terms of the size of the
sampling area and in number of observations made.

Observations of kites by eye (Taylor, 1915) or studies of smoke plumes in the
atmosphere (Richardson, 1926) were used to form the basis for calculations.
Even though the methods may seem simple, the results implied eye-opening
discoveries of eddy turbulence, the energy spectrum and the pertaining dis-
persions, and consequently the prevailing doctrines were altered.

Richardson’s (1926) extensive work examined the dispersion of smoke plumes
in the atmosphere with regard to Fick’s equation for standard molecular
diffusion

dv

dt
= K

d2v

dt2
(1.1)

where v can be any kind of variable, e.g. density, velocity components, a
tracer, and where K is the constant diffusion coefficient. Richardson con-
cluded that Fick’s law was quite unsuitable for this purpose, and instead
found a dependency of length scales in the 4/3 power of the diffusivity, at
present known as the Richardson’s law for the dependence of turbulence dif-
fusivity on the relative particle separation.

K(D) ∝ D
−4

3 (1.2)

where D is the distance between particles.

In an attempt to transfer this theory to the ocean, Richardson and Stom-
mel (1948) repeatedly studied the relative dispersion of two floating pieces of
parsnip set out from Blairmore Pier in Scotland, and they found most inter-
estingly that Richardson’s law was a rather good fit also for the diffusivity
at the ocean surface.

With the progress of radar came the development of acoustically tracked in-
struments, and this yielded the possibility for a closer study of the ocean
than earlier, e.g. with the use of the Swallow float (Swallow, 1955) which
immediately implied huge consequences for the perception of the ocean at
that time. In fact, the prevailing theory was of the subsurface currents to be
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decreasing towards the bottom and in general have quite small velocities at
great depths, but a study by Swallow and Worthington (1961) that indicated
a southward undercurrent of the Gulf stream with velocities of more than 15
cm s−1 demolished this theory and cleared the path for Stommel’s (Stommel
and Arons, 1960) theory of a deep thermohaline circulation.

The further development regarding both floats and drifters is well accounted
for by Davis (1991), e.g., the discovery of the SOFAR (Sound Fixing And
Ranging) channel, in which sound is refracted and ultimately spread in a
cylindrical pattern, led to the opportunity of long-range tracking and there-
fore many new studies of Lagrangian data in the ocean. As a consequence
of the effort to improve the instrument itself, but also due to an attempt
to economize the whole process of tracking and sampling, the development
of RAFOS floats (SOFAR spelled backwards; Rossby et al. (1986)) resulted
in reducing the size of the float. Then the introduction of the Autonom-
ous LAgrangian Current Explorer floats (ALACE) and the Profiling ALACE
floats (PALACE), which both are tracked by satellites (Davis et al., 1992),
consequently broadened the sampling region and reduced the costs of exper-
iments.

The satellite era also paved the way for extensive tracking of balloons in
the atmosphere and resulted in a huge breakthrough in regard to monitor-
ing, thus several experiments were conducted. The EOLE experiment during
the 1970s (Morel and Bandeen, 1973), and the TWERLE (Tropical Wind,
Energy conversion and Reference Level Experiment; Julian et al., 1977) in
the 1980s, which observed balloons in the Southern Hemisphere at the 200
mb-level and the 150 mb-level respectively, provided Lagrangian data which
even up till this date are used as basis for numerous studies.

The various studies throughout the history of “the science of eddy turbulence”
have resulted first of all, as noted above, with the replacement of Fick’s law
when it comes to calculating the diffusivity due to eddy turbulence. It is now
commonly accepted that there exists a scale dependency of the diffusivity of
pairs of particles. However, what shape this dependency takes, i.e. what
range of the energy spectrum the dependency lies within, is debated.

Observations of the dispersal of particles in both the atmosphere and ocean
must therefore be studied with regard to the underlying turbulence to im-
prove the knowledge of how different energy spectra imply different dispersal
patterns. Such observations should then be compared to model experiments
so that we can deduce how particles spread given various initial conditions
and turbulent flows, hence improving the skill of predicting the spread of a
cloud of tracer. It is also of interest to see which statistical measure is the
most robust for calculating the dispersal. Two distinct model data sets will
be studied in this theses, each corresponding to a predetermined wavelength
interval for which the energy spectrum of the model is forced, in order to
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distinguish between the two dispersal species of question in this study.

Of special interest in regard to this thesis are the previous studies of Lag-
rangian data from some of the abovementioned experiments that focus on
statistical calculations of the spread of pairs of particles and the pertain-
ing energy spectrum of the underlying turbulence. Morel and Larcheveque
(1974) and Lacorata et al. (2004), both made use of the EOLE data, but as
will be shown in section 4.3, they did not arrive at the same conclusion, likely
due to the different measures used. In this thesis, two different measures, the
relative dispersion and the diffusivity, will be examined, and then compared
with the results from both previous studies, trying to make the conclusions
regarding the relative dispersion and the underlying energy spectra of the
turbulent flow somewhat clearer.

In addition to the balloon trajectories, this study will make calculations based
on data from the SCULP (Surface CUrrent and Lagrangian drifter Program)
experiment, which consist of several deployments of drifters into the Gulf of
Mexico during the 1990s (Ohlmann and Niiler, 2005). The SCULP data have
been studied by LaCasce and Ohlmann (2003) with focus on the relative mo-
tion of pairs of surface drifters. A subset of the SCULP data will be studied
in this thesis, and compared to the results of LaCasce and Ohlmann (2003).

The structure of this thesis is as follows: Chapter 2 starts with a brief descrip-
tion of the development of sampling instruments, followed by a presentation
of the underlying theory associated with relative dispersion of Lagrangian
particles, both for single particle statistics and multiple particles statistics.
Chapter 3 gives a description of the data sets used in this thesis. The results
exhibited by the various statistical calculations of these data are presented
in chapter 4, whereupon a summary and some concluding remarks are given
in chapter 5.



Chapter 2

Theory

This chapter leads off with a brief overview of the various instruments used
to sample Lagrangian data in the atmosphere and ocean. Some general con-
septs of the relationship between the dispersal of a cloud of tracer and the
statistics from Lagrangian data are then accounted for, followed by a more
thorough description of the single and multiple particle statistics forming the
basis for the calculations in this thesis. The derivations and calculations in
this chapter are given in accordance with LaCasce (2008).

2.1 Instruments

Lagrangian instruments in general have the advantage of being free-drifting,
and can therefore monitor large areas in both the atmosphere and ocean on
their own. The fact that Lagrangian instuments usually end up following very
complex paths makes the methods of analysis somewhat different than for
data from Eulerian observation instruments. The most commonly used in-
struments are floats and drifter in the ocean, and balloons in the atmosphere.

Instruments for observing the ocean in regard to Lagrangian measures, can
be devided into two categories: drifters, which follow surface currents, and
floats, which follow subsurface currents (LaCasce, 2008).

Drifters consist of a subsurface device, a drogue in general in the shape
of a kite, which is kept at a constant depth usually between 5–50 meters,
and attached to a surface transmitter, which for the majority of drifters,
is tracked with the Argos satellite system. Recent drifter models can be
tracked by GPS if used for near-shore observations. Figure 2.1 shows the
CODE drogued drifter (Davis, 1985), as an example. This CODE drifter has
a kite–like drogue, and both a surface– and a subsurface float, in addition to
an antenna and a transmitter package in charge of monitoring.

7



8 CHAPTER 2. THEORY

Figure 2.1: The CODE drogued drifter. The drogue assembly has a negative
buoyancy of 2.8 kg, the subsurface float provides 2.6 kg buoyancy, and the area of
the drogue is 1.8 m

2. Figure from Davis (1985), page 4742.

For monitoring subsurface currents, various types of floats are used. Floats
are constructed to sink to a predetermined depth where they follow the cur-
rent in question. Such floats have ballasting and a certain compressibility to
maintain their chosen depth. However, floats can also be modified to follow
density surfaces, so that they behave even more like a Lagrangian particle
than constant-depth floats, which in fact are just “quasi–Lagrangian”. Due to
the ocean’s opaqueness to acoustic waves, floats can not be tracked by satel-
lites, but monitoring by the emittance and recording of low frequency sound
pulses are the most common, used for Swallow floats (Swallow, 1955), SO-
FAR floats (Rossby and Webb, 1970) and the reverse RAFOS floats (Rossby
et al., 1986). The latest development is the ALACE (Davis et al., 1992), and
PALACE floats, which keeps at a constant depth only to rise to the surface
at fixed intervals to be located by satellite, the latter also measuring the
density while it rises to the surface, hence the name “Profiling ALACE”.

Before satellites made a huge impact on how the atmosphere is monitored,
by-eye observations of smoke plumes and kites were some of the bases for
atmospheric studies. However, being able to accurately monitor atmospheric
variables by satellite soon made this the preferable method. For decades now,
scientists have launched balloons into the atmosphere to measure and track
weather patterns, with very encouraging results. Figure 2.2 shows an example
of a balloon used in the TWERLE experiment. The balloon carries instru-
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ments for measuring different variables in the atmosphere, e.g. temperature
(not shown in the picture), pressure and height, whilst other instruments
are for enabling tracking. Some balloons of today are even releasing small
driftsondes that transmits temperature, wind and pressure data to a satellite
as it drifts to earth.

Figure 2.2: Schematic photo of a TWERLE balloon when at floating altitude. The
TWERLE balloons were launched into the atmosphere at the 150–mb level during
the 1980s. The balloons carried both measuring and tracking instruments. Figure
from Jullian et al. (1977), page 937.

Hence sampling in the atmosphere nowadays is simplified by the use of satel-
lites for tracking, and Lagrangian observations together with the possibilities
to obtain vertical profiles from remote sensing techniques, has resulted in the
atmosphere being very well monitored over the years. In comparison, the
ocean is still in need of vast investigations to unfold the knowledge still not
accounted for.

2.2 General concepts of Lagrangian statistics

Statistics of Lagrangian data imply averaging the positions and/ or the velo-
cities of the particles observed. The results yield different statistical measures
that concern either single or multiple particle statistics, and in order to de-
scribe the dispersal of a tracer in the atmosphere or ocean, both such are
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needed. As noted in chapter 1, the displacement of the centre of mass of a
cloud of tracer is described by the mean drift, here in the x-direction

Mx(t) =
1

N

N∑
i=1

[xi(t) − xi(0)] (2.1)

where N is number of particles in the cloud and xi(0) and xi(t) the initial
position and the position at time t = t for each individual particle, respect-
ively. The mean drift is the average for the displacement of each individual
trajectory that consitutes the cloud, i.e. it is a single particle measure, and
it is the first moment of the displacements.

The second-order moment

Dx(t) =
1

N − 1

N∑
i=1

[xi(t) − xi(0) −Mx(t)]
2 (2.2)

i.e. the variance (mean square) of the displacements, yields the spread of the
particles around the centre of mass. This is also referred to as the dispersion,
and it can be expanded so that it is valid for N number of particles, i.e. the
sum over all particle pairs

Dx(t) =
1

2N(N − 1)

∑
i6=j

[xi(t) − xj(t)]
2 (2.3)

Thus the dispersion of the cloud (eq. 2.3), is proportional to the mean
square pair separation (for eq. 2.3: the sum of the squared separations for
all N particles of the cloud). This is a helpful correlation which links the
concentration statistics of a cloud to the general two particle statistics, and
as a consequence, the cloud dispersion can be determined from statistics ob-
tained from repeatedly releasing pairs of particles into a flow instead of the
observation or modelling of the whole cloud, which indeed contains much
more than just a number of particle pairs, even if iterative pair observations
are needed to have a statistically significant measure.

The favourable potential for the dispersion to calculate the size of the cloud,
is quite impaired by the fact that the dispersion on the other hand portrays
the cloud’s distribution in space rather poorly.

To gain a better understanding of the displacement, the probability density
function (PDF) of the displacements is introduced. The PDF is generated
by binning the particles by distinct displacement distances from the centre
of mass, and this yields a histogram showing the number of particles for
each of the distance bins, providing a clearer picture of the displacement
around the centre of mass. In addition to providing a figurative measure
of the displacement, the PDF can generate all the moments, e.g. the mean,
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dispersion, and yet another moment called the kurtosis. While the dispersion
measures the width of the PDF, the kurtosis measures the “peakedness” of
the PDF. A Gussian shaped PDF (frequent modestly-sized deviations) has a
kurtosis of 3, as apposed to a higher kurtosis which implies that more of the
variance is due to infrequent extreme deviations, where few observations are
far from the mean, and the majority is conentrated on or around the mean.
The kurtosis is the fourth-order moment of the displacement:

ku(x) ≡

∑
i(xi −Mx)

4

[
∑

i(xi −Mx)2]2
(2.4)

These abovementioned measures will be the basis for the analyses throughout
this thesis. All the moments (mean, dispersion and kurtosis) can be derived
for either displacements or velocities to yield different measures. The single
particle calculations are presented first, followed by multiple particles.

2.3 Single particle statistics

For a single particle, a PDF for the displacement from x = x0 at t = t0, to
x = x1 at t = t1, can be defined

Q(x1, t1 | x0, t0) (2.5)

If a cloud of particles is considered, the PDF is re-written

P (x1, t1) =

∫
P (x0, t0)Q(x1, t1 | x0, t0)dx0 (2.6)

thus integrating over all of the initial posistions consituting the cloud. For a
statistically homogeneous and stationary flow, the PDF ultimately yields

Q(x1, t1 | x0, t0) = Q(x1 − x0, t1 − t0) ≡ Q(X, t) (2.7)

This PDF is used when calculating all the statistical moments. The mean
displacement (first moment)

X =

∫
XQ(X, t)dX (2.8)

the single particle dispersion (second moment)

X2(t) =

∫
X2Q(X, t)dX (2.9)

and the absolute diffusivity (the time derivative of the single particle disper-
sion)

κ(t) ≡
1

2

d

dt
X2 = X(t)u(t) =

∫ t

0

u(X, t)u(X, τ)dτ (2.10)

which means that the diffusivity is the integral of the velocity autocorrelation.
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2.4 Multiple particle statistics

As noted earlier, (chapter 1), the relative disperson equals the mean square
distance between pairs of particles, and it describes how a cloud of tracer
spreads about its centre of mass. In addition it gives the sensitivity to the
trajectory’s initial position. The early and late development in time of the
dispersion is quite the same as for the absolute dispersion (section 2.2). Of
major interest though is how the relative dispersion evolves at inter–mediate
time scales, as this is strongly influenced by the Eulerian mean and hence,
the underlying energy spectrum of the flow which is of great interest in tur-
bulence studies.

The discovery of the fact that the dispersion did not obey Fick’s equation,
urged the need for studies of turbulent flows, and it was soon stated that the
turbulent mixing in the planetary boundary layer could explain the disper-
sion there and that the diffusivity has a scale dependency.

Still in accordance with the calculations by LaCasce (2008), the theory of
multiple particle statistics now follow.

As for the single particle statistics, a PDF for the particle separations can
be constructed:

q(y, t | y0, t0) =

∫
L(x, y, t | x0, y0, t0)dx0 (2.11)

where the integration is over the initial positions, x0. This PDF can be
further developed to a PDF of the event of observing a particular separation
between pairs

p(y, t) =

∫
p(y0, t0)q(y, t | y0, t0)dy0 (2.12)

from which the moments can be derived, in a similar manner as for the single
particle statistics, e.g. the second order moment (the relative dispersion)

y2(t) =

∫
y2p(y, t)dy (2.13)

and the relative diffusivity (the time derivative of the relative dispersion)

κ ≡
1

2

d

dt
y2 = yv = y0v +

∫ t

t0

v(t)v(τ)dτ (2.14)

As seen in section 2.1.3, where the absolute diffusivity is derived from the
velocity autocorrelation, the relative diffusivity for pairs of particles is now
derived from the two particle velocity cross–correlation (v(t)v(τ)). Also, in
the same manner as for single particle statistics, the relative dispersion for
pairs of particles behaves like the absolute dispersion at the smallest and
largest scales, and again the interest lies in the intermediate scales, in which
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the dispersion depends on the flow. Assuming the flow is homogeneous, and
using the first Bessel function when calculating the Eulerian wavenumber
spectrum, the relative dispersion for intermediate scales is

v(y)2 ∝ yα−1 (2.15)

and the corresponding diffusivity

K =
1

2

d

dt
y2 ∝ y

α+1

2 (2.16)

This yields a separation dependency of the diffusivity, and this is reflected by
the slope of the energy spectrum. For this range, the dispersion is referred
to as “local”, due to the dominating eddies having the same scale as the sep-
aration between the pair of particles.

As α has values between 1–3 for intermediate scales, the diffusivity will be
proportional to the distance in a 4/3 power for α = 3, i.e. Richardson’s law.

For α > 3 (steep wavenumber spectra), the relative dispersion will be dom-
inated by eddies larger than the separation between pairs, i.e. the dispersion
is “non–local”, and can be expressed as

v(y)2 ≈
1

2
y2

∫
k2E(k)k = c1Ωy

2 (2.17)

where c1 is a integration constant, and Ω is the total enstrophy (the integrated
square velocity). The diffusivity is

K =
1

2

d

dt
y2 = c2T

−1y2 (2.18)

which corresponds to an exponential growth of the separation of pairs of
particles, also referred to as “Lagrangian chaos”.

2.4.1 Turbulent dispersion and energy spectra

The turbulence in the boundary layers of both the atmosphere and ocean
can be used as an example of the relative dispersion that occurs in these
layers. Due to the vertical motion being effective here, the turbulence is
three dimensional and the energy is being transported towards larger scales,
i.e. the spectrum has a κ

−5

3 dependency. Further away from the planetary
and surface boundary layers, the vertical velocity is reduced, thus yielding a
two dimensional turbulence. The κ

−5

3 dependency is recognized here as well,
leading to a relative dispersion for the energy inertial range (energy cascade
range)

y2 ∝ ǫt3 (2.19)

with corresponding diffusivity
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K ∝ ǫ
1

3y
4

3 (2.20)

where ǫ is the constant energy dissipation rate for energy transport from small
scales towards larger scales. Again, the diffusivity coincides with Richard-
son’s law of the 4/3 dependency of scales.

Two–dimensional turbulence exhibits another energy inertial range though,
the enstrophy cascade range, in which enstrophy is transported from slightly
large scales towards smaller scales before it is dissipated. In this spectrum
range, the relative dispersion has a exponential growth:

y2 ∝ ec3η
1
3 t (2.21)

and the diffusivity has a dependency of distance squared:

K ∝ y2 (2.22)

where η is the enstrophy dissipation rate.

Thus two–dimensional turbulence depends on the distinct energy cascade for
which the pair of particles experiences.

2.4.2 Diffusivity as a measure

The diffusivity as a measure concerns calculating the mean over the distances
instead of time as for the relative dispersion, and is a more robust measure
for the development of the displacement distribution. This is because pairs
of particles can present very different pair separations from time to time, and
when sampling all the particle pair separations within a “cloud of tracer” at a
fixed time, the mean will be affected of possibly statistical outliers with “too
large” separations compared to the majority of the particle pairs within the
“time bin”. When calculating the diffusivity, i.e. a measure that averages over
distances, at fixed distance bins, no such outliers exist, hence the diffusivity
gives a more accurate result of the dispersion.



Chapter 3

Data

The data used in this thesis consist of two sets of model data and two sets of
observational data. The model data are derived from a numerical experiment
model where, with the purpose of this thesis, the forcing term in the equa-
tion solved by the model is defined to reflect two different energy spectra,
and hence two distinct particle trajectory developments. In addition, one
atmospheric observation data set (EOLE) and one ocean surface observation
data set (SCULP) are studied. This chapter gives an overview of the data
sets and their basics. The results derived from the statistical calculations of
the data sets will be presented later, in chapter 4, where also comparisons
between calculations in this study and previous work will be done.

3.1 Model data

Two sets of model data are presented in this study; both sets originate from
a simplified and modified version of the model used in LaCasce and Brink
(2000). The version of the model used in this thesis employs one horizontal,
either atmospheric or oceanic layer (thus the model can numerically produce
particle trajectories for either fluid), and a flat bottom confined to a domain
of 2π x 2π. The model is double-periodically, which implies that whenever
energy passes through one side of the domain , the same energy re-enters
the opposite side simultaneously. The dynamic equations governing the flow
are quasi-geostrophic, and the planetary gradient is set to be zero, i.e. β =
0. The use of the quasi-geostrophic equations makes the computations more
efficient than with the primitive equations. For time stepping, a standard
leapfrog scheme is used, with an Euler step every 50th step to suppress com-
putational errors.

The model solves the equation

d

dt
∇2ψ + u

d

dx
∇2ψ + v

d

dy
∇2ψ = F −D (3.1)

where ψ is the stream function, and u,v the zonal and meridional velocities
respectively. Running the model ultimately yields the trajectories of the in-
dividual particles deployed into the turbulent flow. The diffusive term, D, is

15
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the Ekman friction. The forcing term, F, is a stochastic forcing function, that
for each time step randomly alters the turbulent eddies, and consequently the
energy spectrum and the dispersion of the particles as well. The non-linear
terms (terms 2 and 3 on the left side) are responsible for the interaction
between the different energy modes in the model, and thus the dissipation of
energy between modes.

As the model starts up, energy is added to the forcing term in a predeter-
mined wave number interval depending on which range of the energy spec-
trum being examined. Initially, some adjustment is needed for the model to
reach steady state between the forcing and diffusion terms. Figure 3.1 shows
the development of the total energy (KE) for d-tank model data set as a
function of time. The total energy increases rapidly as the energy is added
in the wavelength interval forced at time t = 0. As soon as the total energy
within the domain reaches statistically steady state (approximately at time
t = 12), the particles are deployed, and their positions are recorded in time.
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Figure 3.1: The development of the total energy (KE) for the d-tank model data
set as a function of time after deployment.

This thesis employs two distinct model data sets, hereafter named c-tank and
d-tank. For c-tank data set, the addition to the forcing term is in the wave
number interval, L = [2π

60
, 2π

50
], which implies forcing at small scales, resulting

in an energy cascade to larger scales, while on the other hand, for the d-tank
data set, the forcing is added in the wave number interval, L = [2π

5
, 2π

1
],

i.e. at large scales, ultimately transporting enstrophy towards the smaller
scales over the range of wavelengths resolved by the model. Figure 3.2 shows
particle trajectories for 6 randomly selected particles deployed in a) d-tank,
and b) c-tank. The initial positions for all the particles deployed are in the
interval x = y = [3.1 − 3.2] for both data sets. The trajectories display very
different developments, due to the forcing of the underlying turbulence being
added at different wavelengths. Note also the difference in values on the axes.
The particles in c-tank are spread much further from the initial positions than
the particles in d-tank, implying that the underlying turbulence in c-tank in
general results in larger dispersal of the particles.
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Figure 3.2: Particle trajectories for 6 randomly selected particles deployed in a) d-
tank, and b) c-tank. Note the different scales of the axes! In general, the particles
from the c-tank data set are spread further from their initial positions than the
particles from d-tank data set.
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3.2 Observation data

3.2.1 SCULP data

The oceanic observation data used in this study were obtained from the Sur-
face CUrrent and Lagrangian drifter Program, SCULP, which consists of 3
individual routine drifter deployments, hereafter named SCULP-I, -II and
-III (Ohlmann and Niiler, 2005). Each set of deployments was carried out
during different periods from October 1993 to July 1996. The data provide
observations of individual trajectories from surface drifters deployed in vari-
ous regions in the Gulf of Mexico.

The drifters were designed similarly to the drifters used in the Coastal Ocean
Dynamics Experiment (CODE; (Davis, 1985). Four rectangular panels 50 cm
wide by 90 cm tall were assembled to a vertical tube 10 cm in diameter. The
centre of the drifter was kept near 0.5 m depth by small surface floats at-
tached to the drifters with flexible cords, as shown in Figure 2.1. The drifters
were tracked by the Argos satellite locating system, and their positions were
fixed within a 300 m-1000 m circle 5-7 times a day by Doppler ranging.

In the SCULP-I deployment, 409 drifters were set out on the Louisiana-Texas
shelf from October 1993 through July 1994. The deployment occurred either
from one of three oil producing platforms with weekly deployments for 44
weeks, or periodically from aircraft in a predetermined set of 15 stations.
The aircraft-deployed stations were seeded with a new drifter only when no
other drifter was localized within 5 km of the station the day before the
deployment flight. All in all the SCULP-II deployments covered a 125 km
square sampling grid, and a total of 374 drifters were traceable for a min-
imum of two days with a half life time of 56 days.

The SCULP-II deployment began in February 1996, and the drifters were set
out from aircraft to 15 different stations within a 500 x 200 km grid on the
Northwest Florida shelf. 11 new stations were added later on, and deploy-
ment of the whole 26-station set was carried out from April 1996 through
February 1997. A total of 359 drifters were employed and 342 of them sur-
vived more than two days, with a half life time of 66 days. Figure 3.3 shows
the trajectories of the SCULP–I and -II drifter pairs with initial separation,
r0 ≤ 1km, for the first 25 days after deployment, as an example of trajector-
ies.

The third set of drifter deployments, SCULP-III, was focused on a particular
flow feature, i.e. the effect of gulf eddies on drifters across the shelf-rise. Two
anticyclone eddies were identified; one over the shelf-rise south of Louisiana
and one on the northwest Florida shelf-rise. Consequently 20 drifters were
seeded twice in each of the two structures during April and July 1998. Of
80 drifters deployed, 67 gave trajectories of more than two days. As a con-
sequence of a small number of drifter pairs and the fact that the SCULP-III
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Figure 3.3: Trajectories of some of the SCULP drifters from SCULP–I (top) and
-II (bottom) data set. Figure from LaCasce and Ohlmann (2003), page 289.

set focused on a particular flow feature, these trajectories are not included
in the dataset used in this thesis.

3.2.2 EOLE data

The atmospheric observation data used in this study were obtained from the
EOLE experiment which took place from August 1971 to July 1972 (Morel
and Bandeen, 1973). A total of 480 constant-volume balloons were released
from three different sites in Argentina to the 200 mb-level in the South-
ern Hemisphere. Figure 3.4 shows trajectories for three individual EOLE
balloons. The balloons were tracked by the EOLE navigation and data col-
lection satellite which was launched in 1971. Average lifetime of the balloons
was 120 days. Large quantities of Lagrangian data (balloon trajectories)
were generated from this experiment, which from then on formed the basis
for numerous studies, both in Lagrangian and Eulerian perspectives. Mo-
rel and Desbois (1974) estimated the climatologically aspects of the general
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circulation, and Desbois (1975) computed the planetary- and synoptic-scale
kinetic energy space spectra on the basis of the horizontal displacements of
EOLE balloons. Actually, the EOLE data remain to this day one of the most
ample data sets with the purpose of studying quasi-Lagrangian particles and
the properties of intermediate motion at the tropopause level (Lacorata et
al., 2004).

Figure 3.4: Trajectories of three EOLE balloons, numbered 247, 249 and 250,
released almost simultaneously from Mendoza, Argentina, on 20th September 1971.
Figure from Morel and Bandeen (1973), page 301.

Several scientists have studied the data obtained from the EOLE experiment.
One great advantage of such a large quantity of observations as in the EOLE
experiment is that the statistics calculated from the data are statistically sig-
nificant, thus more reliable. Morel and Larcheveque (1974)analyzed 12.239
individual estimates of the relative dispersion rate of balloon pairs provided
by the EOLE experiment, and calculated the two particle relative dispersion
obtained from the balloon trajectories.



Chapter 4

Results and discussion

The results from the statistical calculations of both model data sets and the
EOLE and SCULP observations are presented in this chapter. First, the
model results are examined, trying to validate the relative dispersion growth
for each data set in accordance to its underlying turbulence, determined
by the distinct wavelength interval in which the energy spectrum is forced.
Preferably, the results will demonstrate two distinct growth regimes, thus
providing a good standard of reference when studying the observational data.

Calculations of the data from the SCULP and EOLE experiments are then
presented, first individually, along with some remarks on previous studies.
Especially the EOLE data have led to some discrepancies among scientists.

4.1 Model results

4.1.1 C-tank

In the c-tank model data set, the forcing is added in the wavelength interval,
L = [2π

60
, 2π

50
], which implies that the dispersion of pairs of particles is influ-

enced by eddy turbulence in the energy cascade range of the energy spectrum
for which the model is resolved. This entails energy being transported from
small scales towards larger scales where it eventually is dissipated. The rel-
ative dispersion presumably has a dependency of time cubed (D2 ∝ t3), and
the diffusivity should follow Richardson’s law and show a scale dependency
in the 4/3 power (K ∝ D

4

3 ), in order to verify the model set up for the
particular forced wavelength interval chosen for the c-tank data set.

Figure 4.1 shows the zonal (x) and meridional (o) components of the relative
dispersion of pairs of particles as a function of time after deployment. The
straight line represents a t3 power law growth, and is a rather good fit for
t = 3 × 105 − 2 × 106. Note that the values on the x-axis in this figure are
incorrect. This is a result of the plotting function in Matlab, and for this par-
ticular plot only – the agreement between the relative dispersion components

21



22 CHAPTER 4. RESULTS AND DISCUSSION

and the straight line is still correct. For longer times, the growth decreases,
which is expected due to energy being dissipated here, thus impairing con-
tinuously cubed growth. The model is not unaffected by noise though: at
time t = 2 × 105, a rather distinct discrepancy is shown, but this does not
disrupt the general agreement to a t3 power law growth for longer time scales.
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Figure 4.1: The zonal (x) and meridional (o) component of the relative dispersion
as a function of time after deployment. The straight line represents a t

3 power
law, which corresponds to a energy cascade range of the energy spectrum. Note
that the values on the x-axis in this figure are incorrect. This is a result of the
plotting function in Matlab only – the agreement between the relative dispersion
components and the straight line is still correct.

However, as noted in section 2.5, the diffusivity usually is a more robust meas-
ure of the growth of the relative dispersion due to averaging over distance as
opposed to time. Figure 4.2 shows the diffusivity for pairs of particles as a
function of distance. The straight line represents a D

4

3 law, i.e. Richardson’s
law, and shows a quite good fit up to distances of D = 1. This result does
not present an accurate agreement between particle separation growth and
the D

4

3 law either, but for the use of the following comparisons with ob-
servational data in this study, the relative dispersion for c–tank is assumed
to follow Richardson’s law, which yields that the underlying turbulence is
within the κ

−5

3 energy spectrum up to distance D = 1.
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Figure 4.2: The diffusivity for c-tank model data set as a function of distance. The

straight line represents the D
−4

3 law, which corresponds to the κ
−5

3 region of the
energy spectrum.

4.1.2 D-tank

In the d-tank model data set, the forcing of the energy spectrum is added
in the wavelength interval L = [2π

5
, 2π

1
], which implies that the dispersion of

pairs of particles is influenced by the enstrophy cascade range of the energy
spectrum for which the model is resolved. Hence the relative dispersion is
presumed to experience an exponential growth in time (y2 ∝ et), and the
diffusivity should show a dependency of distance squared (K ∝ D2). The
d-tank data set has a forcing that ensures the transport of enstrophy from
large scales towards smaller scales, where it eventually is dissipated.

Figure 4.3 shows the zonal (x) and meridional (o) components of the relative
dispersion of pairs of particles as a function of time after deployment. The
straight line represents an exponential growth, i.e. the enstrophy cascade
range of the spectrum. The relative dispersion displays a fairly poor fit to
the exponential growth line, and the dispersion also exhibit a somewhat an-
isotropic behaviour (i.e. the zonal and meridional components differ).
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Figure 4.3: The relative dispersion for the zonal (x) and meridional (o) direction for
the particles deployed in d-tank as a function of time. The straight line represents
an exponential growth.

In Figure 4.4 the relative dispersion for the combined set (zonal + meridi-
onal) for the pairs as a function of time is plotted. The straight line again
represents an exponential growth, and seem to be in better agreement with
the relative dispersion in this plot. The relative dispersion and the expo-
nential growth line fit up to time t = 5. Further growth does not proceed
exponentially.

Again, the diffusivity normally gives a clearer result of the growth of the
relative dispersion. Figure 4.5 shows the diffusivity for pairs of particles as
a function of distance. The straight line now represents a dependency of
scales squared (K ∝ D2), which corresponds to the k−3 energy spectrum,
i.e. the enstrophy cascade range. For this measure, the growth is in very
good agreement with the one predicted, thus the d-tank model data set is
assumed to be within the enstrophy cascade range of the energy spectrum
and to exhibit an exponetial growth for the relative dispersion.
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Figure 4.4: The relative dispersion for the zonal and meridional direction com-
bined for the particles deployed in d-tank as a function of time. The straight line
represents an exponential growth.
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4.2 SCULP data results

Compared to the majority of previous oceanic observation data sets, the
SCULP data comprises much higher drifter densities, which implies more
drifter pairs with close spacing, hence a better basis for statistical analyses
at the smaller length scales (LaCasce and Ohlmann, 2003). The data used for
this study are based on SCULP–I and -II deployments only as the data from
SCULP–III is not suitable due to few drifter pairs and the specific problem
this data were aimed at (section 3.2.1).

Figure 4.6 shows the relative dispersion for the combined SCULP–I and -II
sets as a function of time. The straight line represents an exponential growth,
thus implying that the underlying turbulence belongs in the enstrophy cas-
cade range of the energy spectrum. After an initial adjustment of a day or
so, the relative dispersion shows a good fit to this line for the first 10–11
days, according to length scales of 5-50 km. After day ∼ 11, the relative
dispersion growth decreases and follows a power law growth. This power law
growth for the latest times is shown in the loglog plot in Figure 4.7, where
the straight line represents a power law growth of t2.2 for the longest time
scales.

SCULP data have formed the basis of several studies with highly various ob-
jectives, such as either a descriptive, statistical or dynamical focus. Ohlmann
and Niiler (2005) examined the surface circulation in the northern Gulf of
Mexico based on data from the SCULP drifters inter alia. LaCasce and Ohl-
mann (2003) studied the SCULP–I and -II data sets in regard to the relative
motion of pairs and triplets of surface particles. The two particle statistics
calculated in their study presented two growth phases: a nearly exponential
growth up to 40–50 km separations, followed by a power law growth towards
larger scales, i.e. in very good agreement with the results in this thesis.
However, LaCasce and Ohlmann (2003) also calculated the finite–time, and
the finite–scale Lyapunov exponents, (FTLE and FSLE, respectively), two
measures highly suitable when the calculation in question (the relative dis-
persion) requires averaging. Figure 4.8 shows the FSLE for the full data set.
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Figure 4.6: The relative dispersion for the combined SCULP-I and -II data sets as
a function of time. The straight line represents an exponential growth.
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Figure 4.7: The relative dispersion for the combined SCULP-I and -II data sets
as a function of time on a loglog plot. The straight line represents a power law
growth.
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Figure 4.8: The FSLE for the full data set from the SCULP experiment. The
dotted lines represents the 95% confidence limits, and the straight lines represent

D
0 and D

−2

3 respectively. Figure from LaCasce and Ohlmann (2003), page 296.

Thus, the FSLE calculated by LaCasce and Ohlmann (2003) supported the
exponential growth for the relative dispersion of pairs of particles at scales up
to 40–50 km, which is in agreement with the results derived for the relative
dispersion calculation by LaCasce and Ohlmann and the results in this thesis
(Figure 4.6).
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4.3 EOLE data results

Figure 4.9 shows the relative dispersion of the EOLE balloons as a function
of time after launch. Only the first 10 days are shown in order to clarify
the growth for the initial period, which is the period of greatest interest in
this plot. The straigh line represents an exponential growth. However, it
is difficult to determine exactly where the exponential growth line should
be, as it can easily be constructed to fit any possible line that works as a
tangent for the curve displayed by the dispersion growth for the first 3 days
after launch. Nevertheless, further growth after day 3 decreases continuously.

Figure 4.10 shows the diffusivity of the EOLE balloons as a function of sep-
aration D. The two straight lines represent a D2 (black line) and a D

4

3 (red
line) power law, which correspond to an exponential and a power law growth,
respectively. Again, as with the relative dispersion for the EOLE data, both
lines can be a good fit, depending on where on the growth curve the tangent
line is placed. It is also a slight possibility to match both the straight lines
to the dispersion growth. The D

4

3 power law can be used for distances up to
∼ 200 km, and then the D2 power law is a better fit up to ∼ 1000 km.

These difficulties in regard to firmly determining the dispersion growth for
the initial period after launch are reflected in earlier studies based on the
EOLE balloon data, e.g. the work by Morel and Larcheveque (1974) and
Lacorata et al. (2004).

Morel and Larcheveque (1974) examined the EOLE data set and calculated
the mean square relative velocity and mean diffusivity of balloon pairs sep-
arated by a distance D, trying to find the scale dependency of eddy diffusion
on balloon pairs. In general, they established that the eddy dispersion pro-
cess is homogeneous, isotropic and stationary up to scales of D ∼ 1000 km.
Figure 4.11 shows the root mean square separation of the original pairs of
balloons from the EOLE experiment, as a function of time after launch. Mo-
rel and Larcheveque (1974) found that the mean separation of balloon pairs
increased exponentially in time for the first 6 days, followed by a standard
diffusion growth. Figure 4.12 shows the diffusivity for the EOLE balloon
pairs as a function of distance. The straight line represents a power law of
D2, and Morel and Larcheveque (1974) concluded that the mean diffusivity
has a scale dependency of D2. Both the results of the mean square relative
velocity and the mean diffusivity are compatible with the k−3 inertial range
of the energy spectrum, for distances between 100–1000 km. These results
are also in agreement with the work by Lin (1971), who concluded that the
relative dispersion in the enstrophy-cascading inertial range (the k−3 range
of the total kinetic energy spectrum) grows exponentially in time.
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Figure 4.9: The relative dispersion for the EOLE balloons as a function of time
after launch. The straight line represents a exponential growth. The dotted lines
are the 95% confidence limits.
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Figure 4.11: The mean squared relative vorticity for the EOLE balloons as a func-
tion of time after launch. The straight line represents an exponential growth.
Figure from Morel and Larcheveque (1974), page 2194.

Figure 4.12: The mean square relative diffusivity of the EOLE balloon pairs as a
function of distance. The straight line represents a D

2 law. Figure from Morel and
Larcheveque (1974), page 2196.
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However, Lacorata et al. (2004) revised the EOLE data set, and debated
the conclusion made by Morel and Larcheveque (1974) for the growth of the
relative dispersion. The reason for this revision was first of all a discrepancy
between the conclusions made by Morel and Larcheveque (1974) and later

studies based on aircraft data suggesting a k
−5

3 dependency range for the
energy spectrum (i.e. Lindborg and Cho (2000)). In addition, the FSLE,
a new tool for analyzing scale dependent properties, which was believed to
improve the calculations, made this revision required. Lacorata et al. (2004)
concluded that the initial dispersion indeed correspond to an exponential
growth, and consequently to a k−3 dependency of the energy spectrum, but
only for the first day after launch. The calculations of the further growth
for day 2–6 instead showed a power law growth with the power gradually de-
creasing from 3 to 1, and therefore a k

−5

3 dependency of the energy spectrum.

The main result of this revision study was a k
−5

3 behaviour of the energy
spectrum at inter-mediate scales of 100–1000 km, i.e. the opposite energy
spectrum behaviour than stated by Morel and Larcheveque (1974). How-
ever, at distances smaller than 100 km, the results indicated an exponential
growth, which is in slight agreement with the earlier studies. The reasons for
the k

−5

3 spectrum were still not accounted for by, which yields the necessity
for additional studies.



Chapter 5

Summary and conclusion

In this thesis, the relative dispersion of pairs of particles released in flows has
been studied mainly with the use of two different statistical measures: the
relative dispersion and the diffusivity.

The statistical measures of the relative dispersion are of major importance
since the dispersal of a pollutant either in the ocean or atmosphere can be
derived from this, both in regard to the mean drift and the spread. In addi-
tion, the relative dispersion is linked to the energy spectrum of the underlying
flow, so in combining all these theories, important relations can be detected
and used for e.g. predicting and controlling the dispersal of pollutants.

To form the basis for the statistical calculations, data from Lagrangian
particle trajectories from two model data sets, one atmospheric observation
data set and one ocean surface data set have been used. The model data
were derived from a modified and simplified version of a numerical exper-
iment model described in LaCasce and Brink (2000). Energy was added
into the model in two distinct wavelength intervals, in an attempt to mirror
the two different growth regimes of the relative dispersion corresponding to
either the energy cascade range or the enstrophy cascade range of the under-
lying turbulence of the flow. The oceanic observation data set is a subset of
the extensive data derived in the Surface CUrrent and Lagrangian Project
(SCULP) conducted during the 1990s in the Gulf of Mexico (Ohlmann and
Niiler, 2005). The atmospheric data set is a subset of the EOLE experiment
which consisted of the launch of meteorological balloons at the 200 mb-level
in the Southern Hemisphere during the 1980s (Morel and Bandeen, 1973).

The use of models are highly advantegeous in regard to collecting data, be-
cause as opposed to in situ observations, numerous particles can be deployed
into the model and iterative runs can be executed so that the data set con-
tains large numbers of particle pairs. The underlying dynamics that control
the flow of the model is also known down to the smallest detail, resulting in
a controlled experimental environment.

33
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The pair statistics from experiments of forced, two-dimensional turbulent
flows have therefore been examined, and compared with similar displace-
ment distributions from oceanic and atmospheric observations.

In general, the calculations of the model data sets showed a good agree-
ment with the expected developments of the relative dispersions. C-tank
data set was forced in the interval L = [2π

60
, 2π

50
], which should result in the

relative dispersion having a time dependency cubed and the diffusivity fol-
lowing Richardson’s law, thus having a scale dependency of distance in the
4/3 power. The calculations of the c-tank data set presented both these res-
ults, hence the turbulence is within the energy cascade range of the energy
spectrum, the κ

−5

3 range.

D-tank data set was forced in the interval L = [2π
5
, 2π

1
], and this should result

in the relative dispersion following an exponential growth, and the diffusiv-
ity having a dependency of distance squared. The calculations of the d-tank
data set presented both these results, hence the turbulence is within the en-
strophy cascade range of the energy spectrum, the κ−3 range.

The results of the calculations of the SCULP data set showed, after an initial
adjustment of one day, an exponential growth up to day ∼ 11, according to
length scales of 5–50 km, followed by a power law growth for the longest
times. This is in good agreement with earlier studies of LaCasce and Ohl-
mann (2003).

The EOLE balloon data, however, showed rather indeterminable results. An
exponential growth of any size could easily be made a tangent line to curve
showing the relative dispersion for the initial period after launch. The dif-
fusivity showed the same unsteadiness; both a power law of D2 and a power
law of D

−4

3 could be in agreement with the calculations. The difficulties of
determining the relative dispersion, and consequently the energy spectrum
for the EOLE data set, are still reflected among scientists, and the studies by
(Morel and Larcheveque, 1974) and (Lacorata et al., 2004), concluded with
an exponential growth and a power law growth respectively.

The difficulties in regard to determining the growth of the relative dispersion
for some of the data sets used in this thesis can be due to the short interval
in which a particle experiences the enstrophy cascade range of the energy
spectrum. Note in Figure 4.5, that the distances for which the diffusivity
and the straight line correspond, are in a the interval: 0.01 < D < 1. This
implies that when particles enter the enstrophy cascade range, it is only a
matter of time before a new regime, i.e. the energy cascade range, affects the
turbulence, and consequently the dispersion of the particles. This means that
the particles must adjust quickly when entering the enstrophy cascade range
not to alter the statistics based on the flow within that particular range, by
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being a statistical “outlier”.

The good agreements between predicted dispersion growths and the results
presented by the model data calculations, implies that there is a need for
iterative model experiments with different initial conditions, and/ or a slight
altering of the energy interval in which the forcing is added. This will gen-
erate a larger data base, hence more thorough calculations that might make
the knowledge of the different dispersal regimes clearer. Further studies with
more extensive model data sets and comparisons between model experiments
and observations from the atmosphere and ocean is therefore of great interest.
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