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Abstract

An analytical inversion method is used to estimate the vertical profile of
SO, emissions from the major eruption of Kasatochi volcano in Alaska in
August 2008. The method uses satellite-observed total SOs columns and an
atmospheric transport model to calculate the height emission profile. The
Lagrangian particle dispersion model, FLEXPART), is used to simulate the
transport of the emitted SO5. The model simulations are based on meteor-
ological analysis data provided by the European Centre for Medium-Range
Weather Forecasts (ECMWF). Simulations are carried out for a large number
of emission altitudes above the volcano where particles are released and sub-
sequently tracked in the model atmosphere. The inversion method utilises
the fact that winds normally change with height, and the misfit between the
satellite observations and model results are minimised by combining emis-
sions from different altitudes and also consider a priori information. Using
satellite data for up to 72 hours after the eruption for the inversion, the
estimated vertical profile yields emission maxima near 5 km above sea level
(a.s.]), and around 9 and 12 km a.s.], with smaller emissions above 15 km.
The emissions reach an altitude of approximately 20 km, and the total mass
of SOs injected to the atmosphere by the eruption was estimated to 1-1.2
megatons (Mt) with approximately 0.5 Mt reaching the stratosphere. Fur-
thermore, a simulation of the transport extending for one month after the
eruption is performed using the estimated vertical profile. This transport
simulation is compared with independent satellite data and LIght Detec-
tion and Ranging (LIDAR) measurements of the volcanic plume to validate
the retrieved emission height profile. The modelled plume agrees very well
with SOs columns observed by AIRS, OMI and GOME-2, and the altitude
agrees with ground-based LIDAR observations to within 1 km. The inver-
sion result is robust against changes in the amount of observations used,
however discrepancies were found regarding the use of weighting functions
and observation uncertainties. The method is computationally very fast. It
is therefore suitable for implementation within an operational environment,
such as the Volcanic Ash Advisory Centers (VAACs), to predict the threat
posed by volcanic emissions for air traffic. It could also be helpful for eval-
uating the sulphur input into the stratosphere, e.g., in connection to the
proposed geo-engineering techniques to counteract global warming.
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Chapter 1

Introduction

Life on Earth is affected by the powerful forces of our Inner Earth - volca-
noes! The gaseous emissions of the volcanoes are a natural part of our lives
being the main source of our atmosphere and oceans which make it possible
to live on our planet. For people living close to an active volcano, everyday
life is certainly affected by the presence of the potential hazardous flaming
mountain. Even if one has never even seen a volcano in real life, one is still
affected by them through e.g. the climatic effects and potential long trans-
ported material from an eruption. Volcanoes are also responsible for the most
beautiful red sunsets. Even walking into a museum can be a part of a vol-
canic experience. The famous 1893 Edvard Munch painting, "The Scream",
shows a red volcanic sunset over the Oslo harbour. Scientists believe Munch
was inspired by the 1883 Krakatau eruption in Indonesia which caused a red
sky over Europe during the winter following the eruption (Olson et al., 2003).

Roughly 60 volcanoes erupted each year during the 1990s and probably at
least 20 volcanoes will be erupting as you read these words. Italy’s Strom-
boli, for example, has probably been erupting for more than two thousand
years (Smithsonian Institution, 2008). Volcanic eruptions inject several dif-
ferent types of particles and gases into the atmosphere. Generally, the major
component is tephra, also called ash, which is solidified material. The most
abundant gases emitted are water vapour (H20), carbon dioxide (CO2) and
nitrogen (V). It is these gases that have been the main source of the Earths
atmosphere and ocean (Robock, 2000). Another important gas emitted by
volcanic eruptions is sulphur dioxide (SO3) which will be the gas explored
in this thesis.

The effects of volcanic eruptions are several and complex, but in principle
volcanic eruptions perturb the radiation balance of the Earth and are also a
threat to airline traffic. Volcanic eruptions can cause changes in the global
climate by emissions of SO, which is converted to sulphate particles in the
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2 CHAPTER 1. INTRODUCTION

atmosphere. If the sulphate stays in the troposphere, it will have insigni-
ficant effect on the climate because of its short residence time there. But
if large amounts of SOs are emitted deep into the stratosphere where the
sulphate particles have long residence time, they will affect the Earth’s ra-
diation balance by scattering sunlight and thus increase the Earth’s albedo
and cool the planet (Textor et al., 2003).

Volcanic ash is a great danger to aircraft flying near ash clouds because the
ash can cause dangerous damage, and even loss of power on one or more en-
gines. In June 1982, for example, a British Airways Boeing 747 lost all four
engines and suffered severe damage when flying into a volcanic ash cloud over
Indonesia. The aircraft descended to 12,000 feet before being able to restart
some engines and make an emergency landing in Jakarta. Today there are
nine Volcanic Ash Advisory Centers (VAACs) around the world which are
responsible for advising international aviation of the location and movement
of clouds of volcanic ash. The VAACs use satellite information, ground re-
ports from volcanological agencies, pilot reports, meteorological knowledge
and numerical models to track and forecast ash movement so that aircraft
can fly around the airborne ash safely (VAAC, 2008)

One major goal of this study of volcanic effects is to accurately predict the
transport of volcanic emissions. One way of approaching this goal is by nu-
merical modelling of the volcanic plume. In order to perform a numerical
simulation of the volcanic plume, information on the time of eruption on-
set and duration, wind fields, loss of the emitted species etc. is required.
Another important parameter for the numerical simulation is the vertical
emission height profile of the volcanic eruption, that is, how much mass is
emitted at distinct height levels above the volcano. The warnings of VAACs
are based on numerical simulations of the volcanic emission. The London
VAAC, for example, need to have information on the location, start time, re-
lease height and top and bottom of the plume to initiate a run of the NAME
model (Numerical Atmospheric dispersion Modelling Environment) (VAAC,
2008). Without accurate information on the release height, a crude assump-
tion has to be made about the vertical profile for the volcanic emissions.

Unfortunately the emission height profile of a volcanic eruption is difficult
to determine. Several earlier studies have investigated this issue. In general,
the altitude of volcanic ash and sulphur injections into the atmosphere is
poorly constrained by direct observations. The following is an overview of
previous and other ongoing projects regarding height emission profiles of
volcanic eruption.

e Local observers can often give a hint on the emission height of ash,
but this is always of unknown accuracy, and most often the volcanic



eruption is not observed by eye witnesses at all. Also of consideration
is the SO9 which is invisible to the naked eye.

e Aircraft measurements can also be made to determine the plume height
(Mankin et al., 1992), but such observations are not normally available.
Even research aircraft will normally not fly into the plume for safety
reasons.

e Weather Radio Detection And Ranging (RADAR) or Light Detection
and Ranging (LIDAR) observations at ground can determine the plume
height (Wang et al., 2008). The disadvantage is that not all locations
are covered by such observations.

e Numerical modelling can give information of the plumes vertical dis-
tribution. The Active tracer high resolution model (ATHAM) is a
prognostic eruption-column model which uses the mass flux of pyro-
clastic materiall and ambient atmospheric conditions to estimate the
vertical emission (Oberhuber et al., 1998; Textor et al., 2003). The
problematic issue about this model is getting appropriate input data.

e Remote sensing observations from satellites can provide global coverage
but they normally only deliver total columns (e.g., SO3) or very poorly
resolved vertical profiles.

e Space based LIDAR, such as the Cloud-Aerosol Lidar with Orthogonal
Polarization (CALIOP) on board the Cloud-Aerosol Lidar and Infrared
Pathfinder Satellite Observation (CALIPSO) platform, can provide ex-
cellent height estimates for aerosols, but both the horizontal spatial
sampling and temporal coverage is poor (NASA, 2008). Therefore
there are no reliable height estimates available from satellites for oper-
ational use.

e One analysing technique involves trial-and-error fits between observa-
tions of the clouds and model results by guessing the height of the
cloud. The HYbrid Single-Particle Lagrangian Integrated Trajectory
(HYSPLIT) model, for example, can be used with satellite measure-
ments of SOy from the Ozone Monitoring Instrument (OMI), to fit
trajectories at certain altitudes with the observations (Carn et al.,
2008a). The disadvantage with this method is that the model runs
and satellite data are matched "by eye". This is a subjective process
that is time-consuming and can lead to errors.

!Pyroclastic material is another name for a cloud of vapour and rock fragments of
explosive origin (e.g., ash and lava fragments). Pyroclastic flows are usually very hot,
move rapidly due to buoyancy provided by the vapours, can extend miles from the volcano,
and devastate life and property within their paths.
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e Another technique is based on backward trajectory analysis using en-
sembles and dispersion modelling which can also provide information
on emission heights (Maerker et al., 2008). The model calculations are
initialised by satellite observations of a volcanic plume, this means that
the model performs emissions of SO at different height levels, at the
location of the satellite observations. Backward trajectories are calcu-
lated, and the trajectories that pass over the volcano at distinct height
levels at the time of eruption are counted. This results in a distribu-
tion of the most probable emission heights. The disadvantage with this
technique is that it only provides simple and qualitative estimates for
the height emission profile.

e New methods in satellite data can potentially provide information on
the SOy vertical distribution by calculating an OMI-AIRS residual
SOy column. Atmospheric InfraRed Sounder (AIRS) is a satellite in-
strument measuring in the infrared region. The AIRS SOy retrievals
are typically restricted to the upper troposphere and lower stratosphere
(UTLS) (Prata and Bernardo, 2007), while OMI provides total column
SOy measurements. A lower tropospheric SO5 cloud would produce a
large residual making it possible to estimate the SO vertical distribu-
tion in the lower troposphere (Carn et al., 2008a).

In this thesis the goal is to study the emission height profiles of a volcanic
eruption through an inversion method that uses both simulated and observed
columns of SOy. This method uses the column quantities from satellite ob-
servations together with a transport model to determine the vertical emission
profile. A large number of simulations of emission transport from different
altitudes above a volcano are performed using a Lagrangian particle disper-
sion model, FLEXPART. Remote sensing data of SO, total columns from
different satellite instruments are used to obtain a linear combination of the
model runs. The vertical profile obtained should, as well as possible, recon-
struct the observed spatial pattern. This takes advantage of the fact that
emissions at different altitudes are transported into different directions be-
cause of vertical wind shear, and thus the spatial patterns of SOy columns
bring information on the plume’s altitude. For determining the optimum
linear combination, a formal analytical inverse modelling framework is used.
The inversion method is tested for one specific volcanic eruption, and the
accuracy of the method is determined.



Chapter 2

Background

In this section a short introduction to volcanoes and their main effects is
given, starting with volcanoes and volcanic eruptions in general, moving on
to the transport of volcanic eruption plume, their effects on climate and
aviation, and finally the volcanic eruption of Kasatochi investigated in this
thesis is elaborated.

2.1 Volcanic eruptions

Volcanoes are generally found where tectonic plates are diverging or con-
verging. The Mid-Atlantic Ridge has examples of volcanoes caused by "di-
vergent tectonic plates" pulling apart. Most divergent plate boundaries are
at the bottom of the oceans, therefore most volcanic activity is submarine,
forming new seafloor. The Pacific "Ring of Fire", encircling the basin of
the Pacific Ocean, has examples of volcanoes caused by "convergent tectonic
plates" coming together. By contrast, volcanoes are usually not created
where two tectonic plates slide past one another. Volcanoes can also form
where there is stretching and thinning of the Earth’s crust such as in the
African Rift Valley and the Rio Grande Rift in North America. Moreover,
volcanoes can be caused by "mantle plumes" often far from plate boundaries.
The volcanoes at Hawaii are examples of volcanoes caused by these so-called
"hotspots".

During a volcanic eruption large amounts of solid matter and gases are emit-
ted to the atmosphere. The major component is ash. Water vapour (H20) is
typically the most abundant volcanic gas, followed by carbon dioxide (CO2),
nitrogen (N2), and sulphur dioxide (SO2). The mass loadings of a volcanic
eruption varies from one eruption to another. The extreme eruption of Mount
Pinatubo in the Philippines in June 1991, emitted an estimated 20 megatons
(Mt) of SO to the atmosphere (Bluth et al., 1993).
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The duration of a volcanic eruption varies substantially. A few volcanoes
have been erupting more or less continuously through the last three decades,
other eruptions end swiftly. Most end in less than 3 months, and few last
longer than 3 years. The median duration is about 7 weeks (Smithsonian
Institution, 2008).

There are many different kinds of volcanic activity and eruptions. The main
classification involves explosive and non explosive eruptions. Several meas-
uring units exists for defining volcanic eruption, for example, Volcanic Ex-
plosivity Index (VEI) which records how much volcanic material is thrown
out, how high the eruption goes, and how long it lasts. The index ranges
from 0, being non-explosive, to 8, a mega-colossal eruption. The eruption
of Mount Pinatubo in 1991 was a category 6 eruption termed colossal. For
non explosive eruptions, the injection height can be on the order of a few
hundred meters and is dominated by thermal plume rise. Explosive erup-
tions have a considerable initial exit velocity, followed by buoyant convection
due to entrainment and heating of air by the hot ash. The thermal energy
in explosive eruption plumes allows them to quickly reach high altitudes.
Generally the injection height depends on the kind of eruption and meteor-
ological parameters (Oberhuber et al., 1998), such as the wind, humidity
and stratification. For moderate-scale explosive eruptions, 20% of volcanic
plumes rise higher than 15 km, 60% rise above 10 km, and 80% rise above 6
km (Halmer and Schmincke, 2003). For the eruption of Mount Pinatubo in
June 1991, gas and particles were carried to an altitude of more than 30 km
(McCormick et al., 1995). Once the species are injected into the stratosphere
they are rapidly advected around the globe.

2.2 'Transport

The dispersion of volcanic clouds depend heavily on the meteorological set-
tings at the time of the eruption. As an example, the two volcanoes El
Chichon (17° N) and Pinatubo (15° N) are separated by only 2°, however
the eruptions in 1982 and 1991, respectively, resulted in clouds separated by
as much as 15° after only one circuit of the globe (Robock, 2000).

Even though the local atmospheric winds play a significant role for the dis-
persion, it is possible to say something about the likelihood of a volcanic
cloud in a distinct height, spreading in a certain direction based on the
mean wind circulation patterns.
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The general circulation of the troposphere is often described by a three-cell
model, as illustrated in figure 2.1. The three circulation cells; the Hadley cell,
the Ferrel cell and the Polar cell, form the Trade winds and the Westerlies
which are dominating the horizontal transport in the troposphere. Volcanic
clouds in the lower troposphere would tend to follow these main transport
patterns, e.g., volcanic clouds from equator to ~30° N will mainly be trans-
ported westward. In the contrary case, volcanic emissions are transported
mainly eastward when they occur between ~30°-60° N.

Figure 2.1: Ilustration of the global circulation cells and wind patterns.
(Source: http://sealevel.jpl.nasa.gov/overview/ climate-climatic.html).

In the mid- and upper-troposphere (MUT), zonal winds are stronger than
meridional winds. The strong zonal jets at around 10 km altitude are found
at roughly 30° N in January and 30° S in July, the latter one can be identified
in figure 2.2(a) which shows the long-term mean zonal wind fields at 250 hPa
(~10 km) for August. Consequently, in the MUT, volcanic clouds tend to
travel rapidly in the zonal direction. Zonal winds are generally quite weak at
10° S and 10° N of the equator, but there is noticeable seasonal dependence,
with easterlies dominating the latitudes north of equator in August, as seen
on the figure. The eruptions that occur north and south of 10° will spread
volcanic debris in directions and at speeds that depend on the hemisphere
and the season. Figure 2.2(b) shows the latitude-height cross section of the
long-term mean zonal winds for the northern hemisphere in August, with the
strongest zonal wind found at 250hPa around 40°-50° N . The wind patterns
change significantly with height, it is therefore critical to know the emission
height of the eruption to determine where it will disperse.
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NCER/NCAR Reanalysis NCEP/NGER: Resnalysis

250mb Zonal Wind {m/e) Climatology 1968-1998 Zanal Wind {m/s) Climatelogy 1568—1856
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Figure 2.2: Long-term mean zonal wind in m/s for August. a) Horizontal fields at
250hPa b) Latitude by height cross section. From NOAA/ESRL Physical Sciences
Division, see: hitp://www.cde.noaa.gov/cgi-bin/data/composites/printpage.pl

2.3 Effects on climate

Of the most abundant gases emitted during a volcanic eruption, both HoO
and C'Oy are important greenhouse gases, but their atmospheric concentra-
tions are so large that individual eruptions have a negligible effect on their
concentrations and do not directly impact the greenhouse effect (Robock,
2000).

The most important climatic effect of explosive volcanic eruptions is through
emission of sulphur species deep into the stratosphere, mainly in the form
of sulphur dioxide (SO3). It is a colourless gas with a characteristic odour.
The background atmosphere contains very little SO2. Most anthropogenic
sources come from industry whilst natural emissions are dominated by vol-
canic sources (Brasseur et al., 1999).

In general the effects of SO2 emissions by volcanic eruptions depend on the
height of the emitted gas, hence if it stays in the troposphere or is injected
into the stratosphere. When SO is emitted to the troposphere it is poten-
tially harmful to human health by causing eye irritation, breathing difficulties
and death when encountered in high concentrations. When a volcanic plume
containing SOy mixes with atmospheric moisture, acid rain forms. Acid rain
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can significantly reduce the growth of plant life (Brasseur et al. (1999)). In
the troposphere gas phase oxidation of SOy by hydroxyl radical OH forms
sulphate. The lifetime! of SO, and sulphate in the troposphere is on the
order of a few days (e.g., Berglen et al. (2004)), limiting the climatic impact.

S0 in the stratosphere has a significant impact on global climate. Vol-
canic eruptions produce most of the SOs in the stratosphere, and SO and
other sulphur-based gases are believed to be the primary precursors of stra-
tospheric aerosols (Liou, 2002). The SOs converts to sulphate aerosols which
is of specific importance to climate due to their long residence time in the
stratosphere. The transformation of SO to aerosols in the stratosphere is by
chemical reaction with OH and H20O on a timescale of weeks (Bluth et al.,
1997). The resulting sulphuric acid (H2504) rapidly condenses into aerosols
because it has a very low saturation vapour pressure. The sulphate aerosols
produced are about the same size as visible light, with a typical effective
radius of 0.5 micrometres and have a single scattering albedo of 1 (Robock,
2000). They therefore strongly interact with solar radiation by scattering.
The aerosols reflect some solar radiation back to space, thus increasing the
Earths albedo (Textor et al., 2003) by a direct radiative effect. As a result
the Earth’s surface will be cooled by the reduced amount of solar radiation
reaching the surface. In contrast, the aerosols in the stratosphere will ab-
sorb both upwelling infrared radiation from the troposphere and surface, as
well as some solar radiation, and the result is heating of the stratosphere, as
illustrated in figure 2.3.

Heterogeneous

cloNO, cIO

HCI \ /

S0 = HoSOy o o e _‘ vWarn:\in-g e

Stratosphere

\\\\ Nucleation and *
\\\, \ Particle Growth —»
»
*\* Rainout Removal
H,0, HCI, Ash Processes

Cirrus Modification
Infrared

Troposphere
&

Surface cools

Figure 2.3: Volcanic effects on climate. Source: McCormick et al. (1995)

IThe atmospheric lifetime of a species is defined as the average time it takes for the
abundance of a molecule to be reduced by a factor 1/e, also known as e-folding time.
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The radiative forcing produced by the enhanced anthropogenic sulphate aer-
osol burden since preindustrial times is estimated to be approximately -0.5
W /m?, see figure 2.4. The value was updated to -0.4 + 0.2 W /m? in the
IPCC Fourth Assessment Report. This negative forcing partially offsets the
larger (about 2.4 W /m?) warming effect of greenhouse gases.

The global mean radiative forcing of the climate system
for the year 2000, relative to 1750

3

. Halocarbons
2 2r Ny Aerosols |
B P,
- 5 CHq i Black 4 1
£ 2 co carbon from

f : . fi |
g5 Tropospheric i’ Mineral  Aviation-induced
3 geihe burning Dust Solar
i -

Gontrails Cirrus T

N I N > s —
> = Stratospheric J_ Organic E
k= Qzons: carbon g; Land-
2 B 4 o Biomass Al i
“; E = Sulphate AR burning i talbedo)
5 fuel effect only
= burning
1
[+ -2

High Medium Medium Low Vary Very Very Very Very \Very WVery Very
Low Low Low Low Low Low Low Low

Level of Scientific Understanding

Figure 2.4: External factors force climate change. Forcing due to episodic volcanic
events, which lead to a negative forcing lasting only for a few years, is not shown.

From: IPCC (2001).

Because of the episodic and transitory nature of volcanoes, it is difficult to
give a best estimate for the volcanic radiative forcing. Global climate mod-
elling suggest that the radiative effect of volcanic sulphate is only slightly
smaller than that of anthropogenic sulphate, even though the anthropogenic
SO, emissions are about five times larger (IPCC, 2001). The main reason is
that SOs is released from volcanoes at higher altitudes where the residence
time of SOs is longer mainly due to low dry deposition rates. The explosive
1991 Mount Pinatubo is the only major eruption that is well-documented. It
is estimated that a radiative forcing of about -4 W /m? was reached approx-
imately six months after this eruption (McCormick et al., 1995). There have
been no explosive and climatically significant volcanic events since Pinatubo
and the global stratospheric aerosol concentrations are currently very low
(Forster et al., 2007b).

Recently it has been suggested that injecting sulphur into the stratosphere
could be used as a strategy to reduce global warming due to increasing C'O,
levels (e.g., Crutzen (2006); Wigley (2006)). It is believed that emissions of
a large amount of sulphate into the stratosphere will cause surface cooling
that to some extent can offset the global warming by greenhouse gases. Such
a drastic tampering with the Earth’s climate requires very careful considera-
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tion. At the present, the annual injection of SOs into the stratosphere from
volcanoes is poorly known. However, volcanic eruptions are a natural source
of sulphate in the atmosphere and can be used to study the consequences of
emitting large amounts of sulphate into the atmosphere.

The equatorial region is specially important for stratospheric gas injection
because it is the area with the highest frequency of eruptions. Furthermore,
gas injected into the stratosphere in equatorial areas can quickly be trans-
ported around the globe by winds and also into both hemispheres (Halmer
and Schmincke, 2003). However, eruptions in the tropics have to be more
powerful to inject gas into the stratosphere than eruptions at high latitudes
because the tropopause rises from approximately 9-11 km at the poles to
15-16 km in the equatorial region (0°-30°North). For the polar region, stra-
tospheric winds tend to push sulphate aerosols towards the poles and towards
the surface, hence limiting the area influenced by the aerosols.

Another reason for the importance of tropical volcanic eruptions is an at-
mospheric dynamical response to large tropical volcanic eruptions. Tropical
volcanic eruptions can cause tropospheric warming rather than an enhanced
cooling over Northern Hemisphere continents. The lower stratospheric heat-
ing by aerosols is much larger in the tropics than at the poles as there is more
sunlight present near equator. The tropical heating increases the Equator-
Pole temperature gradient and makes the jet stream (polar vortex) stronger.
The strengthened polar vortex traps the wave energy of the tropospheric
circulation, and the stationary wave pattern known as the North Atlantic
Oscillation (NAO) circulation pattern is amplified. This advective effect
dominates over the radiative effects in the winter, producing winter warm-
ing over Northern Hemisphere continents (Robock, 2000).

Other climatic effects by sulphate include indirect radiative effects where the
sulphate particles can act as cloud condensation nuclei in the troposphere
(Textor et al., 2003). By increasing the number of droplets and decreasing
their size, the optical properties of the clouds are changed, e.g., the reflectiv-
ity of the cloud is enhanced. This can possibly be involved in a climate
feedback loop. In addition, the precipitation efficiency is reduced and the
cloud water content and lifetime of clouds are increased. Both the direct
radiative effect and these indirect radiative effects contribute to a cooling
of the Earth’s surface (IPCC, 2001). Furthermore, the sulphate aerosols in
the stratosphere can provide sites for heterogeneous reactions that can cause
ozone depletion on a global scale. Analyses of long-term global observations
have shown a reduction in global mean ozone amount of about 4 % following
the Mt. Pinatubo eruption (Brasseur et al., 1999). Volcanic effects may per-
sist for 2-3 years after a major eruption, roughly the stratospheric residence
time of the sulphate aerosols.
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2.4 Aviation hazard

Volcanic ash can cause extensive damage to aircraft flying into ash clouds.
The ash can cause machinery damage and even complete engine shut-down.
Also the windscreens of the aircraft are scraped off by the ash reducing sight.
This is extremely dangerous for safety reasons, in addition, the ash encoun-
ters can cause very expensive damage to the aircraft.

The problems with volcanic clouds affecting air traffic are many. Volcanic
eruptions are highly unpredictable both in time and location, however on
average eruptions occur about once per week somewhere on the globe. Most
volcanoes are remote and observed rarely. The volcanic emissions can spread
a long distance in just a few hours, moreover the fine ash particles do not
show up on the aircraft’s radar and cannot be seen at night or in clouds.
It can also be difficult to discriminate hazardous volcanic clouds from more
common meteorological clouds by the naked eye.

Many commercial aircraft cruise at an altitude between 10-13 km to exploit
the high velocity jet stream winds (~100m/s) to save time and fuel. Vol-
canic eruptions that inject material to altitudes of ~10 km may pose a great
threat to these airroutes. The high wind speeds at this altitude will poten-
tially transport the emitted material over long distances in just a few hours,
so that volcanic debris can be found far from its source. Occupying the jet
stream currents, aircraft may risk extended contact with volcanic gases and
particles.

Identifying hazardous volcanic ash in the atmosphere, and especially determ-
ining the vertical distribution of the cloud during transport is performed with
large difficulties. When an eruption occurs, the ash and gas are probably
spread throughout the vertical column of the atmosphere from ground up
to the maximum height reached by the volcanic cloud. During the first few
hours after the eruption, the areas in the vicinity of the volcano poses the
greatest threat to aviation. Following an eruption, the ash and gases can
be transported over great distances. During this transport the ash and gas
are usually restricted to a much smaller vertical range of 1-2 km. However,
currently there is not sufficient information available on where the cloud is
localised in the vertical. Furthermore, the level of minimum ash concentra-
tion level dangerous to aviation is not known accurately. For these reasons,
the current practice is to warn aircraft pilots to fly around a rather large
spatial region which is determined by the horizontal location of the cloud, as
well as the vertical region from ground up to the flight level affected. But be-
cause the volcanic cloud usually is confined to a layer of 1-2 km, this strategy
is perhaps unnecessary and is clearly a financial burden for the airline com-
panies. By knowing the injection height profile of an eruption, it will be



2.4. AVIATION HAZARD 13

possible to forecast the cloud movement with greater accuracy and provide
reliable information on where the cloud is localised in the vertical. By offer-
ing height and horizontal spatial information of the location and movement
of volcanic clouds, and also by specifying a critical ash concentration level,
the aviation industry will be able to re-route air traffic as necessary for safety
reasons, and at the same time minimise the extra cost by decreasing the use
of fuel.

Today there are nine Volcanic Ash Advisory Centers (VAACs) around the
world, appointed by the World Meteorological Organization (WMO). They
work as a link between meteorologists, volcanologists and the airline industry.
They issue warnings about the location and movement of clouds of volcanic
ash. The VAACs include the use of numerical models to track and forecast
ash movements, and continuous improvements on the modelling of the dis-
persion is an important part of their work.

There are several concerns about modern developments in the aviation in-
dustry regarding the effects of hazardous volcanic clouds on aviation. Air
traffic is growing globally and in the future the Asian Pacific region is likely
to be the most vulnerable for volcanic cloud encounters because of the large
number of volcanoes present, and the increasing rate of air traffic (Prata,
2008). In addition, modern developments in aircraft show an increasing
trend towards 2-engine jets, away from 4-engine aircraft. With fewer en-
gines the risk of complete loss of power is amplified.

Volcanic gases, specifically SOs may also pose a hazard to aircraft, however
the extent of this threat is not known exactly. It is possible that SO,
in sufficiently high concentrations could cause fuel contamination, and if
encountered as sulphuric acid aerosol, it is believed that window damage
could also occur (Bernard and Rose, 1984). It is generally assumed that the
emission of SO, will be accompanied by ash. Therefore, pilots are trained to
recognise the acrid odour generated by sulphur gases. If the gas is detected
they should take precautions and report it. Under the assumption that
volcanic SOs in the upper troposphere travels with volcanic ash, it is sensible
to use satellite measurements of SOs as a proxy for volcanic ash. Also since
S0s is easier to measure using remote techniques, it is often preferred to use
S0- measurements. However, in some cases gas and ash can be separated
and travel in different directions and at different heights in the atmosphere.
This can be due to the different specific gravities of gas and ash (Holasek et
al., 1996). It might also be possible that the emissions of gas and ash happen
during different phases of the eruption and in that way are separated. The
theory of separation has been documented by cases investigated by Prata and
Kerkmann (2007) and Schneider et al. (1999) and needs further research.
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2.5 Kasatochi Volcano, Alaska

Kasatochi Volcano (52.17°N, 175.51°W) is a small unpopulated 2.7x3.3 km
wide island volcano in Alaska, situated on the Aleutian arc. The active stra-
tovolcano reaches only 314 m above sea level, and the 750-m-wide crater
contains a saltwater lake (Smithsonian Institution, 2008).
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Figure 2.5:  Position of Kasatochi Volcano. Source: AVO

From 7-8 August 2008 the volcano erupted with little warning. It had not
erupted in at least 200 years. The eruption emitted one of the largest vol-
canic sulphur dioxide clouds scientists have observed since Chile’s Hudson
volcano erupted in August 1991 and emitted approximately 1.5 teragrams
(Tg) of SO7 into the atmosphere. For Kasatochi the maximum mass load-
ings of SO were found to be about 1.2-1.5 Tg (e.g., NASA (2008); Rix et al.
(2008)). The eruption also injected an amount of ash into the atmosphere.
Alaska Airlines was forced to cancel 44 flights between the 10 and 11 August
2008 (O’Malley and Bragg, 2008). The ash particles got deposited after a few
days, while the SO, dispersed throughout the whole northern hemisphere.
Furthermore, Theys et al. (2009) detected large enhancements of bromine
monoxide (BrO) by the Global Ozone Monitoring Experiment-2 (GOME-2)
satellite instrument in the vicinity of Kasatochi in the days following the
eruption.

The exact time of the eruption is not known since the crater was covered
by clouds and thus eye witnesses were not able to make any observations.
On the morning of 7 August, Alaska Volcano Observatory (AVO) reported
increased earthquake activity and volcanic tremors, as well as observations
of a strong sulphur smell by a US Fish and Wildlife Service field crew on
the island. The same day satellite data showed an ash plume to an altitude
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of at least 10 km in the vicinity of Kasatochi Volcano at 22:30 UTC. On
8 August, AVO reported that three major explosive eruptions occurred at
Kasatochi between approximately 22:00 UTC on 7 August and 04:35 UTC
on 8 August. Ash from these explosions reached at least 13.5 km above sea
level and produced a continuous ash cloud.

The meteorological conditions at the Aleutian arc shortly before and after
the eruption are illustrated in figure 2.6 with geopotential heights, given in
decametre (dkm), on the pressure levels 1000hPa and 500hPa. The geo-
potential heights are taken from the European Centre for Medium-Range
Weather Forecasts (ECMWF) analysis. The figures show a small cyclone
south of the volcano in the hours before the eruption. During the eruption
the low pressure system moves eastward, and roughly 12 hours after the
eruption the cyclone is found southeast of the volcano. Consequently, due
to the flow in the cyclone, the volcanic plume became "croissant"-shaped
within one day after the eruption. Later the plume was transported into a
distinct circular shape.
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Figure 2.6: Geopotential height [dkm] on pressure levels 1000hPa (red line) and
500 hPa (blue line), for the hours shortly before and after the eruption of Kasatochi.
From the ECMWE analysis.

After drifting over the Pacific Ocean, the SOy cloud was transported over
North-America, reaching Europe in one week then taking another seven days
to reach Alaska again.
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Several satellite instruments (e.g., AIRS, OMI, GOME-2, MODIS) were able
to observe the volcanic cloud emitted by the eruption of Kasatochi. On 8
August, the day after the eruption, skies were cloudy when the Moderate
Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satel-
lite passed overhead and captured the natural-colour image shown in figure
2.7(a). The bright clouds provided good contrast for the volcanic plume,
which is dark brown. The distinct "croissant"-shape of the plume is clearly
visible. Figure 2.7(b) shows the SOy plume detected by the GOME-2 instru-
ment on the MetOp-A polar-orbiting satellite, on 12 August, 5 days after
the eruption, when the plume has moved over North-America.
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Figure 2.7:  a) Voleanic ash plume from the Kasatochi eruption, as detected by
MODIS on 8 August 2008. From: NASA (2008) image by Jeff Schmaltz. b) The
Kasatochi volcanic SOy plume detected on 12 August by the GOME-2 instrument.
From: Rix et al. (2008)



Chapter 3

Methodology

The inverse method used in this study makes use of an atmospheric transport
model and satellite data. Generally, a simulation of the volcanic eruption, for
a few days following the eruption, is done with a numerical model. Appro-
priate input data for the eruption, e.g. time of eruption onset and location
is needed and an a priori height emission profile is assumed. Together with
corresponding satellite data for the eruption, the inverse method is applied
to give an estimated height emission profile of the volcanic eruption. This
section describes first the numerical model used, secondly a description of
the different satellite data used, and finally the inverse method is described
in more detail.

3.1 FLEXPART

The numerical model used in this thesis is the atmospheric trajectory and
particle dispersion model, FLEXPART (Stohl et al. (2005, 1998), see also
http://transport.nilu.no/flexpart). The model was originally developed
to simulate the dispersion of dangerous substances from point sources, such
as after an accident in a nuclear power plant. At the present, the main
applications for the model are atmospheric transport of radionuclides after
nuclear accidents, pollution transport, greenhouse gas cycles, stratosphere-
troposphere exchange, water cycle research and others. The model was de-
veloped by Andreas Stohl and mainly people from NILU, Institute of Met-
eorology in Austria and the Preparatory Commission for the Comprehensive
Nuclear Test Ban Treaty Organization in Vienna, Austria. It is now used by
a large number of research groups in many different countries.

17
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FLEXPART is a Lagrangian particle dispersion model which calculates so-
called trajectories by following "tracer particles" as they are displaced by the
winds. Lagrangian methods are generally used to determine, for example,
the transport over several days of an air parcel released at a given location in
the atmosphere. Lagrangian algorithms are frequently used in regional pollu-
tion studies, that is, to compute the dispersion of pollutants in industrialised
areas. Lagrangian models are simple in concept and, unlike Eulerian models,
are not subject to numerical diffusion which can damp out or smooth differ-
ences in the tracer field. Furthermore, Lagrangian models are independent of
computational grid and can in principle have infinitesimally small resolution.

By releasing a large number of tracer particles (not necessarily representing
real particles, but infinitesimally small air particles) FLEXPART can simu-
late the long-range and mesoscale transport, diffusion, convection, dry and
wet deposition, and radioactive decay of these released tracers. The model
can be used forward in time to simulate the dispersion of tracers from their
sources, or backward in time to determine potential source contributions for
tracers reaching a given location in the atmosphere. The model is an off-
line model which can use meteorological fields (analysis or forecasts) from
a variety of global and regional models, most commonly from the ECMWF
numerical weather prediction model. Trajectories of tracer particles are cal-
culated using the mean winds interpolated from the analysis fields as well as
random motion representing turbulence (Stohl and Thompson, 1999). For
moist convective transport, FLEXPART uses the scheme of Emanuel and
Zivkovi¢ Rothman (1999), as implemented and tested in FLEXPART by
Forster et al. (2007a).

The particle trajectory calculations are done by integrating the trajectory
equation

dX/dt = v[X(1)] (3.1)

where ¢ is time, X the position vector and v =v+vy + vy, the wind vector
that is composed of the grid scale wind v, the turbulent wind fluctation v¢
and the mesoscale wind fluctations v,.

The main advantage of FLEXPART is that it requires only a short compu-
tation time. The model was validated by Stohl et al. (1998) with data from
continental-scale tracer experiments. In summary it seems to be one of the
better dispersion models currently available. The model has been used in
several studies on long-range atmospheric transport, and also on volcanic
plumes (Eckhardt et al., 2008a; Prata et al., 2007).
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3.1.1 Model setup

In this study the Lagrangian particle dispersion model FLEXPART is used to
simulate the transport of sulphur dioxide (SO3) emitted by a volcanic erup-
tion. Simulations are carried out for a large number of emission altitudes
above the volcano where particles are released and subsequently tracked in
the model atmosphere.

The model simulations are based on meteorological analyses data provided
by the European Centre for Medium-Range Weather Forecast (ECMWF,
2002). The ECMWEF data have vertical resolution of 91 levels, and 1° x 1°
horizontal resolution. Analyses at 00:00, 06:00, 12:00 and 18:00 UTC as well
as 3-h forecasts at intermediate times are used.

The first model setup is for the simulation used as input to the inversion
method. This simulation explores the sensitivity of downwind SO. total
columns to the altitude and mass of the initial emissions. The emissions
are assumed to occur between ground and 25 km above the volcano. The
total height is divided into 50 segments each 500 meters deep. Within every
segment, 150 000 tracer particles with a total mass of 1 kg are released
uniformly along a vertical line source. The simulation starts at the eruption
onset which is assumed to take place 7 August 2008, at 22:30 UTC, based on
reports from Alaska Volcano Observatory which indicate that satellite data
show an ash plume in the vicinity of Kasatochi at this time. Even though
the reports state that three explosive eruptions occurred between the late
evening on 7 August and the early morning of 8 August, it is assumed that
all mass is emitted at the eruption onset. The simulation extends for 3 days
until 10 August 2008, at 22:30 UTC. The model computes concentrations
every hour throughout the simulation. The output is on a 1° x 1° grid, with
11 vertical layers. The lowest layer extends from ground up to 4 km above
ground level (a.g.l) followed by 9 layers with vertical resolution of 2 km, and
one single layer from 22-50 km a.g.l. Table 3.1 gives a summary of the model
setup for the simulation used as input to the inversion method.

From this model simulation total atmospheric columns are computed, and
since they are obtained with unit mass as source, they represent so-called
source-receptor relationships. That means they describe the dispersion of
tracers from their sources to different receptor locations in the atmosphere.
The source-receptor matrices are used in the inversion method by compar-
ing these modelled column quantities with total SOs columns retrieved from
satellite measurements. The method determines the actual mass released at
each level above the volcano.
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Parameter Value
Model FLEXPART
Type of model Lagrangian particle dispersion model
Coordinates of volcano Latitude: 52.1693°N
Longitude: 175.5113°W
Simulation start 07 August 2008, 22:30 UTC
Simulation end 10 August 2008, 22:30 UTC
Species released Tracer
Release Instantaneously at simulation start
Emission segments 0-50 km a.g.1
Depth of emission segments 500 m
Number of particles for each segment | 150 000
Mass released for every segment 1 kg
Grid resolution 1° x 1°
Grid size 360° x 180°
Output time step 3600 s(60 min)
Output fields Concentrations [ng/m3]
Output layers 0-4km, 4-6km,...,22-50km

Table 3.1: Modelling Input/Output Parameters for the simulation used as
input to the inversion method.

The inversion method will give an estimate of the height emission profile of
S05. As elaborated in chapter 2, SOs is lost by e.g., reaction with OH as
well as dry deposition. This first simulation which goes into the inversion
only considers a tracer and no removal by dry deposition or reaction with
OH. Since the lifetime of SOy in UTLS is of the order of a few weeks, the
simulation extending over 3 days is assumed not to be critically sensitive to
removal of SOs. Nevertheless, at a later stage these removal processes were
considered in the simulation, but did not give any noticeable effects on the
height emission profile estimated by the inversion method.

After applying the inversion method and having obtained the so-called in-
version profile (height emission profile), a longer simulation of the transport
is performed. This model setup is quite similar to the previous simulation
regarding horizontal output fields and simulation start. However, the 50
height segments are each given mass and particles according to the estimated
height emission profile. The total number of particles released is increased
to 4 million. The removal of SOy by dry deposition and reaction with O H
are considered. The vertical output resolution is increased to 1 km, and
further increased for comparison with LIDAR data. The simulation extends
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over one month following the eruption onset and is used for validation of the
inversion profile.

A rather new feature in FLEXPART is the ability to compute removal by
reaction with OH. Monthly averaged three-dimensional OH concentration
fields are provided from the GEOS-CHEM model (Bey et al., 2001). If a
positive value for the OH reaction rate is given, OH reaction is performed
in the model simulation and tracer mass is lost by this reaction. A monthly
averaged 3° x 5° resolution O H field averaged to 7 atmospheric levels is used.
The reaction rate is temperature corrected and an activation rate of 1000
J/mol is assumed (Eckhardt et al., 2008b). For these model simulations the
OH reaction rate at 25°C is set to k = 1.35 x 1072e¢m™3s~!, which gives a
mean SO, lifetime of about 9 days when using a typical daytime OH con-
centration of 10% molecules cm ™2 at the ground, and consider loss of SOy by
OH only.

Dry deposition is described in FLEXPART by a deposition velocity

vg(v) = —F./C(z) (3.2)

where F, and C are the flux and concentration of a species at height z within
the constant flux layer. A constant deposition velocity vg can be set. If the
physical and chemical properties of a substance are known, more complex
parametrisation for gases and particles are also possible (Eckhardt et al.,
2008b). For this study, dry deposition of SOy was calculated with the resist-
ance method (Wesely and Hicks, 1977) using data from Wesely (1989) with
updates.

Since SO, is only slightly soluble, wet deposition is of minor importance and
was not considered as a sink for SOy. Berglen et al. (2004) calculated loss of
SOs by wet deposition in the troposphere to 1.7% of the total loss of SO,
using the OsloCTM2 model. However, SO, in the troposphere is also lost by
aqueous oxidation by Os, HoOs and HOoN O,, the latter one being of minor
importance. None of these aqueous removal processes were considered in the
model simulation, nor was catalytic decay of SO by metals which also is
rather important (Berglen et al., 2004).
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3.2 Satellite data

Several satellite instruments were able to make measurements of the erup-
tion of Kasatochi Volcano on 7 August 2008 and also the days following the
eruption. This subsection will give an overview of the satellite data used in
this study. First, satellite instruments in general are discussed, thereafter
the specific instruments used in this study are introduced.

There are several important sensors aboard a group of satellites termed the
Afternoon Constellation, or NASAs A-Train, for short. The name is due to
the local afternoon overpass time. The constellation consists of several polar-
orbiting satellites in close formation. NASA’s Aqua satellite is leading the
A-train, followed by CloudSat, CALIPSO, the European PARASOL satellite,
and NASA’s Aura satellite. The local times (LT) of overpass by the satellites
starts at 01:30 PM, and the last satellite overpasses at 01:38 PM LT. The
result is that the same air mass is observed by multiple instruments within
a 15-min time window.

The A-Train

Figure 3.1: NASA’s A-train spacecraft. Source: NASA (2008)

The instruments can in general be used to measure clouds, moisture, aerosols,
gases etc in the atmosphere. Of special interest are the sensors which can
be used to detect and track volcanic emissions, especially SOs. These types
of instruments on the Aura Platform are the Ozone Monitoring Instrument
(OMI), Microwave Limb Sounder (MLS) and Tropospheric Emission Spectro-
meter (TES). On the Aqua platform, Atmospheric Infrared Sounder (AIRS)
and Moderate Resolution Infrared Spectroradiometer (MODIS) can also
measure SO of volcanic origin. Also of special interest is the Cloud-Aerosol
Lidar with Orthogonal Polarization (CALIOP) on board the CALIPSO satel-
lite, which can measure cloud height and aerosol type. The instruments
utilised in this study are AIRS and OMI.
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In general, the retrievals of SO column abundances from the satellite in-
struments are based on making use of radiation at specific wavenumbers
that is affected by absorption of a specific gas in the atmosphere. For the
infrared (IR) radiation measured by AIRS, SO, has absorption features at
4, 7.3 and 8.6 um. For ultraviolet (UV) radiation, measured by OMI, SO,
has significant absorption structures in the spectral region between 310 and
340 nm.

3.2.1 AIRS

The Atmospheric Infra-Red Sounder - AIRS on board the EOS-Aqua polar
orbiting satellite was able to track the SOy cloud from Kasatochi for more
than two weeks as the cloud moved over Europe and on to Russia. The instru-
ment has high spectral resolution and is operating at infrared wavelengths
between 3.7 and 15.4pm (Chahine et al., 2006). One big advantage with
this instrument is the ability to make observations during nighttime since
the instrument makes use of infrared radiation.

Satellite infrared retrievals based on the AIRS measurements were made
available for the eruption of Kasatochi by Fred Prata at NILU. No vertical
resolution of SOy can be obtained by the satellite, but total SOy column
abundances were determined by use of the retrieval scheme developed by
Prata and Bernardo (2007). The algorithms for determining SOs from AIRS
exploit the strong SOs anti-symmetric absorption feature near 7.3 pum, but
because water vapour also absorbs strongly across this band, the retriev-
als are restricted to UTLS - the upper troposphere (heights > 3 km) and
lower stratosphere. For more details on the retrieval, see Prata and Bern-
ardo (2007). Some of the observations are incomplete, meaning that the
swath width of the instrument was insufficiently wide in order to capture
the complete cloud, as seen on the east side of the plume of figure 3.2(a),
with the swath width boundaries marked with grey lines. Maximum UTLS
mass loadings were found to be ~1.2 Tg from this instrument, this is slightly
lower than that found using ultra-violet OMI measurements. The difference
is mostly due to the lower penetration depth of the AIRS measurements.

The satellite data were made available in non-gridded text format on spe-
cific longitudes and latitudes with values of SOz in Dobson Unit (DU). The
data were subsequently resampled to a grid of the same size as the FLEX-
PART output data, that is a global grid of 1°x1°. The instrument made
observations of the Kasatochi plume at times between 11:30 and 14:30, and
21:30 and 00:30 (all times in UTC). For input to the inversion method the
satellite data were approximated to the nearest hour to be compared with
the corresponding time of the FLEXPART simulation. Table 3.2 gives an
overview of the observations used in the inversion method.
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Date

Approximate time

Actual time

08.08
08.08
09.08
09.08
09.08
09.08
09.08
10.08
10.08
10.08

13:30 UTC
23:30 UTC
00:30 UTC
12:30 UTC
14:30 UTC
22:30 UTC
23:30 UTC
11:30 UTC
13:30 UTC
21:30 UTC

13:42 UTC
23:11 UTC
00:53 UTC
12:41 UTC
14:23 UTC
22:17 UTC
23:53 UTC
11:53 UTC
13:29 UTC
21:23 UTC

Table 3.2: AIRS observation times used as input to the inversion method.
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Figure 3.2: SO columns measured by the AIRS instrument on a) 9 August at

23:53 UTC and b) 10 August at 21:23 UTC. The swath width boundaries of the
overpasses are marked with grey lines.
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3.2.2 OMI

The Ozone monitoring instrument - OMI is a Dutch-Finnish instrument and
was provided to the EOS/Aura mission by the Netherlands and Finland. The
instrument was designed principally for measuring global ozone. It measures
solar back-scattered radiation in the UV between 270 and 365 nm, thus, no
observations are available after sunset or at low solar elevation. In the days
that followed the eruption of Kasatochi, the OMI instrument tracked a dense
cloud of sulphur dioxide dispersing over The Pacific Ocean as shown in figure
3.3.

Satellite retrievals of SO9 column abundances based on the OMI measure-
ments were made available for the eruption of Kasatochi by Fred Prata at
NILU and are based on retrieval schemes described by Krotkov et al. (2006)
and Yang et al. (2007). The algorithm used for determining SOy from OMI
exploit SOs absorption features between 310 and 340 nm. The challenge is to
distinguish SO- absorption effects from those of ozone which absorbs in the
same spectral region. This absorption effect has been accounted for in the al-
gorithm. Maximum SOs mass loadings were found to be ~1.3 Tg from OMI.

The satellite data were made available in gridded format on a 1°x1°grid
from 180°E to 180°W, and 40°N to 85°N. Values were given as SOy column
data in Dobson Unit (DU). Usually there were 14 or 15 scenes (orbits) in
a day, which is typical for a polar orbiter. The scenes and times (given in
seconds after 00UTC) which covered the Kasatochi plume were identified
and used. For input to the inversion method the satellite data were approx-
imated to the nearest hour to be compared with the corresponding time of
the FLEXPART simulation. Table 3.3 gives an overview of the observations
used in the inversion method.

Date Approximate time Actual time

08.08 23:30 UTC 23:30 UTC
10.08 00:30 UTC 00:13 UTC

Table 3.3:  OMI observation times used as input to the inversion method.
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Figure 3.3: SOy columns measured by the OMI instrument on a) 8 August at 00:26
UTC and b) 8 August at 23:30 UTC.

3.2.3 Weighting function

The satellite retrievals have a significant dependence on the height of the ob-
served SO, cloud. For gases, such as SOs, which is not uniformly distributed
in the atmosphere, an assumption has to be made about the height of the SO4
cloud. The assumption comprises contributions to total column quantities
from certain height intervals. Consequently, the satellite measurements do
not give actual total column quantities, rather a "weighted" total column.
For infrared satellite retrievals, the weighting functions depend mainly on
the temperature profile of the atmosphere. The SOy molecules vibrate in a
certain way giving their temperature and signal. In addition, the satellite
receives a signal from the environmental atmosphere. This means that the
satellite can receive the exact same signal from one height level containing a
certain amount of SO and another height level with different environmental
temperature containing a different amount of SOs, resulting in errors in the
retrieval of column abundances. Some sort of constraint has to be set on the
signal depending on the assumed height of the SO cloud.
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The upwelling radiance I, at wavenumber v at the top of the atmosphere and
potentially reaching the satellite is defined by the radiative transfer equation
as
o0
d
I, = J BU[T(z)]wdz (3.3)

0 z

where B is the Planck function, in principle saying that emitted intensity
of an object increases with temperature and that the wavenumber of the
maximum intensity increases with increasing temperature. 7 is the trans-
mittance, meaning the fraction of radiation at a specified wavenumber v
that passes through the atmosphere. ¢ is the absorber profile of the atmo-
sphere and z is the height level.

The weighting function is defined by

dr, (q, Z)

W:
dz

(3.4)

For example, one weighting function can imply that the strongest SOs-signal
is found at the height level around 15 km and the signal is decreasing toward
lower and higher altitudes. Near ground level the weighting function can be
close to zero which means that if there is SOs present, the satellite can not
observe it.

Usually the weighting function is calculated using a radiative transfer model
to calculate the absorber profile and transmittance. Also an analytical func-
tion can be used as an approximation. In summary the weighting function
represents the contribution from a layer located at height level z to the ra-
diance sensed by the satellite. This provides information on what regions of
the atmosphere affect satellite measurements.

Figure 3.4 gives examples of different weighting functions and related trans-
mittances for a radiometer on board the NOAA 2 satellite, an early atmo-
spheric sounding instrument. The numbers indicate different channels or set
of wavenumbers. The figure shows that some channels receive no radiation
from the surface (1 — 0, — 0).
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The infrared SO5 retrievals from the AIRS instrument are restricted to the
UTLS, while the OMI instrument, measuring in the UV region, provides total
column SOy measurements. The OMI UV retrievals also have a sensitivity to
the height of the SO as explained by Yang et al. (2007). When using satellite
data for input to the inversion method, total atmospheric columns from the
FLEXPART simulation were calculated by weighting the concentrations in
the output layers with the respective weighting function shown in figure 3.5.

WEIGHTING FUNCTIONS

Heigth (km)
n
o

15
Weighting function

Figure 3.5: Infrared (AIRS) weighting function for a channel containing an at-
mospheric SOy layer near 15 km, and UV (OMI) weighting function for a clear
atmosphere, adapted from figure 7 of Yang et al. (2007).
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The weighting function is further explored in the results chapter by using an
analytical weighting function. This function is described by the dimension-
less transmittance function

T = exp —Euo(efz —e *T) — kuyzo(1 + i)e_% —(1+ Z—T)e_zz_g (3.5)
f 20 20
where zg is the height where the absorber profile peaks, ug the total column
abundance, u; an inversion parameter, k the absorption coefficient, zz is
defined as z/zg, 2T defined as zq, and f = 1+ zguy /ug. Sensitivity studies
of the effect of the weighting function on the inversion profile are carried
out.
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3.3 Inversion method

The analytical inversion method used in this study is based on work of Seibert
(2000) and has been described in a recent publication of Eckhardt et al.
(2008a). The mathematical theory of the method is based on simple linear
algebra. This section will first describe the method from a physical per-
spective before introducing the fundamental mathematical equations of the
method.

The general idea of the method is to use measurements of atmospheric trace
constituents together with source-receptor relationships obtained by disper-
sion model calculations, to determine the sources of the trace substances. In
this study the inversion problem is solved to give an estimation of the vertical
SO4 emission profile (SOy sources) of a volcanic eruption. This is done by
using observed total SOy column abundances from satellite measurements
(OMI, AIRS) and modelled total SOy columns from an atmospheric disper-
sion model (FLEXPART).

The physical aspect of the inversion method uses the fact that winds nor-
mally change with altitude and thus the position and shape of the plume
are determined by the altitude of the emissions. That is, because of the ver-
tical wind shear and different flow regimes at different altitudes, the plume
shapes will generally be very different for emissions at different altitudes.
For instance, mass emitted low in the atmosphere will generally be transpor-
ted rather slowly, whereas mass emitted into the jet stream will be quickly
transported away from the volcano. Using a dispersion model to simulate the
emissions by releasing a unit amount of SOy at a large number of stacked
height levels, it is possible to examine the sensitivity of the shape of the
simulated plume to changes in the height of the initial eruptive injection
into the atmosphere. Satellite observations of the plume position and shape
can be used to put a tight constraint on the possible altitude of the injection.

In past studies, e.g., Carn et al. (2007, 2008a,b); Prata and Bernardo (2007);
Prata et al. (2007); Prata and Kerkmann (2007); Schneider et al. (1999), re-
searchers have sometimes qualitatively compared observed plumes with mul-
tiple simulations of different emission heights, in order to pick the "best"
simulation and, thus infer the initial emission altitude. However, as plume
shapes can become quite complex even after only a few days of transport
and subjective comparisons can be difficult to make or even misleading, a
more objective method is needed. Furthermore, the emission will usually not
occur at one discrete height only. Instead, the emission height profile can be
quite complex, with emissions occurring at multiple altitudes.
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The aim of the inversion method is to seek a linear combination of the plumes
resulting from various simulations that best fits the observations, i.e., min-
imises the difference between observed and modelled values. More specific,
this is done by comparing observed and modelled total column values of
S05. The model-derived total SO, columns are calculated assuming that
the emissions occurred within a vertical column above the volcano extend-
ing from ground up to a specified altitude. This column is divided into a
number of elements, which in this study is a total of fifty elements. For
each element, particles with a total mass of 1 kg are released and tracked
as they disperse with the winds. Each of these release elements represents
a single model simulation, this means for each release element concentra-
tions and total columns are calculated every hour after the eruption onset.
Consequently, after one hour, fifty SO, columns are calculated for each grid
point, each one representing a release from a distinct height level. Since each
release element contains a unit mass as source, these model-derived column
values represent so-called source-receptor relationships, which means that
the model simulations explore the sensitivity of the downwind total SO-
columns to the emitted mass at every altitude. Subsequently, one and each
of the model-derived columns are compared to the observed SOs columns
to find the best fit to the observations. The release heights of the modelled
columns that are a best match to the observed columns can be identified,
resulting in an estimate on the source profile. Since unit masses have been
released for the various model simulations, the scaling factors with which
the different simulations are weighted will reflect the masses to be released
at these heights in order to best fit the observations.

One problem that frequently occurs with inverse methods is that the con-
straints posed by the observations are ill-posed, and this can lead to spurious
solutions, i.e. unrealistic height profiles in this case. Small errors in the ob-
servations or in the model results can thereby cause disproportionally large
errors in the inverted emission profile. For example, imagine a volcanic erup-
tion that emits SOy at low altitudes and thus at the time of an observation
shortly after, the plume is still in the vicinity of the source. However, if
there is some other observation of SO, further away from the volcano which
in reality does not originate from the volcanic eruption of consideration (this
could be due to a measurement error or to another, probably industrial,
SOs source), the inversion method will try to fit this observation by releas-
ing mass at any altitude that would allow fitting this observation, probably
at a high altitude to allow for fast transport to the far-away observation
location. Especially if the simulated plume has low total column values at
this position for all altitudes (i.e., a small value of the source-receptor rela-
tionship), the algorithm will try to compensate for this by releasing a large
mass in order to fit the observation, unless this leads to bad agreement with
other observations. Furthermore, in the extreme case that not a single obser-



32 CHAPTER 3. METHODOLOGY

vation constrains a particular model simulation (for instance, the simulated
plume for a high-altitude release has moved out of the observation domain),
there is no constraint at all on the emitted mass at this altitude and, thus
an inversion constrained only by the observations can produce any mass re-
leased at this altitude. Moreover, problems can arise from areas where there
are several opportunities of match between the satellite observations and
the model simulations, so that a large number of (probably very different)
solutions can be obtained at relatively similar "costs" (i.e., overall model-
measurement misfit).

To remedy this situation, additional information is necessary to obtain a
meaningful solution. The additional information is provided in the form of
a priori information for the unknown source profile. A priori information
refers to prior knowledge about the source distribution. This is a widely
used term in statistical analysis. The a priori can be determined based on
indications on the emission height profile by other observations. If no reports
on the emissions are known beforehand, a constant and even a zero a priori
(so-called Tikhonov regularization) can be used.

The method also considers the uncertainties of the a priori profile and of the
observations (including the model error), which are to be specified for each
application. The effect of the a priori uncertainties is to constrain the solu-
tion with the a priori information, thus if the a priori uncertainties are low,
the solution profile will mainly be determined by the a priori profile, that
is, the solution (source profile) will follow the a priori profile closely. Sim-
ilarly, low uncertainties for the observations cause the solution profile to be
determined mainly by the observations. The uncertainties in the a priori and
uncertainties in the observations "weigh" the influence of the a priori against
the measurement-model misfit, so the important consideration is the ratio
between the two uncertainties mentioned above. A balance must be obtained
between the two in order to achieve a reasonable solution profile. Currently,
the practice is to determine this ratio by trial-and-error fits between the
two uncertainties. However, in principle one should have some statistical in-
formation for instance on the standard errors of the model-observation misfit.

Moreover, a condition on the smoothness of the solution, as well as an it-
erative algorithm for removing unphysical negative values arising from in-
accuracies in the model and data, are included in the inversion method to
yield a meaningful solution.
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The mathematical theory of the inversion method includes

e x : The n=>50 unknowns, giving the height emission profile (solution
or source vector) we want to retrieve.

e 1% : The a priori profile of emitted masses.

e y°: The m observed values (i.e., total SOy columns) from the satellite
data, the subscript o meaning observations.

e M : The modelled sensitivities of the m SOs total columns to the
n source terms, calculated by the FLEXPART simulation (so-called
source-receptor relationship), a m x n matrix.

The modelled values y corresponding to the observed values y© can be found
by applying the calculated source-receptor relationship M to the solution
vector x

y = Mx (3.6)

This equation can not be solved directly for & because the problem is ill-
conditioned. Additional information (regularization) is necessary to obtain
a meaningful solution. Tikhonov regularization constrains the solution by
requiring the solution to be minimised, thus requiring that the square length
of the solution vector ||z||? is small. This means that large (and often spuri-
ous) emitted masses is constrained by creating a "penalty" to them. Large
masses are only accepted if they are supported by the measurements, and
not only to satisfy one single observation. Implicitly this means zero a priori
values. Introducing an explicit a priori vector x®, we can write

M(x — x?) =~ y° — Mx*? (3.7)

It is convenient to write the above equation as an abbreviation like

Mx ~ 7 (3.8)

The above equation includes the observation vector, y©, and the source vec-
tor, . Together with the matrix, M, these parameters make up the basic
equation of the inversion method. It is not an exactly fulfilled equation. We
want to make the disagreement between the left hand side (LHS) and the
right hand side (RHS) as small as possible. Thus the goal is to find an es-
timation of the source vector which should, when the source-receptor matrix
is applied to it, reproduce the observation vector as well as possible while at
the same time resulting in minimal deviation from the a priori.
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The further mathematical framework of the inversion method yields min-
imising a cost function J. The cost function results from rearrangement of
equation 3.8. The disagreement between the LHS and the RHS is the cost
function. The equation is made "exact" by introducing a "misfit" (i.e., cost)
term. The cost function .J consists of three terms, J = J; + Jo + J3

i = 0, (Mx - 3)T (M - §)
Jo = xTdiag(o, 2)x
J3 = ¢Dx)'Dx (3.9)

J1 measures the misfit between model and observation. Jy is the devi-
ation from the a priori values, and J3 the deviation from smoothness. o, is
the standard error (uncertainties) of the observations, and oy is the vector
of standard errors (uncertainties) of the a priori values. e determines the
smoothness condition and D represents the second derivative.

Minimisation of J leads to a linear system of equation (Eq. 3.10) which is
to be solved for x with a linear algebra package routine called SGESVX.

[0, 2MTM + diag(ox 2) + eDTD]% = 0,°MTy (3.10)

For this study, different scenarios for the a priori x, are tested, including
a constant and non-constant a priori profile. The a priori uncertainties,
oy, are specified for each source element as a vector. The magnitude of the
uncertainties was chosen to allow substantial corrections to the initial profile.

The standard errors of the observations, ¢,, should ideally be specified for
each receptor element and should contain not only the measurement error
but rather a standard misfit between the observations and the model results.
Because of lacking detailed information, the actual measurement uncertainty
is used for the AIRS observations with o,= 3 DU, which assumes that the
large measurement uncertainty will dominate the measurement-model misfit.
For OMI, the standard error is chosen to allow for some variable biases in
the OMI retrieval as well as errors from the model simulations, giving o, =
2 DU for the OMI measurements.

The inversion method is applied in the form of an executable fortran program
which calculates and minimises the cost function.
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3.3.1 Previous case study

Eckhardt et al. (2008a) used the inversion method in a study of the eruption
of the Jebel at Tair volcano (15.55°N, 41.83°E) located in the Red Sea. The
eruption occurred 30 September 2007 around 11-11:30 UTC, and injected
approximately 80 kilotons (kt) of SOs into the atmosphere. Several satel-
lites were able to detect SOs from the eruption including AIRS and OMI,
and especially encouraging was the use of the SEVIRI instrument. The short
time resolution (15 min) of this instrument makes it very encouraging for op-
erational use with the inversion method. The Lagrangian dispersion model
FLEXPART was used to calculate source-receptor relationships used in the
inversion method.

Figure 3.6 shows the inversion results for this case study. Emission maxima
are located at about 16 km a.s.l, and near 5, 9, 12 and 14 km. Data from
a single platform (either AIRS, OMI or SEVIRI alone) would have sufficed
to produce an emission profile in good agreement with the reference profile
(using data from all three platforms). Even using SEVIRI data only from 10-
15 hours after the eruption gave comparable results. Sensitivity experiments
showed that the results were robust against changes in the a priori profile, in-
cluding a zero a priori emission profile. Validation against independent OMI
data, and comparison with vertical profiles of aerosol backscatter retrieved
from a space-based LIDAR (CALIPSO), showed very good agreement with
the FLEXPART simulation using the emission profile from the reference in-
version. The plume dispersion could be simulated well for several days after
the eruption.
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Figure 3.6: Inversion results for Jebel At Tair, 30 September 2007. The coloured
lines represent inversion results using different satellite data. The red line is called
the "reference case". The thick black line shows the a priori profile, the thin black
line its assumed uncertainty. Source: Eckhardt et al. (2008a).
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3.4 LIDAR measurements

LIDAR (Light Detection and Ranging) is an optical remote sensing tech-
nology that measures properties of scattered light to find range and other
information of a distant target. The general method makes use of laser pulses
to determine properties of an ’object’, e.g. sulphate particles in the atmo-
sphere. The particles cause an enhanced backscatter which the LIDAR is
capable of measuring. From the LIDAR measurements we can retrieve aero-
sol extinction profiles, which is a measure of attenuation of the light passing
through the atmosphere due to the scattering and absorption by aerosol
particles. By definition the extinction coefficient is the fractional depletion
of radiance per unit path length, and has units of km~=! .

In this thesis, the aerosol extinction coefficient is used as a qualitative meas-
ure of the sulphate concentrations in the atmosphere and is compared with
the SOy concentration simulated by FLEXPART. Aerosol extinction coeffi-
cient and concentration of SOs are two very different quantities. However,
the comparison is used only in a qualitative manner to evaluate the altitude
of the simulated plume.

3.4.1 Nova Scotia

The Dalhousie Raman LIDAR at Nova Scotia, Halifax (44.6° N, 63.6° W) on
the eastern coast of Canada, was able to observe the Kasatochi plume. The
location of the ground based LIDAR is marked by a green circle in center
of the figures 4.7 and 4.8 in the results chapter. The measurements of the
plume were available from 21 August 2008 and the days following. Figures
of the measurements were prepared by Lubna Bitar at Dalhousie University.

3.4.2 Ny Alesund

Koldewey station, operated by AWT (Alfred-Wegener-Institut fiir Polar- und
Meeresforschung) in Ny Alesund (78.9° N, 11.9° E) on Svalbard, was also able
to observe the Kasatochi plume using a ground based LIDAR. One major
part of the scientific work at Koldewey Station is the observation of the north
polar stratosphere. Several optical instruments are installed and operated,
including a LIDAR determining the concentration of ozone and aerosols in
the atmosphere. The LIDAR measurements of the Kasatochi plume were
taken from 15 August 2008 to 5 September 2008. Several layers were observed
at about 10-17 km altitude. It is not evident that all of these layers originate
from the eruption of Kasatochi, comparison with FLEXPART simulation will
prove if they are, and allow for evaluation of the estimated height profile.
The observations were provided by AWI (pers. comm.).
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Results and discussion

In this section the SO inversion results for the Kasatochi eruption are
presented before a comparison with independent height emission profiles for
the eruption is given. A consistency check is performed and thereafter the
transport of the volcanic SOy plume with emissions according to the inver-
sion profile is illustrated, and also a comparison with an uniform emission
height profile is given. Subsequently, the estimated emission height profile is
validated, before several sensitivity studies for the inversion profile are given.
Eventually the SOs decay by reaction with OH and by dry deposition in the
model simulation are explored.

4.1 Inversion results

Satellite data for up to 72 hours after the eruption were used in the inversion
method for this case study. For aviation purposes, the time-critical part
involves using satellite data from only the first day after the eruption (or
even less). However, in this case study, there were not enough data available
for the first day after the eruption and it was therefore chosen to use data for
up to 72 hours after the eruption. Later on, sensitivity studies were carried
out regarding the amount of satellite data used in the inversion method. For
less time critical applications, such as determining the injection altitude for
the purpose of climate modelling, later satellite data can be accepted. Still,
precautions have to be made about using satellite data for too long after
the eruption as this can yield errors from e.g., chemical transformations and
removal by SO,.

37
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4.1.1 AIRS data

AIRS data from 72 hours after the eruption were used for the so-called "de-
fault" inversion. During these hours, a total of 10 applicable observations
of the Kasatochi SOy plume were available and are listed in table 3.2. In
addition, the IR weighting function showed in figure 3.5 was used to weigh
the FLEXPART data used in the inversion method. Both a constant a priori
profile and a non constant a priori were applied. The total mass of both the
a priori profiles was specified to 1.3 Mt, which is in agreement with the AIRS
and the OMI emission estimates.
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Figure 4.1: Inversion results when using AIRS data from 72 hours after the erup-
tion. The solid line shows the inversion profile of SOs in tons/meter. The dashed
line is the a priori profile, the dotted line its assumed uncertainty.

The results from the default inversion are shown in figure 4.1. The inversion
profiles, also called the a posteriories, show a strong SO, emission peak at
~5 km, and secondary peaks at ~9 km and ~12 km, with large emissions
also between these two peaks. Smaller peaks are found at ~14 km, ~16 km
and ~18 km.

Consider first the constant a priori inversion shown in figure 4.1(a). In ad-
dition to the emissions below 20 km, there are also large emissions above 22
km. However, these emissions follow the a priori, thus are bounded by the
a priori profile at these heights. Similarly, the emissions from 1-2 km height
follow the a priori closely. Furthermore, the emission peak around 5 km is
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very high and probably quite uncertain (this emission peak is discussed in
more detail later). The total mass of this inversion profile is on the order of
~1.9 Mt which exceeds the total a priori mass of 1.3 Mt by ~45%.

Figure 4.1(b) shows the inversion profile using the non constant a priori pro-
file. This a priori profile was determined on the basis of a test case using
an emission peak at around 12 km, and also to constrain the assumed un-
physical increase in mass above 22 km, as well as the very high emission
peak around 5 km. The a priori values and the a priori uncertainties were
lowered for the height levels containing these emissions, thus the emissions
are reduced here. With this a priori the total mass of the a posteriori is on
the order of ~1.2 Mt which is a closer match to the a priori mass of 1.3 Mt.

Also for the non constant a priori, the a posteriori above 22 km, as well as
the emissions below 2-3 km are bounded by the a priori. For these heights,
the solutions for the a posteriori are very different for the cases using con-
stant and non constant a priori. Both solutions follow the a priori closely at
these height levels which imply that that the satellite data do not provide
any constraint on these parts of the profile. It is seen that the emissions
from 20-22 km are well constrained, as these emissions are not bounded by
the a priori in either of the cases. The emissions below 1-2 km and above 22
km is poorly constrained. This is also what the infrared weighting function
on figure 3.5 suggests, with very low sensitivity below 5 km and quite low
sensitivity above 22 km. This means that AIRS does not observe the SO,
below 4-5 km, and only poorly observe the SOy above 22 km.

So, regardless of which a priori that is used, the a posteriori above 22 km
closely follow the a priori and thus the measurements obviously do not
provide constraints for these emissions. Possibly at these heights, the plume
moves into a different direction, so that there are no observations in this
region that could prove the a priori wrong. Additional data, e.g. observa-
tions close to zero from another overpass, could constrain these observations.
However, by investigating this more closely, it was found that these emissions
hardly move at all but stay above the volcano during the days following the
eruption (this can be seen on the figures 4.7 and 4.8 later in this chapter).
Additional data to constrain these emissions was not available therefore the
non constant a priori was chosen in order to reduce the emissions by chan-
ging the a priori above 20 km.

Comparing the inversion profiles of both the constant and the non constant
a priori, it is clear that the inversion method is relatively robust against
changes in the a priori profile. For the remainder of the study, considering
simulation of the transport of the volcanic emissions etc., the inversion profile
using the non constant a priori was used.



40 CHAPTER 4. RESULTS AND DISCUSSION

4.1.2 OMI data

OMI data from 50 hours after the eruption were used for the OMI inversions.
During the first 50 hours, only two applicable observations of the Kasato-
chi SOy plume were available and are listed in table 3.3. This might be
an insufficient amount of satellite data, however it was chosen to make an
inversion to see if the result was comparable to the AIRS inversions. The
UV weighting function from figure 3.5 were applied to the FLEXPART data
used in the inversion method. The same constant a priori profile and a non
constant a priori as used with the AIRS data were employed.
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Figure 4.2: Inversion results when using OMI data from 50 hours after the erup-
tion. The solid line shows the inversion profile of SOs in tons/meter. The dashed
line is the a priori profile, the dotted line its assumed uncertainty.

The results from the OMI inversions are shown in figure 4.2. The inversion
profiles show SOy emission peaks at ~4 km, ~6 km, ~8 km and ~12 km.
Smaller emissions are found at ~9 km, ~15 km and ~18 km. The total mass
of the a posteriori using the non constant a priori, is on the order of ~1.0 Mt.

Compared to the AIRS inversion profiles there are several similarities. The
most prominent is the emission peak at around 12 km which is also estim-
ated by using AIRS data, however the peak is intensified using OMI data.
The emissions below 10 km are quite similar except for more peaks occurring
when using OMI data. The large emission peak around 5 km found by using
AIRS data is strongly reduced when using OMI data and the peak is divided
into two peaks at 4 and 6 km. Furthermore, AIRS data resulted in an emis-
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sion peak around 9 km, which is also estimated by OMI data, however there
is a stronger peak at 8 km. Above 15 km there are smaller emissions also
estimated by using AIRS data. Considering the emissions above 22 km, the
OMI measurements, similar to the AIRS data, obviously do not provide any
constraint for these high altitude emissions as these emissions follow the a
apriori closely regardless of which a priori is used.

The OMI satellite data are not restricted to the UTLS like AIRS, which
means that if there is SOy present in the lower troposphere, OMI is able to
observe it to some extent. Therefore, the lower emissions estimated by using
OMI data are likely to be more accurate than when using AIRS data. The
fact that OMI data does not estimate large emissions at 5 km, strengthen
the presumptions of the high uncertainties of these emissions using AIRS
data.

For the OMI inversion profile using the non constant a priori, the mass of
the profile below 10 km is about 0.49 Mt. Compared to the respective AIRS
inversion profile, with a mass of about 0.75 Mt below 10 km, the use of OMI
data clearly reduce the tropospheric SOy emissions. Above 10 km (roughly
in the lower stratosphere as the tropopause where found at ~10 km) the
mass of the OMI inversion profile is about 0.56 Mt, and is more similar to
the AIRS mass of 0.42 Mt. Both AIRS and OMI inversions yield emissions
of SO5 into the stratosphere which potentially can give a climatic effect. In
summary, for the AIRS inversion approximately 36% of the mass of SOy was
injected above the tropopause, while for the OMI inversion 54% of the SO,
reach the lower stratosphere.
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4.2 Height profiles from independent studies

Maerker et al. (2008) used a trajectory matching technique, as described in
the introduction chapter, based on FLEXPART simulations and GOME-2
satellite SO9 observations, to estimate the SOs height emission profile of the
Kasatochi eruption. Figure 4.3 shows the estimated height emission profile
obtained by their method. The 8-9 km and 12-14 km peaks are in agreement
with the respective peaks in the inversion profiles.
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Figure 4.3: Estimated emission height of the Kasatochi eruption 7 August 2008.
From Maerker et al. (2008).

Theys et al. (2009) detected volcanic bromine monoxide (BrO) emissions
from the Kasatochi eruption using the GOME-2 satellite instrument, and
also used FLEXPART to simulate the dispersion of the plume. By using
a BrO tracer and assuming various initial plume heights varying between
2 and 24 km altitude, they performed a series of FLEXPART simulations
which subsequently were compared to the observed BrO to infer information
about the altitude of the BrO emissions. So correlation coefficients were
calculated to give the best fit between the simulated and observed spatial
patterns. They found that the injection altitude of the BrO plume was
located between 8 and 12 km altitude, i.e., in the upper troposphere/lower
stratosphere region. Despite the fact that BrO and SO, are two different
gases, it is likely that the gases are emitted roughly at the same height
intervals, this is also proved by good correlation between the spatial extent
of the SO, plume and the BrO plume measured simultaneously by GOME-2.
The identified BrO emission altitude agrees with the peaks at ~8-9 km and
~12 km in the inversion profiles of SOs.
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4.3 Consistency check

Figure 4.4 shows the AIRS satellite measurements used in the inversion
method, the FLEXPART data used as input to the method (a priori), and
the FLEXPART simulation when using emissions according to the inversion
profile (a posteriori). This is not a real validation of the estimated profile,
rather a consistency check. If the satellite data are reproduced closely, this
will confirm that the inversion algorithm is basically working. However, this
satellite overpass is not the only one used in the inversion method, the other
overpasses that are used also affect the solution, so a total match between
the satellite overpass and the a posteriori is not expected. For the FLEX-
PART figures, the left panel shows the horizontal dispersion while the right
panel shows the height distribution when mass is integrated over all latitudes.

To obtain a better comparison with the AIRS satellite measurement, both
the FLEXPART data used in the inversion method, and the FLEXPART
data obtained when using the a posteriori profile, are weighted with the
AIRS infrared weighting function showed in figure 3.5. This is done because
the AIRS instrument is not able to measure the low level emissions.

The satellite overpass on 8 August at 13:41 UTC is shown in figure 4.4(a).
This is the first of ten overpasses that are used in the inversion method. The
emissions have been transported into a "croissant"-shape due to a passing
cyclone. Some maxima are located south of the volcano.

The model input to the inversion shown in the figures 4.4(b) and 4.4(c), rep-
resent the constant a priori profile. This simulation was obtained with unit
mass in each layer, so a scaling with the total a priori mass was performed
to be able to compare this simulation with the a posteriori and the satellite
measurement. The emissions above 15 km are barely not transported at all
and are clearly contributing to the maximum located close to the volcano.
The emissions from the height range around 10 km are transported into the
"croissant"-shape.

Figure 4.4(d) and 4.4(e) show the model simulation with the AIRS inversion
profile as input, the so-called a posteriori. The emissions above 15 km are
strongly reduced compared to the a priori, while the lower emissions are in-
creased. There are two maxima southeast of the volcano. By investigating
the emissions more closely it is found that these maxima are located in the
height range 11-12 km. The maximum located northeast of the volcano is
located at about 9 km altitude.

Comparing the a priori and the a posteriori with the satellite measurements
there is obviously no high maximum located just above the volcano, so for
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the a priori profile, the high emissions above 15 km are not found in the meas-
urements. It is the a posteriori profile that reproduces the observed pattern
closest, and especially the two maxima southeast of the volcano. However,
there are also certain differences. The maximum northeast of the volcano is
not found in the measurements. It seems like FLEXPART transports some
of the emissions faster than what is observed, also the northeast maximum
is stronger than what is observed. This can be explained by a quick look
at figure 4.17 in the coming section 4.7.1. This figure shows the inversion
profile when using only this overpass (turquoise line), and it can be seen that
the 9 km peak is strongly reduced when using only this measurement. This
implies that the maximum northeast of the volcano is not consistent with
this measurement, thus is not determined by this overpass but is produced
to improve agreement with later observations.

Furthermore, this ATRS overpass shows a smaller total amount of mass than
at later times. The total mass for the satellite observation is 0.28 Mt. The
total mass of both the a priori and the a posteriori is on the order of 1.2 Mt,
thus generally higher than what is found by the measurements. However,
referring again to figure 4.17, the total a posteriori mass is lower (0.48 Mt)
when using only this satellite overpass in the inversion algorithm.

In addition, there might also be discrepancies due to different weighting
function used for this AIRS retrieval and the weighting function that is
applied on the FLEXPART data.
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Figure 4.4: Comparison of one of the satellite overpasses used in the inversion
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Figure 4.5 shows the same type of data as the previous figures. However,
no weighting function is applied to the FLEXPART data, thus this is an
illustration of how the weighting function affects the results. The weighting
function decreases the lower emissions as well as the highest according to the
lower sensitivity of the satellite measurements at these heights.

These figures also give an impression of where the lower emissions are trans-
ported. The emissions from ground up to about 5 km are transported north-
west and later southwards to join the rest of the emissions in a circular shape.

Still, when considering the FLEXPART figures without the use of the weight-
ing functions, the a posteriori, with decreased emissions above 15 km and
increased lower emissions, is a closer match to the satellite overpass than
the a priori. It seems like the lower emissions are transported rather quickly
to join the rest of the plume, thus ground level emissions (where the trans-
port is slowest) are not occurring, as evident from the AIRS inversion profile.

Given that the AIRS satellite is not able to observe these low level emissions
it is difficult to determine whether these emissions are real or not by com-
paring with AIRS satellite measurement. However, the inversion method
still finds a combination of some satellite measurements that match these
low level emissions. Also, as mentioned in the previous sub chapter, when
using OMI data for the inversion, with a greater accuracy for the lowest
levels, there is also estimates on low level emissions which are reduced when
compared to this AIRS inversion profile.

In summary, the inversion profile yields a better match with the satellite
measurement than the a priori profile. The good agreement shows that
the ECMWEF winds are compatible with the actual dispersion of the vol-
canic plume and that FLEXPART can handle the transport simulation very
well. Because this satellite overpass is not the only one used and because
of uncertainties in the lower altitude emissions, some discrepancies between
the observations and the a posteriori are found, especially considering the
amount of mass. It is believed that the inversion profile will give a good
estimate for the transport of the eruption.
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Figure 4.5: Comparison of one of the satellite overpasses used in the inversion
method, the FLEXPART data used as input to the method (a priori), and the FLEX-
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shows vertical zonal plots where mass is integrated over all latitudes. No weighting
function is applied on the FLEXPART data.
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4.4 Transport

4.4.1 Atmospheric conditions

The weather station at Adak Island (51.86°N, 176.63° W), close to Kasato-
chi Island, reported of an average temperature of 9.1°C, and wind in an
northeasterly direction on 7 August 2008 (Weather Station History, 2008).
Pressure was falling during the course of the day. On 8 August the pres-
sure increased, which suggest a low pressure system was passing the area
from 7 to 8 August, as illustrated in figure 2.6 in the background chapter.
The ECMWF meteorological data used for simulation with FLEXPART are
shown in figure 4.6. The wind profiles at the nearest grid point to the volcano
(52° N,178° W) around the eruption onset are shown in figure 4.6(a). Wind
profiles from 2° south of the volcano, six hours later, are shown in figure
4.6(b), and wind profiles from 5° east of the volcano about ten hours after
the eruption, are presented in figure 4.6(c). The emissions were transported
southwestward during the first few hours after the eruption. When reaching
the areas south of the volcano the winds shift and the emissions are trans-
ported southeastward. Further east the wind shifts to a southerly directions
and the emissions are transported northwards. After about 15 hours some of
the emissions are again passing over the area of the volcano after they have
travelled in a counterclockwise spiral due to the flow in the cyclone passing
over the area. The figures also show the tropopause located at about 9.5 km.
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Figure 4.6: ECMWF vertical profiles of temperature and wind for specified locations
at different hours before and after the eruption onset. The yellow and turquoise
background shadings indicate the troposphere and the stratosphere, respectively.
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4.4.2 Transport with inversion profile

The simulation of the transport of the volcanic SO, plume using the inver-
sion profile of figure 4.1(b) as emission height profile, is illustrated in the
figures 4.7 and 4.8. The left panels show the horizontal dispersion of the
S0O5 plume as well as the 200hPa geopotential height given in decametres,
which are taken from the ECMWEF analysis at 18:00 UTC. The 200hPa geo-
potential height is the most relevant altitude for the long-range transport.
The right panels show vertical zonal plots where mass is integrated over all
latitudes. The position of the volcano is marked with a red triangle, A. Also
shown are the LIDAR positions of the LIDARs at Nova Scotia (green dot)
and Ny Alesund (blue dot).

Figure 4.7(a) and 4.7(b) show the plume 20 hours after the eruption. The
plume has mainly drifted southeastward from the volcano over the Pacific
Ocean where it has spread out in a characteristic circular shape due to the
flow in the passing cyclone. It is the emissions around 8-9 km that is trans-
ported fastest into this circular shape, and it is seen from the height plot
that the emissions around 9 km are at this time again located in the area
above the volcano. It is also possible to identify the inversion profile of figure
4.1(b), with mass peaks at ~5 km, ~9 km and ~12 km.

The further transport of the plume is shown on the following figures. On
10 August, 3 days after the eruption, one part of the plume at an altitude
around 12 km is separated and travels eastward faster than the rest of the
plume. This part of the SOy cloud hits the coast of Alaska at Prince of
Wales Island (55.6° N, 132.9° W). ECMWF wind profiles for this location at
this point of time (not shown), indicate strong westerly winds in the altitude
range 5-15 km where the plume is located.

Hitting the coast the plume splits into two, as seen in figure 4.8(a). One
part of the plume is transported across the northern part of Canada towards
Greenland. The other part spreads towards Chicago across the Northern
U.S. After 5-6 days the plume reaches the Atlantic Ocean, as illustrated by
the last figures. Furthermore, Europe was hit by the plume within a week
after the eruption.

It is clearly the efficient transport near the tropopause by the jet stream that
results in the fast transport of the plume across North-America. However,
the main part of the plume is found over Alaska during the days following
the eruption.



20

CHAPTER 4. RESULTS AND DISCUSSION

Flexpart simulation with AIRS inversion profile

08.08.18:30
8 = 2
S SR |
NP in Al
£ ©. /i
gor ° . ~
(0] s Q
T Y 0]
E ﬁ% oy
St £ r
40’ o ° 5 w
i1 S
-150 -10 50 0 "
Longitude
(a)
Flexpart simulation with AIRS inversion profile
08.09.18:30
80 — w w 20
SELT T
W A |
%60* h / &
h y 4 [0}
ER S ﬁ% 105
(550’ <
- o
40¢ N 5 I
S S
-150 100 50 0
Longitude
(c)
Flexpart simulation with AIRS inversion profile
08.10.18:30
80 — w w 20
SR T
W e /
%60* : N 8N
R aron ﬁ% *1 Hior
50 g
- o
40r b 5 I
A S
-150 100 50 0
Longitude
(e)
Figure 4.7:

Flexpart simulation with AIRS inversion profile

08.08.18:30
25 l2
2r -
15
T £
X 15r | ;N
] ]
3 4 Ly
£ 10—‘ <
< %
w
5 / 052
A L L Q L L
0 -150 -100 -50 0 0
Longitude
(b)
Flexpart simulation with AIRS inversion profile
08.09.18:30
2% w w IZ
20r -
15%
E 2
X 150 EN
g, ¥
=1 4
=10 <
g | &
w
05 2
57 w
h
A | | Q . U
0 -150 -0 50 0 ’
Longitude
(d)
Flexpart simulation with AIRS inversion profile
08.10.18:30
2% w w IZ
20r -
15%
E 2
X 150 EN
8 \ Lo
2 ¥
= 10r <
< %
w
| 05 ¢
]
A | | Q . U
0 -150 -0 50 ’
Longitude
()

General transport of the SOy plume from Kasatochi, 8-10 August,

simulated by FLEXPART using the emission profile from figure 4.1(b). The left
panel shows the horizontal dispersion and 200hPa geopotential height [dkm]. The
right panel shows vertical zonal plots where mass is integrated over all latitudes.
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Flexpart simulation with AIRS inversion profile
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General transport of the SO plume from Kasatochi, 11-13 August,

simulated by FLEXPART using the emission profile from figure 4.1(b). The left
panel shows the horizontal dispersion and 200hPa geopotential height [dkm]. The

right panel shows vertical zonal plots where mass is integrated over all latitudes.
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4.5 Comparison with uniform height profile

An important consideration is how the long-range transport of the emis-
sions according to the inversion profile compares to transport with a uniform
height emission profile, as is currently used by the VAACs without available
information on the height profile. A uniform distribution represents the con-
stant a priori of the inversion.

Figures 4.9 and 4.10 compares the horizontal and vertical transport pat-
terns of the two different height emission profiles. The upper panel shows
the transport using the uniform profile, while the lower panel shows the
transport using emissions according to the estimated emission height pro-
file. The spatial patterns can look quite similar but the mass at each point
is clearly different. These is more mass in the high altitudes using a uni-
form profile. By comparing figure 4.9 with the AIRS satellite measurement
around 11 hours earlier on 9 August at 23:53 UTC that is shown in figure
3.2(a) (section 3.2.1), there are no observations of a distinct "tail" of the
plume as the uniform emission profile show. Thus the flexpart simulation
using the inversion profile gives the closest match to the satellite observation
(the general discrepancies between the satellite measurements and the model
simulation is due to not using a weighting function on the FLEXPART data.)

For the uniform height profile an assumption has to be made about the top
altitude of the emissions. The current uniform height profile has top emission
height at 20 km. It is mainly the emissions from the height levels between
15-20 km that are not in agreement with the transport using the inversion
profile. The mass at these altitudes is too high compared to the inversion
transport. By constraining the uniform emission height profile with a top
emission altitude at 15 km the patterns and mass at each point would be
more similar. However, the inversion profile shows smaller emissions above
15 km, which are of special climatic importance. Thus, a uniform height
profile can give inaccurate results if the height emission profile is to be used
for a climatic application.

Furthermore, a volcanic eruption can in general emit mass up to 30 km
or more. The spatial transport pattern of a uniform profile with a top at
30 km would certainly differ even more from the patterns of the inversion
profile. Still, given information on the cloud top height, a uniform height
profile would not be an overall bad assumption if only considering the spatial
distribution and not the amount of mass at each location, or the amount of
S0Os reaching deep into the stratosphere. However, the amount of mass at
each height level below 10 km is especially important for aviation purposes
so that it is possible to avoid regions that exceed certain risk limits for the
concentration level.
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Figure 4.9: Transport of SOo emissions from Kasatochi, simulated by FLEXPART
for 10 August at 10:30 UTC. The top panel shows the model simulation using a

uniform height emission profile and the lower panel shows the model simulation

using emissions according to the inversion profile from figure 4.1(b). The figures
on the left panel show the horizontal dispersion while the figures on the right panel

show wvertical zonal plots where mass is integrated over all latitudes.
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Figure 4.10: Transport of SOo emissions from Kasatochi, simulated by FLEX-
PART for 18 August at 10:30 UTC. The top panel shows the model simulation
using a uniform height emission profile and the lower panel shows the model sim-
ulation using emissions according to the inversion profile from figure 4.1(b). The
figures on the left panel show the horizontal dispersion while the figures on the right
panel show vertical zonal plots where mass is integrated over all latitudes.
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4.6 Validation of the inversion profile

The estimated emission height profile is validated by comparing a FLEX-
PART simulation using the default emission profile from figure 4.1(b) as
input, with independent observations of the volcanic plume, such as AIRS
and OMI data which are not used for the inversion. Also LIDAR measure-
ments are used to evaluate the height of the simulated plume.

4.6.1 Comparison with independent satellite data

First, the FLEXPART simulation using the emission profile from figure
4.1(b) as input is compared with independent AIRS data, that is, meas-
urements which are not used in the inversion method. Figure 4.11 shows the
model simulation for 11 August at 21:30 UTC, 4 days after the eruption, and
an AIRS observation about half hour later, at 22:05 UTC. The SOs plume is
observed over the coast of Alaska close to the Canadian border. The AIRS
observation does not show the "end-tail" of the plume over the Pacific ocean,
nor the "front-tail" east of 125° W, this is due to insufficient swath width of
the overpass. The swath width boundaries are marked with grey lines. The
FLEXPART column values showed in the left figure are weighted with the
AIRS infrared weighting function from figure 3.5.
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Figure 4.11: a) SOy columns for 11 August at 21:30 UTC, simulated by FLEX-
PART using emissions according to the inversion profile showed in figure 4.1(b).
The IR weighting function from figure 3.5 is applied to the FLEXPART data. b)
SOy columns measured by the AIRS satellite instrument on 11 August at 22:05
UTC. The swath width boundaries of the overpass are marked with grey lines.
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For areas covered by the AIRS observation there is very good agreement
between the model simulation and measurement data. Especially, the shape
of the plume is simulated very well with a distinct sharp bend of the plume at
the southern end. However, the maximum SO, measurement value close to
50 DU in center of the plume, is too low in the FLEXPART simulation, thus
the model underestimates the amount of SOs. This is possibly due to the
S0Os loss by dry deposition and by reaction with OH which is only estimated
by FLEXPART and is quite uncertain. Furthermore, the IR-kernel applied
to the FLEXPART column values, can be different from the IR-kernel used
for this AIRS observation, and can lead to differences in the amount of SOs.

Secondly, the FLEXPART simulation using the estimated emission height
profile is compared with independent OMI data, as well as GOME-2 satel-
lite measurements. GOME-2, similar to OMI, measures backscattered solar
radiation in the ultraviolet spectrum. On 12 August at 21:30 UTC, five days
after the eruption, the main part of the SO plume has travelled northeast
and is located around Wrangell St. Elias national park in Alaska. The front
tail of the plume has reached Greenland, as seen in figure 4.12(a) which
shows the FLEXPART simulation for this day. The FLEXPART data have
been weighted with the UV weighting function showed in figure 3.5. Figure
4.12(b) and 4.12(c) show on the current day the OMI and GOME-2 satellite
observations, respectively. For comparison with FLEXPART it is important
to consider the different time scales of the figures. While the model results
show a snapshot of the dispersed SOs, the satellite observations are compos-
ites of data collected for various moments during the day.

Comparing the FLEXPART simulation with the OMI satellite observations,
there is an overall good agreement and the transport of the plume is sim-
ulated very well. Nevertheless, there are some discrepancies regarding the
mass. It seems like for the FLEXPART simulation there is more mass in
the main part of the plume, while there is less mass in the tails compared
to the OMI observations. Using the OMI inversion profile from figure 4.2(b)
for the transport simulation will possibly result in more mass in the front
tails as the ~12 km peak is increased compared to the AIRS inversion, and
the front tails originate and are found near 12 km (see the transport figures
4.7 and 4.8).

Comparing to the GOME-2 measurements there are also very similar trans-
port patterns, but GOME-2 shows even more mass both in the front and
end tails for the plume. The general discrepancies regarding mass are pos-
sibly due to the estimated loss rates of SO» and also the different weighting
functions applied to the FLEXPART data and the weighting functions used
for the satellite retrievals. By comparing the OMI observations with the
GOME-2 observations it seems like there are some OMI overpasses miss-
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ing. Between 130°E-145°E, both the GOME-2 satellite measurements and
the FLEXPART simulation show a tail at 40°N as well at more SOy on the
western side of the main part of the plume. In addition, the front part of the
plume reaching Greenland is not visible in the OMI figure. Also some sup-
posed artificial observations by OMI (possibly due to errors in the retrievals)
on the northern part of Alaska are visible.
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Figure 4.12: a) SOs columns for 12 August at 22:30 UTC, simulated by FLEX-
PART using the emission profile from the inversion showed in figure 4.1(b). The
UV weighting function from figure 3.5 is applied to the FLEXPART data. b) SO4
columns measured by OMI and ¢) GOME-2 (from: Riz et al. (2008)), both accu-
mulated for 12 August.
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4.6.2 LIDAR measurements, Nova Scotia

The Kasatochi plume was observed by the LIDAR at Nova Scotia (44.6°
N, 63.6° W) on the eastern coast of Canada. The position of the LIDAR
is marked by a green circle in center of the transport figures 4.7 and 4.8.
These transport figures suggest that the plume first reached Nova Scotia on
13 August at an altitude of about 12 km. However, the measurements of the
plume were available from 21 August and the days following, at an altitude
around 18 km.

Figures of the LIDAR measurements were prepared by Lubna Bitar at Dal-
housie University. A FLEXPART simulation, with the inversion profile from
figure 4.1(b) as input and a vertical output resolution of 200 m, was plotted
in the same manner as the LIDAR observations. The LIDAR figures are
shown in the upper panel in figure 4.13 and in figure 4.14, where figures on
the left handside are the real LIDAR measurements, and the FLEXPART
LIDAR plots are shown to the right.

It is important to keep in mind that only qualitative comparisons of these
plots are possible. This is explained in the previous section 3.4, and is due to
the fact that the LIDAR observes aerosols rather than sulphur dioxide gas.
The plots are used for evaluation of the altitude of the simulated plumes.

The upper panel in figure 4.13 show the measurement and simulation on 21
August. There is convincingly good agreement between the observed layer
at 18 km, and the FLEXPART simulation of the plume. However, the sim-
ulated plume is located slightly higher than the observed layer.

The scientists at Dalhousie University made backward trajectory calculations
with the HYSPLIT model based on the observations, shown in figure 4.13(c).
The source of the observed layer is identified to the area of the Kasatochi
Volcano and the emission height of this observed layer is estimated to about
17.5 km by the backward trajectory calculations. The emission source of the
observed layer is investigated further by using FLEXPART to simulate the
transport of only the ~18 km emission peak of the inversion profile in figure
4.1(b). This is illustrated in figure 4.13(d) which is an accumulated plot over
the days 7-21 August. The emissions at ~18 km are dispersed to the area of
the LIDAR (green circle) by 21 August. Doing the same with the emission
peak at ~12 km showed no 18 km layer over Nova Scotia on 21 August (not
shown in the figure). So, it is most likely the emissions originating from ~18
km that is observed by the LIDAR, thus the LIDAR measurement provide
validation of this part of the inversion profile.
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Figure 4.13: Upper panel shows the LIDAR measurements (left figure) from Nova
Scotia on 21 August and SO levels simulated by FLEXPART (right figure) for
the location of the LIDAR, on the same day. Emissions according to the inversion
profile from figure 4.1(b) is used for the model simulation. The lower panel shows
a HYSPLIT backward trajectory calculation (left figure) and an accumulated plot
of SOy columns from a FLEXPART simulation using emissions at 18 km altitude

only (right figure).
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The following day, on 22 August, the simulated plume is still in agreement
with the observed layer at 18 km, as seen in the upper panel in figure 4.14.
Moreover, it was believed to be tropospheric detection of the volcanic plume
as well. However, this tropospheric observed layer around 12 km is probably
only observations of clouds since it is not present in the model simulation.

On 8 September, over one month after the eruption of Kasatochi, there are
still observations of a stratospheric layer around 18 km, illustrated in figure
4.14 (lower panel). The FLEXPART simulation shows very weak layers
located higher than the observations. Notice the different scale of this plot.
Despite the fact that the altitude of the layers do not agree very well, it is
evident that there still are debris of the Kasatochi plume visible over Nova
Scotia.
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Figure 4.14: LIDAR measurements (left panel) from Nova Scotia on 22 August
and 8 September. SOs levels simulated by FLEXPART (right panel) for the location
of the LIDAR on the same days. Emissions according to the inversion profile from
figure 4.1(b) is used for the model simulation.
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4.6.3 LIDAR measurements, Ny Alesund

The Kasatochi plume was also observed by the LIDAR at Koldewey Station
(78.9° N, 11.9° E), Ny Alesund, Svalbard. The position of the LIDAR is
marked by a blue circle in the top right corner in the transport figures 4.7
and 4.8.

LIDAR measurements were made available from AWTI and table 4.1 gives a
survey of the observations. The observations were taken from 15 August to
5 September 2008.

DATE / TIME (UTCQC) OBSERVED LAYER
15.08.08 / 8 and 10-12 11-12 km

25.08.08 / 12:30 11-12 km and 14 km
29.08.08 / 08-08:30 and 09-12:30 | 10-12 km and 15 km
31.08.08 / 20:00 10-12 km

01.09.08 / 12-13 and 14-24 10-12 km and 17 km
03.09.08 / 09:30 9-11 km (clouds 7-8 km)
05.09.08 / 7-8 9-11 km and 16 km.
05.09.08 / 19-20 9-10 km and 13 km.

Table 4.1: LIDAR observations at Koldewey Station, Svalbard.

A FLEXPART simulation, using emissions according to the inversion profile
from figure 4.1(b) and a vertical resolution of 200 m was plotted in the same
manner as the LIDAR observations. Two figures representing the observa-
tions were available. These are shown to the left in figure 4.15 and compared
with the FLEXPART simulation shown to the right.

On 15 August, 8 days after the eruption, the Kasatochi plume was thought
to be observed in a layer within 11-12 km height range, but this is not seen
in the FLEXPART simulation. However, a layer around ~9 km is seen in
the model simulation, and the LIDAR observation also indicate a layer at
this height. By exploring the emission source of this layer it was found that
this layer originate from emissions around 9-10 km.

On 3 September, 27 days after the eruption, LIDAR observations around
09:30 UTC show clouds from 7-8 km, and an aerosol layer from 9 to 11 km.
This is shown in figure 4.15(c) (blue line). From the FLEXPART simulation
the layer at this altitude is visible, furthermore, a layer around 17 km is also
present. This layer is also found in the LIDAR observation.
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Figure 4.15: LIDAR measurements (left panel) from Ny Alesund on 15 August
and 8 September, compared with SOy levels simulated by FLEXPART (right panel)
for the location of the LIDAR. Emissions according to the inversion profile from

figure 4.1(b) is used for the model simulation.
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Several other observations were made at the station. Most of these at heights
around 11 km, and some observations around 14-16 km. The lower height
layers were found in the model simulation, an example shown in figure 4.16
for 31 August. However, the layers observed around 14-16 km could not
be identified by FLEXPART and are possibly not related to the eruption
of Kasatochi. These layers can originate from a different volcanic eruption,
potentially Okmok Volcano close to Kasatochi which erupted a few weeks
earlier.
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Figure 4.16: FLEXPART simulation of SOz at the location of the LIDAR in
Ny Alesund, 24 days after the eruption of Kasatochi. Emissions according to the
inversion profile showed in figure 4.1(b) is used for the model simulation.

Considering the fact that some of these measurements have been made nearly
a month after the eruption of Kasatochi, the comparisons with the FLEX-
PART simulation are convincingly good.
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4.7 Sensitivity studies

Determining the accuracy of the inversion method involves identifying how
the inversion results are affected by changes in some of the input parameters
to the method. In this study the focus has been identifying how sensitive
the inversion profile is to changes in the amount of satellite data used in
the inversion method. Also, the sensitivity of the inversion profile on the
weighting function (kernel) used for the FLEXPART data which goes into
the inversion method, is explored.

4.7.1 Amount of satellite data

It is critical to know the number of satellite observations needed to obtain
a meaningful a posteriori emission profile. The errors in satellite retrievals
relative to the decreasing SO, values in the plume, as well as errors in the
model simulation, grow in time. To minimise the impact of these errors, and
to make the inversion realistic for near real-time applications, satellite data
from the first day after the eruption, or even less, would ideally be used.
However, no observations from geostationary satellites were available, and
because AIRS overpass only twice per day, it was thought that using satellite
data for up to three days after the eruption was needed, and this was used
for the default inversion profile showed in figure 4.1.

To explore the sensitivity of the inversion on the amount of satellite data
used, different inversions were preformed using different amounts of obser-
vations ranging from one to three days after the eruption. The results are
shown in figure 4.17. The default inversion profile (red line) is obtained by
using satellite data for three days after the eruption (same as in figure 4.1,
repeated for comparison).

Using AIRS satellite data for 25 hours after the eruption (blue line), which
includes only two satellite overpasses, gives an inversion profile close to the
default profile, but the peak around 10-11 km is not found. Including ob-
servations from two days after the eruption (green line), with a total of
eight overpasses, increase the emissions around 5 km, and the 9 km peak
is slightly reduced. Using only one AIRS satellite overpass on 8 August at
13:30 UTC, 15 hours after the eruption, gives a relatively good result for
the height emission profile (turquoise line). The peaks can clearly be identi-
fied, except for the ~9 km peak, however the estimated mass is lower than
when using more data. The difference between using only this overpass and
using observations from 25 hours after the eruption is including only one
more overpass at about 23:30 UTC on 8 August. These observations show
a S0 maximum east of the volcano, but the swath width of the overpass
was not sufficient to observe the whole cloud. This can be a problem if the



66 CHAPTER 4. RESULTS AND DISCUSSION

overpass cuts off a part of the cloud located at a different altitude. In addi-
tion, the observed SOs mass of this overpass is higher than the observations
at 13:30 UTC, thus increases the 5 km emissions and gives emissions at 9 km.

Using only one OMI satellite overpass on 8 August at 23:30 UTC (yellow
line), 25 hours after the eruption, results in two peaks around 6 and 8 km,
with the latter peak not found by the AIRS data. The 9 km peak can clearly
be identified, and the 12 km peak is increased compared to the default AIRS
profile. However, no peak is found around 10-11km.

In summary it seems that satellite data from one or two days after the
eruption rather than using data for three days, would have sufficed to give
relatively good results for the height emission profile. Using only one satel-
lite overpass gives a relatively good estimate for the profile above 10 km, but
the emissions below this altitude are reduced.
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Figure 4.17: Inversion results when using AIRS data from 25 to 72 hours after the
eruption, using only one AIRS satellite overpass on 8 August at 13:30 UTC, and
when using only one OMI satellite overpass on 8 August at 23:30 UTC. The thick
coloured lines show the different inversion profiles of SOq in tons/meter. The thin
dashed line is the a priori profile, the thin dotted line its assumed uncertainty.
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4.7.2 Weighting function

The effect of the weighting function on the inversion profile is explored by
applying different weighting functions to the FLEXPART data which go
into the inversion. Only inversions using AIRS data were tested. The dif-
ferent inversion results are shown in figure 4.18 together with the respective
weighting functions. The default kernel (red line) is the same as in figure
3.5. Also an inversion without use of kernel (blue line) was tested. A nor-
malized kernel (green line) was used, that is a kernel with mean value of 1
so that the total mass is preserved. The analytic kernel (purple line) given
in equation 3.5 was used with the height of the absorber peak (zp) at 12
km, total column abundance ug = 0.1, inversion parameter u; = 10.0 and
absorption coefficient £ = 0.01. This function was also changed to allow for
an exponential-like function (turquoise line) of the lower height levels.
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Figure 4.18: a) Inversion results when using different kernels (weighting functions)
for the FLEXPART data used in the inversion method. The thick coloured lines
show the inversion profiles of SOy in tons/meter. The thin dashed line is the a
priori profile, the thin dotted line its assumed uncertainty. b) The corresponding
weighting functions.
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The figure shows that the weighting functions have a significant influence
on the inversion profile below 10 km. As elaborated in section 3.2.3, AIRS
retrievals are restricted to UTLS and thus the default weighting function
indicates that the low level SOs is observed poorly by the satellite.

The default kernel and the exponential-like analytic kernel show quite sim-
ilar results as these weighting functions are very similar for the heights below
10 km. Large differences are found when using the normalized kernel, the
analytic kernel and without using a kernel. Changing the weighting function
for the lowest layer changes the magnitude of lowest emission peak. Also the
total mass emitted is changed, as seen in table 4.2.

Inversion profile Mass [Mt]

A priori 1.30
Default 1.18
No kernel 1.02
Normalized kernel 1.29
Analytic kernel 1.83
Analytic kernel exp 1.08
OMI 1.03

Table 4.2: Total mass in megaton for each inversion profile in figure 4.18.

Consider changing the weighting function in this specific order: going from
no kernel (blue line) to the normalized kernel (green line) and further on to
the analytic kernel (purple line). This means the weighting function for the
lowest layers decrease from 1 to about 0.25. By doing so the emission peak
around 3 km is increased. Thus by decreasing the sensitivity the emission
peak increases. This results in an increase of the total mass by 80%, from
about 1 Mt to about 1.8 Mt. The inversion method clearly finds a combina-
tion of these low level emissions that allow fitting an observation. However,
when the FLEXPART sensitivities are weighted with values close to zero,
meaning that the sensitivity of the modelled values are very low (i.e., very
small value of the source-receptor relationship), the inversion algorithm will
try to compensate for this by emitting more mass at this altitude in order
to fit the observation.

When the sensitivity is further decreased, as for the default kernel and the
analytic exponential kernel, the peak would be increased by an order of
magnitude. But this is too costly in terms of deviation from a priori, so
the Tikhonov regularization becomes operative and the inversion seeks other
solution by constraining the solution more to the a priori.
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It is possible to get everything from high to low emissions at low altitudes,
depending on how sensitive the satellite data are. The sensitivity at low
altitudes is probably quite uncertain and may also be different for different
pixels, therefore the low-altitude emissions are very uncertain and can pos-
sibly not be trusted in this case.

Investigating the UV retrievals (OMI), which have a different weighting func-
tion as shown in figure 3.5, can provide a better constraint for the low level
emissions as these retrievals are not constrained to the UTLS. This is clearly
the case when considering the OMI inversion result (yellow line, repeated
from figure 4.2 for convenience) which shows a highly reduced peak at 5 km,
and increased peaks at higher altitudes.

The weighting functions are clearly an uncertain parameter of the inversion
method. The weighting functions used in this study is based on a rough es-
timate of the SOy height. The use of individual weighting functions for each
gridcell in the domain would provide better results for the inversion profile.
As the weighting functions for AIRS depend mostly of the water vapour con-
tent as well as the temperature profile, and the actual SOs height, a way
to solve this would include an iterative process using a standard weighting
function for the first inversion iteration as an estimate of the SO, heights.
After the first iteration (which is done exactly as now), the estimated height
profile (and if necessary other information, e.g., temperature and humidity)
would be known for every grid cell. Subsequently, a radiative transfer model
(or possibly simpler calculations) should be used to recalculate the weighting
functions based on temperature and water vapour as well as the estimated
S0 heights. Thus a weighting function for each gridcell is calculated. In
addition, it would be possible to determine the uncertainties associated with
the individual observations (grid cells) so for every satellite observation dif-
ferent uncertainties could be specified (and not one standard error for the
total domain as used until now). This is important especially when using
AIRS satellite data. Low-level plume observations should have a higher un-
certainty than observations at an altitude where the satellite instruments are
more sensitive. When a weighting function and uncertainty for each grid cell
is determined after the first iteration, the next iteration will use these recal-
culated values and another inversion is performed, presumably with higher
accuracy.

The height of absorber peak was also allowed to change for the analytic
weighting function, ranging from about 8 to 12 km. However, changing the
peak the weighting function only affects the lowest level emissions, mostly
below 6 km. As the height of absorber peak increases, the sensitivity of the
lowest layers are decreased which in turn blows up the low level emissions
for the same reason as explained with the previous weighting functions.
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4.8 SO, decay by OH reaction and dry deposition

To investigate how the SO5 mass decay by OH reaction and dry deposition is
handled by the model, three different model simulations were executed with
and without removal processes. First, no removal processes were considered,
secondly removal of SO5 by reaction with OH was considered, as described
in chapter 3.1.1. Finally, a model simulation with removal by both OH and
dry deposition was carried out.

Subsequently, the e-folding lifetime for SOy for each simulation was calcu-
lated. The e-folding time refers to the time interval in which the initial SO9
mass has decayed by a factor of e. (Only the SOy emissions from the vol-
cano are considered, and no background SOy or anthropogenic emissions.)
The results are shown in figure 4.19. The SO, mass with time, without
considering removal processes, is constant at a value slightly below 1.2 Mt.
When OH reaction is considered the SO, mass decreases exponentially with
time, and the e-folding time is 24 days. Considering SO, decay both by OH
reaction and dry deposition, the decay is even stronger, and the e-folding
time is 22 days. It is clearly the OH reaction that contributes to the largest
decrease of SOy mass.
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Figure 4.19: Total mass of SOy [Mt] obtained from various FLEXPART simula-
tions with and without removal processes considered. The light coloured lines locate
the respective e-folding times for the different simulations.
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As pointed out in the methodology chapter, wet deposition was not con-
sidered as a loss due to the minor importance of this sink. SOs in the
troposphere is also lost by aqueous oxidation by Os, HyOs and HOoNO-
and these loss reactions obviously also affect the lifetime of SO, but they
were not considered in the model simulation.

Dry deposition presumably depends mostly on the height of the plume. As
seen from the inversion profile in figure 4.1(b), there are only minor emis-
sions below 3 km so it is first when the plume descends to the surface layer
that dry deposition becomes significant. Calculation of the lifetime when
considering loss of SOy only by dry deposition gives an e-folding time of 264
days, which implies that most of the SO5 is at high altitude.

Calculations of the e-folding times for the troposphere and stratosphere sep-
arately gives approximately 15 days for the troposphere and 47 days for the
stratosphere, when considering both reaction with OH and dry deposition,
and a tropopause height at 10 km.

As mentioned in chapter 2.3, the lifetime of SOs in the troposphere is on
the order of a few days, while in the stratosphere the lifetime is on a order of
weeks. Bluth et al. (1997) made model calculations to estimate the potential
aerosol loading to the stratosphere from explosive volcanic eruptions. For
the average conversion rate of stratospheric SOy to sulphate aerosol they
used an e-folding time of 35 days, which was in good agreement with other
published values, all of which was within the range of 30-40 days. For the
troposphere, Berglen et al. (2004) estimated the global lifetime of SOs to
1 day using the OsloCTM2 model, OH and dry deposition contributed to
8.8% and 46.2% of the loss, respectively, and the loss by dry deposition was
high compared to other model calculations. Furthermore, Brasseur et al.
(1999) used an OH concentration of 8 x 10° molecules ¢m ™3 and a rate coef-
ficient of 9 x 10713 em? molecule™ s~! for the OH reaction, to calculate
the lifetime of SOs which results in approximately 16 days. The reaction
rate used for this model simulation was, as mentioned in section 3.1.1, set to
1.35 x 1072em 3571, Using the same OH concentration as Brasseur et al.
(1999), the lifetime of SO9 with this reaction rate is approximately 11 days.

The loss of SOy by reaction with OH depends obviously on the amount of
OH present. OH is the most important oxidant in the daytime chemistry,
and in the troposphere OH is initially formed by reactions with O3 and
sunlight, and further with HoO. OH has maximum at low latitudes due to
the the high abundance of water vapour and strong incoming solar radiation
in this region. The Kasatochi Volcano is located at ~52° N which imply that
there is not as much OH present than at the equatorial regions, and hence
the lifetime of SO5 emitted by Kasatochi will be longer.
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Based on the comparison with other studies, the fact that the Kasatochi
volcano are located quite far north, the low loss rate by dry deposition due
to high altitude emissions, and also that not all SOy sinks are considered,
the lifetimes calculated from the FLEXPART simulation, are in agreement
with the suggested SO- lifetimes.
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4.9 FErrors and uncertainties

In the following a general discussion of the uncertainties and sources of er-
rors arising from the various parts of the inversion method is given. Some
of which are already mentioned in the previous chapters. However, the high
importance of these uncertainties makes them worth repeating and to put
them in context.

First, the satellite data used in the inversion method are concerned with
uncertainties. In general, this involves the fact that there are restrictions
on the satellite retrievals. For example for AIRS, the satellite retrievals are
restricted to the UTLS, thus the measurements do not give any information
on the lower tropospheric SOy (or mid/upper stratosphere).

The accuracy of the satellite measurements has to be specified and with lack
of detailed information regarding the standard errors of the observations,
only one standard error for each instrument is specified. The standard error
for the AIRS observations is evaluated to 3 DU, which is the actual measure-
ment error. However, this might be too low because this value would possibly
better fit an atmosphere where there is little water vapour and cloud inter-
ference (as in the previous case study of the eruption of Jebel At Tair). The
retrieval errors for AIRS are specified in the paper by Prata and Bernardo
(2007). In summary the error sources include radiometric accuracy of the
AIRS channel (1 DU), estimation of the background absorbance spectrum
(4 DU), interference from clouds and other gases (principally water vapour)
(4 DU), height errors (2 DU) and errors in the spectroscopic parameters (1
DU), giving a total of 6 DU. For OMI, which provides rather accurate meas-
urements, the standard error is set to 2 DU, which includes the measurement
uncertainties and some variable deviations in the OMI retrieval, as well as
an assumption that for the comparison of model simulations with OMI the
larger part of the misfit stems from the model simulation. The accuracies for
the OMI retrieval are described by Yang et al. (2007). Ideally the standard
errors should be specified for each receptor element (each grid point in the
domain). For example for AIRS, the standard error should be high when
SO5 is located at low levels due to the restriction of the satellite retrievals.
Also the standard errors should not only contain the measurement error but
rather a standard misfit between the observations and the model results.

The uncertainties for the a priori values are specified for each source term.
The uncertainties are generally taken as proportional to the respective emis-
sion value, but for some parts of the emission profile the uncertainties are
changed and allow substantial corrections to the initial profile. If the a priori
uncertainties are low, the a posteriori profile will follow the a priori profile
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closely. However, the same principle applies for the uncertainties of the ob-
servations, which together with the uncertainties in the a priori "weigh" the
influence of the a priori against the measurement-model misfit. An import-
ant consideration is the ratio between the two uncertainties.

Another important issue concerns the independency of the satellite observa-
tions. The inversion method assumes that the measurements are uncorrel-
ated, meaning that the value of one particular observation (pixel) is inde-
pendent of the neighbouring pixels. In reality this is clearly not the case,
and this can also lead to errors.

Furthermore, the weighting function applied to the FLEXPART data used
in the inversion method is a source of uncertainties and errors. This is pre-
viously elaborated and imply that if the sensitivity to low altitude mass
loadings is very low, this can blow up the emissions at this altitude. Similar
to the standard errors of the observations, the weighting function should
ideally be specified for each grid point (receptor element). As previously
explained this can be implemented by an iterative process which uses the
estimated SOj heights (and other information) to perform recalculations.

Additionally, the satellite data were approximated to the nearest hour for
comparison with the corresponding model data. This is also an approxim-
ation that can affect the results. However, given that the maximum modi-
fication for the times was about 20 minutes it would probably not influence
the results considerably.

The eruption time (or the time when the emissions were effectively injected
into the atmosphere) is of unknown accuracy and can potentially lead to
errors. Especially for the eruption of Kasatochi, which erupted several times
during the first six hours, the assumed eruption onset and the assumption
that all SO, is emitted at once, can cause unreal emissions. Given the fol-
lowing example, this inaccuracy can cause increased low level emissions. It
is assumed that all mass is emitted at once at 22:30 UTC. Imagine that the
actual mass of the second eruption at 01:50 UTC is visible in the satellite
observations a few hours later. This mass will clearly not have been trans-
ported very far since it was released at 01:50 UTC. But assuming that this
mass is released at 22:30 UTC, the model transports this mass over a greater
distance than in reality. The satellite measures some SOs in the vicinity of
the volcano, thus this SO, is not transported far. If there are some source-
receptor elements that allow fitting the observations, the inversion method
will say that the SOy observations probably originate from the lowest alti-
tudes where transport is slowest. In reality the observations originate from
the second eruption of the volcano and could have been emitted at an higher
altitude where winds are stronger because in reality it is not transported for
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such a long time. This way, the uncertainty of the eruption time could lead
to errors in the emission height profile. In the future, this can be accounted
for by allow the inversion method to determine not only one vertical profile
but several when considering different emission times. Moreover, the winds
at low altitude are generally more slow, thus the transport is slow, and po-
tentially many possibilities of emission heights can fit the observed pattern
measured by the satellite, and the result can be high emissions at low alti-
tudes.

Also, the errors in the model simulation with FLEXPART grow with time
due to errors in the underlying wind fields, interpolation errors, self-heating
of the plume, etc. Another consideration includes the vertical and horizontal
resolution used for the model simulation in the inversion method. For this
study a horizontal resolution of 1° x 1° and a vertical resolution of 500 metres
were used, while for the previous case study of Jebel At Tair a horizontal
resolution of 0.3° x 0.3° and 150 metres vertical resolution were used. The
consequence of using a different resolution was not considered in this study.
However, the optimal resolution should be a case for further study.

In the future, improvements regarding the uncertainties of the inversion
method will be an important part of work. A better characterization of the
uncertainties and particularly include a posteriori uncertainties is essential.
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Chapter 5

Summary and conclusion

An inversion method was used in this study to estimate the vertical pro-
file of SOy emissions from volcanic eruptions. Basically, this was done by
using total column measurements of SOs from satellites and a Lagrangian
dispersion model, FLEXPART. The method was applied for the eruption of
Kasatochi Volcano in August 2008 which emitted an estimated 1.2 Mt of
S05 to the atmosphere. The satellite instruments utilised in this case study
were AIRS and OMI, which observed the volcanic plume up to two weeks
after the eruption. A summary and important concluding remarks from this
study are as follows:

e The first estimated height emission profile of SO was obtained by us-
ing total column data from AIRS for 3 days after the eruption. Emis-
sion maxima were found at ~5 km a.g.l, between ~9 km and ~15 km
and at ~18 km. According to this inversion, approximately 36% of the
mass of SOy was injected above the tropopause located slightly below
10 km. The AIRS satellite data did not provide any constraints for
the estimated emissions below 3 km and above 22 km, as suggested
by the infrared weighting function. The emission peak around 5 km
was very high and of uncertain accuracy due to the restrictions on the
lower tropospheric SOs detection by AIRS.

e OMI data for roughly 2 days after the eruption were used for a second
inversion which yielded emission maxima near ~4 km, ~6 km, ~8 km
and ~12 km, and smaller emissions between 15 and 20 km. According
to this inversion, approximately 54% of the mass of SOy was injected
above the tropopause. Emissions above 22 km were not constrained by
the satellite measurements. The high emission peak around 5 km in
the AIRS inversion was strongly reduced when using OMI data, also
this emission peak was divided into two peaks at 4 and 6 km. Due
to the higher accuracy on low-level SOy for OMI, the lower emissions
were likely to be more accurate than when using AIRS data.

7
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e Both a vertically constant and a non constant a priori profile were

used for the inversions. The inversion profile was quite robust against
changes in the a priori profile, especially when using OMI data.

The estimated emission height profiles showed good agreement with
height emission profiles from independent studies, such as estimates
based on a trajectory ensemble technique (Maerker et al., 2008), and
also using correlation coefficient calculations for comparison of simu-
lated and observed plumes (Theys et al., 2009).

The dispersion of the SOy plume was simulated by FLEXPART using
emissions according to the estimated AIRS inversion profile for the non
constant a priori profile case. The plume spread mainly southeastward
from the volcano and was transported into a circular shape due to a
passing cyclone. The plume was further transported towards the coast
of Alaska where it split into two and traversed the North American
continent in two "tails" before reaching the Atlantic Ocean and then
reached Europe within a week after the eruption.

Comparing the transport simulation using the inversion profile, with
simulation using a uniform emission profile with realistic plume top
altitude for SOy showed rather similar spatial pattern, however the
actual mass at each grid point and in each height level was different.

The simulated plume, using the estimated height emission profile, was
compared to independent AIRS and OMI observations, as well as
GOME-2 measurements. There were overall good agreements between
the simulated plume and the observation. However, quantitatively the
simulated plume showed some discrepancies to the observations, gen-
erally underestimating some parts of the SO plume.

Using LIDAR measurements in a qualitative manner to evaluate the
plume height, the FLEXPART simulation of the plume showed very
good agreement with observations from Nova Scotia 14-15 days, and
from Svalbard up to 27 days after the eruption. The height of the
modelled plume agreed with the observations to within ~1 km. The
LIDAR measurements from Nova Scotia showed an observed layer at
18 km height, it was indicated that this layer originated from emissions
around 18 km, thus the LIDAR measurement demonstrated that SOs
was injected to an altitude of 18-20 km by the volcanic eruption.

Sensitivity experiments were carried out regarding the amount of satel-
lite observations needed to obtain a meaningful height emission profile.
It seemed that satellite data from one or two days after the eruption
rather than using data for three days, would have sufficed to give re-
latively good results for the height emission profile. Using only one
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satellite overpass gave a relatively good estimate for the profile above
10 km, but the emissions below this altitude were reduced.

e Sensitivity studies for the effect of the weighting function were also
performed. This showed that the low level emissions were critically
sensitive to the weighting function. As the sensitivity at low altitudes
decreased, the emissions at this height range increased. In the future,
this should be improved by applying an iterative process which re-
calculates the weighting functions, as well as the uncertainties of the
observations, based on the estimated SOy heights.

e The SO- mass decay by OH reaction and dry deposition estimated by
the model, was investigated by calculating the e-folding times of SOs.
Considering both sinks, the lifetime was calculated to 15 days for the
troposphere and 47 days for the stratosphere, which were in agreement
with other studies. Due to the high altitude of the SO plume, dry
deposition was nearly negligible.

The inversion method presented can provide information needed in order to
calculate the actual and future position and extent of volcanic plumes. This
information can be utilised in near real-time applications by e.g., the VAACs
to rapidly issue warnings on volcanic ash hazards. As soon as satellite data
are available for the eruption, the inversion method can be applied and the
results can be ready within minutes to a few hours. The time-critical part
is the requirement of satellite data for the times recently after the eruption.
For this purpose, geostationary satellites can provide excellent information
(since they orbit at the same angular velocity as the Earth, thus sees the
same part of the Earth all the time). For example, the Spinning Enhanced
Visible and Infrared Imager (SEVIRI) instrument on board the Meteosat
Second Generation (MSG) geostationary satellite, is continuously imaging
the whole of Europe and all of Africa, and has a baseline repeat cycle of 15
min and a spatial resolution of 3 km. This short time resolution makes it
very encouraging for operational use with the inversion method. Other useful
geostationary satellites includes Geostationary Operational Environmental
Satellite (GOES) which covers the U.S, and Geostationary Meteorological
Satellite (GMS) imaging Japan and the surrounding areas.

The method presented can also be utilised for less time-critical studies, such
as facilitating the understanding of the climatic impacts of stratospheric SO4
injections by volcanic eruptions. The last major eruption with significant cli-
matic influence was the eruption of Mount Pinatubo in 1991 which emitted
about 30 Mt of SOy to the atmosphere that reached an altitude of more
than 30 km. With the estimates based on this study approximately 0.5 Mt
of SOs was injected into the stratosphere to an altitude of ~20 km by the
eruption of Kasatochi. An interesting question is whether this eruption will
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give a noticeable climatic effect, an issue investigated by Kravitz et al. (2008).
They used the NASA Goddard Institute for Space Studies ModelE general
circulation model to calculate the expected climate response to the resulting
sulphate aerosol cloud, and conclude that the resulting cooling and changes
in the stratospheric circulation would be difficult to detect. The results were
presented at the American Geophysical Union Fall Meeting in December 2008
but are yet to be published in a journal. Furthermore, the proposed geo-
engineering techniques, a way to compensate for increasing greenhouse gas
concentrations, require extended research and understanding before possibly
being realised. The inversion method can contribute in such part of research.

Further improvements of the inversion method include reimplementation
with volcanic ash aerosol mass instead of SOy. This would allow the VAACs
to improve the operational warnings given to aircraft pilots about volcanic
ash avoidance. For this study, the SOy was only used as a proxy for ash. It
would also be interesting to investigate the suggested separation of SO and
ash. Furthermore, a tracer for the oxidation product of SO - sulphate, po-
tentially also a hazard for aircraft, could be implemented. In addition, other
sinks for SOy (apart from reaction with OH and dry deposition) should be
considered. Furthermore, an iterative scheme recalculating weighting func-
tions and observation uncertainties is to be implemented. Additionally, when
the time of the eruption onset is unknown, incorporation of a procedure con-
sidering several emission intervals, subsequently optimise the vertical and
temporal emission distribution, should be considered.
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