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Abstract

Relative dispersion is a widely used measure to characterize mixing prop-
erties of atmospheric passive tracers. Numerical models allow for a large
number of particles. In this thesis, the Lagrangian transport model FLEX-
PART has been used to generate particle trajectories. The advection velocity
field was provided by the European Centre for Medium-Range Weather
Forecasts (ECMWEF). 40000 particles were deployed along latitude lines, at
30N and 30S, 60N and 60S, and at two heights, (6km and 12km). Trajector-
ies on all these locations were made in two different months, January and
September 2009. The initial particle separation was determined by the grid
spacing for the winds,1° x 1°.

In addition to relative dispersion, we examine probability density functions
(PDFs) of pair separations. To interpret the results, we also consider
the second order (Eulerian) structure functions. Up to a few hundred
kilometers, an exponential dispersion regime was detected by the relative
dispersion, while the separation distributions (PDFs) indicated that the
nonlocal dispersion is likely to extend to the deformation radius. The
structure functions are consistent with exponential growth, and suggest the
large scale behavior is probably diffusive.
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Chapter 1

Introduction

The air that continuously moves around in the Earth’s atmosphere forms a
complex physical system which has challenged scientists for thousands of
years. Some of its complexity is illustrated by Figure 1.1, which shows
a simulated ensemble of fluid particles drifting around 6km above the
European continent. The abrupt changes in the particle motion provide
a fairly chaotic view of the flow field, an indication of turbulence. Highly
irregular motion like this is only described statistically. Although progress
has been made, continued lack of knowledge makes this topic a prioritized
field in atmospheric research environments. The actuality of some of the
issues that atmospheric turbulence cover, does also reflect a discipline of
high practical relevance.
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Figure 1.1: Trajectories of air parcels over Europe deployed at 60° North in January
2009. Generated by the Lagrangian transport model Flexpart

Atmospheric motion consists of a wide range of spatial and temporal
scales, shown in Figure 1.2, associated by different phenomena, from

the very small viscous processes dissipating kinetic energy to the large
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CHAPTER 1. INTRODUCTION

planetary waves feeding energy to the high and low pressure systems. In
between these two extremes, i.e. at intermediate scales, wave interactions
cause a continuous transfer of energy among different scales of motion.
These interactions cause major mixing and transport of atmospheric
components, e.g. chemical species, contaminants, etc., and is crucial to how
these are spread and distributed.
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Figure 1.2: Atmospheric scale definitions. From Lin (2007)

Recent accidents have showed the importance of predicting where pollut-
ants are transported. After the Eyjafjallajokull eruption in spring 2010,
the European aviation authorities were heavily dependent on reliable in-
formation about where the ash clouds were advected. Another eruption at
Grimsvdtn volcano in May 2011 has actualized the topic. The recent nuc-
lear eruption in Japan also showed the importance of an operative system,
which predicts in which direction the hazardous substances are spreading.
In a future disaster, an improvement of the predictions could be crucial for
a large number of humans and animals. Another current issue concerns
climate and how it possibly changes due to an increase in the amount of at-
mospheric greenhouse gases. The distribution and seasonal cycles of those
is important to be well understood in a scientific problem of such a com-
plexity.

To acquire knowledge on how pollutants and other components, often
called passive tracers, are drifting around in the atmosphere, one approach
is to send up balloons and track their paths. A method used to measure
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the balloon dispersion is to calculate their mean displacement relative to
the starting position, i.e. absolute dispersion. However, a more proper
method to describe how a tracer cloud is spreading is to consider balloon
pairs. The variance of the pair separations yields a measure called relative
dispersion. This measure reflects different types of flow, which is essen-
tial to ensure a realistic description of tracer spreading. Hence, this is a
widely used method to characterize transport and mixing properties of at-
mospheric tracers.

The topic covering atmospheric dispersion has been paid increasingly at-
tention to during the last century. Richardson (1926) studied smoke from
factory stacks and detected a striking relation between the particle diffus-
ivity and separation between the particles. That is

K o r4/3 (1.1)

where 14
— - "2
K(t) = 2dtr

is the relative diffusivity and r is the separations between the particles.

The relation in (1.1) is known as Richardson’s law and states that the
growth of a tracer cloud is dependent on the size of the cloud. This de-
tection was a milestone at that time. However, an extension of observa-
tional research like this has been difficult to achieve. Balloon projects were
both expensive and challenging. In the decades after Richardson’s work,
most progress was made on establishing a theoretical framework for atmo-
spheric turbulence. Since the turbulent flow directly affects the dispersion
of tracers, the development of a robust theory for turbulence has been of
high importance.

The kinetic energy spectrum was inferred to be a useful tool to character-
ize the turbulent flow. Kolmogorov (1941) considered a range of scales in
between the scales at which forcing and dissipation are affecting the flow.
The turbulence was assumed to be isotropic, homogenous and stationary
in this range, known as the inertial range. Under these conditions, he pre-
dicted a kinetic energy spectrum proportional to scale.

E(k) o €2/3k5/3 (1.2)

where € is the energy flux and k is the wavenumber. Figure 1.3 shows the
Kolmogorov energy spectrum.

This spectrum was deduced for a three dimensional (3-D) turbulent fluid.
When the vertical component of the velocity field is much smaller than the
horizontal components, the motion is thought to be approximately two di-
mensional (2-D). Kraichnan (1967) suggested two inertial ranges using the
same arguments as Kolmogorov. One, characterized by an upscale transfer
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of energy, provided the same kinetic energy spectrum as (1.2). The addi-
tional range was based on a transfer of another inviscid quantity, enstrophy,
downscale. Enstrophy is defined as the vorticity squared. A turbulent
flow dominated by an enstrophy transfer was associated by a kinetic en-
ergy spectrum expressed as

E(k) o< ?/3k 3 (1.3)

where 1) is the enstrophy flux.

K K.

Figure 1.3: The Kolmogorov energy spectrum. The y axis displays the energy per
wavenumber E(k) while the x axis displays the scale in wavenumber
k. Ky denotes the scale of energy input, i.e. forcing, and kv is the scale
of energy dissipation, i.e. damping. From LaCasce (2011)

In the free atmosphere, above the highly 3-D atmospheric boundary layer
and far from areas dominated by strong convective motions, the quasi-
geostrophic (QG) approximation is a reasonable description of the flow
field. Charney (1971) showed that 2-D turbulence theory applied to de-
scribe the turbulent processes associated with QG motion. The relative dis-
persion at these scales is then determined by the predicted spectrum in
(1.2) and (1.3). While Richardson’s law yields a cubic growth of the particle
separation in a k=5/3 energy spectrum, Lin (1972) suggested that particle
separations are growing exponentially in time in a k2 spectrum.

In the 70’s, new satellite technology allowed scientists to track balloon
paths. Two balloon experiments, EOLE and TWERLE (Tropospheric Wind
Earth Radio Location Experiment), performed in the Southern hemisphere,
were examined by Morel and Larcheveque (1974) and Er-El and Peskin
(1981) to study the turbulent dispersion. The balloons were deployed at
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200hPa and 150hPa, respectively. Both suggested relative dispersion obey-
ing Lin’s exponential law up to separations of 1000km. Lacorata et al. (2004)
and LaCasce (2010) reexamined the EOLE data using additional measures
to detect the mesoscale dispersion. While the former study suggested
Richardson growth, the latter suggested exponential growth, at least up to
a few hundred kilometers. Together with other contradicting results, this
ensures a topic which is continuously under debate. Calculations of kinetic
energy spectra could alternatively broaden the debate. Desbois (1975) used
the wind data from the EOLE experiment to infer a spectrum with a shape
close to k=3, in line with Morel and Larcheveque (1974). The GASP (Global
Atmospheric Sampling Program) program provided a large set of wind
data, collected from over 6900 flights of commercial aircrafts. Nastrom and
Gage (1984) calculated the Eulerian kinetic energy spectrum, which indic-
ated a k=2 spectrum from wavelengths from a few hundred kilometers up
to about three thousands kilometers. The smallest scale showed a k~>/3 de-
pendence.

The debate on how turbulence behaves at the atmospheric mesoscale con-
cerns a lot of issues in the meteorological discipline today. The numerical
models which provide weather predictions are important for a variety of
purposes, e.g. forecasting extreme weather. These are restricted in space
and time resolution due to limited computing power. Therefore, a satis-
factory parameterization of the flow field below the grid scale is important
to improve the model’s reliability (Basdevant et al., 1978). A simple and
realistic description of the energy transfer, i.e. an energy spectrum, is cru-
cial to ensure this. Since relative dispersion concerns separation growth in
time, it also predicts the evolution of small position errors made in the ini-
tializations of a weather forecast. Whether this growth is exponential and
heavily dependent on the initial error (Lorenz, 1969) or not, e.g. obeying
Richardson’s law, would eventually affect the budget priorities of the au-
thorities. It is not worth spending money on more accurate measurements
if the forecast error is independent of the initial condition.

In this thesis, the goal is to improve the understanding of turbulent re-
lative dispersion in the atmosphere in light of earlier studies. Since the
theory of turbulence restricts to a statistical description, a huge number of
particles are required to ensure stable statistics. The EOLE and TWERLE
projects provided remarkable results, but the data are somewhat noisy, es-
pecially when the balloons have spread to a wide range of scales. The use
of numerical transport models, however, allows us to use a huge number
of particles, which will act as balloons. In addition, this is almost costless.
In this study, the Lagrangian transport model FLEXPART with reanalysis
wind field from the European Centre for Medium-Range Weather Forecasts
(ECMWEF) has been used to generate trajectories of so-called "synthetic bal-
loons". Motivated by the climatological study of Huber et al. (2001), two
heights, 6km and 12km, at two latitudes, 60° and 30°, in each hemisphere
have been tested to check if relative dispersion is universal. Initially, 40000
particles are displaced uniformly around a latitude circle. Two months,
January and September 2009, were used to detect possible seasonal vari-
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ations. The simulations lasted for one month. An extended description of
FLEXPART is given in Chapter 2.

In Chapter 3, the theoretical framework for this study is presented. The ba-
sics of two dimensional turbulence are shortly described and are followed
by an introduction to turbulent dispersion. This covers absolute disper-
sion, relative dispersion and its relation to the underlying turbulent flow,
described by the Eulerian kinetic energy spectrum. However, relative dis-
persion as a measure tends to fail under influence of large scales, where dis-
persion does not satisfy the basic assumptions of 2-D turbulence. The sep-
aration distribution, of which relative dispersion is the variance, is a more
conclusive tool. Thus, some probability density functions (PDF) reflecting
the different turbulent flow predictions are presented in the last section. A
subsequent short chapter extends the presentation of earlier studies with a
more detailed description of their results.

The results of the data obtained by FLEXPART are presented in Chapter 5.
First, the data’s consistency upon the theoretical assumptions are tested.
Then the physical results are presented, ie figures showing relative
dispersion and PDFs. Finally, the Eulerian kinetic energy spectrum and its
related second-order structure functions based on the input wind velocity
data from ECMWEF, are shown to extend the discussion in light of the
relation to relative dispersion. The subsequent Chapter 6 contains a
discussion of the results. The most important results are summarized, and
some concluding remarks are pointed out in Chapter 7.



Chapter 2

Method

In this chapter, the method for obtaining data will be described. A
numerical transport model has been used to simulate trajectories of a large
number of infinitesimally small air parcels, or "synthetic" balloons. The
output positions of these particles have been subject to further calculation
to analyze the dispersion. The wind field data used as input data in the
model have also been used externally to calculate kinetic energy spectra
and second-order structure functions. This chapter will focus on the
numerical model, but with the input data incorporated in that.

2.1 Model Description

The numerical model used in this thesis is the Lagrangian particle disper-
sion model FLEXPART (Stohl et al., 2005)!. The first version was made dur-
ing the first author Andreas Stohl’s military service of the Austrian Forces.
Together with Stohl, it has been developed by people from Norwegian In-
stitute for Air Research, Institute of Meteorology in Austria and Preparat-
ory Commission for the Comprehensive Nuclear Test Ban Treaty Organiz-
ation in Vienna, Austria. It is now used by a growing user community.

Originally, FLEXPART was made for calculating long-range and mesocale
transport of air pollutants which origin were a point source, such as after
an accident in a nuclear power plant. During years of expansion and ad-
justments, it has been generalized into a model concerning several subjects
of atmospheric transport. At the present time, the main applications for
the model are atmospheric transport of radionuclides after nuclear acci-
dents, pollution transport, greenhouse gas cycles, stratosphere-troposphere
exchange, water cycle research and others.

FLEXPART computes trajectories and concentrations of atmospheric tracer
particles, not necessarily real particles, but infinitesimally small air par-
cels. Flexpart’s main property is to simulate the long-range and mesocale
transport, diffusion, convection, dry and wet deposition and radioactive
decay of these. Compared to Eulerian models, the Lagrangian ones have

ISee http:/ /transport.nilu.no/flexpart for upgraded versions of the model description
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no numerical diffusion. Another advantage is the independence of a com-
putational grid, as the Eulerian ones have. In principle, the resolution of a
Lagrangian model can be infinitesimally small. The tracers can be released
from point, line, area or volume sources. The model can be used both for-
ward in time to look on the dispersion of tracers from their sources, and
backward in time to find a possible source contributor from a plume of
tracers.

FLEXPART is an off-line model that most commonly uses meteorological
fields from the ECMWF? numerical weather prediction model as input.
These fields are forecast or analysis in gridded binary (GRIB) format on
a latitude/longitude grid and on native ECMWF levels. Thus, to produce
trajectories, the input velocity data are interpolated on the present particle
position, i.e. on the Lagrangian grid, to advect the particle. The data can
be global or only cover a limited area. A domain with higher resolution
can also be nested into a mother domain. The input data have to contain
five three-dimensional variables; horizontal and vertical wind components,
temperature and specific humidity.

Since all three wind components are used to trace the particle path, the
trajectories are three dimensional. This method of tracer tacking was sug-
gested to be the most accurate by (Stohl and Seibert, 1998). Other error
sources in the trajectory modeling are truncation errors, interpolation er-
rors, inaccurate knowledge of the starting position and inaccuracies in the
input wind fields.

The trajectory calculation in FLEXPART is based on the simple trajectory
equation

0 — =
aX =0 [X(t)] (2.1)

N _
where t is time, X the position vector and T =7+ E) + v_>m the wind vec-

tor. The latter is decomposed into a grid scale wind 7, the turbulent wind
fluctuations 7; and the mesocale wind fluctuations o,,,.

The turbulent motions o;, which are the small scale perturbations, are para-
meterized assuming a Markov process based on the Langevin equation
(Thomson, 1987). This stochastic scheme is describing diffusive processes
(random walk motion) as introduced in Chapter 3.3. However, the meso-
scale motion vy, is not covered by this parameterization. For the part of the
mesoscale not resolved by the grid scale wind, an independent Langevin
equation for the mesoscale wind velocity fluctuations are solved based on
the method of Maryon (1998). The idea is to assume that the variation of
winds on the Eulerian input grid scale must be of a similar magnitude to
the variation within a grid box.

2European Centre for Medium-Range Weather Forecasts
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2.2 Model setup

In this thesis, the Flexpart model was used to calculate a large number of
trajectories of infinitesimal small air parcels, so-called "synthetic" balloons.
These were displaced around a latitude circle and then advected by the
wind field of the ECMWEF input data. As output was time series of all the
particles positions.

The simulations are based on reanalysis data provided by ECMWF
(ECMWEF, 2002). These are produced through the latest reanalysis project
of ECMWEF, ERA-Interim (ECMWE, 2011). The data which are used have
a horizontal resolution of 1° x 1° and a 91 levels vertical resolution. The
temporal resolution is three hours, where reanalysis at 00:00, 06:00, 12:00
and 18.00 UTC and forecast at intermediate times are used. Therefore, to
yield output every hour, a time interpolation is done by the model.

16 model runs have been carried out. For one model simulation, 40000
particles were initially displaced uniformly around a latitude circle. Four
different latitudes and two different altitudes are chosen to detect possible
dispersion differences due to different dynamics at different atmospheric
locations. It has been done two simulations for each location, one starting
00:00 UTC on the 1th of January and the other 00:00 UTC on the 1th of
September, both in 2009. These extended for one month until 21:00 UTC on
the 31th of January and the 30th of September respectively. The motivation
for the latter is to detect possible seasonal variations. Because of this thesis’
focus on general atmospheric dispersion properties, the choice of year is
not of great importance. The model computes particle positions every hour.
The output grid is 1° x 1° with 3 vertical levels, since the motion on the
scale of interest is assumed to be highly two dimensional. Chemical de-
scriptions of neither the particles nor the atmospheric composition were
needed for my purpose. Thus, all such settings were neglected in the model
setup.

In addition to the use as the meteorological field in the model input, the
ECMWEF velocity data were used directly to calculate atmospheric kinetic
energy spectra and structure functions. To obtain as much spatial scale
information as possible, a 0.2° x 0.2° horizontal resolution was used.

2.3 Lagrangian description

Flexpart uses the Lagrangian method to track particles. In the Lagrangian
frame, every particle is marked by an "observer", continuously drifting
with the particle from an initial state. It is illustrated by a balloon drifting
with the winds, where the balloon represents a fluid particle. Thus in
a model sense, a Lagrangian description yields a moving grid in time.
In contrast, the Eulerian frame implies calculations on stationary grid
points. The model input data, which moves the particle around by its
meteorological wind field, is defined on such grid. Since the Eulerian
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PARAMETER VALUE

Model FLEXPART

Type of model Lagrangian particle dispersion model

Input data ECMWEF reanalysis

Particle release Uniformly displaced around a latitude circle

Release latitudes 60S, 30S, 30 N and 60N

Release altitude 6km and 12km

Simulation start 01 January 2009 and 01 September 2009, 00:00
UTC

Simulation end 31 January 2009 and 31 September 2009, 21:00
UTC

Type of particle General air parcel

Number of particles | 40000

Grid resolution 19 x 1°

Grid size 360° x 180°

Output time step 3600s

Output fields Particle positions in latitude/longitude[’] and
height[m]

Table 2.1: Input and output parameters for the FLEXPART model runs

grid is stationary, the wind velocities have to be interpolated on the model
Lagrangian grid.

Figure 2.1: Description of the Lagrangian frame. A balloon drifts with the fluid
motion. From http://www.stuffintheair.com/the-hot-air-ballon.html

Using a Lagrangian model is convenient when studying transport of
atmospheric tracers. It allows us to follow each tracer particle, producing
ensembles of particle trajectories. This forms a set of output data which
can be analyzed using Lagrangian statistics. The latter is described in
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Chapter 3. Another advantage by using a Lagrangian model follows
naturally from the Lagrangian perspective. The nonlinear advection terms,
causing an unclosed set of governing equation of the atmosphere (shown in
Chapter 3.1), are included implicitly, without approximation (Wilson and
Sawford, 1996).

2.4 Calculation

Here follows some important remarks according to the calculation of
different parameters in this thesis.

* The model output yields particle positions in spherical coordinates.
To obtain the separations between the particles, the arc length
distance was calculated by the swdist function in MATLAB. There
were not taking account for height, so the distances are actually
calculated on the surface.

¢ There were also adopted some MATLAB functions in other calcula-
tions. A least square fit to the data was provided by using the Re-
gress function. To obtain the probability density function of the data
set separations, the Hist function was used. The kinetic energy spec-
trum was produced by the Pwelch method (Welch, 1967), which also
is a function implemented in MATLAB. The method does a discrete
Fourier transform on the ECMWF data to translate the spatial velo-
city field into a power field dependent on wavenumber.






Chapter 3

Theory

The scientific field of atmospheric turbulence includes flows of all temporal
and spatial scales. This thesis, however, focuses on mesoscale turbulence
which can be assumed to be quasi two dimensional (2-D). Thus, the theory
introduced in this chapter is restricted to that range of scales. However,
some features are general and will be considered very shortly first in this
chapter. Then, it will be focused on two important turbulence models
in 2-D theory, described by two distinct kinetic energy spectra. These
form the framework for the main topic of this thesis, turbulent dispersion,
which is systematically presented thereafter. After an introduction to
absolute dispersion, predictions of relative dispersion and, in the last
section, separation distributions are derived on the basis of 2-D turbulence
theory.

3.1 The nature of turbulence

To illustrate one of the main concequences of turbulent motion, it is con-
venient to present the atmospheric momentum equation (Holton, 2004)

_)
;7+7-v7+f7x7:—w%)—§> (3.1)

where U is the velocity field, f the Coriolis parameter, p the pressure
field, p the density field and ¢ the gravitational acceleration.

A sign of nonlinearity are terms containing products of dependent vari-
ables. Thus, -V and V(%) make the momentum equation nonlin-

ear. To illustrate what these terms might cause, a simple nonlinear system,
based on (Vallis, 2006), is used. That is

;tu +uu+ru=20 (3.2)

where 7 is some constant.

13
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To include turbulence, the velocity u is decomposed into a mean and a fluc-
tuating component.

u=u+u (3.3)

where 7 is the mean velocity and u’ the deviation from that mean.

The goal is to obtain a closed equation to predict the statistical behavior of
the turbulence. Then, by substituting (3.3) into (3.2) and then averaging the
equation leads to

%a+w+m:o (3.4)

7 is simply 7 since 1/ = 0. The problem appears due to the nonlinear term.
That becomes

= (u+u)(a+u) = (u2+2uu +u?) = u +u? (3.5)

This term includes the mean of the correlation between the fluctuations,
u?, which is indeterminable. Thus, one needs an equation for %iu. First
multiplying (3.2) by u and then averaging yields

10— —
5 atu + uuu + ru 0 (3.6)

This equation contains a new indeterminable term, uuu. An equation for
this cubic term will contain a quartic term, and so on in an infinite number

of times, u" requires u"*1. The equations are unclosed and there has to be
made assumptions to close them. The density does not appear explicitly in
the pressure coordinate version of (3.1), so a change of vertical coordinates
eliminates the nonlinearity of that term (Holton, 2004). However, the non-
linearity of the advection term is not solved that elegantly. It is the source
to the closure problem in the atmospheric momentum equation and needs
to be represented in some way. Parameterizations have not been able to
describe this term satisfactorily until now. It is not clear if it exists a useful
closed-form solution of the equation at all.

The closure problem prevents the atmospheric governing equations being
closed and hence solved exactly. It is a mathematical problem. In addition,
the nonlinearity of (3.1) has some physical implications. It causes interac-
tions among eddies of different length scales. By analyzing the nonlinear
terms in the wavenumber space, it becomes clear that eddies, presented by
wavenumbers, in groups of three are exchanging energy in so-called triad
interactions (Vallis, 2006). There are two types of these interactions accord-
ing to the length scale of the eddies which interact. By considering three

— —
arbitrary waves with wavenumber k, | and i, the two regimes are
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* Local interactions, where waves of comparable sizes are interacting
— — N
k ~1 ~m

* Non-local interactions, where waves of significantly different sizes are
. . - 7 —
interacting k ~ | >>m

The triad interactions are expressed through the advection term of (3.1).
The same kind of terms appear in the continuity equation and the
thermodynamic energy equation !. Then, the triads are responsible for
a continuous transfer of momentum, mass and heat among different
atmospheric scales. This is a fundamental consequence of the nonlinearity.
Besides being a mathematical problem, nonlinearity is inherent in the
physical system.

3.2 Two dimensional turbulence

The description in Section 3.1 is general and covers the main consequences
of atmospheric turbulence. At small scales, particularly in the planetary
boundary layer, the turbulence is three dimensional (3-D). The motion is
influenced by interaction with the surface, which produce a strong vertical
wind shear and therefore prevalent vertical mixing. On larger scales, due
to the rotational earth and stratification, the two horizontal velocity com-
ponents dominate over the vertical. Charney (1971) showed that under
the quasi-geostrophic approximation, it is reasonable to assume the tur-
bulence being approximately 2-D. This thesis follows Charney’s argument
and hence applies 2-D turbulence theory on the results in Chapter 5. Here
follows a short introduction to this theory.

Since the triad interactions cause a transfer of momentum among eddy
scales, the kinetic energy spectrum is appropriate to describe the turbu-
lent flow field. To predict the Eulerian spectrum, there are first made some
assumptions 2 (Vallis, 2006):

¢ Isotropy
¢ Homogeneity
¢ Stationarity

Homogeneity implies that turbulence has the same property, wherever in
space. Then, analyzing turbulence in wavenumber space is sufficient. Sta-
tionarity means that the turbulence property is not changing in time. The
isotropic assumption demands a turbulence which is the same in all direc-
tion. The kinetic energy spectrum in wavenumber space can then be writ-
ten as

—
k

E(k)=E(k) (3.7)

where k is the wavenumber.

1See Holton (2004)
2Note that all assumptions are statistical
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The previous and upcoming assumptions follow the arguments of
Kolmogorov (1941), actually applied on a 3-D fluid. Batchelor (1953) and
Fjortoft (1953) showed almost simultaneously that energy is, opposite to 3-
D turbulence, transferred to larger scales in 2-D turbulence, a so-called in-
verse energy cascade. One consequence is that kinetic energy is conserved.
Although the direction of the energy transfer is opposite, Kraichnan (1967)
inferred the same spectrum as for 3-D turbulence. A key assumption is to
suppose a system, in which forcing and damping are happening at sub-
stantially different scales. Then, there exists a range of scales, which is only
dominated by the nonlinear terms in the momentum equation in (3.1), i.e.
by triad interactions causing energy transfer among eddies. This range is
known as the inertial range. To ensure that forcing and damping are not dy-
namically important, the interactions between the eddies have to be local.
Then, the flux of energy does only depend on processes ocurring near the
scale of the interacting waves. This implies that the energy flux (energy per
time) at a certain scale is only dependent on the energy on that scale, i.e.
the energy spectrum, and the scale itself. Thus, the energy spectrum is pro-
portional to € and scale, represented by the wavenumber k. By imagining
a situation where all scales have been energized through a spin-up period,
the energy flux has to be constant to keep the spectrum stationary. Since

. . . . 2 .
kinetic energy per unit mass has units of “;, the energy flux € has units of
2 . . . . .
"51—3. The wavenumber has units of % Then, by dimensional considerations,

the energy spectrum (’:—;) is

E(k) oc €2/3k5/3 (3.8)

which is the same spectrum as Kolmogorov (1941) predicted for a 3-D fluid.

Kraichnan (1967) suggested two inertial ranges in 2-D turbulence. Not only
an upscale energy cascade could characterize the turbulent flow, but also
an enstrophy transfer downscale, which caused an additional energy spec-
trum. Enstrophy is defined as

_ 1 2
Z=3¢ (3.9)

where ( is the relative vorticity

Since vorticity is one over time, enstrophy has units of Slz To infer an energy
spectrum in the inertial range dominated by enstrophy transfer, exactly the
same arguments apply as for the energy inertial range. The spectrum de-
pends only on the rate of change of enstrophy, the enstrophy flux 1, and
scale k. The units of n has to be S% Then the shape of the spectrum is

E(k) o< ?/3k 3 (3.10)
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Then, the spectrum in the enstrophy range is steeper than that in the energy
range. To see the dynamical differences between these two ranges, a closer
view on the advecting time scales is convenient. The eddy interaction time
scales have to depend solely on the energy (enstrophy) flux and scale un-
der the local assumptions. Then, dimensional arguments show that for the
energy range

Tonergy o € 1/3k2/3 (3.11)

while for the enstrophy range

Tenstrophy X 77_1/3 (312)

A fundamental difference between the two time scales is obvious. While
the advecting time scale in the energy range depends on length scale, the
corresponding time scale in the enstrophy range does not. The reason
for this is that the triad interactions are local in the energy inertial range,
while they are nonlocal in the enstrophy inertial range. Then, the size of
the largest eddies characterizes the enstrophy transfer downscale in an en-
strophy inertial range (see Section 3.1). That a local assumption causes a
nonlocal spectrum sounds contradictory. However, it will be shown in Sec-
tion 3.4 that the -3 power actually is in the limit between local and nonlocal
turbulence and hence the spectrum describes so-called weakly nonlocal dy-
namics (Bennett, 1984).

By applying these two theoretical models on the mesoscale turbulence
imposes some considerations about the scales of forcing (energy sources)
and damping (energy sinks) in the atmospheric system. The radius of
deformation® is suggested to be a scale, associated with a significant
injection of kinetic energy (Salmon, 1980). How would a net upscale
energy flux be satisfied in an inertial range at sub-deformation scales?
By its huge amount of vorticity, the energy-containing eddies are also a
source of enstrophy. Since enstrophy cascades towards smaller scales, a k3
spectrum at atmospheric mesoscale is a reasonable suggestion®. Finally, it
is being dissipated at some small scales. A consequence of that downscale
enstrophy cascade is that enstrophy is not conserved in 2-D turbulence
(Rhines, 1979). As will be shown, whether it is a k=3 or a k—5/3 spectrum
characterizing the turbulent flow is crucial on how particles disperse in 2-D
turbulence.

3.3 An introduction to turbulent dispersion

The short introduction to 2-D turbulence theory in the previous section is a
very useful tool both to understand but also interpret relative dispersion. It

3The scale where the flow is approximately balanced between the coriolis force and the
pressure gradient force, i.e. geostrophic flow (Holton, 2004)
“Charney (1971) actually predicted a k~3 spectrum for quasi-geostrophic turbulence
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will be shown that the particle separation growth depends on the turbulent
cascade which dominates the flow. However, in some cases, turbulent mo-
tion can be explained in a fairly simple way. One example is the so-called
Random walk problem. A lot of idealized cases could illustrate such motion,
for instance perfectly drunk people walking from a bar. One basic result of
the Random walk problem states that (Vallis, 2006)

<| Dy >>Y2= /ns (3.13)

where D, is the position after n step and s is the length of each uniform
step, which is uncorrelated with the previous one. Then (3.13) suggests
that in a random walk, the root mean square displacement increases with
the half-power of time.

3.3.1 Absolute dispersion

The Random walk problem does seem like an oversimplification of the nature.
However, in some cases, it is a realistic description of how particles dis-
perse. To formalize the random walk to a dispersion problem, it is con-
venient to introduce the single particle dispersion, or absolute dispersion.
Based on the work of Taylor (1922) it is defined as

Da(t) =<| xi(t) — x;(0) |*> (3.14)

where x denotes the position of a particle i at a time t. Thus, absolute
dispersion describes how an ensemble of particles spread from their indi-
vidual positions in time. It has been the most common way to statistically
describe Lagrangian data (LaCasce, 2008b). Eddy heat fluxes and Rossby
wave propagation are applications were single particle statistics have been
applied. The following derivation comes from (LaCasce, 2008b)

To understand the behavior of dispersion in different time limits, diffusiv-
ity is a useful measure. The absolute diffusivity is defined as

K(t) = z— < X*> (3.15)

where X is the mean position vector of the particles. The constant appears
due to the derivative of a squared variable. Thus, the absolute diffusivity
is simply the time derivative of absolute dispersion. By applying the dif-
ferentiation, (3.15) can be expressed as

K(t) =< u(t)X(t) >=< u(t) /Otu(fr)dfr >= /Ot <u(t)u(t) >dr (3.16)

which is the velocity autocorrelation. u#(t) can be inside the integral since
the latter is with respect to the other time variable 7. If there is a stationary
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velocity field, then
t
K(t) = VZ/ R(7)dt (3.17)
0

where

_ Ja < u(0)u(r) > dr
= .

R(7)

(3.18)

is the normalized velocity autocorrelation and v is the velocity variance
of the particles. The stationarity is reflected by the substitution of #(0) for
u(t) in (3.18).

To study the short time limit behavior (t — 0), it is convenient to expand
the autocorrelation in a Taylor series.

R
R(1) =1+ aR, +...0(t?) (3.19)
dT
and
lim;_oR = 1 (3.20)
Then, using (3.17),
t
limy oK = v2 / 1dt = 2t (3.21)
0

Then, by integration, this implies that absolute dispersion grows quadrat-
ically in time in the short time limit.

In the long time limit, since they are far apart, it is realistic to assume that
the velocities become uncorrelated. Then

lim;_.ooR = 0 (3.22)

and

t
lin_,oo K = v? / 0dt = const. (3.23)
Jo

The diffusivity converges to a constant in the long time limit. This is called
a diffusive process and the diffusion equation can describe the motion. In
this range, the dispersion must grow linearly in time. This is exactly the
same growth as in the Random walk problem. Thus, in some cases, though
not focused on in this thesis, this simple situation is sufficient to describe a
turbulent flow.
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3.4 Relative dispersion

Absolute dispersion characterizes the mean flow, since all the single fluid
motions are averaged at each time step. Thus absolute dispersion reflects
the mean drift of the cloud and the spread about the instant mean position.
Spreading due to deviations from the mean flow is not described, reflect-
ing the limitation of single particle statistics. A more proper description of
a tracer cloud should also include additional flow fields, which are neces-
sary to extend the physical applicability. By considering the time evolve-
ment of the separations between particles, relative dispersion satisfies that
requirement. Inherent in this measure, there is a property of distinguishing
different kind of flows. For this reason, relative dispersion is related to the
turbulent models in Section 3.2, which was shown to cause a transfer of
momentum among different scales of motion. This connection comes auto-
matically from the following derivations, which follow those of LaCasce
(2008a) and Bennett (1984). Relative dispersion, or two particle dispersion,
is defined as

Dy (t) =<| xi(t) — xj(t) |*> (3.24)

where i and j denote two particles and x their position.

As for single particles, the diffusivity can be defined. Relative diffusivity is
expressed as

_ b
2 =710 =10+ [ v(t)v(T)dT (3.25)

d

N[~

where r is the distance between the particles, v the separation velocity and
1o the initial separation.

The first term on the right hand side denotes the correlation between the
initial separation of the pairs and their separation velocities. It is often
assumed to be vanishingly small when there is a large ensemble of pairs
(LaCasce, 2008a). However, in the short time limit, it is convenient to as-
sume that the particles are close to each other. Then their velocity difference
is approximately constant and the separations grow linearly in time. Then,
from (3.25)

Kot (3.26)

Thus, the relative dispersion grows quadratically in the short time limit.

The second term in (3.25) is the time integral over the velocity cross correl-
ation. It describes the correlation between the separation velocity at time ¢
with previous separation velocities at time 7. This term does only domin-
ate when the particle’s "memory" of their initial state is lost, i.e. 7o — 0. It
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can be rewritten to yield

| o@emdr = [ D —u,0)n@ —u(dr G27)

where u is the particles’ velocities. Since the turbulence is homogeneous,

wi(H)ui(T) = uj(t)u;(7) (3.28)

then,

/Otv(t)v(fr)d’r = / u;(H)u;(T)dT — 2/ u;(t

— 2K, (H) -2 /0 wi (D (1)dr (3.29)

where K, is the absolute diffusivity from (3.16)

In the long time limit, when the velocities of the two particles are assumed
to be uncorrelated, the second term in (3.29) goes to zero. Then, the relative
diffusivity converges to twice the absolute diffusivity. Therefore, after suffi-
ciently long time, the relative dispersion also behaves like a simple random
walk problem.

At intermediate times, it is useful to consider the second order structure
function, which is simply the mean square Lagrangian velocity difference.
For a homogeneous flow, it is the same as the Eulerian difference (Bennett,
1984).

v(r)?2 = (u(x+rt) —u(x,t))? = 2/000 E(k)[1 — Jo(kr)]dk (3.30)

where E(k) is the kinetic energy spectrum and ] the zero-order Bessel func-
tion of the first kind. It appears due to the distance r between the particles.
If r goes to zero, i.e. two particles collapse to a single particle, [1 — Jo(kr)]
goes to zero. In this sense, it is a distance weighting function for the kinetic
energy spectrum E (k) for each k. It is expressed as

K212 kr < 1,
1-— 3.31
Jolkr) {1+O(kr) 12 kr>1 (33D

Consider a subrange in which the turbulent flow is stationary, i.e. E oc k=%
(Section 3.2). The pair separation r is in this subrange. Then, by using (3.31)

2~2 kzzdk+2 /k"‘dk
1/r
_ 1 3—a 1/” 11—«
= >r 3 S g, (3.32)
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where the first term on the right hand side expresses the influence from
eddies larger than the separation r (k < 1/r) and the second term expresses
the influence from eddies smaller than the separation (k > 1/r). The
latter diverges for « < 1 when k — oo. The structure function is then
dominated by the energy from the smallest eddies. These are not able to
spread particles with substantially larger separations from each other, so
this case implies absolute dispersion. The two following cases consider
relative dispersion under the two different turbulent cascades presented in
Section 3.2. First, the local Kolmogorov spectrum is applied.

3.4.1 Local dispersion

If 1 < o < 3, both terms on the right hand side of (3.32) converge when
k — 0 and k — oco. Then, both the largest and the smallest eddies of the
range do not influence the structure function. Thus the dispersion has to be
dominated by the eddies on the same scale as r. The dispersion is local, sim-
ilar to the triads when eddies with comparable sizes interact (Section 3.1).
Then from (3.32)

o(r)2 oc r*1 (3.33)

and hence the separation velocity can be expressed as

o(r) < r'T (3.34)
Then, from (3.25), the corresponding diffusivity scales as °
1d— (a=1)/2,  (a+1)/2
K:E%rzocvrocr rocr (3.35)

In Section 3.2, it was shown that the local energy spectrum has the k=>/3
shape (Kolmogorov, 1941). Then, with « = 5/3, the diffusivity scales as

K oc rGT1/2 o 473 (3.36)

This is what Richardson (1926) observed and is therefore often called
"Richardson’s 4/3-law". Since the dispersion at intermediate scales can be
determined by the inertial range flow, in this case an inverse energy cas-
cade, it can be assumed a dependence solely on scale (m) and the energy

flux e("5). Then the relative diffusivity K("), scales as
K o el/34/3 (3.37)

The corresponding dispersion is ©

5(Bennett, 1984) showed this in a proper way
A more formal derivation of the Richardson dispersion is done by deducing it from the
corresponding separation distribution. See Section 5.1
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2 o et (3.38)

Thus, in an energy inertial range, dispersion grows as time cubed. This is
often called Richardson dispersion.

3.4.2 Nonlocal dispersion

The first term on the right hand side of (3.32) diverges for x > 3 when
k — 0. Then the structure function is controlled by the largest energy-
containing eddies of the range. According to Section 3.2, the dispersion is
therefore nonlocal.

First consider the strictly nonlocal case & > 3. Then, from (3.32)
o(r? ~ %rz G %rz [ E®dKk = cor (3.39)
where

- / K2E (k) (3.40)

is the total enstrophy.

In the limit &« — 3, it is clear that the local form of the structure function
(8.33) matches the nonlocal form (3.39). This shows that an enstrophy cas-
cading inertial range, i.e. a turbulent flow characterized by a k=3 kinetic
energy spectrum, is valid under the local assumption (Section 3.2).

For « = 3, under so-called weakly nonlocal dynamics, the relative diffus-
ivity scales as

K x 12 (3.41)

In accordance with the local assumption in Section 3.2, the diffusivity has
to depend, in addition to distance, on the enstrophy flux n (s%). Thus, di-
mensional arguments yield

K o /372 (3.42)

Then the relative dispersion is ”

12 oc exp(Cn'/3t) (3.43)

where C is some constant due to intergration

"This can also be deduced more properly from the Lundgren distribution. See
Section 3.5.3.
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The corresponding enstrophy cascade time scale is therefore

Toxn /3 (3.44)

which is in accordance with the enstrophy cascade time scale detected in
Section 3.2.

The expression in (3.43) is sometimes called "Lin’s law" after (Lin, 1972)
which predicted this. In the enstrophy cascade, separation of pairs are
growing exponentially in time with a growth rate determined by the largest
eddies of the flow. However, for strongly nonlocal dynamics (¢« > 3),
the form of (3.39) yields the same scaling properties for diffusivity as for
a = 3. Thus the dispersion is growing exponentially for all « > 3. Then,
observing exponential dispersion does only imply nonlocal dispersion, not
necessarily an inertial enstrophy range. Additional information about the
background flow is needed.

3.5 Probability density functions

Basic theory of statistics implies that relative dispersion is simply the
variance of the separation distribution. The variance is the second order
moment of the probability density function (PDF). This moment describes
the mean width of the distribution and can obviously not describe the
full distribution alone. Thus some important information is lost when
only relative dispersion is considered. The fourth order moment kurtosis
indicates the shape of the PDF and could be a better tool to distinguish
different dispersion regimes. However, as will be shown in Chapter 5,
the kurtosis has often a noisy behavior. The distribution itself has also
been used to detect the relative dispersion, e.g. by LaCasce (2010),
who examined separation PDFs for one atmospheric (EOLE), two oceanic
(SCULP and POLEWARD) and one numerical data set. The results
were shown to be more conclusive than the moments provided. In the
following sections, the PDFs for the different turbulent predictions given
in Section 3.4 are presented. The derivations come from Bennett (1984),
Bennett (2006) and LaCasce (2010).

3.5.1 The Fokker-Planck equation

To achieve an analytical solution for separation PDFs of different turbu-
lent regimes, a Fokker-Planck equation (FP) was proposed by Richardson
(1926).

0 10 0

where p = p(r,t) is the probability density function, r is the pair separation
and «; the (longitudinal) relative diffusivity.
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To obtain an unique solution for (3.45), two boundary conditions and one
initial condition for P are required. From Bennett (1984), suitable condi-
tions are

VK(,?rp —0asr— 0, c© (3.46)
and
(r,0) = ——8(r — ro) (3.47)
PR = o 0 ’

where 6 is the Dirac delta function. Reminding the properties of the o-
function, this initial condition suggests that all the particle pairs have the
same initial separation.

The pre-factor %m in (3.47) both insures a normalized distribution and the

isotropic assumption since

2w oo 00
) / dr =1 3.48
/0 /0 prdr 7rO prdr (3.48)

where 27t comes from the integration over all angles 0 in the 2-D space.

3.5.2 Richardson distribution

To obtain a PDF for a Richardson distribution, it is convenient to assume
a relative diffusivity based on "Richardson’s law" deduced in Section 3.4.1.
Then, the longitudinal diffusivity is (Bennett, 2006)

Ky = Bri/3 (3.49)

. . 2/3 .
From dimensional arguments, 3 has to scale as % Since the energy flux

scales as ’;1—32, this is related to 3 by

B ox el/? (3.50)

The particular solution of (3.45) is obtained via the Laplace transform. The
version for 2-D turbulence is (LaCasce, 2010)

9(1%/3 + r2/3) 9r(1)/3r1/3

—exp(— 3.51
TR T AR

p(r,t) =

where rq is the initial separation and I, is the modified Bessel function of
second order.

The moment of order # is expressed by

<" >= 27r/OO o (r)rdr = 27r/ "y (r)dr (3.52)
0 0
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The kurtosis is obtained by using the definition based on the raw moment.
That is

<rt>

The raw moments of the Richardson PDF are derived throughout the
work with this thesis. Consequently, it is shown in the result chapter, i.e.
Chapter 5.

3.5.3 Lundgren distribution

In the nonlocal inertial range dominated by an entrophy cascade, it was
shown that the relative diffusivity scales as (Section 3.4.2)

1/3,2 _ r’
Ky X 1 =7 (3.54)

where

Toxn /3 (3.55)

is the enstrophy cascade time scale, determined by the largest eddies of the
flow. The solution of (3.45) with the same initial and boundary conditions
was obtained by Lundgren (1981).

l 2t/T)?
p(r) = 47r(7rt/T)1/2r(2]exp(_ [ Tl(i’/i’ii/—; t/T] )

(3.56)

The corresponding raw moments 8 of the distribution, are deduced from
(3.52).

2)t
<r'>= rgexp(nm;—)) (3.57)
The second order raw moment, relative dispersion (n=2), is then
t
<r?>= r%exp(%) (3.58)

and by applying (3.53), the fourth order raw moment, kurtosis (n=4), is

8t

Ku = exp(?) (3.59)

8Since separations are positive definite, it is preferable to derive the raw moments
(LaCasce, 2010)
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Thus, the exponential growth of pair separations in the enstrophy range
is also obtained by deriving the raw moments of the probability density
functions. As the variance, the kurtosis is exponential, implying that
the Lundgren PDF is not self-similar. A self-similar distribution has
constant kurtosis. This provides a tool to distinguish exponential non-
local dispersion from local Richardson dispersion. The latter is shown to
be self-similar in the asymptotic limit, i.e. during t> growth of the relative
dispersion.

3.5.4 Rayleigh distribution

In Section 3.4, it was shown that relative dispersion grows linearly in time
in the long time limit. This is when the pair velocities are uncorrelated. The
relative diffusivity is constant and twice the absolute diffusivity and hence
behaves like a random walk problem. The solution of the FP equation (3.45)
is then (LaCasce, 2010)

2 + 12 ror
exP(_ gll(zt )IO(ZKzt

p(r,t) ) (3.60)

- 47‘L’K21L
where I is a modified Bessel function of order zero.

Since the pair velocities are more likely to be uncorrelated after long time, it
is preferable to study the asymptotic limit (r >> rp, Bt >> r). Then (3.60)
reduces to

2

_4K2t

) (3.61)

p(r,t) = exp(

47Kyt
which is proportional to the Rayleigh distribution (Papoulis, 1991).

Utilizing (3.52) (3.53) provide the raw moments. The relative dispersion is
then

< r? >= 4ot (3.62)

and the kurtosis is

Kugy = 2 (3.63)

Then, from probability density functions, it is also observed that the pairs
undergo a diffusive process after sufficiently long time. The Rayleigh
distribution is also self-similar.






Chapter 4

Previous studies

Due to the economic extent of large balloon projects, there have only been a
few observational studies on relative dispersion in the atmosphere. There-
fore, and since these are relevant, oceanic studies on relative dispersion
have to be considered. As shown in the previous chapter, the Eulerian kin-
etic energy spectrum reflects the turbulent flow, which in turn determines
the relative dispersion in 2-D turbulence theory. Thus, studies which inter-
pret kinetic energy spectra are important contributors to the understanding
of turbulent advection of tracer particles. This short chapter covers some
important studies connected to this issue and emphasizes the contradicting
conclusions among some of these. In Chapter 5, this thesis’ results are dis-
cussed against some of the studies presented here. Table (4) summarizes
some relevant findings, both in theoretical and observational studies.

Richardson (1926) studied smoke plumes spreading from factory stacks
and observed that the rate of cloud dispersion increased with the size of
the cloud. Richardson realized that the diffusivity was dependent on scale
to the 4/3-power. This relation is known as Richardson’s law. It was de-
duced for a 3-D flow, as in the planetary boundary layer, but as shown in
Chapter 3.4.1, the law is also consistent with 2-D turbulence theory. It im-
plies cubic growth of the relative dispersion.

From the 1970’s, there have been two major balloon projects in the atmo-
sphere, EOLE and TWERLE. The former was performed during a one year
period from August 1971 until July 1972 in the Southern hemisphere (Mo-
rel and Bandeen, 1973). It included 480 balloons released and floated at
approximately the 200hPa level. Morel and Larcheveque (1974) (ML) ex-
amined these data and the results are shown in Figure 4.1. It displays expo-
nentially growing dispersion from 100 km up to 1000km, about the radius
of deformation. The flow was approximately isotropic at the same range of
scales, so the theory described could be implemented. Beyond 1000km, the
dispersion develops into a diffusive one, with linear growth. However this
range of scales is zonally anisotropic, so applying 2-D theory needs to be
done carefully.

The other balloon project, TWERLE (Tropospheric Wind Earth Radio Loc-
ation Experiment), captured data from June 1975 to August 1976 (Jullian

29
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Figure 4.1: Root mean square distance vs. time for the EOLE balloon pairs. From
Morel and Larcheveque (1974)

et al., 1977). These were also released in the Southern hemisphere and the
393 balloons floated at approximately 150hPa. The data were examined
by Er-El and Peskin (1981) (EP) and their relative dispersion results are
shown in Figure (4.2). As ML, they found evidence for exponential growth
of separations below the deformation radius. In addition, EP calculated
the fourth order moment of the separation distribution, the kurtosis (see
Chapter (3.5)), but only at one time. A time series is necessary to infer the
evolvement of the dispersion, though, the kurtosis value of 7.02 in the sub-
tropics at least indicated a strongly non-Gaussian separation distribution.
However, it does not rule out neither Richardson nor exponential growth.
This study also included a comparison between high and low latitudes, but
no obvious differences were found. At large scales, a superdiffusive regime
was detected, i.e. power law growth faster than linear.

Although two balloon experiments were consistent with each other, it is
still not clear how dispersion behaves at sub-deformation scales. ML also
examined relative velocities’ dependence on separations. The measures
suggested Richardson behavior rather than exponential dispersion. Both
the EOLE and TWERLE data are noisy, so a power law might fit equally
well as an exponential. Lacorata et al. (2004) re-examined the EOLE bal-
loon data using another method, Finite Scale Lyapunov Exponent (FSLE).
The motivation for this method is to distinguish the spatial scales from
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Figure 4.2: Dispersion vs. time for the TWERLE balloon pairs. From Er-El and
Peskin (1981)

each other!. A fundamental problem with relative dispersion is the time-
based average, which makes it inconclusive after only a few days (LaCasce,
2010). Dispersion from flows covering a wide range of scales are aver-
aged. Lacorata et al. (2004) found only exponential growth below 100km.
Between 100km and 1000km, Richardson dispersion was detected. LaCasce
(2010) used probability density functions (PDF) of the relative displace-
ments to analyze the relative dispersion of the EOLE data set. While the
PDFs were consistent with the Lundgren distribution, indicating exponen-
tial dispersion up to 100-200km, behavior beyond these scales was hard to
detect. What might be a problem is the unstable statistics caused by