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Abstract

Relative dispersion is a widely used measure to characterize mixing prop-
erties of atmospheric passive tracers. Numerical models allow for a large
number of particles. In this thesis, the Lagrangian transport model FLEX-
PART has been used to generate particle trajectories. The advection velocity
field was provided by the European Centre for Medium-Range Weather
Forecasts (ECMWF). 40000 particles were deployed along latitude lines, at
30N and 30S, 60N and 60S, and at two heights, (6km and 12km). Trajector-
ies on all these locations were made in two different months, January and
September 2009. The initial particle separation was determined by the grid
spacing for the winds,1o × 1o.

In addition to relative dispersion, we examine probability density functions
(PDFs) of pair separations. To interpret the results, we also consider
the second order (Eulerian) structure functions. Up to a few hundred
kilometers, an exponential dispersion regime was detected by the relative
dispersion, while the separation distributions (PDFs) indicated that the
nonlocal dispersion is likely to extend to the deformation radius. The
structure functions are consistent with exponential growth, and suggest the
large scale behavior is probably diffusive.
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Chapter 1

Introduction

The air that continuously moves around in the Earth‘s atmosphere forms a
complex physical system which has challenged scientists for thousands of
years. Some of its complexity is illustrated by Figure 1.1, which shows
a simulated ensemble of fluid particles drifting around 6km above the
European continent. The abrupt changes in the particle motion provide
a fairly chaotic view of the flow field, an indication of turbulence. Highly
irregular motion like this is only described statistically. Although progress
has been made, continued lack of knowledge makes this topic a prioritized
field in atmospheric research environments. The actuality of some of the
issues that atmospheric turbulence cover, does also reflect a discipline of
high practical relevance.

  10 o
E 

  20oE   30oE   40oE   50
o E 

  40 o
N 

  50 o
N 

  60 o
N 

  10 o
E 

  20oE   30oE   40oE   50
o E 

  40 o
N 

  50 o
N 

  60 o
N 

Longitude [o]

L
at

it
u

d
e 

[o
]

Figure 1.1: Trajectories of air parcels over Europe deployed at 60o North in January
2009. Generated by the Lagrangian transport model Flexpart

Atmospheric motion consists of a wide range of spatial and temporal
scales, shown in Figure 1.2, associated by different phenomena, from
the very small viscous processes dissipating kinetic energy to the large

1



2 CHAPTER 1. INTRODUCTION

planetary waves feeding energy to the high and low pressure systems. In
between these two extremes, i.e. at intermediate scales, wave interactions
cause a continuous transfer of energy among different scales of motion.
These interactions cause major mixing and transport of atmospheric
components, e.g. chemical species, contaminants, etc., and is crucial to how
these are spread and distributed.

Figure 1.2: Atmospheric scale definitions. From Lin (2007)

Recent accidents have showed the importance of predicting where pollut-
ants are transported. After the Eyjafjallajökull eruption in spring 2010,
the European aviation authorities were heavily dependent on reliable in-
formation about where the ash clouds were advected. Another eruption at
Grimsvötn volcano in May 2011 has actualized the topic. The recent nuc-
lear eruption in Japan also showed the importance of an operative system,
which predicts in which direction the hazardous substances are spreading.
In a future disaster, an improvement of the predictions could be crucial for
a large number of humans and animals. Another current issue concerns
climate and how it possibly changes due to an increase in the amount of at-
mospheric greenhouse gases. The distribution and seasonal cycles of those
is important to be well understood in a scientific problem of such a com-
plexity.

To acquire knowledge on how pollutants and other components, often
called passive tracers, are drifting around in the atmosphere, one approach
is to send up balloons and track their paths. A method used to measure
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the balloon dispersion is to calculate their mean displacement relative to
the starting position, i.e. absolute dispersion. However, a more proper
method to describe how a tracer cloud is spreading is to consider balloon
pairs. The variance of the pair separations yields a measure called relative
dispersion. This measure reflects different types of flow, which is essen-
tial to ensure a realistic description of tracer spreading. Hence, this is a
widely used method to characterize transport and mixing properties of at-
mospheric tracers.

The topic covering atmospheric dispersion has been paid increasingly at-
tention to during the last century. Richardson (1926) studied smoke from
factory stacks and detected a striking relation between the particle diffus-
ivity and separation between the particles. That is

K ∝ r4/3 (1.1)

where

K(t) ≡ 1
2

d
dt

r2

is the relative diffusivity and r is the separations between the particles.

The relation in (1.1) is known as Richardson‘s law and states that the
growth of a tracer cloud is dependent on the size of the cloud. This de-
tection was a milestone at that time. However, an extension of observa-
tional research like this has been difficult to achieve. Balloon projects were
both expensive and challenging. In the decades after Richardson‘s work,
most progress was made on establishing a theoretical framework for atmo-
spheric turbulence. Since the turbulent flow directly affects the dispersion
of tracers, the development of a robust theory for turbulence has been of
high importance.

The kinetic energy spectrum was inferred to be a useful tool to character-
ize the turbulent flow. Kolmogorov (1941) considered a range of scales in
between the scales at which forcing and dissipation are affecting the flow.
The turbulence was assumed to be isotropic, homogenous and stationary
in this range, known as the inertial range. Under these conditions, he pre-
dicted a kinetic energy spectrum proportional to scale.

E(k) ∝ ε2/3k−5/3 (1.2)

where ε is the energy flux and k is the wavenumber. Figure 1.3 shows the
Kolmogorov energy spectrum.

This spectrum was deduced for a three dimensional (3-D) turbulent fluid.
When the vertical component of the velocity field is much smaller than the
horizontal components, the motion is thought to be approximately two di-
mensional (2-D). Kraichnan (1967) suggested two inertial ranges using the
same arguments as Kolmogorov. One, characterized by an upscale transfer
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of energy, provided the same kinetic energy spectrum as (1.2). The addi-
tional range was based on a transfer of another inviscid quantity, enstrophy,
downscale. Enstrophy is defined as the vorticity squared. A turbulent
flow dominated by an enstrophy transfer was associated by a kinetic en-
ergy spectrum expressed as

E(k) ∝ η2/3k−3 (1.3)

where η is the enstrophy flux.

Figure 1.3: The Kolmogorov energy spectrum. The y axis displays the energy per
wavenumber E(κ) while the x axis displays the scale in wavenumber
κ. κ f denotes the scale of energy input, i.e. forcing, and κν is the scale
of energy dissipation, i.e. damping. From LaCasce (2011)

In the free atmosphere, above the highly 3-D atmospheric boundary layer
and far from areas dominated by strong convective motions, the quasi-
geostrophic (QG) approximation is a reasonable description of the flow
field. Charney (1971) showed that 2-D turbulence theory applied to de-
scribe the turbulent processes associated with QG motion. The relative dis-
persion at these scales is then determined by the predicted spectrum in
(1.2) and (1.3). While Richardson‘s law yields a cubic growth of the particle
separation in a k−5/3 energy spectrum, Lin (1972) suggested that particle
separations are growing exponentially in time in a k−3 spectrum.

In the 70’s, new satellite technology allowed scientists to track balloon
paths. Two balloon experiments, EOLE and TWERLE (Tropospheric Wind
Earth Radio Location Experiment), performed in the Southern hemisphere,
were examined by Morel and Larcheveque (1974) and Er-El and Peskin
(1981) to study the turbulent dispersion. The balloons were deployed at
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200hPa and 150hPa, respectively. Both suggested relative dispersion obey-
ing Lin‘s exponential law up to separations of 1000km. Lacorata et al. (2004)
and LaCasce (2010) reexamined the EOLE data using additional measures
to detect the mesoscale dispersion. While the former study suggested
Richardson growth, the latter suggested exponential growth, at least up to
a few hundred kilometers. Together with other contradicting results, this
ensures a topic which is continuously under debate. Calculations of kinetic
energy spectra could alternatively broaden the debate. Desbois (1975) used
the wind data from the EOLE experiment to infer a spectrum with a shape
close to k−3, in line with Morel and Larcheveque (1974). The GASP (Global
Atmospheric Sampling Program) program provided a large set of wind
data, collected from over 6900 flights of commercial aircrafts. Nastrom and
Gage (1984) calculated the Eulerian kinetic energy spectrum, which indic-
ated a k−3 spectrum from wavelengths from a few hundred kilometers up
to about three thousands kilometers. The smallest scale showed a k−5/3 de-
pendence.

The debate on how turbulence behaves at the atmospheric mesoscale con-
cerns a lot of issues in the meteorological discipline today. The numerical
models which provide weather predictions are important for a variety of
purposes, e.g. forecasting extreme weather. These are restricted in space
and time resolution due to limited computing power. Therefore, a satis-
factory parameterization of the flow field below the grid scale is important
to improve the model‘s reliability (Basdevant et al., 1978). A simple and
realistic description of the energy transfer, i.e. an energy spectrum, is cru-
cial to ensure this. Since relative dispersion concerns separation growth in
time, it also predicts the evolution of small position errors made in the ini-
tializations of a weather forecast. Whether this growth is exponential and
heavily dependent on the initial error (Lorenz, 1969) or not, e.g. obeying
Richardson‘s law, would eventually affect the budget priorities of the au-
thorities. It is not worth spending money on more accurate measurements
if the forecast error is independent of the initial condition.

In this thesis, the goal is to improve the understanding of turbulent re-
lative dispersion in the atmosphere in light of earlier studies. Since the
theory of turbulence restricts to a statistical description, a huge number of
particles are required to ensure stable statistics. The EOLE and TWERLE
projects provided remarkable results, but the data are somewhat noisy, es-
pecially when the balloons have spread to a wide range of scales. The use
of numerical transport models, however, allows us to use a huge number
of particles, which will act as balloons. In addition, this is almost costless.
In this study, the Lagrangian transport model FLEXPART with reanalysis
wind field from the European Centre for Medium-Range Weather Forecasts
(ECMWF) has been used to generate trajectories of so-called "synthetic bal-
loons". Motivated by the climatological study of Huber et al. (2001), two
heights, 6km and 12km, at two latitudes, 60o and 30o, in each hemisphere
have been tested to check if relative dispersion is universal. Initially, 40000
particles are displaced uniformly around a latitude circle. Two months,
January and September 2009, were used to detect possible seasonal vari-
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ations. The simulations lasted for one month. An extended description of
FLEXPART is given in Chapter 2.

In Chapter 3, the theoretical framework for this study is presented. The ba-
sics of two dimensional turbulence are shortly described and are followed
by an introduction to turbulent dispersion. This covers absolute disper-
sion, relative dispersion and its relation to the underlying turbulent flow,
described by the Eulerian kinetic energy spectrum. However, relative dis-
persion as a measure tends to fail under influence of large scales, where dis-
persion does not satisfy the basic assumptions of 2-D turbulence. The sep-
aration distribution, of which relative dispersion is the variance, is a more
conclusive tool. Thus, some probability density functions (PDF) reflecting
the different turbulent flow predictions are presented in the last section. A
subsequent short chapter extends the presentation of earlier studies with a
more detailed description of their results.

The results of the data obtained by FLEXPART are presented in Chapter 5.
First, the data’s consistency upon the theoretical assumptions are tested.
Then the physical results are presented, i.e figures showing relative
dispersion and PDFs. Finally, the Eulerian kinetic energy spectrum and its
related second-order structure functions based on the input wind velocity
data from ECMWF, are shown to extend the discussion in light of the
relation to relative dispersion. The subsequent Chapter 6 contains a
discussion of the results. The most important results are summarized, and
some concluding remarks are pointed out in Chapter 7.



Chapter 2

Method

In this chapter, the method for obtaining data will be described. A
numerical transport model has been used to simulate trajectories of a large
number of infinitesimally small air parcels, or "synthetic" balloons. The
output positions of these particles have been subject to further calculation
to analyze the dispersion. The wind field data used as input data in the
model have also been used externally to calculate kinetic energy spectra
and second-order structure functions. This chapter will focus on the
numerical model, but with the input data incorporated in that.

2.1 Model Description

The numerical model used in this thesis is the Lagrangian particle disper-
sion model FLEXPART (Stohl et al., 2005)1. The first version was made dur-
ing the first author Andreas Stohl‘s military service of the Austrian Forces.
Together with Stohl, it has been developed by people from Norwegian In-
stitute for Air Research, Institute of Meteorology in Austria and Preparat-
ory Commission for the Comprehensive Nuclear Test Ban Treaty Organiz-
ation in Vienna, Austria. It is now used by a growing user community.

Originally, FLEXPART was made for calculating long-range and mesocale
transport of air pollutants which origin were a point source, such as after
an accident in a nuclear power plant. During years of expansion and ad-
justments, it has been generalized into a model concerning several subjects
of atmospheric transport. At the present time, the main applications for
the model are atmospheric transport of radionuclides after nuclear acci-
dents, pollution transport, greenhouse gas cycles, stratosphere-troposphere
exchange, water cycle research and others.

FLEXPART computes trajectories and concentrations of atmospheric tracer
particles, not necessarily real particles, but infinitesimally small air par-
cels. Flexpart‘s main property is to simulate the long-range and mesocale
transport, diffusion, convection, dry and wet deposition and radioactive
decay of these. Compared to Eulerian models, the Lagrangian ones have

1See http://transport.nilu.no/flexpart for upgraded versions of the model description

7



8 CHAPTER 2. METHOD

no numerical diffusion. Another advantage is the independence of a com-
putational grid, as the Eulerian ones have. In principle, the resolution of a
Lagrangian model can be infinitesimally small. The tracers can be released
from point, line, area or volume sources. The model can be used both for-
ward in time to look on the dispersion of tracers from their sources, and
backward in time to find a possible source contributor from a plume of
tracers.

FLEXPART is an off-line model that most commonly uses meteorological
fields from the ECMWF2 numerical weather prediction model as input.
These fields are forecast or analysis in gridded binary (GRIB) format on
a latitude/longitude grid and on native ECMWF levels. Thus, to produce
trajectories, the input velocity data are interpolated on the present particle
position, i.e. on the Lagrangian grid, to advect the particle. The data can
be global or only cover a limited area. A domain with higher resolution
can also be nested into a mother domain. The input data have to contain
five three-dimensional variables; horizontal and vertical wind components,
temperature and specific humidity.

Since all three wind components are used to trace the particle path, the
trajectories are three dimensional. This method of tracer tacking was sug-
gested to be the most accurate by (Stohl and Seibert, 1998). Other error
sources in the trajectory modeling are truncation errors, interpolation er-
rors, inaccurate knowledge of the starting position and inaccuracies in the
input wind fields.

The trajectory calculation in FLEXPART is based on the simple trajectory
equation

∂
∂t
−→
X = −→v [

−→
X (t)] (2.1)

where t is time,
−→
X the position vector and−→v = −→v +−→vt +−→vm the wind vec-

tor. The latter is decomposed into a grid scale wind −→v , the turbulent wind
fluctuations −→vt and the mesocale wind fluctuations −→vm.

The turbulent motions−→vt , which are the small scale perturbations, are para-
meterized assuming a Markov process based on the Langevin equation
(Thomson, 1987). This stochastic scheme is describing diffusive processes
(random walk motion) as introduced in Chapter 3.3. However, the meso-
scale motion −→vm is not covered by this parameterization. For the part of the
mesoscale not resolved by the grid scale wind, an independent Langevin
equation for the mesoscale wind velocity fluctuations are solved based on
the method of Maryon (1998). The idea is to assume that the variation of
winds on the Eulerian input grid scale must be of a similar magnitude to
the variation within a grid box.

2European Centre for Medium-Range Weather Forecasts
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2.2 Model setup

In this thesis, the Flexpart model was used to calculate a large number of
trajectories of infinitesimal small air parcels, so-called "synthetic" balloons.
These were displaced around a latitude circle and then advected by the
wind field of the ECMWF input data. As output was time series of all the
particles positions.

The simulations are based on reanalysis data provided by ECMWF
(ECMWF, 2002). These are produced through the latest reanalysis project
of ECMWF, ERA-Interim (ECMWF, 2011). The data which are used have
a horizontal resolution of 1o × 1o and a 91 levels vertical resolution. The
temporal resolution is three hours, where reanalysis at 00:00, 06:00, 12:00
and 18.00 UTC and forecast at intermediate times are used. Therefore, to
yield output every hour, a time interpolation is done by the model.

16 model runs have been carried out. For one model simulation, 40000
particles were initially displaced uniformly around a latitude circle. Four
different latitudes and two different altitudes are chosen to detect possible
dispersion differences due to different dynamics at different atmospheric
locations. It has been done two simulations for each location, one starting
00:00 UTC on the 1th of January and the other 00:00 UTC on the 1th of
September, both in 2009. These extended for one month until 21:00 UTC on
the 31th of January and the 30th of September respectively. The motivation
for the latter is to detect possible seasonal variations. Because of this thesis‘
focus on general atmospheric dispersion properties, the choice of year is
not of great importance. The model computes particle positions every hour.
The output grid is 1o × 1o with 3 vertical levels, since the motion on the
scale of interest is assumed to be highly two dimensional. Chemical de-
scriptions of neither the particles nor the atmospheric composition were
needed for my purpose. Thus, all such settings were neglected in the model
setup.

In addition to the use as the meteorological field in the model input, the
ECMWF velocity data were used directly to calculate atmospheric kinetic
energy spectra and structure functions. To obtain as much spatial scale
information as possible, a 0.2o × 0.2o horizontal resolution was used.

2.3 Lagrangian description

Flexpart uses the Lagrangian method to track particles. In the Lagrangian
frame, every particle is marked by an "observer", continuously drifting
with the particle from an initial state. It is illustrated by a balloon drifting
with the winds, where the balloon represents a fluid particle. Thus in
a model sense, a Lagrangian description yields a moving grid in time.
In contrast, the Eulerian frame implies calculations on stationary grid
points. The model input data, which moves the particle around by its
meteorological wind field, is defined on such grid. Since the Eulerian
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PARAMETER VALUE

Model FLEXPART
Type of model Lagrangian particle dispersion model
Input data ECMWF reanalysis
Particle release Uniformly displaced around a latitude circle
Release latitudes 60S, 30S, 30 N and 60N
Release altitude 6km and 12km
Simulation start 01 January 2009 and 01 September 2009, 00:00

UTC
Simulation end 31 January 2009 and 31 September 2009, 21:00

UTC
Type of particle General air parcel
Number of particles 40000
Grid resolution 1o × 1o

Grid size 360o × 180o

Output time step 3600s
Output fields Particle positions in latitude/longitude[o] and

height[m]

Table 2.1: Input and output parameters for the FLEXPART model runs

grid is stationary, the wind velocities have to be interpolated on the model
Lagrangian grid.

Figure 2.1: Description of the Lagrangian frame. A balloon drifts with the fluid
motion. From http://www.stuffintheair.com/the-hot-air-ballon.html

Using a Lagrangian model is convenient when studying transport of
atmospheric tracers. It allows us to follow each tracer particle, producing
ensembles of particle trajectories. This forms a set of output data which
can be analyzed using Lagrangian statistics. The latter is described in
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Chapter 3. Another advantage by using a Lagrangian model follows
naturally from the Lagrangian perspective. The nonlinear advection terms,
causing an unclosed set of governing equation of the atmosphere (shown in
Chapter 3.1), are included implicitly, without approximation (Wilson and
Sawford, 1996).

2.4 Calculation

Here follows some important remarks according to the calculation of
different parameters in this thesis.

• The model output yields particle positions in spherical coordinates.
To obtain the separations between the particles, the arc length
distance was calculated by the swdist function in MATLAB. There
were not taking account for height, so the distances are actually
calculated on the surface.

• There were also adopted some MATLAB functions in other calcula-
tions. A least square fit to the data was provided by using the Re-
gress function. To obtain the probability density function of the data
set separations, the Hist function was used. The kinetic energy spec-
trum was produced by the Pwelch method (Welch, 1967), which also
is a function implemented in MATLAB. The method does a discrete
Fourier transform on the ECMWF data to translate the spatial velo-
city field into a power field dependent on wavenumber.





Chapter 3

Theory

The scientific field of atmospheric turbulence includes flows of all temporal
and spatial scales. This thesis, however, focuses on mesoscale turbulence
which can be assumed to be quasi two dimensional (2-D). Thus, the theory
introduced in this chapter is restricted to that range of scales. However,
some features are general and will be considered very shortly first in this
chapter. Then, it will be focused on two important turbulence models
in 2-D theory, described by two distinct kinetic energy spectra. These
form the framework for the main topic of this thesis, turbulent dispersion,
which is systematically presented thereafter. After an introduction to
absolute dispersion, predictions of relative dispersion and, in the last
section, separation distributions are derived on the basis of 2-D turbulence
theory.

3.1 The nature of turbulence

To illustrate one of the main concequences of turbulent motion, it is con-
venient to present the atmospheric momentum equation (Holton, 2004)

∂
∂t
−→u +−→u · ∇−→u + f

−→
k ×−→u = −∇(

−→p
−→ρ )−−→g (3.1)

where −→u is the velocity field, f the Coriolis parameter, −→p the pressure
field, −→ρ the density field and −→g the gravitational acceleration.

A sign of nonlinearity are terms containing products of dependent vari-
ables. Thus, −→u · ∇−→u and ∇(

−→p−→ρ ) make the momentum equation nonlin-
ear. To illustrate what these terms might cause, a simple nonlinear system,
based on (Vallis, 2006), is used. That is

∂
∂t

u + uu + ru = 0 (3.2)

where r is some constant.

13
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To include turbulence, the velocity u is decomposed into a mean and a fluc-
tuating component.

u = u + u′ (3.3)

where u is the mean velocity and u′ the deviation from that mean.

The goal is to obtain a closed equation to predict the statistical behavior of
the turbulence. Then, by substituting (3.3) into (3.2) and then averaging the
equation leads to

∂
∂t

u + uu + ru = 0 (3.4)

u is simply u since u′ = 0. The problem appears due to the nonlinear term.
That becomes

uu = (u + u′)(u + u′) = (u2 + 2uu′ + u′2) = u2 + u′2 (3.5)

This term includes the mean of the correlation between the fluctuations,
u′2, which is indeterminable. Thus, one needs an equation for uu. First
multiplying (3.2) by u and then averaging yields

1
2

∂
∂t

u2 + uuu + ru2 = 0 (3.6)

This equation contains a new indeterminable term, uuu. An equation for
this cubic term will contain a quartic term, and so on in an infinite number
of times, un requires un+1. The equations are unclosed and there has to be
made assumptions to close them. The density does not appear explicitly in
the pressure coordinate version of (3.1), so a change of vertical coordinates
eliminates the nonlinearity of that term (Holton, 2004). However, the non-
linearity of the advection term is not solved that elegantly. It is the source
to the closure problem in the atmospheric momentum equation and needs
to be represented in some way. Parameterizations have not been able to
describe this term satisfactorily until now. It is not clear if it exists a useful
closed-form solution of the equation at all.

The closure problem prevents the atmospheric governing equations being
closed and hence solved exactly. It is a mathematical problem. In addition,
the nonlinearity of (3.1) has some physical implications. It causes interac-
tions among eddies of different length scales. By analyzing the nonlinear
terms in the wavenumber space, it becomes clear that eddies, presented by
wavenumbers, in groups of three are exchanging energy in so-called triad
interactions (Vallis, 2006). There are two types of these interactions accord-
ing to the length scale of the eddies which interact. By considering three
arbitrary waves with wavenumber

−→
k ,
−→
l and −→m , the two regimes are
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• Local interactions, where waves of comparable sizes are interacting−→
k ∼ −→

l ∼ −→m
• Non-local interactions, where waves of significantly different sizes are

interacting
−→
k ∼ −→

l >> −→m

The triad interactions are expressed through the advection term of (3.1).
The same kind of terms appear in the continuity equation and the
thermodynamic energy equation 1. Then, the triads are responsible for
a continuous transfer of momentum, mass and heat among different
atmospheric scales. This is a fundamental consequence of the nonlinearity.
Besides being a mathematical problem, nonlinearity is inherent in the
physical system.

3.2 Two dimensional turbulence

The description in Section 3.1 is general and covers the main consequences
of atmospheric turbulence. At small scales, particularly in the planetary
boundary layer, the turbulence is three dimensional (3-D). The motion is
influenced by interaction with the surface, which produce a strong vertical
wind shear and therefore prevalent vertical mixing. On larger scales, due
to the rotational earth and stratification, the two horizontal velocity com-
ponents dominate over the vertical. Charney (1971) showed that under
the quasi-geostrophic approximation, it is reasonable to assume the tur-
bulence being approximately 2-D. This thesis follows Charney‘s argument
and hence applies 2-D turbulence theory on the results in Chapter 5. Here
follows a short introduction to this theory.

Since the triad interactions cause a transfer of momentum among eddy
scales, the kinetic energy spectrum is appropriate to describe the turbu-
lent flow field. To predict the Eulerian spectrum, there are first made some
assumptions 2 (Vallis, 2006):

• Isotropy
• Homogeneity
• Stationarity

Homogeneity implies that turbulence has the same property, wherever in
space. Then, analyzing turbulence in wavenumber space is sufficient. Sta-
tionarity means that the turbulence property is not changing in time. The
isotropic assumption demands a turbulence which is the same in all direc-
tion. The kinetic energy spectrum in wavenumber space can then be writ-
ten as

E(
−→
k ) = E(k) (3.7)

where k is the wavenumber.
1See Holton (2004)
2Note that all assumptions are statistical
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The previous and upcoming assumptions follow the arguments of
Kolmogorov (1941), actually applied on a 3-D fluid. Batchelor (1953) and
Fjørtoft (1953) showed almost simultaneously that energy is, opposite to 3-
D turbulence, transferred to larger scales in 2-D turbulence, a so-called in-
verse energy cascade. One consequence is that kinetic energy is conserved.
Although the direction of the energy transfer is opposite, Kraichnan (1967)
inferred the same spectrum as for 3-D turbulence. A key assumption is to
suppose a system, in which forcing and damping are happening at sub-
stantially different scales. Then, there exists a range of scales, which is only
dominated by the nonlinear terms in the momentum equation in (3.1), i.e.
by triad interactions causing energy transfer among eddies. This range is
known as the inertial range. To ensure that forcing and damping are not dy-
namically important, the interactions between the eddies have to be local.
Then, the flux of energy does only depend on processes ocurring near the
scale of the interacting waves. This implies that the energy flux (energy per
time) at a certain scale is only dependent on the energy on that scale, i.e.
the energy spectrum, and the scale itself. Thus, the energy spectrum is pro-
portional to ε and scale, represented by the wavenumber k. By imagining
a situation where all scales have been energized through a spin-up period,
the energy flux has to be constant to keep the spectrum stationary. Since
kinetic energy per unit mass has units of m2

s2 , the energy flux ε has units of
m2

s3 . The wavenumber has units of 1
m . Then, by dimensional considerations,

the energy spectrum ( m3

s2 ) is

E(k) ∝ ε2/3k−5/3 (3.8)

which is the same spectrum as Kolmogorov (1941) predicted for a 3-D fluid.

Kraichnan (1967) suggested two inertial ranges in 2-D turbulence. Not only
an upscale energy cascade could characterize the turbulent flow, but also
an enstrophy transfer downscale, which caused an additional energy spec-
trum. Enstrophy is defined as

Z =
1
2
ζ2 (3.9)

where ζ is the relative vorticity

Since vorticity is one over time, enstrophy has units of 1
s2 . To infer an energy

spectrum in the inertial range dominated by enstrophy transfer, exactly the
same arguments apply as for the energy inertial range. The spectrum de-
pends only on the rate of change of enstrophy, the enstrophy flux η, and
scale k. The units of η has to be 1

s3 . Then the shape of the spectrum is

E(k) ∝ η2/3k−3 (3.10)



CHAPTER 3. THEORY 17

Then, the spectrum in the enstrophy range is steeper than that in the energy
range. To see the dynamical differences between these two ranges, a closer
view on the advecting time scales is convenient. The eddy interaction time
scales have to depend solely on the energy (enstrophy) flux and scale un-
der the local assumptions. Then, dimensional arguments show that for the
energy range

Tenergy ∝ ε−1/3k−2/3 (3.11)

while for the enstrophy range

Tenstrophy ∝ η−1/3 (3.12)

A fundamental difference between the two time scales is obvious. While
the advecting time scale in the energy range depends on length scale, the
corresponding time scale in the enstrophy range does not. The reason
for this is that the triad interactions are local in the energy inertial range,
while they are nonlocal in the enstrophy inertial range. Then, the size of
the largest eddies characterizes the enstrophy transfer downscale in an en-
strophy inertial range (see Section 3.1). That a local assumption causes a
nonlocal spectrum sounds contradictory. However, it will be shown in Sec-
tion 3.4 that the -3 power actually is in the limit between local and nonlocal
turbulence and hence the spectrum describes so-called weakly nonlocal dy-
namics (Bennett, 1984).

By applying these two theoretical models on the mesoscale turbulence
imposes some considerations about the scales of forcing (energy sources)
and damping (energy sinks) in the atmospheric system. The radius of
deformation3 is suggested to be a scale, associated with a significant
injection of kinetic energy (Salmon, 1980). How would a net upscale
energy flux be satisfied in an inertial range at sub-deformation scales?
By its huge amount of vorticity, the energy-containing eddies are also a
source of enstrophy. Since enstrophy cascades towards smaller scales, a k−3

spectrum at atmospheric mesoscale is a reasonable suggestion4. Finally, it
is being dissipated at some small scales. A consequence of that downscale
enstrophy cascade is that enstrophy is not conserved in 2-D turbulence
(Rhines, 1979). As will be shown, whether it is a k−3 or a k−5/3 spectrum
characterizing the turbulent flow is crucial on how particles disperse in 2-D
turbulence.

3.3 An introduction to turbulent dispersion

The short introduction to 2-D turbulence theory in the previous section is a
very useful tool both to understand but also interpret relative dispersion. It

3The scale where the flow is approximately balanced between the coriolis force and the
pressure gradient force, i.e. geostrophic flow (Holton, 2004)

4Charney (1971) actually predicted a k−3 spectrum for quasi-geostrophic turbulence
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will be shown that the particle separation growth depends on the turbulent
cascade which dominates the flow. However, in some cases, turbulent mo-
tion can be explained in a fairly simple way. One example is the so-called
Random walk problem. A lot of idealized cases could illustrate such motion,
for instance perfectly drunk people walking from a bar. One basic result of
the Random walk problem states that (Vallis, 2006)

<| Dn |2>1/2=
√

ns (3.13)

where Dn is the position after n step and s is the length of each uniform
step, which is uncorrelated with the previous one. Then (3.13) suggests
that in a random walk, the root mean square displacement increases with
the half-power of time.

3.3.1 Absolute dispersion

The Random walk problem does seem like an oversimplification of the nature.
However, in some cases, it is a realistic description of how particles dis-
perse. To formalize the random walk to a dispersion problem, it is con-
venient to introduce the single particle dispersion, or absolute dispersion.
Based on the work of Taylor (1922) it is defined as

Da(t) =<| xi(t)− xi(0) |2> (3.14)

where x denotes the position of a particle i at a time t. Thus, absolute
dispersion describes how an ensemble of particles spread from their indi-
vidual positions in time. It has been the most common way to statistically
describe Lagrangian data (LaCasce, 2008b). Eddy heat fluxes and Rossby
wave propagation are applications were single particle statistics have been
applied. The following derivation comes from (LaCasce, 2008b)

To understand the behavior of dispersion in different time limits, diffusiv-
ity is a useful measure. The absolute diffusivity is defined as

K(t) =
1
2

d
dt

< X2 > (3.15)

where X is the mean position vector of the particles. The constant appears
due to the derivative of a squared variable. Thus, the absolute diffusivity
is simply the time derivative of absolute dispersion. By applying the dif-
ferentiation, (3.15) can be expressed as

K(t) =< u(t)X(t) >=< u(t)
∫ t

0
u(τ)dτ >=

∫ t

0
< u(t)u(τ) > dτ (3.16)

which is the velocity autocorrelation. u(t) can be inside the integral since
the latter is with respect to the other time variable τ . If there is a stationary
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velocity field, then

K(t) = ν2
∫ t

0
R(τ)dt (3.17)

where

R(τ) ≡
∫ t

0 < u(0)u(τ) > dτ

ν2 (3.18)

is the normalized velocity autocorrelation and ν2 is the velocity variance
of the particles. The stationarity is reflected by the substitution of u(0) for
u(t) in (3.18).

To study the short time limit behavior (t → 0), it is convenient to expand
the autocorrelation in a Taylor series.

R(τ) = 1 +
dR
dT

t + ...O(t2) (3.19)

and

limt→0R = 1 (3.20)

Then, using (3.17),

limt→0K = ν2
∫ t

0
1dt = ν2t (3.21)

Then, by integration, this implies that absolute dispersion grows quadrat-
ically in time in the short time limit.

In the long time limit, since they are far apart, it is realistic to assume that
the velocities become uncorrelated. Then

limt→∞R = 0 (3.22)

and

limt→∞K = ν2
∫ t

0
0dt = const. (3.23)

The diffusivity converges to a constant in the long time limit. This is called
a diffusive process and the diffusion equation can describe the motion. In
this range, the dispersion must grow linearly in time. This is exactly the
same growth as in the Random walk problem. Thus, in some cases, though
not focused on in this thesis, this simple situation is sufficient to describe a
turbulent flow.
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3.4 Relative dispersion

Absolute dispersion characterizes the mean flow, since all the single fluid
motions are averaged at each time step. Thus absolute dispersion reflects
the mean drift of the cloud and the spread about the instant mean position.
Spreading due to deviations from the mean flow is not described, reflect-
ing the limitation of single particle statistics. A more proper description of
a tracer cloud should also include additional flow fields, which are neces-
sary to extend the physical applicability. By considering the time evolve-
ment of the separations between particles, relative dispersion satisfies that
requirement. Inherent in this measure, there is a property of distinguishing
different kind of flows. For this reason, relative dispersion is related to the
turbulent models in Section 3.2, which was shown to cause a transfer of
momentum among different scales of motion. This connection comes auto-
matically from the following derivations, which follow those of LaCasce
(2008a) and Bennett (1984). Relative dispersion, or two particle dispersion,
is defined as

Dr(t) =<| xi(t)− x j(t) |2> (3.24)

where i and j denote two particles and x their position.

As for single particles, the diffusivity can be defined. Relative diffusivity is
expressed as

K(t) ≡ 1
2

d
dt

r2 = rv = r0v +
∫ t

t0

v(t)v(τ)dτ (3.25)

where r is the distance between the particles, v the separation velocity and
r0 the initial separation.

The first term on the right hand side denotes the correlation between the
initial separation of the pairs and their separation velocities. It is often
assumed to be vanishingly small when there is a large ensemble of pairs
(LaCasce, 2008a). However, in the short time limit, it is convenient to as-
sume that the particles are close to each other. Then their velocity difference
is approximately constant and the separations grow linearly in time. Then,
from (3.25)

K ∝ t (3.26)

Thus, the relative dispersion grows quadratically in the short time limit.

The second term in (3.25) is the time integral over the velocity cross correl-
ation. It describes the correlation between the separation velocity at time t
with previous separation velocities at time τ . This term does only domin-
ate when the particle’s "memory" of their initial state is lost, i.e. y0v → 0. It
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can be rewritten to yield
∫ t

0
v(t)v(τ)dτ =

∫ t

0
(ui(t)− u j(t))(ui(τ)− u j(τ))dτ (3.27)

where u is the particles’ velocities. Since the turbulence is homogeneous,

ui(t)ui(τ) = u j(t)u j(τ) (3.28)

then,

∫ t

0
v(t)v(τ)dτ = 2

∫ t

0
ui(t)ui(τ)dτ − 2

∫ t

0
ui(t)u j(τ)dτ

= 2Ka(t)− 2
∫ t

0
ui(t)u j(τ)dτ (3.29)

where Ka is the absolute diffusivity from (3.16)

In the long time limit, when the velocities of the two particles are assumed
to be uncorrelated, the second term in (3.29) goes to zero. Then, the relative
diffusivity converges to twice the absolute diffusivity. Therefore, after suffi-
ciently long time, the relative dispersion also behaves like a simple random
walk problem.

At intermediate times, it is useful to consider the second order structure
function, which is simply the mean square Lagrangian velocity difference.
For a homogeneous flow, it is the same as the Eulerian difference (Bennett,
1984).

v(r)2 = (u(x + r, t)− u(x, t))2 = 2
∫ ∞

0
E(k)[1− J0(kr)]dk (3.30)

where E(k) is the kinetic energy spectrum and J0 the zero-order Bessel func-
tion of the first kind. It appears due to the distance r between the particles.
If r goes to zero, i.e. two particles collapse to a single particle, [1− J0(kr)]
goes to zero. In this sense, it is a distance weighting function for the kinetic
energy spectrum E(k) for each k. It is expressed as

1− J0(kr) ≈
{

1
4 k2r2, kr ¿ 1,
1 + O(kr)−1/2, kr À 1

(3.31)

Consider a subrange in which the turbulent flow is stationary, i.e. E ∝ k−α

(Section 3.2). The pair separation r is in this subrange. Then, by using (3.31)

v(r)2 ≈ 2
∫ 1/r

0
k−α(

1
4

k2r2)dk + 2
∫ ∞

1/r
k−αdk

=
1
2

r2 1
3−α

k3−α |1/r
0 +

2
1−α

k1−α |∞1/r (3.32)
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where the first term on the right hand side expresses the influence from
eddies larger than the separation r (k < 1/r) and the second term expresses
the influence from eddies smaller than the separation (k > 1/r). The
latter diverges for α ≤ 1 when k → ∞. The structure function is then
dominated by the energy from the smallest eddies. These are not able to
spread particles with substantially larger separations from each other, so
this case implies absolute dispersion. The two following cases consider
relative dispersion under the two different turbulent cascades presented in
Section 3.2. First, the local Kolmogorov spectrum is applied.

3.4.1 Local dispersion

If 1 < α < 3, both terms on the right hand side of (3.32) converge when
k → 0 and k → ∞. Then, both the largest and the smallest eddies of the
range do not influence the structure function. Thus the dispersion has to be
dominated by the eddies on the same scale as r. The dispersion is local, sim-
ilar to the triads when eddies with comparable sizes interact (Section 3.1).
Then from (3.32)

v(r)2 ∝ rα−1 (3.33)

and hence the separation velocity can be expressed as

v(r) ∝ r
α−1

2 (3.34)

Then, from (3.25), the corresponding diffusivity scales as 5

K =
1
2

d
dt

r2 ∝ vr ∝ r(α−1)/2r ∝ r(α+1)/2 (3.35)

In Section 3.2, it was shown that the local energy spectrum has the k−5/3

shape (Kolmogorov, 1941). Then, with α = 5/3, the diffusivity scales as

K ∝ r( 5
3 +1)/2 ∝ r4/3 (3.36)

This is what Richardson (1926) observed and is therefore often called
"Richardson‘s 4/3-law". Since the dispersion at intermediate scales can be
determined by the inertial range flow, in this case an inverse energy cas-
cade, it can be assumed a dependence solely on scale (m) and the energy
flux ε( m2

s3 ). Then the relative diffusivity K( m2

s ), scales as

K ∝ ε1/3r4/3 (3.37)

The corresponding dispersion is 6

5(Bennett, 1984) showed this in a proper way
6A more formal derivation of the Richardson dispersion is done by deducing it from the

corresponding separation distribution. See Section 5.1
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r2 ∝ εt3 (3.38)

Thus, in an energy inertial range, dispersion grows as time cubed. This is
often called Richardson dispersion.

3.4.2 Nonlocal dispersion

The first term on the right hand side of (3.32) diverges for α ≥ 3 when
k → 0. Then the structure function is controlled by the largest energy-
containing eddies of the range. According to Section 3.2, the dispersion is
therefore nonlocal.

First consider the strictly nonlocal case α > 3. Then, from (3.32)

v(r)2 ≈ 1
2

r2
∫

k−αk2dk =
1
2

r2
∫

k2E(k)dk = cΩr2 (3.39)

where

Ω =
∫

k2E(k) (3.40)

is the total enstrophy.

In the limit α → 3, it is clear that the local form of the structure function
(3.33) matches the nonlocal form (3.39). This shows that an enstrophy cas-
cading inertial range, i.e. a turbulent flow characterized by a k−3 kinetic
energy spectrum, is valid under the local assumption (Section 3.2).

For α = 3, under so-called weakly nonlocal dynamics, the relative diffus-
ivity scales as

K ∝ r2 (3.41)

In accordance with the local assumption in Section 3.2, the diffusivity has
to depend, in addition to distance, on the enstrophy flux η ( 1

s3 ). Thus, di-
mensional arguments yield

K ∝ η1/3r2 (3.42)

Then the relative dispersion is 7

r2 ∝ exp(Cη1/3t) (3.43)

where C is some constant due to intergration

7This can also be deduced more properly from the Lundgren distribution. See
Section 3.5.3.
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The corresponding enstrophy cascade time scale is therefore

T ∝ η−1/3 (3.44)

which is in accordance with the enstrophy cascade time scale detected in
Section 3.2.

The expression in (3.43) is sometimes called "Lin‘s law" after (Lin, 1972)
which predicted this. In the enstrophy cascade, separation of pairs are
growing exponentially in time with a growth rate determined by the largest
eddies of the flow. However, for strongly nonlocal dynamics (α > 3),
the form of (3.39) yields the same scaling properties for diffusivity as for
α = 3. Thus the dispersion is growing exponentially for all α ≥ 3. Then,
observing exponential dispersion does only imply nonlocal dispersion, not
necessarily an inertial enstrophy range. Additional information about the
background flow is needed.

3.5 Probability density functions

Basic theory of statistics implies that relative dispersion is simply the
variance of the separation distribution. The variance is the second order
moment of the probability density function (PDF). This moment describes
the mean width of the distribution and can obviously not describe the
full distribution alone. Thus some important information is lost when
only relative dispersion is considered. The fourth order moment kurtosis
indicates the shape of the PDF and could be a better tool to distinguish
different dispersion regimes. However, as will be shown in Chapter 5,
the kurtosis has often a noisy behavior. The distribution itself has also
been used to detect the relative dispersion, e.g. by LaCasce (2010),
who examined separation PDFs for one atmospheric (EOLE), two oceanic
(SCULP and POLEWARD) and one numerical data set. The results
were shown to be more conclusive than the moments provided. In the
following sections, the PDFs for the different turbulent predictions given
in Section 3.4 are presented. The derivations come from Bennett (1984),
Bennett (2006) and LaCasce (2010).

3.5.1 The Fokker-Planck equation

To achieve an analytical solution for separation PDFs of different turbu-
lent regimes, a Fokker-Planck equation (FP) was proposed by Richardson
(1926).

∂
∂t

p =
1
r

∂
∂r

(κ2r
∂
∂r

p) (3.45)

where p = p(r, t) is the probability density function, r is the pair separation
and κ2 the (longitudinal) relative diffusivity.
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To obtain an unique solution for (3.45), two boundary conditions and one
initial condition for P are required. From Bennett (1984), suitable condi-
tions are

rκ
∂
∂r

p → 0 as r → 0, ∞ (3.46)

and

p(r, 0) =
1

2πr
δ(r− r0) (3.47)

where δ is the Dirac delta function. Reminding the properties of the δ-
function, this initial condition suggests that all the particle pairs have the
same initial separation.

The pre-factor 1
2πr in (3.47) both insures a normalized distribution and the

isotropic assumption since

∫ 2π

0

∫ ∞

0
prdrdθ = 2π

∫ ∞

0
prdr = 1 (3.48)

where 2π comes from the integration over all angles θ in the 2-D space.

3.5.2 Richardson distribution

To obtain a PDF for a Richardson distribution, it is convenient to assume
a relative diffusivity based on "Richardson’s law" deduced in Section 3.4.1.
Then, the longitudinal diffusivity is (Bennett, 2006)

κ2 = βr4/3 (3.49)

From dimensional arguments, β has to scale as m2/3

s . Since the energy flux
scales as m2

s3 , this is related to β by

β ∝ ε1/3 (3.50)

The particular solution of (3.45) is obtained via the Laplace transform. The
version for 2-D turbulence is (LaCasce, 2010)

p(r, t) =
3

4πβtr2/3
0 r2/3

exp(−9(r2/3
0 + r2/3)

4βt
)I2(

9r1/3
0 r1/3

2βt
) (3.51)

where r0 is the initial separation and I2 is the modified Bessel function of
second order.

The moment of order n is expressed by

< rn >= 2π

∫ ∞

0
rn p(r)rdr = 2π

∫ ∞

0
rn+1 p(r)dr (3.52)
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The kurtosis is obtained by using the definition based on the raw moment.
That is

Ku =
< r4 >

(< r2 >)2 (3.53)

The raw moments of the Richardson PDF are derived throughout the
work with this thesis. Consequently, it is shown in the result chapter, i.e.
Chapter 5.

3.5.3 Lundgren distribution

In the nonlocal inertial range dominated by an entrophy cascade, it was
shown that the relative diffusivity scales as (Section 3.4.2)

κ2 ∝ η1/3r2 =
r2

T
(3.54)

where

T ∝ η−1/3 (3.55)

is the enstrophy cascade time scale, determined by the largest eddies of the
flow. The solution of (3.45) with the same initial and boundary conditions
was obtained by Lundgren (1981).

p(r) =
1

4π(π t/T)1/2r2
0

exp(− [ln(r/r0) + 2t/T]2

4t/T
) (3.56)

The corresponding raw moments 8 of the distribution, are deduced from
(3.52).

< rn >= rn
0exp(

n(n + 2)t
T

) (3.57)

The second order raw moment, relative dispersion (n=2), is then

< r2 >= r2
0exp(

8t
T

) (3.58)

and by applying (3.53), the fourth order raw moment, kurtosis (n=4), is

Ku = exp(
8t
T

) (3.59)

8Since separations are positive definite, it is preferable to derive the raw moments
(LaCasce, 2010)
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Thus, the exponential growth of pair separations in the enstrophy range
is also obtained by deriving the raw moments of the probability density
functions. As the variance, the kurtosis is exponential, implying that
the Lundgren PDF is not self-similar. A self-similar distribution has
constant kurtosis. This provides a tool to distinguish exponential non-
local dispersion from local Richardson dispersion. The latter is shown to
be self-similar in the asymptotic limit, i.e. during t3 growth of the relative
dispersion.

3.5.4 Rayleigh distribution

In Section 3.4, it was shown that relative dispersion grows linearly in time
in the long time limit. This is when the pair velocities are uncorrelated. The
relative diffusivity is constant and twice the absolute diffusivity and hence
behaves like a random walk problem. The solution of the FP equation (3.45)
is then (LaCasce, 2010)

p(r, t) =
1

4πκ2t
exp(− r2

0 + r2

4κ2t
)I0(

r0r
2κ2t

) (3.60)

where I0 is a modified Bessel function of order zero.

Since the pair velocities are more likely to be uncorrelated after long time, it
is preferable to study the asymptotic limit (r >> r0, βt >> r). Then (3.60)
reduces to

p(r, t) =
1

4πκ2t
exp(− r2

4κ2t
) (3.61)

which is proportional to the Rayleigh distribution (Papoulis, 1991).

Utilizing (3.52) (3.53) provide the raw moments. The relative dispersion is
then

< r2 >= 4κ2t (3.62)

and the kurtosis is

KuRa = 2 (3.63)

Then, from probability density functions, it is also observed that the pairs
undergo a diffusive process after sufficiently long time. The Rayleigh
distribution is also self-similar.





Chapter 4

Previous studies

Due to the economic extent of large balloon projects, there have only been a
few observational studies on relative dispersion in the atmosphere. There-
fore, and since these are relevant, oceanic studies on relative dispersion
have to be considered. As shown in the previous chapter, the Eulerian kin-
etic energy spectrum reflects the turbulent flow, which in turn determines
the relative dispersion in 2-D turbulence theory. Thus, studies which inter-
pret kinetic energy spectra are important contributors to the understanding
of turbulent advection of tracer particles. This short chapter covers some
important studies connected to this issue and emphasizes the contradicting
conclusions among some of these. In Chapter 5, this thesis‘ results are dis-
cussed against some of the studies presented here. Table (4) summarizes
some relevant findings, both in theoretical and observational studies.

Richardson (1926) studied smoke plumes spreading from factory stacks
and observed that the rate of cloud dispersion increased with the size of
the cloud. Richardson realized that the diffusivity was dependent on scale
to the 4/3-power. This relation is known as Richardson’s law. It was de-
duced for a 3-D flow, as in the planetary boundary layer, but as shown in
Chapter 3.4.1, the law is also consistent with 2-D turbulence theory. It im-
plies cubic growth of the relative dispersion.

From the 1970’s, there have been two major balloon projects in the atmo-
sphere, EOLE and TWERLE. The former was performed during a one year
period from August 1971 until July 1972 in the Southern hemisphere (Mo-
rel and Bandeen, 1973). It included 480 balloons released and floated at
approximately the 200hPa level. Morel and Larcheveque (1974) (ML) ex-
amined these data and the results are shown in Figure 4.1. It displays expo-
nentially growing dispersion from 100 km up to 1000km, about the radius
of deformation. The flow was approximately isotropic at the same range of
scales, so the theory described could be implemented. Beyond 1000km, the
dispersion develops into a diffusive one, with linear growth. However this
range of scales is zonally anisotropic, so applying 2-D theory needs to be
done carefully.

The other balloon project, TWERLE (Tropospheric Wind Earth Radio Loc-
ation Experiment), captured data from June 1975 to August 1976 (Jullian

29
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Figure 4.1: Root mean square distance vs. time for the EOLE balloon pairs. From
Morel and Larcheveque (1974)

et al., 1977). These were also released in the Southern hemisphere and the
393 balloons floated at approximately 150hPa. The data were examined
by Er-El and Peskin (1981) (EP) and their relative dispersion results are
shown in Figure (4.2). As ML, they found evidence for exponential growth
of separations below the deformation radius. In addition, EP calculated
the fourth order moment of the separation distribution, the kurtosis (see
Chapter (3.5)), but only at one time. A time series is necessary to infer the
evolvement of the dispersion, though, the kurtosis value of 7.02 in the sub-
tropics at least indicated a strongly non-Gaussian separation distribution.
However, it does not rule out neither Richardson nor exponential growth.
This study also included a comparison between high and low latitudes, but
no obvious differences were found. At large scales, a superdiffusive regime
was detected, i.e. power law growth faster than linear.

Although two balloon experiments were consistent with each other, it is
still not clear how dispersion behaves at sub-deformation scales. ML also
examined relative velocities‘ dependence on separations. The measures
suggested Richardson behavior rather than exponential dispersion. Both
the EOLE and TWERLE data are noisy, so a power law might fit equally
well as an exponential. Lacorata et al. (2004) re-examined the EOLE bal-
loon data using another method, Finite Scale Lyapunov Exponent (FSLE).
The motivation for this method is to distinguish the spatial scales from
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Figure 4.2: Dispersion vs. time for the TWERLE balloon pairs. From Er-El and
Peskin (1981)

each other1. A fundamental problem with relative dispersion is the time-
based average, which makes it inconclusive after only a few days (LaCasce,
2010). Dispersion from flows covering a wide range of scales are aver-
aged. Lacorata et al. (2004) found only exponential growth below 100km.
Between 100km and 1000km, Richardson dispersion was detected. LaCasce
(2010) used probability density functions (PDF) of the relative displace-
ments to analyze the relative dispersion of the EOLE data set. While the
PDFs were consistent with the Lundgren distribution, indicating exponen-
tial dispersion up to 100-200km, behavior beyond these scales was hard to
detect. What might be a problem is the unstable statistics caused by too
few pairs, though this study included so-called chance pairs. These method
using chance pairs picks out particles which float near each other a time after
deployment. The statistics are more robust (LaCasce, 2010), but it has been
discussed if these produce relative dispersion with unwanted features.

Since atmospheric dispersion is related to the atmospheric kinetic energy
spectra (Section 3.4), this can be a useful interpretation tool in addition to
PDFs and dispersion themselves. Nastrom and Gage (1984) (NG) used ve-
locity data at the tropopause from 7000 commercial aircrafts over US to
calculate a kinetic energy spectrum. The results are shown in Figure (4.3).
Here, a k−3 enstrophy range is detected from wavelengths at some hun-
dred kilometers up to thousands of kilometers, while a k−5/3 energy range

1The method is described by Lacorata et al. (2004)



32 CHAPTER 4. PREVIOUS STUDIES

Figure 4.3: Kinetic energy spectra from data collected on commercial airplanes
over U.S. Both zonal and meridional components are shown, with the
latter shifted one decade to the right. From Gage and Nastrom (1986)

is present at smaller scales. A comparison between location (latitude, stra-
tosphere vs. troposphere) and season was included, but the slope was
shown to be universal. Since the lower x-axis displays wavelengths and
the pair separation scale is considered as an eddy radius, a multiplication
by a quarter is convenient. In light of this, the energy spectrum supports
ML and EP. The scales displaying a Kolmogorov spectrum might indicate
flows at such small scale that it is a subject to three-dimensional turbulence.
Cho and Lindborg (2001) (CL) considered structure functions in the tropo-
sphere and the stratosphere. As shown in Section (3.4), relative dispersion
derives directly from the second-order structure function, so in that sense,
the latter is a more proper tool than the kinetic energy spectrum. CL sug-
gested an energy range at the smallest scales (2km-20km) taken over by
an enstrophy range. This is in line with GN. CL also inferred a clearer r2-
range in the stratosphere than in the troposphere, though, the reason for
this is unclear.

On the basis of these studies, the question may arise if seasonal and geo-
graphical variations could affect the dispersion characteristics. Huber et
al. (2001) used ECMWF reanalysis data to advect particles on isentropic
surfaces. Two distinct mixing regimes were detected, one for the tropical,
which supported exponential growth, and one for the extratropical region,
which supported power-law growth. The latter was mainly ballistic, i.e. t2

growth. This systematic study did also compare two seasons (the boreal
winter and summer), two heights (the 315K and 330K isotropic surfaces)
and 72 regions of particle initializations. In addition to the distinct dis-
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persion differences between the extratropics and the tropics, there were
only small deviations within these regions. The exception was the some-
what stronger mixing (' t3) at some locations in the Northern hemispheric
winter due to a more pronounced wave-though pattern. Differences with
height were hardly detectable. These results do rely heavily on isentropic
conditions, which is reasonable to assume in the extratropics. However, the
resolution of the input velocity field (2.5o × 2.5o horizontal grid) limits the
reliability of the small scale dispersion. Another important aspect regard-
ing the results here is that Huber et al. (2001) based their conclusion on a 10
days fit of the relative dispersion.

There have been paid increasingly attention to oceanic projects during
the last decade. The use of drifters and floats to make Lagrangian tra-
jectories are much easier and less expensive than launching balloons in
the atmosphere. Ollitrault et al. (2005) found exponential growth at sub-
deformation scales in the Gulf of Mexico, Koszalka et al. (2009) did the
same in the Nordic Sea. These results are important contributions to un-
derstand the large scale turbulence in the atmosphere, which is in lack of
observational results since ML and EP examined the EOLE and TWERLE
projects.

The reason for this study is to improve the understandings of the meso-
scale dispersion on the basis of the aforementioned studies. Motivated by
Huber et al. (2001), different heights, seasons and latitudes will be com-
pared. However, this study is limited to the extratropics. Since all the
particles are deployed at the same time around a latitude circle, no zonal
dependence will be inferred. The use of a numerical model provides build-
in limitations on both temporal and spatial resolution, i.e. describing the
exact particle motion. However, a huge amount of particles are possible,
which yields a more stable statistics.
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YEAR PROGRESS

1926 L.F.Richardson inferred empirically a power-law correlation for
the relative diffusion, which corresponds to cubic growth for
the relative dispersion

1941 A.N.Kolmogorov suggested a k−5/3 dependence of the energy
spectrum in an energy cascading inertial range

1953 G.K.Batchelor and R.Fjørtoft independently inferred an inverse
energy cascade in an inertial range in 2-D turbulence

1967 R.H.Kraichnan asserted that there must be two inertial ranges
in two-dimensional turbulence: One characterized by an energy
cascade (k−5/3), the other by an enstrophy cascade (k−3)

1971 J.G Charney showed that the theory of 2-D turbulence could be
utilized on quasi-geostrophic turbulence

1971 J.Lin suggested an exponential dependence of the relative
dispersion in an enstrophy-cascading inertial range

1974 P.Morel and M.Larcheveque studied balloon data at 200mb
from the EOLE project in the Southern hemisphere. Exponential
separation growth was detected. Lacorata et al. (2004) and
LaCasce (2010) reexamined the data by different methods, FSLE
and separation PDFs respectively. The results were
contradicting

1981 J.Er-El and R.L.Peskin found exponential separation growth for
balloon data at 150mb captured by the TWERL experiment

1985 K.S.Gage and G.D.Nastrom used velocity data from commercial
aircrafts to infer the atmospheric kinetic energy spectrum. An
energy range at small wavelengths was taken over by an
enstrophy range above a few hundred kilometers. Cho and
Lindborg (2001) used structure functions to infer the same, an
enstrophy cascade below the deformation radius

2003 J.H.LaCasce and Ohlmann examined surface drifters in the Gulf
of Mexico and detected exponential growth of the relative
dispersion at sub-deformation scales(LaCasce and Ohlmann,
2003). (Ollitrault et al., 2005; Koszalka et al., 2009) support these
findings through projects in the Eastern Atlantic and the Nordic
Seas respectively.

Table 4.1: A list of some relevant findings in 2-D turbulence theory and in
Lagrangian and Eulerian observations



Chapter 5

Results

In this chapter, the results, motivated by the goal of this thesis, are
presented. First, the moment of the full Richardson distribution is
derived for later comparisons with the data. Then follow the results
based on several FLEXPART model runs. A discussion of the theoretical
assumptions made is given, with emphasis on isotropy. Thereafter,
relative dispersion and probability density functions of the distributions
are illustrated on several figures. Comparisons both among the data sets
produced here and with the renewed EOLE data set by LaCasce (2010) are
done. To figure out the dispersion characteristics, theoretical predictions
derived in Chapter 3 are also shown. The choice of locations, i.e. altitude
and latitude, and season, is based on observed features through this work.
For an extended interpretation, second-order structure functions from the
ECMWF reanalysis wind data are shown finally.

5.1 The moments of the full Richardson distribution;
a derivation

The motivation behind this derivation was to obtain a value of β to provide
the full Richardson distribution in Section 5.5.2 later in this chapter. A fit
with this function would eventually suggest Richardson dispersion, so it
could be crucial for the main conclusion of this thesis.

The 3-D variant of the full Richardson was derived by Bennett (1984). While
Richardson (1926) only provided an asymptotic 2-D distribution, LaCasce
(2010) derived the full solution in 2-D. This is given by (3.51) in Chapter 3.5.
A substitution into the definition of the moment, expressed by (3.52), yields
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where it is done a substitution r′ = r2/3, which yields

dr =
3
2

r1/3dr′ (5.2)

The constant factor C is defined as

C(t) ≡ (
3
2
)2 1

βtr2/3
0

exp(−9r2/3
0

4βt
) (5.3)

To solve the integral in (5.1), an integral identity from (Gradshteyn and
Ryzhik, 1980) is used. That is
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where

Γ(n) = (n− 1)! (5.5)

is the Gamma function and M−µ,ν(β2

α
) is the Whitakker M Function. The

latter is defined as (Abramowitz and Stegun, 1972)
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where M is Kummer’s Function.

For this case, the symbols in (5.4) and (5.6) have to be defined as
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(5.7)

Then,
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In the long time limit, r >> r0 and βt >> r. Then (5.8) reduces to
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4βt
9

)
3n
2 Γ(

3n + 6
2

) (5.9)

which is identical to what LaCasce (2010) showed. The asymptotic consid-
eration above is valid since both the exponential and Kummer function go
to one when the arguments go to zero1(Abramowitz and Stegun, 1972).

First looking at the second order raw moment, the variance (n = 2), (5.8)
yields
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2
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4βt
9

)3exp(−9r2/3
0

4βt
)M(6, 3,

9r2/3
0

4βt
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while the asymptotic solution from (5.9) is simply

< r2 >= 5.2675β3t3 (5.11)

Thus, the variance converges to the Richardson form (see Chapter 3.4.1)
after sufficiently long time. So, the arguments of the Kummer Function and
the exponential function determine how fast the dispersion in the energy
cascading range reaches the cubic form. These arguments are dependent
on the initial separation r0 and time t.

The fourth order moment, the kurtosis, was given by (3.53) in Chapter 3.5.
A substitution of (5.10) and (5.8) with n = 4 yields the full Richardson kur-
tosis.

1As they do since both are inversely proportional to time
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In the asymptotic limit, the solution converges to

Kur = 2
Γ(9)
1202 = 5.6 (5.12)

which is consistent to LaCasce (2010). So, the full Richardson solution
converges to a self similar probability function.

5.2 The basic assumptions

In Chapter 3, a number of a priori assumptions were shown to be funda-
mental in forming the theoretical framework used in this thesis. These as-
sumptions are; two dimensionality, locality, isotropy, homogeneity and sta-
tionarity. The isotropic assumption is least obviously satisfied, but a test is
easily done. Therefore, after a short discussion on the remaining assump-
tions, an extended discussion on the isotropic nature of the turbulence is
given.

Homogeneous dispersion does not depend on location. Since the particles
are initialized uniformly around a latitude, homogeneity is actually not ex-
plored in this thesis. It would have required targeted deployments over
limited domains, as Huber et al. (2001) did. Generally, there are likely to
be zonal differences in the Northern hemisphere due to the distinct Rossby
wave pattern. Huber et al. (2001) detected no obvious meridional vari-
ations.

Stationarity is also hardly tested in this project. There are done runs for two
months in different seasons and possible similarities will be the only sign.
Since particles are deployed only once in each period, possible changes
during that month are undeterminable. Huber et al. (2001) found no obvi-
ous seasonal differences in the extratropics.

Charney (1971) showed that turbulent motion in a QG flow has the same
properties 2-D turbulence. In that sense, with the initial separations of
55.7km and 97.0km in mind, the turbulence considered here could be
assumed to be 2-D. In addition, a test on the data set showed a mean
vertical displacement between 0.5km and 3km after five days. The lowest
values were at 12km at 60o NS. The latter reflects the stably stratified
stratosphere compared to the well mixed troposphere (Wallace and Hobbs,
2006). Thus, stratospheric dynamics are strongly 2-D.
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5.2.1 The isotropic assumption

In many cases, the atmosphere does not obey the isotropic assumption im-
plemented in 2-D turbulence theory. On large scales, the meridional vari-
ations of the Coriolis force and the temperature gradient provide a zonally
anisotropic situation, illustrated by the westerlies in the extratropics. Thus,
to discuss the results against the theory, a test on how close the data are to
be perfectly isotropic, is needed. A sensitive way of doing this is to calcu-
late the ratio between the root mean square (rms) separation in zonal and
meridional direction.

Figure 5.1: Zonal rms separation divided by meridional rms separation vs. time

The results are shown in Figure 5.1, where the ratio of x and y rms dis-
placement is plotted versus time at four different latitudes at two altitudes
in two months, i.e. all the data sets. The first hours are affected by the initial
situation, as the separations are purely zonal. After that, a period of more
or less constant ratios follows. Then the ratios increase, implying a trans-
ition from an isotropic to a zonally anisotropic range. The latter is associ-
ated with the intensifying zonal wind velocity component on large scales
at these latitudes; subtropical and polar jet streams, dependent on latitude
and season (Hartmann, 1994). The strong zonal shear accompanied with
those winds will effectively separate the particles in the zonal direction.
Thus, this range has to be considered by applying another theory on the
zonal component; shear dispersion (Bennett, 1987). However, as pointed
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out, this thesis is restricted to focus on the inertial range theory. Thus, the
isotropic assumption has to be satisfied.
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Figure 5.2: The two components of the relative dispersion at 60oN at 6km in
January 2009

First, the larger (zonal) initial separation at 30o NS is illustrated at 6km by
the generally higher ratios in the initial period here than at 60o NS. Gener-
ally, the dynamics at the highest latitudes are more isotropic than the low-
est ones. This could be reflected by a stronger jet stream with an associated
stronger shear at those latitudes, i.e. the subtropical jet stream. Deviations
from this are ratios at 300N in September, which indicate a fairly isotropic
pattern. A weaker subtropical jet stream in the Northern hemispheric sum-
mer could probably explain that (Hartmann, 1994). There is also an earlier
anisotropic tendency at 600N and 600S in September and January respect-
ively. A relatively strong meridional component is more likely to appear
in a winter hemisphere, because the meridional temperature gradient is
stronger then. For this reason, isotropy can be maintained at larger scales
in winter. These observations are not necessarily showing climatological
characteristics, but specific weather patterns at these times.

Morel and Larcheveque (1974) did also test the isotropy in their data set.
The rms ratio between the zonal and meridional component was remark-
ably close to unity from 100km to 1000km, but shifted to be heavily an-
isotropic beyond a scale of 1500km. Thus, the isotropic assumption is not
unreasonable at the sub-deformation scale.

Generally, the ratios in Figure 5.1 agree exactly with what LaCasce (2010)
found for the EOLE data. Thus, this is likely to be a general result. To a first
approximation, the first three days could be assumed isotropic, suggested
by Figure 5.2. By ruling out the differences observed in Figure 5.1 as
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significant, a three days isotropic assumption applies in all cases. This limit
is considered when the upcoming results are discussed.

5.3 Relative dispersion
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Figure 5.3: Relative dispersion vs. time for particles deployed at 6km along the
latitude line 60o N in January 2009. Each error bar displays one
standard deviation

In this section, the results from the relative dispersion calculation will be
presented. Figure 5.3 shows one relative dispersion test (6km at 60oN in
January 2009). The error bars indicate one standard deviation. This error
measure is used instead of a standard error since all the data are shown
to be highly non-Gaussian (see Section 5.5). However, the error bars are
so large that zero separation cannot be ruled out, which is not very useful
information. Thus, no error bars are plotted in the rest of this thesis.

In the rest of this section, several 60o and 30o data sets are shown. Lin-
ear regression on logarithmic and semilogarithmic plot is applied to fit
power and exponential growth respectively. In accordance with 2-D tur-
bulence theory, other power law findings than cubic are not shown (see
Chapter 3.4). The initial separation for all the tests is the grid size, 1o lon-
gitude (55.7km at 60o NS and 96.4km at 30o NS).

Figure 5.4 shows the relative dispersion at 6km at 60o NS. During the first
day, it grows exponentially up to separations of a few hundred kilometers.
The e-folding time is about a third of a day. The initial separation of the
fit is near the data initial separation. The further growth seems to obey a
power law during the next two to three days. However, a fit is only dis-
played at 60o N in January, since it provided a cubic growth, i.e. obeying
the Richardson law. The remainings tend to either grow slightly slower or
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Figure 5.4: Relative dispersion vs. time for particles deployed at 6km along the
latitude line 600 N (a) and c)) and 600 S (b) and d)) in January and
September 2009

faster than cubic.

The relative dispersion at 12km is shown Figure 5.5. The results are quite
similar to those at 6km, an exponential range lasting for approximately one
day. However, the e-folding times are generally longer, about half a day, in-
dicating slower exponential growths. The exception is at 600 N in Septem-
ber which yields the fastest e-folding times of all the tests in Figure 5.4 and
5.5.

The relative dispersion at 30o N in September 2009 is shown in Figure 5.6.
It does not seem to differ much compared to 60o NS. The e-folding times
are 0.45 at 6km and 0.35 at 12km.

According to Chapter 3.5.3, the corresponding diffusivity time scale T of
the exponential range are eight times the e-folding time. Thus, for the high
latitudes, the average time scale is ∼ 2.4 days at 6km and ∼ 3.8 days at
12km, if the very short time scale at 60o N in September is ignored. The
obvious deviations come solely from altitude differences. At 300N, the av-
erage diffusivity time scale is ∼ 3.3 and ∼ 3.1, respectively. An extended
discussion on the altitude differences is available in Section 5.5.
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Figure 5.5: Relative dispersion vs. time for particles deployed at 12km along the
latitude line 600 N (a) and c)) and 600 S (b) and d)) in January and
September 2009

Figure 5.6: Relative dispersion vs. time for particles deployed along the latitude
line 300 N in September 2009 at a) 6km and b) 12km

5.4 Kurtosis

In addition to the variance, higher order moments of the separation PDF
can be applied to detect relative dispersion. The kurtosis, the fourth
order raw moment given in (3.53) in Chapter 3.5 is a useful measure
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to characterize the PDF. Since the Richardson distribution is self-similar,
while the Lundgren distribution, indicating exponential growth, is not, the
kurtosis can possibly distinguish between these two dispersion regimes.
The time evolution of the zonal and meridional component of the relative
displacement kurtosis is shown in Figure 5.7.
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Figure 5.7: Kurtosis of the meridional relative displacement vs. time for particles
deployed at 12km along the latitude line 30o S in January 2009

The kurtosis provides a rather noisy behavior during the first days before
it falls back to a constant value. The zonal component is close to two,
i.e. a Rayleigh distribution, while the meridional component converges
to a value between three and four. So the separation PDF is self-similar in
the long-time limit, i.e. what to be expected with a diffusive process (see
Chapter 3.5.4). An average of all the long-time values of the kurtosis yields
2.1 for the zonal component and 3.1 for the meridional.

According to the one day exponential fit of the relative dispersion detected
in the previous chapter, an exponential growth of the kurtosis during the
first 2-3 days is expected. (see Chapter 3.5.3). Thus, the early time blow up
is likely to reflect that exponential range. However, this is heavily modified
and the kurtosis becomes substantially smaller. Finally, it converges. When
the full distribution includes separations experiencing dynamics at scales
beyond the exponential range, its shape, i.e. the kurtosis, changes slightly
because the separations at these large scales experience diffusive growth.
In the end, the dispersion is purely diffusive, reflected by the constant kur-
tosis.
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5.5 Probability density functions
As pointed out in Chapter 3.5, another tool to analyze relative dispersion

is the probability density function (PDF) of the particle separations, of
which relative dispersion is the second order moment. The relative
dispersion and the kurtosis suggested an exponential range taken over by
shear dispersion and finally a diffusive regime. By examining the whole
distribution on the data sets, additional information about the dispersion
are provided. While possible altitude differences were suggested by the
relative dispersion, latitudinal dependence was rather hard to sort out. To
obtain more information regarding these, all the PDFs are shown together.
Then, the distributions are analyzed in light of 2-D theoretical predictions
derived in Chapter 3.5. Finally, the renewed EOLE data set by LaCasce
(2010) is compared with the most appropriate data set. All the figures show
normalized PDFs, so the integral of the PDF function over separation is
unity.

5.5.1 Comparison among the PDFs

Figure 5.8: Normalized separation PDFs from all the data sets at four different
times

Figure 5.8 shows the PDFs for all the data sets on four time steps, after 1
day, 2 days, 4 days and 10 days. An obvious difference is that with respect
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to height at the high latitude. The distributions at 12km seem to be less
spread out. This indicates a slower particle dispersion here than at 6km.
At 30o NS, the separation PDFs are slightly more spread out than at 60o at
6km. After 10 days, the altitude difference at 60o still remains.

Figure 5.9: Normalized separation PDFs at 12km, 60o NS at four different times

At 30o NS, there is a tendency of larger amplitudes at 6km. However, the
height differences are not that striking. There are no obvious differences
among the distributions at 6km at 60o NS. The details of the PDFs at 12km
at 60o NS are shown in Figure 5.9. While Southern hemisphere (SH) dis-
tributions are fairly similar the first two days, the Northern hemisphere
(NH) distributions seem to behave differently. There is weaker disper-
sion in January than in September, reflected by the more spread out PDF
in the latter. Actually, the separation distribution in September behaves
quite similarly as the distributions at 6km (Figure 5.8). After four days, the
SH distributions also deviate from each other. All data sets are distributed
equally after 25 days. Thus, the large scale dispersion shows no seasonal
dependence.
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5.5.2 Comparison with theoretical functions

Figure 5.10: Normalized separation PDFs at 12km, 60oN in January 2009 at four
different times. The Lundgren function is calculated using T = 4.2
days. For the Richardson function, β = 12.1km2/3/day. Both have
the data initial separation, r0 = 55.7km

In light of the considerations above, some of the separation distributions
are plotted against the theoretical functions derived in Chapter 3.5, presen-
ted in Figure 5.10 - 5.12. The motivation is to possibly detect the relative
dispersion growth characterizing the locations. The seasonal variations at
12km at 60oN detected in the last subsection, will also be focused on.

The theoretical predictions are the Richardson, Lundgren and Rayleigh dis-
tributions from (3.51), (3.56) and (3.60) respectively, shown in Chapter 3.5.
For the Richardson distribution, β was provided by fitting the Richardson
variance (5.10), derived in Section 5.1, to the data dispersion. The diffusiv-
ity time scale T in the Lundgren distribution comes from the exponential
fit of the relative dispersion in Section 5.3. Some figures include a compar-
ison with an additional Lundgren distribution with a different T. This T
is obtained by trying to fit the data PDF to a more appropriate Lundgren
PDF. This method is only applied on PDFs which are far from being fitted
by a Lundgren function with the T obtained via linear regression in Sec-
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Figure 5.11: Normalized separation PDFs at 12km, 60oN in September 2009 at four
different times. The Lundgren functions are calculated using T = 1.8
days (the relative dispersion fit) and 3.0 days (the PDF fit). For the
Richardson function, β = 22.5km2/3/day. All have the data initial
separation, r0 = 55.7km

tion 5.3. All the diffusivity times, reflecting the exponential characteristics
of the data, are listed in Table 5.5.2. For both the Lundgren and Richardson
distribution, r0 is the same as the data initial separation, i.e. the respect-
ive zonal grid size. For the Lundgren case, this is because the "effective"
initial separation2, shown in Figure 5.4- 5.6, is close to the data initial sep-
aration. The Rayleigh distribution is calculated using the variance of the
data and is only shown in the long time limit. The Lundgren distribution
is not shown after 25 days, since there are no expectations of exponential
growth at that time (Chapter 3.4). Because of earlier observations of super-
diffusive growth (tα ,α > 1) at large scales, e.g. (Ollitrault et al., 2005), the
Richardson distribution is shown at this time as well.

Figure 5.10 shows the PDFs with the theoretical distributions in January
2009 at 600 N at 12km. The same location in September 2009 is shown in

2The "effective" initial separation is the initial separation associated with the relative
dispersion fit
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Figure 5.12: Normalized separation PDFs at 6km at 60oN in January 2009 at four
different times. The Lundgren function is calculated using T = 2.8
days. For the Richardson function, β = 20.7km2/3/day. Both have
the data initial separation, r0 = 55.7km distribution

Figure 5.11. It is obvious that both fit quite good to the Lundgren distri-
bution with diffusivity times T = 4.2 and T = 3.0 respectively, though
the latter had to be adjusted to fit (originally T = 1.8). Thus, the seasonal
differences observed in Figure 5.9 are reflected by differences in the dif-
fusivity time scales. The dispersion is exponential, but with faster growth
in summer. The Lundgren function tends to exceed the data value at lar-
ger separation. This implies slower growth than exponential at the large
scales, probably reflected by a diffusive regime here. A consequence is that
the data PDF shows more rapid dispersion at the small scales. For SH,
Table 5.5.2 shows equal time scales for both months.

In Figure 5.12, the PDF in NH January is shown to analyze the relative
dispersion at 60o at 6km. The data fit to the Lundgren function, which sug-
gests exponential growth. Table 5.5.2 shows that the other data sets on the
same latitude and height (60o, 6km) provide more or less the same growth,
suggesting negligible differences of the dispersion properties at this height.
The adjusted growth rate at 12km in NH September is also more in line
with those at 6km, supporting the observed similarities in Figure 5.8. The
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Month Height 60o NH 30o NH 30o SH 60o SH

January
6km 2.8 2.6 3.2 2.2

12km 4.2 2.4 3.0 3.6

September
6km 2.4 3.6 3.7 2.8

12km 3.0 3.5 3.3 3.6

Table 5.1: The diffusivity time scales for the best fit of the PDF to the Lundgren
function. The bolded values are adjusted from the relative dispersion fit

PDFs at 30oNS are not shown. The diffusivity times in Table 5.5.2 do sup-
port rather small dispersion differences at this latitude in line with Fig-
ure 5.8. The exception is in the NH winter, when the values are slightly
lower.

After 25 days, the data fit quite well to the Rayleigh distribution. That is an
indication of diffusive particle motions (see Chapter 3.5.4).

5.5.3 Comparison with a EOLE data set

The EOLE project was a pioneer in the 70’s. A relatively large number of
real balloons were launched in SH between August 1971 and July 1972 (see
Chapter 4). Morel and Larcheveque (1974) examined the Lagrangian data
to study atmospheric turbulent dispersion. The reexamination by LaCasce
(2010) provided a renewed data set and calculated the separation distribu-
tion from these. Here follows a comparison between this EOLE data set
and the model data from FLEXPART. This will also be a validation of the
model data reliability.

The data set used here is that with "chance pairs" (see Chapter 4). This
method provides more robust statistics (LaCasce, 2010) (see Chapter 4). The
maximum initial separation is 25km, about the half of the model one at 60o,
i.e. 55.7km. In light of the location of this data set, i.e. at 200mb in SH, the
model run at 60o S at 12km in January 2009 was used for comparison.

The two data sets are shown in Figure 5.13. On the first three time
steps, they fit properly. However, the EOLE data are noisier on the large
separations. The PDF is also less spread out, reflected by a large amplitude
somewhat shifted to the left after one day. This is probably due to the
difference in initial separation and hence delayed EOLE balloons. The
discrepancy is not present on the next time steps. The noise in the EOLE
data is caused by the number of pairs, substantially lower than the 40000
provided by FLEXPART. This causes unstable statistics. After 25 days, the
EOLE data distribution is too noisy to compare with the FLEXPART data.
Generally, the results denote FLEXPART as a numerical model representing
the mesocale processes impressively well.

5.6 Energy spectrum and structure function

As shown in Chapter 3.4, the Eulerian kinetic energy spectrum is related to
the relative dispersion in 2-D turbulence theory. The underlying turbulence
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Figure 5.13: Normalized separation PDFs from the model data set (FLEXPART)
and a balloon data set (EOLE). The model data are launched at 12km
along the latitude line 60oS in January 2009 with an initial separation,
r0 = 55.7. The balloon data are from the extratropics of Southern
hemisphere with a maximum initial separation of 25km

determines how tracer particles are spread in the inertial range. Thus,
the kinetic energy spectrum provides an additional tool to analyze the
results presented in the previous sections. The velocity data used in this
calculation are the model input wind field provided by ECMWF. These are
horizontally evaluated on spherical coordinates and on pressure surfaces in
the vertical (see Chapter 2). A data series around one single latitude circle
throughout a month is used. The highest resolution provided is 0.2o × 0.2o,
which is used here3. However, the kinetic energy spectrum with 1o × 1o

resolution is also shown. The spectra are calculated by applying the pwelch
method on the velocity field (see Chapter 2.4).

Figure 5.14- 5.15 show the kinetic energy spectrum at 60o S at 500hPa in
January 2009. Up to wavelengths of' 2500km, the spectrum exhibits a k−3

dependence, indicating an enstrophy cascading range, i.e. nonlocal turbu-
lence (see Chapter 3.2). The marked limit indicates a radius, i.e. one fourth

3The model run calculations are done on a 1o × 1o horizontal grid (Chapter 2). Technical
issues prevented a higher resolution in the model
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Figure 5.14: Eulerian kinetic energy spectrum at 500hPa, 600S in January 2009.
The vertical line suggests the grid scale of the FLEXPART model,
while the k−3 line indicate an enstrophy range. The horizontal
resolution of the wind field is 0.2o × 0.2o

of a wavelength, which corresponds to the grid scale of the velocity field
used in the model, r ' 55.7km. Around this scale, the spectral density
suddenly falls down to smaller values. This could illustrate the limit of
which scale the wind field is able to separate particles realistically, if a eddy
radius is a typical relative dispersion scale. Then, Figure 5.15 is more rel-
evant since it shows the spectrum with the same wind field resolution as
used in the model. Below the grid scale, smaller separations would have
been dispersed by a subgrid model parameterization added by a dissipated
wind field. However, that should not cause problems for the results in this
study since the initial separation is similar to the size of the grid scale. The
relatively wider range of a dissipated spectrum in Figure 5.14 is unclear.

An alternate way of looking at the spectral behavior is with the second-
order structure function (Lindborg, 1999). This was shown to be related to
the energy spectrum under the homogeneous assumption Chapter 3.4. An
advantage by using the structure function instead of the spectrum is the
direct connection between scales. The pair separations in the relative dis-
persion are the same as the separation between the velocities in the struc-
ture function. The autocorrelation of the relative velocities, used to define
the relative diffusivity in (3.25), is also related to the second-order structure
function in a homogenous flow. This illustrates the connection to relative
dispersion.

Figure 5.16 and 5.17 show the structure functions at some locations, picked
out on the basis of the results in the previous sections. Generally, the
motivation is to possibly explain the universal exponential growth, which
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Figure 5.15: Eulerian kinetic energy spectrum at 500hPa, 600S in January 2009.
The vertical line suggests the grid scale of the FLEXPART model,
while the k−3 line indicate an enstrophy range. The horizontal
resolution of the wind field is 1o × 1o

was detected. The seasonal difference observed at 12km at 60oN also needs
to be clarified.

The second-order structure function at 60o at 200hPa in NH is shown in
Figure 5.16a) and b). Up to a few hundred kilometers, these suggest a r2

dependence, which implies a kinetic energy spectrum with a k−3 slope,
i.e. an enstrophy cascading range (see Chapter 3). Beyond that scale, the
slope decays and flatten out towards the energy containing scale at about
2000km.

There are no obvious differences between the structure functions in Fig-
ure 5.16a) and b). To show possible differences due to altitude at 60oN,
the structure function at 500hPa in January is shown in Figure 5.16c). This
yields more or less the same behavior as in a) and b). However, the r2-range
at 500hPa tends to flattens out sharper, while it extends to somewhat larger
scales at 200hPa.

Figure 5.17 shows the second-order structure function at 30oN in January.
These also provide a r2-range at the smallest scales. Both is quite similar to
Figure 5.16c), according to the somewhat smaller scale the spectrum starts
to level off.

Figure 5.18 shows a comparison among the structure functions with height
at 60oNS. The amplitudes at 500hPa are generally higher than at 200hPa.
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Figure 5.16: Second-order (Eulerian) structure functions at 200hPa (a) January
2009 and b) September 2009) and 500hPa (c) January 2009), 60oN. The
lines for the energy and enstrophy ranges are shown

Figure 5.17: Second-order (Eulerian) structure functions at 500hPa (a) and 200hPa,
(b), 300N, in January 2009. The lines for the energy and enstrophy
ranges are shown
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Figure 5.18: The meridional comoponent of the second-order (Eulerian) structure
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2009





Chapter 6

Discussion

In this chapter, the results based on the FLEXPART model runs presented
in the Chapter 5 will be discussed and interpreted in light of each other.
All the figures and tables which are referred to here are available in that
chapter. Finally comes a short discussion of possible sources to errors and
uncertainties.

6.1 Relative dispersion

The relative dispersion suggested exponential growth the first 1-2 days,
taken over by a power law growth (Figure 5.4-5.6). As Figure 5.3 shows,
any curve would eventually fit within the errors of the data after only a
few days. Since the data are non-Gaussian, the variance is not able to de-
scribe how the relative dispersion behaves at each scale, i.e. it does not
reflect the separation distribution alone. Therefore, relative dispersion is
not very conclusive. Because isotropy is only reasonable to assume the first
three days, an exponential growth is the only regime that can be inferred
within this time period. The power law growth detected could possibly be
a sign of shear dispersion (Bennett, 1987) as well as larger scale diffusive
processes.

Generally, the e-folding times, given by the exponential argument in all the
figures, suggest slower exponential dispersion growth at 12km than at 6km
at 60oNS. A discussion on possible reasons is given in the section covering
the PDFs. At 30o, there are no obvious differences in the exponential re-
gime.

Viewed in light of other studies, the results of Morel and Larcheveque
(1974) and Er-El and Peskin (1981) support the exponential growth detec-
ted here. The EOLE data set showed exponential growth up to 1000km
with an e-folding time of 1.35 days, much larger than the values detected
here. However, their fit is retrieved by fitting the data over a much longer
period of time. The diffusivity times scales are in better accordance with
the renewed EOLE data set by LaCasce (2010). This examination provided
a three days exponential fit, in which the diffusivity time scale T was four
days, generally in line with the data sets at 12km at 60oNS. The EOLE bal-
loons floated close to the tropopause, which is not unreasonable to assume
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with the particles in this data set. A more complementary comparison with
this data set was given in Section 5.5.3 and showed remarkable similarities.
Lacorata et al. (2004) found an e-folding time of 0.5 days, however in an ex-
ponential regime just extending to 100km, by applying the method of FSLE
(see Chapter 4). Huber et al. (2001) detected an average e-folding time of
3.6 days, but that was limited to the tropical region.

Huber et al. (2001) concluded that the extratropics are characterized by
local dispersion in the inertial range, mainly ballistic growth, i.e. time
squared. However, their results rely on an assumption of a 10 days fit, far
from what is done here. The cubic growth detected in Figure 5.4a) is con-
sistent with Lacorata et al. (2004), which suggested a Richardson regime
beyond ∼ 100km by using the FSLE method on the EOLE data. Since this
growth occurs on one single location, it is not very conclusive. Addition-
ally, as pointed out above and even more important to note, the limited
period of isotropy and the wide range of scales averaged in this method
make the behavior after the exponential period hardly inferred. As em-
phasized in Chapter 3.5, relative dispersion is a limited descriptive tool to
detect separation growth at certain scales. Higher order moments of the
separation distribution, or the distribution itself, have to be considered to
provide more information on how relative dispersion behaves.

6.2 Kurtosis

The exponential growth of relative dispersion is likely to be reflected by the
kurtosis by the early time blow-up in Figure 5.7. It lasts for a few days in
accordance with the relative dispersion exponential fit. The sudden stop
and subsequent decaying period is possibly explained by a diffusive re-
gime increasingly affecting the total dispersion. Finally, it converges to a
constant value, which is reasonable to infer as a diffusive process. How-
ever, the zonal component value close to the Rayleigh raw kurtosis, i.e. 2,
and the meridional somewhat higher are opposite to what being expected.
A purely diffusive process for the meridional component and shear disper-
sion superimposed on diffusive growth for the zonal component is a more
expected situation (Bennett, 1987).

The noisy initial behavior in Figure 5.7 was also captured by LaCasce and
Bower (2000), though in the Atlantic Ocean. Er-El and Peskin (1981) also
calculated the kurtosis for their subtropical release, but solely after five
days, so the evolution is unknown. However, the value was 7.02 for the
meridional component. This indicated, at least, a heavily non-Gaussian
separation distribution and is in that sense consistent with the results here.
Overall, the kurtosis provided no additional information of the relative dis-
persion in the inertial range. However, the behavior in the long time-limit
is illustrated more clearly.



CHAPTER 6. DISCUSSION 59

6.3 Probability density functions

As expected, the separation distributions in Figure 5.10-5.12 indicate the
exponential growth suggested by the raw moments. However, due to the
property of distinguishing separations, the PDFs confirm that a non-local
regime is likely to extend beyond the time suggested by the moments. By
analyzing relative dispersion, that could only be assumed since an energy
injection scale at a few hundred kilometers is not expected in the atmo-
sphere (see Chapter 3.2).

There were no clear height differences observed within the 30o latitude
range by Figure 5.8. That is also confirmed by Table 5.5.2. However, sea-
sonal differences in the NH are reflected by a somewhat shorter diffusivity
time in the winter. A strong subtropical jet stream present in this season
(Hartmann, 1994) is likely to produce stronger mixing, reflected by faster
growth rate here. At 60oN, there are clearer indications of seasonal vari-
ations by Figure 5.9. However, more rapid dispersion in September at
12km than in January is unexpected, since the strong and meandering jet
stream in the winter season is more likely to cause stronger mixing. These
differences are not detected in SH at the same height. A possible explana-
tion of these observations could be a seasonal variation of the tropopause
height. At the latitude considered, there are likely to be more variations
in the tropopause height in NH than in SH (Hoinka, 1998). If so, the dis-
tribution in September would reflect tropospheric dispersion, while that
in January, as well as those at 60oS would exhibit stratospheric dispersion.
From Table 5.5.2, the diffusivity time scale in September NH is also quite
similar to all values at 6km at 60o, whose location definitely is below the
tropopause. Thus, the seasonal variations shown could possibly be due to
distinct dispersion regimes between the troposphere and the stratosphere.
However, the tropopause height and its seasonal variations need to be more
clarified. Since the dispersion is tested by only one time series during each
season, the differences could be random and not a general property.

As pointed out in Section 5.5.2, some of the diffusivity time scales obtained
from the relative dispersion fit had to be adjusted to fit more properly
with the Lundgren distribution. At 12km at 60oN in September, the value
needed to be adjusted by more than a day. To possibly explain why that
problem appears, both the relative dispersion fit and the adjusted PDF fit
are shown together with this data set in Figure 6.1.

While the relative dispersion picks a longer time range fit (left side), start-
ing slightly after a short initial period, the PDF fit belongs to that early
period. In this case, the relative dispersion fit indicates more rapid disper-
sion than it really is, shown by the PDF in Figure 5.11. This error indicates
that fitting the relative dispersion must be carefully done and might, in
some cases, operate only as guidance to an appropriate fit to the Lundgren
function. Generally, a test of slightly different fits than what obtained from
the dispersion should be done in all studies like this.
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Figure 6.1: Relative dispersion vs. time for particles deployed uniformly around
the latitude circle 60oN at the altitude 12km in September 2009.

After 25 days, the data PDFs fit to the Rayleigh distribution. However,
this prediction is also based on the isotropic assumption incorporated in
2-D turbulence theory (see Chapter 3.5.4). It is clear that the motion is far
from isotropic at these scales. However, as remarked in the discussion of
the kurtosis, it is likely that a diffusive process is characterizing both the
zonal and meridional component, but with shear dispersion superimposed
on the former (Bennett, 1987).

Summarized, the Richardson distribution does not fit properly at any time
for any of the data sets. This suggests that the cubic growth Lacorata et
al. (2004) inferred is hardly correct. It strengthens the results of Morel
and Larcheveque (1974) and Er-El and Peskin (1981), which suggested
exponential growth all over the mesoscale range up to 1000km. Er-El
and Peskin (1981) found this regime at both high and low latitudes of
the extratropics, which also supports the results here. Oceanic projects
(LaCasce and Ohlmann, 2003; Ollitrault et al., 2005; Koszalka et al., 2009,
e.g.) did also claim that sub-deformation relative dispersion growed
exponentially. Huber et al. (2001) are in disagreement since exponential
growth only was detected in the tropical region. However, the NH
dispersion seemed to be a subject to seasonal changes, with enhanced
stronger mixing in winter time. This thorough study also examined two
different isentropic surfaces, but no obvious deviations were detected.
It is also worth keeping in mind that the method Huber et al. (2001)
use, contains some other properties and objectives. Especially the way
dispersion is retrieved by a 10 days fit is substantially different. The
use of 72 clusters spread over the whole sphere yields a study on zonal
dependence in addition to the meridional. Since the particle clusters were
deployed every 12 hour during the boreal summer and winter, Huber et al.
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(2001) obtained more plausible seasonal and climatological characteristics.

6.4 The second-order structure function

Shown in Figure 5.16 and 5.17, a r2-dependence of the second-order struc-
ture function was universal at the smallest scales. A reason for the gradual
decrease of slope between the r2-range and the energy injection scale is
hardly suggested. However, the flattened shape around the energy input
scale is probably a sign of diffusive behavior. Based on other studies, it
is likely that the enstrophy range continues up to the deformation radius,
where a transition to a diffusive field occurs. Gage and Nastrom (1986) sug-
gested that the enstrophy range extended to wavelengths of' 2000km, i.e.
' 500km scale for the particle separations. Also Cho and Lindborg (2001)
detected an enstrophy cascade in the same range of scales. Thus, both are
in line with the results here.

The observed r2-dependence, indicating an enstrophy cascading inertial
range, supports the universal exponential growth in the isotropic range
lasting for the first three days (Chapter 3.4.2). There is no sign of a r2/3-
range, which would have suggested a local turbulence regime. Thus, with
the PDF results in mind, it could surely be argued for nonlocal dispersion
up to the deformation radius and hence that the Richardson dispersion in-
ferred by Lacorata et al. (2004) can be ruled out.

The more extended r2-range at 200mb than at 500mb is in line with Cho
and Lindborg (2001), which observed an even cleaner r2-range in the
stratosphere than in the troposphere. The tropopause as a dynamical
barrier will eventually create these two regimes. This is an interesting
observation, since the PDFs, except of in September, inferred slower
dispersion growth at 12km at 60oNS than at other locations (Figure 5.8 and
5.9). By (3.44) in Section 3.4.2, the time scale is inversally proportional
to the enstrophy dissipation rate. By applying the same dimensional
arguments as for the energy spectrum in Section 3.2, the structure function
is proportional to η. Thus, rapid growth rate, i.e. a short time scale, yields a
larger amplitude of the structure function. By assuming that the structure
functions actually exhibit an enstrophy range, this property is illustrated in
Figure 5.18, where 500hPa is plotted against 200hPa. Thus, the relatively
slow relative dispersion growth at the high alitude at 60oNS is reflected by
a relatively small amplitude of the structure function.

6.5 Error and uncertainties

The model data and the advecting wind field from ECMWF include a com-
plex system of various error and uncertainty sources. The interpretations
of the results against the assumptions made in 2-D turbulence theory also
need some attention. Here follows a short discussion on these issues.
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As emphasized in Chapter 2, there are several potential error sources in
the calculation of trajectories, some inherent in the model and other due
to uncertainty in the advecting wind field. All numerical models cause er-
rors growing in time, i.e. truncation errors. They arise from taking finite
number of iteration steps in the trajectory calculation, which causes initial
position errors to grow in time. Interpolation errors are made when the Eu-
lerian input wind field is interpolated into the model temporal and spatial
grid, i.e. instant the trajectory position. The velocity field itself is also sub-
ject to previous interpolation. Reanalysis data are a combination of model
forecast and observational data interpolated on an Eulerian grid. Since the
data are available only four times a day, pure forecast data are used at in-
termediate times to obtain a 3 hours temporal resolution. Forecast data are
less reliable than reanalysis and hence increase the uncertainty.

As pointed out in the previous sections, the isotropic assumption is of fun-
damental importance when analyzing the dispersion against 2-D turbu-
lence theory. Therefore, interpretations and statements have to be care-
fully done. In Section 5.1, it was shown that isotropy is a reasonable as-
sumption during the first three days. Another important aspect with this
study is the limited number of times, only two, at which dispersion has
been tested. Therefore, suggestions and conclusions of particularly sea-
sonal characteristics have to be carefully done. Additionally, there are un-
certainties regarding the accordance between the heights and the pressure
surfaces, were trajectories and the advecting field are evaluated, respect-
ively. Hence, interpretations of altitudinal differences by using the second-
order structure function are challenging.

Turbulence is described statistically and hence it needs to be analyzed
with caution. Especially in the analysis of relative dispersion, any specific
turbulence regime is hard to sort out. As observed in Section 5.3, the
exponential growth was modified after fairly short time and no growth
could be ruled out, also reflected by the large error bars in Figure 5.3.
This complicates the choice of β and T, used for the theoretical separation
distribution. Although the PDFs distinguish the separations, these are also
affected by larger scales after only short time. Nevertheless, this measure
gives a much more conclusive picture of the dispersion.



Chapter 7

Summary and conclusion

The main goal of this thesis was to study the characteristics of relative dis-
persion of passive tracers in the atmosphere. The Lagrangian transport
model FLEXPART was used to generate particle trajectories. To detect pos-
sible variations due to season, height and geographical location, several
runs were done; at four latitudes (600 and 300 in both hemispheres) at two
heights (6km and 12km) during two months (January and September 2009).
To study the dispersion, both relative dispersion itself and the probability
density function of the separations were analyzed. These measures were
presented in light of theoretical predictions, i.e. comparison with two tur-
bulence scenarios; the Richardson´s cubic law and Lin‘s exponential law.
The results were also compared with the data from the EOLE experiment
examined by Morel and Larcheveque (1974). In addition, the reanalysis
wind data, which advected the model "balloons", were used to calculate
the second-order structure function. This yields a necessary interpretation
tool to explain the dispersion behavior at each location.

Here follow some important concluding remarks of this thesis.

• Generally, the dispersion seems to be close to isotropic the first three
days after launch. However, there are some variations due to location
with generally more isotropic dispersion at the high latitudes. That
the separations at 30o are influenced by a stronger zonal wind field,
i.e the subtropical jet stream, could explain these observations. The
increasing anisotropic dispersion after three days put a limit on where
the inertial range theory can be applied on the relative dispersion.

• The relative dispersion of the balloons grows exponentially during
the first days. After that, it seems to obey a power law. Since
the variance of the particle separations increases rapidly in time,
relative dispersion becomes a time based average over a huge range
of separations. Then the detected power law growth is hardly
conclusive, any curve would equally well fit within the errors. The
structure functions do neither show any conclusive at those scales.
Thus, since the large scale dispersion is diffusive, indicated by the
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kurtosis and the PDF in the long time limit, the intermediate range
is likely to be an average of exponential growth at small scales and
diffusive growth at large scales. Overall, relative dispersion is a
limited measure in non-Gaussian distribution because of its lack of
capability to reflect the distribution alone.

• Generally, the method using probability density functions of pair sep-
arations supports the exponential growth of the relative dispersion
during the first days. The Lundgren PDF, which implies nonlocal dis-
persion, fits quite well to the data distribution, especially after short
time. However, the tendency of the Lundgren distribution to exceed
the data PDF at large separations shows the increasing diffusive influ-
ence from those scale with time. However, after four days, no other
function than the Lundgren PDF is near to fit the data distribution.
In the structure function, there were no signs of a Richardson regime
beyond the small scale r22-range. Then, these results suggest that the
power law growth inferred by Lacorata et al. (2004) and Huber et al.
(2001) can be ruled out. As Morel and Larcheveque (1974) and Er-El
and Peskin (1981) suggested, it is likely that the exponential range
extends up to the radius of deformation and hence dispersion is sug-
gested to be nonlocal.

• The diffusivity time scales suggest slower exponential growth rate
at 12km than at 6km at 60oNS. The exception is the dispersion
at 12km in NH September, which is more in line with that at
6km. One possible explanation of these observations is a seasonal
varying tropopause in NH, which caused the dispersion at 12km to
be affected by tropospheric dynamics in summer and stratospheric
dynamics in the winter. However, whether this behavior is random or
general is unclear. The seasonal variations of the tropopause are also
of high uncertainty. The time scales are in agreement with the studies
of Lacorata et al. (2004) below 100km and LaCasce (2010), especially
those at 12km at 60oNS, except of that in September NH.

• A EOLE data set renewed by (LaCasce, 2010) was shown to be
impressively equal to the separation distribution at 600S at 12km
in January. In addition to support the nonlocal dispersion inferred
by Morel and Larcheveque (1974), this comparison strengthens the
reliability of the model data set. So, the dynamical processes at the
mesoscale appear to be well described by FLEXPART.

• In light of the conclusions above, PDFs turn out to be a useful
tool both to detect and interpret relative dispersion. In contrast to
the separation variance, the full distribution makes it possible to
distinguish the dispersion at different scales and hence describe a
non-Gaussian PDF. Even under influence of shear dispersion and
diffusive, it was possible to infer a specific dispersion regime.
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• The structure functions calculated at 500hPa and 200hPa suggest
a r2-dependence below a scale of a few hundred kilometer. The
shape of the kinetic energy spectrum is consequently k−3 , i.e.
a weakly nonlocal enstrophy cascading inertial range. Generally,
the structure functions calculated by Cho and Lindborg (2001)
and the energy spectrum inferred by Nastrom and Gage (1984)
support the observations here. However, the spectra are leveling
off gradually towards the energy containing scale, of ambiguous
reasons. The flattened shape at the large scales probably suggests a
transition to a diffusive turbulence field. All these features support
exponential dispersion taken over by diffusive dispersion at the
energy containing scales, suggested by the PDFs. At 200mb, there
is a tendency of an extended spatial range of the nonlocal cascade,
which could be related to the slower exponential dispersion at 12km
at 60oNS. However, a more obvious correspondance is the somewhat
smaller amplitudes of the structure functions corresponding to
weaker relative dispersion.

The results of this thesis suggest that relative dispersion in the extratropics
is nonlocal, both in the troposphere and the stratosphere. The reason for
this is the observed enstrophy cascading range which dominates the meso-
scale turbulent flow. The diffusivity time scales are longer at the highest
altitude at 60oNS, which could be explained by distinct dynamical differ-
ences across the tropopause. However, to be confirmed, more emphasis on
stratospheric vs. tropospheric dispersion in future studies is needed. There
are also other suggestions for future research on this topic. The tropical
region, which were found to be characterized by exponential dispersion in
that study, could be examined by a similar kind of model as FLEXPART.
However, a problem might be the persistent convecting motion within the
tropical region resulting in 3-D rather than 2-D turbulence. Also the mixing
of particles in the storm tracks around 60oN is an important issue. Differ-
ences likely to be along the latitude line are averaged out in this thesis.
Thus, initializing particles at different spots could possibly explain more of
the characteristics due to the trough-ridge pattern. Also an extended exam-
ination on temporal differences is needed. This study only considers two
periods of time. Large scale dispersion is likely to be affected by long time
trends and low frequent variability of the atmospheric dynamics. Wind
field from a long period of years is available from ECMWF and could be
used to possibly detect climatological variations.

The use of a numerical transport model, in this case FLEXPART, to study
the dispersion characteristics in the 2-D turbulent atmosphere has proven
to be beneficial. The large number of particles provided in such an
experiment ensures stable statistics and more reliable results in that sense.
The consistence with the EOLE balloon data set also suggests FLEXPART
as a model that describes the physical processes at the mesoscale in a
satisfactorily way. Thus, more use of numerical models could extend the
understanding of 2-D turbulence. It is almost costless compared with big
balloon projects.
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