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Abstract 

Landslides pose a risk to human life around the world. Since most landslides are related to intense 

rainfall, understanding the link between rainfall intensities and landslide triggering has been given 

great effort, especially through landslide mitigation by early warning. This requires estimating critical 

rainfall values for landslide initiation. Only 5 % of fatalities related to natural disasters occur in highly 

developed countries, reflecting the necessity of reducing risk in developing countries. Assessing 

critical conditions for landslide initiation in developing countries may be restricted due to insufficient 

rain gauge coverage; a potential solution to this is the use of satellite precipitation estimates (SPE). 

These data provide rainfall data at almost global coverage, at high temporal and spatial resolution in 

near-real time, but high uncertainty is related to their ability to capture the spatial and temporal 

rainfall variations. 

 

This study is focused on the potential application of SPE data for assessment of critical rainfall values 

for initiation of landslides in areas with limited records of rain gauge and landslide data, using 

Bangladesh as a case study. An attempt was made for comparing TRMM based TMPA-RT rainfall 

estimates with a limited set of rain gauge data. The TMPA-RT product 3B42RT was applied for an 

initial study of the feasibility for applying SPE data in rainfall thresholds. Two multivariate techniques, 

classification tree analysis (CTA) and linear discriminant analysis (LDA), were tested. Scripts in Matlab 

(included as appendixes) were prepared both for capturing the satellite data from public servers and 

for performing the statistical analyses. These scripts can be reused in future studies that use these 

data sources and statistical methods for threshold assessment in other parts of the world. 

 

It was found a generally poor correlation between rain gauge and TMPA-RT data; conversely 

intensity-duration plots of high intensity landslide triggering events displayed similar patterns. 

Rainfall data from Bangladesh proved to be highly homogeneous, resulting in low threshold 

performance for both methods. It is suggested that further studies focus on high-intensity events 

only, this applied for both thresholds analyses and for application of SPE data.   
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1 INTRODUCTION 

1.1 Background 

1.1.1 General 

Landslides pose a threat to human life around the world. In the period 2002-2009, 201 landslide-

related disasters were reported by the International Federation of Red Cross (IFRC 2010b), resulting 

in 7905 casualties. More than 95 % of the reported disasters and fatalities were caused by landslides 

of hydrological origin. Petley et al. (2007) found that more than 90 % of the landslide fatalities in 

Nepal are due to rainfall induced landslides. These numbers state the importance of landslide related 

studies and that assessing triggering conditions related to intense rainfalls is of importance.  

In areas at high risk of landslides, mitigation measures are required to deal with the landslide threat. 

Mitigation of risk may be applied through appropriate physical measures like slope stabilization, 

lowering the probability (hazard) of landslide occurrence. In many landslide-prone areas such 

methods are however not feasible, e.g. if unstable slopes are too many or too expensive to stabilize. 

An alternative method for mitigation is early warning. By assessing and understanding the causes of 

landslide triggering, landslide events may potentially be predicted, and those exposed to the event 

can be warned and evacuated. Such systems are referred to as early warning systems (EWS).  

As most landslides are triggered by intense rainfall, understanding the rainfall conditions causing 

landslides is important. This aspect has been studied extensively the last few decades, trying to 

establish the optimal condition (a threshold) for describing when (and possibly where) a landslide is 

expected to occur (Lumb 1975, Caine 1980, Crozier 1999, Guzzetti et al. 2007, Tiranti and Rabuffetti 

2010). The analyses and methods applied for establishing a threshold have increased significantly the 

last years, including landslide susceptibility levels and applying advanced statistical methods (Jakob 

and Weatherly 2003, Santacana et al. 2003, Cepeda et al. 2009).  

 

1.1.2 Situation for developing countries  

The highly complex methods used to assess landslide susceptibility and establish hydro-

meteorological thresholds today cause a high demand of detailed data for analysis purposes. Ideally, 

this should be yielded by high-density rain gauge networks recording at high temporal resolution 

(hourly or more frequently), detailed maps of soil conditions, digital elevation maps, other slope 

data, etc. (Guzzetti et al. 2006, Baeza et al. 2010). Geographical information systems (GIS) methods 

are often applied. Such data are for many regions of the world not readily available and operational 

rain gauges may be sparse, usually providing only daily measurements. Records of natural hazard 

events may also be deficient, especially in developing countries, making good analyses even harder.  

Although accessibility of data is not the best in developing countries, study of natural hazards in 

these areas is of utmost importance. Studies show that developing countries are greatly affected by 

landslides, and Lacasse and Nadim (2009) found that natural disasters in highly developed countries 

stand for only 5 % of the causalities. Developing countries often have high population densities and 

problems related to poverty and housing situations; overcrowded poorly built houses in illegal 
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settlements on dangerous sites are common (Ekram and Khan 2008, Gov. Bangladesh 2010, IFRC 

2010b).  

Bangladesh is one of the countries facing the problems of illegal settlements and also illegal slope 

cutting (Ekram and Khan 2008, IRIN 2008). This is a problem in the eastern hilly regions of the 

country, and landslides are frequent. Bangladesh is situated by the Bay of Bengal experiencing 

tropical monsoon climate and frequent cyclones; mean annual precipitation above 3600 mm and 

daily rainfall exceeding 400 mm have been registered in some areas (Peel et al. 2007). In recent years 

landslides have caused more than 300 casualties, 127 of these during one single rainstorm event in 

2007. The region is sparsely covered by rain gauges, and due to annual high intensity storms 

triggering landslides, a better coverage would be an advantage. The recent fatal landslide events 

suggest the need for mitigation measures for landslides in Bangladesh. No rainfall thresholds for 

Bangladesh were found in the literature.  

 

1.1.3 Satellite precipitation estimates 

The use of satellites has increased rapidly over the last few decades. Satellite data has to become 

easily available, resulting in a wide range of applications. One area of application has been for 

hydrological studies where infrared and passive microwave techniques are used for estimating 

precipitation (Vicente et al. 1998, Kidd et al. 2003, Scofield and Kuligowski 2003, Huffman et al. 

2007). At present, these satellite precipitation estimates (SPE) provide almost full global coverage at 

high temporal and spatial resolution in almost real-time data. SPE data can hence provide 

precipitation estimates where ground based measurements are limited or absent. Many SPE 

products are freely available in digital files, providing an opportunity for low cost application of these 

data.  

 

 

1.2 Current thesis 
This study was based on the application of satellite precipitation estimates in non-instrumented 

areas, with the goal of estimating a regional rainfall threshold for landslide initiation in a study area. 

Bangladesh was chosen as a study area, as this is a region facing the problems addressed above.  

The thesis may be divided into two parts; one part with the objective to evaluate if satellite 

precipitation estimates (SPE) can be easily and successfully applied to a region without (or with only 

limited amounts of) rainfall data for validation. The second part would aim to assess if critical rainfall 

values for landslide initiation in the region of Bangladesh can be established using a SPE product.  

 

1.2.1 Validation of SPE products 

For the first part a few selected SPE products were to be compared with only a limited amount of 

rain gauge data. This included developing a method for accessing the data using easily available 

computer processing power and software, and Matlab was chosen for the task. The first goal was to 

download satellite estimated rainfall products and create a series of daily rainfall corresponding to 
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the position of a rain gauge and subsequently compare the SPE rainfall series to the rainfall 

measured by the rain gauge. Several aspects of the rainfall data were explored: Seasonal variation, 

correlation of SPE and gauge data, ability to estimate landslide triggering storms, etc.  

This part of the study would address uncertainty related to satellite data, and hopefully also reflect 

the challenges related to application of SPE without the possibility of high quality data validation for 

the assessed area. Due to the limited amount of data, it was expected large uncertainty in the data, 

and the goal was to indicate the applicability of such data given these limitations.   

 

1.2.2 Establishing a threshold 

The second part of the thesis was to assess the feasibility for establishing a rainfall threshold for the 

region of Bangladesh using SPE data. Such an application of SPE data was only found for a global 

scale threshold (Hong et al. 2006), and uncertainty was naturally expected for this part as well. 

Applicability and uncertainty were to be examined. Common statistical methods were applied in 

analyses aimed to establish the threshold(s), using the same software and SPE data as for the 

validation part. The statistical methods ability to establish reliable threshold conditions was 

evaluated.  

 

1.2.3 Matlab  

The computational programming language and software Matlab and its Statistical Toolbox where 

used to create scripts for capturing of data from public FTP-servers and for handling and performing 

statistical analysis of the data. The Matlab-scripts produced are included in appendix C, and can be 

reused in future studies that use these data sources and statistical methods for threshold assessment 

in other parts of the world. 

 

 

1.3 Limitations 
Limitations were especially related to the uncertainty of SPE data. Uncertainty exists in these data 

events when adjusted for local conditions using highly dense rain gauge networks (Shen et al. 2010, 

Sohn et al. 2010). The resolution of SPE data also limits their ability to pick up small scale temporal 

and spatial rainfall variations. Temporal scale limitations of the SPE products was not an issue for this 

study, as the rain gauge data applied for this study were of daily resolution. 

The available rain gauge and landslide data for Bangladesh were sources of high uncertainties both 

considering validation of data and for establishing thresholds, due to the limited numbers of gauges 

and the short length of rainfall series available. The one rain gauge series available for a considerable 

length of time, ended at the point where a new version of the SPE product applied in this thesis 

became functional. Because of this, the most resent and best performing products performance 

could not be validated for Bangladesh. 
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Only few SPE products were applied in this study, other products may perform better for the studied 

area and improve the results. The number of applied SPE products was limited by the time 

consuming process of developing scripts for handling the relatively complex data sets representing 

the SPE products; as most products are developed by different institutions, the file structures are 

different for different products. Additionally the processing of the global data sets is also time-

consuming.  

 

1.4 Access to data 
The initial landslide and rainfall data used in this thesis were provided by Mr. Reshad Ekram, director 

of the Geological Survey of Bangladesh) and the Asian Disaster and Preparedness Centre (ADPC) in 

collaboration with the Norwegian Geotechnical Institute (NGI). Some of these data are presented in 

appendix A. Requests regarding access to these data may be addressed to Mr. Reshad Ekram 

(reshadekram@gmail.com). 
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2 RAINFALL INDUCED LANDSLIDES 
Landslides represent a major threat to human lives in most mountainous and hilly regions of the 

world. According to statistics from The Centre of Research on the Epidemiology of Disasters (CRED) 

landslides are responsible for at least 17 % of the world’s fatalities due to natural hazards(Lacasse et 

al. 2010). This figure is probably underestimated as landslides may occur as a secondary event e.g. 

when triggered by another natural hazard, such as earthquakes. In these cases landslides fatalities 

are often accounted to the main triggering event, not to the landslide(s) (Guzzetti et al. 2007, Lacasse 

et al. 2010). Landslides may also pose an economical risk as properties, roads and other 

infrastructure and supply lines may be destroyed. Increasing population and urbanization lead to 

increased landslide vulnerability; as the population becomes higher, urbanisation expansion reaches 

unsafe areas, as these may be more readily available (Highland and Bobrowsky 2008).  

Intense rainfall is probably the most important triggering mechanism of fatal landslides, and 

represents the main focus of the literature study. Petley et al. (2007) accounts 92 % of Nepal’s 

landslide fatalities to intense rainfall, SAARC (2007) reports 89.2 % for 2007 worldwide landslide 

fatalities. Intense rainfall may trigger most slide- and flow type landslides, some which may cause 

severe impact on people and infrastructure; e.g. debris flows. The high impact of debris flows is due 

to the high velocity and high density resulting in severe destruction, and the high mobility and long 

runout resulting in impact over large areas.  

 

2.1 Landslide types and classification 
 

2.1.1 Classification 

People from different areas of work, e.g. geologists, hydrologists, engineers, may work together 

when assessing landslides. As different terms tend to be used in different disciplines, the need of a 

universal classification arrives. Varnes (1978) classified landslides based on type of movement and 

type of material. He proposed the use of three different material types, rock, earth and debris, where 

earth is used for material of grain size sand or finer, while debris were used for coarser material. The 

types of movement in Varnes’ classification were fall, topple, slide, spread and flow. The 

classification of Varnes (1978) has been widely adopted, at least in the English speaking part of 

landslide research. Hutchinson (1988) represent another recognised classification. The classifications 

of Cruden and Varnes (1996) and Highland and Bobrowsky (2008) is based on Varnes (1978), but with 

some convergence between the two classification branches of Varnes and Hutchinson.   

There are many different landslide types classified, and many different triggering factors may apply 

to the different types. As the focus of this theoretical part is rainfall induced landslides, only the 

types most commonly related to rainfall triggering will be included. The following landslide types will 

be sorted by movement type, and there are generally two types most generally known for triggering 

by rainfall; slides and flows. 
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2.1.2 Slides 

A slide is the down slope movement of rock or soil mass occurring on a surface of rupture or on a 

relatively thin zone of intense shear strain (Highland and Bobrowsky 2008). 

 Rotational slides: In rotational slides the surface of rupture is curved in a circular or a 

spoon-like shape. This kind of slides occurs in homogeneous material and may be relatively 

deep. Rotational slides may be caused by instant rainfall, a rise of groundwater level or a 

combination of the two. Rise of groundwater is caused by prolonged rainfall or snowmelt. 

Undercutting the foot of a slope by water erosion or human activity is also common factors 

in causing this kind of landslides. 

 

 Translational slides: In translational slides the surface of rupture is planar or undulating. 

The depth of the failure surface is relatively shallow compared to rotational slides. 

Translational slides commonly fail along geological discontinuities or in the rock-soil contact. 

The primary failure mechanism is intense rainfall, groundwater rise, snowmelt, flooding or 

other natural or human causes for inundation of water. These slides may disintegrate into 

debris flows at higher velocities.  

 

2.1.3 Flows 

Flows are spatially continuous movements of viscous behaviour where the shear surfaces are short 

lived and usually not preserved. The lower boundary of the flow may have differential movements or 

distributed shear through a thicker part of the bottom material. There is often a gradation between 

slides and flows depending on water content and evolution of the movement (Highland and 

Bobrowsky 2008).  

 Debris flows: Debris flows are rapid mass movements of soil and rock combined with very 

high water content. The flow may be of low viscosity, almost like water, or thick in sediments 

and highly viscous. In some literature they may be referred to as mudslides because of the 

high content of fine grains. Debris flows is commonly generated in easily eroded material, 

due to heavy rainfall or rapid snowmelt causing surface erosion. When this material adds up 

in streams and channels, possible from large areas, a debris flow is formed.  The debris flows 

may have very high water content, and are often limited to gullies and canyons. Some debris 

flows are thus mistaken for floods. Wild fires may increase the susceptibility to debris flows, 

as the erodibility of the soils increase (Turner and Schuster 1996).  

Debris flows may also develop from nearly saturated translational or rotational slides if they 

gain water or disintegrates when accelerating. It is also found that debris flows may develop 

from sudden and rapid collapse of highly porous saturated material in steep slopes, due to a 

undrained failure mechanism of static liquefaction (Olivares and Damian 2007). Other causes 

of such flow can be dynamic liquefaction or impact collapse (Cruden and Varnes 1996).  

Natural dam breach may create debris flows, as the dam material may mix with the water 

flow and the rapid flow may erode the surface downstream increasing its content of granular 

material (Breien et al. 2008). 
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 Lahars: Lahars are debris flows that originate from the slopes of a volcano. They occur as 

volcanic airfall deposits, as tephra become mobilised. As for other debris flows, lahars may 

have various content of water and debris, resulting in differences in viscosity. Lahars can 

extend over very large areas (up to hundreds of square kilometres). Water is the primary 

trigger mechanism of lahars; it can originate from rainfall, crater lakes, and condensation of 

erupted steam or rapid snowmelt from volcanic venting. 

Lahars may be released almost instantly when subjected to heavy rainfall, in the matter of 

tens of minutes. The intensity required to initiate a lahar varies with slope conditions; 

volcanic activity may result in accumulation of airfall deposits. These loose deposits are easily 

eroded so lower rainfall intensity is required in triggering of lahars (van Westen and Daag 

2005).   

 Debris avalanches: These flows may be larger flows that may be extremely rapid. They can 

involve as much as several tens of millions cubic meters of mass, reach velocities close to 100 

m/s and a run-out of several kilometres from the source area. These avalanche occurs when 

an unstable slope collapse and the material disintegrates into a rapid flow. The slope 

instability can be created e.g. by weathering in steep slopes, or by sub-surface springs in 

karst environments.  Slide type landslides and debris avalanches may transform into a debris 

avalanche if they disintegrates and gain velocity. 

 

 Earthflows: As the term indicates this type of landslide occurs in fine grained material 

(earth), commonly clay and silt. It may also occur in clay-bearing strongly weathered 

bedrock. The movement of such flows is plastic or viscous with strong internal deformation. 

The rate of movement may be slow (creep) to very rapid, depending on material properties 

and water saturation. The depth of failure may be shallow or up to several tens of meters 

deep. Head scarp retrogression is common for these flows, causing the size of the affected 

area to increase with time. Earthflows are mainly caused by water, intense rainfall or 

snowmelt, rapid lowering of groundwater level, stream erosion in bottom of slope. Other 

causes related to initiation of earthflows may be ground vibrations and excessive loading of 

slope, both natural and anthropogenic, or other human activities changing the slope 

properties.   

 

A special kind of earthflow occurs in quick clay, only present in subaerial marine clays in 

North America and Scandinavia. These events are often very rapid and catastrophic, as the 

material loses all friction and suddenly liquefies. Earthflows in quick clay may destroy large 

areas and flow for several kilometres.  

 

 Slow earthflows (creep): This kind of flow may be extremely slow. The movement is 

caused by internal shear stress insufficient to cause failure and result in internal deformation 

of the moving mass.  Earthflows may be seasonal, continuous or progressive, where the 

progressive results in a failure, it can transform into other type of landslide. The velocity of 

slow earthflows is usually less than 1 m per decade, and will thus probably not be perceived 

as a landslide by most people. 
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2.2 Triggering mechanisms 
 

2.2.1 Pore pressure and groundwater levels 

Storms producing intense rainfall for a short period of time, or medium intensity rainfall a longer 

period of time (e.g. several days), are known to cause a large amount of landslides (Turner and 

Schuster 1996). The triggering of landslides succeeding heavy rainfall is caused by infiltration of water 

into the ground. The infiltration of water reduces soil suction (negative pore pressure) in unsaturated 

soil. High rainfall intensities and corresponding infiltration rates may even result in positive pore 

pressures (Iverson 2000, Tsaparas et al. 2002, Damiano and Olivares 2010). Increasing pore pressures 

reduce the effective soil strength, and a failure may occur. During intense rainfalls the infiltration of 

water will appear as a wetting front, or temporary perched aquifer, percolating into the 

ground(Wieczorek and Glade 2005). If the pore pressures created by this wetting front are 

insufficient to create failure, water will migrate down and add up to the groundwater. In thin soils 

the whole soil cover may become almost fully saturated for long duration and high intensity rainfall 

(Damiano and Olivares 2010).  

Low intensity rainfall usually does not result in pore pressures high enough to create failure in 

shallow soils (Wieczorek and Glade 2005). On the other hand, prolonged infiltration will increase 

groundwater levels. Higher ground water levels increase the water pressure down through the soil. 

Increased pore pressure and corresponding lowering of effective strength may be crucial in deeper 

sediments; a deep seated failure may occur and trigger a landslide. 

The intensity and duration of rainfall required to trigger a landslide depends on the soil properties 

like porosity, permeability and the total thickness of the soil. Layering may also be important if there 

are different properties in the different layers; as transition from higher to lower permeability may 

create a longer lasting temporary perched groundwater above the low permeability layer.  

As triggering of landslides are generally based on build-up of pore water pressures, a landslide may 

not necessarily be triggered during a storm, but shortly after; this can be days but even month 

(Cepeda 2009).  

 

2.2.2 Instant rainfall 

Because of this dependency of soil properties to rainfall duration and rainfall intensity, it is useful to 

discriminate between instant and antecedent precipitation. Since deep seated failures are more 

dependent on antecedent precipitation than instant precipitation, it is also useful to separate 

between shallow and deep landslides. Rainfall induced shallow landslides include shallow 

translational slides, debris flows, lahars and shallow earth flows. Deep seated landslides dependent 

on antecedent rainfall will then be deeper translational slides, rotational slides and deeper earth 

flows. Debris avalanches and slow earthflows are generally not caused by rainfall.  

 

Short duration high intensity rainfalls are a recognized cause of shallow landslides. Landslide events 

are known to occur in the relatively near future after such an instant rainfall. Shallow landslides are 
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often generated in steep slopes of soil or weathered rock during the most intense part of a storm. In 

the San Francisco Bay area in 1982, a 32 hours long intense rainstorm released 18.000 predominantly 

shallow landslides in soil and weathered rock (Turner and Schuster 1996). Loose and weak soils are 

especially susceptible to shallow landslides, as the soil may get eroded by surface water or fail due to 

increased pore pressures. Storms of very high intensity and short duration (e.g. 1 hour) may create 

such high surface runoffs and result in erosion and possible generation of a debris flows (Turner and 

Schuster 1996). Instant rainfalls of very high intensity will often not create sufficiently high pore 

pressures to initiate a landslide if the duration is short; the result may will only be a small water front 

migrating down the soil profile and result in a small increase in the groundwater level (Wieczorek and 

Glade 2005).  

Some soil properties may also allow rainfall from intense storms to percolate quickly into the soil, 

resulting in fast saturation and rapid rise in groundwater levels.  Temporary perched groundwater 

and corresponding high pore pressures may result in landslide triggering. High groundwater levels 

and almost full saturation of soils, even in steep slopes, may be reached. One such example is 

presented by Olivares and Damian (2007) from steep slope pyroclastic airfall deposits in Italy. 

Another example is from a study from New Zealand where no correlation where found between 

landslide initiation and rainfall duration longer than 2 days. The ground in the area consisted of 

coarse grained soils on volcanic ash, with shallow rooted vegetation; such conditions allow for rapid 

infiltration (Wieczorek and Glade 2005).  

 

2.2.3 Antecedent precipitation 

Instant rainfall alone is usually not enough to cause a landslide; triggering is also dependent on the 

antecedent rainfall i.e. groundwater and soil saturation conditions (Turner and Schuster 1996). The 

pre-storm rainfall conditions are thus important to identify the amounts of rainfall needed to trigger 

landslides. Wieczorek (1987) and Wieczorek and Sarmiento (1988) identified this significance 

analysing the antecedent rainfall  preceding rainstorms causing debris flows  in Northern California. It 

was found that antecedent rainfall were significantly higher for high intensity storms triggering 

debris flows, than for the storms not triggering debris flows. Storms with lower antecedent rainfall 

did not produce any debris flows, even with rainfall intensities higher than for the debris flow 

triggering storms. Storms of lower intensity did not result in any debris flows regardless of the 

amount of antecedent precipitation (Wieczorek and Glade 2005).   

The antecedent rainfalls contribution to the triggering of debris flows is widely recognized, but 

studies do not agree upon the time period significant for establishing the critical pre storm 

conditions. Time periods ranging from 2 days to more than 2 week has been reported. This may be 

explained by seasonal variations affecting temperature and rainfall, i.e. affecting evapotranspiration. 

In colder periods the ground will stay saturated for a longer period of time after a rainfall, compared 

to warmer periods; this may have a significant effect on the amount of antecedent rainfall needed to 

cause a landslide. Additionally the time of year of occurrence of rainstorms may differ among climate 

regions. The significance of antecedent rainfall in an area may thus depend on both season and the 

climate region (Wieczorek and Glade 2005). 
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2.2.4 Other causes related to precipitation 

Infiltration of water to a slope may also have other sources than rainfall. Additional sources of water 

infiltration may decrease the significance of instant and antecedent precipitation to triggering of 

landslides.  

 Snowmelt: Snowmelt is an important source of water in areas seasonally covered by snow; 

this may also apply to high altitude areas in warmer regions. Rapid melting of a snowpack 

due to sudden temperature increase is an important factor for supply of water to a slope, 

especially as increased water level as snowmelt may occur at high rates over longer periods 

of time. Rapid melting of snow from volcanoes is one of the factors causing Lahars. Snowmelt 

may also be a result of rainfall on the snowpack and thus result in additional water to the 

measured precipitation (Turner and Schuster 1996).  

 Water-level changes: Sudden lowering of the water level, such as in a river or in the sea by 
tidal changes, may result in destabilization of adjacent slopes. If the water level drops fast 
and the corresponding change in the slopes groundwater level is slow, this may create slope 
instability and increased shear in the soil. An increase in slope groundwater levels by 
prolonged water infiltration may cause the same kind of instability (Turner and Schuster 
1996). This kind of water level changes favour deep seated failures (Iverson 2000). Thick 
uniform layers of soil or weathered rock are especially susceptible, and earthflows and 
rotational slides are typical results. (Turner and Schuster 1996). Increase in groundwater 
level can also accelerate this kind of landslides of slow velocity, as in the Super-Sauze 
earthflow (Malet et al. 2003).  

 

 Flooding: Flooding and landslides are closely correlated, since both are related to rainfall (or 

snowmelt). Floods are a secondary factor of rainfall as a result of increased surface- and 

groundwater-runoff from intense and prolonged rainstorms. Flooding may result in 

landslides due to erosion at the foot of adjacent slopes. Erosion of large volumes of soil from 

slopes and river banks may result in high amount of debris in the water flow and successive 

debris flows. Small steep channels are especially susceptible to develop debris flows 

(Highland and Bobrowsky 2008). 

Flooding from dam breaches may result in high erosion of soil and bedrock because of high 

intensity turbulent currents of water. For example, a glacial lake outburst in Norway eroded 

material along its path increasing the volume of debris with a factor of 10 from the dam 

breach to deposition (Breien et al. 2008). 

 

2.2.5 Other causes increasing the occurrence of landslides 

The landslide susceptibility of an area may change due to natural or human influence. Usually such 

an influence increase the landslide susceptibility with successive higher landslide occurrence, but 

severe events triggering  great numbers of landslides may also reduce the landslide susceptibility for 

successive time periods:. 

 Wild fires: In addition to the loss of vegetation, wild fires may create a water repellent soil 

layer parallel to the surface. This results in surface flow during rainfall events that can erode 

loose grains of soil and other loose material at the surface. As all material carried by water 
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tend to gather in ravines channels and rivers debris flows may develop (Turner and Schuster 

1996).  

 

 Volcanic activity: Accumulation of loose volcanic airfall deposits from volcanic activity 

increases slopes susceptibility to erosion and debris flows. A study of lahars by van Westen 

and Daag (2005) illustrates a poor correlation of intensity-duration rainfall thresholds  for 

release of lahars. This was explained by the spatial and temporal variations in slope 

conditions due to deposition of new loose tephra deposits in the studied area. Other sources 

of water related to volcanic activity may increase the soil saturation prior to, or 

simultaneously to a rainfall event. Sources of water related to volcanic activity are given in 

the description of lahars.  

 

 Earthquakes: Strong earthquakes are a known trigger of many types of landslides; rock falls, 

soil slides and rock slides in steep slopes and e.g. earth avalanches on gentler slopes. 

Earthquakes are also known for its ability to liquefy loose, saturated, cohesionless soil. 

Landslides commonly occur by this process in low to moderate slopes, by the temporarily 

increased pore water pressures and decreased soil strength created by the ground shaking. 

Since saturation is one of the factors determining a soil susceptibility to earthquake induced 

liquefaction, rainfall preceding the earthquake event is of importance. High antecedent 

precipitation and i.e. high water content in the ground will increase the risk of landslides 

triggered by an earthquake. Timing of earthquake to climatic influence is thus important 

(Turner and Schuster 1996).  

Wieczorek and Glade (2005) point out that this climatic influence on earthquake-triggered 

landslide may be demonstrated by a comparison of events in the same region.  A comparison 

of two events in the area of San Francisco indicate the importance; one event with 1-, 3-, and 

6- month antecedent rainfall 50-100 % above the normal resulted many deep seated failures 

and debris flows, the other event triggered many shallow events but no debris flows.   

 Human activity: There are many factors of human activity that may increase the possible 

release of a landslide. Slopes may become destabilized by excessive loading of the slope or 

by undercutting of the slope foot, resulting in instability by oversteepening of the slope. 

Drainage patterns may be disturbed or changed e.g. by building roads (Fiorillo et al. 2001, 

Guadagno et al. 2003). Removal of vegetation resulting in increased erosion and change in 

infiltration. Introduction of more water to a slope through irrigation or leaking water pipes 

are other possibilities (Highland and Bobrowsky 2008).  
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3 RAINFALL THRESHOLDS 
A threshold defines a minimum value or condition on which exceeded an event is likely to occur. For 

rainfall-induces landslides the threshold condition may be rainfall, soil moisture or other hydrological 

conditions, resulting in one or several landslides. Thresholds can be defined by either as physically- or 

empirically-based models. Caine (1980) presented the concept of rainfall thresholds, using a rainfall 

intensity-duration (I-D) relationship to assess the rainfall needed to trigger shallow landslides and 

debris flows on global scale. Caine (1980) used 73 different landslide triggering storm events to 

define the empirical threshold with the general form  

1                (1) 

 

where I am the rainfall intensity and D is the rainfall duration in hours. Later rainfall thresholds have 

been widely adopted; the three last decades numerous rainfall thresholds have been presented both 

at local, regional and global scale – different empirical methods and equations has been proposed 

(Guzzetti et al. 2007).  

Description of rainfall thresholds are generally based on Guzzetti et al. (2007). 

 

3.1 Physically based thresholds 
Physically-based models use the concept of slope stability in models for an extended area – 

traditionally single slope models have been used. For good predictability of slope failures the models 

have to consider and include the spatial and temporal variability in the soil conditions.  Processes-

based infiltration models and rainfall patterns are used to predict slope stability and the soil 

conditions needed for develop a slope failure. Two different physically-based threshold models have 

been used; The “leaky barrel”-model (Wilson 1989) and the antecedent soil water status (ASWS) 

model (e.g. Glade et al. 2000). The leaky barrel-model use numerical modelling on the simple 

concept of a leaky barrel which receive water at one rate and loose water at another rate. ASWS is a 

simple conceptual water balance model for daily estimation of soil moisture conditions. The receiving 

rate is a combination of instant and antecedent precipitation and the “leakage”-function is a 

drainage function based on storm discharge hydrographs. Both models have been used successfully 

to predict shallow landslides. 

As physically-based models include the spatial and temporal variability in soil properties and rainfall 

patterns, they should theoretically be able to predict both the time and location for a landslide. 

These are good conditions for incorporation of physically-based models in early warning systems, but 

there are limitations. The physically-based models coupled with information like soil properties and 

land-use may be applied in GIT-systems. There is though limitation using these models:  To be able to 

make good landslide forecasts the models require high detailed soil, geology and surface information 

of high spatial resolution. This kind of information is hard to collect over larger areas, suggesting that 

these models are best suited at local scale. The predictability of the models also depends on the 

spatial and temporal resolution of precipitation data. To increase predictability, the physical-based 

models are calibrated against landslide event with good corresponding precipitation data and known 
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location and time. Because of the uncertainty of soil conditions the physically-based models are less 

efficient for deep seated slides (Guzzetti et al. 2007).  

 

3.2 Empirically based thresholds 
Empirically-based models define thresholds for landslide initiation by the study of rainfall events that 

have already resulted in landslides. Physical conditions like slope, soil properties, and 

evapotranspiration are not considered. For different sets of conditions, the amount of rainfall 

needed to trigger a landslide will vary; thus is the homogeneity of the area assessed with an 

empirically based model important. The advantage not considering the ground conditions is 

avoidance of the need of high detailed soil condition and property data. As for physically-based 

thresholds the quality of rainfall data is important, as rainfall rates may have high spatial and 

temporal variability. The position of a rainfall measurement compared to a triggered landslide is 

important for the reliability of the rainfall data. Empirically-based thresholds can, as the physically-

based thresholds, be used in landslide early warning systems.  

Guzzetti et al. (2007) suggest that empirical thresholds can be grouped in three categories: (a) 

thresholds combining precipitation measurements from specific rainfall events, (b) thresholds that 

consider antecedent conditions, and (c) other thresholds, including hydrological thresholds. 

Properties of the different groups and comparison of the published thresholds of each group will be 

reviewed later. 

 

3.2.1 Best fit of empirical thresholds 

Empirical thresholds are usually visualised as a line separating the triggering conditions from the non-

triggering conditions (Guzzetti et al. 2007). The reliability of this line depends on the type of data 

used to define the thresholds. Generally three different kinds of data may be used:  

(1) inventory of landslide triggering rainfall events, as used by Caine (1980) 

(2)  inventory only of non-triggering rainfall events 

(3)  inventories using both triggering and non-triggering events, e.g. by Giannecchini  (2005). 

For the use of (1), the threshold will give the lowest value known to trigger in landslides in the area 

studied. Threshold of type (2) give the highest value where landslides did not occur. (3) include both 

triggering and non-triggering events, and often show that lower triggering events may have lower 

values than the highest non-triggering events – referred to as false negatives and false positives. This 

indicates the inadequacy of (1) and (2), but if available data only enable use of type (1) or (2) 

thresholds, these thresholds are better than not having thresholds at all. The thresholds will still 

indicate what kind of rainfall may trigger landslides in the current area. 

As empirically-based thresholds generally do not account for properties such as soil and climate 

conditions, the area used for defining the threshold should be relatively homogeneous. The use of 

type (3) thresholds can indirectly account for different conditions by introducing different 

susceptibility levels for combination of different soil, climate and other conditions (Cepeda et al. 

2010). 
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3.2.2 Classification of thresholds 

The empirically-based thresholds represent a large group of rainfall thresholds; more than 100 

thresholds of different geographical extent have been published. In a review of all rainfall thresholds 

published until 2005, Guzzetti et al. (2007) reveal that no unique set of measurements exist to 

characterise rainfall conditions for triggering of landslides. Guzzetti et al. (2007) point out that the 

definition of rainfall intensity is a key factor for the empirical studies, especially for rainfall of longer 

durations. They further stress that peaks of rainfall intensity are often important for triggering of 

shallow rainfalls; this may be recorded by “instantaneous” measure of rainfall rate. This correlates 

with the influence of rainfall and water infiltration on soil properties and triggering conditions, as 

explained in section 2.2.1. If rainfall intensity measurements are averaged over a longer period of 

time the “peaks” will disappear from the data. The difference between short and long duration 

rainfall (instant and antecedent rainfall) is thus very important (Guzzetti et al. 2007). Many different 

rainfall measurements have been used for empirical rainfall thresholds: Rainfall event duration, daily 

rainfall, critical hourly rainfall and antecedent rainfall to mention some. A complete list with 

explanation of the different variables may be found in Guzzetti et al. (2007, 2008). 

Rainfall thresholds may be classified according to the geographical extent of the area they have been 

defined for: 

 Global thresholds: Global thresholds, as first proposed by Caine (1980) and lately updated 

by Guzzetti et al. (2008), try to define a worldwide minimum level at wish landslides do not 

occur, regardless of geology, soil cover, climate conditions, etc. Local or regional rainfall 

patterns or historical rainfall data may be used. Lately the use of rainfall estimates from 

remote sensing techniques, e.g. satellite based, has become an option (Shen et al. 2010). 

  Regional thresholds: These are considered for areas at the size of a few to several 

thousands of km³. Regional thresholds are considered for areas of similar climatic, 

physiographical, and meteorological and soil characteristics. As long as the characteristics of 

the area are approximately the same, defined thresholds may be suitable for an early 

warning system. Rainfall can be based on quantitative rainfall measurements, estimates or 

forecasts.  

 Local thresholds: The local thresholds are defined for areas extending from some few to 

some hundreds of km³, and consider local climatic regimes and geomorphological settings. 

Local thresholds may even be applicable for single landslides or small groups of landslides.  

 

3.2.3 Thresholds using event rainfall measurements 

The empirically-based rainfall thresholds that use event rainfall measurements use single or multiple 

landslide triggering (or non-triggering) events. Intensity-Duration thresholds (as used by Caine 

(1980)) are the most frequently used type of threshold, but others have also been used. Including all 

used types, the event rainfall thresholds may be subdivided into: (a) intensity-duration (ID) 

thresholds, (b) thresholds based on total event rainfall (E), (c) rainfall event-duration (ED) thresholds, 

and (d) rainfall event intensity (EI) thresholds. 
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Except from the E-thresholds, all thresholds using rainfall measurements are defined generally for 

shallow landslides or debris flows, including some few for lahars. 

 ID thresholds: The equation of the ID-thresholds proposed so far, presented by Guzzetti et 

al. ((2007), has the general form 

2 

 

where I is (mean) rainfall intensity, c ≥0, D is rainfall duration, α and β are parameters. For 

most of the ID thresholds proposed so far c = 0, resulting in a simple power law function for 

equation similar to eq. (1). The duration (D) rage from 1 to 100 hours for most thresholds, 

and the intensities (I) from 1 to 200 mm/h. 

 

Comparison of all ID thresholds reveals some interesting characteristics (Guzzetti et al. 2007): 

the local thresholds are slightly higher than the regional thresholds, and the regional 

thresholds slightly higher than the global. Guzzetti et al. (2007) attribute this to the different 

geographical scales and the sampling resolution. At larger scales the observational data is 

often acquired by regional averaging and often have lower sampling resolution. In these 

processes some intensity peaks may disappear from the data. Thus higher sampling 

resolution results in higher, and probably more realistic (Guzzetti et al. 2007), rainfall 

intensities for release of landslides. Differences have also been discovered for regional and 

local thresholds in same and similar areas. This may be due to differences in properties like 

geology and soil characteristics, variability in rainfall conditions or differences in the 

completeness of the data used. 

 

Thus are the local thresholds generally providing the most reliable ID-thresholds for landslide 

initiation - followed by the regional thresholds. There are still limitations; the models cannot 

easily be exported from one area to another because of dissimilarities like meteorological 

conditions (Jakob and Weatherly 2003). Morphological and lithological differences make 

exporting even harder. Limitations like this are expected as e.g. infiltration rates depend on 

soil properties and soil cover, and local rainfall on meteorological conditions.  

 

Solving the problem of extraction of thresholds from one area to another has been 

attempted by normalisation of rainfall data. Two climatic indexes for normalisation have 

been introduced; mean annual precipitation (MAP) and the rainy day normal (RDN) (Wilson 

1997). Significant differences still remain after normalisation of data. The rainy day normal is 

established dividing the MAP by the average number of rainy days (RDs).  

 

 E-thresholds: Some authors have tried to establish empirical rainfall thresholds based on 

the total amount of rainfall occurring during one rainfall event (E). Different rainfall variables 

have been used (Guzzetti et al. 2007). One of the variable used are mean annual 

precipitation (MAP), and thresholds based on a storm events total amount of rainfall in 

percentage of the MAP. Govi and Sorzana (1980) found that a higher amount of rainfall were 

needed to trigger landslides in areas with high MAP, compared with areas of low MAP. This 

indicates that slopes “adjust” to the “normal” rainfall conditions in the area situated. Other 

           (2) 
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conditions like geology and soil properties also change from one area to another, explaining 

the difficulties with transferring thresholds with the help of MAP-normalisation. 

 

 ED-thresholds: The rainfall event-duration thresholds link the rainfall event duration to the 

cumulative event precipitation, including the final critical rainfall. Normalised variables have 

been applied to some ED-thresholds. Most published ED-thresholds are comparable 

regarding slope trends, but the cumulative event rainfall differs by a factor of 2. This may be 

explained by the difference between the published thresholds, e.g. in geographical extent 

(locally to globally) and physiographic conditions.  

 

 EI-thresholds: The event intensity thresholds link the event rainfall (E) to the average 

rainfall intensity (I); this then gives the event intensity (EI). Normalised rainfall values have 

also been applied for EI-thresholds. Different sets of data have been used: e.g. hourly rainfall 

replacing event rainfall. EI-thresholds have also been determined using only the final stage of 

rainstorms preceding the landslide trigger.  

 

3.2.4 Thresholds that consider antecedent conditions 

As explained in section 2.2.1 groundwater level and soil moisture are factors that predispose slope 

failure and triggering of landslides. As antecedent rainfall influences these conditions the amount of 

antecedent rainfall can be used as an indirect measure of the slope conditions, and corresponding 

slope stability conditions. The duration of the antecedent rainfall influencing the soil conditions 

depends on e.g. soil properties and infiltration rates. Different methods of how to use antecedent 

rainfall in the purpose of determining rainfall threshold have been proposed. 

As the soil conditions dependency to antecedent rainfall depends on soil properties, the duration of 

antecedent rainfall influencing landslide triggering will vary in different areas. The key difficulty is 

thus to establish the duration of antecedent rainfall to consider. Most thresholds considering the 

antecedent rainfall is defined plotting instant rainfall against antecedent rainfall. Many different 

rainfall durations have been used, and most published thresholds use several durations of 

antecedent rainfall to find the duration with best correlation to landslide occurrence:  

Durations of antecedent rainfall investigated rage from 1 to 120 days, and have been plotted against 

1, 2 or 3 days of intense rainfall (instant rainfall). The periods found to correspond best with landslide 

occurrence also vary; Pasuto and Silvano (1998) found the best corresponding antecedent rainfall to 

be 15-days, while Cardinali et al. (2006) found best correlation to 3- and 4-month antecedent rainfall. 

One exception is a study of lahars where the 1 hour intense rainfall where plotted against antecedent 

rainfall of 4 days. Normalised values of instant and antecedent rainfall have also been used. As 

discussed earlier these differences may be attributed to different factors like soil and surface 

characteristics, climate and meteorological variations in addition to heterogeneities or 

incompleteness in the data used for determining the thresholds.  
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3.2.5 Other thresholds 

A few other types of thresholds have also been suggested, including several rainfall related factors 

not used in the other types of thresholds. Measure of evapotranspiration, rainfall normalised by 

expected value of a storm of 5-years return period, mean daily discharge data are some of the 

parameters introduced (Guzzetti et al. 2007).  

Jakob and Weatherly (2003) established a threshold combining the duration of discharge data 

exceeding 1 m³/s, cumulative 4 weeks antecedent precipitation and cumulative 6 hour precipitation. 

This kind of threshold show it is possible to include more than just two parameters in a rainfall 

threshold. Increased number of variable does though increase uncertainties, and more complicated 

methods of analysis are required. Here a huge amount of hydrological and rainfall variables were 

analysed; one multivariate statistical method, discriminant analysis, was used to select the variables. 

 

 

3.3 Operation of thresholds in early warning systems 

3.3.1 Remote sensing rainfall products 

Areas where establishing early warning systems may be useful may not necessarily be covered by 

rain gauges. Establishing the rain gauges and the systems for collecting data - physically or 

electronically - may be quite costly and maybe not achievable, especially for larger areas. An 

alternative to provide precipitation data for large geographical area is the use of precipitation 

estimates, acquired by remote sensing techniques. Such estimates are usually acquired using radar 

technology, either ground based or satellite based. 

The use of satellites has increased rapidly the last few decades. The large number of satellites 

available today gives the possibility to gather data covering most of the earth surface, in near-real 

time and in relatively high resolution. There is a wide range of applications for global and regional 

satellite data in e.g. the science of hydrology or climatology (Kidd et al. 2003). Precipitation is one 

factor hard to estimate over larger areas using ground-based tools, due to its small scale variability in 

space and time. Satellite imagery is playing a key role in precipitation estimates, especially on a 

regional and global scale. Satellite precipitation estimates (SPEs) provide the possibility to gather 

precipitation data in areas not covered by rain gauges or other ground based tools. Today SPEs 

provide almost a full global coverage of both temporal and spatial high resolution.  

High resolution SPE-data is commonly produced in a global grid where the pixel size is 0.25° x 0.25° 

or less, with a temporal resolution between 30 min and 6 hours (Kidd et al. 2003).  As the pixels size 

is given in degrees, the earth surface pixel size will vary with latitude bands, and decrease with 

distance from equator. Both spatial and temporal resolution depends on the type of satellite data 

used, and vary between different SPE products. 

 

3.3.2 Satellite precipitation estimates (SPE)  

The focus of this thesis has been to use high-resolution global rainfall estimates to establish 

thresholds for landslide initiation. Use of satellite precipitation estimates (SPEs) provides the 
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possibility to collect rainfall data for areas not covered by rain gauges, or where the rain gauge 

network is sparse. Global precipitation estimates are obtained using imagery from generally to types 

of satellites; (1) geostationary or geosynchronous (GEO) satellites, and (2) polar-orbiting satellites 

known as low-Earth-orbit (LEO) satellites. The GEO satellites generally provide the highest temporal 

resolution, as they do not move significantly in relation to the earth surface. In some areas data may 

be provided as often as every 15 min at a spatial resolution of 1-4 km (Scofield and Kuligowski 2003).  

 

3.3.3 Available SPEs 

There are a huge number of different SPEs available today using IR and passive microwave imagery. 

Most are based on the same principles and techniques, but use different algorithms and methods for 

estimating the precipitation – thus resulting in different numerical precipitation estimates (Shen et 

al. 2010, Sohn et al. 2010). Several criteria had to apply for the SPE(s) selected for this study; (1) The 

precipitation product(s) had to cover the selected study area. For the possibility of applying the 

methodology also for other areas, this basically resulted that the precipitation product(s) should 

provide global or semi-global data. (2) The data should be freely available, and possible to handle 

with common programs like Matlab, FORTRAN, Octave, R, etc. This is important for application of the 

methodology by other people and institutions with limited funding. (3) The SPE should provide data 

at high temporal and spatial resolution, as landslide triggering depends on local differences in rainfall 

and soil properties. Data frequency of 1 hour or less is desirable as rainfall frequency may change 

drastically from one hour to another. (4) The precipitation estimates should be available in longer 

time series, to provide rainfall data from as many landslide events as possible. 

Several satellite precipitation estimates are available from different research organisations: 

 Hydro-Estimator (H-E): The Centre for Satellite Applications and Research (STAR) of the 

National Oceanic and Atmospheric Administration (NOAA) use different algorithms for SPEs 

(NOAA STAR 2011). The algorithms create near real time estimates presented graphically in 

the STAR Satellite Rainfall Estimate webpage. The Hydro-Estimator algorithm produces global 

data archived in digital files publicly available in a ftp-server (ftp://ftp.orbit.nesdis.noaa.gov/ 

pub/smcd/emb/f_f/hydroest/world/world/).  

 TMPA-RT: The Real-Time TRMM Multi-satellite Precipitation Analysis. Precipitation estimates 

based on NASAs Tropical Rainfall Measuring Mission (TRMM). Several precipitation products 

are provided, and three semi-global high-resolution products are publically available, 

3B40RT, 3B41RT and 3B42RT (Huffman and Bolvin 2010). These may be accessed in digital 

files from a ftp-server at ftp://trmmopen.gsfc.nasa.gov/pub/merged/. 

 CMORPH: NOAAs Climate Prediction Centre (CPC) uses an algorithm known as the CPC 

Morphing Technique (CMORPH) (NOAA CPC 2011). Precipitation data are estimated in data-

sets of different spatial and temporal resolutions, but only one data set is fully available at 

ftp://ftp.cpc.ncep.noaa.gov/precip/global_CMORPH/3-hourly_025deg/.  

 PERSIANN: The Centre for Hydrometeorology and Remote Sensing (CHRS) at the University 

of California, Irvine (UC Irvine) creates satellite based precipitation estimates based on the 

use of artificial neural network; PERSIANN - Precipitation Estimation from Remote Sensing 

Information using Artificial Neural Network (http://chrs.web.uci.edu/persiann/). 

ftp://ftp.orbit.nesdis.noaa.gov/ pub/smcd/emb/f_f/hydroest/world/world/
ftp://ftp.orbit.nesdis.noaa.gov/ pub/smcd/emb/f_f/hydroest/world/world/
ftp://trmmopen.gsfc.nasa.gov/pub/merged/
ftp://ftp.cpc.ncep.noaa.gov/precip/global_CMORPH/3-hourly_025deg/
http://chrs.web.uci.edu/persiann/
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 NRL-blended: The SPE product of National Research Laboratory (NRL) called NRL-blended 

(http://www.isac.cnr.it/~ipwg/algorithms/inventory/NRL.pdf) also covers all criteria. These 

data are available at a spatial scale of down to 0.1° and a temporal scale of 3 hours. The ftp-

server providing the NRL-digital datasets (ftp://ftp.nrlmry.navy.mil/pub/receive/turk/ 

global_rain) were not found accessible during the period of work on this thesis, spring 2011.  

 

  

http://www.isac.cnr.it/~ipwg/algorithms/inventory/NRL.pdf
ftp://ftp.nrlmry.navy.mil/pub/receive/turk/ global_rain
ftp://ftp.nrlmry.navy.mil/pub/receive/turk/ global_rain
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4 THE STUDY AREA - BANGLADESH 
Bangladesh is a country at high risk of e.g. natural hazards like floods, earthquakes and landslides 

(Gov. Bangladesh 2010). The country is situated in a belt of tropical climate (Peel et al. 2007) 

neighbouring the Bay of Bengal in the south. As a result Bangladesh is suffering from intense 

prolonged rainfall in the monsoon season, occasionally causing landslides and flooding. Extreme 

rainfall events may occur the monsoon season and due to cyclones.  

During these events several landslides may occur in the area of the rainstorm, often with fatal 

consequences. The occurrence of fatal landslides in Bangladesh is frequent, and especially the 

landslide events during the last few years have resulted in high number of victims (IFRC 2007, 2010a). 

Two recent and devastating events are worth noticing; the landslide events of 11 June 2007 in 

Chittagong city and surroundings and of 14-15 June 2010 in the districts of Cox’s Bazar and 

Bandarban. These events caused at least 127 and 55 deaths respectively (Ekram et al. 2007, IFRC 

2007).  

 

4.1 Physical Geography 
Bangladesh is situated in South Asia bordering to India, Burma and the Bay of Bengal (Figure 4-2). 

Most of Bangladesh consists of low altitude areas of resent plains. These plain are mostly flood 

plains, delta- and tidal plains and may thus be inundated by flood or tidal water (Figure 4-1). Only 18 

% of the land area are terrace or hilly areas (Mahmood and Khan 2008). The hilly areas are located 

mainly in southeast, but some hills of same origin are also situated in northeast (Figure 4-1), known 

as the Chittagong hill tracts and the hill ranges of Sylhet respectively (Mahmood and Khan 2008). The 

hilly areas consist of rocks that have been uplifted and folded into a series of sync- and anticlines 

(Mahmood and Khan 2008) that are tight, plunged and faulted (Ekram et al. 2007). The alignments of 

the faults are NNW-SSE, a trend also visible for the ridged in the elevation map in Figure 4-1.  

The geology in the hilly areas is dominated by unconsolidated sedimentary rocks. The higher hills in 

the Chittagong area and the hills of Sylhet are of Oligocene to mid-Miocene age; while Chittagong’s 

lower hills are of late-Miocene. These hills are of sedimentary rocks are mostly sandstone, siltstone 

and shale, but also limestone and conglomerate. The lower hills are of less consolidated rocks, mainly 

sandstone and shale (Mahmood and Khan 2008). Geotechnical investigations of landslide sites 

following the devastating 2007 Chittagong landslide event confirmed this: Most samples were found 

to be of poorly consolidated, loose, friable sandstone of different coarse to fine sand ratios and with 

little clay (Ekram et al. 2007). The report from this investigation also characterizes the geomorphic 

setting in the Chittagong area, and is here used as an example on how the landslide prone areas of  
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Figure 4-1 Left: Elevation map of Bangladesh (Sarker et al. 2010). Right: Physiographic map of Bangladesh (Mahmood and Khan 2008). 
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the hilly areas of Bangladesh may look like: There are low dome shaped hills in the area with flat tops 

and short flanks of only 15-50 m in length. Most natural slopes are of higher slope angle than the 

internal friction angle of the materials and vary from 36° to 83°. The slopes are covered with grass 

and shrub type vegetation.  

 

 

4.2 Climate 
Bangladesh is located in Southern Asia on the eastern part of the Indian subcontinent (Landsberg 

1981). This area is dominated by seasonal changes referred to as four different periods (Lockwood 

1974, Landsberg 1981): 

- Winter period: January – February 

- Hot weather period: March – May 

- Monsoon period: June – September 

- Post-monsoon period: October - December  

For the area of the Indian subcontinent and the surrounding oceans July and August are usually the 

months of most rainfall. During these month two tropical storms or cyclones form on average each 

year, lasting for 4-5 days; most of them form in the Bay of Bengal (Lockwood 1974). The dominating 

monsoon wind direction from SW result in high amounts of rainfall over Bangladesh during the whole 

monsoon period; more than 75 % of the annual rainfall occurs during this period (Lockwood 1974). 

The eastern part of the country gets the highest amount of rainfall and also the highest number of 

rainy days (Landsberg 1981). This is probably caused by the presence of the hilly areas of Chittagong 

and Sylhet due to uplift of humid air and subsequent orographic rainfall.  

As visible in Figure 6-1to Figure 6-3 relatively high amounts of rainfall may also occur in May and 

October. For May this may be explained by an early onset of the monsoon season, as the normal 

onset for Bangladesh is between 25 May and 5 June. The normal monsoon withdrawal is 10-15 

October, explaining the rainfall numbers of October (Lockwood 1974). The post-monsoon period 

normally get relatively low amounts of rainfall, but cyclones may occur even in this period resulting in 

rainfall intensities equivalent to the monsoon period (Landsberg 1981); this is demonstrated by rain 

gauge data from Cox’s Bazar located in the far south east of Bangladesh (Table 4-1).  

 

4.2.1 Köppen-Geiger climate classification 

The Köppen-Geiger climate classification is a more than 100 years old method that is widely used and 

regularly modified. Based on a set of precipitation and temperature criteria it uses a large set of rain 

gauges and climate station, spread around the world, to classify areas into different climate groups. 

There are 5 different main groups; A - tropical, B - Arid, C - Temperate, D - Cold and E – Polar, each 

with 30 corresponding subgroups further explained in Peel et al. (2007).  

According to Peel et al. the climate of Bangladesh is mainly tropical with some temperate areas in the 

north and west. The temperate areas are classified as Cwa – main group C and subgroup w and a –an 

area with dry winters and hot summers. One such area is the area of Sylhet in northwest including 

the hills in the area. Areas in Bangladesh classified as tropical are classified as either Am – tropical 
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monsoon climate or Aw – Tropical Savanna. The Chittagong hilly tracts are classified as Am together 

with an area in the north west of the hilly areas of Sylhet.  

Looking at the precipitation data from the areas of Bangladesh where landslides are known to occur 

(Table 4-2) the hilly areas in southeast and northeast, the southeast piedmont plains and the western 

plains – there seems to be a stronger correlation between physiography and rainfall amounts (MAP – 

 

 

Figure 4-2 Map of Bangladesh and surrounding countries (CIA 2011). 

 

Table 4-1 Rainfall data from Chittagong and Cox’s Bazar located in the southeast  
of Bangladesh, extracted and modified from (Landsberg 1981). 

 Rainfall Chittagong Rainfall Cox's Bazar 

 mean max 24h mean max 24h 

Jan              10,40               32,60               10,70               56,10  

Feb                7,60               26,70               12,20               55,90  

Mar              88,90             152,70               32,30             162,80  

Apr              67,80               87,90               80,00             206,00  

May            283,70             150,10             292,60             194,80  

Jun            569,20             230,60             770,60             279,40  

Jul            624,10             417,10             933,40             317,50  

Aug            564,60             256,30             780,00             289,80  

Sep            305,80             375,40             443,20             238,00  

Oct            290,80             389,40             275,10             398,30  

Nov              50,00               77,00               63,20             329,40  

Des              10,40                 6,40               32,80             385,10  

        2 873,30             417,10         3 726,10             398,30  
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Mean Annual Precipitation) than of physiography and the Köppen-Geiger climate classification: The 

hilly areas receive the highest MAPs and the highest amounts of rainfall during one month, the 

western plains get least rainfall for MAP and one month average maximum, while the piedmont 

plains get rainfall values in between. As the Köppen-Geiger climate classification uses temperatures 

in addition to precipitation, this may account for the level of evaporation and thus the soil conditions 

preceding a rainfall. Soil conditions are also dependent on vegetation and the corresponding 

transpiration. Evapotranspiration (evaporation + transpirations) is only partially accounted for in the 

mentioned climate classification, there is thus considerable uncertainty in how soil conditions in 

Bangladesh are represented; further study would be needed.  

 

 

Figure 4-3 Climatology of Southern Asia with Bangladesh in black square and labels for the climate sub-groups of 
Bangladesh, extracted and modified from (Peel et al. 2007) 

 

Table 4-2 Rainfall values from rain gauges around areas known for occurrence of landslides 

Name Lat. Lon. Elev-
ation 

Series 
length 
(yrs) 

MAP 
(mm) 

Mean max. 
month 

(mm/month) 

Corresponding 
Physiographic Area 

SYLHET 24,9 91,9 35 29 4080,48 812,38 Sylhet hill area 

SRIMANGAL 24,3 91,7 23 30 2420,33 502,13 SE piedmont plains 

COMILLA 23,4 91,2 9 37 2380,16 472,63 SE piedmont plains 

JESSORE 23,2 89,2 12 28 1643,86 309,65 W plains 

SATKHIRA 22,7 89,1 4 36 1713,08 353,44 W plains 

KHULNA 22,8 89,5 3 33 1729,03 350,89 W plains 

CHITTAGONG A. 22,4 91,8 14 42 2867,95 746,47 Chittagong hill tracts 

COX'S BAZAR 21,4 92 4 38 3753,84 983,61 Chittagong hill tracts 
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4.3 Social geography and landslide issues 
Bangladesh is a relatively small country of only ~130.000 km2 land cover inhabited by a population of 

more than 158 million, making it one of the most densely populated areas of the world. The main 

capital is Dakha with over 14 million inhabitants, Chittagong is the next biggest city populated by 

almost 5 million an d the main city of the south east and the hilly regions (CIA 2011). The level of 

poverty is high; as 40 % of the people are estimated to be below the poverty-line (CIA 2011). 

Combined with the high population density and urbanization, this creates problems related to the 

need of housing areas. As the pressure on establishing new areas for housing increase, residential 

areas expand into unsafe areas beneath or on top of steep hills. Illegal, uncritical hill cutting has 

become common to make room for simple houses, and foothill slums are established (IRIN 2008, 

Mahmood and Khan 2008). It is claimed that 70,000 people live at risk of landslides due to illegal 

slope cutting, despite the governments ban of the practice (IRIN 2008, Mahmood and Khan 2008). 

 

4.4 Landslides in Bangladesh 
During the last few years more than 300 people have lost their lives in Bangladesh because of 

landslides. The landslide record of Bangladesh is relatively short; as most landslides are registered 

during the last 10 years. On average there are registered approximately 2 fatal or potentially fatal 

landslide events each year in Bangladesh and most of them occurred in the Chittagong hill tracts; this 

is also where most people have lost their lives. The most severe landslide event in the history of 

Bangladesh is the landslide event of 11 June 2007 hitting the city of Chittagong and the surrounding 

areas, causing several landslides at different locations. At least 127 people lost their lives in 

landslides during this event (Ekram et al. 2007, IFRC 2007).  

Most landslides in Bangladesh seem to be triggered by intense rainfall, mostly related to the 

monsoon season as explained in chapter 4.2. Ali and Kahn (2008) found that in addition to intense 

rainfall there are two main causes of landslides in the area Chittagong; hill cutting and deforestation. 

Hills where found to be cut at an angle of 70-80 degrees, causing slopes to fail during prolonged and 

intense rainfall. As roots from vegetation stabilize loose soil, deforestations also cause increased 

landslide susceptibility. The investigation also found “a correlation (…) between the “landslide 

victims” and the “poverty””. Several slum areas where found to be situated in landslide prone foothill 

areas; houses in these areas cannot sustain are not able to withstand mass movements, causing 

these areas to be very vulnerable to landslides.  

Earthquakes may also be a trigger of landslides. The seismic hazard in Bangladesh is caused by the 

proximity to the seismically active region of the Himalayas in the north (Kamal 2008, Sarker et al. 

2010). Strong earthquakes are known to affect Bangladesh, less than 10 events each 100 years 

(Banglapedia 2011a, USGA 2011). No records were found of landslides occurring close to the dates of 

earthquake records.  

There is a trend of an increasing number of landslide victims in Bangladesh. As the landslide record is 

short, this cannot be established certainly, even though the most severe landslide events have 

occurred the last few years. Landslide event of the same magnitude may have occurred earlier, but 

without any records. If no lives were lost during an event, the event may not have been recorded. 

There seems to be an increasing trend for keeping records of events the last few years generally 



 

26 
 

around the world, partly because of higher awareness and increased accessibility to data through the 

use of computers. Increasing presence of humanity organisations may also result in more records of 

events. An increasing amount of casualties in landslide events may also be explained by the 

urbanization and the expansion of residential areas into unsafe areas.  

 

Table 4-3 List of known landslide events in Bangladesh in recent years 

Year Date Area Casualties Sources* 

1968  Chittagong hill tracts   Banglapedia 

1970  Chittagong hill tracts   Banglapedia 

1990 30 May Chittagong hill tracts   Banglapedia 

1997 July Chittagong hill tracts   Banglapedia 

1999 11-13 August Chittagong hill tracts  17 Banglapedia 

2000 24 June Chittagong hill tracts  13 Banglapedia 

2003 5 May SE piedmont plains 31 NASA 

2003 17 June Chittagong hill tracts  6 NASA 

2003 29 June Chittagong hill tracts  4 NASA 

2003 30 July Hill ranges of Sylhet 6 NASA 

2007 11 June Chittagong hill tracts  127 NASA/GSB3/GSB1 

2007 10 September SE piedmont plains 2 NASA 

2007 15 October SW plains 3 NASA 

2007 19 October Chittagong hill tracts  Unsure NASA 

2008 3 July Chittagong hill tracts  9 NASA/ GSB3/GSB2 

2008 6 July Chittagong hill tracts  4 ADPC/GSB2 

2008 1 August Hill ranges of Sylhet  NASA 

2008 18 August Chittagong hill tracts  11 NASA/ GSB3 

2008 23 August Chittagong hill tracts   NASA 

2009 18 May Hill ranges of Sylhet 6 NASA 

2009 31 July Chittagong hill tracts  11 NASA 

2010 15 June Chittagong hill tracts  55 GSB3/Red Cross 

Nr of events: 22 Sum casualties: 312  

 

*Sources: Banglapedia (2011b), NASA (2011), Red Cross (2010a) and Geological Survey of Bangladesh; GSB1 – Ali et al. 

(2007), GSB2 - Ali and Khan (2008) and GSB3 (Table A 1 of appendix A).  

Area of landslides in Table 4-3 are given according to the physiography of Bangladesh (see Figure 4-2) 

based on location names or coordinates given in the different sources. For some of the landslide 

events listed in Banglapedia the dates are unknown, and casualties are for many events either not 

mentioned or unknown. For the NASA data casualties and location are based on news-reports and 

may thus not be accurate.  
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5 METHODOLOGY 
The aim of this work is to develop a methodology for use of high-resolution global satellite 

precipitation estimates to establish rainfall thresholds in regions with no or sparse ground-based 

precipitation data coverage. A methodology for using NASAs TMPA-RT rainfall products on a global 

threshold has been proposed by Hong et al. (2006), and are currently used in the TRMM Current 

Heavy Rainfall, Flood and Landslide Estimates (http://trmm.gsfc.nasa.gov/publications_dir/ 

potential_flood_hydro.html). The accuracy of thresholds tends to decrease with increasing spatial 

coverage. For a single country like Bangladesh, a small-scale regional threshold (or possibly local 

threshold) will be appropriate to increase the predictability of the threshold. Such a threshold will be 

developed using the same TMPA-RT data of global coverage.  

There are several SPEs of global coverage available today. The SPE rainfall products to be used in this 

study had to meet certain criteria as presented in section 3.3.3 - Available SPEs. These rainfall 

products are stored in digital data files that may be accessed and handled using common computer 

languages like i.e. Matlab, R, Octave or FORTRAN. Handling of binary data may also be required for 

some rainfall products.  The software Matlab was used in this study, including the Matlab Statistical 

Toolbox. The methodology used in this study is thus based on the programming language of Matlab, 

but application of the methodology using other software and programming language should be 

possible developing new scripts.  

An analysis including all SPE-products would be preferable, but due to time limitations of the work on 

this thesis this was not possible to achieve: Most rainfall products are created by different 

organisations and institutions, using different data structures (in additions to different methods and 

algorithms). As a result separate scripts have to be developed to access and analyse each rainfall 

products data files. This is a time consuming process, in addition the computing time may also be 

very long. For instance, accessing and analysing 5 years of rainfall data when each file consist rainfall 

data for the duration of between 30 minutes and 3 hours require reading and handling of between 

14600 and 87600 files. As each file consist of rainfall data for each point in a global grid the amount 

of data are huge; the smallest TMPA-RT data consist of a 1440 x 480 points grid of rainfall data 

(~700,000 point) covering most of the world. The NOAA H-E data, as another example, consist of a 

global grid of 8001 x 3111 data points ( ~25 million points of rainfall data) (STAR 2011); these files of 

hourly data take more than 150 Mb each when unzipped also creating storage issues, hence the data 

has to be handled one rainfall file at the time. Because of this limitation only two quite similar rainfall 

products were selected for the study; NASAs TMPA-RT products 3B41RT and 3B42RT. 

 

5.1 Landslide and rain gauge data 
The initial landslide and rainfall data used for this thesis where provided by Mr. Reshad Ekram, the 

director of the Geological Survey of Bangladesh (GSB), and the Asian Disaster and Preparedness 

Centre (ADPC) through a collaboration project between ADPC and the Norwegian Geotechnical 

Institute (NGI). These presented location and details about the most recent landslide events in 

Bangladesh and eight days of daily rainfall data related to each event. No coordinates were given for 

the landslides or rain gauges, something that would be needed for using corresponding satellite 

precipitation estimates. Coordinates of the landslides were found based on area names in the 

http://trmm.gsfc.nasa.gov/publications_dir/%20potential_flood_hydro.html
http://trmm.gsfc.nasa.gov/publications_dir/%20potential_flood_hydro.html
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landslide event descriptions, and the rain gauge coordinates were extracted from attachments in 

Peel et al. (2007). Additional rain gauge data where provided by GDB; these contained daily rainfall 

data for the area of Chittagong city during the period 1 June 1996 to 31 December 2008. The most 

relevant parts of these data are presented in Appendix A.  

 

5.1.1 Landslide inventory 

Additional landslide data was gathered from Banglapedia , landslide reports from GSB (Ekram et al. 

2007, Ekram and Khan 2008), a global landslide catalogue (NASA 2011) and by own searches for new 

articles and online reports. Banglapedia (2011b) were found to describe some historical landslides in 

Bangladesh, some including quite specific location names. The GSB reports included assessment of 

the fatal landslide events of Chittagong 2007 and Teknaf 2008, and included accurate coordinate 

position of individual slides as well as geotechnical investigations related to these. The landslide 

catalogue is compiled based on the gathering of landslide data from online news media and different 

hazard databases, as described by Kirschbaum et al. (2010). Due to the original source of this data, 

the exact location of the events the landslide coordinates were given including a confidence radius. 

Many landslides related news articles and disaster reports were found for Bangladesh, but covered 

mostly landslides available in the other sources. One new landslide position was found, but this was 

related to a landslide event covered by the other sources. 

All landslide data were gathered in a single inventory. The position of each landslide was described 

using location name and the corresponding district and region as well as latitude and longitude 

decimal degrees. Missing coordinates were estimated finding for the location names in Google Maps 

and Google Earth. The highest accuracy of position would not be required, due to the spatial 

resolution of the satellite rainfall estimated to be applied in the following analysis. All positions 

where given an estimated confidence radius for possibilities of numerical evaluation of the position 

accuracy. The data samples were labelled as single landslides (single LS) and events of multiple 

landslides (LS events), as some data were site and landslide specific and others were related to the 

occurrence of a landslide triggering rainfall event. One example; Ekram et al. (2007) reports 19 

landslides including their coordinates from the 11 June 2007 landslides in Chittagong, the ADPC data 

and the global landslide catalogue referred to this as one landslide event in Chittagong, providing one 

coordinate. Landslide type was often not described in the available data, but where available this 

was included as an inventory data classifier, as the landslide type may be important for the triggering 

condition. Dates of landslide occurrence were added to be able to correlate landslide and rainfall 

data. The full inventory is presented in Table A 3 in appendixes. 

 

5.1.2 The rainfall data 

Use of rain gauge data for analyses purposes was limited in duration and extent. The one rain gauge 

series of long duration, available for Chittagong, would represent a possibility to do some 

assessments for the area of Chittagong. The rainfall data for this thesis was thus mainly based on 

satellite based rainfall estimates; TMPA-RT data. Accessing and using the data would be a quite 

complex process, and will be explained in the following chapter 5.2. 

 



 

29 

5.2  TMPA-RT data 
NASA’s Tropical Rainfall Measuring Mission (TRMM) is a satellite-based measuring campaign 

collecting near-real-time high-resolution quasi-global data for different scientific purposes. One of 

the data provided is the TRMM-based rainfall estimates, Real-Time TRMM Multi-Satellite 

Precipitation Analysis (TMPA-RT). TMPA products are available at a resolution of 0.25° x 0.25° in a 

global grid extending over the latitude bands 60° N to 60° S. The temporal resolution is 1 or 3 hours, 

depending on the product type. Each global rainfall estimate is stored in digital files and may be 

accessed from a FTP-server. TMPA uses infra-red (IR) and passive microwave (PMW) satellite images; 

from the international constellation of geosynchronous (GEO) satellites and low-earth-orbit (LEO) 

satellites respectively. The limited extent of latitude bands of TMPA was chosen as IR and PMW-data 

tend to lose skill at higher latitudes (Huffman et al. 2009). 

The formal name of the TMPA-RT data is "Version 6 TRMM Real-Time Multi-Satellite Precipitation 

Analysis." (Huffman and Bolvin 2010), and three different products are available; combined PMW 

estimates at 3 hour resolution (3B40RT), PMW-calibrated IR estimates at 1 hour resolution (3B41RT) 

and merged PMW and IR estimates at 3 hour resolution (3B42RT). The spatial resolution was chosen 

for the grid size to be somewhat larger than the “footprint” of the passive microwave precipitation 

estimates (Huffman et al. 2009). Temporal resolution was chosen from a combination of satellite 

coverage frequencies and fitting to the diurnal circle.  

 

Table 5-1 Basic information for the different TMPA-RT data sets 

 3B40RT 3B41RT 3B42RT 

Source type Micro wave IR MW/IR-combined 

Spatial resolution 0.25° x 0.25° 0.25° x 0.25° 0.25° x 0.25° 

Temporal resolution 3 h 1 h 3 h 

Global grid size 1440 x 720 1440 x 480 1440 x 480 

Coverage 90° N-S, 0-360° E 60° N-S, 0-360° E 60° N-S, 0-360° E 

First grid-box centre 0.125° x 89.875° 0.125° x 59.875° 0.125° x 59.875° 

 

In addition to the real time (RT)-products, gauge adjusted TMPA products are available, hereby 

referred to as TMPA-GA or GA products. These are rescaled to monthly rain gauge analyses and are 

thus not available in real time (Huffman et al. 2007). An increased performance of the TMPA-GA data 

is confirmed e.g. by Su et al. (2008) and Shen et al. (2010). TMPA-RT estimates have been operational 

since late January 2002, and the current version (V6) running since March 2005 and the lasts update 

since October 2008. Versions are updated occasionally as results improvements in e.g. data 

processing techniques, from assessment of performance data and experiences from using the data. 

Data processing errors may also occur and are corrected successively as they are discovered, and 

listed in the TMPA-RT data set documentation (Huffman and Bolvin 2010). Improved performance in 

the new version is verified, e.g. for the GA product 3B42 over Bangladesh (Islam and Uyeda 2008) 

and over Thailand (Chokngamwong and Chiu 2008).  
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5.2.1 Selecting TMPA-RT product types  

A mentioned in chapter 3.3.3, three different TMPA-RT products are available; 3B40RT (PMW data), 

3B41RT (IR data) and 3B42RT (merged IR and PMW data). 3B40RT is limited to 3 hours accumulated 

rainfall due to the lower temporal resolution of PMW-data. 3B41RT provides the best temporal 

coverage at intervals of 1 hour. The 3B42RT product provides the best spatial data coverage of the 

TMPA-RT products, by merging IR and PMW data. 

3B41RT and 3B42RT were selected for this study, as these represent the best high temporal 

resolution and the best spatial resolution respectively. Both features believed to represent a 

potential advantage in landslide studies; successful application of hourly data would be an advantage 

for landslide studies by picking up rainfall intensity peaks, PMW-data are believed to predict rainfall 

more accurately and combining these with IR-data increase the satellite coverage of an area. The 

merged TMPA product also seems to be most widely studied TMPA product (both the RT and the GA 

product), e.g. by (Chokngamwong and Chiu 2008, Islam and Uyeda 2008, Shen et al. 2010, Yong et al. 

2010) - most studies are however of the gauge adjusted TMPA version.  

 

5.2.2 File names and observation periods  

The TMPA-RT digital data files are given name according to rainfall product, and date and time of the 

measurements; e.g. 3B42RT.2010010115.bin.gz, where the first part represent the TMPA product 

type, 2010010115 represent time and date (data format ‘yyyymmddHH’ – 4 digit year, 2 digit month, 

2 digit day and 2 digit hours). bin.gz represent the file format, indicating these files are binary files 

compressed in the format zipped. V6 files are indicated with “.6” before the file extensions. 

The time and date stamp of each file indicates the time of satellite observations used as basis for the 

estimated rainfall data, each at interval of 1 and 3 hours for 3B41RT and 3B42RT respectively and is 

set in UTC (Coordinated Universal Time). It is important to note this is the time and date denotes the 

mean time of the satellite observational period related to each file; this is called the nominal time 

(Huffman and Bolvin 2010). The file name above, given as an example would thus represent the 

rainfall at 10 January 2010 from 13:30 to 16:30.  

 

5.2.3 Structure and format of files and data 

Understanding the file structure and format is important to be able to extract the correct data and 

correct values. Without guidance this may be especially hard when dealing with binary data and/or 

complex file structures. All TMPA-RT files are stored in binary format: The first part of each file is a 

header record of ASCII characters followed by blocks of gridded 2-byte integer precipitation 

estimates at grid (as presented in Table 5-2).  The header is 2880 bytes, the same size as one row of 

the 2-byte integer data. Each data point of the gridded data represents one grid cell (pixel) of a global 

latitude/longitude grid of 1440x480 cells. The data points increment to the east from the prime 

meridian and then to the south, as demonstrated by Table 5-3. The rainfall estimates in the TMPA-RT 

files are in mm/hr, but scaled by hundred; this scaling must be accounted for when extracting the 

data (Huffman and Bolvin, 2010).  
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As listed in Table 5-2, the TMPA-RT data files also contain other blocks of gridded data; error 

estimates, satellite source and uncalibrated precipitation data. The most interesting of these data 

would be the gridded precipitation estimate error data (error, Table 5-2). The precipitation error data 

were examined for a random selection of files, as only “no data” cells where found these data where 

not used in further analyses. Information on all data registered in TMPA-RT files may be found in 

Huffman and Bolvin (2010).  

 

Table 5-2 Overview of data structure in the TMPA-RT files, adapted from (Huffman and Bolvin 2010) 

 3B41RT 3B42RT 

Block Byte Count Field Byte Count Field 

1 2880 header 2880 header 

2 1382400 precipitation 1382400 precipitation 

3 1382400 error 1382400 error 

4 691200 number of pixels 691200 source 

5   1382400 uncal. precipitation 

 

Table 5-3 Structure of the 1440x480 gridded data in the TMPA-RT data files. Each value represents one  
grid box centre of a latitude/longitude semi-global grid, adapted from (Huffman and Bolvin 2010) 

 3B41RT 3B42RT 

Location Latitude Longitude Latitude Longitude 
1st point centre 59.875ºN 0.125ºE 59.875ºN 0.125ºE 

2nd point centre 59.875ºN 0.375ºE 59.875ºN 0.375ºE 

Last point centre 59.875ºN 0.125ºW 59.875ºN 0.125ºW 

 

 

5.3 Creating a TMPA-RT rainfall inventory 
 

5.3.1 Acquiring the rainfall data 

To acquire the different TMPA-RT rainfall product data several Matlab-scripts where developed (see 

0). The scripts were developed to work for both TMPA-RT rainfall products. First all 3B41RT- and 

3B42RT-files where downloaded from the server onto a local hard disk drive (HDD), in a folder-

structure sorted by year and month. The folder structure was chosen to assure a limited number of 

files in each folder, as this proved to increase the Matlab-scripts rainfall data processing speed. The 

complete set of TMPA-RT data included 3B41RT- and 3B42RT files from 1 March 2005 until 9 April 

2011, comprising a total of almost 73000 zipped files of global rainfall data and 11 GB of storage 

space. 

The rainfall inventory was to include rainfall data from the whole period of available TMPA-RT data. 

To limit the amount of data and simplify further data analysis, only TMPA rainfall data corresponding 

to known landslide positions where extracted. This was achieved creating a TMPA-coordinate grid 
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matrix in Matlab according to the coordinates described in Table 5-3, where each position 

represented a grid box centre. Using a numerical search for all landslides positions in the landslide 

inventory, the closest TMPA grid position was found. Using these positions, TMPA rainfall data 

corresponding to all landslide position could be extracted from the global gridded rainfall data sets. 

Only one grid where selected for each file, not discriminating between if a landslide where 

represented in the corner of a TMPA grid box or in the centre. The full process was acquired through 

running a series of Matlab-scripts, which are presented in 0. The basic principles of the process can 

be described like this:  

1. Insert input data (product name, landslide inventory file name, time zone, etc.). 

2. Load landslide inventory. 

3. Locate TMPA-RT global grid positions representing surface position of landslides in landslide 

inventory. 

i) Create 1440x480 global grid with all TMPA-RT grid box centre positions of the same grid 

size and configuration as the rainfall data in the TMPA-RT rainfall files. 

ii) Locate grid boxes centre positions which are closest the landslide positions in the 

landslide inventory, and save these positions. 

4. Create vector containing filenames of all files to be processed for extraction of rainfall data. 

i) Unzip file one file at a time. 

ii) Read and save header info as text string and rainfall data as numerical data. 

iii) Extract rainfall data from landslide positions located by step 3.ii, and save data into one 

variable that is used for all files, such creating one continuous rainfall data series for each 

TMPA position. 

iv) Delete unzipped file after processing, to avoid storage space issues. 

5. Save position data and rainfall data series into M-file (Matlab-file used for storage).  

6. Create a series of daily accumulated rainfall data from each TMPA-RT product and save in M-

file, accounting for local time and adjusting for when daily rain gauge data are gathered in 

the area.  

Figure 5-1 illustrates the principle of TMPA data extraction from a simplified grid. The small dots 

represent a known landslide position, and the black squares a TMPA grid box of rainfall estimates 

representing the landslide position. For each file data from the known positions are extracted into a 

line in a rainfall data series, where the line represents the time of rainfall. Data from each position 

are stored in different columns, creating one rainfall series for each position. The hourly/3-hourly 

data was accumulated daily into a final series of daily data. 

 

5.4 Rain gauge- and TMPA-RT data: a comparison 
The reliability of an established threshold depends highly on the quality of the data used for the 

analysis. Satellite based precipitation estimates (SPEs) are associated with some range of uncertainty 

as the precipitation are measured indirectly using IR and PMW imagery. The method is believed to 

make fairly good estimates, especially for intense rainstorms of long durations. A limitation is the lack 

of spatial and temporal coverage; uncertainties exist in the methods ability to represent the small 

scale spatial variations in rainfall (Shen et al. 2010). Rain gauge data take these local conditions into 

account measuring the exact amount of rainfall reaching the ground. Still rain gauges are neither a 
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Figure 5-1 - Principal of TMPA-RT rainfall data extraction from global grid rainfall files  
(grid is simplified and the data are not actual data). 

 

good method for landslide studies, as the limitations in spatial coverage is significant. Unless a rain 

gauge is present in almost the exact location of a triggered landslide, the small scale spatial variations 

of rainfall amount and intensity may cause uncertainty in rain gauge measurements as well. 

Despite the uncertainties in both SPE and gauge data, regarding spatial resolution and coverage, a 

comparison of these rainfall data sources will be necessary to give an impression of the SPEs accuracy 

in the geographical area of study. As a SPE grid cells cover some 10s of square kilometres (a TMPA-RT 

grid cell cover 0.25° x 0.25° equal to more than 25 x 25 km), rainfall in this area are expected to be 

heterogeneous. A good comparison would thus require long time series of continuous precipitation 

data compared for several rain gauges located inside the same SPE-grid cell. The available rain gauge 

data for this study were limited, and the length of time series from SPEs are limited; such thorough 

correlation was thus not possible. The accuracy of the SPE data for the Bangladesh area thus had to 

be based on a less complex data correlation, combined with earlier studies of similar climatological 

areas. 

 

5.4.1 Comparing the rainfall data sources on local scale 

The rainfall data used for comparison against the satellite estimated rainfall data contained of several 

years of data, including some years of overlap with the satellite based rainfall products. As rainfall 

data may vary annually, an overlap of some years were important for the statistical significance of 

the methods to be used. Both of NASAs satellite estimates were included in the comparison, only 

using data from the grid cell corresponding to the position of the rain gauge. Accumulated daily 

TMPA-RT data were used, as this corresponds to the temporal resolution of the rain gauge data.  
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The TMPA-RT data and rain gauge data mentioned above were compared and analysed using 

exploratory data analysis (EDA). EDA is an approach for analysing and characterizing data. This 

includes several techniques used to describe and compare data in order to get information about e.g. 

similarity, correlation and data outliers. EDA is a good way of presenting and visualising data as many 

EDA techniques are graphical; scatter plots for correlation, histograms, distribution curves, etc. 

(NIST/SEMATECH 2011). Monthly rainfall, daily rainfall, number of rainy days, rainfall distribution and 

correlation of the different data were assessed; the analyses where computed using Matlab-scripts 

as presented in Appendix C. The graphical analyses were supported by evaluation numerical variables 

like mean, standard deviation and correlation coefficients. 

As SPE-data relies in the satellite coverage in the area of study, a final key element to the TMPA-data 

was to which extent rainfall data were missing; the extent of missing TMPA-data were evaluated and 

rainfall data at these time examined. The best overall performing TMPA-RT rainfall product where 

selected for the threshold study.  

It was expected to demonstrate how the TMPA-RT data performed on a local scale compared to the 

gauge data. At the same time, due to the limited amount of rain gauge data, this would hopefully 

also reflect any problems related to the assessment of rainfall thresholds by using TMPA-RT data in 

areas with inadequate coverage of gauge data.  

 

5.4.2 Previous studies of TMPA and gauge data 

NASAs TMPA precipitation products are widely studied. Many studies investigates different SPEs 

ability to reproduce the rainfall observed in rain gauge networks (Sapiano and Arkin 2009, Shen et al. 

2010, Sohn et al. 2010, Yong et al. 2010), studies are conducted at different spatial scale. Some have 

been related to e.g. studies of global landslide hazard assessment (Hong et al. 2006) and hydrological 

modelling of stream flow (Yong et al. 2010). Of TMPA data especially the products 3B42RT and 3B42 

have been used, as these use merged IR and passive microwave data.  

Different studies have shown inconsistent results regarding correlation of TMPA rainfall products and 

rain gauge data: It has been found that the gauge adjusted rainfall product generally performs better 

than the RT-product (Shen et al. 2010, Yong et al. 2010, Behrangi et al. 2011). Improvements in 

estimates when adjusted to local data is expected, but a study in the Korean Peninsula by Sohn at al. 

(2010) found surprisingly found smaller RMS errors for the RT product. Different studies have found 

that the TMPA products both underestimate (Shen et al. 2010) and overestimate (Sohn et al. 2010) 

rainfall compared to gauge data. Yong et al. (2010) found that especially rainfall of intensities above 

30 mm/day were overestimated.  

Yong et al. (2010) also found systematic errors for TMPA data compared to gauge data dependent on 

latitude and altitude, where the error rates decreased with decreasing latitudes and altitudes. Sohn 

et al. found that the TMPA data showed similar patterns to the climatology of the studied area.  

These discoveries indicate that contradictory results between studies of TMPA and gauge data may 

be caused by a different TMPA performance for different climate types and a performance changing 

with latitude and altitude. It may be concluded that the TMPA data (RT and gauge adjusted products) 

perform differently in different areas, suggesting that application of data require adjustments to local 

conditions. This may impede reliable application of these data for non-instrumented regions. 
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Conversely, climatology dependent data patterns found by Sohn et al. (2010) and recent discoveries 

that estimates of uncertainty may be transferred from instrumented to non-instrumented areas 

(Tang et al. 2010), do indicate that improvements may be expected in the future in this matter; 

although it was so far concluded that transfer show high error rates event at low temporal scale. 

Theoretically it was found applicable dawn to daily scale.  

 

5.5 Establishing thresholds 
There are many methods available for establishing a threshold, and as described in chapter 0 the 

type of threshold is also depending on what kind of data are available: To establish a rainfall 

threshold it is requires some sort of rainfall series. The most commonly used threshold type, I-D 

thresholds evaluate the relationship between rainfall intensity and duration, requiring continuous 

rainfall series for a number of different rainfall durations. Other thresholds consider different kind of 

storm event data, like total storm rainfall or storm duration and intensity. For this study, the focus is 

on using continuous rainfall series of different duration, like for the I-D thresholds.  

A landslide inventory was created for this study, thus combining landslide data and rainfall data both 

triggering and non-triggering conditions could be established. Obtaining a threshold for these data 

would then require establishing a criterion for separating these two types of data. Such criteria were 

earlier established estimating the best fit of a threshold equation purely graphically from an I-D plot. 

In recent years  such threshold criteria has been established using different statistical methods like 

Discriminant Analysis, e.g. Jakob and Weatherly (2003), and Neural Networks (Lee et al. 2003). These 

multivariate exploratory techniques are suitable for handling multiple factors (StatSoft Inc 2011), and 

are also commonly used in other landslide and hydrology related areas; e.g. for evaluation of 

landslide susceptibility and hazard (Baeza and Corominas 2001, Lee et al. 2003, Santacana et al. 2003, 

Guzzetti et al. 2006, Baeza et al. 2010) and for hydrology studies related to correlation of satellite 

estimates and rain gauge data (Bellerby et al. 2000, Rossi et al. 2010).  

Statistical methods for establishing thresholds would also be tried and evaluated for the rainfall and 

landslide data in Bangladesh. Two multivariate statistical methods will be used: The widely adopted 

method discriminant analysis, e.g. (Jakob and Weatherly 2003, Cepeda et al. 2009, Rossi et al. 2010), 

will be used with the purpose of apply a second rainfall variable I-D threshold as by (Cepeda et al. 

2009). One method that cannot be found to have been used in threshold studies will also be 

attempted used, as it proves to be a relatively easy method for assessing multiple variables; 

classification tree analysis. Correlation coefficients will be considered when combining variables, and 

a simple form of ROC application will be used for evaluating results numerically.  

 

5.5.1 Data preparation 

 

5.5.1.1 Antecedent precipitation - predictors and outcome variable 

The first step of creating the thresholds was to prepare the rainfall inventory for a threshold analysis. 

Accumulated rainfall of 13 different durations (1d, 2d, 3d, 4d, 5d, 6d, 7d, 9d, 11d, 13d, 15d, 30d and 

60 days) were calculated for the whole rainfall series acquired for the TMPA-RT data. The values of 
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accumulated rainfall (antecedent rainfall) were given in rainfall intensity per day, calculated 

according to  

     
∑    

 
       

 
 

(3) 

 

where i is a day in the rainfall inventory, RF is the rainfall of day i in mm and AD,i is the antecedent 

rainfall of duration D (including day i) where D = [1d, 2d, 3d, 4d, 5d, 6d, 7d, 9d, 11d, 13d, 15d, 30d, 

60d]. Consequently, denomination of AD is mm/day. 

AD was calculated for each day throughout the rainfall inventory resulting in an almost 4 year’s long 

rainfall series including antecedent rainfall of 13 different durations - 13 predictors to use in the 

threshold analysis. As antecedent rainfall could not be calculated for the first D number of days, 

these days where given “no actual value”, NaN, as presented in Table A 5 in appendixes.  

In addition to dates and corresponding values of 13 predictors, an outcome variable was added to 

the inventory for threshold analysis. This variable was set to ‘y’ for days landslide(s) occurred and ‘n’ 

for when no landslides occurred. The outcome variable was dependent on both date and location; 

similar inventories were prepared for each TMPA grid position of extracted rainfall estimates. A part 

of this inventory is presented in appendix A, Table A 5, for illustration of the inventory structure. 

 

Table 5-4 Predictors used in this study 

Predictor 1 2 3 4 5 6 7 8 9 10 11 12 13 

Duration 1d 2d 3d 4d 5d 6d 7d 9d 11d 13d 15d 30d 60d 
Variable A1d A2d A3d A4d A5d A6d A7d A9d A11d A13d A15d A30d A60d 

 

The NaN data of rainfall accumulation were removed from the data set as the discriminant analysis 

function in Matlab classify only deals with existing data. All first 60 days of the threshold 

inventory were removed, but should not represent a problem as these 60 days represent the months 

January and February of 2007. As explained in chapter 4.2 these months are characterized as a dry 

period with only minor amounts of rainfall, besides has no landslides been found to occur in 

Bangladesh during these months. 

 

5.5.1.2 Predictor correlation 

The data set of different variables of antecedent rainfall (predictors), prepared as explained above in 

chapter 5.5.1.1, were to be applied in different statistical methods where high variable dependency 

would be undesirable. The goal of the different methods was to establish rainfall thresholds based on 

at least two different rainfall variables; establishing a threshold using two variable that are highly 

dependent, would not necessarily differ considerably from using one of the variables. For such a 

combination of rainfall variables to be effective, their dependency must be limited. This may also be 

reflected by an example: For describing the rainfall occurring during a period of rainfall using two 
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rainfall variables a combination of 5- and 6-days accumulation of rainfall would not necessarily be 

suitable, as these often tend to be quite similar. Using e.g. 1- and 5-days accumulated rainfall would 

on the other hand make more sense, as the daily data would pick up the daily extremes and the 5d 

data would represent a measure of the short time average rainfall if measured in mm/day.  

For assessing the dependency between the different predictors, an analysis of correlation was 

performed using the function corr in Matlab; this function combines (a set of) two different 

variables at a time using the correlation method of Pearson’s correlation coefficient as a default (The 

Mathworks Inc. 2011). Pearson’s correlation coefficient is defined as the covariance of two different 

variables, X and Y, divided by the product of their standard deviation.  

Calculated for all different combinations of predictors, the method produce a correlation matrix, as 

presented in Table 6-6. The correlation coefficient ρ is a number between 1 and 0 as an output for 

each combination of variables X and Y (here: combination of predictors), where 1 equals a perfect 

correlation and 0 equals no correlation. A high correlation was for this study defined as ρ ≥ 0.8. 

Highly correlated variables are as mentioned not desirable, and predictors of high correlation would 

not be combined in a threshold equation.  

 

5.5.2 Classification tree analysis 

Classification tree analysis (CTA) is a method used on one or more sets of data (predictor variables) 

to evaluate their membership to different classes (StatSoft Inc 2011). Such classes will in this study be 

related to the outcome classes “y” and “n”. A classification tree analysis is searching to find the 

predictors, and their values, that separate the classes in the best manner from a clustered set of 

data. This may be comparable with the search of a best fit condition between two or more 

parameters, representing the same principles as establishing a threshold. CTA may be very simple to 

perform, given the appropriate computational- or statistical software, as i.e. Matlab or programs 

developed for the purpose of CTA only. In Matlab the CTA is performed very easily using the function 

classregtree, which then include all predictors in the process of finding the best way for 

separating the classes testing one at a time.  

 

CTA is a hierarchy based system where several criteria for separation may be combined. One 

predictor is assessed at the time to find the best linear criterion for separating data between two 

classes. Ideally this separation would result in two data clusters; each with membership of all data 

points to only one class of data. The equivalent to this study would be to separate all landslide 

triggering conditions from the non-triggering conditions. Such a separation would be a 100 % 

success. As clustered data are usually not this easy to separate CTA search to find the best criterion 

for spitting the data into two groups; where most landslide triggering conditions are in one group 

and most non-triggering conditions are in the other. The best criterion (a value of one of the 

predictors) is saved in the classification tree.  

 

The split data, represented by two new clusters of data, are visualized in the classification tree as two 

new nodes branched out from the original data (which is also visualized as a node). The two new 

nodes make out a new level in the classification tree. Each group at this level is then assessed again, 

one predictor at the time, to find a new separation criterion for each. This separation may be 
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continued until each group contain only one data class; often resulting in many branch levels and a 

complex three (see Figure 5-2).   

 

For the CTA method used in this thesis the measurements are on ordinal scale, meaning that the 

criteria are defined by if the data are “higher than” or “lower than” a certain value; the linear 

splitting criteria are thus represented by a constant (StatSoft Inc 2011). This way the classes 

represent “landslide triggering” and “non-triggering” data, and the splitting criterion would be a 

horizontal or vertical line. 

A group on a lower branch-level is a result of all splits above, and is then defined by the combination 

of all the above separation criteria. This way, a group of data at level n would be defined by the 

criteria C1, C2, C3, …, Cn, where C is the split criteria. Each criteria may be defined by the value of any 

which predictor (P1, P2, P3, …, Pi) providing the best data separation.  

 

Despite that the method of CTA is very simple to use, it is not found to be widely used in landslide 

studies. Some have used the method for landslide studies in recent years (Wan and Lei 2009, Wan et 

al. 2010, Yeon et al. 2010), but not for establishing thresholds for triggering of landslides. There are 

no explanation for this found in the literature, only that it is widely used in fields like medicine and 

computer sciences. This may though be because more stringent data are believed to require more 

traditional methods like regression or discriminate analysis (StatSoft Inc 2011).  
 

 
Figure 5-2 Example of a classification tree. 

 

5.5.2.1 CTA: Carrying out the analysis 

Classification tree analysis (CTA) was used to analyse data from the inventory prepared for the 

threshold analysis (see Table A 5). As CTA could easily be carried out using the full set of predictors, 

the first CTA was conducted without selecting specific predictors based on the previously performed 

predictor correlation (chapter 5.5.1.2). Each splitting criteria resulting from the CTA would represent 

a potential threshold variable. N different criteria using N different predictors would result in N 

variables for the final threshold; e.g. C1, C2, C3 comprising the predictors Pi, Pj, Pk would result in a 

threshold of the variables V1, V2, V3. If some criteria consist of values from the same predictor this 
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would only change the resulting threshold variable, resulting in fewer threshold values; e.g. C1, C2, C3 

comprising the predictors Pi1, Pj, Pi2 would result in a threshold of the variables V1 and V2, where the 

value of V1 is related to Pi2 and V2 to Pj.  

 

Thresholds where established one classification tree level at a time; the best performing node at 

each level where selected and the corresponding splitting criteria (Ci) where applied in a threshold. 

This way, first, a single variable threshold would be established, then a two variable threshold using 

nodes from two branch levels, then a threshold utilizing three nodes, etc. Each nodes - and 

corresponding criterions - performance where checked using Class membership in the graphical 

interphase Classification tree Viewer in Matlab; on this basis the best performing criteria of each 

branch level where selected. Each established threshold were evaluated regarding their 

performance, assessed by calculating and evaluating parameters used in Receiver Operating 

Characteristics, as will be explained later.  

 

The classification tree analyses where performed in three stages to investigate how predictor 

correlation affected the results. The first CTA were performed combining all predictors, without 

considering correlation coefficients. In stage two, correlation coefficients were partially considered; 

based on one predictor all highly correlated predictors where left out of the CTA. Several stage two 

CTAs were conducted. In the final stage correlation coefficients between all predictors were taken 

into account, making sure no predictors used for establishing a threshold were highly correlated. It 

was assumed that the best threshold would only consist of predictors of ρ < 0.8.  

 

5.5.2.2 CTA: Testing threshold performance 

The performance of a threshold is highly related to how it would perform if implemented in an early 

warning system (EWS). It is crucial for an EWS for landslide mitigation purposes that landslide 

triggering conditions are discovered and that the number of false alarms is limited. Such variables 

may be assessed by calculating and evaluating parameters used in Receiver Operating Characteristics 

(ROC). ROC are usually applied using ROC curves to assess the rate between successfully predicted 

triggering conditions and false alarms (Fawcett 2006), and has earlier been used successfully for 

optimization of rainfall thresholds (Cepeda 2009). 

 

The principle of threshold optimisation for separating to groups of data becomes clear when 

visualized as in a figure by Beguería (2006): Figure 5-4 shows the optimized criteria (in this example a 

score) for a threshold between negative and positive observations of equal groups (a) and unequal 

groups (b); the optimization search to put most positive observations above the threshold and most 

negative observations below the threshold. The positive observations above the threshold are 

referred to as true positives (a) while the negative values above are false positives (b). Negative 

observations below the threshold are true negatives (d) and the positive observations below are false 

negatives (c). False positives are in common statistics literature called error type I and false 

negatives, error type II (Beguería 2006).  

 

Relations between these four different data types, true positives (TP), false positives (FP), false 

negatives (FN) and true negatives (TN), may be used to test the threshold performance. These 

relations are evaluated using equations as presented by Fawcett (2006) using a confusion matrix 
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(Figure 5-3), where true class represent the actual class of an observation and the hypothesized class 

represent the classification of an observation based on if it is above or below the established 

threshold.  

Other parameters that may be explained from the confusion matrix are; P - the total number of true 

class positive in the data set (TP + FN), N – the total number of true class negatives in the data set (FP 

+ TN), false positive rate (FPR) – the rate of false positives to the total of true class negative values (fp 

rate) and true positive rate (TPR) – the rate of  false negatives to the total of true class positive values 

(tp rate) (Beguería 2006, Fawcett 2006). The following relations may also be established using the 

confusion matrix; FN = P – TP and FP = N – TN.  

 

The Roc curve is defined by plotting the TPR (y-axis) by the FPR (x-axis) with the result that the top 

left position in the plot (1, 0) represents a perfect classification (Fawcett 2006). This way, the best 

performing threshold would be the data plot closest to (1, 0) in the ROC space. See Figure 6-7 for an 

example of a ROC curve. 

 

 

Figure 5-3 - Confusion matrix and variables for assessing threshold performance (Fawcett 2006). 

 

For application of the ROC curve in an early warning system for rainfall induced landslides, the 

variables of the confusion matrix would represent the following: 

 TP - rainfall condition correctly predicted to trigger one or more landslides 

 FP - rainfall condition predicted to trigger landslide(s) when no landslides occurred 

(potential false alarm) 

 FN - rainfall condition where no landslide is predicted, but landslide occurs (missed 

landslide event ) 

 TN - rainfall condition correctly predicted not to trigger any landslides 

 

This way the ROC curve demonstrates the rate of predicted landslides (TPR) by the rate of false 

alarms (FPR), important factors for EWS’s.  
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Figure 5-4 - The principle of classifying data of two classes into two groups of data with an optimizing a threshold 
(Beguería 2006). 

 
 

5.5.3 Discriminant analysis 

 

5.5.3.1 Introduction to discriminant analysis 

Discriminant analysis is a statistical method for multivariate analysis, used for obtaining a function 

which provides the maximum separation between groups of data (Lachenbruch 1968). As for other 

multivariate techniques, discriminant analysis may be used to evaluate one or several groups of data 

containing different data classes. The aim is to separate the different classes - ideally into discrete 

groups, but as this may often not be achieved for complex or clustered data the optimum criterion 

for separation is searched. This criterion is described by the discriminant function, the outcome of 

the analysis, and its ability to successfully separate the different classes of data may be described 
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with an error rate; the criterions rate of misclassified samples. There are different types of 

discriminant analyses, dependent on how the group relationship is evaluated and how the 

discriminant function is defined; e.g. linear- and quadratic discriminant analysis (Lachenbruch 1968, 

The Mathworks Inc. 2011).  

The simplest case of a discriminant analysis is performing a linear discriminant analysis (LDA) on only 

two groups of data. This may be thought of as using Multiple Regression; a linear equation of the 

form  

                         (4) 

 

, where a is a constant and b1-bn are regression coefficients, could be fitted to the groups (StatSoft 

Inc 2011). However, when dealing with more groups in a single analysis the numerical background 

become more complex. Still, the method is founded on simple principles for evaluation of mean and 

covariance of the different groups and theirs samples (Lachenbruch 1968, StatSoft Inc 2011).  

One important element of the discriminant analysis is the possibility of adding cost to the different 

data classes (Lachenbruch and Goldstein 1979). This increases the methods complexity, but is of high 

relevance for its analytical strength, as different classes may be given different weight. Consequently, 

the different classes of data may be prioritised by importance and affect the resulting discriminant 

function, changing the boundary condition i.e. the threshold it represents. 

In the case of rainfall thresholds data the discriminant function represents the numerical description 

of the threshold – separating landslide triggering conditions form non-triggering conditions. Thus 

may the classes of data be defined as outcomes; landslide triggered or no landslide triggered, ‘y’ or 

‘n’. Discriminant analysis has previously been used in the study of threshold landslides the 

mathematical background of discriminant analysis may be found in e.g. (Lachenbruch 1968, 

Lachenbruch and Goldstein 1979).  

 

5.5.3.2 Discriminant analysis using Matlab 

Using Matlab, a discriminant analysis is executed using the function classify available in the 

Statistical Toolbox. Classify may estimate both linear and quadratic discriminant analyses (LDA and 

QDA respectively) on two sets of variables (predictors), using a third variable as a classifier (outcome 

variable). As in the statistical theory of discriminant analysis the different classes may be given a cost, 

in the program titled priority. The priority is given in a 1-by-2 matrix where each value is between 0 

and 1, for this study priority is set to give a total priority equal to 1 (100%). For this study, as the 

(landslide) outcome variable is y or n, the level of priority is distributed between triggering and non-

triggering rainfall conditions (The Mathworks Inc. 2011).  

As only two predictors, resembling rainfall variables of daily data, are evaluated at once using a 

discriminant analysis the data could be presented in a scatter plot as shown in Figure 5-5. All daily 

data of one predictor is plotted against all daily data of the other; in the example 3 days by 6 days of 

accumulated antecedent rainfall (A3d by A6d) in mm/day. The non-triggering rainfall conditions are 

plotted as green dots and the triggering conditions as read circles, classified n and y respectively by 

the outcome variable, the blue line represents the discriminant function, i.e. the threshold.  
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Figure 5-5 Example of DA scatter plot, without established discriminant function 

 

5.5.3.3 Establishing a LDA methodology 

A methodology for analysing data using discriminant analysis in Matlab where developed, with 

corresponding scripts presented in Appendix C. The simplest type of discriminant analysis where 

selected; that is linear discriminant analysis (LDA) on a set of two groups (predictors). Due to the 

limitation in number of predictors per analysis, conduction a LDA for each predictor combinations, 

one at a time, was not an alternative. One possible solution was to apply the results from the 

preceding classification tree analyses, using the predictor combinations suggested there. This would 

be a simple, and maybe good, solution, but to be sure to get the best result of using a discriminant 

analysis a different approach where chosen: A loop where created in Matlab where a LDA were 

executed for all predictor combinations successively, creating a multiple LDA. All combinations of 

predictors, equal to those combined in the correlation matrix of Table 6-6, where analysed. To assure 

the best quality of the results, only predictor combinations with a correlation coefficient (ρ) less than 

0.8 where used, as for the classification tree analysis; the highly correlated combinations where 

ignored in further analysis.  

The linear discriminant function was defined by coefficients of one constant and two linear terms as 

presented in equation (5), where K, L1 and L2 represent the constant and linear coefficients.  x and y 

represents the analysed predictors equal to the x- and y-axis when plotted in a Cartesian coordinate 

plane, as in Figure 5-5. 

            (5) 



 

44 
 

 

For this equation to be valid as a rainfall threshold there are some criteria that has to be met: We 

define the rainfall variables of which the predictors x and y corresponds, as 

       and       ,  where  i < j  and    >     >     

             (6) 

 

,where i < j and represent the duration of accumulated antecedent rainfall in days; note that 

antecedent rainfall is given in intensity (mm/day). It is assumes that Ai represent accumulated rainfall 

of relatively short duration compared to Aj, as highly correlated rainfall variables are removed from 

the analysed data; thus will Aj indirectly reflect soil moisture conditions and Ai short duration high 

intensity conditions. Increased Aj will then increase landslide susceptibility and decrease the amount 

of Ai required to trigger landslides. It is also reasonable to assume that the absolute value of the 

constant K is higher than the linear coefficients.   

As L1 and L2 are numerical coefficients, equation (6) can be transformed to a more common form; 

   
      

   
 (7) 

 

 

         ,     
 

   
  ,   

  

   
   (8) 

 

,where a and b respectively are constant and linear coefficients describing the threshold curve.  

Taking the mentioned criteria into consideration, equation (6) proves that the linear coefficients and 

the constant must have opposite sign and that the linear coefficients must have the same sign. As 

these criteria had to be met for producing valid rainfall thresholds, they were also included as criteria 

used when selecting the best performing threshold. Linear discriminant function which did not meet 

these criteria where disregarded.  

Due to the high number of discriminant analyses a numerical evaluation of the linear discriminant 

function performance where needed, as a graphical evaluation of each LDA would be unrealistic. 

Such a numerical assessment of a threshold performance may be done by calculating a 

misclassification error rate (ERR). The ERR is a measure of the linear discriminant functions ability to 

successfully classify samples in a set of data. Error rates may be calculated for a particular sample, or 

for the full set of samples. As described by Lachenbruch (1968), the statistical theory of error rates in 

discriminant analysis is very complex. Simplified, it is a measure of the ratio between misclassified 

sampled and total number of samples.  Performing discriminant analysis in Matlab, ERR is calculated 

and may be saved as a variable. Here ERR is automatically weighted by the priority applied to the 

discriminant analysis (The Mathworks Inc. 2011).  
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5.5.3.4 LDA methodology – prior probabilities 

Compared to the non-triggering rainfall conditions in the landslide inventory, the landslide triggering 

conditions (class ‘y’) where highly outnumbered. As the samples of triggering conditions were of high 

importance, prior probability was applied to the linear discriminant analysis. Best fitted linear 

discriminant function, representing a threshold, were expected to be defined when applying high 

prior probability to the ‘y’ class, but to what extent was not known. A stepwise exploratory analysis 

was based on values of prior probability and applied to the data set: Each multiple predictor LDA, as 

explained in previous chapter were performed on a series of different prior probabilities, i.e. a 

second loop was applied. This methodology was used to investigate how prior probability affected 

the resulting linear threshold, and to locate the prior probability providing the best threshold 

performance. These steps where applied successively: 

 

Table 5-5 Example on misclassification error matrix output from a multiple LDA. The red fields represent predictor 
combinations excluded due to high correlation coefficient, and remaining blank fields are due to invalid threshold 
equation 

Pred A1d A2d A3d A4d A5d A6d A7d A9d A11d A13d A15d A30d A60d 

A1d - - 0,301 0,242 0,301 0,242 0,301 0,361 0,420 0,479 0,479 0,479 0,479 

A2d - - - - 0,419 0,419 0,419 0,419 - - - - - 

A3d 0,301 - - - - - - - - - - - - 

A4d 0,242 - - - - - - - - - - - - 

A5d 0,301 0,419 - - - - - - - - - - - 

A6d 0,242 0,419 - - - - - - - - - - - 

A7d 0,301 0,419 - - - - - - - - - - - 

A9d 0,361 0,419 - - - - - - - - - - - 

A11d 0,420 - - - - - - - - - - - - 

A13d 0,479 - - - - - - - - - - - - 

A15d 0,479 - - - - - - - - - - - - 

A30d 0,479 - - - - - - - - - - - - 

A60d 0,479 - - - - - - - - - - - - 

 

 

- First, the full range of possible prior probabilities (prior) were assessed at 0.05 intervals from 

[0.05 0.95] to [0.95 0.05], where prior was given by [(1-y) y] and y described the prior 

probability of the landslide triggering conditions. The best performing linear discriminant 

function from analysis of each prior were evaluated, and the prior probability providing the 

best conditions where basis for next step of the exploratory analysis. 

- The same principles where used for the next step, only at a lower scale. Multiple predictor 

LDAs where executed 20 times for different prior of 0.001 intervals. The prior probability 
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established as best fit in step 1 where used as centre point (Sp) for the range of priors, i.e. 

analysing a range of Sp+0.01 to Sp-0.01. Based on misclassification error rates (ERR), the best 

performing linear discriminant function were selected for each prior interval, and the all total 

lowest ERR decided which prior value to use for the final step of the analysis.  

- In a third and final step, the prior probability interval scale where further lowered 5:1, 

resulting in an interval scale of 0.002. An analysis where conducted using same method as in 

earlier steps; 20 intervals with result of step 2 as centre.  

Based on the result of step 3, the best performing linear discriminant function of the full exploratory 

analysis could be established. The analysis would establish the best level of prior for ‘y’ class rainfall 

conditions, and which predictors to apply in a final LDA to produce the best performing rainfall 

threshold.  
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6 RESULTS 
 

6.1 Inventories and data collection 
The amount of rainfall and landslide data available for this thesis was limited. Different sources were 

used, resulting in high variety in which descriptions where available. Data provided by GSB and ADPC 

provided relatively detailed information considering landslide type, landslide material and 

coordinates. The TRMM based global satellite precipitation estimates, TMPA-RT products, were 

available back to 1 March 2005, limiting the landslide inventory to landslide occurrence from that day 

to present. The resulting full landslide inventory is presented in appendixes’ Table A 3. Rainfall 

inventories were created in several stages: Extracted data from the initial TMPA-RT rainfall inventory 

series are presented in Table A 4 in appendixes. The inventory of different predictors, including an 

outcome variable, used for the threshold analyses is presented in Table A 5. This is presented by a 

sample on the data structure, as the full inventory of 4 years daily data could not to be attached to 

this document.   

 

6.2 Comparison of TMPA-RT and rain gauge data 
The only series of continuous rain gauge data were available for the Chittagong rain gauge; the data 

extended from 1st June 1996 to 31st December 2008. As TMPA-RT data were only available from 1 

March 2005 until present, the compared period was only of almost 4 years; 1402 continuous days 

from March 2005 to December 2008. The satellite rainfall products included NASAs TMPA-RT 

products 3B41RT and 3B42RT. The missing TMPA-RT data for January and February 2005 was not of 

high importance as this is a part of the dry period with low rainfall intensity and no landslide records. 

The position of the Chittagong rain gauge and the corresponding TMPA grid cell centre position were 

highly correlated with a latitude and longitude decimal degree position of 22.4° 91.8° and 22.375° 

91.875° respectively, making a good basis for a local correlation of the different sources of rainfall 

data as the difference in position was small. 

A small amount of the techniques of EDA were used to compare the rainfall data from TMPA-RT and 

the Chittagong rain gauge. Several simple techniques were used, as illustrated and explained in the 

following sections, comparing rain gauge data and the two TMPA rainfall products:  

 

6.2.1 Comparing the rainfall series 

The first part of exploratory data analysis is usually visualizing the data. A linear plot of the different 

data sources for the full period (Feb 2005 – Dec 2008) shows a high level of discrepancy between all 

three rainfall products, as shown in Figure 6-1 and Figure 6-2. Most peaks appearing in the rain gauge 

data (black line) seem to be picked up by the TMPA-RT products, but the magnitude is rarely in 

agreement. The merged TMPA-RT product seems to be most often overestimating extreme peaks, 

except from in 2005 when both TMPA-RT products tend to overestimate some peaks. This difference 

should not be due to TMPA-RT version numbers, as the current V6 was introduced in February 2005, 

but a change in the used IR satellite types (Huffman and Bolvin 2010) in the end of 2005 may be an 
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explanation. IR data seem to have a tendency to sometimes estimate smaller peaks of rainfall when 

no rainfall occurs, as may be seen in march and May 2005, Figure 6-1.  

 

 

Figure 6-1 Plot of the complete TMPA-RT rainfall series (daily data) compared to rain gauge data 

 

 

Figure 6-2 Plot of TMPA-RT rainfall estimates against gauge data; daily values in the period March 2005-November 2005 

 

 

Table 6-1 Statistical variables for the full reifall series of IR, IRmicro and rain gauges 

 mean std max 

Rain gauge 8,78 26,9 425,0 

IRmicro 6,39 20,5 334,4 

IR 5,63 16,67 224,6 

 



 

49 

Comparing mean, standard deviation and maximum daily rainfall intensity (Figure 6-1) indicate that 

IRmicro produce rainfall estimates that are overall closer to the rain gauge data than the IR data. It is 

important to notice that the highest rainfall intensity measured by the IRmicro product is highly 

overestimated, but conversely is the series absolute maximum rainfall intensity measured by the rain 

gauge relatively well estimated, but slightly underestimated. 

 

6.2.2 Comparison of monthly rainfall 

Histograms of monthly average rainfall were used to compare the total amount of rainfall between 

the different TMPA-RT products and the rain gauge data (Figure 6-3). The full 4-year correlation 

period were used to compare these data. Monthly rainfall is not of importance for the short high-

intensity rainfalls most likely to trigger landslides, but is still important for understanding the data 

and for observing at the annual variations. This comparison may also indicate the accuracy of 

antecedent rainfall of longer durations, an indicator for the long term soil water conditions and such 

a possible variable for rainfall thresholds. Comparing these data for rainy season, May to September-

October is most important, as this is the period where landslide triggering has been observed (see 

Figure 6-3).  

Figure 6-3 a) shows the average monthly rainfall for the studied 4-year period, comparing TMPA-RT 

and gauge data. It also compare the rainfall data to the distribution of landslides registered in the 

rainfall inventory; one line for landslides in the study area for comparing rainfall data – Chittagong 

(CG), and one for the full landslide inventory of Bangladesh. The figure shows that the TMPA 

products generally overestimate rainfall during the winter and hot weather period (January-May), 

and underestimates rainfall during the monsoon and post-monsoon period (June-December). Still, 

TMPA-RT data follow the annual rainfall trend except for the months June – August. For this period, 

of highest amounts of rainfall and highest occurrence of landslides, rainfall is extremely 

underestimated for both TMPA-RT products.  

Due to the high discrepancies in extreme rainfall values, as illustrated in the previous section, 

monthly rainfall values where compared only including intensities up to a certain level; < 50 mm and 

< 30 mm as shown in Figure 6-3 b) and c) respectively. The tendency of underestimated TMPA-RT 

rainfall estimates were still there, but almost removed for rainfall intensities below 30 mm. This 

indicates that TMPA-RT data predict rainfall poorly at higher intensities, which could be bad for 

establishing a rainfall threshold for the area.  

 

6.2.3 Number of rainy days per month 

A comparison of the number of rainy days per month was also conducted, as this is not important for 

a rainfall threshold, but is used for evaluating how the TMPA-RT estimates perform generally 

compared to the rain gauge. It was found that the satellite rainfall estimates registered more rainfall 

days than the rain gauge in Chittagong (se Figure 6-4). From the distribution of rainfall days 

throughout the year there are no sign of discrepancy in specific months; the TMPA-RT data have 

generally more registered rainy days throughout the year. The higher number of rainy days in the 

TMPA-RT data may be caused by rainfall in areas outside of Chittagong City, as one TMPA rainfall grid 

covers an area of 0.25 x 0.25 degrees - equal to an area greater than 25 x 25 km. As landslide 



 

50 
 

triggering are commonly related to high intensity rainfall and most daily rainfall values are expected 

to be of low intensity, this may not pose a problem for a threshold using one of the TMPA-RT rainfall 

products. On the other hand if some discrepancy is caused by high intensity rainfall, this may cause 

errors in the rainfall thresholds. A plot of rainfall intensity distribution and correlation plots of daily 

rainfall had to be made to look into this (see Figure 6-4 and Figure 6-5). 

 

 

 

Figure 6-3 Monthly average rainfall (2005-2008) for both TMPA-RT products and Chittagong rain gauge, presenting 
seasonal variations: a) monthly rainfall data compared to occurrence of landslides in Chittagong and Bangladesh. b) and 
c) monthly accumulation of rainfall when extreme daily rainfall events are removed from the data. 

 

Table 6-2 Annual mean rainfall for de different rainfall sources 

Rainfall source TMPA IR TMPA IRmicro Rain gauge 

Sum yearly average rainfall 1974 mm/year 2239 mm/year 3078 mm/year 
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6.2.4 Rainfall intensity distribution 

As mentioned earlier extreme rainfall intensities were expected to be most important for 

establishing the rainfall threshold, so deviations in low intensity rainfall could be tolerated to higher 

extent than for high intensity rainfall. Comparing the occurrence of high daily rainfall values was thus 

important. A rainfall intensity distribution was created, plotted as a histogram, comparing both 

TMPA-RT products and gauge data at different rainfall intensities (see fig Figure 6-5). Because of the 

high discrepancy in monthly rainfall values for the summer months June-August, a similar plot was 

also created for these months. This graphical method is commonly used in exploratory data analysis 

(EDA) to show how the data are distributed; using different distributions and distribution functions 

(PDF) to describe the data (Ang and Tang 2007). Instead of probabilities the data are here presented 

in number of rainy days.  

The majority of rainy days are of low rainfall intensity, and there are only few days of high or extreme 

rainfall intensity. The daily rainfall data may be described as exponentially distributed, with a high 

positive skewness and high kurtosis (Ang and Tang 2007). Comparing the different rainfall sources 

intensity distribution it becomes clear that the TMPA-RT rainfall estimates tend to overestimate the 

number of low intensity rainy days (≤ 20 mm/day). For rainfall values above 20 mm/day the number 

of rainy days are underestimated, compared to gauge data. Especially for daily rainfall values of more 

than 160 mm the satellite rainfall estimates were almost absent.  

 

6.2.5 Rainfall data correlation 

Scatter plots are probably the most important visual technique for determining how good the TMPA-

RT data will be for a threshold analysis, as a good correlation is depending on timing if the rainfall as 

well as the intensity. The rainfall intensity of each day from one data source is plotted against the 

rainfall intensity of each day from another. In case of a bad correlation, a trend in the scatter plot 

may be hard to find.  

Each TMPA-RT product were plotted against gauge data in scatter plots; one scatterplot 

discriminating between triggering and non-triggering conditions for landslide events in Chittagong 

(Figure 6-6), and one including an evaluation of when in the season the conditions occurred (Figure 

6-7). Both TMPA-RT data presented bad correlation to the rain gauge data, but the combined IR and 

microwave product revealed a slightly better correlation. This was also supported by the correlation 

coefficients; 0.248 for IR and gauge, 0.214 for gauge and IRmicro. Accounting only landslide 

triggering events the IRmicro estimates also preform best, but given correlation coefficients the 

performance of either TMPA-RT data are desirable.  By Figure 6-7 it may be noted that the highest 

extremes of daily rainfall occurs during the monsoon period, and some in the month before or in the 

post-monsoon period; for normal high to low values no trend is clear.  
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Figure 6-4 Number of rainy days per month registered by the TMPA-RT products and rain gauge (averaged 2005-2008) 

 

Table 6-3. Total annual averages rainy days for rain gauge and TMPA-RT rainfall estimates 

Rainfall source TMPA IR TMPA IRmicro Rain gauge 

Average rainfall days per year 142 days 125 days 119 days 
 

 

 

Figure 6-5 Rainfall intensity distribution of TMPA-RT and rain gauge data averaged for 2005-2008. 
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Table 6-4 Correlation coefficients for TMPA-RT data plotted against rain gauge data 

Correlation coefficients IR (3B41RT) IRmicro (3B42RT) 

Rain gauge 0.248 0.214 

 

 

Figure 6-6. Correlation plots of the full series of daily data for each TMPA-RT rainfall estimate against rainfall data (red 
stars represent days where landslide events occurred in the Chittagong area) 

 

 

Figure 6-7 Correlation plots of same data as Figure 6-6 with respect to seasonal rainfall variations; red represent rainy 
period and black period represent relatively dry periods, transfer areas represent periods of medium rainfall amounts 
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6.2.6 Missing data – TMPA-RT 

Discrepancies in the analysis above, between TMPA-RT products and Rain Gauge data, could have 

been affected by missing TMPA-RT data due to temporal lack of satellite coverage. It was found that 

a total of a total of 227 and 106 days were missing data in the period of study, for IR (3B41RT) and 

IRmicro (3B42RT) respectively. Table 6-5 shows the number of days where some TMPA-RT data were 

missed, sorted by satellite data type and by how many hours were missing per day; the data is given 

so the first column represent all days of missing data, the second represent only days with more than 

6 hours of missing data, and so on. The merged TMPA-RT product has fewer days off missing data, as 

expected due to combining the IR- and PMW- satellite data. On the other, more days have a higher 

number of lost hours; this is probably as the merged data has a resolution of 3 hours, while the IR 

data has 1 hour resolution and such a lower loss of hours for each file missing.  

The average rainfall of the days of missing data is relatively low, far below 10 mm/day, meaning that 

the total loss of rainfall data is not high considering that landslides occur in periods of intense rainfall. 

What is most important are if rainfall data where missed during high rainfall intensities resulting in 

loss of potentially landslide triggering rainfall conditions. A loss of more than 12 hours of rainfall 

during a rainy day have not been recorded here, but during up to 12 hours occurred during days of 

rainfall intensities of more than 70 mm/day for both TMPA-RT products. This has probably caused 

some lower TMPA-RT rainfall estimates. It is important to be aware of these missing data, but 

considering the other uncertainty and discrepancies found in the previous analysis this cannot be 

said to make a huge difference. 

 

Table 6-5 Missing TMPA-RT coverage and comparison to rain gauge data in the “lost” periods; a missed day represent a 
day where at least one hour of data were missing, NaN represent a missed hour of rainfall data. 

Source   NaN > 0  NaN > 6  NaN > 12  NaN > 18  

IR Missed days 227 13 6 3 

 Rainfall average (missed days) 4,45 mm 7,42 mm 0 mm 0 mm 

 Max (missed day) 75,83 mm 75,83 mm 0 mm 0 mm 

 

IRmicro Missed days 106 21 16 15 

 Rainfall average (missed days) 4,71 mm 5,42 mm 0 mm 0 mm 

 Max (missed day) 80,55 mm 70,19 mm 0 mm 0 mm 

 

 

6.3 Threshold analysis 
Based on results of the TMPA-RT and rain gauge data comparison it was concluded to do the 

threshold analysis based on the merged IR and PWM product, 3B42RT; this was the product 

estimating rainfall closest rain gauge data, both regarding intensities and intensity distribution, total 

rainfall amounts, correlation and the least number of missing days. Some intensity peaks of the 

merged product were severely overestimated, but this was acceptable as underestimation of peak 

intensities generally seemed less than for the IR product.  
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After preparing the landslide data for threshold analysis, some further comparison of gauge and 

TMPA-RT data were possible. Accounting each day of the analysed period (2005-2010) as one data 

sample, a rainfall condition, and each variable of antecedent rainfall of each day as a data sample, 

the available data consisted of a total of 16824 samples equally spread over 12 different TMPA-

locations (grid boxes); all these samples where to be assessed in the threshold analysis.  

 

6.3.1 Comparing landslide triggering rainfall data 

As the outcome variable distinguished between triggering and non-triggering rainfall days, the 

triggering landslide conditions of the satellite rainfall estimates could be compared against rain 

gauge data: Rainfall data from landslide triggering days where extracted from the 3B42RT rainfall 

inventory and are presented in Table A 6 in appendix A. Plotting these data in a semi-logarithmic 

intensity-duration space reveals no certain trends for all data in general (Figure 6-8), put it can be 

pointed out that the events of the highest intensities (> 100 mm/day in day of landslide) showed 

similar trends; these  also represented the recent most fatal landslide events in Bangladesh.  

 

 

Figure 6-8 I-D plot of all landslide triggering events in Bangladesh for 3B42RT rainfall estimates 

 

Rainfall data from five TMPA-RT grid boxes represented areas where the 11 June 2007 Chittagong 

landslides event and the 15 June 2010 event in Cox’s Bazar and Bandarban. These data where 

compared against rain gauge data provided by ADPC as presented in appendixes’ Table A 7 and in 

Figure 6-9 and Figure 6-10. This comparison stressed what was already indicated from the complete 

rainfall series comparison, that the extreme rainfall intensities are not properly estimated by the 

TMPA-RT satellite based rainfall estimates. On the other hand it revealed similarities in the I-D curves 

of rain gauge and 3B42RT data. It must be noted that the 3B42RT data overestimated the rainfall 

intensities in the Cox’s Bazar area, and underestimated the rainfall in Chittagong. For the Cox’ Bazar  
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Figure 6-9 I-D plot of gauge and 3B42RT data of the fatal event in Chittagong, 11 June 2007 (3B42RT data represented by 
two different grid box positions). Coordinated may be found in appendixes’ Table A 7 

 

 

Figure 6-10 I-D plot of gauge and 3B42RT data of the fatal event in Cox’s Bazar and Bandarban district of 15 June 2010; 
3B42RT data represented by three different grid box positions (coordinated may be found in appendixes’ Table A 7) 

 

event it should be mentioned that the rainfall intensities may have been stronger in other parts of 

the exposed area than what was measured by this one rain gauge; a IFCR (International Federation of 

Red Cross and Red Crescent Societies) DREF (Disaster Relief Emergency Found) operation report 

(IFRC 2010a) of the event in Cox’ Bazar referred to a rainfall of 18 inches (461 mm) in the period 12 – 
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15 June. This 4-days average rainfall intensity of more than 115 mm/day is more comparable to the 

3B42RT rainfall values. 

 

6.3.2 Predictor correlation 

The data set prepared for establishing thresholds using statistical multivariate analyses consisted of 

13 different predictors. Each predictor corresponded to a variable of antecedent rainfall of mm/day; 

each with series of rainfall intensity values for different duration of accumulated rainfall. This is 

further explained in section 5.5.1.1. As all predictors were to be combined in different multivariate 

analysed, and high dependence between variables might affect the results, all these predictors were 

assessed regarding their correlation coefficients. The result of the assessment was a correlation 

matrix as shown in Figure 6-6. A high dependency, correlation coefficients (ρ) ≥ 0.8 is shaded red in 

the figure; these combinations were not desired for the final established thresholds.  

 

Table 6-6 Correlation coefficient matrix for 3B42RT (highly correlated predictors (ρ > 0.8) are shaded red) 

 

 

6.4 Classification tree analysis 
All classification tree analyses (CTA) were performed according to the methodology described in 

chapter 5.5.2, on the merged TPMA-RT rainfall estimates, and the results were analysed using 

receiver operation characteristics (ROC). Several CTAs were completed, each resulting in a 

classification tree; these are fully presented in Appendix B. The classification tree analyses where 

performed in three stages to investigate how predictor correlation affected the results, as described 

section 5.5.2.1: 

 Initial stage – all predictors: a CTA were conducted without concern of predictor correlation 

coefficients. 

Pred A1d A2d A3d A4d A5d A6d A7d A9d A11d A13d A15d A30d A60d

A1d 1,000 0,827 0,705 0,632 0,574 0,537 0,509 0,472 0,447 0,426 0,414 0,368 0,306

A2d 0,827 1,000 0,904 0,813 0,746 0,693 0,655 0,604 0,569 0,541 0,524 0,459 0,379

A3d 0,705 0,904 1,000 0,936 0,865 0,809 0,763 0,701 0,659 0,627 0,604 0,525 0,434

A4d 0,632 0,813 0,936 1,000 0,953 0,896 0,849 0,778 0,731 0,695 0,668 0,578 0,478

A5d 0,574 0,746 0,865 0,953 1,000 0,963 0,917 0,842 0,791 0,753 0,723 0,623 0,516

A6d 0,537 0,693 0,809 0,896 0,963 1,000 0,970 0,898 0,842 0,801 0,770 0,662 0,550

A7d 0,509 0,655 0,763 0,849 0,917 0,970 1,000 0,943 0,886 0,843 0,811 0,696 0,579

A9d 0,472 0,604 0,701 0,778 0,842 0,898 0,943 1,000 0,958 0,913 0,878 0,750 0,630

A11d 0,447 0,569 0,659 0,731 0,791 0,842 0,886 0,958 1,000 0,967 0,931 0,794 0,671

A13d 0,426 0,541 0,627 0,695 0,753 0,801 0,843 0,913 0,967 1,000 0,974 0,832 0,706

A15d 0,414 0,524 0,604 0,668 0,723 0,770 0,811 0,878 0,931 0,974 1,000 0,864 0,737

A30d 0,368 0,459 0,525 0,578 0,623 0,662 0,696 0,750 0,794 0,832 0,864 1,000 0,882

A60d 0,306 0,379 0,434 0,478 0,516 0,550 0,579 0,630 0,671 0,706 0,737 0,882 1,000
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 Stage 2 – most predictors: all predictors of high correlation to one selected predictor were 

excluded from the CTA. Several CTAs were conducted, using different predictor as exclusion 

criterion each time.   

 Final stage – some predictors: with basis of two predictors, removing all predictors highly 

correlated to these two, a final CTA where conducted.  

Some CTAs proved not to deliver any valuable results; a full analysis will not be presented for these, 

but all resulting classification trees are presented in 88Appendix B. For the CTAs providing valuable 

results to some degree the most important segments of the classification trees and the 

corresponding data and ROC curves presented.  

For classification by CTA in Matlab it became clear that the different predictors must be handled with 

caution, as predictor names cannot be inserted to the applied data set. The output predictors in the 

classification tree are given the variables x1, x2, x3, …, xn corresponding to each set of data (each 

column corresponding to the data in figure XXX). This way, when one predictor is removed, all 

succeeding variables will be assigned new predictors. The relation between classification tree 

variables and the predictors corresponding rainfall variables are listed in figures and tables to avoid 

confusion.  

 

6.4.1 CTA – stage 1 

The first stage of CTA utilized all 13 predictors. Threshold criteria were selected one variable at the 

time, one classification tree branch level at the time. For each level the best preforming criteria were 

selected, as illustrated in Figure 6-11, and for each variable applied to the threshold the thresholds 

performance where assessed using ROC variables true positive rate (TPR), false positive rate (FPR) 

and accuracy (ACC), as defined in section 5.5.2.2. For each added threshold variable (or lowered 

variable value) the number of false positives increased. The increase was strong when adding the 5th 

threshold criteria, resulting in a high false positive rate.  

Assessing these data using the ROC curve it was found that the threshold resulting in FPR = 0.625 and 

FNR = 0.034 provided the best performance. This threshold includes 3 variables, as presented in 

Table 6-7 below, utilizing the predictors x2, x5 and x6 representing the rainfall variables A2d, A5d, and 

A6d respectively. The variable A2d appears in two criteria, (a) A2d = 231 and (b) A2d = 138, 

corresponding to the CTA criteria x2 < 231, and x2 < 138. The existence of criterion b only lowers the 

value of the already existing criterion.  

Using the suggested variables from the combination of CTA and ROC then result in the following 

threshold criteria, at which exceeded would result in a high probability of triggering of landslides:   

A2d = 230.8      
A5d = 119.1      
A6d =    35.9      

(9) 

 

These threshold criteria represent a challenge, concerning its reliability: The large difference 

between A5d and A6d is challenging; as this indicates the two variables are not highly dependent on 

each other, but the predictor correlation coefficient show high correlation, ρ = 0.953; high 
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correlation where defined as ρ ≥ 0.8. Additionally, as A2d and A3d are highly correlated, ρ = 0.904, 

these are not ideal to be combined in the threshold. Summarized, these things indicate that this 

threshold cannot be used.  

 

Table 6-7. Thresholds selected in initial CTA and corresponding ROC values 

CTA 
pred-
ictor 

Equiv. 
rainfall 
variable 

Threshold values (mm/day) Threshold  
value 

(mm/hr) 

# of 
threshold 
variables  

TP FP FPR TPR 
A2d A3d A5d A6d 

x5 A5d 
  

119,1 
 

119,1 1 2 0                 -       0,125  

x2 A2d 230,8   119,1   230,8 2 3 1 5,95E-05    0,188  

x2 A2d 138,1 
 

119,1 
 

138,1 2 5 19 1,13E-03    0,313  

x6 A6d 138,1   119,1 35,9 35,9 3 10 571       0,0340     0,625  

x3 A3d 138,1 6,1 119,1 35,9 6,1 4 11 12682          0,755    0,688  

 

 

6.4.2 CTA – stage 2 

Based on which variables of antecedent precipitation where selected in the initial CTA threshold, the 

second stage were initiated performing CTAs with a selection of variables. In four separate CTAs the 

single rainfall variables, A2d, A3d, A5d and A6d, were used as basis for excluding all predictors of ρ ≥ 0.8. 

As an example, according to the correlation coefficients in Table 6-6 using the rainfall variable A5d 

would exclude the variables A3d, A4d, A6d, A7d and A9d. Correlation between the other parameters 

selected of the CTA was not considered.  

It was found that the ROC curve again suggested (see Figure 6-12) a 3-variable threshold. Similar 

problems appeared to be present in the thresholds of these CTAs as of the initial CTA. The CTAs using 

A2d and A5d as basis for parameter selection, where the only without highly correlated predictors in 

the suggested threshold; the resulting thresholds were the same and are thus presented as one. The 

other CTAs were disregarded and are not presented here.  

Predictors of high correlation where present in the suggested thresholds as well; A5d and A6d. These 

two variables are highly correlated, but the suggested intensities for the threshold suggested 

something different with values of 119.1 mm/day and 35.9 mm/day respectively. The resulting 

threshold of this stage did not change compared to of the initial CTA threshold. All ROC parameters 

also stayed the same, including TP, FP, TPR, FPR and the accuracy ACC. The ROC curve thus also 

stayed the same (Figure 6-12). The new threshold was defined by the following 3 criteria, according 

to the classification tree in presented in Figure B 2 in appendixes and the following variables and 

parameters: 
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Figure 6-11 Initial CTA; selected criteria for evaluation of potential thresholds by ROC 
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A2d    =   230.8      
A5d    =   119.1      
A6d    =      35.9      

(10) 

 

Table 6-8. Thresholds selected in CTA stage 2 and corresponding ROC values 

CTA 
pred-
ictor 

Equiv. 
rainfall 
variable 

Threshold values (mm/day) Threshold  
value 

(mm/hr) 

# of 
threshold 
variables  

TP FP FPR TPR 
A2d A5d A6d A11d 

x2 A5d   119,1     119,1 1 2 0                 -       0,125  

x1 A2d 230,8 119,1 
  

230,8 2 3 1 5,95E-05    0,188  

x1 A2d 138,1 119,1     138,1 2 5 19 1,13E-03    0,313  

x3 A6d 138,1 119,1 35,9 
 

35,9 3 10 571       0,0340     0,625  

x6 A11d 138,1 119,1 35,9 7,05 7,05 4 11 11632          0,692    0,688  

 

 

6.4.3 CTA - stage 3 

The final stage of the CTA approach for establishing a rainfall threshold was using a combination of 

several predictors as basis for excluding others from the analysis. The two rainfall variables appearing 

at the top two CT branches in all previous CTAs were selected; A2d and A5d. This excluded 

approximately half of the rainfall variables from the analysis; A1d, A3d, A4d, A6d, A7d and A9d. ROC curve 

and variables (see Figure 6-12 and Table 6-9) related to this final CTA suggested a threshold of only 2 

variables; none of high correlation (see Table 6-6). The final CTA’s suggested threshold criteria and 

ROC parameters are presented below, and resulted in the following threshold criteria: 

A2d    = 138.1      
A5d    =    35.5      

(11) 

 

Table 6-9. Thresholds selected in the final stage in CTA approach and the corresponding ROC values 

CTA 
pred-
ictor 

Equiv. 
rainfall 
variable 

Threshold values (mm/day) 
Threshold  

value 
(mm/hr) 

# of 
threshold 
variables  

TP FP FPR TPR 
A2d A5d A11d A60d 

x2 A5d   119,1     119,1 1 2 0                 -       0,125  

x1 A2d 230,8 119,1 
  

230,8 2 3 1 5,95E-05    0,188  

x1 A2d 138,1 119,1     138,1 2 5 19 1,13E-03    0,313  

x2 A5d 138,1 35,5 
  

35,5 2 10 625         0,037    0,625  

x3 A11d 138,1 35,5 7,05   7,05 3 11 11687         0,695    0,688  
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Figure 6-12 ROC curve of the threshold suggested by the above mentioned CTAs. Note that this curve include plots from 
all stages of CTA analysis; the performance is equal to such degree they cannot be separated visually. 

 

6.4.4 CTA threshold evaluation and final results 

The true positive rate (TPR) of the suggested threshold stayed the same for all stages of classification 

tree analyses (CTAs), meaning that all predicted the same number of triggering rainfall conditions 

correctly. A small increase in false positive rate (FPR) from 0.0340 to 0.0372, were present in the ROC 

of stage 3 compared to the other stages. This results in a slightly decreased rainfall threshold 

performance, as application in an early warning system (EWS) would result in a ~10% increase in 

false warnings.  

The decrease from four to three threshold variables on the other hand is to be considered as an 

advantage; as all established variables hold uncertainty, fewer variables are desirable. Using highly 

correlated variables could also pose an increased uncertainty. As the change in FPR is relatively small, 

the decrease in uncertainty of utilizing fewer variables may compensate for the increase in FPR.  

 

 

6.5 Discriminant analysis 
Linear disccriminant anslysis (LDA) was performed for combinations of a series of 13 different 

predictors, where each predictor represented a variable of anteceedent precepitation specified in 

rainfall intencity (mm/day), originated from the merged TMPA-RT rainfall estimates. Such an analysis 

is hereby called an multiple linear discriminant anaysis (multiple LDA), as many LDAs are executed at 

once. The predictor combinations correlation coefficent matrix, as presented in Table 6-6, were 

taken into account not performing any LDAs on highly correlated predictors ρ ≥ 0.8. Additional 

criteria were applied to get a correct match of the discriminat function, as listed in relation to 

equation (6), page 44. Performance of each defined discriminant function where evaluated using 

missclassification error rates (ERR). The predictor combination producing the lowes ERR was then 
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selected producing a single LDA output, as presented in Figure 6-13 and Figure 6-14 . This variable 

proved to work good for finding the best performing predictor combination and was used in an 

exploratory analysis, as explained in section 5.5.3.4, adjusting ERR for finding the best possible prior 

probability for optimal fit of a linear discriminant function (linear discriminant function). The results 

of the LDA methodology will be presented stepwise, as explained in above mentioned section: 

Before applying any prior probabilities on multiple LDA analysis, the results of one single multiple DA 

where assessed. As visible in Figure 6-14 a), the plotted discriminant fuction allready showed a 

tendecy to sucsessfully discriminate between different classes of data represented by triggering and 

non-triggering conditions. A problem regarding this initial result is that the discrimanant function 

seems to preferre having the highes amount of false positives (FP) to true positives(TP), se section 

5.5.2.2 for a description of these values. This threhold represented by the discriminant function is not 

optimal as most landslides are missed, i.e. occuring below the threshold.  

 

6.5.1 Step one of multiple LDA methodology 

To establish the best possible threshold represented by a linear discriminant function, a multiple LDA 

were performed for different ranges of prior probabilities, the best performance for each range were 

found using misclassification error estimates (ERR). Prior probability may be set to between 0 and 1 

for each class of data the LDA try to discriminate. The prior probabilities were always set so that the 

total prior of the system was 1; e.g. [0.7 0.3], where 0.7 is prior probability of triggering conditions 

and 0.3 of non-triggering conditions.  

Initially exploratory ERR based analysis were conducted at prior intervals of 0.05, from [0.95 0.05] to 

[0.05 0.95]. The results of this analysis is presented in Figure 6-13 a) and show that the lowest error 

estimates are expected when the prior of triggering events are close to zero. High priori probability 

for landslide triggering events produce ERR values a lot higher than for lower values. The best 

performing LDA threshold for the combination of prior probabilities and predictors were A2d and A5d 

at a prior of triggering events at 0.05; these data are plotted in Figure 6-14 b).  

 

6.5.2 Step two of DA, scale 0.01 

In the next step, the same methodology of exploratory multiple LDA where used, where best 

performance again was found using ERR. At this step the scale of prior intervals were set to 0.01 and 

the intervals of exploration were gathered around triggering prior of 0.95, the area from last stage 

showing the least error for the high prior probability of triggering conditions. The resulting 

distribution are shown in Figure 6-13 b), indicating a best fit of a rainfall threshold and corresponding 

discriminant function at ERR = 0.94, where the discriminant function are presented in Figure 6-14 c). 

 

6.5.3 Final step of DA, scale 0.002 

Further refinement of the exploratory analysis was conducted at same principals as the previous 

steps. This was considered the final step, as the scale was starting to get really small and as the 

results in Figure 6-13 c) and Figure 6-14 d) show, the change in the linear discriminant function was 

very low.  
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Figure 6-13. Distribution of ERR from the exploratory multiple LDA based on prior probability of triggering events. Figure 
shows the tree steps of analysis at different scale: a) scale 0.05, b) scale 0.01 and c) scale 0.002. 

 

6.5.4 LDA –results and evaluation 

The final proposed threshold in form of a linear discriminate function was 

 

                                  . (12) 

 

The variables x and y are represented by the rainfall variables A6d and A1d respectively, and 

considering equation (5) to (8) this can then be written 

 

               . (13) 

 

Using the established threshold from LDA, rainfall induced landslides are expected to occur if daily 

rainfall (A1d) exceeds a value of 44 mm/day – 0.826 A6d mm/day, where A6d is the antecedent 6 days 

accumulated rainfall. Due to the high differences in rainfall distribution and intensities for the 

landslide triggering days a good performance of this threshold cannot be achieved, and application in 

an early warning system would not be recommended at this point. As visible in the figures below, 

there would be too many false positives and false negatives related to this threshold in this area.  
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Figure 6-14. Succeeding results of LDA following the successive steps of exploratory multiple discriminant analyses: a) 
LDA using no prior probabilities (equals [0.50 0.50] prior), b) LDA at step one, c) LDA at step two and d) LDA at final step 

 

Figure 6-15. Threshold plot for last stage at prior scale 0.002, zoomed in at the area of estimated rainfall threshold 
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7 DISCUSSION 
 

7.1 Comparison of rain gauge and TMPA-RT data 
The limited amount of rain gauge and landslide data for Bangladesh posed a challenge for performing 

a good relationship study between rain gauge data and NASAs TRMM (Tropical Rainfall Measuring 

Mission)-based TMPA-RT (Real-Time - TRMM Multi-satellite Precipitation Analysis) data products; 

3B41RT and 3B42RT. Still, the study conducted for the rain gauge of Chittagong did prove some 

important points that may be considered general. There were significant differences in TMPA-RT 

estimated rainfall values and rain gauge values; this was evidenced both by seasonal differences in 

rainfall amounts, annual mean rainfall values, rainfall intensity distributions, number of rainy days 

and by correlation plots. Correlation coefficients were very low. The most severe difference was 

found in the lack of rainfall amounts estimated by TMPA-RT data in the wettest period of year, June - 

August. Additionally, the rainfall estimates did not reflect the correct magnitude of the extreme 

rainfall event events. This problem had a direct consequence on the estimation of high intensity 

rainfall and was not promising for the threshold evaluation. An overall better performance for the 

3B42RT product, based on merged infrared (IR) and passive microwave (PMW) rainfall estimates, 

compared to the IR based 3B41RT product, resulted that 3B42RT were selected for further studies. 

The IR based data provides better temporal resolution (1 hour) compared to the 3 hour resolution of 

the IR-PMW (IRmicro) data, but this was considered less important for this initial study as the 

available rain gauges only provided daily data.  

There was also uncertainty related to the performance of TMPA-RT data at local level; one single grid 

box of TMPA-RT estimates were compared to one single rain gauge. This resulted in scale challenges, 

as one TMPA-grid is more than 0.25° x 0.25° (equal to approximately 25 x 25 km in Bangladesh). This 

partly explains the difference between the rain gauge and the TMPA-RT data.  

Application of the SPE data to threshold studies in non-instrumented areas proved to represent a 

challenge; when too low landslide triggering rainfall values were observed, these could not be 

validated or be surely disregarded. As a result rainfall thresholds based on 3B42RT data may be 

established too low, or landslide triggering storms may be missed.  

Note to data sets: It was found that the initial rainfall data for the rain gauge Chittagong was shifted 

with one day, so that the day of the fatal landslide events was registered with 88 mm instead of 425 

mm; this was confirmed by e.g. (Ekram et al. 2007, IFRC 2007, Gov. Bangladesh 2010). This affected 

the TMPA-RT and rain gauge correlation, as this was conducted only on this rain gauge. The 

correlation plots and coefficients must thus be disregarded. The correlation of triggering event is 

correct, as this was conducted on a later stage, after the shift in the data was discovered.  

 

7.2 Establishing rainfall thresholds for Bangladesh 
The results of classification tree analyses (CTAs) and linear discriminant analyses (LDAs) based on 

3B42RT data revealed a highly mixed data set, with a large variety of triggering conditions. The 

analysis was based on variables of antecedent rainfall, each variable of different rainfall 

accumulation duration. The rainfall variables were denoted Ai, where i equals 1 day, 2 days, 3 days, 
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etc. and Ai is the average rainfall intensity of duration i in mm/day. Considering one value of a 

variable Ai on a certain day as a rainfall condition or data sample, the following was found. The 

samples were sorted in triggering and non-triggering rainfall conditions (two classes of data), in a 

highly mixed group with no obvious border between the data classes (see e.g. Feil! Fant ikke 

referansekilden.).  Some few data samples of triggering conditions were considered as extreme 

values. Some triggering conditions were really low. These may be underestimates by the 3B42RT 

product, such representing some minimum value outliers; this could not be determined due to lack 

of comparable rain gauge values. Some of the odd values resulting from some of the CTAs were 

probably caused by these values. As shown in Table A 6 and Figure 6-8, the extreme rainfall events 

clearly stood out from the rest of the registered events, these are further discussed in section 7.2.2.  

 

7.2.1 Regional thresholds 

One of the aims of this study was the assessment of the feasibility for establishing empirical rainfall 

thresholds encompassing the whole region of Bangladesh using simple rainfall variables. The high 

diversity of triggering conditions found in this study proves that this is not possible without a high 

level of uncertainty. Regional thresholds come with some level of uncertainty, regardless of rainfall 

data source, because of different levels of landslide susceptibility caused by differences in surface 

geology, vegetation, climate conditions, etc. Implementing such variables in a further assessment of 

landslide triggering conditions in Bangladesh would be one alternative for continuation. This may be 

a comprehensive process and requiring higher level of detail for the data. A simple first assessment 

of these conditions could be applied by rough classifications of physiographic and climate 

classifications or mean annual precipitation (MAP) as presented in chapter 0 in this study.  

 

7.2.2 Local conditions 

From the TMPA-RT data of triggering conditions extracted from the full 3B42RT inventory, as 

presented in Table A 6 and Figure 6-8, five rainfall series of extreme intensity were found to be 

clearly distinguishable from the rest of the data. As these were corresponding to the two most fatal 

landslide events in Bangladesh, these should be noticed. The I-D plots of these TMPA-RT data were 

clearly similar to the ones of rain gauges from the same area (Figure 6-9). Performance of the TMPA-

RT data was generally found to be inadequate, and correlation of extreme daily rainfall did not seem 

very good based on the data correlation for Chittagong. Although the rainfall intensities were 

somewhat different, extreme intensities proved to be picked up by the TMPA-RT data. This discovery 

indicated that satellite based rainfall estimates may be used to successfully predict the most fatal 

storms, which is also suggested by Habib et al. (2009). A further step in assessing the applicability of 

TMPA-RT data for landslide prediction in non-instrumented areas is the further study of these storms 

events, and on non-triggering high intensity rainfall events.  

It is suggested to establish thresholds for the hill tracts of Bangladesh alone, as this represents a 

relatively homogeneous area with similar physiographic and rainfall conditions. This is also where the 

most fatal events have occurred.  
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7.2.3 Multivariate analysis; CTA and LDA 

Methodology for applying classification tree analysis (CTA) and linear discriminant analysis (LDA) 

where developed for the programming language Matlab and using functions available in the Matlab 

Statistical Toolbox. It was found that the methods could be developed and applied relatively easy 

using this software. The methodology was based on the goal of establishing thresholds with best 

possible performance for the full region of Bangladesh.  

 

7.2.3.1 CTA 

CTA proved to establish a relatively good threshold resulting in a false positive rate of just below 4 %. 

No susceptibility classes or variables other than antecedent rainfall were added in the analysis; hence 

is this considered a good result. The threshold resulted in low true positive rate (TPR) of only 0.625, 

but this included only 6 landslide events of which corresponding rainfall intensities is believed to be 

underestimated.  

A peculiar feature of the CTA results is that the final performance of the established thresholds was 

virtually the same, independent of which variables were used. As a result the ROC curve was not able 

to distinguish which threshold performed the best. Using ROC to find which levels of the 

classification tree to include, and thus indirectly the number of variables to include in the threshold, 

worked well. As the method is not currently automatized, there are surely room for improvement of 

the method using the same principals.  

The CTA method produces a threshold of a rather untraditional form, as described by Guzzetti et al. 

(2007) most thresholds are related to intensity-duration (I-D) plots or event duration or intensity. The 

only similar published rainfall threshold seems to be an event based thresholds using the variables 

A15d and R (equal to A1d in this thesis) at 3 different intensity levels (Lumb 1975). The method does 

successfully separate triggering and non-triggering rainfall conditions, to some degree, and further 

application of the method is suggested. 

 

7.2.3.2 LDA 

Numerical assessment of the thresholds established using linear discriminant analysis, using e.g. ROC, 

was not performed. Misclassification error rates (ERR) were used to identify which combination of 

rainfall variables resulted in the least misclassified samples, and proved to do this successfully. 

Applying high prior probability to the landslide triggering events resulted in a threshold fitting 

seemingly good to the lower bounds of the landslide triggering rainfall intensities. The number of 

misclassified samples of the final established threshold seems very high (se Feil! Fant ikke 

referansekilden.); a better performance may be found applying quadratic discriminant analysis 

(QDA).  

Despite the low performance of the threshold suggested by this method, the prior probability-based 

exploratory LDA analysis seems to be a good method for selection of variables. Additionally, changing 

the prior may be a good tool for applying different levels of susceptibility. This support the use of 

discriminant analysis for parameter selection and refinement of other threshold types like the I-D 
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threshold as proposed by Cepeda et al. (2009). Further use of LDA would require application in I-D 

thresholds. Application of QDA may also prove to be useful.  

 

7.2.3.3 Extreme events: adjustments of methods 

A focus on these high intensity events would result in potential refinement of the thresholds, and 

limit the study area to the eastern hilly areas of Bangladesh. A threshold aiming for the high-intensity 

storms may simply be achieved selecting less threshold variables. The same application of ROC 

curves may then not be possible, and it is suggested to re-evaluate what decision criteria or method 

to be used. Excluding rainfall data below a certain intensity level could be a different approach. The 

applicability of CTA for this purpose is indicated by results in the current study; by removing the third 

variable of the already established threshold, five extreme rainfall intensity events remains above the 

threshold (see Table 6-3 and equation (11). 19 samples of false positives (FP) remain. These are 

promising numbers, and a further assessment of high-intensity storms would be advisable.  

For LDA it is found that the linear discriminant function is drawn towards the extreme rainfall 

intensities for low prior probability of triggering events (Feil! Fant ikke referansekilden.). This 

suggests that a LDA should be conducted with focus on low triggering event prior, to see how this 

will affect the linear discriminant function. The same method as used for this study may be applied.   
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8 CONCLUSION 

8.1 Conclusive remarks on the current study 
Rainfall induced landslides represent an important part of the threat of natural hazards to human 

lives, as stressed by recent fatal landslide events in Bangladesh. Especially the densely populated 

areas in the southeast region of Bangladesh, Chittagong, are frequently hit by fatal events. High 

intensity rainfall, often of several days, was the main triggering factor.  

It was found that satellite precipitation estimates (SPEs), also called satellite rainfall estimates, 

provide readily available rainfall estimates in relatively high temporal and spatial resolution. There is 

high uncertainty related to the use of rainfall estimates even when using daily accumulated rainfall 

values. Comparison of NASAs merged infrared and passive microwave (IR-PMW) TMPA-RT product 

3B42RT and a rain gauge station in Chittagong showed no particular correlation.  

Strongly heterogeneous triggering data and few registered landslides resulted in difficulties in 

defining reliable rainfall thresholds for the region of Bangladesh. For application of a regional rainfall 

threshold, there is a need of establishing different susceptibility levels for different areas; normalized 

rainfall threshold values could also be tried. Regarding application of TMPA-RT data in rainfall 

thresholds, it is recommended to focus on high-intensity rainstorms as caused by two recent fatal 

rainfall-triggered rainfall events in Bangladesh. It was found that 3B42RT data corresponding to these 

storms showed similar patterns to rain gauge data, only of slightly different rainfall intensity 

magnitude. Assessment of these storms and similar non-triggering rainstorms are proposed, as these 

high-intensity storms have caused most of the recent landslide fatalities. It is suggested to try 

establishing local threshold values for high intensity storms in the areas of highest risk, like Cox’s 

Basar, Bandarban and Chittagong.  

Classification tree analysis proved to be a good method for classifying highly mixed triggering and 

non-triggering rainfall conditions, given the highly heterogeneous 3B42RT data the established 

threshold performed well. Evaluation of CTA thresholds using Receiver Operating Characteristics 

(ROC) was successful to some degree. Linear discriminant analysis (LDA), weighting triggering and 

non-triggering conditions using prior probability and assessing the misclassification error rates, 

proved to be a feasible method for applying susceptibility levels to rainfall thresholds, but with less 

success on threshold performance.  

Application of the established thresholds in a warning system is not advisable as the results may be 

considered preliminary. Still, they may provide some valuable initial information on levels of rainfall 

intensities related to the triggering of landslides in Bangladesh, and provide a basis for further 

studies on landslide triggering conditions in Bangladesh and further assessment on the application of 

SPE data for local or small-scale regional rainfall thresholds.  

 

8.2 Suggested continuation of threshold studies in Bangladesh 
As the extreme intensity landslide triggering events represent a relatively homogeneous set of 

rainfall data, and these are causing the most fatal events, it is suggested to focus further studies on 

assessing these events. It is important to understand which properties of these storms (intensity 
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peaks, total storm duration, etc.), which variables of landslide susceptibility (vegetation, human 

influence, soil conditions preceding the event, etc.) are more relevant. It is suggested to apply CTA 

for analyses of the high intensity events, as the method seems promising. Simultaneously, it is 

suggested to apply other threshold types like I-D thresholds and event-intensity (E-I) thresholds, to 

ensure that the optimum threshold criteria is established.  

For these storm events it would be interesting to apply the TMPA-RT IR product 3B41RT, or other SPE 

products of high temporal resolution (e.g. CMORPH), and investigate if similar patterns are found for 

I-D plots of these data. If these data prove to successfully estimate hourly intensity peaks, they may 

have potential of predicting temporal occurrence of landslides during a rainstorm.  

During autumn of 2010 two automatic rain gauges, providing rainfall measures every 15 minutes 

were established in Dhaka and Chittagong In collaboration between the Geological Survey of 

Bangladesh (GSB) and the Norwegian Geotechnical Institute (NGI). Data from these stations should 

be used in analysis of future landslide in these regions, and may also provide a good opportunity for 

future correlation between rain gauges and satellite-based rainfall estimates.  
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Appendix A. Landslide- and rainfall data 

 

Initial landslide and rainfall data 

These initial data were provided by Mr. Reshad Ekram (Director Geological Survey of Bangladesh) and ADPC (Asian Disaster Preparedness Centre). Note that 

these data are extracts of the available data. Requests for access of these data may be addressed to Mr. Reshad Ekram (reshadekram@gmail.com). 

Table A 1. Landslide events and rain gauge data provided by the Asian Disaster and Preparedness Centre (ADCP) 

Location Date of 

Occurrence 

6 days 

before 

5 days 

before 

4 days 

before 

3 days 

before 

2 days 

before 

1 day 

before 
The day 

of 

disaster 

1day after 

1. Chittagong 11 June 2007 3 23 22 4 42 3 88 425 

2. Teknaf 3 July 2008 0 0 0 0 61 33 367 53 

3. Teknaf 6 July 2008 0 61 33 367 53 73 209 144 

4. Srimongal 18 May 2009 0 0 90 0 0 13 328 51 

5. Teknaf 

Sadar and 

surrounding 

areas 15 June 2010 0 41 0 15 75 78 132 186 

6.Cox’s Bazar 

Sadar and 

Ukhia 

Upazila 15 June 2010 0 41 0 15 75 78 132 186 

 

 

 

mailto:reshadekram@gmail.com


 

81 

Table A 2. Daily rainfall data (mm/day) from rain gauge station Chittagong situated at longitude 91.82 and latitude 22.27. 

 

 

Year Month 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Total

2002 7 46 37 4 17 129 59 7 3 2 13 22 0 0 14 3 4 3 2 0 23 156 119 89 71 0 19 0 1 0 77 0 920

2002 8 0 0 39 20 35 24 13 4 11 54 6 5 1 1 25 14 85 15 0 6 0 3 74 2 0 1 2 1 15 0 0 456

2002 9 0 0 5 5 0 36 0 3 17 0 1 0 0 0 2 20 2 5 0 0 18 22 5 0 0 0 1 1 2 0 145

2002 10 0 0 0 0 0 0 2 1 0 5 0 0 0 1 47 22 0 0 0 49 2 0 0 0 0 0 0 0 0 0 0 129

2002 11 0 0 0 0 0 0 0 0 0 0 0 23 69 21 0 0 0 0 0 0 0 0 0 0 0 2 3 0 2 8 128

2002 12 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10

2003 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2003 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2003 3 0 0 0 0 0 0 0 0 0 0 0 0 8 1 1 16 7 20 0 0 0 0 0 0 0 0 0 0 0 0 0 53

2003 4 97 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 11 26 0 0 12 0 0 0 0 0 0 17 0 167

2003 5 0 0 8 55 0 1 0 0 0 0 0 0 0 1 0 31 25 0 0 0 26 8 0 8 25 0 0 10 0 0 0 198

2003 6 0 0 0 1 14 53 8 133 5 63 116 34 0 6 0 5 8 2 0 2 95 175 63 1 2 51 206 43 20 103 1209

2003 7 10 54 0 30 0 1 4 6 0 2 4 41 17 0 0 0 0 0 12 8 36 5 0 10 28 0 0 4 31 64 5 372

2003 8 7 0 0 0 0 12 0 0 0 53 27 80 13 2 4 1 12 0 1 28 8 2 1 0 0 0 0 0 3 1 5 260

2003 9 2 40 23 0 0 4 8 4 2 0 60 16 5 0 0 0 2 1 2 0 4 0 2 10 0 0 5 11 9 0 210

2003 10 0 0 8 0 0 0 11 4 43 33 71 0 0 0 0 3 0 0 0 0 0 0 4 42 4 0 0 0 11 0 0 234

2003 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2003 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 37 25 0 0 0 0 0 0 0 0 0 0 66

2004 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2004 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2004 3 0 0 0 0 0 0 0 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 6

2004 4 0 0 0 0 5 1 7 0 4 26 21 0 0 0 0 0 0 0 41 0 0 26 0 34 0 0 0 0 0 0 165

2004 5 0 0 0 0 0 0 0 0 0 0 0 12 122 0 0 24 0 5 0 4 0 56 1 47 0 0 0 0 4 0 0 275

2004 6 3 1 0 62 0 0 9 7 1 1 37 18 2 8 2 0 0 52 119 94 91 8 18 0 50 18 37 0 0 0 638

2004 7 0 5 17 0 5 1 87 75 264 50 72 52 0 0 15 4 15 44 6 108 59 0 5 0 0 15 0 4 2 0 0 905

2004 8 0 0 0 1 13 6 3 1 2 0 0 3 41 26 4 0 2 1 1 5 0 0 0 0 1 2 11 0 2 1 16 142

2004 9 34 0 5 16 13 0 2 1 1 10 15 129 117 154 32 1 7 1 0 0 1 4 15 0 27 4 0 1 0 0 590

2004 10 0 20 0 3 8 38 18 95 3 0 0 0 0 0 9 6 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 203

2004 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2004 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2005 1 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5

2005 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2005 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 7 29 14 1 0 0 0 0 0 57

2005 4 0 0 0 0 0 0 0 0 0 0 43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 1 58 4 1 121

2005 5 0 0 0 0 0 11 0 0 6 24 3 0 7 4 0 0 0 16 0 4 0 26 15 13 19 0 0 0 0 0 0 148

2005 6 0 0 0 0 24 0 0 0 1 0 21 1 0 0 0 0 3 0 0 0 0 0 3 20 19 4 11 45 50 31 233

2005 7 44 90 58 18 11 5 6 0 0 5 1 11 0 83 103 37 2 1 1 12 94 0 0 0 0 1 7 1 0 5 0 596

2005 8 0 22 3 12 33 101 41 53 13 1 14 4 0 5 26 21 0 0 1 36 60 16 42 47 96 0 0 5 1 1 0 654

2005 9 0 23 6 18 2 0 0 0 2 2 20 2 3 19 0 14 0 0 8 2 64 1 0 15 164 0 6 13 0 2 386

2005 10 31 11 0 0 0 0 0 0 0 0 6 0 0 0 0 1 0 2 0 0 8 11 3 25 1 0 0 0 0 0 1 100

2005 11 1 18 0 0 0 0 0 0 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 23

2005 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 3 0 0 0 0 0 0 0 8
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Year Month 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Total

2006 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2006 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2006 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2006 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 1 0 0 0 0 0 0 0 0 0 40 0 50

2006 5 0 0 0 0 0 1 20 7 0 0 15 23 28 0 4 0 0 0 0 19 47 0 0 14 0 16 210 116 69 233 37 859

2006 6 13 5 0 2 13 10 42 10 1 54 35 0 0 4 4 2 0 0 0 5 30 15 0 0 0 20 17 5 0 1 288

2006 7 0 0 0 30 30 7 19 84 61 38 24 21 2 0 1 4 0 0 19 13 0 2 8 29 0 0 42 50 1 10 0 495

2006 8 9 0 0 0 3 0 8 3 8 4 10 11 0 0 0 0 0 0 8 0 23 2 9 9 11 10 0 6 1 3 0 138

2006 9 2 8 11 0 0 0 0 26 5 0 40 14 0 0 2 11 0 0 13 8 66 69 95 10 2 0 0 0 50 6 438

2006 10 1 0 0 0 6 9 0 0 1 28 0 25 2 9 0 0 0 0 0 1 2 0 0 0 0 0 0 7 0 0 0 91

2006 11 0 0 0 0 0 0 0 0 15 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16

2006 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2007 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2007 2 0 0 0 0 16 0 3 0 0 0 0 0 0 7 21 2 0 0 0 0 0 0 0 0 0 0 0 0 49

2007 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 4

2007 4 0 0 0 0 0 0 0 0 0 13 17 53 27 0 0 0 0 0 0 0 3 14 66 4 19 0 0 7 0 0 223

2007 5 0 0 0 0 0 56 0 8 0 0 0 0 0 9 61 2 0 0 0 37 43 44 0 3 0 0 0 0 0 0 0 263

2007 6 0 0 0 0 3 23 22 4 42 3 88 425 48 0 71 88 42 8 29 0 2 1 0 4 0 0 5 6 10 29 953

2007 7 29 55 8 6 34 41 70 0 18 0 0 0 2 0 11 18 50 81 51 206 44 64 29 6 1 37 53 11 4 1 0 930

2007 8 4 0 5 0 3 4 0 0 0 19 31 6 62 21 58 64 100 0 0 1 0 1 13 4 73 73 10 1 4 30 2 589

2007 9 5 1 0 0 7 35 84 160 40 50 76 0 0 0 0 0 0 0 0 0 1 0 12 13 2 0 0 0 1 25 512

2007 10 10 0 0 20 19 20 40 62 104 0 2 1 3 0 17 49 284 2 0 0 2 0 0 0 0 0 0 0 0 0 0 635

2007 11 0 0 20 7 0 0 0 0 0 36 1 0 0 4 19 82 13 0 0 0 0 0 0 0 0 0 0 0 0 0 182

2007 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2008 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 55 1 0 0 0 56

2008 2 0 0 0 0 0 0 0 0 0 9 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13

2008 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 1 0 0 0 0 0 0 0 14

2008 4 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

2008 5 0 0 0 13 5 85 0 0 0 0 0 0 0 11 0 0 2 10 57 26 0 0 0 0 0 2 0 4 0 23 34 272

2008 6 0 0 1 0 14 39 0 0 5 6 0 4 1 0 4 0 195 204 23 17 1 42 0 0 0 0 12 0 26 24 618

2008 7 82 84 55 135 28 38 69 20 10 14 14 3 24 228 47 13 25 8 3 18 0 0 0 6 7 1 9 16 0 1 4 962

2008 8 0 0 0 0 2 0 0 2 15 5 11 106 0 8 31 2 38 104 129 11 2 2 4 2 0 5 0 55 197 76 2 809

2008 9 0 0 15 6 32 23 0 0 0 0 9 23 2 0 1 14 0 5 0 5 13 4 31 15 7 0 1 40 0 20 266

2008 10 0 21 15 0 0 0 59 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 34 7 24 55 0 0 0 216

2008 11 0 0 0 0 8 35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 43

2008 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

   [Note : ****=missing data,0=rain nil]
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Landslide and rainfall inventories 
 

Table A 3. Landslide inventory from combining all sources of landslide data for Bangladesh (explained in chapter 5.1.1 Landslide inventory) 

 

New ID Org. ID Location District Region
Closest Rain 

Gauge
Latitude Longitude Sample type Source

Type of 

landslide*

Casual-

ties

Confidenc

e radius 

(km)

Year Month Day

1 1 Fakirpura, Teknaf Cox's Bazar Chittagong Cox's Bazar RG 20,874 92,291 Single LS GSB - 0,1 2 008     7          3          

2 2 Dhumperang, Teknaf Cox's Bazar Chittagong Cox's Bazar RG 20,872 92,290 Single LS GSB - 0,1 2 008     7          3          

3 3 Puran Pollanpara, Teknaf Cox's Bazar Chittagong Cox's Bazar RG 20,875 92,292 Single LS GSB - 0,1 2 008     7          6          

4 1 Baizid Bostami  Chittagong Chittagong Chittagong RG 22,388 91,818 Single LS GSB - 0,1 2 007     6          11        

5 2 Kushumbagh Chittagong Chittagong Chittagong RG 22,355 91,822 Single LS GSB - 0,1 2 007     6          11        

6 3 Lalkhanbazar Chittagong Chittagong Chittagong RG 22,347 91,816 Single LS GSB - 0,1 2 007     6          11        

7 4 Pahartoli Chittagong Chittagong Chittagong RG 22,350 91,800 Single LS GSB Wall collapse 0,1 2 007     6          11        

8 5 Chittagong University Campus Chittagong Chittagong Chittagong RG 22,469 91,789 Single LS GSB - 0,1 2 007     6          11        

9 6 Sikandarpara Chittagong Chittagong Chittagong RG 22,435 91,798 Single LS GSB - 0,1 2 007     6          11        

10 7 Sikandarpara Chittagong Chittagong Chittagong RG 22,435 91,798 Single LS GSB - 0,1 2 007     6          11        

11 8 Sikandarpara Chittagong Chittagong Chittagong RG 22,434 91,798 Single LS GSB Debris flow 0,1 2 007     6          11        

12 9 Lebubagan Chittagong Chittagong Chittagong RG 22,417 91,810 Single LS GSB - 0,1 2 007     6          11        

13 10 Lebubagan Chittagong Chittagong Chittagong RG 22,416 91,810 Single LS GSB - 0,1 2 007     6          11        

14 11 Lebubagan Chittagong Chittagong Chittagong RG 22,416 91,794 Single LS GSB - 0,1 2 007     6          11        

15 12 Lebubagan Chittagong Chittagong Chittagong RG 22,415 91,810 Single LS GSB - 0,1 2 007     6          11        

16 13 Lebubagan Chittagong Chittagong Chittagong RG 22,415 91,811 Single LS GSB - 0,1 2 007     6          11        

17 14 Lebubagan Chittagong Chittagong Chittagong RG 22,415 91,811 Single LS GSB - 0,1 2 007     6          11        

18 15 Kechuarghona Chittagong Chittagong Chittagong RG 22,422 91,808 Single LS GSB - 0,1 2 007     6          11        

19 16 Kechuarghona Chittagong Chittagong Chittagong RG 22,424 91,806 Single LS GSB - 0,1 2 007     6          11        

20 17 Kechuarghona Chittagong Chittagong Chittagong RG 22,424 91,806 Single LS GSB - 0,1 2 007     6          11        

21 18 Kechuarghona Chittagong Chittagong Chittagong RG 22,424 91,804 Single LS GSB - 0,1 2 007     6          11        

22 19 Workshopghona Chittagong Chittagong Chittagong RG 22,421 91,807 Single LS GSB Debris flow 0,1 2 007     6          11        

23 Hathazari Chittagong Chittagong Chittagong RG 22,396 91,774 Single LS news - 5 2 007     6          11        

24 1 Chittagong and outer northern areas Chittagong Chittagong Chittagong RG 22,386 91,805 LS event ADPC Debris flow (DF) 5 2 007     6          11        

25 2 Teknaf Cox's Bazar Chittagong Chittagong RG 20,873 91,290 LS event ADPC DF and rock fall 5 2 008     7          3          

26 3 Teknaf Cox's Bazar Chittagong Chittagong RG 20,875 92,292 LS event ADPC DF and rock fall 5 2 008     7          6          

27 4 Srimangal city Maulvibazar Sylhet Sylhet RG 24,306 91,729 LS event ADPC Debris flow 5 2 009     5          18        

28 5 Teknaf Sadar and surroundings Cox's Bazar Chittagong Cox's Bazar RG 20,871 92,293 LS event ADPC DF and rock fall 5 2 010     6          15        

29 6 Ukhia Upazila Cox's Bazar Chittagong Cox's Bazar RG 21,229 92,169 LS event ADPC DF and rock fall 5 2 010     6          15        

30 6 Cox's Bazar, 'Himchori drive Cox's Bazar Chittagong Cox's Bazar RG 21,397 92,008 LS event ADPC DF and rock fall 5 2 010     6          15        

36 90 Chittagong Chittagong Chittagong Chittagong RG 22,416 91,833 LS event NASA - 128 5 2 007     6          11        

37 91 Rangamati Rangamati Chittagong Chittagong RG 22,637 92,145 LS event NASA Mudslide 3 10 2 007     6          11        

38 256 Nabinagar in Chittagong BrahmanbariaChittagong Daka/Comilla RG 23,892 90,973 Single LS NASA Earth fall 2 4 2 007     9          10        

39 311 Betbunia Khulna Khulna Kuna/Satkira RG 22,533 89,400 Single LS NASA Mudslide 3 5 2 007     10        15        

40 320 Madamdevihat and Dolhajra Feni Chittagong Majidicort RG 22,894 91,533 Single LS NASA - 150 2 007     10        19        

41 224 Cox's Bazar, Moheshkhali,Teknaf Cox's Bazar Chittagong Cox's Bazar RG 21,440 92,000 LS event NASA - 20 4 2 008     7          3          

42 281 Meghalaya, Kalaphahar kills Sylhet Sylhet Sylhet RG 24,896 91,902 LS event NASA - 45 2 008     8          1          

43 325 Lalkhan Bazar Cox's Bazar Chittagong Chittagong RG 22,340 91,824 LS event NASA - 11 10 2 008     8          18        

44 339 Motijharna of Lalkhan Bazar Cox's Bazar Chittagong Chittagong RG 22,344 91,819 Single LS NASA - 10 2 008     8          23        

45 71 Sreemangal upazila, Moulvibazer. Maulvibazar Sylhet Srimangal RG 24,308 91,733 Single LS NASA Mudslide 6 10 2 009     5          18        

46 108 Lama village, Bandarban district Bandarban Chittagong Chittagong RG 22,225 92,190 LS event NASA - 10 4 2 009     7          31        
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Table A 4. Example from TMPA-RT rainfall inventory, here presenting hourly 3B41RT data 

 

Explanation to table: The table shows rainfall data extracted from 3B41RT data files for all 12 different TMPA grid box 

positions where triggered landslide(s) are located. Grid coordinates are listed in the top most lines (‘TMPA_lat = latitude, 

‘TMPA_long’ = longitude). The left column list the time range related to each rainfall measurement at the following format; 

yyyymmddHH, where y = year, m = month, d = day and H = hour. 

Pos1 Pos2 Pos3 Pos4 Pos5 Pos6 Pos7 Pos8 Pos9 Pos10 Pos11 Pos12

'TMPA_lat' 22,625 23,875 20,875 24,375 22,875 24,875 22,375 22,625 22,125 21,375 21,125 20,875

'TMPA_long' 89,375 90,875 91,375 91,625 91,625 91,875 91,875 92,125 92,125 92,125 92,125 92,375

'2007010100' 0 0 0 0 0 0 0 0 0 0 0 0

'2007010101' 0 0 0 0 0 0 0 0 0 0 0 0

'2007010102' 0 0 0 0 0 0 0 0 0 0 0 0

'2007010103' 0 0 0 0 0 0 0 0 0 0 0 0

'2007010104' 0 0 0 0 0 0 0 0 0 0 0 0

… … … … … … … … … … … … …

'2008100107' 0 0 0 0 0 0 0 0 0 0 0 0

'2008100108' 0 0 0 0 0 0 0 0 0 0 0 2,71

'2008100109' 0 0 0 0 0 0 0 0 0 0,12 3,75 3,93

'2008100110' 0 0 0,4 0 0 0 0 0 0 2,6 4,57 7,43

'2008100111' 0 0 2,59 0 0 0 0 0 0,59 5,51 6,47 2,81

'2008100112' 0 0 3,18 0 0 0 0,88 9,27 1,54 4,06 3,07 1,42

'2008100113' 0 0 1,15 0 6,74 0 3,8 8,88 3,83 3,89 1,98 0,27

'2008100114' 0 0 0,8 0 10,61 0 3,8 7,92 4,17 4,32 2,6 0

'2008100115' 0 0 3,75 0 7,69 0 5,65 3,56 3,56 3,89 2,6 0

'2008100116' 0 0 10,05 0 3,04 0 1,73 1,29 2,09 3,89 3,69 0,12

'2008100117' 0 0 5,23 0,33 0,83 1,12 0,86 0,42 0,96 3,2 3,06 0,2

'2008100118' 0 0,04 4,3 0 0,2 2,27 0,18 0 0,29 1,87 1,87 0

'2008100119' 0,05 0 3,8 0 0 0,55 0 0 0 0,21 0,5 0

'2008100120' 0 0 7,49 0 0 0,05 0 0 0 0,3 0,5 0

'2008100121' 0 0 3,05 0 0 0 0 0 0 0,24 0,3 0

'2008100122' 0 0 2,22 0 0 0 0,04 0 0,21 0,8 0,52 0

'2008100123' 0 0 1,01 0 0 0 0,33 0 0,64 0,46 0,34 0

'2008100200' 0 0 0,45 0 0 0 0 0 0,38 0,31 0,12 0

'2008100201' 0 0 0,48 0 0 0 0 0 0,23 0 0,03 0

'2008100202' 0 0 0,23 0 0 0 0 0 0,2 0 0 0

'2008100203' 0 0 0 0 0 0 0 0 0 0 0 0

'2008100204' 0,21 0 0 0 0 0 0 0 0 0 0 0

'2008100205' 0,32 0 0 0 0 0 0 0 0 0 0 0

'2008100206' 0,11 0 0 0 0 0 0 0 0 0 0 0

'2008100207' 0 0,02 0 0 0 0 0 0 0 0 0 0

'2008100208' 0 0,15 0 0 0 0 0 0 0 0 0 0

'2008100209' 0 0,04 0 0 0 0 0 0 0 0 0 0

'2008100210' 0 0 0 0,8 0 0 0 0 0 0 0 0

'2008100211' 0 0 0 1,52 0 0,48 0 0 0 0 0 0

'2008100212' 0 0 0 1,2 0 0,63 0 0 0 0 0 0

'2008100213' 0 0 0 0,64 0 0,27 0 0 0 0 0 0

'2008100214' 0 0 0 0,17 0 0,12 0 0 0 0 0 0

'2008100215' 0 0 0 0 0 0 0 0 0 0 0 0

… … … … … … … … … … … … …

'2010123118' 0 0 0 0 0 0 0 0 0 0 0 0

'2010123119' 0 0 0 0 0 0 0 0 0 0 0 0

'2010123120' 0 0 0 0 0 0 0 0 0 0 0 0

'2010123121' 0 0 0 0 0 0 0 0 0 0 0 0

'2010123122' 0 0 0 0 0 0 0 0 0 0 0 0

'2010123123' 0 0 0 0 0 0 0 0 0 0 0 0
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Table A 5. Small selection of data from the 3B42RT rainfall inventory prepared for threshold analysis 

 
 

Explanation to table: Each predictor variable represents a rainfall series of antecedent rainfall, where the duration of 

rainfall accumulation is different for all predictors (see Table 5-4). Outcome variable: ‘y’ if landslide(s) occurred. 

Date Predictor 1 Predictor 2 Predictor 3 Predictor 4 Predictor 5 … Predictor 11 Predictor 12 Predictor 13 Outcome

01.01.2007 0,000 NaN NaN NaN NaN … NaN NaN NaN n

02.01.2007 0,000 0,000 NaN NaN NaN … NaN NaN NaN n

03.01.2007 0,000 0,000 0,000 NaN NaN … NaN NaN NaN n

04.01.2007 0,000 0,000 0,000 0,000 NaN … NaN NaN NaN n

05.01.2007 0,000 0,000 0,000 0,000 0,000 … NaN NaN NaN n

06.01.2007 1,300 0,650 0,433 0,325 0,260 … NaN NaN NaN n

07.01.2007 0,000 0,650 0,433 0,325 0,260 … NaN NaN NaN n

08.01.2007 0,000 0,000 0,433 0,325 0,260 … NaN NaN NaN n

09.01.2007 0,000 0,000 0,000 0,325 0,260 … NaN NaN NaN n

10.01.2007 0,000 0,000 0,000 0,000 0,260 … NaN NaN NaN n

11.01.2007 0,000 0,000 0,000 0,000 0,000 … NaN NaN NaN n

12.01.2007 0,000 0,000 0,000 0,000 0,000 … NaN NaN NaN n

13.01.2007 0,580 0,290 0,193 0,145 0,116 … NaN NaN NaN n

14.01.2007 0,160 0,370 0,247 0,185 0,148 … NaN NaN NaN n

15.01.2007 0,000 0,080 0,247 0,185 0,148 … 0,136 NaN NaN n

16.01.2007 3,430 1,715 1,197 1,043 0,834 … 0,365 NaN NaN n

17.01.2007 0,140 1,785 1,190 0,933 0,862 … 0,374 NaN NaN n

18.01.2007 0,000 0,070 1,190 0,893 0,746 … 0,374 NaN NaN n

19.01.2007 0,000 0,000 0,047 0,893 0,714 … 0,374 NaN NaN n

20.01.2007 1,080 0,540 0,360 0,305 0,930 … 0,446 NaN NaN n

21.01.2007 0,000 0,540 0,360 0,270 0,244 … 0,359 NaN NaN n

22.01.2007 0,000 0,000 0,360 0,270 0,216 … 0,359 NaN NaN n

23.01.2007 0,000 0,000 0,000 0,270 0,216 … 0,359 NaN NaN n

24.01.2007 0,000 0,000 0,000 0,000 0,216 … 0,359 NaN NaN n

25.01.2007 0,000 0,000 0,000 0,000 0,000 … 0,359 NaN NaN n

26.01.2007 0,000 0,000 0,000 0,000 0,000 … 0,359 NaN NaN n

27.01.2007 0,000 0,000 0,000 0,000 0,000 … 0,359 NaN NaN n

28.01.2007 0,000 0,000 0,000 0,000 0,000 … 0,321 NaN NaN n

29.01.2007 6,115 3,058 2,038 1,529 1,223 … 0,718 NaN NaN n

30.01.2007 3,045 4,580 3,053 2,290 1,832 … 0,921 0,528 NaN n

31.01.2007 1,230 2,138 3,463 2,598 2,078 … 0,774 0,569 NaN n

01.02.2007 0,000 0,615 1,425 2,598 2,078 … 0,765 0,569 NaN n

02.02.2007 0,000 0,000 0,410 1,069 2,078 … 0,765 0,569 NaN n

03.02.2007 1,000 0,500 0,333 0,558 1,055 … 0,831 0,603 NaN n

04.02.2007 0,310 0,655 0,437 0,328 0,508 … 0,780 0,613 NaN n

05.02.2007 0,000 0,155 0,437 0,328 0,262 … 0,780 0,570 NaN n

06.02.2007 0,000 0,000 0,103 0,328 0,262 … 0,780 0,570 NaN n

07.02.2007 28,835 14,418 9,612 7,286 6,029 … 2,702 1,531 NaN n

08.02.2007 4,275 16,555 11,037 8,278 6,684 … 2,987 1,673 NaN n

09.02.2007 0,000 2,138 11,037 8,278 6,622 … 2,987 1,673 NaN n

10.02.2007 0,000 0,000 1,425 8,278 6,622 … 2,987 1,673 NaN n

11.02.2007 0,000 0,000 0,000 1,069 6,622 … 2,987 1,673 NaN n

12.02.2007 0,265 0,133 0,088 0,066 0,908 … 3,005 1,663 NaN n

13.02.2007 31,685 15,975 10,650 7,988 6,390 … 4,710 2,714 NaN n

14.02.2007 0,000 15,843 10,650 7,988 6,390 … 4,507 2,714 NaN n

15.02.2007 0,000 0,000 10,562 7,988 6,390 … 4,425 2,599 NaN n

16.02.2007 0,000 0,000 0,000 7,921 6,390 … 4,425 2,595 NaN n

17.02.2007 0,000 0,000 0,000 0,000 6,337 … 4,425 2,595 NaN n

18.02.2007 0,000 0,000 0,000 0,000 0,000 … 4,358 2,595 NaN n

19.02.2007 0,000 0,000 0,000 0,000 0,000 … 4,337 2,559 NaN n

20.02.2007 0,000 0,000 0,000 0,000 0,000 … 4,337 2,559 NaN n

21.02.2007 0,000 0,000 0,000 0,000 0,000 … 4,337 2,559 NaN n

22.02.2007 0,000 0,000 0,000 0,000 0,000 … 2,415 2,559 NaN n

23.02.2007 0,000 0,000 0,000 0,000 0,000 … 2,130 2,559 NaN n

24.02.2007 0,000 0,000 0,000 0,000 0,000 … 2,130 2,559 NaN n

25.02.2007 0,000 0,000 0,000 0,000 0,000 … 2,130 2,559 NaN n

26.02.2007 0,000 0,000 0,000 0,000 0,000 … 2,130 2,559 NaN n

27.02.2007 0,000 0,000 0,000 0,000 0,000 … 2,112 2,559 NaN n

28.02.2007 0,000 0,000 0,000 0,000 0,000 … 0,000 2,355 NaN n

01.03.2007 0,150 0,075 0,050 0,038 0,030 … 0,010 2,258 1,393 n

02.03.2007 0,000 0,075 0,050 0,038 0,030 … 0,010 2,217 1,393 n

03.03.2007 0,000 0,000 0,050 0,038 0,030 … 0,010 2,217 1,393 n



 

86 
 

 

Table A 6. Rainfall series of landslide triggering data extracted from TMPA-RT rainfall product 3B42RT. Note the most intense landslide triggering rainfalls in bold. 

Located        
area 

TMPA position   Rainfall intensity (mm/d), time series of different duration             

Latitude Longitude Date 1 2 3 4 5 6 7 9 11 13 15 30 60 

Chittagong 22,375 91,875 11.06.2007 323,5 241,6 163,6 123,5 98,8 87,0 74,8 61,2 50,1 42,4 36,7 23,3 14,2 

Chittagong 22,625 92,125 11.06.2007 196,8 138,8 94,6 71,2 57,0 47,5 41,1 33,5 27,4 23,2 20,1 14,6 11,1 

Plains 23,875 90,875 10.09.2007 0,7 0,4 6,1 15,7 14,4 12,9 11,4 9,1 7,6 6,6 5,8 5,3 5,7 

Plains 22,625 89,375 15.10.2007 47,3 27,8 18,5 13,9 11,1 9,3 7,9 18,9 16,3 13,8 12,0 8,1 6,6 

Cox' Bazar 20,875 91,375 03.07.2008 5,0 44,6 47,5 53,1 62,2 60,0 53,5 45,0 36,9 31,6 32,2 23,6 14,2 

Cox' Bazar 21,375 92,125 03.07.2008 22,9 21,9 29,5 30,0 35,5 35,9 30,8 25,4 20,8 17,6 15,6 10,7 11,3 

Cox' Bazar 20,875 92,375 03.07.2008 52,7 61,7 49,7 41,5 48,6 58,1 50,4 41,2 33,7 29,0 26,6 20,6 15,6 

Cox' Bazar 20,875 92,375 06.07.2008 27,9 36,1 26,4 33,0 40,5 38,1 35,0 47,5 40,9 34,6 30,3 22,7 16,9 

Sylhet 24,875 91,875 01.08.2008 3,5 16,3 10,8 8,2 6,8 8,2 7,4 8,8 13,5 13,9 12,5 11,0 9,2 

Chittagong 22,375 91,875 18.08.2008 16,1 8,4 8,1 6,1 4,8 4,4 3,9 5,1 8,3 7,2 7,1 5,5 6,4 

Chittagong 22,375 91,875 23.08.2008 3,0 1,8 16,6 12,5 10,2 11,2 9,7 8,4 7,0 6,7 8,3 6,9 7,0 

Sylhet 24,375 91,625 18.05.2009 24,3 34,7 34,6 25,9 20,8 24,1 20,7 21,2 17,5 15,5 16,4 13,2 8,9 

Chittagong 22,125 92,125 31.07.2009 0,0 1,7 25,9 56,8 51,7 44,4 38,1 29,6 24,2 20,5 21,9 12,6 19,6 

Cox' Bazar 21,375 92,125 15.06.2010 152,6 139,7 117,6 95,0 78,6 66,2 56,8 44,2 38,0 34,8 30,1 36,0 19,2 

Cox' Bazar 21,125 92,125 15.06.2010 173,0 198,6 179,5 143,0 122,7 102,6 88,5 68,9 57,9 51,2 44,4 46,5 24,3 

Cox' Bazar 20,875 92,375 15.06.2010 186,3 203,6 170,2 135,8 125,1 104,5 91,5 71,6 58,8 57,1 49,5 50,5 26,1 

 

Explanation to table: The table show accumulated rainfall intensities for all TMPA-RT locations (each representing a 0.25° x 0.25° grid box) where landslides have been registered. Note that 

the highest rainfall intensities are in bold letters and that all rainfall events register in the ADPC data in Table A 1 are shaded light grey.  
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Table A 7. Comparison of TMPA-RT product 3B42RT and rain gauges for main fatal storm events 

Located        
area 

Position   Rainfall intensity (mm/d), time series of different duration   

Latitude Longitude Date 1 2 3 4 5 6 7 Source 

Chittagong 22,375 91,875 11.06.2007 323,5 241,6 163,6 123,5 98,8 87,0 74,8 TMPA-RT 

Chittagong 22,625 92,125 11.06.2007 196,8 138,8 94,6 71,2 57,0 47,5 41,1 TMPA-RT 

Chittagong city + surroundings   425,0 256,5 172,0 139,5 112,4 97,3 86,7 ADPC 

Cox' Bazar 21,375 92,125 15.06.2010 152,6 139,7 117,6 95,0 78,6 66,2 56,8 TMPA-RT 

Cox' Bazar 21,125 92,125 15.06.2010 173,0 198,6 179,5 143,0 122,7 102,6 88,5 TMPA-RT 

Cox' Bazar 20,875 92,375 15.06.2010 186,3 203,6 170,2 135,8 125,1 104,5 91,5 TMPA-RT 

Cox' Bazar/Teknaf + surroundings 132,0 105,0 95,0 75,0 60,0 56,8 48,7 ADPC 
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Appendix B. Classification tree analysis 

 

 

Figure B 1. Resulting classification tree form CTA without excluding predictors due to high correlation. Rainfall variable corresponding to the predictors included are listed in figure table. 
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Figure B 2. Result of CTA analysis not including predictors of high correlation (ρ>0.8) to predictor 2; rainfall variable corresponding to the predictors included are listed in figure table. 
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Figure B 3. Result of CTA analysis not including predictors of high correlation (ρ>0.8) to predictor 3; rainfall variable corresponding to the predictors included are listed in figure table. 
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Figure B 4. Result of CTA analysis not including predictors of high correlation (ρ>0.8) to predictor 5; rainfall variable corresponding to the predictors included are listed in figure table. 
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Figure B 5. Result of CTA analysis not including predictors of high correlation (ρ>0.8) to predictor 6; rainfall variable corresponding to the predictors included are listed in figure table. 
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Figure B 6. Result of CTA analysis not including predictors of high correlation (ρ>0.8) to predictor 2 and 5; rainfall variable corresponding to the predictors included are listed in figure table. 
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Appendix C. Matlab-scripts 

Matlab was the main tool used for this study. The program, including its Statistical Toolbox, was use 

both for acquiring data, data handling and processing, statistical analyses and visualisation of plots 

and tables. As a result, several Matlab-scripts have been developed for different tasks. All scripts 

representing key elements of the methodology, including data acquisition, analyses and results are 

presented in this appendix.  

The files are tried sorted in 3 section representing different parts of the thesis work;  

1. Data acquisition: Acquiring TMPA-RT files, extracting rainfall data and preparing inventories. 

2. Validation part: Analysis and comparison of rain gauge and TMPA-RT products. 

3. Threshold part: Preparing inventory of predictor and executing the multivariate analyses. 

In all parts most scripts are linked such that the execution of one requires the execution of another 

first. As result of this, the scripts are listed in ascending order according to the processes and 

required order of execution to be able to run al scripts.  

It should be noted that the structure of TMPA-RT files and TRMM FTP-server has been changes since 

this study was conducted. 

Table C 1. Overview of Matlab scripts used for data acquisition part. 

Script 
nr. 

Script name Script purpose Starting 
page 

1 GetAllFiles.m Downloads files from ftp-server and create file 
archive on local hard disk drive.  

96 

2 TRMMscript_Several.m Handles several scripts (nr. 2-9) used to extract 
rainfall data from archived files of both TRMM-
based products. 

98 

3 InsertData.m Insert filename and other parameters needed to 
extract rainfall data. 

98 

4 Load_LSinventory.m Extract data from landslide inventory. 99 

5 CheckTime.m Check if time data from landslide inventory is okay. 100 

6 FindFilenamesFullSet.m Find name of all files needed to extract rainfall data 
corresponding to data input and landslide 
inventory.   

101 

7 FindTMPApositions.m Find the position in the global rainfall grid 
corresponding to the landslide positions in landslide 
inventory. 

102 

8 FindOneTMPAposition.m As script 7 for only one landslide position input. 103 

9 ExtractRainfallData.m Extract rainfall data for all landslide inventory 
positions for all time-series needed for threshold 
analysis.  

104 

10 SaveData.m Saves all position and rainfall data in *.mat-files.  105 

11 GetDailyRainfallNew.m Calculates the daily rainfall from the original 1hr 
and 3hr rainfall estimates of the TRMM-based 
rainfall products (result of script nr. 2, saved by 
script nr. 9). 

107 
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Table C 2. Overview of Matlab scripts used for validation part. 

Script 
nr. 

Script name Script purpose Line 
position 

12 ValidationStatistics.m Handle several scripts (nr. 12– 20) with purpose to 
validate TMPA data. 

108 

13 LoadData.m Load data needed for TMPA validation 109 

14 PrepareSeries.m Connect TMPA and rain gauge series of same date 109 

15 VisInspection.m Plot full rainfall series of daily data 110 

16 LandslideData.m Prepare landslide data for use in validation 110 

17 DistributionCurve.m Prepare data for creation of distribution curve 111 

18 MonthlyRainfall.m Prepare data for creation of monthly data used for 
visual inspection 

112 

19 CorrelationPlots Prepare and plot correlation graphs 114 

20 CheckNaN.m Find and analyse missing rainfall data (NaNs) 115 

 

 

Table C 3. Overview of Matlab scripts used for threshold part. 

Script 
nr. 

Script name Script purpose Line 
position 

21 ThresholdAnalysis.m Handle the complete TMPA threshold analysis part 
and all related scripts (22-25). 

116 

22 PrepareRFdata.m Change rainfall series to meet criteria for analyses 117 

23 ExtractYdays.m Extract all rainfall data related to landslide 
triggering events 

118 

24 ClassTreeAnalysis.m Perform all stages of CTA 118 

25 DiscriminantAnalysis.m Perform all stages of discriminant analysis  119 

26 DA_subplots.m Run multiple DAs in a matrix and find best prior 121 

27 DA_final.m Run final DA with best prior and output figure 123 
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1. GetAllFiles.m 1 

%%%%%%%%%%% Download all NASA TMPA-RT files %%%%%%%%%%%% 2 
  3 
%This script downloads files form the ftp-server and store them on the 4 
local  5 
%hard drive in a file archive.  6 
  7 
%The script is used for download of both TRMM rainfall products, but ftp- 8 
%folder structure in script must be changed between products, as it is  9 
%slightly different between the two. 10 
  11 
  12 
%% Calibrated IR 13 
RainfallProduct = '3B41RT';     %'3B41RT' or '3B42RT' 14 
Archive = ['C:\Users\Fagerlandet 2.0\Skole\_File Archive\' ... 15 
    RainfallProduct '\']; 16 
cd(FileArchive) 17 
ftp-productname = 'calibratedIR';   %name of product folder in ftp-dir 18 
    %'calibratedIR' or 'mergedIRmicro' 19 
fileduration = 1;   %1 hr for 3B41RT and 3 hrs for 3B42RT 20 
  21 
TRMM = ftp('trmmopen.gsfc.nasa.gov'); 22 
  23 
for n=2005  %2005 starts 1 march 24 
    ftpFolder = ['/pub/merged/' ftp-productname '/V5/' num2str(n) '/']; 25 
    cd(TRMM, ftpFolder); 26 
    starttime = [num2str(n) '030100']; 27 
    endtime = [num2str(n) '123123']; 28 
    startnum = datenum(starttime, 'yyyymmddHH'); 29 
    endnum = datenum(endtime, 'yyyymmddHH'); 30 
    timediff = endnum - startnum; 31 
    filecount = timediff * 24/fileduration +1;  %total nr of files to dwnld   32 
    for i=1:filecount 33 
        filename = [RainfallProduct '.' ... 34 
            datestr(startnum+(i-1)/24, 'yyyymmddHH') '.bin.gz']; 35 
        ArchiveFolder = [FileArchive 'V5\' num2str(n) '\' filename(12:13)]; 36 
        if isdir(ArchiveFolder) == 0;   %create folder if non-existent 37 
            mkdir(ArchiveFolder) 38 
        end 39 
        cd(ArchiveFolder)   %select folder for file download 40 
        try 41 
            mget(TRMM, filename);   %download file 42 
        catch 43 
            ErrorMsg = ['File ' filename ' was not found on server.']; 44 
            disp(ErrorMsg) 45 
        end 46 
    end 47 
end 48 
  49 
for n=2006:2008 50 
    ftpFolder = ['/pub/merged/' ftp-productname '/V5/' num2str(n) '/']; 51 
    cd(TRMM, ftpFolder); 52 
    starttime = [num2str(n) '010100']; 53 
    endtime = [num2str(n) '123123']; 54 
    startnum = datenum(starttime, 'yyyymmddHH'); 55 
    endnum = datenum(endtime, 'yyyymmddHH'); 56 
    timediff = endnum - startnum; 57 
    filecount = timediff * 24/fileduration +1;   58 
    for i=1:filecount 59 



 

97 

        filename = [RainfallProduct '.' ...  60 
            datestr(startnum+(i-1)/24, 'yyyymmddHH') '.bin.gz']; 61 
        ArchiveFolder = [FileArchive 'V5\' num2str(n) '\' filename(12:13)]; 62 
        if isdir(ArchiveFolder) == 0;   %create folder if non-existent 63 
            mkdir(ArchiveFolder) 64 
        end 65 
        cd(ArchiveFolder)   %select folder for file download 66 
        try 67 
            mget(TRMM, filename);   %download file 68 
        catch 69 
            ErrorMsg = ['File ' filename ' was not found on server.']; 70 
            disp(ErrorMsg) 71 
        end 72 
    end 73 
end 74 
  75 
for n=2008 76 
    ftpFolder = ['/pub/merged/' ftp-productname '/' num2str(n) '/']; 77 
    cd(TRMM, ftpFolder); 78 
    starttime = [num2str(n) '011000']; 79 
    endtime = [num2str(n) '123123']; 80 
    startnum = datenum(starttime, 'yyyymmddHH'); 81 
    endnum = datenum(endtime, 'yyyymmddHH'); 82 
    timediff = endnum - startnum; 83 
    filecount = timediff * 24/fileduration +1;    %one file each 3 hours 84 
    for i=1:filecount 85 
        filename = [RainfallProduct '.' ... 86 
            datestr(startnum+(i-1)/24, 'yyyymmddHH') ...  87 
            '.6.bin.gz']; 88 
        ArchiveFolder = [FileArchive num2str(n) '\' filename(12:13)]; 89 
        if isdir(ArchiveFolder) == 0;   %create folder if non-existent 90 
            mkdir(ArchiveFolder) 91 
        end 92 
        cd(ArchiveFolder)   %select folder for file download 93 
        try 94 
            mget(TRMM, filename); 95 
        catch 96 
            ErrorMsg = ['File ' filename ' was not found on server.']; 97 
            disp(ErrorMsg) 98 
        end 99 
    end 100 
end 101 
  102 
for n=2009:2010 103 
    ftpFolder = ['/pub/merged/' ftp-productname '/' num2str(n) '/']; 104 
    cd(TRMM, ftpFolder); 105 
    starttime = [num2str(n) '102000']; 106 
    endtime = [num2str(n) '123123']; 107 
    startnum = datenum(starttime, 'yyyymmddHH'); 108 
    endnum = datenum(endtime, 'yyyymmddHH'); 109 
    timediff = endnum - startnum; 110 
    filecount = timediff * 24/fileduration +1;    %one file each 3 hours 111 
    for i=1:filecount 112 
        filename = [RainfallProduct '.' ... 113 
            datestr(startnum+(i-1)/24, 'yyyymmddHH') ...  114 
            '.6.bin.gz']; 115 
        ArchiveFolder = [FileArchive num2str(n) '\' filename(12:13)]; 116 
        if isdir(ArchiveFolder) == 0;   %create folder if non-existent 117 
            mkdir(ArchiveFolder) 118 
        end 119 
        cd(ArchiveFolder)   %select folder for file download 120 
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        try 121 
            mget(TRMM, filename); 122 
        catch 123 
            ErrorMsg = ['File ' filename ' was not found on server.']; 124 
            disp(ErrorMsg) 125 
        end 126 
    end 127 
end 128 
  129 
cd(TRMM, '/pub/merged/' ftp-productname '/'); 130 
starttime = '2010010100'; 131 
endtime = '2011040118'; 132 
startnum = datenum(starttime, 'yyyymmddHH'); 133 
endnum = datenum(endtime, 'yyyymmddHH'); 134 
timediff = endnum - startnum; 135 
filecount = timediff * 24/fileduration +1;  136 
    for i=1:filecount 137 
        filename = [RainfallProduct '.' ... 138 
            datestr(startnum+(i-1)/24, 'yyyymmddHH') ...  139 
            '.6.bin.gz']; 140 
        ArchiveFolder = [FileArchive filename(8:11) '\' filename(12:13)]; 141 
        if isdir(ArchiveFolder) == 0;   %create folder if non-existent 142 
            mkdir(ArchiveFolder) 143 
        end 144 
        cd(ArchiveFolder)   %select folder for file download 145 
        try 146 
            mget(TRMM, filename); 147 
        catch 148 
            ErrorMsg = ['File ' filename ' was not found on server.']; 149 
            disp(ErrorMsg) 150 
        end 151 
    end 152 
     153 
close(TRMM) 154 
  155 

2. TRMMscript_Several.m 156 

%%%%%%%%%  RUN ALL TRMM SCRIPTS FOR EXTRACTION OF RAINFALL DATA %%%%%%%%%% 157 
  158 
%Script is used for both TRMM-based rainfall products 159 
  160 
InsertData;             %Input of variables needed to run script-series 161 
Load_LSinventory;       %Load data from landslide inventory (*.xls(x)-file) 162 
CheckTime;              %Checks for incorrect time input 163 
FindFilenamesFullSet;          %Find TMPA filenames needed 164 
FindTMPApositions;      %Finds TMPA grid positions needed 165 
ExtractRainfallData;    %Extracts rainfall data from TMPA_files 166 
SaveData;               %Saves all position- and rainfall-data in result  167 
                            %files. 168 
 169 

3. InsertData.m 170 

%%%%%%%%%%%% INSERT VARIABLES AND DATA FOR ANALYSIS %%%%%%%%%% 171 
  172 
%This script run as a part of the script TRMMscript_Several. 173 
RainfallProduct = '3B41RT';     %select type of rainfall product 174 
                                %(3B41RT or 3B42RT). 175 
  176 
UTCzone = 6;    %Insert UTC zone of the area (e.g. El Salvadore is UTC -6,  177 



 

99 

                %Bangladesh is UTC +6). This to use local time. 178 
RGstart = 7;    %Insert the time of day when rain gauge data are collected  179 
                %in the area. The number is equivalent to the time of day  180 
                %in hours (0-23, equals 00:00 - 23:00). If time is not 181 
                %known, it is recommended to use 7 (7 AM / 07:00). 182 
PreceedingDays = 60;    %Insert number of rainfall day to analyse preceding  183 
                        %the day of landslide triggering. 184 
FollowingDays  = 1; %Insert number of following days to include in analysis 185 
            %The day of the landslide occurrence is automatically included. 186 
             187 
xlsName = 'Full inventory_Bangladesh.xlsx'; %Insert name of landslide  188 
                                            %inventory file. 189 
sheetName = 'Landslides';   %Insert sheet name. 190 
Range = 'A1:U52';   %Insert range of landslide data in sheet. 191 
  192 
startline = 2;      %Select range for input in analysis (skip header line). 193 
endline   = 42; 194 
  195 
%Insert column position in spread sheet of the different data required: 196 
colNr_LSnr = 1;     %Give each line of registered data a number, to  197 
                %discriminate between landslides with same name/area. 198 
colNr_LSname = 3;   %Name of landslides (e.g. often nearest town/village) 199 
colNr_LSlat = 7;    %Latitude position of landslide 200 
colNr_LSlong = 8;   %Longitude position of landslide 201 
colNr_Year = 14;    %Date of landslide in;  year  202 
colNr_Month = 15;   %                       month  203 
colNr_Day = 16;     %                       day 204 
                    %Hours are left out as only date of triggering are  205 
                    %known for most of the landslides in the inventory. 206 
 207 

4. Load_LSinventory.m 208 

%%%%%%%%% LOAD DATA FROM LANDSLIDE INVENTORY %%%%%%%%%% 209 
  210 
%This script run as a part of the script TRMMscript_Several. 211 
  212 
%Extracts data from landslide inventory. Data- and parameter-input from  213 
%the script InsertData.m are used here.  214 
  215 
[X, Y, Z] = xlsread(xlsName, sheetName, Range); 216 
    %X = numerical data, Y = string data as cell, Z = all data as cell 217 
    disp('Xls-file read.'); 218 
    clear('X', 'Y'); 219 
     220 
for i = startline:endline;      %Get all landslide/rain gauge coordinates 221 
    temp=[num2str(cell2mat(Z(i,colNr_LSnr))) '_' char(Z(i,colNr_LSname))]; 222 
    PosName(i-1,1:9) = temp(1:9);       %Enters name of surface position  223 
            %(usually a landslide or rain gauge) 224 
    Latitude(i-1,1)  = cell2mat(Z(i,colNr_LSlat));  %Position on earth 225 
surface 226 
    Longitude(i-1,1) = cell2mat(Z(i,colNr_LSlong)); %latitude and longitude 227 
end 228 
    disp('All lat/lon positions stored.');     229 
  230 
for i = startline:endline;      %Load dates into vectors 231 
    Date(i-1,3) = cell2mat(Z(i,colNr_Day)); 232 
    Date(i-1,2) = cell2mat(Z(i,colNr_Month)); 233 
    Date(i-1,1) = cell2mat(Z(i,colNr_Year)); 234 
end 235 



 

100 
 

  236 
for i = 1:length(Date(:,1));      %Create dates for filenames 237 
    if Date(i,3) <10 238 
        dd(i,1:2) = ['0' num2str(Date(i,3))]; 239 
    else dd(i,1:2) = num2str(Date(i,3)); 240 
    end 241 
    if Date(i,2) < 10 242 
        mm(i,1:2) = ['0' num2str(Date(i,2))]; 243 
    else mm(i,1:2) = num2str(Date(i,2)); 244 
    end 245 
    yyyy(i,1:4) = num2str(Date(i,1)); 246 
end 247 
  248 
hour_num = 1/24;    %numerical date number for one hour 249 
for i = 1:length(Date(:,1)); 250 
    initialTime(i,:) = [dd(i,:) '.' mm(i,:) '.' yyyy(i,:)]; %LS-day 251 
    endnum(i,:) = datenum(initialTime(i,:), 'dd.mm.yyyy') + ... 252 
        FollowingDays + (24 * hour_num);  253 
            %end of day at 24:00 = 00:00 next day => +24 hours    254 
    endingtime(i,:) = datestr(endnum(i,:), 'dd.mm.yyyy HH:MM'); 255 
    startnum(i,:) = datenum(initialTime(i,:), 'dd.mm.yyyy') - ... 256 
        (PreceedingDays) + 1*hour_num; %first measurement at 01:00 257 
    startingtime(i,:) = datestr(startnum(i,:), 'dd.mm.yyyy HH:MM'); 258 
end 259 
 260 

5. CheckTime.m 261 

%%%%%%% CHECK TIME INPUT FROM LANDSLIDE INVENTORY %%%%%% 262 
  263 
%This script run as a part of the script TRMMscript_Several. 264 
%Checks if entered time data is ok 265 
  266 
for n=1:length(startingtime(:,1)) 267 
    if str2num(startingtime(n,4:5)) > 12  268 
        error('The starting month(mm) is incorrect(>12). Please correct 269 
this.') 270 
    end 271 
    if str2num(endingtime(n,4:5)) > 12  272 
        error('The ending month(mm) is incorrect(>12). Please correct 273 
this.') 274 
    end 275 
end 276 
  277 
startnum = datenum(startingtime, 'dd.mm.yyyy HH:MM'); 278 
endnum = datenum(endingtime, 'dd.mm.yyyy HH:MM'); 279 
hour_num = 1/24; 280 
if startnum > endnum 281 
    tempText = ['Your end time is less than your start time. ' ... 282 
        'Please change time input and try again.']; 283 
    error(tempText) 284 
end 285 
  286 
disp('Time input seems correct.') 287 
 288 

  289 
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6. FindFilenamesFullSet.m 290 

%%%%%%%%% FIND FILENAMES %%%%%%%%%%%%% 291 
  292 
%This script run as a part of the script TRMMscript_Several. 293 
  294 
%Find filename of all files needed for data extraction. All filenames are 295 
%saved temporally in both zipped und un-zipped format in the file 296 
%filenames.mat.  297 
  298 
if RainfallProduct == '3B42RT' 299 
    filefrequency = 3;  %3 hrs rainfall estimates for 3B42RT 300 
end 301 
if RainfallProduct == '3B41RT' 302 
    filefrequency = 1;  %1 hr rainfall estimates for 3B41RT 303 
end 304 
hour_num = 1/24;        %find the numerical number for 1 hour, 1 day = 1 305 
  306 
startnum = datenum('01.01.2007', 'dd.mm.yyyy');%hours removed to download.. 307 
endnum = datenum('31.12.2010', 'dd.mm.yyyy'); %..full days (at 3 hr 308 
interval) 309 
  310 
NrOfDays = endnum - startnum +1; %days to download per landslide 311 
NrOfDownloads = NrOfDays*24/filefrequency;    312 
  313 
for n=1:length(startnum) 314 
    for i=1:NrOfDownloads 315 
        fileTime_num(((n-1)*NrOfDownloads+i),:) = ... 316 
            startnum(n,:) + (i-1)*(filefrequency/24);    317 
    end         %creates numerical time for each file to download 318 
end 319 
%sort filetimes (all files) and remove duplicate file time-inputs 320 
fileTime_sorted = sort(fileTime_num); 321 
for i=1:length(fileTime_sorted)-1 322 
    fileTime_diff(i,:) = fileTime_sorted(i+1) - fileTime_sorted(i); 323 
end 324 
find_diff = find(fileTime_diff == 0); 325 
fileTime_new = fileTime_sorted; 326 
fileTime_new(find_diff+1) = []; 327 
fileTimestr = datestr(fileTime_new, 'yyyymmddHH'); 328 
  329 
%% Store filenames needed for rainfall data processing 330 
for n=1:length(fileTimestr) 331 
    if fileTime_new(n,:) < datenum('01.01.2009', 'dd.mm.yyyy') 332 
         filename2(n,:) = [RainfallProduct '.' fileTimestr(n,:) '.bin  ']; 333 
    else filename2(n,:) = [RainfallProduct '.' fileTimestr(n,:) '.6.bin']; 334 
    end 335 
end 336 
filename2_cell = cellstr(filename2);    %filenames of (g)unzipped files 337 
  338 
for n=1:length(filename2) 339 
    if length(char(filename2_cell(n,:))) == 23 340 
        filename1(n,:) = [char(filename2_cell(n,:)) '.gz']; 341 
    else filename1(n,:) = [char(filename2_cell(n,:)) '.gz  ']; 342 
    end 343 
end 344 
filename1_cell = cellstr(filename1);    %filenames of g-zipped files 345 
  346 
save('filenames.mat', 'filename1_cell', 'filename2_cell') 347 
    tempText = [num2str(length(fileTimestr)) ' filenames found and ' ... 348 
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        'stored in filename-array.']; 349 
    disp(tempText) 350 
    clear('tempText') 351 

7. FindTMPApositions.m 352 

%%%%%% FIND GRID POSITION %%%%%%%% 353 
  354 
%This script run as a part of the script TRMMscript_Several. 355 
  356 
%Search for grid positions (TMPA) closest to positions of landslides (or 357 
%rain gauges, etc.). The grid positions are stored a variable that tells 358 
%where in the rainfall product files to find rainfall estimates 359 
%corresponding to rainfall of landslide positions in the landslide  360 
%inventory.  361 
  362 
%To get these data from one single position, the script 363 
%FindOneTMPAposition.m (almost completely similar to the current script) 364 
%is used.  365 
  366 
%% Create latitude and longitude grid position variables 367 
for i=1:1440/2 368 
    lonGridPos(i,:) = 0.125 +(i-1)*0.25;   %longitudes (0-180 E) 369 
end 370 
for i=1:1440/2      %longitude (180 to 360 E = -180 to 0), adjustment to...  371 
    lonGridPos(i+(1440/2),:) = -179.875 +(i-1)*0.25;%...NOAA coord settings 372 
end 373 
for j=1:480 374 
    latGridPos(j,:) = 59.875 -(j-1)*0.25;   %N(pos.latitudes) 375 
                                            %S(neg.latitudes) 376 
end 377 
  378 
%% Find grid positions closest to landslides 379 
for n=1:length(Latitude) 380 
    latDiffGrid = abs(Latitude(n,:) - latGridPos); 381 
    lonDiffGrid = abs(Longitude(n,:) - lonGridPos); 382 
    latDiff(n,:) = min(latDiffGrid(:,1)); 383 
    find_lat(n,:) = max(find(latDiffGrid == latDiff(n,:))); 384 
    lonDiff(n,:) = min(lonDiffGrid); 385 
    find_lon(n,:) = max(find(lonDiffGrid == lonDiff(n,:))); 386 
end 387 
find_GridPos = [find_lat find_lon Latitude Longitude]; 388 
  389 
%% Sort by latitude and remove duplicate positions (equal positions) 390 
sortedGrid = sortrows(find_GridPos, 1); 391 
for i=1:length(sortedGrid(:,1))-1 392 
    find_equal(i,1) = sortedGrid(i+1,1) - sortedGrid(i,1); 393 
    find_equal(i,2) = sortedGrid(i+1,2) - sortedGrid(i,2); 394 
end 395 
is_equal = find(abs(find_equal(:,1)) + abs(find_equal(:,2)) == 0); 396 
    %finds positions where absolute value of lat and lon difference is zero 397 
sortedGrid_temp = sortedGrid; 398 
sortedGrid_temp(is_equal+1,:) = []; 399 
  400 
%% Sort by longitude and remove duplicates 401 
sortedGrid2 = sortrows(sortedGrid_temp, 2); 402 
for i=1:length(sortedGrid2(:,2))-1 403 
    find_equal2(i,1) = sortedGrid2(i+1,1) - sortedGrid2(i,1); 404 
    find_equal2(i,2) = sortedGrid2(i+1,2) - sortedGrid2(i,2); 405 
end 406 
is_equal2 = find(abs(find_equal2(:,1)) + abs(find_equal2(:,2)) == 0); 407 
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    %finds positions where absolute value of lat and lon difference is zero 408 
filePos_new = sortedGrid2; 409 
filePos_new(is_equal2+1,:) = [];   %all duplicate positions removed 410 
filePos = filePos_new(:,1:2); 411 
LatLonLS = filePos_new(:,3:4); 412 
  413 
%% Get grid position coordinates 414 
GridPos_new = [latGridPos(filePos(:,1)) lonGridPos(filePos(:,2))]; 415 
  416 
%% Get surface distance 417 
deg2rad = (pi/180); 418 
LatDist(:,1) = GridPos_new(:,1)-LatLonLS(:,1); %surface dist lat (Easting) 419 
LonDist(:,1) = GridPos_new(:,2)-LatLonLS(:,2); %surface dist lon (Northing) 420 
  421 
%Ellipsoidal Earth projected to a plane 422 
K1 = 111.13209 - 0.56605*cos(2*LatDist) + 0.00120*cos(4*LatDist); 423 
K2 = 111.41513*cos(LatDist) - 0.09455*cos(3*LatDist) + ... 424 
    0.00012*cos(5*LatDist); 425 
for i=1:length(K1) 426 
    SurfDistKM(i,:) = sqrt((K1(i,:)*LatDist(i,:))^2 + ... 427 
        (K2(i,:)*LonDist(i,:))^2); 428 
end 429 
  430 
%% Save variables 431 
save('PositionData.mat', 'latDiff', 'find_lat', 'lonDiff', 'find_lon' ... 432 
    , 'filePos', 'GridPos_new', 'SurfDistKM'); 433 
    tempText = [num2str(length(GridPos_new(:,1))) ... 434 
        ' unique TMPA positions found.']; 435 
    disp(tempText) 436 
    clear('tempText') 437 
 438 
 439 

8. FindOneTMPAposition.m 440 

%%%%%% FIND GRID POSITION %%%%%%%% 441 
  442 
%Search for grid positions (TMPA) closest to positions of landslides (or 443 
%rain gauges, etc.). The grid position is stored in variable "sortGrid_new" 444 
%and tell where in rainfall files to find the rainfall equivalent to the 445 
%landslide positions.  446 
  447 
%% Create latitude and longitude grid position variables 448 
for i=1:1440/2 449 
    lonGridPos(i,:) = 0.125 +(i-1)*0.25;   %longitudes (0-180 E) 450 
end 451 
for i=1:1440/2      %longitude (180 to 360 E = -180 to 0), adjustment to...  452 
    lonGridPos(i+(1440/2),:) = -179.875 +(i-1)*0.25;%...NOAA coord settings 453 
end 454 
for j=1:480 455 
    latGridPos(j,:) = 59.875 -(j-1)*0.25;   %N(pos.latitudes) 456 
                                            %S(neg.latitudes) 457 
end 458 
  459 
%% Find grid positions closest to landslides 460 
for n=1:length(Latitude) 461 
    latDiffGrid = abs(Latitude(n,:) - latGridPos); 462 
    lonDiffGrid = abs(Longitude(n,:) - lonGridPos); 463 
    latDiff(n,:) = min(latDiffGrid(:,1)); 464 
    find_lat(n,:) = max(find(latDiffGrid == latDiff(n,:))); 465 



 

104 
 

    lonDiff(n,:) = min(lonDiffGrid); 466 
    find_lon(n,:) = max(find(lonDiffGrid == lonDiff(n,:))); 467 
end 468 
find_GridPos = [find_lat find_lon Latitude Longitude]; 469 
  470 
%% Sort by latitude and remove duplicate positions (equal positions) 471 
sortedGrid = sortrows(find_GridPos, 1); 472 
sortedGrid_temp = sortedGrid; 473 
  474 
%% Sort by longitude and remove duplicates 475 
sortedGrid2 = sortrows(sortedGrid_temp, 2); 476 
filePos_new = sortedGrid2; 477 
filePos = filePos_new(:,1:2); 478 
LatLonLS = filePos_new(:,3:4); 479 
  480 
%% Get grid position coordinates 481 
GridPos_new = [latGridPos(filePos(:,1)) lonGridPos(filePos(:,2))]; 482 
  483 
%% Get surface distance 484 
deg2rad = (pi/180); 485 
LatDist(:,1) = GridPos_new(:,1)-LatLonLS(:,1); %surface dist lat (Easting) 486 
LonDist(:,1) = GridPos_new(:,2)-LatLonLS(:,2); %surface dist lon (Northing) 487 
  488 
%Ellipsoidal Earth projected to a plane 489 
K1 = 111.13209 - 0.56605*cos(2*LatDist) + 0.00120*cos(4*LatDist); 490 
K2 = 111.41513*cos(LatDist) - 0.09455*cos(3*LatDist) + ... 491 
    0.00012*cos(5*LatDist); 492 
for i=1:length(K1) 493 
    SurfDistKM(i,:) = sqrt((K1(i,:)*LatDist(i,:))^2 + ... 494 
        (K2(i,:)*LonDist(i,:))^2); 495 
end 496 
  497 
%% Save variables 498 
save('PositionData.mat', 'latDiff', 'find_lat', 'lonDiff', 'find_lon' ... 499 
    , 'filePos', 'GridPos_new', 'SurfDistKM'); 500 
    tempText = [num2str(length(GridPos_new(:,1))) ... 501 
        ' unique TMPA positions found.']; 502 
    disp(tempText) 503 
    clear('tempText') 504 
  505 

9. ExtractRainfallData.m 506 

%%%%%%%%%%%%%%%%% READ RAINFALL FILES %%%%%%%%%%%%% 507 
  508 
%This script runs as a part of the script TRMMscript_Several.m 509 
  510 
%Rainfall data (TRMM-based estimates) are extracted from all needed files 511 
%and positions, and saved in a rainfall data variable including rainfall 512 
%estimates from all positions and a time string corresponding to each file.  513 
  514 
  515 
%% Extract rainfall data 516 
ScriptFolder = pwd;     %save current directory as string 517 
Archive = ['C:\Users\Fagerlandet 2.0\Skole\_File Archive\' ... 518 
    RainfallProduct '\']; 519 
cd(Archive) 520 
  521 
for n=1:length(fileTime_new) 522 
    %create correct filenames 523 
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    if fileTime_new(n,:) < datenum('01.01.2009', 'dd.mm.yyyy') 524 
         filename2 = [RainfallProduct '.' fileTimestr(n,:) '.bin']; 525 
         filename1 = [RainfallProduct '.' fileTimestr(n,:) '.bin.gz']; 526 
         Folder=[Archive 'V5\' fileTimestr(n,1:4) '\' fileTimestr(n,5:6)]; 527 
         cd(Folder)     %fileTimestr: 1-4=year, 5-6=month 528 
            %opens the correct folder from the data archive 529 
    else filename2 = [RainfallProduct '.' fileTimestr(n,:) '.6.bin']; 530 
         filename1 = [RainfallProduct '.' fileTimestr(n,:) '.6.bin.gz']; 531 
         Folder = [Archive fileTimestr(n,1:4) '\' fileTimestr(n,5:6)]; 532 
         cd(Folder) 533 
    end 534 
    try     %prosess file if present in archive folder  535 
      gunzip(filename1); 536 
      fileID = fopen(filename2, 'r', 'b', 'ISO-8859-1');  537 
        %opens binary file, read only, using machine format "big-endian" 538 
        %and textformate ISO-8859-1 539 
      rainfallGrid = fread(fileID, [1440 480], 'int16', 0, 'b');     540 
        %Read file in the given range, as 2 byte integer (int16), skipping  541 
        %no bits(0), using machineformat "big-endian". 542 
      errorGrid = fread(fileID, [1440 480], 'int16', 0, 'b'); %2 byte int 543 
      sourceGrid = fread(fileID, [1440 480], 'int8', 0, 'b'); %1 byte int  544 
      %uncalRFgrid = fread(fileID, [1440 480], 'int16', 0, 'b'); %2 byte  545 
        %integer (uncalRFgrid is only used on 3BXXRT version 6 files) 546 
      fclose(fileID); 547 
      delete(filename2); 548 
         549 
      for i=1:length(filePos(:,1))  %Rainfall values in file is *100 mm/hr 550 
        Rainfall(n,i) = rainfallGrid(filePos(i,2),filePos(i,1))/100; 551 
        Error(n,i) = errorGrid(filePos(i,2),filePos(i,1))/100; 552 
        Source(n,i) = sourceGrid(filePos(i,2),filePos(i,1)); 553 
      end 554 
            tempText = ['File number ' num2str(n) ' (' filename2 ... 555 
                ') processed.']; 556 
            disp(tempText) 557 
            clear('tempText') 558 
    catch 559 
        %if file is not present in arcive folder, values = -9 560 
        tempText = ['File ' filename1 ' not found in archive.' ... 561 
            ' Rainfall = -9.']; 562 
        disp(tempText) 563 
        clear('tempText') 564 
        for i=1:length(filePos(:,1)) 565 
            Rainfall(n,i) = -9; 566 
            Error(n,i) = -9; 567 
            Source(n,i) = -9; 568 
        end 569 
    end 570 
  571 
end 572 
            573 
ScriptFolder = 'C:\Users\Fagerlandet 2.0\Skole\Masteroppgave\Matlab\TRMM'; 574 
cd(ScriptFolder) 575 
    tempText = [num2str(length(fileTime_new)) ' files of rainfall data' ... 576 
        ' processed and saved in rainfall-array.']; 577 
    disp(tempText) 578 
    clear('tempText') 579 
 580 

10. SaveData.m 581 

%%%%%%%%%%%%%% SAVE DATA INTO FINAL RESULT FILE %%%%%%%%%%% 582 
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  583 
%This script runs as a part of the script TRMMscript_Several.m. 584 
  585 
%Saves all rainfall and position data in *.mat-files in the folder Results. 586 
%Name of saved files corresponds to the name of the landslide inventory  587 
%file (given in InsertData.m).  588 
  589 
%Data needed        - Variables: 590 
    %Latitude           - LatLonLS 591 
    %Longitude          - LatLonLS 592 
    %Latitude_TMPA      - GridPos_new 593 
    %Longitude_TMPA     - GridPos_new 594 
    %SurfaceDistKM      - SurfDistKM 595 
    % 596 
    %RainfallData       - Rainfall 597 
    %ErrorData          - Error 598 
     599 
if isdir('Results') == 0 600 
    mkdir('Results') 601 
end 602 
cd Results 603 
     604 
%% Save position data 605 
PositionData(1:2,:) = LatLonLS'; 606 
PositionData(3:4,:) = GridPos_new'; 607 
PositionData(5,:) = SurfDistKM'; 608 
  609 
Header = {'LS_latitude'; 'LS_longitude'; 'TMPA_latitude'; ... 610 
    'TMPA_longitude'; 'SurfaceDistance(KM)';}; 611 
  612 
PositionData_cell = [Header num2cell(PositionData)]'; 613 
  614 
tempName = [xlsName(1:max(strfind(xlsName, '.'))-1)]; 615 
PosFileName = [tempName '_position data.mat']; 616 
save(PosFileName, 'PositionData', 'Header', 'PositionData_cell'); 617 
  618 
%% Save rainfall data 619 
TMPA_Rainfall(1:2,:) = PositionData(3:4,:); 620 
TMPA_Rainfall(3:length(Rainfall(:,1))+2,:) = Rainfall; 621 
TMPA_Rainfall_header(3:length(fileTimestr)+2,:) = fileTimestr; 622 
TMPA_Rainfall_header(1:2,:) = ['TMPA_lat  '; 'TMPA_long '];  623 
TMPA_Rainfall_cell=[cellstr(TMPA_Rainfall_header) num2cell(TMPA_Rainfall)]; 624 
  625 
TMPA_Error(1:2,:) = PositionData(3:4,:); 626 
TMPA_Error(3:length(Error(:,1))+2,:) = Error; 627 
TMPA_Error_header(3:length(fileTimestr)+2,:) = fileTimestr; 628 
TMPA_Error_header(1:2,:) = ['TMPA_lat  '; 'TMPA_long '];  629 
TMPA_Error_cell=[cellstr(TMPA_Error_header) num2cell(TMPA_Error)]; 630 
  631 
RainfallFilename = [tempName '_rainfall data.mat']; 632 
save(RainfallFilename, 'TMPA_Rainfall', 'TMPA_Rainfall_cell', ... 633 
    'TMPA_Error_cell', 'TMPA_Error') 634 
  635 
cd .. 636 
  637 
disp('Rainfall data saved in \Results.') 638 
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11. GetDailyRainfallNew.m 639 

%%%%%%%%%%%%% ESTIMATE DAILY RAINFALL FROM NASAS 3B41RT/3B42RT %%%%%%%%%%% 640 
  641 
%Files resulting from running the script TRMMscript_Severeal.m is needed to 642 
%run this script, and must be present in folder 'Results' in current Matlab 643 
%directory. Filenames and rainfall product type must be inserted before 644 
%running the script. 645 
  646 
%The rainfall data loaded into this file contain the coordinates to the 647 
%rainfall data and rainfall data each hour. The rainfall is given in mm/hr.  648 
  649 
%The mean time of each file (time for data collection) is at 00, 01, 02, 650 
%etc. Thus data collection related to a file is actually at +/- 0.5 or 1.5 651 
%hours depending on the type of rainfall product, and that the rainfall 652 
%files of 00-hours and 01-hours, for 3B42RT and 3B41RT respectively, must  653 
%be divided between two days.  654 
  655 
%Bangladesh is located in UTC zone +6, and the local rainfall data is 656 
%probably collected at 07:00 (equal to 01:00 UTZ 0). The 01-hours files 657 
%rainfall data thus has to be divided between two days: 00:30 to 01:00  658 
%(0.5 hours) are related to the previous day, and 01:00 to 01:30  659 
%(0.5 hours)to the coming day. The rainfall intensity given in the file in 660 
%(mm/hr) is spread evenly between the two days => 0.5hr*rainfall(RF).  661 
  662 
FilenameBeginning = 'Full time series';    %enter filename of result-file 663 
    %leave out the ending, like '_position data' or '_rainfall data'.  664 
RainfallProduct = '3B41RT';     %select type of rainfall product 665 
                                %(3B41RT or 3B42RT). 666 
if RainfallProduct == '3B41RT' 667 
    SplitFileTime = 1;  668 
    PartPrevDay = 0.5; 669 
    FileDuration = 1; 670 
end 671 
if RainfallProduct == '3B42RT' 672 
    SplitFileTime = 0; 673 
    PartPrevDay = 2.5; 674 
    FileDuration = 3; 675 
end 676 
    PartCurrDay = 0.5; 677 
  678 
cd Results 679 
Loadfilename1 = [FilenameBeginning '_rainfall data.mat']; 680 
Loadfilename2 = [FilenameBeginning '_position data.mat']; 681 
load(Loadfilename1) 682 
load(Loadfilename2) 683 
FileName = [FilenameBeginning '_daily rainfall data.mat']; 684 
LatLonTMPA = [TMPA_Rainfall_cell(1,2) TMPA_Rainfall_cell(2,2)]; 685 
AllTimes = datenum(char( ... 686 
    TMPA_Rainfall_cell(3:length(TMPA_Rainfall_cell),1)), 'yyyymmdd'); 687 
Startingday = AllTimes(1); 688 
Endingday = AllTimes(length(AllTimes)); 689 
NrOfDays = Endingday - Startingday +1; 690 
CountRFseries = length(TMPA_Rainfall(1,:));     691 
  692 
    for n=1:CountRFseries 693 
        temp_Rainfall = TMPA_Rainfall(:,n); 694 
for i=1:NrOfDays 695 
    NaNcount(i,:) = 0; 696 
    DailyRainfall(i,:) = 0; 697 
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    CurrDay(i,:) = Startingday + (i-1);  %numerical day (for each day in 698 
loop) 699 
    findRF = find(AllTimes == CurrDay(i,:)); 700 
        %selects rainfall-data positions of current day (8 for each day) 701 
    for j=min(findRF):max(findRF)   %for each day... 702 
        Datestr = char(TMPA_Rainfall_cell(j+2,1)); 703 
        if (temp_Rainfall(j+2) == -9) || ...    %count hours of NaN 704 
                (temp_Rainfall(j+2) == -319.99);  %2 header lines in TMPA_ 705 
            if str2num(Datestr(9:10)) == SplitFileTime  706 
                if (i-1)>0   707 
                    NaNcount(i-1,:) = NaNcount(i-1,:) + PartPrevDay; 708 
                        %adds 2.5 or 0.5 hrs of NaN to previsious day  709 
                end 710 
                NaNcount(i,:) = NaNcount(i,:) + PartCurrDay; %0.5 hrs NaN 711 
            else NaNcount(i,:) = NaNcount(i,:) + FileDuration; %3 hrs NaN  712 
            end    713 
        else  %accumulate rainfall 714 
            if str2num(Datestr(9:10)) == SplitFileTime 715 
                if (i-1)>0 716 
                  DailyRainfall(i-1,:) = DailyRainfall(i-1,:) + ... 717 
                    temp_Rainfall(j+2,:) * PartPrevDay; %2.5 or 0.5 hrs RF 718 
                end 719 
                DailyRainfall(i,:) = DailyRainfall(i,:) + ... 720 
                    temp_Rainfall(j+2,:) * PartCurrDay; %0.5 hours of RF  721 
            else DailyRainfall(i,:) = DailyRainfall(i,:) + ... 722 
                    temp_Rainfall(j+2,:) * FileDuration; %1 or 3 hrs of RF 723 
            end 724 
        end 725 
    end 726 
end  727 
DailyRainfall_cell(3:length(DailyRainfall)+2,n+1) = 728 
num2cell(DailyRainfall); 729 
NaNcount_cell(3:length(DailyRainfall)+2,n+1) = num2cell(NaNcount); 730 
    end 731 
  732 
DailyRainfall_cell(1:2,1:length(PositionData_cell(:,1))) = ... 733 
    [PositionData_cell(1:length(PositionData_cell(:,1)),3:4)']; 734 
DailyRainfall_cell(3:length(DailyRainfall)+2,1) = ... 735 
    cellstr(datestr(CurrDay, 'yyyymmdd')); 736 
  737 
NaNcount_cell = DailyRainfall_cell; 738 
NaNcount_cell(3:length(DailyRainfall)+2,1) = ... 739 
    cellstr(datestr(CurrDay, 'yyyymmdd')); 740 
  741 
save(FileName, 'DailyRainfall', 'DailyRainfall_cell', 'CurrDay', ... 742 
    'NaNcount', 'NaNcount_cell') 743 
  744 
cd .. 745 
  746 
 747 

12. ValidationStatistics.m 748 

%%%%%%% VALIDATION STATISTICS OF RAINFALL ESTIMATES %%%%%%%% 749 
  750 
%This script is used to compare TRMM-based rainfall estimates  751 
%with daily rain gauge data from Chittagong. The rainfall estimate products 752 
%used are the NASA TRMM 3B41RT using  753 
%infrared imagery (IR) and the NASA TRMM 3B42RT using merged IR and  754 
%microwave imagery (IRMW). The rainfall series selected is the longest  755 
%possible providing complete years of rainfall from all sources 756 
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  757 
LoadData;   %load all data needed to create data series 758 
PrepareSeries;  %prepare rainfall for equal time series 759 
LandslideData;  %prepare landslide data for use in validation 760 
  761 
%% Visual inspection 762 
VisInspection;      %prepare rainfall series for visual inspection 763 
DistributionCurve;  %prepare data for making distrubution plot 764 
MontlyRainfall;     %prepare data for monthly rainfall figures 765 
FigureSetup;        %create bar-plot and landslide event data line-plot 766 
  767 
%% Correlation 768 
CorrelationPlots;       %prepare graphs for correlation 769 
  770 
%% Check NaN 771 
CheckNaN;       %analyse severity of missing rainfall estimates 772 
  773 
 774 
 775 

13. LoadData.m 776 

%% Load IR, IRMW and HE data for use in ValidationStatistics.m 777 
CurrentFolder = pwd; 778 
IRfolder = ['C:\Users\Fagerlandet 2.0\Skole\Masteroppgave\Matlab' ... 779 
    '\TRMM\3B41RT\Results'];   %folder of 3B41RT (IR estimates) 780 
IRMWfolder = ['C:\Users\Fagerlandet 2.0\Skole\Masteroppgave\Matlab' ... 781 
    '\TRMM\3B42RT\Results'];   %folder of 3B42RT (combined IR/MW estimates) 782 
DailyRFfile = 'Raingauge_Daily_Chittagong_daily rainfall data.mat'; 783 
  784 
cd(IRfolder) 785 
load(DailyRFfile) 786 
rainfallIR = DailyRainfall;     %Get IR data (3B41RT) 787 
dateIR = CurrDay; 788 
nanIR = NaNcount; 789 
  790 
cd(IRMWfolder) 791 
load(DailyRFfile)            792 
rainfallIRMW = DailyRainfall;   %Get IR/MW data (3B42RT) 793 
dateIRMW = CurrDay; 794 
nanIRMW = NaNcount; 795 
  796 
cd(CurrentFolder) 797 
load('Validation file_Chittagong.mat') 798 
ValStat(1,:) = [];  %remove header line 799 
rainfallHE = cell2mat(ValStat(:,5)); 800 
dateHE = datenum(cell2mat(ValStat(:,1:3))); 801 
nanHE = cell2mat(ValStat(:,6)); 802 
  803 
load('ChittagongDailyRainGaugeData.mat') 804 
rainfallRG = cell2mat(DailyRainfall_RG(:,4));  %Get rain gauge data 805 
dateRG = cell2mat(DailyRainfall_RG(:,5)); 806 
 807 

14. PrepareSeries.m 808 

%% Create data series of similar dates for IR, IR/MW and RG data, for use 809 
%% in ValidationStatistics.m 810 
  811 
startdate = '01-Mar-2005';  %No rainfall in any data sets before march 05 812 
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startdatenum = datenum(startdate); 813 
enddate = '31-Dec-2008';    %Rainfall registered until end of December 08 814 
enddatenum = datenum(enddate); 815 
  816 
%Find start and end possitions for rainfall data corresponding to dates 817 
startIR = find(dateIR == startdatenum); 818 
endIR = find(dateIR == enddatenum); 819 
startIRMW = find(dateIRMW == startdatenum); 820 
endIRMW = find(dateIRMW == enddatenum); 821 
startRG = find(dateRG == startdatenum); 822 
endRG = find(dateRG == enddatenum); 823 
  824 
%Create final rainfall data series  825 
rainfalldates_new = dateRG(startRG:endRG); 826 
rainfallIR_new = rainfallIR(startIR:endIR); 827 
rainfallIRMW_new = rainfallIRMW(startIRMW:endIRMW); 828 
rainfallRG_new = rainfallRG(startRG:endRG); 829 
rainfallCompare_new = [rainfalldates_new rainfallIR_new ... 830 
    rainfallIRMW_new rainfallRG_new]; 831 
  832 
 833 

15. VisInspection.m 834 

%% Initial visual inspection of the data 835 
 836 
x = [1:1:length(rainfallRG_new)]; 837 
y = rainfallIR_new; 838 
y(:,2) = rainfallIRMW_new; 839 
y(:,3) = rainfallRG_new; 840 
plot(x, y) 841 
legend('IR', 'IRMW', 'RG'); 842 
title('Daily rainfall correlation'); 843 
 844 

 845 

16. LandslideData.m  846 

%This script loads landslide data from spread sheet into Matlab workspace.  847 
%Date and time vectors for landslide events in landslide inventory are  848 
%created and events of too high position uncertainty are removed. 849 
  850 
xlsName = 'ChittagongDistrict.xlsx'; 851 
sheetName = 'Landslides';   852 
Range = 'A1:U15';   %Insert range of landslide data in sheet. 853 
startline = 2;      %Select range for input in analysis (skip header line). 854 
endline   = 15; 855 
  856 
%Insert column position in spread sheet of the different data required: 857 
colNr_LSnr = 1;      858 
colNr_LSname = 3;    859 
colNr_LSlat = 7;    860 
colNr_LSlong = 8;   861 
colNr_Year = 14;     862 
colNr_Month = 15;    863 
colNr_Day = 16; 864 
colNr_Region = 5; 865 
colNr_District = 4; 866 
colNr_ConfRadius = 13; 867 
colNr_Casualties = 12; 868 
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  869 
%Read inventory file 870 
[X, Y, Z] = xlsread(xlsName, sheetName, Range); 871 
    %X = numerical data, Y = string data as cell, Z = all data as cell 872 
    disp('Xls-file read.'); 873 
  874 
%Remove data with very high spatial uncertainty 875 
ConfRadius = Z(2:length(Z(:,1)),colNr_ConfRadius); 876 
Unacurate = find(cell2mat(ConfRadius(:,1)) > 50); 877 
Z(Unacurate+1,:) = []; 878 
  879 
%Get time data 880 
LStime_cell = Z(:,colNr_Year:colNr_Day); 881 
LStime_cell(1,:) = [];   %remove header line 882 
LStime_num = datenum(cell2mat(LStime_cell)); 883 
timenum_sorted = sort(LStime_num); 884 
for i=1:length(LStime_num)-1 885 
    timediff(i,:) = timenum_sorted(i+1,:) - timenum_sorted(i,:); 886 
end 887 
finddiff = find(timediff == 0);  888 
LStime_num_new = timenum_sorted; 889 
LStime_num_new(finddiff) = []; 890 
  891 
LStime = datestr(LStime_num_new, 'dd.mm.yyyy'); 892 
  893 
%Prepare sorting of LS event by month 894 
mm = str2num(LStime(:,5:6))     %used in visual inspection figure (se  895 
                                %MontlyRainfall2.m).  896 
  897 
 898 

17. DistributionCurve.m 899 

%% Compare distribution of different data 900 
  901 
%This script create a bar-plot representing a rainfall intensity  902 
%distribution curve for each rainfall products, by plotting intensity 903 
%intervals. Figure was adjusted using Matlab figure GUI.  904 
  905 
clear('distrIR_new', 'distrIRMW_new', 'distrRG_new') 906 
Resolution = 20; %resolution of distribution columns 907 
for j=1:20 908 
    distrIR_new(j,:) = length(find(rainfallIR_new > (j-1)*Resolution & ... 909 
        rainfallIR_new <= (j)*Resolution));  910 
    distrIRMW_new(j,:) = length(find(rainfallIRMW_new > (j-1)* ... 911 
        Resolution & rainfallIRMW_new <= (j)*Resolution));  912 
    distrRG_new(j,:) = length(find(rainfallRG_new > (j-1)*Resolution & ... 913 
        rainfallRG_new <= (j)*Resolution));  914 
end 915 
  916 
distrAll = [distrIR_new distrIRMW_new distrRG_new]/4; 917 
  918 
%% Create bar diagram of yearly average rainfall intensity distribution 919 
  920 
%Add data 921 
y = distrAll    %y1 = IR, y2 = IRMW, y3 = RG 922 
x = .5:1:19.5; 923 
  924 
%Create figure 925 
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F = figure('Color','w','Position',[100 100 900 450]);   %figure properties: 926 
background color,  927 
b = bar(x,y,1,'grouped');   %plot data in figure with parameters x-axis,  928 
                            %y-axis and plot format         929 
colormap(   [0.8157 0.2549 0.2549;...   930 
            0.4784 0.7098 0.2627; ... 931 
            0.3333 0.4745 0.6157;] ... 932 
        )   933 
%Add title and labels 934 
title('Rainfall distribution, yearly average', ... 935 
    'FontWeight','bold','FontSize',18)   936 
ylabel('Rainfall (mm)','FontSize',18)    937 
  938 
%Change figur properties 939 
box  on             940 
set(gca, 'FontSize',10,'FontName','Kalinga')  941 
set(gca, 'YGrid','On') 942 
set(gca, 'YTick', 10:10:120, 'XTick', 0:20) 943 
set(gca, 'XTickLabel', (x-0.5)*Resolution) 944 
  945 
  946 
 947 

18. MonthlyRainfall.m 948 

%% Creates monthly average rainfall values for plotting monthly rainfall 949 
values. Plots where made using GUI  950 
  951 
%The variable 'rainfalldates_new' give the numerical date for the whole 4 952 

%year data series. 953 
startdatenum = min(rainfalldates_new); 954 
enddatenum = max(rainfalldates_new); 955 
NrOfDays = enddatenum - startdatenum +1; 956 
  957 
%Create numerical days, months and years for data handling/processing 958 
for i=1:NrOfDays 959 
    iAllDays(i,:) = str2num(datestr(startdatenum+(i-1), 'dd')); 960 
    iAllMonths(i,:) = str2num(datestr(startdatenum+(i-1), 'mm')); 961 
    iAllYears(i,:) = str2num(datestr(startdatenum+(i-1), 'yyyy')); 962 
end 963 
  964 
%% Create histogram variables 965 
montly_LS = [0 0 0 0 0 2 2 2 1 0 0 0];  %number of landslide events (most  966 
    %of multiple landslides) in the Chittagong district from the landslide 967 
    %inventory, sorted on month of occurrence. Data found in variable mm 968 
    %from LandslideData.m.  969 
montly_LSall = [0 0 0 0 1 5 5 3 1 1 0 0 ]; 970 
montly_LS = montly_LS/4; 971 
montly_LSall = montly_LSall/4; 972 
  973 
for i=1:12  %for all 12 months (Jan-Dec) 974 
    iOneMonth = find(iAllMonths == i);   %get position of month(i) rainfall 975 
    NrOfYears = round(NrOfDays/365); 976 
     977 
  %Montly average rainfall 978 
    iAvgRF_IR(i,:) = sum(rainfallIR_new(iOneMonth))/NrOfYears; 979 
    iAvgRF_IRMW(i,:) = sum(rainfallIRMW_new(iOneMonth))/NrOfYears; 980 
    iAvgRF_RG(i,:) = sum(rainfallRG_new(iOneMonth))/NrOfYears;  981 
    SumRainfall = [sum(iAvgRF_IR) sum(iAvgRF_IRMW) sum(iAvgRF_RG)] 982 
     983 
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    %FIGURES:   Histograms of average monthly rainfall created using GUI  984 
    %           and the variables iAvgRF_IR, iAvgRF_IRMW and iAvgRF_RG 985 
    %           in separated columns. A second y-axis was created to 986 
    %           include landslide data (variable montly_LS). 987 
  988 
     989 
  %Monthly average rainfall (using thresholds)    990 
    Threshold = [90 50 30];     %big landslide event had 88 mm on event day 991 
    for T = 1:length(Threshold) 992 
  993 
        %Above threshold 994 
        findT_IRa =find(rainfallIR_new > Threshold(1,T) & iAllMonths == i); 995 
        findT_IRMWa = ... 996 
            find(rainfallIRMW_new > Threshold(1,T) & iAllMonths == i); 997 
        findT_RGa =find(rainfallRG_new > Threshold(1,T) & iAllMonths == i); 998 
         999 
        iAvgRF_IR_Ta(i,T) = sum(rainfallIR_new(findT_IRa))/NrOfYears; 1000 
        iAvgRF_IRMW_Ta(i,T) = sum(rainfallIRMW_new(findT_IRMWa))/NrOfYears; 1001 
        iAvgRF_RG_Ta(i,T) = sum(rainfallRG_new(findT_RGa))/NrOfYears; 1002 
         1003 
        %Below threshold 1004 
        findT_IRb =find(rainfallIR_new < Threshold(1,T) & iAllMonths == i); 1005 
        findT_IRMWb = ... 1006 
            find(rainfallIRMW_new < Threshold(1,T) & iAllMonths == i); 1007 
        findT_RGb =find(rainfallRG_new < Threshold(1,T) & iAllMonths == i); 1008 
         1009 
        iAvgRF_IR_Tb(i,T) = sum(rainfallIR_new(findT_IRb))/NrOfYears; 1010 
        iAvgRF_IRMW_Tb(i,T) = sum(rainfallIRMW_new(findT_IRMWb))/NrOfYears; 1011 
        iAvgRF_RG_Tb(i,T) = sum(rainfallRG_new(findT_RGb))/NrOfYears; 1012 
    end 1013 
  1014 
    %FIGURES:   Same type of histograms as the one above was created for 1015 
    %           the variables where only rainfall above("variable"_Ta) or  1016 
    %           below("variable"_Tb) a treshold value (T) is included 1017 
    %           (variable_Tx(i,T). Landslides not included here. 1018 
      1019 
  1020 
  %Count number of rainfall days 1021 
    iRFdays = find(iAllMonths == i); 1022 
    countAvgRF_IR(i,:) = ... 1023 
        length(find(rainfallIR_new(iRFdays) > 0))/NrOfYears; 1024 
    countAvgRF_IRMW(i,:) = ... 1025 
        length(find(rainfallIRMW_new(iRFdays) > 0))/NrOfYears; 1026 
    countAvgRF_RG(i,:) = ... 1027 
        length(find(rainfallRG_new(iRFdays) > 0))/NrOfYears; 1028 
  1029 
    BHKDF = [sum(countAvgRF_IR) sum(countAvgRF_IRMW) sum(countAvgRF_RG)]; 1030 
    %FIGURE:    Histogram presenting the average number of rainfall days   1031 
    %           each month for each rainfall product created using GUI and 1032 
    %           the variables countAvgRF_IR, countAvgRF_IRMW and 1033 
    %           countAvgRF_RG. 1034 
     1035 
end 1036 
  1037 
  1038 
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19. CorrelationPlots.m 1039 

%% This script is used for creating correlation plots for comparing 1040 
different rainfall sources. Figures was adjusted using GUI before presented 1041 
in thesis. 1042 
  1043 
%create julian dates 1044 
z_temp_num = rainfalldates_new; %datenum corresponding to RG- and IR-data 1045 
yyyy = datestr(z_temp_num, 'yyyy'); 1046 
for i=1:length(yyyy(:,1)) 1047 
    removeYear(i,:) = ['01-01-' yyyy(i,:)]; 1048 
end 1049 
removeYear_num = datenum(removeYear); 1050 
julianDay = z_temp_num - removeYear_num + 1; 1051 
  1052 
%Prepare data for plotting 1053 
x = [rainfallRG_new(2:length(rainfallRG_new),1); 0]  %raingauge data 1054 
y = rainfallIR_new; %TMPA IR-data 1055 
y2 = rainfallIRMW_new; 1056 
z = julianDay;      %data may be sorted by julian date in z-axis, creating 1057 
                    %different colors depending on season 1058 
Plot_1to1 = 1:500;    %get values for plotting 1 to 1-line 1059 
                1060 
%Plot figure 1 1061 
figure('Color','w','Position',[100 100 1000 500]);   1062 
subplot(1,2,1) 1063 
Corr = scatter(x, y, 30, z, 'filled') 1064 
    %(x-axis, y-axis, marker size, plot color) 1065 
        %plot color may be one color ([x x x]) og specter defined on a  1066 
        %z-variable. 1067 
hold on 1068 
perfectCorr = plot(Plot_1to1,Plot_1to1); 1069 
  1070 
%Add title and labels 1071 
title('Correlation of daily rainfall', ... 1072 
    'FontWeight','bold','FontSize',24)   1073 
ylabel('TMPA IR (mm)','FontSize',20) 1074 
xlabel('Rain gauge (mm)','FontSize',20) 1075 
  1076 
%Change figur properties 1077 
set(gca, 'XScale','log', 'YScale','log') 1078 
axis square 1079 
box  on 1080 
%colormap('hot') 1081 
set(Corr,'Marker','o') 1082 
set(gca, 'FontSize',16,'FontName','Kalinga') 1083 
  1084 
%set color map to plot 1085 
set(perfectCorr,'LineWidth',1, 'Color',[0 0 0]) 1086 
    %Colour map is edited using the function colormap editor. 1087 
 1088 
 1089 
%% Plot figure 2 1090 
subplot(1,2,2) 1091 
%F = figure('Color','w','Position',[100 100 1000 500]);    1092 
Corr2 = scatter(x, y2, 30, z, 'filled') 1093 
    %(x-axis, y-axis, marker size, plot colour) 1094 
        %plot colour may be one colour ([x x x]) of spectre defined on a  1095 
        %z-variable. 1096 
hold on 1097 
perfectCorr = plot(Plot_1to1,Plot_1to1); 1098 
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  1099 
%Add title and labels 1100 
title('Correlation of daily rainfall', ... 1101 
    'FontWeight','bold','FontSize',24)   1102 
ylabel('TMPA IRmicro (mm)','FontSize',20) 1103 
xlabel('Rain gauge (mm)','FontSize',20) 1104 
  1105 
%Change figur properties 1106 
set(gca, 'XScale','log', 'YScale','log') 1107 
axis square 1108 
box  on 1109 
%colormap('hot') 1110 
set(Corr2,'Marker','o') 1111 
set(gca, 'FontSize',16,'FontName','Kalinga') 1112 
  1113 
%set color map to plot 1114 
set(perfectCorr,'LineWidth',1, 'Color',[0 0 0]) 1115 
 1116 
  1117 
%% Plot TMPA-correlation 1118 
F3 = figure('Color','w','Position',[100 100 700 500]);   1119 
Corr3 = scatter(y, y2, 30, [0 0 0], 'filled'); 1120 
hold on 1121 
perfectCorr = plot(Plot_1to1,Plot_1to1); 1122 
  1123 
%Add title and labels 1124 
title('Correlation of IR and IRmicro', ... 1125 
    'FontWeight','bold','FontSize',24)   1126 
ylabel('TMPA IRmicro (mm)','FontSize',20) 1127 
xlabel('TMPA IR (mm)','FontSize',20) 1128 
  1129 
%Change figur properties 1130 
set(gca, 'XScale','log', 'YScale','log') 1131 
axis square 1132 
box  on 1133 
colormap('hot') 1134 
set(Corr3,'Marker','o') 1135 
set(gca, 'FontSize',16,'FontName','Kalinga') 1136 
  1137 
%set color map to plot 1138 
set(perfectCorr,'LineWidth',1, 'Color',[0 0 0]) 1139 
  1140 
  1141 

20. CheckNaN.m 1142 

%% investigate the NaNs in the rainfall data estimate series 1143 
  1144 
%Create NaN-series corresponding to rainfall series (from PrepareSeries.m) 1145 
  1146 
%ValDate = dateRG(startRG:endRG); 1147 
nanIR_new = nanIR(startIR:endIR); 1148 
nanIRMW_new = nanIRMW(startIRMW:endIRMW); 1149 
  1150 
%Find positions where rainfall data are missing by number of NaN hours pr 1151 
%day. Data is divided in groups;  1152 
%   days with more than 18 hours of data missing (18 hours of NaN) 1153 
%   days with more than 12 hours of NaN 1154 
%   days with < 6 hours of NaN 1155 
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%   days with < 0 hours of NaN 1156 
NrOfNan0 = 0;   NrOfNan6 = 6;   NrOfNan12 = 12;   NrOfNan18 = 18; 1157 
  1158 
nanPosIR0 = find(nanIR_new > NrOfNan0); 1159 
nanPosIRMW0 = find(nanIRMW_new > NrOfNan0); 1160 
nanPosIR6 = find(nanIR_new > NrOfNan6); 1161 
nanPosIRMW6 = find(nanIRMW_new > NrOfNan6); 1162 
nanPosIR12 = find(nanIR_new > NrOfNan12); 1163 
nanPosIRMW12 = find(nanIRMW_new > NrOfNan12); 1164 
nanPosIR18 = find(nanIR_new > NrOfNan18); 1165 
nanPosIRMW18 = find(nanIRMW_new > NrOfNan18); 1166 
  1167 
NrOfNanIR = [length(nanPosIR0) length(nanPosIR6) ... 1168 
    length(nanPosIR12) length(nanPosIR18)]; 1169 
NrOfNanIRMW = [length(nanPosIRMW0) length(nanPosIRMW6) ... 1170 
    length(nanPosIRMW12) length(nanPosIRMW18)]; 1171 
  1172 
missingIR18 = rainfallIR_new(nanPosIR18); 1173 
missingIR12 = rainfallIR_new(nanPosIR12); 1174 
missingIR6  = rainfallIR_new(nanPosIR6); 1175 
missingIR0  = rainfallIR_new(nanPosIR0); 1176 
missingIRavg = [sum(missingIR0)/length(missingIR0) ... 1177 
    sum(missingIR6)/length(missingIR6) ... 1178 
    sum(missingIR12)/length(missingIR12) ... 1179 
    sum(missingIR18)/length(missingIR18)]; 1180 
missingIRmax = [max(missingIR0) max(missingIR6) max(missingIR12) ... 1181 
    max(missingIR18)]; 1182 
  1183 
missingIRMW18 = rainfallIRMW_new(nanPosIR18); 1184 
missingIRMW12 = rainfallIRMW_new(nanPosIR12); 1185 
missingIRMW6  = rainfallIRMW_new(nanPosIR6); 1186 
missingIRMW0  = rainfallIRMW_new(nanPosIR0); 1187 
missingIRMWavg = [sum(missingIRMW0)/length(missingIRMW0) ... 1188 
    sum(missingIRMW6)/length(missingIRMW6) ... 1189 
    sum(missingIRMW12)/length(missingIRMW12) ... 1190 
    sum(missingIRMW18)/length(missingIRMW18)]; 1191 
missingIRMWmax = [max(missingIRMW0) max(missingIRMW6) max(missingIRMW12)... 1192 
    max(missingIRMW18)]; 1193 
  1194 
  1195 
  1196 

21. ThresholdAnalysis.m 1197 

%%%%%% CREATE THRESHOLDS %%%%%% 1198 
  1199 
%Load threshold inventory 1200 
TMPAproduct = '3B42RT'; 1201 
cd Results 1202 
FileName = [TMPAproduct '_threshold inventory.mat']; 1203 
load(FileName) 1204 
cd .. 1205 
    disp('Files loaded.') 1206 
  1207 
%Variables loaded from file: 1208 
%PredDate_num: List of continuous dates in numerical date values (T) 1209 
%A_RFdaily: 3-dimensional vector of all rainfall data corresponding to the 1210 
%           numerical dates. Rainfall is accumulated antecedent rainfall of 1211 
%           different durations(D) up to and including the date (T). This 1212 
%           way D=1 gives daily rainfall at date T. Rainfall in (mm/day). 1213 
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%           Each line correspond to a day, each row to a TMPA-lat/lon 1214 
%           position (P), and each layer in 3rd dimension to a duration.  1215 
%           [T x P x D]. 1216 
%A_RF_dailyAvg: Same vector format as A_RFdaily, but numerical values is 1217 
%               given in average daily rainfall (TA) for the duration D,  1218 
%               as TA = T(D)/D [mm/day]. 1219 
%LS_outcome: Predictor of if landslides happened or not. The 1220 
%              variable contain only 'y' and 'n' in a T x P-matrix. 1221 
%NaNacumulated: Count of missing hours corresponding to the acumulated 1222 
%               rainfall series A_RFdaily. 1223 
%Lat: Latitude TMPA position for rainfall data in A_RFdaily 1224 
%Lon: Longitudal TMPA position 1225 
  1226 
%% Prepare data 1227 
PrepRFdata;     %change structure of RF data and remove NaN inputs 1228 
  1229 
%% Pre-analyses 1230 
Corr = corr(A_RF_d_noNaN);     %correlation of all predictors 1231 
    disp('Correlation analysis done.') 1232 
  1233 
%Extract data related to landslide days 1234 
ExtractYdays; 1235 
  1236 
%% Classification tree analysis (CTA) 1237 
ClassTreeAnalysis; 1238 
     1239 
%% Discriminant analysis 1240 
  1241 
 1242 
  1243 

22. PrepareRFdata.m 1244 

%% Prepare data 1245 
  1246 
%Changes structure of data and remove NaN inputs 1247 
  1248 
%Variables prepared here change [T x P x D]-matrixes to [T' x P]-matrixes, 1249 
%as explained above, where T' = T x D. This is to prepare the data for  1250 
%2D-ploting. 1251 
  1252 
%% 1253 
%landslide triggering- and rainfall data 1254 
    count = 0; 1255 
    tic; 1256 
for n=1:length(LS_outcome(1,:)) 1257 
    for i=1:length(LS_outcome(:,1)) 1258 
        count = count + 1;  %used to output data in order; line 1,2,3, etc. 1259 
        Dates(count,:) = datestr(PredDate_num((i),:), 'dd.mm.yyyy'); 1260 
            %output dates of landslides (for verification of dates) 1261 
        A_RF_dailyAvg_new(count,:) = A_RF_dailyAvg((i),n,:);   1262 
            %outputs different predictors for threshold analysis 1263 
        NaNacumulated_new(count,:) = NaNacumulated((i),n,:); 1264 
            %outputs the total amount of NaNs in the corresponding rainfall 1265 
            %data vector A_RF_dailtAvg_new. 1266 
        LS_outcome_new(count,:) = LS_outcome((i),n,:);   1267 
            %new outcome vector in format [T' x P] 1268 
    end 1269 
end 1270 
clear count 1271 
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toc; 1272 
  1273 
%remove lines containing NaN 1274 
A_RF_d_noNaN = A_RF_dailyAvg_new; 1275 
LS_outcome_noNaN = LS_outcome_new; 1276 
isNaN = isnan(A_RF_d_noNaN(:,13)); 1277 
findNaN = find(isNaN == 1);   %locate all lines with no actual number (NaN) 1278 
  1279 
Dates(findNaN,:) = [];  1280 
A_RF_d_noNaN(findNaN,:) = [];  1281 
NaNacumulated_new(findNaN,:) = [];  1282 
LS_outcome_noNaN(findNaN,:) = [];  1283 
  1284 
%create logarithmig rainfall variables 1285 
A_RF_d_log = log10(A_RF_d_noNaN); 1286 
find_inf = find(A_RF_d_log == -Inf);    %remove infinite values; cannot be 1287 
A_RF_d_log(find_inf) = log10(0.001);    %included in discriminant analysis 1288 
  1289 
  1290 
%create vector of durations corresponding to the predictors 1291 
for i=1:length(A_RF_d_noNaN(:,1)) 1292 
    D_new(i,:) = [1 2 3 4 5 6 7 9 11 13 15 30 60]; 1293 
end 1294 
    disp('Data prepared.') 1295 
 1296 

 1297 

23. ExtractYdays.m 1298 

%Extract data related to landslide days 1299 
    count = 0; 1300 
for n=1:length(LS_outcome(1,:)) 1301 
    findLS = find(LS_outcome(:,n) == 'y');    %find landslide days 1302 
    for i=1:length(findLS) 1303 
        count = count + 1;  %used to output data in order; line 1,2,3, etc. 1304 
        LS_yes(count,:) = A_RF_dailyAvg(findLS(i),n,:);   1305 
            %outputs different predictors for threshold analysis 1306 
        LSdate_y(count,:) = datestr(PredDate_num(findLS(i),:), ... 1307 
            'dd.mm.yyyy'); 1308 
            %output dates of landslides (for verification of dates) 1309 
        LS_NaNs_y(count,:) = NaNacumulated(findLS(i),n,:); 1310 
        LStempPos_y(count,:) = n; 1311 
        LSpos_y(count,:) = [Lat(n) Lon(n)]; 1312 
    end 1313 
end 1314 
clear count 1315 
 1316 

 1317 

24. ClassTreeAnalysis.m 1318 

%% Classification tree analysis (CTA) 1319 
  1320 
t = classregtree(A_RF_dailyAvg_new,  LS_outcome_new); 1321 
  1322 
view (t) 1323 
  1324 
%-------------------------------------------------------------------------% 1325 
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  1326 
%CTA adjusted for predictor correlation% 1327 
  1328 
%P2 - P1 and P3-4 are left out of analysis 1329 
A_RF_CTAtemp = [A_RF_dailyAvg_new(:,2) A_RF_dailyAvg_new(:,5:13)]; 1330 
t2 = classregtree(A_RF_CTAtemp,  LS_outcome_new); 1331 
view (t2) 1332 
  1333 
%P3 - P2 and P4-5 are left out of analysis 1334 
A_RF_CTAtemp = [A_RF_dailyAvg_new(:,1) A_RF_dailyAvg_new(:,3) ... 1335 
    A_RF_dailyAvg_new(:,6:13)]; 1336 
t3 = classregtree(A_RF_CTAtemp,  LS_outcome_new); 1337 
view (t3) 1338 
  1339 
%P5 - P3-4 and P6-8 are left out of analysis 1340 
A_RF_CTAtemp = [A_RF_dailyAvg_new(:,1:2) A_RF_dailyAvg_new(:,5) ... 1341 
    A_RF_dailyAvg_new(:,9:13)]; 1342 
t5 = classregtree(A_RF_CTAtemp,  LS_outcome_new); 1343 
view (t5) 1344 
  1345 
%P6 - P4-5 and P7-9 are left out of analysis 1346 
A_RF_CTAtemp = [A_RF_dailyAvg_new(:,1:3) A_RF_dailyAvg_new(:,6) ... 1347 
    A_RF_dailyAvg_new(:,10:13)]; 1348 
t6 = classregtree(A_RF_CTAtemp,  LS_outcome_new); 1349 
view (t6) 1350 
  1351 
%P2 and P5 - P1, P3-4 and P6-8 are left out of the analysis 1352 
A_RF_CTAtemp = [A_RF_dailyAvg_new(:,2) A_RF_dailyAvg_new(:,5) ... 1353 
    A_RF_dailyAvg_new(:,9:13)]; 1354 
t2_5 = classregtree(A_RF_CTAtemp,  LS_outcome_new); 1355 
view (t2_5) 1356 
  1357 
%custom P2 and X - P1, P3-8 are left out of the analysis 1358 
A_RF_CTAtemp = [A_RF_dailyAvg_new(:,2)  ... 1359 
    A_RF_dailyAvg_new(:,9:13)]; 1360 
t2custom = classregtree(A_RF_CTAtemp,  LS_outcome_new); 1361 
view (t2custom) 1362 
 1363 

 1364 

25. DiscriminantAnalysis.m 1365 

%This script run discriminant analysis according to methodology developed 1366 
%for this thesis.Final output of discriminant function and scatter plot are 1367 
%produced.   1368 
 1369 
%Input data for analysis 1370 
classType = 'linear';   %set classification type 'linear' or 'quadratic' 1371 
Range_min = 1; 1372 
Range_max = length(A_RF_d_noNaN(1,:)); 1373 
DispFig = 'n';     %boolean 'y' or 'n' 1374 
resolu_Pri = 0.01;     %resolution of prior probability testing 1375 
priStart = 1.00;        %1.00 for resolution 0.05, 0.01, 0.005 1376 
                        %0.951 for resolution 0.001 1377 
NrOfIntervals = 20;     %19 for res 0.05, 20 for res 0.01, 21 for res 0.001 1378 
  1379 
%give N according to what prior probability range to do discr. analysis 1380 
                            for N=1:NrOfIntervals               tic; 1381 
priY(1,N) = priStart - N*resolu_Pri;                                                                               1382 
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priority = [1-priY(1,N) priY(1,N)];    %prior probability for linear class 1383 
  1384 
  1385 
%Run DA for all predictor combinations 1386 
if DispFig == 'y'; 1387 
    figure('Color','w', 'Position',[10 10 780 680], 'Name', ... 1388 
        'Discriminant analysis');    %add figure for plott 1389 
end 1390 
classError = zeros(13,13); 1391 
classError(find(classError == 0)) = 999; 1392 
DA_subplots_linear;    %RUNS DA-ANAYSIS! 1393 
  1394 
  1395 
%Locate minimum ERR and corresponding variables for each prior prob (N) 1396 
find0 = find(classError == 0);    %remove all zeros in err-variable and 1397 
classError(find0) = 999;          %replace with 999 1398 
find_best_MinERR(N,:) = min(classError);     %find min of each col 1399 
best_MinERR(N,:) = min(find_best_MinERR(N,:));  %find smallest minERR value 1400 
find_bestRFvar = find(find_best_MinERR(N,:) == best_MinERR(N,:)); 1401 
if length(find_bestRFvar) == 2 1402 
    best_RFvar(N,:) = find_bestRFvar; 1403 
        %selects RFvariable of lowest correlation 1404 
else if length(find_bestRFvar > 2) 1405 
    best_RFvar(N,1) = min(find_bestRFvar); 1406 
    for i=2:length(find_bestRFvar) 1407 
        tempCorr(:,i-1) = Corr(find_bestRFvar(1,1),find_bestRFvar(1,i)); 1408 
            %locate RFvariable with lowest correlation to the selected 1409 
            %RFvariable of lowest duration 1410 
        best_RFvar(N,2) = find_bestRFvar(1,find(min(tempCorr))+1); 1411 
    end 1412 
    end 1413 
end 1414 
find_bestPri(N,:) = priority; 1415 
  1416 
    clear('find0') 1417 
    clear('minERR') 1418 
    temptext = ['Discriminant analysis for ' num2str(priY(1,N)) ... 1419 
        ' prior probability of landslide triggering events.']; 1420 
    disp(temptext) 1421 
                                                                    toc; 1422 
         1423 
                            end 1424 
  1425 
%% Save results 1426 
if isdir('Results') == 0 1427 
    mkdir('Results') 1428 
end 1429 
cd Results 1430 
Filename = ['Discriminant Analysis_' TMPAproduct '_' classType '_'... 1431 
    num2str(resolu_Pri*100) 'pst_pristart' ... 1432 
    num2str(priStart) 'new.mat']; 1433 
%save(Filename,'find_best_MinERR','best_MinERR','best_RFvar','find_bestPri'1434 
) 1435 
cd .. 1436 
  1437 
  1438 
%% Find lowest miss class. error, without high predictor correlation 1439 
  1440 
%Locate absolute minimum ERR and variables (to be used in final threshold) 1441 
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final_MinERR = min(best_MinERR); 1442 
find_final = find(best_MinERR == final_MinERR); 1443 
final_RFvar = best_RFvar(find_final,:); 1444 
final_priority = find_bestPri(find_final,:); 1445 
  1446 
DispFig = 'y'; 1447 
  1448 
DA_final_linear; 1449 
%% 1450 
%Plot distribution of ERR by prior probability 1451 
y = best_MinERR; 1452 
x = find_bestPri(:,2) 1453 
  1454 
F = figure('Color','w','Position',[50 100 800 400]);    1455 
p = plot(x,y);    1456 
  1457 
title('Distribution of misclassification error rates', ...  1458 
    'FontWeight','bold','FontSize',18)   1459 
ylabel('Error rates','FontSize',18) 1460 
xlabel('Prior probability of triggering events','FontSize',18) 1461 
  1462 
box  on                     1463 
set(p, 'LineStyle','--','LineWidth',2,'Color',[0 0 0])     1464 
set(gca, 'FontSize',10,'FontName','Kalinga')  1465 
  1466 
 1467 

26. DA_subplots.m 1468 

%%%%% DISCRIMINANT ANALYSIS %%%%% 1469 
     1470 
    %give range from variables in ThresholdAnalysis.m 1471 
for I=Range_min:Range_max   %column in subplots 1472 
    for A=Range_min:Range_max   %line in subplots 1473 
        if Corr(I,A) >= 0.8   %A == I 1474 
            continue    %skipp DA for high correlation 1475 
        end 1476 
        if DispFig == 'y' 1477 
            plotpos(A,I) = I + (A-1)*13;    %gives position to subplots 1478 
            subplot(length(A_RF_d_noNaN(1,:)), ... 1479 
                length(A_RF_d_noNaN(1,:)), plotpos(A,I)) 1480 
        end 1481 
        %prepare axis values 1482 
        temp_maxAxis = max([max(A_RF_d_noNaN(:,I)) ... 1483 
            max(A_RF_d_noNaN(:,A))]);          %find max axis value 1484 
        maxAxis = round((temp_maxAxis+10)/20)*20;   %round up to closest 20 1485 
         1486 
        %discriminant classification Matlab-function 1487 
        [C,err,Posterior,logP,coeff] = classify( ... 1488 
            [A_RF_d_noNaN(:,I) A_RF_d_noNaN(:,A)], ... 1489 
            [A_RF_d_noNaN(:,I) A_RF_d_noNaN(:,A)], ... 1490 
            LS_outcome_noNaN(:,1), classType, priority); 1491 
                %err = missclassification error rate 1492 
                %coeff = coefficiants to discriminant function for each 1493 
                %        combination of variables 1494 
  1495 
        %Plot rainfall data and discriminant function 1496 
    if DispFig == 'y' 1497 
            plotMarkers = 'x*'; 1498 
            markerSize = [1 2.5]; 1499 
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        h = gscatter(A_RF_d_noNaN(:,A), A_RF_d_noNaN(:,I), ... 1500 
            LS_outcome_noNaN(:,1),'gr',plotMarkers,markerSize,'off',[],[]); 1501 
        box on 1502 
        hold on 1503 
        h1 = gscatter(X,Y,C,'kk','.',0.2,'off'); %add 1-to-1 line in figure 1504 
    end 1505 
        if strcmp(classType, 'linear') == 1  1506 
                %compare string with classType 1507 
            K = coeff(1,2).const; 1508 
            L = coeff(1,2).linear; 1509 
            f = sprintf('0 = %g+%g*x+%g*y',K,L); %linear threshold curve 1510 
  1511 
            %check which combinations meets the criteria for a threshold 1512 
            condition = (L(1,1) < 0 && L(2,1) < 0 && K > 0)  ... 1513 
                || (L(1,1) > 0 && L(2,1) > 0 && K < 0);      1514 
            if condition 1515 
                %last part removed as no good threshold eq.'s are produced 1516 
                classK(A,I) = K; 1517 
                classL1(A,I) = L(1,1);   1518 
                classL2(A,I) = L(2,1);    %store coeff's for threshold-eq's 1519 
                ThresholdEq(A,I) = cellstr(f); 1520 
                classError(A,I) = err;            %classification error 1521 
            end 1522 
             1523 
        end 1524 
        if strcmp(classType, 'quadratic') == 1 1525 
            K = coeff(1,2).const;    1526 
            L = coeff(1,2).linear; 1527 
            Q = coeff(1,2).quadratic; 1528 
            f = sprintf('0 = %g+%g*x+%g*y+%g*x^2+%g*x.*y+%g*y.^2',... 1529 
                K,L,Q(1,1),Q(1,2)+Q(2,1),Q(2,2));   %quadratic threshold 1530 
              1531 
            if condition 1532 
                %last part removed as no good threshold eq.'s are produced 1533 
                classK(A,I) = K; 1534 
                classL1(A,I) = L(1,1);   1535 
                classL2(A,I) = L(2,1);    %store coeff's for threshold-eq's 1536 
                classQ11(A,I) = Q(1,1); 1537 
                classQ12(A,I) = Q(1,2); 1538 
                classQ21(A,I) = Q(2,1); 1539 
                classQ22(A,I) = Q(2,2); 1540 
                ThresholdEq(A,I) = cellstr(f); 1541 
                classError(A,I) = err;  1542 
            end 1543 
        end 1544 
        plotSize = [0 maxAxis 0 maxAxis]; 1545 
    if DispFig == 'y' 1546 
        h2 = ezplot(f,plotSize);    %plots threshold line 1547 
  1548 
    %Adjust figure 1549 
        axis(plotSize)  %set axis to closest 50 above max RF value 1550 
        axis square 1551 
        set(h2,'Color','blue','LineWidth',2) 1552 
        set(gca, 'xticklabel',[], 'yticklabel',[]) 1553 
         1554 
    %adjust figure for plots 1555 
            xlabel([]) 1556 
            ylabel([]) 1557 
            title([]) 1558 
            %axis square 1559 
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    end 1560 
            clear('X','Y', 'Fig') 1561 
        tempText = ['Discriminant analysis: Duration ' num2str(I) ...  1562 
            ' x ' num2str(A) ' done.']; 1563 
        disp(tempText) 1564 
    end 1565 
end 1566 
  1567 
 1568 

27. DA_final.m 1569 

%%%%% DISCRIMINANT ANALYSIS %%%%% 1570 
figure('color','w') 1571 
 I = final_RFvar(1,1); 1572 
 A = final_RFvar(1,2); 1573 
 priority = final_priority; 1574 
  1575 
  %prepare axis values 1576 
temp_maxAxis = max([max(A_RF_d_noNaN(:,I)) ... 1577 
    max(A_RF_d_noNaN(:,A))]);          %find max axis value 1578 
maxAxis = round((temp_maxAxis+10)/20)*20;   %round up to closest 20 1579 
  1580 
%Create X and Y sample values for classify-function 1581 
X = (1:length(A_RF_d_noNaN))';  1582 
Y = (1:length(A_RF_d_noNaN))'; 1583 
X = X/length(A_RF_d_noNaN)*maxAxis; 1584 
Y = Y/length(A_RF_d_noNaN)*maxAxis; 1585 
       1586 
%discriminant classification Matlab-function 1587 
[C,err,R,logP,coeff] = ... 1588 
            classify([A_RF_d_noNaN(:,I) A_RF_d_noNaN(:,A)], ... 1589 
            [A_RF_d_noNaN(:,I) A_RF_d_noNaN(:,A)], ... 1590 
            LS_outcome_noNaN(:,1), classType, priority); 1591 
  1592 
%Plot rainfall data and discriminant function     1593 
h = gscatter(A_RF_d_noNaN(:,A), A_RF_d_noNaN(:,I), ... 1594 
    LS_outcome_noNaN(:,1),'gr','xo',[3 5],'off',[],[]); 1595 
box on 1596 
hold on 1597 
h1 = gscatter(X,Y,C,'kk','.',0.2,'off'); %add 1-to-1 line in figure 1598 
  1599 
if strcmp(classType, 'linear') == 1  1600 
                %compare string with classType 1601 
   K2 = coeff(1,2).const; 1602 
   L2 = coeff(1,2).linear; 1603 
   f2 = sprintf('0 = %g+%g*x+%g*y',K2,L2);    %linear threshold curve 1604 
end 1605 
if strcmp(classType, 'quadratic') == 1 1606 
   K2 = coeff(1,2).const;    1607 
   L2 = coeff(1,2).linear; 1608 
   Q2 = coeff(1,2).quadratic; 1609 
   f2 = sprintf('0 = %g+%g*x+%g*y+%g*x^2+%g*x.*y+%g*y.^2',... 1610 
                K2,L2,Q2(1,1),Q2(1,2)+Q2(2,1),Q2(2,2));   %quadratic 1611 
threshold 1612 
end 1613 
  1614 
plotSize = [0 maxAxis 0 maxAxis]; 1615 
h2 = ezplot(f2,plotSize);    %plots threshold line 1616 
  1617 
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%Adjust figure 1618 
axis(plotSize)  %set axis to closest 50 above max RF value 1619 
axis square 1620 
set(h2,'Color','blue','LineWidth',2) 1621 
set(gca, 'xticklabel',[], 'yticklabel',[]) 1622 
         1623 
 %adjust figure for plots 1624 
 x_lab = ['A_' num2str(A) '_d (mm/d)']; 1625 
 xlabel(x_lab,'FontSize',18) 1626 
 y_lab = ['A_' num2str(I) '_d (mm/d)']; 1627 
 ylabel(y_lab,'FontSize',18) 1628 
 figTitle = [f2 ', ''y'' prior = ' num2str(final_priority(1,2))]; 1629 
 title(figTitle,'FontSize',10) %'FontWeight','bold'   1630 
 hold off 1631 
 set(gca, 'XTick',0:20:maxAxis, 'YTick',0:20:maxAxis) 1632 
             1633 
 set(gca, 'FontSize',10,'FontName','Kalinga')  1634 
 axis square 1635 
             1636 
    clear('X','Y', 'Fig') 1637 
    tempText = ['Discriminant analysis: Duration ' num2str(I) ...  1638 
        ' x ' num2str(A) ' done.']; 1639 
    disp(tempText) 1640 
  1641 
% Calculate new DA-equation with y on left hand side 1642 
Aj = L2(1,1)/L2(1,1); 1643 
Ai = L2(2,1)/-L2(1,1); %equal to x/y or Ai/Aj 1644 
Alpha = K2/-L2(1,1); 1645 
new_eq = ['A_' num2str(I) '_d = ' num2str(Alpha) ' + ' ...  1646 
    num2str(Ai) 'A_' num2str(A) '_d']; 1647 
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