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Abstract 

The Nesodden study area is part of the complex Southwest Scandinavian Domain in the Baltic 

Shield. To investigate its magmatic/metamorphic evolution, and to constrain magma sources,  

482 in situ LA-MC-ICPMS U-Pb and Lu-Hf analyses were performed on zircon grains from 

granitic to tonalitic gneisses, granitoids, and a granitic pegmatite. The U-Pb data yield ages at 

1.54-1.53 Ga for foliated granites and granitic gneisses, and 1.50-1.49 Ga for a second group 

of granitic and tonalitic rocks, whereas the pegmatite gave an age of 1.05 Ga. The present day 
176Hf/177Hf ratios mainly range from 0.28191 to 0.28207; however, a smaller group (mainly 

zircons from the Sveconorwegian pegmatite) have higher 176Hf/177Hf ratios of 0.28208 and 

0.2822. The time-corrected initial Hf isotopic composition of zircons in 6 analysed rocks has 

a range of 5-6 �Hf–units, whereas zircons in the remaining 3 samples have a much larger 

range of 9-11 �Hf–units. The ranges indicate that the magmas were heterogeneous, with 

contributions from isotopically distinct sources, including depleted mantle (�Hf  = ca. +10) and 

Paleoproterozoic crustal rocks corresponding in age and composition to the granitoids of the 

Transscandinavian Igneous Belt (TIB) which have �Hf = -1 to -2. Whole-rock Pb isotope 

compositions of the samples were determined by solution MC-ICPMS analysis. The present 

day 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios vary widely, from 17.282 to 29.586, from 

15.487 to 16.414 and from 36.901 to 45.912, respectively. A three-stage model of Pb isotopic 

evolution can reproduce the present-day compositions: (1) A mantle stage ending at ca. 2.1 

Ga; (2) extraction and emplacement of the crustal precursor at ca. 1.5 Ga, and; (3) anatexis 

and metamorphism at ca. 1.05 Ga. The data confirm previously inferred Mesoproterozoic 

younging to the west in the south-western part of the Baltic Shield, and support a model of 

westwards growth of the Shield along a long-lived active continental margin. The effect of 

Sveconorwegian metamorphism is reflected in discordant U-Pb data from the gneisses, and 

confirmed by Pb-Pb modelling.  Influence of Permian magmatic activity in the Oslo Rift area 

at ca. 290 Ma is also reflected in the U-Pb data. Three-stage Pb-Pb modelling agrees with the 

crustal residence time obtained by the Hf analyses. Data from inherited zircons further 

indicate that the crustal component detected in the rocks does not derive exclusively from TIB 

equivalents, but also reflects some recycling of marginally older, calc-alkaline gneiss 

complexes in the region. 
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1 Introduction 
1.1 Purpose of study 
The Precambrian supracrustal gneisses and various granitic (sensu lato) gneisses that make up 

the study area are situated at the eastern edge of the Phanerozoic Oslo Rift, forming part of 

the Kongsberg-Marstrand block (Andersen 2005) in the Southwest Scandinavian Domain of 

the Baltic Shield or Fennoscandia (SSD; Figure 1 and 2). The granitic gneisses are structural 

markers that constrain the minimum age for the deposition of the supracrustal rocks in the 

area, and the maximum age for regional deformation and metamorphism, ages that at present 

are not well known. The three-fold purpose of this study is to:  

a) characterise the age relations between the granitic gneisses by U-Pb in situ zircon 

dating  

b) to find out if Paleoproterozoic rocks are present at depth by zircon Lu-Hf  isotope 

analysis and by Pb-Pb analyses on whole rock samples 

c) to attempt to constrain the relationships, if any, between the Kongsberg-Marstrand 

block granitic gneisses and other rock provinces that make up the south-western Baltic 

Shield 

 

1.2 Geological setting 
The field area is situated on the western shore of the Nesodden Peninsula in the Oslo fjord, in 

south-eastern Norway. The area extends from Spro southward to Fagerstrand and covers ca. 8 

km2 (Figure 3). Most of the area is suburban, but it also includes farmland, lakes and forests. 

In the Pleistocene, glaciations eroded and sculpted the landscape, and today the topography is 

gentle, stretching from sea-level up to ca. 200 m above sea level. However, the crystalline 

basement exposed on Nesodden is bounded by steeply dipping Permocarboniferous faults; in 

fact, the entire peninsula forms a horst surrounded by graben structures related to the 

formation of the ca. 290 Ma Oslo rift (Sundvoll et al. 1990). Movements along the faults have 

been estimated to up to 1000 metres (Swensson 1986). The western fault zone makes up the 

western boundary of the field area. To the east and west of the Nesodden crystalline 

basement, folded Cambro-Silurian sedimentary rocks have been preserved in the graben 

structures and are exposed on the numerous islands in the fjord. To the north, 

Permocarboniferous (typically alkaline) plutonic and volcanic rocks dominate. On Nesodden, 

these are represented by numerous dolerite dykes that cross-cut all other structures. The 

Precambrian bedrock has received less attention than the neighbouring Oslo rift rocks and 
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fossiliferous Palaeozoic strata. Although the area was mapped in some detail by Brock (1927) 

and Gleditsch (1952), the precise nature of the relations between the Precambrian rock types 

remain uncertain, doubtlessly due to the mostly tectonic nature of the contacts.  

 
2 Regional geology 
2.1 Introduction 
The Baltic Shield is situated in the northern part of the East European Craton and is one of the 

best known Precambrian shields in the world (Figure 1). It extends across Norway, Sweden, 

Finland and north-western Russia. The Baltic Shield grew by multiple subduction-related 

magmatic events and accretion of micro-continents onto an Archaean core in the late 

Archaean and the Proterozoic (Gaál and Gorbatschev 1987). The north-eastern parts of the 

Baltic Shield represent the core of the craton; from here it gets progressively younger towards 

the southwest. This geochronological zonation roughly corresponds to crustal growth during 

the 3.1-2.9 Ga Saamian orogeny, the 2.9-2.6 Ga Lopian orogeny, the 2.0-1.75 Ga 

Svecofennian orogeny and the 1.75-1.5 Ga Gothian orogeny (Gaál and Gorbatschev 1987). 

Later events mainly led to reworking and fracturing of the existing basement, and include the 

1.25-0.9 Ga Sveconorwegian orogeny and the 0.6-0.4 Caledonian orogeny along with rifting 

and continental igneous activity (sometimes referred to as anororogenic) (Gaál and 

Gorbatschev 1987). Hence, the Precambrian Baltic Shield is divided into three domains from 

the northeast to the southwest, the Archaean Domain, dominated by Saamian and Lopian 

rocks, the Svecofennian Domain, and the Southwest Scandinavian Domain, which is the part 

of the Baltic Shield that was reworked in Sveconorwegian time. 
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Figure 1. The Baltic Shield – major tectono-stratigraphic units. Modified after Gaàl and Gorbatschev 
(1987) and GeoGuide Online. 

 
2.2 The Archaean Domain 
The Archaean core of the Baltic Shield was formed between 3.51 and 2.5 Ga ago as a result of 

multiple events of subduction, accretion, collisional events and mantle-plume activity 

(Mutanen and Huhma 2003, Slabunov et al. 2006). It is divided into three crustal provinces 

separated by Proterozoic thrust faults: the Karelian Province in the south, the Belomorian 

Province in the central part and the Kola Peninsula Province in the northeast (Figure 1).  

The oldest parts of the Archaean Domain are found in the Karelian Province, which 

includes the relatively poorly known 3.1-2.9 Ga Saamian rocks and the 2.9-2.6 Ga Lopian 

rocks, along with rare occurrences of up to 3.5 Ga old rocks, including the oldest European 

rock, the Siurua gneiss (Gaál and Gorbatschev 1987, Mutanen and Huhma 2003). These 

typically tonalitic-trondhjemitic-granodioritic (TTG) gneisses represent the oldest preserved 

continental crust in the Baltic Shield, providing information about the earliest evolution of the 

crust (Gaál and Gorbatschev 1987 and references therein). Dating by U-Pb, Rb-Sr and Sm-Nd 

methods, together with REE studies, show that the up to 3.1 Ga old Saamian plutonic rocks 

consist of material that have a previous crustal residence time of 250 to 500 Ma (Jahn et al. 

1984). The Lopian of the Karelian Province includes more than 20 major and several minor 

komatiite bearing greenstone belts intruded by granites, and surrounded by Archaean TTG 

gneisses (Gaál and Gorbatschev 1987). The Lopian rocks provide evidence for late Archaean 
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plate tectonics, and most of the Archaean rocks were formed in this time period (Gaál and 

Gorbatschev 1987). 

The mainly 2.9-2.7 Ga Belomorian Province consists predominantly of medium- to 

high-grade paragneisses (including f. ex. banded iron quartzites, metapelites and 

amphibolites) related to subduction along the margin of the Karelian Protocraton (Bibikova et 

al. 2001). The Karelian and the Belomorian Province are separated by a 30-50 km wide 

“junction zone” marked by greenstone belts, interpreted to outline a Neoarchaean collisional 

front (Bibikova et al. 2001 and references therein). 

The Kola Peninsula Province consists mainly of metapelites and quartzites that were 

deposited at ca. 2.9-2.7 Ga and later deformed, metamorphosed and affected by granitic 

magmatism at ca. 2.7-2.6 Ga  (Gaál and Gorbatschev 1987 and references therein). The Kola 

Peninsula gneisses are poly-deformed and poly-metamorphic and the primary Neoarchaean 

relationships between the different terranes are therefore only partly preserved (Bibikova et al. 

2001 and references therein). 

At the beginning of the Proterozoic, the development of several rift systems led to the 

break-up of the Archaean protocraton, possibly as the result of mantle plume activity 

(Bibikova et al. 2001 and references therein). The final break up of the Archaean craton 

occurred at ca. 1.95 Ga ago and an ocean basin was formed (Nironen 1997). The break-up 

was followed by the 1.95-1.80 Ga Lapland-Kola orogen, involving the reassembling of the 

previously rifted fragments and leading to the formation of the Lapland Granulite Belt along 

the collisional front (Bibikova et al. 2001 and references therein). In general, Proterozoic 

reworking of the Archaean Domain was most intense in the Belomorian and the Kola 

Province (both extensively reworked during the Lapland-Kola orogeny). In the Karelian 

Province the reworking was less intense (Bibikova et al. 2001 and references therein) 

although both rifting (Samsonov et al. 2005 and references therein) and granitoid and mafic 

magmatism took place (Käpyaho et al. 2006 and references therein). A second collisional 

zone, the Svecofennian, is coeval with the Lapland-Kola collisional orogen and will be 

discussed further in the following chapter.    

 

2.3 The Svecofennian Domain 
In the Paleoproterozoic, a passive continental margin developed along the western edge of the 

Archaean craton. Metasediments originally deposited as turbidites and conglomerates indicate 

a shelf, or near-shelf environment at the time of deposition (Nironen 1997). Also, some 



Age and origin of the Mesoproterozoic Nesodden 

 12 

metaturbidites along the eastern part of the Svecofennian Province were deposited on an 

unconformity, testifying to erosion prior to the sedimentation (Gaál and Gorbatschev 1987). 

With the start of the Svecofennian orogen, large scale formation of juvenile continental crust 

took place, focused primarily to a short period lasting from 1.93 to 1.87 Ga (Gaál and 

Gorbatschev 1987). The large amounts of igneous rocks produced within a short time period 

is particular to the Svecofennian, setting it distinctly apart from the Archaean and the 

Phanerozoic. 

The Svecofennian Domain is divided into three major provinces: the Northern, the 

Central and the Southern Svecofennian Province. The Northern and the Southern Provinces 

are volcanic belts dominated by mainly dacitic and rhyolitic calc-alkaline volcanic suites. 

These two volcanic belts have many similarities, both of them are thought to be remnants of 

island arcs, and both are underlain by thick basal greywackies that suggest a continental 

margin environment (Gaál and Gorbatschev 1987 and references therein). Both the Northern 

and Southern Provinces’ volcanic rocks were formed during a short time interval between 

1.90-1.87 Ga ago (Gaál and Gorbatschev 1987 and references therein). 

The two volcanic belts form a U-shaped arc that envelops the Central Province from the 

north, east and south. The Central Province consists mainly of metagreywackies and 

metapelites, originally deposited in a sedimentary basin often referred to as the Bothnian 

basin (Lundquist 1979 and references therein). Most of the Svecofennian Domain is intruded 

by granitoids, representing early-, late- and post-orogenic magmatism, making it difficult to 

recognise the stratigraphic relationships in the Bothnian basin.  

The early, I-type granitoid intrusions make up the bulk of the Svecofennian continental 

crust. They form large plutonic complexes of differentiated suits of calcic and calc-alkaline 

rocks, e.g., gabbros, diorites, granites, granodiorites and, most commonly, tonalities (Gaál and 

Gorbatschev 1987 and references therein). The early Svecofennian plutonism took place 

between 1.9-1.87 Ga ago and was followed by local magmatism until ca. 1.85 Ga ago (Huhma 

1986, Gaál and Gorbatschev 1987 and references therein).  

By 1.87 Ga most of the Svecofennian crust was consolidated enough to allow rifting of 

the continental crust, associated with emplacement of dolorite dyke swarms (later 

metamorphosed to amphibolites) between 1.87-1.83 Ga ago. The ca. 1.83–1.77 Ga late 

granitoids are mainly granitic S-type rocks of crustal origin, undifferentiated and associated 

with migmatites and pegmatites (Gaál and Gorbatschev 1987 and references therein).  

The post-orogenic granite plutonism started with minor granite intrusions as early as 

1.80 Ga ago (Patchett and Kouvo 1986, Gaál and Gorbatschev 1987 and references therein). It 
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was followed by bimodal, intracratonic, gabbro/anorthosite/rapakivi granite magmatism 1.70-

1.54 Ga ago (Gaál and Gorbatschev 1987 and references therein). 

 

2.4 The Transscandinavian Igneous Belt 
From ca. 1.85 to 1.65 Ga the Svecofennian crust was intruded by voluminous granitic 

batholiths and rhyolitic porphyries, forming the Transscandinavian Igneous Belt (TIB). It 

stretches from the coast of central Norway to southeast Sweden, and locally crops out in 

basement windows in the Caledonides  (Andersen 2005 and references therein). The TIB is 

ca. 1600 km long, up to 150 km wide and approximately north-south trending (Gaál and 

Gorbatschev 1987, Andersen et al. 2002a).  

The TIB rocks can be divided into three different generations. The ca. 1.85-1.83 Ga 

TIB-0 rocks reperesent the earliest TIB magmatism. The second generation consist of the 

1.81-1.76 Ga TIB-1 rocks, partly overlapping in age with the waning stage of late 

Svecofennian magmatism. The third generation includes the 1.71-1.65 Ga TIB-2 and TIB-3 

groups, where TIB-3 shows a temporal overlap with the beginning of the Gothian orogeny 

(Andersson and Wikström 2004 and references therein). However, in contrast to the late 

Svecofennian S-type magmatism and the generally tonalitic and calc-alkaline Gothian 

magmatism (see below), the TIB rocks are typically I- and A-type (monzo-) granitoids, 

frequently alkali-calcic (though some are calc-alkaline), and have a coarse grained texture 

with K-feldspar megacrysts (Gorbatschev 2004 and references therein). 

The TIB rocks generally have low initial 87Sr/86Sr ratios, which together with Nd-

isotope studies suggest that the intrusives are derivatives of the mantle or of the lower crust 

(Gaál and Gorbatschev 1987 and references therein). Different tectonic settings have been 

proposed for the formation of the TIB, envisaging either crustal extension along the 

Svecofennian margin, or an active continental margin, or post-extensional collapse following 

over-thickening of the crust (Andersson et al. 2004 and references therein). However, 

Andersson et al. (2004) argued that given the lack of evidence for either large scale extension 

(e.g., extensional shear zones or dyke swarms), or medium- to high-pressure metamorphism 

associated with collisional tectonics, and given the geochemical signatures of mafic TIB 

rocks, a subduction setting along the Svecofennian margin is the more likely of the proposed 

models.  

The TIB magmatism was followed by extension related 1.65-1.51 Ga rapakivi granite 

magmatism along pre-existing week zones in the crust (Nironen 1997). 
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2.5 The Southwest Scandinavian Domain 
At least three different nomenclature systems have been proposed for the internal division of 

the Southwest Scandinavian Domain (SSD) (Andersen 2005). The tectonostratigraphic terrane 

systems of Åhäll and Gower (1997) and Bingen et al. (2005) have been criticised by 

(Andersen 2005) since the terraine status of several of the segments/sectors in the SSD 

remains uncertain and/or debated. In the present study the segment/sector nomenclature of 

Berthelsen (1980) and Gaàl and Gorbatschev (1987) will be used.    

The SSD extends across the western rim of the Baltic Shield (Figure 2). It consists 

mainly of Gothian rocks (1.75-1.5 Ga) and re-worked TIB equivalents. The Gothian rocks 

formed during mid-Proterozoic westwards growth of the craton, suggested to represent a 200-

250 Ma long period of Andean type subduction along the Baltic Shield (Andersen 2005 and 

references therein). The Gothian crust is typically more felsic in the east, changing from 

calcic/calc-alkaline in the west to more alkali-calcic/alkaline, roughly coeval rocks in the east. 

Also, Gothian rocks of sedimentary origin were deposited in a shallow marine water 

environment in the east, and in a deep marine water environment in the west (Gaál and 

Gorbatschev 1987 and references therein). 

The SSD was subsequently reworked during three major geological events; the 

Hallandian (1.5-1.4 Ga), the Sveconorwegian (1.25-0.9 Ga) and the Caledonian (0.6-0.4 Ga) 

orogenies. Although substantial volumes of granitic rocks were emplaced in the 

Sveconorwegian, and the Caledonian nappes cover a considerable area, these are still minor 

additions compared to the crustal material added during the Gothian orogeny (Gaál and 

Gorbatschev 1987).  

During the Sveconorwegian orogeny, the SSD was deformed, metamorphosed and 

intruded by several generations of magmatic rocks (Bingen et al. 2005, Andersen et al. 2007b 

and references therein). The influence of Sveconorwegian reworking decreases towards the 

east, and ends with the Sveconorwegian Frontal Deformation Zone (SFDZ; Söderlund et al. 

2002 and references therein) and the Protogine Zone (PZ; Gaál and Gorbatschev 1987). The 

faulting along the Protogine Zone started shortly after the formation of the TIB and lasted 

until the end of the Sveconorwegian orogeny ca. 0.9 Ga ago (Gaál and Gorbatschev 1987). 

Other Sveconorwegian crustal scale shear zones, typically north-south trending, divides 

the SSD into sectors (e.g., Stephens et al. 1996) that may have been displaced southwards 

along the edge of the Baltic Shield during the orogeny (Haas et al. 1999, Bingen et al. 2001). 



Age and origin of the Mesoproterozoic Nesodden 

 15 

Some of the major shear zones were reactivated in Phanerozoic time (Swensson 1986). Below 

follows a brief description of the different sectors. 

 
Figure 2. Simplified geological map of the Southwest Scandinavian Domain (SSD), modified after 
Andersen et al. 2007b. Regional units: RVA: Rogaland-Vest Agder sector, T: Telemark sector, B: Bamble 
sector, K: Kongsberg sector, ØA: Østfold-Akershus sector, W: Western segment, E: Eastern segment, 
TIB: Transscandinavian Igneous Belt. Shear zones: MANUS: Mandal-Ustaoset shear zone, PKS: 
Porsgrunn-Kristiansand shear zone, OFS: Oslofjord shear zone, ØMS: Ørje Mylonite shear zone, 
MMS/MZ: Mjøsa-Magnor shear zone/Mylonite Zone, PZ: Protogine Zone. RIC: Rogaland Igneous 
Complex 
 

2.6 The study area and surrounding parts of the SSD 
The Rogaland-Vest Agder (RVA) sector makes up the south-western Precambrian continental 

crust of Norway (Figure 2) and is bounded to the northwest by the present-day Caledonian 

thrust front and to the east by the Mandal-Ustaoset shear zone (MANUS), which separates it 

from the Telemark sector. The MANUS is a major crustal lineament that may be >1120 Ma 

(Sigmond 1985). The RVA sector is mainly made up of tonalitic to granitic gneiss, but also 

includes minor amounts of meta-sedimentary rocks. Several Sveconorwegian granitic 
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intrusions have been recognized in southern Norway and one of them can be found in the 

RVA sector, the ca. 1.05 Ga deformed granitic Feda suite, which is likely subduction related 

(Bingen and Bremen 1998). The RVA sector also contains the large, ca. 930 Ma anorogenic 

Rogaland Igneous Complex (or Egersund complex; Andersen et al. 2001a, 2002a and 

references therein) in its south-western part, consisting of anorthosites and related 

hypersthene bearing and mafic intrusions. 

The neighbouring Telemark sector is separated from the Kongsberg sector in the east-

northeast by a Precambrian ductile shear zone often referred to as the Kongsberg-boundary or 

the Kongsberg-Telemark boundary; to the east it also has a boundary to the late-Palaeozoic 

Oslo Rift and to the southeast it is separated from the Bamble sector by the Porsgrunn-

Kristiansand shear zone (PKS). The PKS is a Precambrian ductile shear zone interpreted as a 

major Sveconorwegian thrust (Mulch 2003). The Telemark sector contains low-grade (green-

schist to lower amphibolite facies) supracrustal rocks in the north (the Telemark 

supracrustals), consisting partly of the ca. 1.5 Ga Rjukan group meta-rhyolites and meta-

basalts (Dahlgren et al. 1990). This bimodal sequence is believed to have been deposited 

during Mesoproterozoic continental rifting that created extensional basins (Sigmond et al. 

1997a, 1997b, Sigmond 1998). South of the Rjukan group a younger, ca. 1.15 Ga supracrustal 

sequence crops out. This sequence contains quartzites, the Bandak and the Heddal groups, 

which are mixed volcanic and sedimentary sequences (Andersen et al. 2002a). Further south, 

granitic gneisses of uncertain origin and late Sveconorwegian granites are the characteristic 

rock types (Andersen et al. 2001a). Andersen et al. (2007b) found that some of the gneisses 

are early Sveconorwegian magmatic rocks.  

The Bamble sector contains meta-sedimentary gneisses, quartzites and amphibolites that 

were intruded by Sveconorwegian gabbros, granites and charnockites. Upper amphibolite to 

granulite facies metamorphism was dated to ca. 1100 Ma (Kullerud and Dahlgren 1993). 

There are also minor ca. 1.5 Ga granodioritic to tonalitic gneisses in the area, such as the 1.56 

Ga Gjerstadvatn and 1.55 Ga Justøy tonalities, and the 1.52 Ga Jomås granodiorite (Andersen 

et al. 2004a). The Bamble sector also includes the Tromøy gneiss complex, which is made up 

of low-potassium calc-alkaline rocks and is recognised as an island arc fragment that formed 

at ca. 1.2 Ga (Knudsen and Andersen 1999). Sveconorwegian granitic intrusions in this sector 

are the 0.9 Ga Herefoss granite (Andersen 1997) on the boundary to the Telemark sector, and 

to the east of the intrusion is the ca. 0.98 Ga Grimstad granite (Kullerud and Machado 1991). 

The Kongsberg sector is separated from the Bamble sector by the south-western corner 

of the Oslo Rift. In the southern part of the Kongsberg sector granodioritic and tonalitic 
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gneisses are much more abundant than in the Bamble sector, including the 1.53 Ga Snarum 

granodiorite (Andersen et al. 2004a and references therein). Poorly known meta- and ortho-

gneisses, possibly >1.6 Ga, are common in the north-eastern part of the sector (Nordgulen 

1999). The Flå granite in the north-western part of the sector is a large Sveconorwegian (0.92 

Ga) intrusion (Andersen et al. 2002b and references therein). The Kongsberg sector is 

separated from the Østold-Akershus sector to the south-east by the Oslo Rift. 

The Østold-Akershus sector (ØA) is the northward continuation of the Western segment 

of SW Sweden, and may be continous across the Oslo Rift with the Kongsberg-sector. The 

Solør complex (SC) is situated in the northern part of the ØA sector and consists of 1.67 Ga 

and older TIB equivalent potassic granites and supracrustal gneisses (Andersen et al. 2002a) 

and younger mafic intrusions (Andersen 2005). The boundary between the SC and the 

Romerike complex (RC) to the south is the Sveconorwegian Mjøsa-Magnor shear zone 

(MMS; Andersen 2005) which is known as the Mylonite Zone (MZ; Gaál and Gorbatschev 

1987) on the Swedish side. The RC mainly contains mid-Proterozoic migmatitic gneisses, 

possibly of supracrustal origin, which were later intruded by calc-alkaline granitoids 

(Berthelsen et al. 1996). The RC is part of the Median segment. The southern boundary of the 

RC is the Ørje Mylonite Zone (ØMS, Berthelsen et al. 1996), known as the Dalsland 

Boundary Thrust in Sweden, which separates the RC from the Østfold complex (ØC). The ØC 

consists mainly of meta-supracrustal gneisses, several generations of granitic to tonalitic 

orthogneisses (Graversen 1984) and amphibolites, meta-rhyolites and meta-sedimentary 

gneisses, which likely corresponds to the ca. 1.60-1.59 Ga supracrustals in the Stora Le-

Marstrand belt of south-western Sweden (e.g. Åhäll and Connelly 2008). The ØC is part of 

the Western segment of SW Sweden (Söderlund et al. 1999 and references therein) and it 

includes the Nesodden Peninsula in the west. At ca. 925 Ma the ØC was intruded by the 

Østfold-Bohus granite (Eliasson and Schöberg 1991).  

The basement rocks of the ØA sector mainly consists of 1.7-1.3 Ga old supracrustal 

gneisses and granitic to tonalitic orthogneisses (Andersen et al. 2001a). Calc-alkaline gneisses 

from Feiring, Sørmarka, Midtskog, Bjørkelangen and Tistedalen have been dated by 

Andersen et al. (2004a) to 1.57 Ga, 1.52 Ga, 1.57 Ga, 1.58 Ga and 1.6 Ga, respectively. The 

ØA sector includes the 1.6 Ga old Slemmestad meta-rhyolite, which is situated on the western 

shore of the Oslo fjord (Andersen et al. 2004a). 
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Figure 3. Simplified geological map of the Nesodden Peninsula with sample localities. Modified after 
Naterstad et al. (1990). 

 
The Western segment, or Idefjorden ‘terrane’ (Åhäll and Connelly 2008 and references 

therein), in south-western Sweden continues further to the east and south, containing mainly 

deformed supracrustals and intrusive rocks such as the ca. 1.66 Ga meta-supracrustals and 

granitic intrusions of the Horred formation, the 1.63-1.59 Ga Åmål formation comprising 

volcanic, volcanoclastic and sedimentary rocks, and the 1.63-1.59 Göteborg and 1.59-1.52 

Hisingen granitoid intrusions (Åhäll and Connelly 2008). The Hisingen suit consists of 

intermediate granitoid intrusions characteristic of continental arc magmatism (Åhäll and 

Connelly 2008). The Western segment is separated from the Eastern segment by the Mylonite 

Zone (Gaál and Gorbatschev 1987). The Eastern segment of the SSD is bounded by the TIB 

to the east and by the SFDZ. The Eastern segment includes 1.70-1.66 Ga granitoid gneisses 

that were intruded by 1.62-0.90 Ga rocks (Åhäll and Connelly 2008 and references therein). 

The eastern boundary of the Eastern segment includes the Protogine Zone of Gaál and 
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Gorbaschev (1987) as well, which includes intrusions of syanites, granites and mafic dykes 

(Gaál and Gorbatschev 1987).  

Andersen et al. (2004a) concluded that the above described areas in southeast Norway 

were part of a cordillera-type continental margin with characteristic intermediate to felsic 

calc-alkaline magmatism and that the central parts of southern Norway were part of the Baltic 

continental margin prior to 1.6 Ga, and possibly well before that. Calc-alkaline magmatism 

was likely continuous from ca. 1.66 to 1.50 Ga along the south-western margin of the Baltic 

Shield, and parts of magmatic island arcs are preserved as calc-alkaline gneisses. Rocks from 

this age-interval, especially the last 100 Ma, can be found across southern Norway on both 

sides of the Oslo rift and there are no particular age-differences or changes in geochemical 

character between the different rocks, not even across major Precambrian shear zones in the 

area. Zircon U-Pb and Lu-Hf isotope data indicates that sedimentary basins along the margin 

of the Baltic Shield received the clastic input from young arc-related sources as well as from 

older sources that originated within the Shield itself. The best candidate for the older source is 

TIB related 1.8-1.7 Ga granites or other mafic rocks (Andersen et al. 2004a).     

 

3   Analytical methods 
3.1 Introduction 
Isotopes of an element have identical chemical properties since they have the same number of 

protons and electrons, but their masses differ (e.g. 235U and 238U), as they have different 

numbers of neutrons. Some isotopes are unstable, also called radionuclides, and will decay to 

stable isotopes, or stable nuclides, by different modes of radioactive decay. The stable 

nucleides formed are called (radiogenic) daughters, and the unstable nucleides are called 

parents. Some radionuclides occur naturally since they have very slow decay rates, and have 

not yet totally decayed to stable daughter isotopes, other, more short-lived radionuclides (e.g., 
218Rn which has a half-life of 35 ms) exist because they are continuously produced as part of 

decay chains of longer-lived isotopes. The rate of decay of an unstable nucleide is controlled 

only by the instability of the radioactive nucleus, and will not change with time or with 

changes in the environment. The parent and the daughter nucleides (and the intermediate 

daughters of the decay chains as well) have different chemical and physical properties, and 

will therefore respond differently to changes in their environment, e.g. melting, fluid activity 

etc. This forms the basis of isotope geochemistry. By analysing the isotopic compositions of 

single minerals or whole rock samples, it is possible to constrain the different processes that 
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led to their formation, and, under some circumstances, to date these processes. In this chapter 

the theoretical background for the geochemical analyses used in this study are described, 

along with sample preparations, and analytical methods used. 

 

3.2 Zircon 
Zircon (ZrSiO4) is one of the most widely used minerals for U-Pb and Lu-Hf isotopic 

measurements in geosciences. It is widespread in igneous, sedimentary and metamorphic 

rocks, and can be a versatile indicator of the geological and petrological history of its host 

rock. Since it is resistant to both physical weathering and chemical alteration, it can survive 

several cycles of erosion and deposition. Furthermore, its ability to remain a closed system at 

temperatures close to 900˚C (i.e., its high blocking temperature; Ireland and Williams 2003), 

makes it possible for the mineral to survive partial melting of its host rock and transportation 

in a magma, or high grade metamorphism, and still preserve information of past geological 

processes. 

Zircon has a tendency to substitute zirconium (Zr) in its crystal structure with uranium 

(U) and thorium (Th), which have similar ionic radii and the same ionic charge as Zr. During 

crystallisation it can incorporate relatively large amounts of U and Th, which decay to lead 

(Pb). While Pb does not fit in the crystal structure of zircon, and is thus not typically 

incorporated in the crystal as it forms, the zircon will under most circumstances hold on to the 

radiogenic lead formed in the zircon from the decay of U and Th. Thus, zircon has a U-Th-Pb 

geochronometer that can be used for dating the geological processes that formed it. In general, 

a mineral suited for U-Pb dating has to be a closed isotopic system, meaning no gain or loss of 

U or Pb; it should contain a sufficient amount of U and Pb for the isotopic measurements and 

it should not have initial lead in its crystal structure. Zircon more or less meets all three 

criteria and is thus very well suited for U-Pb dating. 

Zircon also has a tendency to substitute Zr with hafnium (Hf) in its crystal structure, 

along with smaller amounts of lutetium (Lu). Since Lu decays to Hf, the initial daughter is 

much more abundant than the parent, the opposite of the U-Th-Pb system. While this makes 

the Lu-Hf system less than ideal for dating, it can give us valuable information on the 

petrogenesis of the rock. The ratio of the two isotopes will essentially mirror that of the 

magma from which the zircon formed, which in turn will reflect the nature of the magma 

source, i.e. primitive (mantle) or evolved (crust). 
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3.3 Theoretical background 
3.3.1 The U-Th-Pb system 

U and Th decay to stable isotopes of Pb. The three naturally occurring radioactive isotopes of 

U are 238U, 235U and 234U. Together with the naturally occurring long-lived radioactive 232Th 

there are five other radioactive Th isotopes that are intermediate daughters in the decay series 

of 238U, 235U and of 232Th. All three decay series are branched. The decay of 238U, 235U and 
232Th are summarized in the following equations, where Q represents the total decay energy 

emitted during the decay: 

 

QHePbU +++→ −β684206238                                    (1) 

QHePbU +++→ −β47 4207235                                    (2) 

QHePbTh +++→ −β464208232                                    (3) 

 

Uranium and Th are incompatible elements, and are incorporated into the liquid phase during 

partial melting of the mantle, making the silica rich continental crust enriched in U and Th 

compared to rocks of the upper mantle. Granitic rocks, for instance, therefore have higher U 

and Th contents than basaltic rocks. In granitic rocks the Th content is generally higher than 

the U, possibly because U is a mobile element (soluble in water) under oxidizing conditions, 

and so may have been removed from the system in aqueous solution as uranyl ions. U and Th 

concentrations in common rock-forming silicate minerals are evenly low. These elements are 

instead incorporated into U and/or Th bearing accessory minerals such as zircon, apatite, 

monazite etc.   

The U-Th-Pb system provides one of the most accurate and precise age determination 

methods for terrestrial rocks. The equations for age determinations are: 
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where subscript i denotes initial values and �1, �2 and �3 are the decay constants of 238U, 235U 

and 232Th, respectively (Table 1). 238U/204Pb, 235U/204Pb and 232Th/204Pb are isotope ratios 

calculated from the measured concentrations of U, Th and Pb values. 

 

Table 1. Abundances, half-lives and decay constants of naturally occurring U and Th isotopes 

Isotope Abundance Half-live Decay Constant 
 (%) (years) (y -1) 

238U 99.2743 4.468 x 109 1.55125 x 10 -10 
235U 0.72 0.7038 x 109 9.8485 x 10 -10 

232Th 100 14.010 x 109 4.9475 x 10 -11 
    
Reference: (Steiger and Jäger 1977)  

 

 

Equations 4, 5 and 6 are written in terms of the atomic 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb 

ratios. Since the only stable non-radiogenic Pb isotope is 204Pb, its amount reflects the initial 

lead present in the mineral. Using the isotope abundance of common lead, the U-Pb and Th-

Pb ages can be calculated by equations 4-6. To achieve concordant U-Pb and Th-Pb dates 

(i.e., the different isotopic clocks gives the same ages) the samples must satisfy the 

requirements for dating. The mineral must remain a closed system to U, Th, Pb and to all the 

intermediate daughters; correct initial Pb isotope ratios must be used (normally approximated 

by common lead); the decay constants for 238U, 235U and 232Th must be known; the U isotopic 

composition is normal and has not been modified in any way, and all the analytical results are 

accurate (no systematic errors). In reality, the closed system assumption is rarely satisfied 

since U is a mobile element under oxidizing conditions, thus some U loss is common during 

chemical weathering in addition to Pb loss. Also, the crystal structures of U-bearing minerals 

are often damaged by radiation, which again can result in lead loss or the loss of intermediate 

daughters in the decay chain. Thus, most U-Pb and Th-Pb dates are discordant.  

In addition to zircon, which is the most commonly used mineral for U-Th-Pb dating, a 

number of minerals incorporate U and/or Th in their crystal structures. Some of the most 

commonly used for dating are titanite (sphene), monazite and badeleyite. These minerals are 

present in different rock types, and also exhibit different blocking temperatures and form 

during different conditions, extending the range of datable rocks and conditions/processes that 

may be dated. 
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3.3.2 The Lu-Hf system 

Lutetium and Hf are lithophile elements and are mainly concentrated in silicate minerals. 

Lutetium has two naturally occurring isotopes: 175Lu and 176Lu. Hafnium has six naturally 

occurring isotopes, one of which is the radiogenic 176Hf, formed by decay of 176Lu to 176Hf by 

�-emission. The decay of 176Lu has a half-life of 35.7*109 years (Faure and Mensing 2005 and 

references therein) and is summarized in equation 7, where 
−

ν  is the complementary 

antineutrino and Q represents the total decay energy emitted during the decay: 

 

QHfLu +++→
−

− νβ176176                                    (7) 

 

This part of the branched decay of 176Lu is the basis for the Lu-Hf isochron dating method, 

which is not in widespread use. The other part of the branched decay is the decay to 176Yb by 

electron capture, which only makes up 3 ± 1% of all 176Lu decay. The isotopic composition of 

Hf can be used to investigate the origin of igneous rocks. Since Hf is more incompatible than 

Lu in the presence of a melt phase, mantle melts, and therefore ultimately the continental 

crust, has a lower Lu/Hf ratio than the residual, depleted mantle (DM). 

Lutetium and Hf do not normally form their own minerals (Hafnon, (Hf, Zr)SiO4 is one 

of the few) in geological environments, but are incorporated into other minerals. Lutetium is a 

heavy rare earth element (HREE), and has a similar ionic radius to calcium (Ca) and will 

therefore substitute for Ca in crystal structures. Hafnium has approximately the same ionic 

radius as Zr, thus Hf is incorporated into Zr bearing minerals, e.g. zircon or badeleyite. The 

average Hf concentration in zircon is as high as 15200 ppm. The Lu concentrations are also 

typically elevated in zircons (in zircon typically 20-70 ppm), but the resulting Lu/Hf ratio in 

zircon is generally very low (Faure and Mensing 2005). Given this, it is evident that the 

isotopic composition of Hf in zircon changes very slowly with time.  

In order to get information on the source-characteristics of granitic igneous rocks it is 

useful to look at Hf isotope variations in zircon grains instead of whole rock samples. This is 

because zircon, as a highly resistant mineral, typically preserves the isotopes better than the 

whole rock. Secondly, the zircon acts as a time keeper in its own right, and a combination of 

U-Pb dating and Lu-Hf analysis on the same grain (or parts thereof) will yield a superior time 

resolution compared to whole rock data (and may in fact allow the geologist to investigate 

earlier rock forming cycles by analysing inherited zircons). Variations in abundance of 176Hf 

are expressed with respect to the naturally occurring stable 177Hf of constant absolute 
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abundance. The initial 176Hf/177Hf ratios of single zircon grains record the composition of the 

magma at the time of zircon crystallisation. Variations in Hf isotope composition during 

magma evolution may be recorded in individual crystals in different growth zones, e.g., if 

incomplete magma mixing took place (e.g. Griffin et al. 2002). 

To estimate the original Lu/Hf ratio of the Earth, the Chondritic Uniform Reservoir 

(CHUR) model is used. It is based on the composition of chondritic meteorites and the 

assumption that these meteorites represent the total composition of the Earth, i.e., that Earth 

was formed from the same source as the chondritic meteorites (DePaolo and Wasserburg 

1976). There is also an underlying assumption that the isotopic evolution of Hf in the 

undifferentiated Bulk Silicate Earth (BSE) and CHUR has been parallel through time.    

The 176Hf/177Hf ratio of a rock or mineral can be compared to that of the CHUR, as 

expressed by the �-value that is defined by the following equation: 
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where 

(176Hf/177Hf )0
spl = 176Hf/177Hf ratio of a rock or mineral at present (t = 0) (spl = sample) 

(176Hf/177Hf)0
CHUR = 176Hf/177Hf ratio of CHUR at present (t = 0), equal to 0.28286  

(Faure and Mensing 2005) 

 

Positive and negative �-values mean that the sample is enriched in, respectively depleted in 

time-corrected 176Hf/177Hf compared to the chondritic reservoir. A positive �-value indicates 

derivation from a magma source with higher Lu/Hf ratios than the CHUR and BSE, such a 

magma source is the depleted mantle reservoir (since Lu is less incompatible than Hf in the 

presence of silicate melts). Negative �-values, on the other hand, indicate a magma source 

with lower Lu/Hf ratios over time than CHUR and BSE, such as crustal rocks. Mixing of 

material from different reservoirs, such as depleted mantle and continental crust, yields rocks 

with intermediate �-values. 

Isotopic evolution of Hf in a sample can be examined by plotting the time-corrected 
176Hf/177Hf, i.e., the initial ratio (henceforth referred to as Hfi), of the sample against the time t 
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(Ga) (207Pb/206Pb ages for zircons older then 600 Ma), which in the present study is 

determined by U-Pb in situ zircon dating (Figure 19). The graphs representing CHUR and 

DM isotopic evolution are also shown in the plot, together with a reference line for the sample 

that indicates its hypothetical isotopic evolution given a known Lu/Hf ratio. In the diagrams 

Hfi ratios were chosen instead of �Hf-values, because zircon defines an almost horizontal 

growth curve in the Hfi vs. time diagram, whereas in a �Hf vs. time diagram it forms a steeply 

dipping line, which is more difficoult to work with. For further explanation and Figures see 

section 4.3.  

 

3.3.3 The Pb-Pb system 

Lead is a chalcophile element that behaves as a large-ion lithophile element (LILE) in silicate 

systems. As described in section 3.3.1, the stable Pb isotopes occurring in nature are 206Pb, 

207Pb and 208Pb, which are the radiogenic daughters of 238U, 235U and 232Th, respectively, 

along with the non-radiogenic isotope 204Pb (that is generally regarded as stable because of its 

long half-life). Lead tends to form its own minerals, such as galena or cerrusite, but it often 

substitutes for potassium (K) in silicates such as K-feldspar, since they have similar ionic 

radius. Thus, K-feldspar bearing rocks like granites and pegmatites often have considerable 

amounts of Pb, which includes both radiogenic Pb and non-radiogenic Pb that was 

incorporated into minerals when the rock was formed. 

The three decay systems described in section 3.3.1 gives three potential isochron 

systems as follows: 
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where subscript 0 denotes the initial isotopic ratio of Pb in a rock or mineral and �238, �235 and 

�232 are the decay constants of 238U, 235U and 232Th, respectively (Table 1). However, because 

of late U loss the data points in a simple U-Pb isochron diagram almost always plot above and 
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to the left of the relevant isochron. Reformulating and dividing equations 9 and 10 give the 

following equation: 
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This equation defines a straight line in a 207Pb/204Pb vs. 206Pb/204Pb diagram that passes 

through the point:  [(206Pb/204Pb)0,(207Pb/204Pb)0] and has a slope of 1/137.88 [(e�235t – 1) / 

(e�238t – 1)] giving the basis for the lead-lead isochron method. The age of the isochron line 

can be determined from its slope by a process of iteration.  

The Pb-Pb isochron method was one of the first dating methods ever used, but is not a 

much used dating method today. However, the Pb-Pb system is a powerful petrogenetic 

tracer. When working with rocks with complex evolution histories Pb-Pb modelling has 

proved to be a useful tool providing information about the source regions of the rock (Stacey 

and Kramers 1975, Taylor et al. 1980, Andersen et al. 1994, Faure and Mensing 2005), and 

can be used as a complementary method with other isotope systems like Lu-Hf. 

The 238U/204Pb ratio is denoted with the Greek letter µ, giving the following relationship: 
235U/204Pb = µ/137.88. The present day Pb isotopic composition in a mineral or rock reflects: 

(1) its age, i.e. the time that has past since the last isotopic homogenization of Pb, (2) the 

proportions of its U-, Th- and Pb-isotopes and (3) the history and composition of its source. 

Assuming that Pb evolution started from the initial meteoritic lead composition determined by 

Tatsumoto et al. (1973, Canyon Diablo troilite) at t0 = 4.57 Ga (the age of the Earth) and has 

evolved in a closed system until t1; the composition of this lead is given by: 
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where a0 = 9.307, b0 = 10.294 and c0 = 29.476 are the initial lead compositions. If the Pb 

evolution were to continue from t1 to t2 in a second reservoir with a different µ-value (µ2) then 

the lead isotope ratio is given by: 
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Similar equations can be written for the other two parent-daughter systems as well. It 

describes the two-stage evolution of Pb, which is shown in Figure 4. Lead that evolved in a 

reservoir with the same µ1 will plot on the same t1 isochron and the position of the analysed 

sample on this isochron depends on the value of µ2. For each µ-value a separate growth curve 

can be constructed. Growth curves in a Pb-Pb isochron diagram are non-linear curves leading 

from [(206Pb/204Pb)0, (207Pb/204Pb)0] (initial lead ratios) to points on the isochron line where 

the samples plot. The initial Pb composition at t1 is given by the intersection of the t1 isochron 

and the geochron at t1. The Pb isochron is defined by the isotope ratios of single-stage leads 

that were separated from a U-Pb reservoir at a specific date, obtaining different µ-values at 

separation. The geochron is an isochron defined by samples that separated from the 

primordial reservoir at t = 0, i.e. lead samples that have resided in their reservoirs for 4.57 Ga, 

or has been separated from their respective reservoirs just recently. A sample will plot on a 

paleoisochron with an age of t1 if its Pb composition has remained unchanged since t1, in 

which case the position of t1 will depend on the value of µ2. This only occurs in U-free 

systems such as K-feldspar formed at t1, which incorporates Pb and excludes U in its crystal 

structure. 
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Figure 4. Schematic figure illustrating two-stage model for isotopic Pb evolution. Modified after Simonsen 
(1997 and references therein)  

 
The Pb isotope system in rocks and minerals has typically evolved through multi-stage 

processes, i.e. the Pb isotopic evolution has taken place in more than two reservoirs. This can 

be accounted for by expanding equation 16 for additional stages with separate µ-values, and 

can be done for the other two parent-daughter systems as well. The most commonly used 

model assumes three stages of successive U-Th-Pb evolution in three different reservoirs, 

each characterised by a constant 238U/204Pb ratio (i.e. µ1, µ2 and µ3) and 232Th/204Pb ratio (i.e. 

�1, �2 and �3) (Figure 5). The first stage of evolution corresponds to the time the Pb resided in 

the mantle reservoir with a time integrated µ1-value. Thus, t1 reflects the date when the Pb 

was separated from the mantle reservoir, i.e., the age of the continental protolith. The second 

stage reflects the evolution of the protolith until t2, representing the age of final isotopic 

homogenization during magmatism or metamorphism. The third stage represents the 

evolution until the present in a third reservoir. The µ1 is determined by the meteoritic Pb value 

(Tatsumoto et al. 1973), and by constraining t1 and t2 using Lu-Hf and U-Pb data respectively, 

the µ2, µ3 can be determined graphically from the PBI Excel program (Andersen 1998). The 

Pb-Pb evolution model can be used as a sensitive indicator of multi-stage processes, visually 

illustrating how a present day Pb composition of a suite of rock or mineral relates to a model 

reservoir as a function of time.  
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Figure 5. Schematic figure illustrating three-stage model for isotopic Pb evolution. Modified after 
Simonsen (1997 and references therein) 
 
3.4 Sample preparation 
All analytical work, including sample preparation, chemistry and isotope measurements were 

performed at the Department of Geosciences, University of Oslo, Norway.  

Samples weighing 3-5 kg were washed in water, first with a steel brush, then in an 

ultrasonic bath for 15 minutes and finally dried in an oven over night at 45˚C. The samples 

were then crushed to coarse grains (<1cm) in a jaw crusher, and sieved through a splitter. A 

small amount was put aside for whole rock analyses. The remaining part was then crushed to 

ca. 0.5 mm using a Retsch percussion mill crusher. Zircons were separated using a Wilfley-

table and heavy liquid (Sodium Heteropolytungstates � = 2.80 +/- 0.02 g/mL). Zircons for 

analyses were hand-picked under a binocular microscope. About 80 to 110 zircon crystals 

from each sample were mounted in epoxy and then polished to expose the mineral grains for 

U-Pb and Hf analyses. These were then carbon coated and examined by backscatter electron 

imaging (BSE). The zircons were finally polished with diamond abrasive powder to remove 

the carbon coating and then washed in HNO3 in an ultrasonic bath for 15 minutes and finally 

rinsed with MilliQ water. The analyses were performed on a NU Plasma HR multi collector 
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ICPMS and a New Wave/Merchantek LUV-213 laser microprobe (LA-MC-ICPMS) at the 

Department of Geosciences at the University of Oslo, Norway. 

For Pb-Pb whole rock analyses: the parts preserved after the splitting procedure were 

further pulverized to powder using a mill. After homogenization the samples were weighed 

(Table 2 in Appendix) on an analytical balance type of scale. The samples were then 

dissolved and by following the lead separation protocols (see Appendix) the desired elemental 

fractions were collected for further LA-MC-ICPMS analyses.  

 

3.5 LA-MC-ICPMS (Laser Ablation Multi-collector Inductively Coupled 

Plasma Mass Spectrometry)  
Inductively coupled plasma mass spectrometry (ICPMS) has become a widely used tool in 

geochemistry over the past few decades, since it allows precise measurements of small 

amounts of isotopes. Coupled with laser ablation (LA), it can be used to analyse parts of 

minerals, giving the further advantages of high spatial resolution (the laser beam is typically a 

few tens of micrometer wide), and it only uses a small amount of the sample, making further 

analyses possible. 

An ICPMS comprises a high-temperature inductively coupled plasma (ICP) source and 

a mass spectrometer (MS). The MC-ICPMS is a high precision isotope ratio mass-

spectrometer where the ICPMS utilizes the ionizing capabilities of a plasma to generate ions. 

The material to be analyzed is transported to the torch as an aerosol in an argon (Ar) or 

helium (He), or mixed, gas flow. The aerosol can be generated in two ways: (1) By aspiring a 

dilute solution through a nebulizer (applied in section 3.5.3), or (2) By ablating a solid sample 

with a focussed laser beam (applied in section 3.5.1 and 3.5.2). Using He instead of Ar to 

transport the sample minimizes ablated material deposition around the laser pit, which in turn 

improves sample transport efficiency. It also yields a more stable signal and higher 

reproducibility of the U-Pb fractionation. Almost anything will ionize in the plasma, thus the 

load of ions generated are impure/mixed both in terms of mass and energy, although there are 

typically few molecular ions compared to Secondary Ionisation Mass Spectrometry (SIMS). 

An electrostatic analyser (ESA) is needed to filter away the unwanted energies to make the 

magnetic sector work as a mass analyser. The magnetic sector of the instrument separates the 

ions that enter the MS by their mass-to-charge ratios, and after separation these are counted in 

a suitable detector, Faraday cups or in ion counters. A detector counts the number of ions 

striking it and then translates it into an electrical signal that can be measured and related to the 
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number of atoms of the element by using calibration standards (Košler and Sylvester 2003, 

Wolf 2005). The MC-ICPMS at the Department of Geosciences (University of Oslo, Norway) 

is a NU Plasma HR multi collector ICPMS or HR-ICPMS. This type of instrument was 

specifically developed for high-precision isotope ratio analyses. With the multi-collector 

system it is usually possible to determine the isotopes of a single element simultaneously, 

increasing the precision of the measurements. 

Compared to other techniques, like Isotope Dilution Thermal Ionisation Mass 

Spectrometry (ID-TIMS) and SIMS, LA-MC-ICPMS has both distinct advantages and 

drawbacks.  

The LA-MC-ICPMS is gaining on both TIMS and SIMS by (1) low cost, (2) easier and 

less time consuming sample preparation, (3) short analysis time and (4) high ionisation 

efficiency, which is required e.g. for Hf and osmium (Os) analysis (Kinny et al. 1991). 

Compared to TIMS the LA-MC-ICPMS has better spatial resolution and is less destructive of 

the sample (in situ method), however, it does not achieve the high precision of the TIMS. 

Compared to SIMS the LA-MC-ICPMS has lower precision, not as good spatial resolution 

and is slightly more destructive of the sample. Given these trade-offs, a geologist should 

thoroughly consider the problem he or she wants to address in relation to the strengths and 

weaknesses of these methods. 

 

3.5.1 U-Pb 
The in situ LA-MC-ICPMS U-Pb analyses were performed on carefully chosen zircon grains. 

For each sample ca. 20 to 40 zircons were analysed, giving a total of 260 analyses. The 

ICPMS detector system is specifically constructed for U-Pb analysis, and can simultaneously 

analyse 204Pb, 206Pb and 207Pb in secondary electron multiplier ion counters, along with 235U 

and 238U which are measured in Faraday cups. The 235U signal is typically too week to be 

measured with high precision and 235U is therefore determined from the natural atomic ratio 

of 235U/238U, i.e., 137.88. 

Each analysis starts with a 30 seconds on-mass background measurement (laser off), 

followed by 60 seconds ablation of the sample. The instrument includes a microscope that 

provides a visual image of the sample, which is necessary for in situ LAM-ICPMS work. The 

laser used is a New Wave/Merchantek LUV-213 Nd:YAG solid state laser microprobe that 

provides UV laser with 213 nm wave length. The laser conditions during ablation were: laser 

beam diameter 40µm, pulse frequency 10 Hz, and beam energy density � 0.1 J/m2. With 
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constant ablation conditions, the U-Pb elemental fractionation and mass discrimination of the 

Pb isotopes during ablation and in the plasma can be corrected for by using isotopically 

homogenous reference zircons with known age (Jackson et al. 2004). These standards are 

mounted on a separate epoxy disk and the U/Pb ratios are measured on the standards before 

and after the analyses of the unknown samples. Three different types of standards were used 

for U-Pb age determinations (Table 3). 

 

 

Analytical routines are described in detail in Andersen et al. (2004b) and Jackson et al. 

(2004) and adapted for multi collector instrument as described by Andersen et al. (2007b) and 

Røhr et al. (2008). 

The laser ablation dating technique does not usually require large common lead 

corrections; however, for some zircons a common lead correction is necessary. In most cases 

where the LA-ICPMS method is applied, the common lead originates from the zircon itself, 

and by using the right protocols it is possible to correct for the 206Pb and 207Pb that forms part 

of the common lead (Košler and Sylvester 2003). When common lead is high, it should in 

principle be possible to measure it and correct the radiogenic lead accordingly. However, the 
204Pb shares its mass and charge with 204Hg, a contaminant that likely stems from the argon 

flow, and hence must be corrected for. The correction is done by the background measuring 

routine described above. Standard measurements on three different standards were done at the 

start and finish of every analytical session, and two different standards were analysed during 

the sessions at one hour intervals. The standardisation procedure used in this study is 

described in detail by Røhr et al. (2008). 
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Data reductions were done using a spreadsheet written in Visual Basic for Microsoft 

Excel®. This includes procedures for interactive selection of the acquisition range to be 

integrated, and corrections for U-Pb fractionation and drift in the ion-counters. The standards 

are used to calculate corrections for elemental fractionation of U and Pb during ablation and 

in the plasma, mass-spectrometer mass bias and instrumental drift, extrapolating correction 

factors between standard runs. The standard runs also allow the precision of the instrument 

over time to be calculated. The precision is presently (> 3 years of data) less than or equal to 

one per cent for 206Pb/238U and 207Pb/206Pb ratios, and less than or equal to 1.4% for 207Pb/235U 

(2�). Concordia ages and intercept ages were calculated using IsoplotEx 3.00 (Ludwig 2003).  

 

3.5.2 Lu-Hf 
The in situ LA-MC-ICPMS Lu-Hf analyses were performed on grains previously analysed for 

U-Pb (sections 4.2). A total of 222 zircons were analysed, ca. 15 to 30 for each sample.  

During the Lu-Hf analyses masses 172 to 180 were measured for each zircon in Faraday cup 

collectors, using the U-Pb collector block described above. For each analysis the required 

ablation time was longer then that of the U-Pb analyses in order to obtain an internal precision 

of � 0.000040 (2�). Thus, after the on-mass 30 seconds background measurement the ablation 

time generally lasted 120-150 seconds. Ablation conditions were: beam diameter 55 µm in 

aperture imaging mode, pulse frequency 5 Hz, and beam energy density ca. 1 J/m2.  

The isotopic ratios were calculated from the raw data by using the Nu Plasma time-

resolved analysis software. The mass discrimination factor used for Hf was determined 

assuming 179Hf/177Hf = 0.7325 and the raw data were corrected for mass discrimination using 

an exponential law. Correction for isobaric interferences on 176Hf, 176Lu and 176Yb is 

discussed by Røhr et al. (2008). The established correction procedure used shows a good 

long-term stability, determined by data from reference zircons run as unknowns. Correlation 

between the corrected 176Hf/177Hf and 176Yb/177Hf has not been found, which indicates that 

systematic bias was not incurred by under- or over-correcting the interferences at 176Yb/177Hf 

� 0.1 (Røhr et al. 2008).  

The decay constant (�) of 176Lu used in all calculations was set to 1.867 x 10-11 a-1 

(Söderlund et al. 2004) that is consistent with the results obtained by Scherer et al. (2001). To 

calculate the �Hf-values present-day chondritic 176Hf/177Hf = 0.282802 and 176Lu/177Hf = 

0.0337 were used (Bouvier et al. 2007) and an adaption of the DM model of Griffin et al. 

(2000) has been adopted, with a (176Hf/177Hf)DM of 0.28325 (�Hf = +16) similar to that of 

average MORB in the time duration of 4.56 Ga from a chondritic initial Hf at 176Lu/177HfDM = 
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0.0384 (Røhr et al. 2008). The resulting mantle evolution line is indistinguishable from the 

fLu/Hf = 0.16 (i.e. 176Lu/177Hf = 0.038) curve of Vervoort and Blichert-Toft (1999).  

Standard zircons mounted on a separate epoxy disk were run as unknowns at frequent 

intervals. These reference zircons are listed in Table 3. Data obtained from these standards 

over a two-year period show excellent accuracy and external reproducibility of ±0.000050 

(2�) for Mud Tank zircon, which is low in REEs, and somewhat higher standard deviation 

±0.000065 (2�) for Temora-2 zircon, which has higher and more variable Yb/Hf (Røhr et al. 

2008).    

 

3.5.3 Pb-Pb 
The Pb-Pb whole-rock analyses were performed on the 9 rocks dated by in situ U-Pb analyses 

and further examined by Lu-Hf analyses in this study on the same LA-MC-ICPMS 

instrument. 

Following separation of Pb from other elements using an anion exchange column 

(section 3.4 and Appendix) the solutions were spiked with a thallium (Tl) solution (2% HNO3 

solution containing 10ppb Tl) with 205Tl/203Tl ratio, which is used for mass-fractionation 

corrections (Chernyshev et al. 2007). The sample solutions were then aspirated at 

approximately 100µL/min through a desolvation nebulizer (DSN100) into the inductively 

coupled plasma source. To be able to use the SRM 981 Pb standard (25ppb Pb and 10ppb Tl) 

a long term calibration is required that is obtained by adjusting the values of the 205Tl/203Tl to 

acceptable ratios. The adjusted value is then used to correct for mass discrimination in the 

analysed unknowns by using an exponential law. The choice of Tl for mass discrimination 

correction is determined by the fact that Pb does not have stable isotopes that can be applied 

for correction, and even though Tl does not reproduce Pb fractionation exactly, the ratio is 

relatively constant. Mass 202 (for 202Hg) has to be measured in order to correct for mass 

interference between 204Pb and 204Hg.  

 

4 Results 
4.1 Samples and sample localities 
The samples studied were collected during the summer and fall of 2006. The sample localities 

are shown in Figure 3. Nine samples were used for U-Pb in situ zircon dating, Lu-Hf isotopic 

analysis and Pb-Pb whole rock isotopic determinations. Below, a brief description of the 

sample localities and the petrography of the sampled rocks are presented, along with a 
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description of zircons in the samples. In general, all the samples were quite rich in zircons, 

which typically had inclusions of mainly apatite and/or sphene and were yellow or brownish 

to transparent. Zircons in metamorphic rocks and in granites tend to have complex internal 

structures that reflect inheritance, recrystallisation and zircon growth. Selected zircons from 

the samples were imaged in BSE, and some representative images are presented below. The 

images were used to select the precise locations of in situ LA-ICP-MS analyses to determine 

separate ages for cores and overgrowths. 

 
4.1.1 Granitic gneiss: sample 105-23-10 

This rock is a medium to fine grained, massive, pink granitic gneiss collected in a road-cut 

several tens of meters from pegmatites, amphibolites, quartz veins and fault- and shear-zones 

that locally cross-cut the rock. Small, folded pegmatites cross-cut the 340/70 NE gneissic 

fabric of the host rock. No neosomes were observed in this road-cut. The main rock-forming 

minerals are quartz and (perthitic) K-feldspar, along with some (saussuritised) plagioclase, 

biotite and hornblende. There are a large number of opaque minerals, zircons, apatite, chlorite 

and secondary carbonate minerals present in the rock. Some myrmekite was observed. The 

biotite is dark, showing strong pleochroism and some places it is altered to chlorite. Zircons 

typically occur in the biotite and/or chlorite as inclusions surrounded by pleochroic haloes. 

Most of the zircon crystals are 60-150 µm in size and contain inclusions of apatites, K-

feldspars and micas. Most of the crystals are subhedral or sub-rounded. The majority of the 

grains show regular zoning in BSE, or faint, broad zoning, but some are homogenous (Figure 

6).  

 
Figure 6. Zircon crystals in BSE from granitic gneiss (105-23-10) 

 
4.1.2 Alkali feldspar granite: sample 106-23-10 

This rock is a strongly penetratively deformed, medium to fine grained pink alkali feldspar 

granite from Spro. It has large K-feldspar phenocrysts surrounded by fine grained mineral 

assemblies showing mylonite like texture. The main rock-forming minerals are quartz and K-

feldspar, with minor plagioclase (<10% of the total feldspar content), biotite and some 
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hornblende. Other minerals in minor and accessory amounts are chlorite (forming as a result 

of biotite alteration), muscovite, apatite, opaque minerals and zircons. The relict large feldspar 

grains are mainly K-feldspars, but a few large plagioclase grains, surrounded by corona-like 

sericite alterations, are present as well. Minor myrmekite is observed. Quartz is fine grained 

and forms ribbon texture in the rock. Most zircon grains (Figure 7) are subhedral and vary in 

size from 50 to 100 µm. In BSE the zircons area typically homogenous or faintly zoned, many 

of them are altered, and many contain apatite inclusions.  

  
Figure 7. Zircon crystals in BSE from alkali feldspar granite (106-23-10) 

 
4.1.3 Pegmatite: sample 102-23-10 

The sample represents a pegmatite in the tonalitic gneiss described below. The pegmatites are 

both parallel and oblique to the gneissic fabric and do not share the fabric of the host rock, 

indicating that the pegmatites post-date the gneissic fabric. Attempts were also made to 

analyse zircons from a large pegmatite from Spro for comparison. However, zircons are rare 

in this particular pegmatite. One large grain was provided by the Natural History Museum, 

University of Oslo, wich was hihgly metamict and had large amounts of common lead, 

making it impossible to analyse.  

The sampled pegmatite from the tonalite gneiss is medium to coarse grained and has 

partly sharp, and partly diffuse boundaries to its host rock. The main rock-forming minerals 

are microcline, quartz, plagioclase, and minor biotite and hornblende. Accessory minerals are 

euhedrale sphene, zircons and apatite, but clinozoisite is also present. The quartz grains have 

undulatory extinction. Some sericitisation of feldspars occur, along with local chlorite 

alteration of the bitote, and myrmekite is common. Zircon zonation is visible in plane 

polarized light. Most of the zircons are homogenous in BSE (Figure 8) and are ca. 60-100 µm 

long. In BSE, only a few grains have faint zoning, many shows extensive alteration and have 

inclusions of apatite and other dark minerals.  
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Figure 8. Zircon crystals in BSE from pegmatite (102-23-10)   
 
4.1.4 Coarse grained granite: sample EPB-06-05 

This rock is an undeformed coarse-grained granite collected in the Spro area. The main rock-

forming minerals are quartz, K-feldspar and plagioclase together with biotite that is somewhat 

altered to chlorite. Accessory minerals are zircon, apatite, sphene and some opaque minerals. 

Zircons are typically subhedral or sub-rounded, 50-100 µm in size and contain inclusions of 

apatites and feldspars. Many of them are homogenous or show only faint, broad zoning in 

BSE, but grains with oscillatory zoning characteristic of magmatic zircon also occurs along 

with core and rim relations (Figure 9). 

 
Figure 9. Zircon crystals in BSE from coarse grained granite (EPB-06-05) 

 
4.1.5 Garnet-biotite gneiss: sample 103-23-10 

This sample is a medium to coarse grained garnet-biotite gneiss of granitic composition 

collected from a road-cut. The 190/80 W gneissic fabric is mainly defined by biotite. The 

gneiss is cross-cut by an amphibolite dyke more or less parallel to the gneissic fabric. The 

gneiss contains some felsic pockets interpreted as neosomes. Rock-forming minerals are K-

feldspar, quartz, plagioclase, biotite and garnet, with the K-feldspars (mainly microcline with 

micro-perthites in a few grains) and the typically poikiloblastic garnets being noticeably 

larger than the other minerals. Some plagioclase is altered to sericite, and intergrowth with 

quartz, myrmekite, also occurs (a common feature of gneisses and granites). Sphene and 

epidote are also present in the rock. Zircon is abundant in the rock and many of them occur as 

inclusions in biotite surrounded by pleochroic haloes. Most zircon grains are subhedral, with a 

few rounded grains. The subhedral grains are mostly long prismatic and ca. 100-150 µm in 
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size. Some crystals are altered and have inclusions, whereas others are faintly zoned or have 

chaotic inner patterns suggesting recrystallisation and alteration, but most of them are 

homogenous (Figure 10). 

 
Figure 10. Zircon crystals in BSE from garnet-biotite gneiss (103-23-10) 

 

4.1.6 Augen gneiss: sample 112-23-10 

This sample is a red augen gneiss with medium to coarse grained feldspars augens, collected 

on the eastern part of Nesodden in the Torget area (also known as Torvet), which is outside of 

the main study area (Figure 3). The main rock-forming minerals are K-feldspar, quartz, 

plagioclase and biotite. Other accessory minerals are zircons, sphene, apatite, opaque minerals 

and epidote or clinosoisite along with a secondary carbonate mineral. The K-feldspars is 

locally microperthitic, and the plagioclase in the rock is altered to saussurite, and myrmekite 

is also present. The quartz grains have undulatory extinction and the biotites are strongly 

altered to chlorite. Zircons and sphene are euhedral to subhedral, whereas apatite is subhedral 

or even anhedral. Zircon grains from the sample are typically ca. 60-100 µm, with long-

prismatic habit, and exhibit a faint zoning in BSE (Figure 11). Inclusions are common, and 

some grains are altered. 
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Figure 11. Zircon crystals in BSE from augen gneiss (112-23-10) 

 
4.1.7 Fine grained granite: sample EPB-06-04 

This rock is a fine grained granitic rock from the Spro area, adjacent to sample 106-23-10. At 

this outcrop the rocks are generally deformed and cross-cut by amphibolites that were 

subsequently deformed as well. It is difficult to make sense of all the deformed dykes, host-

rocks and mylonites in the outcrop. The main rock-forming minerals in the sample are quartz, 

K-feldspar, plagioclase and biotite. Accessory minerals are zircon, apatite and sphene, and a 

small amount of garnet is also present. The biotite is strongly altered to chlorite. The zircon 

crystals in this sample are mostly homogenous, only a small number shows faint zoning in 

BSE (Figure 12). Several of the zircons are altered, and some are sub-rounded. Subhedral 

grains are typically long-prismatic and are ca. 100 and 200 µm long, i.e., somewhat larger 

than zircons from the other samples.  

 
Figure 12. Zircon crystals in BSE from fine-grained granite (EPB-06-04) 

 
4.1.8 Red granite: sample EPB-06-06 

This fine grained, red granitic rock was also collected in the Spro area. The main rock-

forming minerals are quartz, K-feldspar, plagioclase and biotite. The biotite is commonly 
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altered to chlorite. There is a fair amount of opaque minerals in the rock and other accessory 

minerals include zircon and apatite. The zircon crystals are at 40-100 µm in size somewhat 

smaller than those found in most of the studied samples. The majority of the zircons are sub-

rounded and contain inclusions of e.g. apatite. They are either homogenous, or show faint 

zoning in BSE, however, a few crystals are subhedral to euhedral and show oscillatory zoning 

(Figure 13).  

  

Figure 13. Zircon crystals in BSE from red granite (EPB-06-06) 

 

4.1.9 Tonalitic gneiss: sample 101-23-10  

This medium to fine grained greyish tonalitic gneiss was sampled in a road-cut at the 

southernmost edge of the field area. The 300/63 NE gneissic fabric is defined by biotite. 

Several small pegmatites intrude the tonalitic gneiss, exhibiting both sharp and diffuse 

boundaries to the host rock. Felsic neosomes and quartz veins are also observed in the gneiss. 

The neosomes indicate minor anatexis. The main rock-forming minerals in the heterogranular 

gneiss are plagioclase, quartz, biotite and hornblende, but some microcline can be found as 

well. Accessory minerals are zircon, apatite and sphene. The presence of clinozoisite, partially 

sericitised plagioclase and chloritized biotite indicate retrograde metamorphism. Intergrowth 

in plagioclase with quartz in a form of myrmekites can be seen in a few places. The quartz 

grain boundaries are typically embayed and the grains show undulatory extinction. Zircon 

inclusions in biotites surrounded by pleochroic haloes are common. Many of the zircons show 

zoning and they occur as inclusions in hornblende as well. Most of the zircon grains from this 

sample are subhedral, have numerous inclusions of apatites and about half of the studied 

grains are homogenous in BSE, or show faint and broad zoning, whereas the other half show 

regular oscillatory growth zoning, typically associated with magmatic zircon (Figure 14). 

Some crystals are sub-rounded, 50-150 µm in size, with no visible xenocrystic cores.  
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Figure 14. Zircon crystals in BSE from tonalitic gneiss (101-23-10) 

 
4.2 U-Pb 
4.2.1 Granitic gneiss: sample 105-23-10 

Thirty-six zircons were analysed for U-Pb. Of these, 21 analyses containing high amounts of 

common lead (204Pb/206Pb < 2000) were excluded (Table 4 in Appendix). Eight of the 

remaining zircons give a Concordia age of 1536 ± 5 Ma (MSWD = 0.083) (Figure 15a-II). A 

regression line calculated for all 15 zircons gives an upper intercept at 1515 ± 380 Ma and an 

unconstrained lower intercept at 1476 ± 510 Ma (MSWD = 0.58) (Figure 15a-I). Anchoring 

the lower intercept to 1100 ± 10 Ma yields a regression line with an upper intercept at 1518 ± 

32 Ma (MSWD = 0.89) that overlaps the 1536 ± 5 Ma Concordia age. The preferred 

interpretation is that the Concordia age of 1536 ± 5 Ma dates crystallisation of the granite, and 

that the remaining analyses reflect Sveconorwegian metamorphism at around 1100 Ma. 

 
4.2.2 Alkali feldspar granite: sample 106-23-10 

Of 29 zircons 2 were excluded due to low error correlations (� = -0.018 and � = 0.293) (Table 

4 in Appendix). The 27 remaining grains define a regression line with unconstrained 

intercepts at -270 ± 720 Ma and 1541 ± 7 Ma (MSWD = 0.51) (Figure 15b-I). A Concordia 

age calculated from 25 analyses yield an age of 1542 ± 5 Ma (MSWD = 1.7) (Figure 15b-II). 

To calculate the Concordia age, one discordant (-11.2%) analysis was excluded, along with 

the analysis with the highest 207Pb/235U and 206Pb/238U ages, which represents a zircon that in 

BSE images seems to have both a core and several inclusions and cracks. A regression line 

including all 27 zircons with a forced lower intercept at 0 ± 10 Ma, yield an upper intercept of 

1541 ± 7 Ma (MSWD = 0.51) that is in good agreement with the Concordia age. The 1542 ± 5 

Ma Concordia age is interpreted as the crystallisation age of the rock. 

 
4.2.3 Pegmatite: sample 102-23-10 

Of 35 analysed zircons 2 were discarded due to high common lead content (206Pb/20Pb < 

2000) (Table 4 in Appendix). The remaining 33 grains form a regression line (model-2 fit) 



Age and origin of the Mesoproterozoic Nesodden 

 42 

with lower and upper intercepts at 1034 ± 40 Ma and 1522 ± 46 Ma (MSWD = 7.9), 

respectively (Figure xc-I). The zircons form two distinct populations. The younger one 

contains a total of 17 analyses (white ellipses in Figure 15c-I). A Concordia age calculated 

from 14 of these analyses yield an age of 1051 ± 5 Ma (MSWD = 0.66) (Figure 15c-II). The 3 

zircons excluded from the Concordia age calculation had the lowest 207Pb/206Pb ages and two 

of them were highly discordant, -15.6% and 5.9%. The 1051 ± 5 Ma Concordia age is 

interpreted as the emplacement age of the pegmatite. 

The older group consists of 5 analyses (grey ellipses in Figure 15c-I). These have 

distinctly higher 207Pb/235U and 206Pb/238U ages than the other analyses from the sample, and 

give a Concordia age of 1531 ± 16 Ma (MSWD = 0.63). The remaining 11 analyses (yellow 

ellipses in Figure 15c-I) plot on a line towards the 1051 ± 5 Ma Concordia age. Anchoring all 

16 points to the young Concordia age of 1051 ± 5 gives an upper intercept at 1553 ± 46 Ma 

(MSWD = 1.8) that overlaps with the Concordia age of the older group. 

The 1531 ± 16 Ma Concordia age is interpreted to date the age of inherited zircons in 

the pegmatite (Figure 15c-III), and likely represents the magmatic age of its protolith. The 11 

grains that plot in-between this age and the Sveconorwegian age of the pegmatite are 

interpreted to represent either mixing of the two age components, or Sveconorwegian lead 

loss in inherited zircons. 

 
4.2.4 Coarse-grained granite: sample EPB-06-05 

Of 41 zircons analysed 9 were discarded because of high contents of common lead 

(206Pb/204Pb < 2000) or too low error correlation (� = 0.248) (Table 4 in Appendix). The 

remaining 32 grains form a large cluster of concordant to slightly discordant analyses that 

appear to belong to two different age groups. The first group consists of 26 zircons that for the 

most part overlap the Concordia curve, along with a few discordant grains (white and yellow 

ellipses in Figure 15d-I). Of these, 21 zircons are concordant at 1537 ± 3 Ma (MSWD = 

0.103) (Figure 15d-II). Together with 5 discordant zircons they define a lead loss line from an 

upper intercept of 1533 ± 5 Ma to an unconstrained lower intercept at 273 +200/-210 Ma 

(MSWD = 1.5). The upper intercept is equal to the Concordia age. Forcing the lower intercept 

through 290 ± 20 Ma, the estimated age of Permian magmatic and tectonic activity in the Oslo 

Rift (Sundvoll et al. 1990), produces an upper intercept age of 1532 ± 8.0 Ma with a slightly 

lower MSWD of 1.3. The 1537 ± 3 Ma Concordia age is interpreted as the emplacement age 

of the EPB-06-05 granite, and the discordance likely reflects Permian lead loss. 
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The second, older group consists of 5 analyses with slightly lower internal precision 

than the other analyses (grey ellipses in Figure 15d-I). Together they define a regression line 

with an upper intercept at 1595 +45/-30 Ma and a lower intercept at 547 +280/-260 Ma 

(MSWD = 1.8). Of the 5 analyses 4 yield a regression line with upper and lower intercepts of 

1595 +36/-26 and 349 +310/-380 Ma (MSWD = 0.40) respectively; when anchored to 290 

+20/-20 Ma the upper intercept age changes to 1591 +20/-19 Ma (MSWD = 0.31) (Figure 

15d-I). The excluded point plots between the lead loss trajectories of the 1591 Ma and the 

1537 Ma ages, and is interpreted to represent mixing of two different age domains in the 

zircon. The preferred interpretation is that this older age represents inherited zircons, affected 

by Permian lead loss. The oldest known event of Gothian calc-alkaline magmatism in the 

Norwegian part of the Kongsberg-Marstrand block is represented by a metarhyolite from 

Slemmestad, which has been dated to 1615 ± 31 Ma (Andersen et al. 2004a). 

 
4.2.5 Garnet-biotite gneiss: Sample 103-23-10 

Eighteen of 23 analysed zircons from the garnet-biotite gneiss give a Concordia age of 1492 ± 

9 Ma (MSWD = 0.17) (Figure 15e-II). The remaining 5 analyses were discarded due to high 

common lead content (206Pb/204Pb < 2000; Table 4 in Appendix). The 1492 ± 9 Ma Concordia 

age is interpreted as the crystallisation age of the garnet-biotite gneiss, but minor 

Sveconorwegian lead loss may lead to a slight underestimation of the real age of the gneiss. 

 
4.2.6 Augen gneiss: sample 112-23-10 

Of 22 zircon analyses 2 were discarded because of high common lead content (206Pb/204Pb < 

2000) (Table 4 in Appendix). A Concordia age calculated from the remaining 20 data points 

give an age of 1504 ± 7 Ma (MSWD = 0.67) (Figure 15f-II). The same analyses define a 

poorly constrained regression line with an upper intercept at 1496 ± 50 Ma (MSWD = 0.12) 

that overlaps with the Concordia age (Figure 15f-I), and a lower intercept at 1133 ± 670 Ma. 

A constrained lower intercept at 1100 ± 10 Ma results in a regression line with an upper 

intercept at 1497 ± 39 Ma (MSWD = 0.117), which is in good agreement with the calculated 

Concordia age of 1504 ± 7 Ma. As with the previous sample, the coincidence of the lower 

intercept with the Sveconorwegian event is suggestive of minor lead loss at this time. The 

preferred interpretation is that the crystallisation age of the Torget augen gneiss is 1504 ± 7 

Ma. If, on the other hand, the data reflect minor Sveconorwegian lead loss, the maximum age 

of the gneiss is constrained by the 1497 ± 39 Ma age. 
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4.2.7 Fine grained granite: sample EPB-06-04 

A total of 26 zircons were analysed, of which 3 were discarded because of high common lead 

content (206Pb/204Pb < 2000) and 2 due to low error correlations (� = 0.045 and � = -0.019) 

(Table 4 in Appendix). A further 8 zircons, 2 with the highest 207Pb/206Pb ages and 6 with the 

lowest 207Pb/206Pb ages were excluded for the Concordia age calculations. A group of 13 

zircons give a Concordia age of 1503 ± 7 Ma (MSWD = 1.5) (Figure 15g-II).  

A regression line calculated for all zircons, a total of 21 grains that for the most part 

overlap the Concordia curve, gives an upper intercept at 1468 ± 61 Ma and a unconstrained 

lower intercept at 1219 ± 440 Ma (MSWD = 0.120) (Figure 15g-I). Forcing the lower 

intercept through 1100 ±10 Ma yields an upper intercept at 1474 ± 34 Ma (MSWD = 0.13) 

that overlaps with the Concordia age of 1503 ± 7 Ma. The preferred interpretation is that the 

Concordia age gives the best estimate for the emplacement age of the rock, whereas the 

unconstrained and constrained lower intercepts resulting in an overlapping age with the 1503 

± 7 Ma Concordia age reflect Sveconorwegian lead loss.  

 
4.2.8 Red granite: sample EPB-06-06 

Of 29 zircons analysed 17 were discarded due to high common lead content (206Pb/204Pb < 

2000), and 1 because of low error correlations (� = -0.078) (Table 4 in Appendix). The 

remaining 11 zircons have 206Pb/204Pb in the range 2305 and 8032, and were corrected for 

common lead using Stacey-Kramers model for common lead composition at 1.5 Ga, i.e., 
206Pb/204Pb = 18.7, 207Pb/204Pb = 15.628 and 208Pb/204Pb = 38.63 (Stacey and Kramers 1975). 

These zircons define a regression line with an upper intercept at 1494 +21/-18 Ma and an 

unconstrained lower intercept at 494 +110/-110 Ma (MSWD = 0.36) (Figure 15h-I). The 

upper intercept overlaps with a Concordia age of 1493 ± 11 Ma (MSWD = 0.096) (Figure 

15h-II) calculated for the 6 analyses with the highest 207Pb/206Pb ages. The 1493 ± 11 Ma 

Concordia age is interpreted as the best estimate for the emplacement of the fine grained N-

Spro granite. The imprecise, unconstrained lower intercept overlaps with the age of the 

Caledonian orogeny. 

 
4.2.9 Tonalitic gneiss: sample 101-23-10  

Of 19 zircons 10 give a Concordia age at 1495 ± 5 Ma (MSWD = 1.11) (Figure 15i-II). 

Reference lines drawn between 1495 and 0 and between 1495 and 1100 (Figure 15i-I) show 

possible lead loss lines for the sample. The preferred interpretation is that the 1495 ± 5 Ma 

Concordia age is the crystallisation age of the tonalitic gneiss. The remaining analyses are 
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interpreted to reflect a combination of Sveconorwegian influence and resent lead loss. 

Inherited zircons from a Sveconorwegian pegmatite hosted by the tonalitic gneiss (102-23-10; 

Figure 15c-II) gave an age of 1531 ± 36 Ma, overlapping with the 1495 ± 5 Ma age of the 

tonalitic gneiss. The data is thus compatible with a local origin of the pegmatite. The slightly 

younger age of the tonalitic gneiss may reflect the effect of unresolved Sveconorwegian lead 

loss and/or zircon growth. 
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Figure 15a-i. Concordia diagrams for the 9 samples. Error ellipses are shown at ±2�. For detailed 
discussion see text. 

 
4.3 Lu-Hf 
The LA-MC-ICPMS Lu-Hf isotope data were collected from 220 zircons that were previously 

dated by in situ U-Pb analyses, and 2 grains not analysed for U-Pb (sample 105-23-10, 
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number 11 and 17). The analytical data are listed in Table 5 (Appendix), including 
176Hf/177Hf, 176Lu/177Hf and 176Yb/177Hf for individual analyses, and time-corrected 
176Hf/177Hf ratios (i.e., the ratio recalculated from the measured Lu in the zircon and its U-Pb 

age).  

Zircons typically have Lu/Hf ratios between 0.0016 and 0.034 (Faure and Mensing 

2005), as do the studied samples where the ratios range from 0.00038 to 0.00582 (Table 5 in 

Appendix). Within this span, 5 zircons from samples EPB-06-05 and EPB-06-06 exhibit the 

highest Lu/Hf ratios, followed by a small group of zircons with Lu/Hf ratios from 0.002 to 

0.0027. The zircons from the Sveconorwegian pegmatite (102-23-10) have the lowest Lu/Hf 

ratios, ranging from 0.00038 to 0.00109, which points to a highly evolved (crustal) source.  

The data are illustrated in 176Lu/177Hf vs. 176Hf/177Hf diagrams where each analysis is 

represented by an error box showing the internal analytical uncertainty (±1�) (Figure 16a-i). 

Reference isochrons plotted in the diagrams show the expected trend of 176Hf/177Hf from in 

situ radiogenic accumulation since the crystallization age. To create the reference lines the U-

Pb age of the samples and a convenient 176Hf/177Hf initial ratio were used together with the 

decay constant of Lu (i.e. �=0.0186). Analyses plotting above or below the main trend of the 

data as visualized by the reference lines suggest more juvenile and evolved (crust) 

components, respectively. The main group of zircons, representing the 1500-1540 Ma rocks, 

including inherited zircons from the Sveconorwegian pegmatite, have 176Hf/177Hf from 

0.28191 to 0.28207. The Sveconorwegian zircons from the pegmatite, and a few older zircons 

(that likely have Sveconorwegian overgrowths), have higher 176Hf/177Hf ratios, ranging from 

0.28208 to 0.2822, compatible with two different zircon populations in the studied rocks. 
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Figure 16a-i. Lutetium-hafnium correlation diagrams showing the present-day variations in 176Hf/177Hf vs. 
176Lu/177Hf. The error boxes show the analytical uncertainties. a) 105-23-10, granitic gneiss b) 106-23-10, 
alkali feldspar granite c) 102-23-10, pegmatite d) EPB-06-05, coarse-grained granite e) 103-23-10, garnet-
biotite gneiss f) 112-23-10, augen gneiss g) EPB-06-04, fine-grained granite h) EPB-06-06, red granite i) 
101-23-10,  tonalitic gneiss.  

 

It is useful to illustrate the total variation of the time-corrected initial 176Hf/177Hf ratios 

(Hfi) in an accumulated probability plot with histogram plot (Figure 17). The main peak in the 

plot, with Hfi ranging from 0.28185 to 0.28205, mainly represents zircons from the ca. 1500-

1540 Ma rocks. The second, smaller peak from 0.28205 to 0.28218 mainly contains zircons 

from the Sveconorwegian pegmatite. A few analyses from the pegmatite plot within the larger 

peak, and correspond to older, inherited zircons. Also, a few analyses from the older rocks 

plot within the smaller peak, likely representing secondary Sveconorwegian zircon growth on 

Mesoproterozoic zircons.  

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: Accumulated probability plot with histogram plot for all analysed zircons. In the diagram, the 
histogram for time-corrected initial 176Hf/177Hf ratios (Hfi) is enclosed within a Gaussian curve that 
includes the errors for each measurement. 

i 



Age and origin of the Mesoproterozoic Nesodden 

 52 

Another useful way to evaluate the data is to plot it in a linear probability diagram with 

a regression line. In Figure 18, most of the data (plotted with 1� error bars) conform to a 

normal distribution along a linear trend, illustrating the similarities in initial Hf between the 

ca. 1500-1540 Ma zircons from the different rock types. These roughly coeval rocks are from 

a relatively small geographical area and may thus be related, and/or reflect similar settings of 

formation. The outliers towards higher initial Hf ratios correspond to Sveconorwegian zircons 

and overgrowths (105-23-10:07, 10, 31, 72 (11 and 17), EPB-06-04:24, 26, 62, 75 and EPB-

06-06:51). In the plot, three grains plot towards significantly lower initial Hf ratios (EPB-06-

05:01, 36, and EPB-06-06:41). These zircons have 206Pb/204Pb ratios <2100 (Table 4 in 

Appendix), but do not have older U-Pb ages than the Concordia ages of their respective host 

rocks. The data can reflect inherited older zircons, and/or a more evolved (crustal) source. 

Probability plots created for each sample separately show similar patterns (Appendix).  

 

 

Figure 18: Linear probability plot showing all zircon analyses with 1� error bars. If the data represent a 
suite that conforms to a normal distribution, the data points will define a (regression) line. Three zircons 
at the lower end and 27 at the upper end of the probability limit deviate from the normal trend. These 
outliers are crossed over, illustrating that they are not included when calculating the regression line. 
Analyses in the upper end of the probability limit represent samples EPB-06-04 and 105-23-10 with 4 and 
6 zircons, respectively, whereas sample EPB-06-06 has one zircon at each end of the probability limit. The 
two other analyses at the lower end of the probability limit are from sample EPB-06-05. However, most of 
the zircons (16 st) deviating from the normal trend are from the pegmatite (102-23-10), and represent 
Sveconorwegian zircon growth, as opposed to the Mesoproterozoic zircons that form the normal trend. 
The remaining zircons above the trend line are similarly interpreted to represent Sveconorwegian zircon 
and variable contributions of the older component, compatible with rim and core relations.  

 
The Hf isotope data for 222 zircons, arranged by age and rock type, are plotted in Hfi vs. 

age (207Pb/206Pb) diagrams in Figure 19a-b, along with published data from the Southwest 

Scandinavian Domain (Andersen et al. 2002a, Andersen et al. 2004a, Andersen et al. 2006). 

The green reference lines show the evolution of the Hf isotopic ratio in the depleted mantle 
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with time (Griffin et al. 2000), and the blue reference lines represent the evolution of the ratio 

in CHUR (Bouvier et al. 2007). The red reference lines illustrate the path the Hf isotopic ratio 

would have evolved in the rock from which the analysed zircons formed, at a specific 
176Lu/177Hf ratio. Since zircons have very low Lu/Hf ratios, extrapolating a reference line 

from a zircon to the DM growth curve using the zircons Lu/Hf ratio yields a nearly horizontal 

line, giving a minimum age for the crustal residence time of the Hf in the zircon, i.e., the 

zircon model-age (tDMz) (Andersen et al. 2002a). However, since the crystallization ages of 

the zircons are known it is possible to get a more realistic model age for the host rock of the 

zircons, by forcing a growth curve through the zircon initial ratio with Lu/Hf ratio 

corresponding to the whole rock. When whole-rock concentration data are not available, as is 

the case for this study, a 176Lu/177Hf = 0.01 for granites and 176Lu/177Hf = 0.015 for an average 

crustal reservoir (Griffin et al. 2002, Andersen et al. 2002a) may be used. The obtained 

model-age (whole-rock model age, tDMw) represents the time when the Hf in the zircon last 

was in isotopic equilibrium with the global depleted mantle reservoir (Andersen et al. 2002a).    

The zircons in most samples have a range of Hfi ratios well outside the analytical 

uncertainties (±1.5-2 �-units). Such ranges in �Hf values are quite common in granites (Griffin 

et al. 2002, Andersen et al. 2002a) and suggest that the magma was heterogeneous with 

contributions from isotopically distinct sources. If magma homogenization is slower than 

crystallization of the zircons, different parts of the crystals may sample different domains of 

the heterogeneous magma. Samples 101-23-10, 103-23-10, 106-23-10, 112-23-10 and EPB-

06-04 all have a moderate range of 5-6 �Hf units, and all plot above CHUR. Samples 105-23-

10, EPB-06-05 and EPB-06-06 have much larger ranges in �Hf, from 9 to 11 units, suggesting 

mixing of different magma sources. Some of the analyses plot on the DM reference line, 

indicating a juvenile component. The EPB-06-06 sample, along with samples 102-23-10, 103-

23-10 and EPB-06-05 contain zircons that plot on the CHUR line, suggesting a less depleted 

average source, or mixing of DM and crustally derived components. 

Sveconorwegian zircons from the pegmatite show a moderate �Hf range from -2 to 4, 

compatible with a crustal source (e.g., anatexis of the host rock). The inherited zircons in the 

pegmatite plot above CHUR, and in one case on the DM line, suggesting juvenile crust 

formation from a depleted mantle source, and also show a moderate �Hf range of 6. 
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Figure 19a, b. Time-corrected initial 176Hf/177Hf ratio vs. time (Ga) diagrams illustrating the initial Hf 
isotopic composition of zircons at the time of crystallization. The Hf isotope data from Table 5 were 
recalculated to crystallization ages using data from Table 4 (Appendix). Reference data: DM from Griffin 
et al. (2000); CHUR from Bouvier et al. (2007); ranges of Hf isotopic composition for 1.5-1.6 Ga calc-
alkaline gneisses and related rocks and of TIB and TIB equivalent rocks from Andersen et al. 2002a, 
2004a, 2006 and unpublished data from T. Andersen.   

 

4.4 Pb-Pb and multi-stage U-Th-modelling 
Isotopic Pb compositions from 9 whole-rock samples are listed in Table 6 (Appendix). The 

present day 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios vary widely, from 17.282 to 29.586, 

from 15.487 to 16.414 and from 36.901 to 45.912, respectively. The Pb data do not yield 

isochrons, but form a rough linear array when plotted in a 206Pb/204Pb vs. 207Pb/204Pb diagram, 

a 

b 
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except for one sample (112-23-10) that plots under the array. In a 206Pb/204Pb vs. 208Pb/204Pb 

diagram the data scatter somewhat, yielding two linear arrays near each other, again with the 

exception of 112-23-10. This indicates that the lead was isotopically heterogeneous at the 

time of crystallization. The considerably larger scatter in the data in the 206Pb/204Pb vs. 
208Pb/204Pb diagram implies widely variable Th/U ratios. Sample 112-23-10 plots well below 

the two arrays in the diagram, indicating a significant disturbance of the system (possible U 

mobility) that occurred after emplacement of the rock. The Pb isotope composition of 112-23-

10 is compatible with that of the Sveconorwegian pegmatite (102-23-10) and its host rock 

(101-23-10).  

A three-stage model of the Pb isotopic evolution (Andersen 1998 and references therein) 

was applied using the PBI-Excel program (Andersen 1998) to better understand the geological 

environments where the Pb has evolved in the past and to get an indication of possible magma 

sources (Figure 20, 21).  In the three-stage model, the first-stage is constrained by the age of 

the earth (t0 = 4.57 Ga, Faure and Mensing 2005 and references therein) and by the time of 

separation (t1 = 2.1 Ga) from the first reservoir, i.e. the protolith age, which is estimated from 

the Lu-Hf protolith ages (section 4.3). During the first-stage, the Pb evolved in a depleted 

mantle environment characterized by a µ1-value of 7.9 and by a �1 = 4 from initial meteoric 

Pb composition (Tatsumoto et al. 1973). The second-stage is constrained by t1 and t2, where 

the latter is the emplacement age of the rocks (t2 = 1.53 Ga). The Pb in the samples evolved in 

different reservoirs during the second-stage, with µ2-values ranging from 10 to 16 and a �2-

value of 4. A different t2 age was used to constrain the second-stage for sample 112-23-10, 

since it can only be made to fit the model isochron using a Sveconorwegian age. Thus, t2 was 

set to 1050 Ma, the best estimate for the age of metamorphism of the rock (see section 4.2), 

and which is also the age of the pegmatite (102-23-10) and metamorphism of its host rock 

(101-23-10). All these three samples plot on a line (Figure 20, 21). This indicates a reservoir 

with a µ2-value of 13 and �2 = 4. The final stage represents the time from the last 

homogenization of Pb until present. The Pb in the different samples evolved in different 

reservoirs with µ3-values ranging from 33 to 70 and �3-values ranging from 2.5 to 4. For 

sample 112-23-10 the third-stage represents a reservoir characterized by a µ3-value of 70 and 

a �3-value of 0.5.  
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Figure 20. 206Pb/204Pb vs. 207Pb/204Pb diagram illustrating the three-stage model evolution applied to all 
samples. The black and blue lines illustrate the three-stage evolution of 8 of the 9 analysed samples 
(µ1=7.9, t1=2.1 Ga, µ2 varying between 10 and 16 and t2=1.53 Ga). The black and green lines illustrate the 
three-stage evolution of the ninth sample (112-23-10: augen gneiss; µ1=7.9, t1=2.1 Ga, µ2=13 and t2=1.05 
Ga).  

 

 
Figure 21. 206Pb/204Pb vs. 208Pb/204Pb diagram illustrating the three-stage model for thorogenic Pb. 
Symbols as in Figure 20, see text in section 4.4 for detailed description. 

 

5 Discussion 
5.1 The age of magmatism and metamorphism on the Nesodden Peninsula  
The Nesodden Peninsula consists of various ortho- and paragneisses along with granites, 

amphibolites and diabase dykes. The rocks testify to a complex geological evolution, which 

until now has been poorly constrained. The U-Pb ages obtained in this study confirm 



Age and origin of the Mesoproterozoic Nesodden 

 57 

Mesoproterozoic magmatism in the area, yielding emplacement ages at 1.54-1.53 Ga for 

foliated granites and granitic gneisses (Figure 15a-d), and slightly younger emplacement ages 

at 1.50-1.49 Ga for a second group of granitic and tonalitic rocks (Figure 15e-i). Sparse 

inherited zircons in the coarse grained 1.54 Ga granite (EPB-06-05) yield an age of 1591 

+20/-19 Ma. The remaining Mesoproterozoic rocks do not contain inherited zircons, 

suggesting either predominantly juvenile magma sources, or a paucity of zircon in the 

hypothetical crustal component, or zircon dissolution in the magmas. The youngest age was 

obtained for a 1050 Ma granitic pegmatite. Inherited zircons in the pegmatite yield a 

Concordia age of 1531 ± 16 Ma. This age is slightly older than that of the 1.49 Ga host rock, 

but is similar to that of older gneisses and granites in the area, and is consistent with anatexis 

of these rocks as the magma source. This interpretation is further supported by Hf data from 

the inherited zircons in the pegmatite (see below), which show a time-corrected range that 

match that of several of the sampled rocks in the area, but seems less compatible with the 

more evolved Hfi ratio of the host rock. It is interesting to note that the granitic gneiss (105-

23-10) adjacent to the host rock tonalite gneiss not only provides the closest match in terms of 

geography, age and Hf isotope ratios, but also shows the most pronounced Sveconorwegian 

zircon growth (as determined from the Hf signature, see section 5.3). Neosomes suggestive of 

anatexis are locally present in most gneisses in the area, including the tonalitic host rock, but 

are absent from the exposed granitic gneiss suggested as the source of the pegmatite. All the 

same, anatexis of the granitic gneiss is suggested as a likely source of the pegmatite. The 

dated pegmatite is one of several in the exposed host rock; the pegmatites are either parallel to 

the gneissic fabric of the host rock, or cross cut it at a high angle. Though the pegmatites 

locally are folded, they do not share the gneissic fabric themselves, hence they constrain the 

age of the gneissic fabric and the folding to pre- and post 1050 Ma, respectively. 

The partly discordant U-Pb data from the Mesoproterozoic rocks have lower intercepts 

in the Sveconorwegian, Permian and recent sectors of the Concordia curve, suggesting Pb-

loss and/or zircon growth at these times. The ca. 1100 Ma intercepts correlate to the 

regionally important Sveconorwegian orogeny, and local anatexis and pegmatite emplacement 

in the area (this study). The Permian intercept correlates to magmatic activity in the Oslo Rift 

area at ca. 290 Ma (Sundvoll et al. 1990). In contrast, zircons from the garnet-biotite gneiss do 

not seem to be affected by the geological events in the area following emplacement at 1492 

Ma. 

 



Age and origin of the Mesoproterozoic Nesodden 

 58 

5.2 Magma sources 
The creation of the Earth’s crust is an ongoing process that started with the formation of the 

planet (Condie 2005). Over time, the felsic components that make up the crust have been 

extracted from the mantle, and today melting of the mantle and re-melting of the crust 

represents the two end-member sources of magmas. Studies of Lu/Hf and 176Hf/177Hf ratios 

allow the identification of juvenile (mantle) and/or evolved (crust) components in a rock, the 

constraining of possible crustal sources, and gauging of the model age, i.e., the time when the 

initial extraction from the DM of the evolved component took place.  

The Hfi of zircons from the 1.54-1.53 Ga and 1.50-1.49 Ga rocks in this study reflect 

heterogeneous magmas at the time of zircon crystallisation. Generation of this wide range of 

Hfi ratios from a single source is unlikely: the high Hfi ratios (0.2819 to 0.2821 at 1.54-1.49 

Ga) points to a source with a DM composition, the lower end of the Hfi ratios, on the other 

hand, suggest an older crustal component with a higher Lu/Hf ratio. Hence, contributions 

from two or more sources with different Hf isotopic composition are inferred, compatible 

with a mix of mantle derived material extracted at 1.55-1.5 Ga (particularly EPB-06-06, EPB-

06-04 and 105-23-10), and re-melting of older crust (all samples). Possible sources for the 

crustal component (-s) can be evaluated by comparing to published and unpublished data from 

south-eastern Norway and south-western Sweden (Figure 19b). The lower end of the Hfi 

range (+6 to -2 �Hf assuming average crustal Lu/Hf) crosses into the field of 1.85-1.65 Ga TIB 

rocks at 1.54-1.49 Ga (Andersen et al. 2006); thus, rocks of TIB ages and compositions are a 

pssible source of the crustal component. The Hfi ranges in the analysed samples also overlap 

with the 1.60-1.54 Ga calc-alkaline gneiss complexes in the Østfold-Akershus sector east of 

the Nesodden Peninsula, including the Feiring, Sørmarka, Midtskog, Bjørkelangen and 

Tistedal gneiss complexes (Andersen et al. 2004a). Inherited zircons in the coarse grained 

granite (EPB-06-05) are ca. 1.59 Ga old and have intermediate Hfi (< 0.2821, �Hf = +5 to +8). 

This suggests that part of the crustal component of the rocks in the study area derives from 

recycling of these or similar gneiss complexes. Rocks of similar ages and Hfi characteristics 

are also present across the Oslo fjord in the Kongsberg sector, i.e., the Slemmestad 

metarhyolite and the Snarum calc-alkaline gneisses, and slightly further away to the south 

west, the Justøy tonalities, the Jomås granodiorite and the Gjerstadvatn tonalite in the Bamble 

sector (Andersen et al. 2002a, Andersen et al. 2004a).  

The Sveconorwegian zircons in the pegmatite exhibits a moderate �Hf range (-2 to +4) 

and plot on the CHUR line, partly overlapping with the Hfi
 of the Mesoproterozoic rocks in 
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the study, including the tonalitic host rock (Figure 19a). However, the inherited zircons in the 

Sveconorwegian pegmatite are 1.53 Ga and testify to a juvenile component that is absent from 

the Hfi range of the tonalite, but match that of the neighbouring 1.54 granitic gneiss (105-23-

10). Thus, the most likely candidate for the inherited zircons is the granitic gneiss and/or 

rocks of similar age and composition in the vicinity. 

The model ages (tDMw) for the evolved component of the studied 1.54-1.49 Ga rocks are 

estimated for Lu/Hf  ratios of 0.015 and 0.010, corresponding to average crust and average 

granite compositions, respectively. The projected Hf isotopic evolution for both Lu/Hf ratios 

overlap the field of the TIB Hfi, as noted above, and intersect with the DM yielding crustal 

residence ages of Hf in the zircons at up to 2.4 Ga (Lu/Hf = 0.015) and 2.2 Ga (Lu/Hf = 

0.010), respectively. A conservative estimate of the minimum crustal residence time, 

excluding three points with negative �Hf from two rocks and gracing the most evolved 

components of the bulk of the data in the diagram (Figure 19), yields an age of ca. 2.1 Ga 

(Lu/Hf = 0.015), matching models of crustal formation in central Sweden at 2.1-2.0 Ga (e.g., 

Anderson et al., 2006 and references therein). 

The evolution of the crustal component can be further constrained by examining the 

isotopic composition of Pb, and in addition, the application of a second isotopic system makes 

the constraints more robust (e.g., Andersen et al. 1994). A three-stage growth model applied 

to the studied rocks (see section 4.4.) with the protolith age (t1) set to 2.1 Ga fits well with the 

obtained Pb data. Following separation from the DM reservoir the Pb evolved in different 

environments until 1.54-1.49 Ga (t2), and in the case of the pegmatite and the augen gneiss 

(112-23-10), until ca. 1.05 Ga. These reservoirs were characterized by intermediate 238U/204Pb 

ratios (µ2-values) ranging from 10 to 16 and 232Th/204Pb ratios (�2-value) of ca. 4, supporting 

the presence of both a mantle derived and crust derived components. The U-Pb data dates 

emplacement of the augen gneiss (112-23-10) at 1.50 Ga, and minor Pb-loss (or less likely, 

zircon growth) indicates metamorphism at ca. 1.1 Ga. In the 206Pb/204Pb vs. 207Pb/204Pb 

diagram t2 has to be constrained to the Sveconorwegian (here 1.05 Ga, i.e., the age of local 

pegmatites and anatexis) in order to obtain a meaningful µ2-value for the rock. The Pb data 

thus supports the metamorphic age, and also indicates that the Pb composition of the rock was 

considerably reset at this time. Resetting probably took place through homogenization of Pb 

between feldspars and other minerals, whereas zircons, which are typically very resistant to 

metamorphism, were only slightly disturbed, and still provide mostly concordant U-Pb data 

from the time of emplacement of the gneiss. 
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For the remaining samples the whole rock Pb isotope data are consistent with the U-Pb 

and Lu-Hf data. Thus, the Pb data confirm the crustal residence and emplacement ages 

derived from the U-Pb and Hf data, and the mixing of DM and crustal components as the 

magma sources. 

 

5.3 Regional implications 
Evidence of calc-alkaline magmatism in the SSD from ca. 1.66 to 1.50 Ga suggest an active 

continental margin with a long lived subduction zone, representing the westwards growth of 

the Baltic Shield (Brewer et al. 1998, Nordgulen 1999, Andersen et al. 2001b). Previous 

studies of the calc-alkaline rocks that formed throughout this period indicate an immature to 

moderately mature volcanic arc setting at a continental margin (Brewer et al. 1998, Andersen 

et al. 2001b). Isotopic studies further indicate that 1.9-1.7 Ga rocks of a more evolved 

character (possibly TIB related) are present at depth on both sides of the Permian Oslo Rift 

(Andersen and Knudsen 2000, Andersen et al. 2001a, Andersen et al. 2002a). However, 

southern Norway and south-western Sweden are divided into different sectors by 

Sveconorwegian crustal scale shear zones (Andersen et al. 2005 and references therein), 

suggested to juxtapose different parts of the Baltic Shield due to predominantly sinistral 

movements along the faults (Park et al. 1991).  

The Nesodden Peninsula is part of the Østfold-Akershus sector (western-most parts of 

the Western Segment), where convergent-margin magmatism has been dated to 1.55-152 Ga 

(Hisingen; Åhäll and Connelly 2008). It was also suggested by Åhäll and Connelly (2008), 

and Andersen et al. (2004), that post-1.52 Ga subduction-related magmatism could be 

expected, since rocks with appropriate tectonic affinity and ages (i.e., 1.52-1.49 Ga) occur in 

the Rogaland-Vest Agder, Suldal, Hardangervidda and Telemark sectors (“Telemarkia 

terrane” of Bingen et al. 2005) to the west of the Østfold-Akershus sector, suggesting the 

continuation of the subduction (although these parts of southern Norway might have been 

situated further north at the time). Geochemistry from similar gneisses east and west of the 

Nesodden Peninsula (Andersen et al. 2002a, Andersen et al. 2004a, Åhäll and Connelly 2008) 

suggests that the studied rocks are calc-alkaline, which fits well with a subduction zone 

setting. 

The 1.54-1.49 Ga emplacement ages of the rocks in this study fall within the last stages 

of 1.75 – 1.5 Ga Gothian magmatism-metamorphism in the SSD (Gaál and Gorbatschev 

1987), and the 1.53-1.54 Ga rocks are coeval with the last stage of the 1.55-152 Ga Hisingen 
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magmatism (Åhäll and Connelly 2008). The younger group of rocks in this study, dated to 

1.5-1.49 Ga, confirms the conjecture of Åhäll and Connelly (2008) and Andersen et al. 

(2004), by documenting magmatism of this age in the Østfold-Akershus sector.  

During the 1.2 - 0.9 Ga Sveconorwegian (Starmer 1990) the SSD was extensively 

deformed, metamorphosed and intruded by several generations of magmatic rocks. A number 

of different tectonic settings have been documented during the Sveconorwegian, including ca. 

1.13 Ga terrane accretion in the south (the Bamble sector; Kullerud and Dahlgren 1993; 

Knudsen and Andersen 1999), extension and bimodal magmatism at 1.16-1.12 Ga (Telemark; 

Andersen et al. 2007b), subduction and emplacement of the 1.05 Ga Feda suite (Rogaland-

Vest Agder; Bingen and van Breemen 1998), continent-continent (?) collision and crustal 

thickening illustrated by 0.97 Ga eclogite formation (south-western Sweden; Möller 1998), 

and ca. 0.96-0.93 Ga orogenic collapse (Rogaland – Vest Agder; Bingen et al. 2006). During 

this time, Andersen et al. (2007b) recognises 5 different generations of Sveconorwegian 

granites in south-western Norway.  

Sveconorwegian metamorphism, anatexis and pegmatite emplacement at ca. 1.05 Ga in 

the gneisses on the Nesodden Peninsula documented in this study thus forms part of the 

complex tectonometamorphic evolution of the Sveconorwegian in south Norway. The 

anatexis may be the result of a rise in temperature related to the introduction of an external 

heat source, e.g., underplating and mafic magmatism (Andersen et al. 2007a), or reflect 

decompression due to extension related tectonics, e.g., back-arc basin extension or, perhaps 

less likely at this time, orogenic collapse. The complex regional geological evolution is 

perhaps mirrored in the complex local geology of the Spro area where four of the samples in 

this study were collected. Here, amphibolite dykes in the Spro granite (106) are deformed 

along with the host rock by steep mylonitic shear zones. It is tempting to speculate that the 

shearing is related to the crustal scale shear zones that transect south-western Norway 

(Swensson 1986). Furthermore, these shear zones are locally dated to 1.05-1.035 Ga (Mandal-

Ustaoset shear zone; Bingen and van Breemen, 1998), and are thus coeval with anatexis in the 

Spro area. Alternatively, the amphibolites that occur throughout the field area may be 

Sveconorwegian, and related to a heat influx that triggered anatexis in the local gneisses at 

1.05 Ga. These questions were not part of the scope of this thesis, but present a few of many 

possible follow up studies in this intriguing geological area at the door step of Oslo. 
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6 Conclusions 
Nine felsic lithologies on the Nesodden Peninsula were dated by U-Pb in situ zircon dating, 

yielding emplacement ages at 1.54-1.53 Ga for foliated granites and granitic gneisses, and at 

1.50-1.49 Ga for a second group of granitic and tonalitic rocks. Time-corrected Hf isotopic 

ratios obtained for dated zircons in the rocks indicate contributions from both a ca. 1.5 Ga 

juvenile component and from an older, crustal component. Model-ages at ca. 2.1 Ga from 

magmatic zircons point to TIB rocks as a likely source of the crustal component, supporting 

previous suggestions that TIB related rocks are present at a lower crustal level in the region. 

Three-stage Pb-Pb modelling confirms the crustal residence time obtained by the Hf analyses, 

and contributions from different sources to the isotopic make-up of the protoliths. Inherited 

zircons in coarse grained granite further indicate that part of the crustal component detected in 

the rocks in the study area derives from recycling of marginally older, calc-alkaline gneiss 

complexes in the region. The data presented in this study confirm previously inferred 

Mesoproterozoic younging to the west in the Østfold-Akershus sector, and are proposed to 

support westwards growth of the Baltic Shield along a long lived active continental margin.  

A folded granitic pegmatite in a tonalitic gneiss yielded an age of 1.05 Ga, constraining 

folding and the age of the gneissic fabric to post- and pre-1.05 Ga, respectively. Inherited 

zircons in the pegmatite, its association with neosomes in the field, and Hf data indicate that 

the pegmatite reflects anatexis of the felsic gneisses on the western side of the Nesodden 

Peninsula at ca. 1.05 Ga. The effect of Sveconorwegian metamorphism is also reflected in 

discordant U-Pb data from the gneisses, and confirmed by Pb-Pb modelling.  Permian lower 

intercepts correlates to magmatic activity in the Oslo Rift area at ca. 290 Ma, and are 

proposed to reflect heating associated with emplacement of numerous diabase dykes in the 

Nesodden rocks. 
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8 Appendix  
8.1 Weighing in for Pb-Pb analyses 
 
Table 2. Weights of samples for Pb-Pb analyses, target mass is 0.0500g 
 
Sample 101-23-10 102-23-10 103-23-10 105-23-10 106-23-10 112-23-10 
Mass (g) 0.0500 0.0493 0.0498 0.0505 0.0476 0.0509 
       
Sample EPB-06-04 EPB-06-05 EPB-06-06 BLANK-Pb* BCR1-Pb  
Mass (g) 0.0495 0.0521 0.0499 0.01999 0.0494  

*For the blank 20µl 204Pb spike dilute 0.005198µmol/g (204Pb (1.06ppm)) = 0.0199g has been used. 

 

8.2 Lead separation procedure 
The lead separation procedure for whole-rock lead isotope analysis was done using an anion 

exchange column to separate Pb from other elements: 

 

• Solution preparation 
1. Dissolve sample in 2ml concentrated HF + 1ml concentrated HNO3 in Teflon 

bombs in oven at 80 ˚C in a time duration of 48 hours. 
2. Dry down the samples to hard evaporation cakes on a hot plate (bombs placed 

minimum 4 cm from each other to prevent cross contamination). 
3. Add enough 6N HCl to each sample to dissolve the solid and then repeat step 2. 
4. Re-dissolve in 0.8N HBr and repeat step 2. 
5. Finally re-dissolve the samples in less than 1ml 0.8N HBr. 

 
• Preparation of disposable columns 

1. Wash each column with full reservoir MQ water followed by a full reservoir 6N HCl: 
repeat procedure once.  

2. Fill up each column with MQ water. 
3. Add <0.2 ml pre-cleaned AG1-X8 resin drop-wise to each column. 
4. Let the resin settle. 
5. Wash the resin through with 2 ml MQ water. 
6. Wash again with 2 ml 6N HCl and repeat step 5.  
7. Finally add 1 ml 0.8N HBr to each column. 
 

• Chemistry 
1. Load samples (one in each column). 
2. Add 15 drops of 0.8N HBr to each. 
3. Repeat step 2. 
4. Collect Pb fraction in bomb! Add 2ml 0.5N HNO3. 
5. Collect Pb fraction! Add 1ml 0.5N HNO3. 
6. Evaporate each sample in bomb on hot plate. 
7. Add 2-3 drops of 0.8N HBr to every sample and repeat step 6. 
8. Re-dissolve the evaporation cakes in <1ml 0.8N HBr. 
9. Regeneration of the columns. Add 2ml MQ water to each column. 
10. Wash with 1ml 6N HCl. 
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11. Wash with 1ml MQ water. 
12. Repeat step 11. 
13. Add 1ml 0.8N HBr to each column. 
14. Load the samples. 
15. Add 15 drops of 0.8N HBr to each sample. 
16. Repeat step 15. 
17. Collect Pb fraction in bomb! Add 2ml 0.5N HNO3. 
18. Collect Pb fraction! Add 1ml 0.5N HNO3.  

 

8.3 Single sample linear probability plots 
Data that form a linear array in a Hfi probability plot likely belong to a suite of zircons formed 

from a source (or mix of sources) with a distinct Hfi ratio. Data that plot under the lower 

probability limit indicate the presence a more evolved component (crust), whereas data that 

plot above the upper probability limit suggest a more juvenile component. These may for 

example represent inheritance or secondary zircon growth.           

 

 
 

 

a b 

c d 
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Figure 22a-i. Linear probability plots showing zircon analyses for each sample with 1� error bars.  
a) Granitic gneiss, 105-23-10.  Outliers in this plot are also outliers in Figure 17. b) Alkali feldspar granite, 
106-23-10. Three analyses plot below the lower probability limit and were thus excluded from the 
regression. These are not outliers in Figure 17. c) Pegmatite, 102-23-10. Three analyses plot below the 
lower probability limit and are excluded from the regression. Two of these analyses are also outliers in 
Figure 17. The third poinjt to an older component, however, the U-Pb analysis of the zircon grain was 
poor due to high common Pb. d) Coarse-grained granite, EPB-06-05. Nine grains plot below the lower 
probability limit and are excluded from the regression. Two of these are outliers in Figure 17. e) Garnet-
biotite gneiss,  103-23-10. One analysis plot below the lower probability limit, but is not an outlier in 

h 

e
 

f 

g 

i 
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Figure 17. f) Augen gneiss, 112-23-10. The data define a regression line, no outliers. g) Fine-grained 
granite, EPB-06-04. Nine analyses plot above the upper probability limit and were excluded from the 
regression. Four of these are outliers in Figure 17. h) Red granite, EPB-06-06. One analysis plot above the 
upper probability limit and one plot below the lower limit, both are thus excluded from the regression. 
However, the zircon at the lower end plots almost on the regression line. The two grains are outliers in 
Figure 17. i) Tonalitic gneiss, 101-23-10. All data plot on a regression line, no outliers.  
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8.4 LA-MC-ICPMS U-Pb data 
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8.5 LA-MC-ICPMS Hf zircon data  
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8.6 Whole-rock Pb isotope data 
 
Table 6. Whole-rock Pb isotope data          
 
Sample 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb 
101-23-10   18.9257   15.6124    39.2967 
102-23-10   17.2819   15.4873    36.9009 
103-23-10   19.7573   15.7149    39.3976 
105-23-10   19.3578   15.6769    39.2795 
106-23-10   25.3106   16.2181    42.7189 
112-23-10   29.5864   16.414    38.615 
EPB-06-04   20.3783   15.7737    40.4107 
EPB-06-05   24.2591   16.0743    42.4075 
EPB-06-06   25.4773   16.2192    45.9115 
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