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I

ABSTRACT

Estimation of flow parameters and geological structure is of fundamental importance for 

the modeling and understanding of hydrological processes in the subsurface. Of 

fundamental importance is the unsaturated zone, also called vadose zone. This zone is 

important in aspects of agriculture, climate changing and remediation. We use hydrological 

and geophysical methods to study this zone. In this study, a method is presented to 

estimate the flow parameters and calibrate the geological structure of the vadose zone, by 

conditioning the flow model on spatially continuous volumetric soil water content obtained 

at various times and/or groundwater table. The vadose zone at Moreppen field site located 

near Oslo’s Gardermoen airport is used as the case study. Since snowmelt is the main 

groundwater recharge at Gardermoen, this study is focused on the water flow through the 

vadose zone during the snowmelt. Cross-well Ground Penetrating Radar (GPR) 

tomography method is used to estimate the spatially continuous volumetric soil water 

content.

Cross well GPR data sets were collected before, during and after snowmelt in 2005. The 

observed travel times are inverted using curved ray travel time tomography. The 

tomograms are in good agreement with the local geological structure of the delta. The 

tomographic results are confirmed independently by surface GPR reflection data and X-ray 

images of core samples. In addition to structure, the GPR tomograms also show a strong 

time dependency due to the snowmelt. The time lapse tomograms are used to estimate 

volumetric soil water content using Topp’s equation. The volumetric soil water content is 

also observed independently by using a neutron meter. Comparison of these two methods 

reveals a strong irregular wetting process during the snowmelt. This is interpreted to be 

due to soil heterogeneity as well as a heterogeneous infiltration rate. The geological 

structure and water content estimates obtained from the GPR tomography are used in the 

inverse flow modeling. The water balance in the vadose zone is calculated using snow 

accumulation data, precipitation data, porosity estimates and observed changes in the 

groundwater table. The amount of water stored in the vadose zone obtained from the water 

balance is consistent with the amount estimated using GPR tomography.  

Flow parameters and geological structure in the vadose zone are estimated by 

conditioning the inverse flow modeling on GPR volumetric soil water content estimates. 
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The influence of the tomographic artifacts on the flow inversion is minimized by assigning 

weights that are proportional to the ray coverage. Our flow inversion algorithm estimates 

the flow parameters and calibrates the geological structure. The geological structure is 

defined using a set of control points, the positions of which can be modified during the 

inversion. After the inversion, the final geological and flow model are used to compute 

GPR travel times to check the consistency between these computed travel times and the 

observed travel times. The method is first tested on two synthetic models (a steady state 

and a transient flow models). Subsequently, the method is applied to characterize the 

vadose zone near Oslo’s Gardermoen Airport, in Norway, during the snowmelt in 2005. 

The flow inversion method is applied to locate and quantify the main geological layers at 

the site. In particular the inversion method identifies and estimates the location and 

properties of thin dipping layers with relatively low permeability. The flow model is cross 

validated using an independent infiltration event.

The method described above is validated using another dataset collected at the field site 

during the snowmelt in 2006. This time, the inverse flow modeling is performed four times 

and conditioned on the various datasets as follows: 1- Conditioned on time-lapse GPR 

travel time tomography; 2- Conditioned on groundwater table depths; 3- Conditioned on 

both time-lapse GPR travel time tomography and groundwater table depths: 4- Similar to 

inversion #2, but with using an extended search space for the intrinsic permeability and 

van Genuchten parameter .

The flow parameters estimated by inversion #1 are able to capture the wet front at the 

correct time, but fail to simulate the groundwater table depth. The flow parameters 

estimated by inversion #2 fail to capture the wet front at the correct time, but decrease the 

objective function better than inversion #1. When the inversion is conditioned on both 

types of data, the final estimates of the flow parameters are very close to the estimates 

from the inversion conditioned on the groundwater table data only. This is because the 

moving groundwater table was given higher weights in the objective function as the 

groundwater table was monitored continuously in time while the GPR data were sampled 

only three times during the infiltration event. Finally we do forward flow modeling with 

the estimated parameter sets and compare the results with an independent tracer 

experiment performed at the field site in 1999. The results show that anisotropy of the 

intrinsic permeability is an important parameter which should be taken into account in the 

flow simulation. However, volumetric soil water content distribution is not strongly related 



III

to the anisotropy of intrinsic permeability. Therefore, anisotropy can not be correctly 

estimated by inverse flow modeling conditioned on volumetric soil water content only. 
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1 MOTIVATION AND OBJECTIVES 

The main goal of this work was to evaluate the possibility of estimating the flow 

parameters and geological structure of the unsaturated zone, also called vadose zone, using 

both geophysical and hydrological data and methods. The vadose zone at Moreppen field 

site located near Oslo’s Gardermoen airport was used as the case study. Moreppen field 

site has been the subject of numerous studies related to sedimentological, hydrological, 

geophysical and geochemical processes in the saturated and vadose zone. However, in the 

field of hydrology none of the previous studies at Moreppen used spatially continuous 

geophysical data to estimate the flow parameters at the field site. In this study, cross well 

GPR travel time tomography for the first time was used at Moreppen to map the spatial and 

temporal distribution of the electromagnetic (EM) wave velocity at the field site. The EM 

wave velocities were converted to the soil water content using a petrophysical relationship. 

Then using an inverse flow modeling conditioned on volumetric soil water content, we 

estimated hydrological parameters in the field site. Since snowmelt is the main 

groundwater recharge at Gardermoen, we focused our study to the water flow through the 

vadose zone during the snowmelt. 

In the first paper, the tomographic inversion algorithm used in this study is described. 

After this, the quality of the tomograms is cross validated by comparing the images with 

the core samples and surface GPR reflection profile. The EM wave velocities are converted 

to volumetric soil water content using a petrophysical relationship. The soil water content 

estimates are cross validated by using independent neutronmeter readings and water 

balance computation. These soil water content estimates are used as the conditioning data 

to estimate the flow parameters at the field scale. This is described in the second paper. In 

the first paper, we also show that cross well GPR soil water content estimates are accurate 

enough to be used as a known parameter in a water balance computation. 

In the second paper, we present a new methodology to estimate the flow parameters in 

the field site conditioned on time lapse soil water content estimates derived from the 

tomograms. We define an objective function to minimize the differences between observed 

and computed soil water content estimates. By using weights in the objective function, we 

force the flow model to simulate the areas of the tomograms with less artifacts better than 

the other areas of the tomograms. These weights are determined by using the ray coverage 
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in the tomographic cells. In addition to the flow parameters, we also calibrate the 

geological structure of the flow model during the inversion. The geometry of the flow 

model is not fixed during the inversion. It is defined using individual and/or different sets 

of control points. The location of these control points can change during the inversion. 

In the third paper we condition the flow inversion not only on the GPR volumetric soil 

water content estimates, but also on the groundwater table depth. In addition, we perform 

an inversion conditioned on only GPR volumetric soil water content estimates or on only 

the groundwater table depth to investigate if any improvements in the estimation of the 

flow parameters can be made when these two types of data are simultaneously used in the 

inversion. Finally after all inversions are finished, we do forward modeling with the 

estimated parameter sets and compare the results with an independent tracer experiment 

performed at the field site in 1999. 

In the next chapter, a literature review of the hydrogeophysics related to this study is 

presented. After that, the theories of the applied methods are presented in detail. Then, 

future outlook, references, summary of the papers, and papers are presented in separate 

chapters, respectively. 



Literature review 

3

2  LITERATURE REVIEW  

2-1 Introduction to hydrogeophysics 

Hydrogeophysics is a term which is used for application of geophysics in hydrology. It can 

be considered to be a part of shallow geophysics. The shallow subsurface is an important 

zone of the earth since it keeps an important part of the earth drinkable water resources. 

This zone is also very important in other aspects such as contaminant transport, climate 

changing and agriculture. 

Traditionally, the shallow subsurface is studied using conventional monitoring or 

sampling techniques such as taking core samples and performing hydrological 

measurements. However, these methods are usually invasive, time-consuming and non-

continuous. An alternative method for these kinds of measurements is applied geophysics 

(Rubin and Hubbard, 2005). Geophysical methods are usually used to map the anomalies 

in different disciplines such as mining and petroleum. However, in the field of 

hydrogeophysics, geophysical methods are used to provide quantitative information about 

the hydrological processes and parameters of the subsurface. This is the main challenge in 

hydrogeophysics.

Geophysical methods have traditionally been used in the field of hydrology to map the 

bedrock, to find the interface between freshwater and saltwater, to check the water quality, 

mapping water table and estimating and monitoring of water content (Rubin and Hubbard, 

2005). More recently, geophysical and hydrological methods have been used jointly to 

estimate hydrological parameters (e.g. Lambot et al., 2004; Kowalsky et al., 2004; 

Kowalsky et al., 2005; Linde et al., 2006). Especially, ground penetrating radar (GPR) and 

electrical resistivity have been widely used in these more recent studies. A thorough review 

of various GPR methods used to determine soil water content has been given by Huisman 

et al. (2003) and Annan (2005). This is the method we use in this study. 

2-2 Application of surface GPR reflection method in hydrology 

Surface GPR reflection data are usually used in hydrology to identify the shallow 

subsurface geological structures. However, reflection data have also been used in some 

studies to derive other hydrological parameters of interest. Hubbard et al. (2002) mapped 
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the volumetric soil water content of a California vineyard using high-frequency GPR 

ground wave data. Ground wave is the direct wave between the source and receiver 

antennas. Huisman et al. (2003) compared the capability of GPR and time domain 

reflectometry (TDR) to assess the temporal development of spatial variation of surface 

volumetric soil water content by creating a heterogeneous pattern of water content using 

irrigation. In the case of GPR they also used ground wave data. Using geostatistical 

analysis of the data, they concluded that GPR is a better tool to map the soil surface water 

content rather than TDR.  

Greaves et al. (1996) showed that when GPR data are collected with the common 

midpoint (CMP) multi offset geometry, stacking increases the signal-to-noise ratio of 

subsurface radar reflections and results in an improved subsurface image. In addition they 

used the normal moveout velocities, derived in the CMP velocity analysis, to estimate the 

water content in the subsurface. Causse and Senechal (2006) used a model based approach 

for the surface GPR data to build accurate travel time approximation that take into account 

the vertical velocity heterogeneities of the medium. They used their velocity estimates to 

map the volumetric soil water content in an alluvial plain using Topp’s model and cross 

validated their estimates with other independent data such as precipitation, groundwater 

table and core samples. Bradford (2006) applied reflection tomography on surface 

reflection data to map the velocity of the EM wave in a contaminated site in USA.  

Lambot et al. (2006) investigated the effect of soil roughness on the inversion of GPR 

signal for quantification of soil properties and concluded that radar signal and inversely 

estimated soil parameters are not significantly affected if the surface protuberances are 

smaller than one eighth of the wavelet. 

2-3 Application of GPR and seismic tomography in hydrology 

GPR tomography is the method used in this study. Therefore, the literature review related 

to GPR and seismic tomography is described in this separate section. In addition to GPR 

tomography, we also refer to seismic tomography, because they are very similar. GPR and 

seismic tomography have been used in hydrology for characterization of the subsurface, 

for the monitoring of hydrological events, for estimating the flow parameters etc. One of 

the main applications of tomography in hydrology is the delineation of the geological 

structure. Eppstein and Dougherty (1998) used cross well GPR data to estimate the number 
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of zones, their geometries and EM wave velocity within each zone before and after a 

controlled release of salt water in the unsaturated zone at a Vermont test site. Musil et al.

(2003) introduced an approach to find a cave filled of air and/or water using a joint 

tomographic inversion of cross well seismic and GPR data. Tronicke et al. (2004) 

combined cross well GPR velocity tomography and attenuation tomography to characterize 

heterogeneous alluvial aquifers. They used multivariate statistical cluster analysis to 

correlate and integrate information contained in velocity and attenuation tomograms to 

derive the geological structure and porosity of the aquifer. 

Another well established application of tomography in hydrology is the mapping and 

monitoring of water content in the shallow subsurface. Hubbard et al. (1997) used GPR 

tomography to estimate the volumetric soil water content in the unsaturated zone at the 

Oyster field site in Virginia, USA which consists of unconsolidated gravelly sand 

sediments. Furthermore, they used GPR tomography to find the preferential flow paths in 

the near surface fractured basalts in Idaho. Binley et al. (2001) monitored the water flow in 

unsaturated sandstone due to controlled water tracer injection using time lapse GPR travel 

time tomography. The time series of inferred moisture contents showed wetting and drying 

fronts migrating at a rate of approximately 2m per month through the sandstone. In another 

paper, Binley et al. (2002) monitored seasonal variation of moisture content in the same 

unsaturated sandstone caused by natural infiltration using cross well GPR and resistivity 

profiles. In their study GPR and resistivity tomograms showed a significant correlation.

Their previous estimation of the travel times of wetting and drying fronts through the 

sandstone, i.e. 2 m per month, was again confirmed by this study.  

Parkin et al. (2000) used cross well tomography to measure volumetric soil water 

content below a waste water trench. They compared the GPR estimates with neutronmeter 

estimates installed through the bottom of the trench and found both estimates consistent. 

Alumbaugh et al. (2002) estimated volumetric soil water content in the vadose zone before 

and after infiltration in a controlled field site using cross well GPR. They derived a simple 

site specific relationship between dielectric permittivity and volumetric soil water content 

to convert the velocity tomograms to the volumetric soil water content. Their estimates 

were fairly consistent to neutronmeter derived values with root mean square error of 2.0-

3.1% volumetric soil water content between the two sets. Schmalholz et al. (2004) 

performed a time-lapse GPR tomography in a lysimeter to investigate the temporal changes 

and spatial distribution of the volumetric soil water content after a short but intensive 
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irrigation of part of the lysimeter. In their study, GPR tomography clearly showed the areas 

of increased water content associated with the irrigation. Hanafy and Hagrey (2006) used 

GPR tomography to study the subsurface distribution of tree roots using their high water 

content concentration property.

Tomography like any other method has its, limitations, which result in errors in the 

tomographic images. Like any other imaging method, the resolution of the tomographic 

image is usually less than the resolution of the problem under study. Alumbaugh et al. 

(2002) showed that a better spatial resolution of the tomograms can be obtained if data are 

acquired with denser source and receiver spacing. However, reducing the spacing increases 

the acquisition time which may be impractical because of the cost increases, resource 

limitations, or because subsurface changes during the time of survey. Another limitation of 

the acquisition geometry, which also causes errors in the tomographic images, is related to 

the angle between source and receiver antennas. In theory, to obtain tomographic images 

with the highest possible resolution from GPR data, raypaths covering a wide range of 

angles are required. In practice, however, the inclusion of high angle ray data in 

tomography inversion often leads to tomograms strongly dominated by inversion artifacts. 

Irving and Knight (2005) discussed the problems that arise from the standard assumption 

that all first arrival signals travel directly between the centers of the antennas. They 

showed that this assumption is often incorrect at high source-receiver angles and can lead 

to significant errors in tomograms when the antenna length is a significant fraction of the 

distance between the wells. On the other hand, if the distance between wells increases, 

usually the air wave is the first arrival signal at the high source-receiver angles which is not 

usually taken into account in most of the tomography algorithms. 

In tomography, it is usually assumed that raypaths between the source and receiver 

antennas are straight. This assumption is correct when the medium can be considered more 

or less homogenous. A more precise way of finding the raypaths between the source and 

receiver antennas is by doing ray tracing. In ray tracing, rays bend, if necessary, to travel in 

the minimum time from the source antenna to the receiver antenna. However, ray 

equations do not take reflections and refractions into account. When there are sharp 

interface(s) in the medium, reflected or refracted waves may be the first arrival signals. In 

this case generated tomographic images contain artifacts due to assigning the wrong 

raypaths to the reflected or refracted waves. It is possible to take the reflected and refracted 

waves into account for determining the raypaths. For example Rucker and Ferre (2004) 



Literature review 

7

established criteria that can be used to identify first arriving critically refracted waves from 

travel time profiles for cross well zero offset profiling. Hammon et al. (2003) used 

critically refracted waves as well as the reflected waves in the tomographic inversion. 

However, in this study we avoid the problem of facing critically refracted air waves, which 

are usually the first arriving signals at the shallowest part of the subsurface, by not using 

the cross well data near the surface. Also we assume that our vadose zone is smoothly 

heterogeneous because of the capillary forces and no reflection or refraction occurs at 

interfaces.

In cross well surveys, it is usually assumed that data sets are collected quickly relative 

to the temporal changes of the velocity or attenuation. However, such snapshot tomograms 

may contain large errors if the imaged property changes significantly during data 

collection. One possible solution is acquisition of less data over a shorter time. However, 

collecting less data usually leads to have a less resolution. Day-Lewis et al. (2002) 

proposed a sequential approach for time-lapse tomographic inversion which uses space-

time parameterization and regularization to combine data collected at multiple times and to 

account for temporal variation. 

Day-Lewis and Lane (2004) showed through a synthetic example that GPR travel time 

tomographic resolution varies spatially due to acquisition geometry, regularization, data 

error and the physics underlying the geophysical measurements. Therefore, the use of 

petrophysical models to convert the GPR tomograms to quantitative estimates of 

hydrogeological, mechanical or geochemical parameters should be performed with caution. 

Day-Lewis et al. (2005) extended the previous work and addressed the same problem for 

electrical resistivity tomograms.  

Moysey et al. (2005) addressed the scale differences between the scales of derived 

petrophysical relationships and field scales. They introduced a numerical method which 

can be used to infer field scale petrophysical relationships using core scale petrophysical 

relationship.

2-4 Inverse flow modeling conditioned on geophysical data 

Inverse flow modeling is a method to estimate the flow parameters based on some 

available spatial and/or temporal direct or indirect measurements. In this method, first, a 

forward flow model is built based on the prior information. Then, this forward flow model 
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is used to predict the measurements at the same positions and times. By minimizing the 

difference between the observed and predicted measurements, the flow parameters can be 

estimated.  

Application of geophysical data to condition the flow inversion has been recently 

increased because of the extensive spatial coverage offered by geophysical methods and 

their ability to sample the subsurface in a minimally invasive manner. Through the 

different geophysical methods, GPR and resistivity are the most used ones in the inverse 

flow modeling. A review of different techniques to estimate the hydrological parameters 

using geophysical data is given by Hubbard and Rubin (2000).

Geophysical data have been used in inverse flow modeling for different purposes and in 

different ways. Kitterød and Finsterle (2004) used surface GPR reflection profiles to define 

the geometry of the flow model and measurements of water saturation in flow inversion. 

Hyndman et al. (1994) combined synthetic seismic and tracer data to estimate the 

geological structure, the effective hydraulic conductivity and seismic velocities of 

geological zones using a zonation algorithm. Hyndman and Gorelick (1996) developed the 

work done by Hyndman et al. (1994) and used cross well seismic, hydraulic and tracer data 

to estimate the three-dimensional zonation of Kesterson aquifer properties in California, 

USA along with the hydraulic properties as well as the seismic velocities for these zones. 

Linde et al. (2006a) did inverse flow modeling of tracer test data using GPR tomographic 

constraints. In another paper, Linde et al. (2006b) demonstrated that hydrogeological 

parameters can be better characterized using joint inversion of cross well electrical 

resistivity and GPR travel time data rather than individual inversions. 

Kowalsky et al. (2005) estimated the soil flow parameters as well as the petrophysical 

parameters with the joint use of time-lapse GPR travel times and neutron meter data. 

Lambot et al. (2004) combined electromagnetic inversion of GPR signals with inverse 

flow modeling to estimate the flow parameters of a type of sand in laboratory condition. 

Binley et al. (2002) estimated saturated hydraulic conductivity of Sherwood sandstone by 

comparing the flow model results with the GPR and resistivity images.  

One of the main problems in inversion algorithms, and therefore also inverse flow 

modeling, is equifinality (or non uniqueness). For example Binley and Beven (2003) 

estimated flow parameters using a natural recharge to a sandstone aquifer using 1D flow 

modeling. They reported a significant degree of equifinality when the flow simulations 

were compared to the geophysical data. To minimize this problem it is important to 
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constrain the inversion to the expected parameter range for example by using available a

priori information. 
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3 THEORY 

3-1 Cross well GPR tomography 

Cross-well GPR tomography consist of two main steps: forward modeling and 

tomographic inversion. In the forward modeling the EM travel time from a source antenna 

to a receiver antenna is computed. This can be done by solving Maxwell’s equations, 

eikonal equation or ray tracing. Rays are the orthogonal trajectories to the wavefront. Ray 

tracing is used to find the ray path from a source antenna to a receiver antenna. If the 

medium is homogeneous, rays are straight lines and inversion method is called straight ray 

tomography. In this method it is assumed that heterogeneity is weak in the media and 

straight ray paths are the good approximations of the real ray paths. This is the assumption 

which has been used widely in hydrogeophysics. However, in some cases heterogeneity is 

significant and using straight ray paths introduces artifacts which may cover the real 

structures that are important for flow modeling. On the other hand, in a heterogeneous 

medium ray paths are not straight and a way to calculate the ray trajectories is to solve the 

ray equations (see equations 21-22). In our case, velocity of EM waves varied up to 40% 

and applying straight ray tomography was not reasonable. Therefore, ray tracing was used.

Ray equations do not take the scattering and/or refractions and reflections at interfaces 

into account. Therefore, they are applicable when heterogeneity in the medium is smooth. 

In unconsolidated sediments, where capillary forces ensure the continuity, the 

heterogeneity in the medium can usually be considered to be smooth. If there are some 

known sharp interfaces in the medium, Snell’s law should be applied when rays incidence 

to those interfaces. However, in this work the assumption of continuity is valid.  

In travel time tomography, the ray equations can be used to find travel time and ray 

trajectory between the two known points which are the positions of source and receiver 

antennas for each source-receiver configuration. This kind of problem is called boundary 

value problem for ray equations or is sometimes referred to as two-point ray tracing 

problem.  

There are two methods to solve two-point ray tracing problem: shooting and bending 

methods (Cerveny, 2001). The shooting method, which is used in this study, fixes the 

source position of the ray paths, takes initial take off angle and then uses the ray equations 
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to find the coordinate in another end point. By perturbing the take off angle, the ray path 

which ends to the receiver position can be found. On the other hand, the bending method 

fixes both source and receiver positions and takes some initial estimates of the ray path. 

Then, ray path is perturbed until it satisfies the minimum travel time criterion. 

3-1-1 Derivation of the ray equations from Maxwell equations 

Maxwell equations in a charge free medium are (Kline and Kay, 1965): 

,
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where E is the electric field; B is the magnetic field; µ is the magnetic permeability;  is 

the conductivity; and  is the permittivity. If we take the curl of third equation we have:  
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If we assume a perfect dielectric medium, =0, we have: 

2t
µ EE

2
2 .          (5) 

This is usually reasonable assumption for vadose zone since soil materials, air, and clean 

water have very low conductivity. Equation 5 is the vector wave equation, with 

propagation velocity: 

µ
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Therefore, equation 5 can be written as: 
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We can use a Fourier transform to transform equation 7 to the frequency domain. The 

Fourier transform is defined: 
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where  is the angular frequency; f(t) is the function in time domain and F( ) is the 

transformed function in the frequency domain. In the frequency domain we have: 
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Equation 9 is called the Helmholtz vector equation. This equation can be solved with 

different methods such as finite difference method, finite element method and ray theory. 

We use ray theory to solve equation 9. If we assume that a solution of equation 9 for any 

component of the electric field is in the form of: 

)T(ieAE xxx )(),( ,         (10) 

where A(x) is called wave amplitude and T(x) is called eikonal (travel time or phase). we 

have:
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If we rearrange the terms in this equation: 

x
xx

x
xx

x
x

2
2

2

v
1TT

A
T.A21i

A
A 2

2 .    (13) 

When , the first and second terms on the left hand side of equation 13 converge to 

zero. This gives:

x
x 2

2

v
1T .         (14) 
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Equation 14 is called the eikonal equation. It describes the travel time propagation, T(x)

from the source to the point x. This equation can be solved using finite difference method. 

Since this method is not used in this study, its theory is not presented here. The ray 

equations can be derived from the eikonal equation. This equation controls the evolution of 

wavefront. One disadvantage of using the eikonal equation is that we need to sample the 

whole medium while ray tracing will only sample a line inside the medium. Therefore, 

instead of computing the wavefront we can only focus on the orthogonal trajectories of 

wavefronts at each point which are called rays. To derive the ray equations we consider a 

small enough region that the rays are locally linear. If dx is a tangent along the ray with 

length of ds, then: 

nx
ds
d .           (15) 

where n is a unit vector which shows the direction of the ray. Combining equations 14 and 

15 gives us 

ds
d

v
1

v
1T xn ,         (16) 

where )x,x,(x 321x . For simplicity, we replaced T(x) and v(x) with T and v, respectively. 

Consider taking the gradient of the eikonal equation: 

v
1

v
12TT.2T 2         (17) 

Based on the chain rule: 

T.
ds
d

ds
dT x           (18) 
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Combining equations 16, 17 and 18: 

ds
d

v
1

ds
d

v
1 x .         (19) 

Equation 19 is called the second order differential equation for rays. If we transform 

equation 19 to first order differential equations using: 

ds
d

v
1 xp ,          (20) 

and rearranging equations 19 and 20 we end up with ray equations: 

px v
ds
d  ,           

v
1

ds
d

x
p ,          (21) 

where (s))x(s),x(s),(x 321x  is the ray path; )(s)p(s),p(s),(p 321p  is the slowness vector 

(tangent vector to the ray path); v=v(x) is the velocity at x; and the independent parameter 

s in equation 1 is the arc length along the ray. The initial conditions for the ray equations 

are ss ppxx )0(,)0( . In our study, xs is the position of the source antenna, and ps is the 

slowness vector at the source, i.e. the vector pointing in the direction in which the ray 

leaves the source antenna. In this paper the velocity values are given on square grids with a 

grid size of 10 on 10 cm. Travel time can be computed from equations 14, 16 and 18: 

v
1

ds
dT  .          (22) 
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The computation of a ray path from a source in one well to a receiver in another well 

(‘two-point ray tracing’ (e.g. Cerveny, 2001)), requires two steps (Keers et al., 2000). First, 

the ray paths from a source in one well to the other well are computed with varying take-

off angles. This can be carried out using various methods. In this paper we employ a fourth 

order variable step size Runge-Kutta method (Press et al., 1992). The Runge-Kutta method 

is described in detail in the next sub section. The ray tracing also requires the computation 

of the velocity and its gradient at arbitrary points. This is done using two dimensional 

cubic splines (Press et al., 1992). 

This ‘one point ray tracing’ gives the positions of a discrete number of rays in the receiver 

well as a function of the take-off angle. Root solving can then be employed to solve the 

two point ray tracing problem, i.e. to find the take-off direction for a certain position in the 

receiver well. The root solving method used in this study is bisection (Press et al., 1992). 

Newton’s method may also be used. However, we found bisection already to be quite 

efficient. This two-point ray tracing method is particularly efficient if one has to do two 

point ray tracing from one source to many receivers, as in this study.  

3-1-2 Runge-Kutta ordinary differential equation solver 

Runge-Kutta is a method of numerically integrating ordinary differential equations by 

using a trial step at the midpoint of an interval to cancel out lower-order error terms. The 

most often used method is fourth-order Runge-Kutta formula (Press et al., 1992). In this 

method the derivative is evaluated four times in each step: once at the initial point, twice at 

trial midpoints, and once at a trial endpoint (Press et al., 1992). From these derivatives the 

final function value is calculated.

Consider a first order ordinary differential equation such as: 

),( yxf
dx
dy .          (23) 

Given an initial condition y(x0)=y0 we choose the lag step h,  the Runge-Kutta orders are 

defined as: 
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         (24) 

where n is the point index. y the value at point n+1 is calculated with: 

)(
6336

54321
1 hOkkkkyy nn ,       (25) 

Where O(h5) is the error of estimation. 

3-1-3 Spline interpolation 

When values of a function are available in some points and the analytical expression of the 

function is not defined, interpolation is used to find values of the function in arbitrary 

points. Interpolation process have two stages: first fit an interpolating function to the data 

points provided in the neighborhood of the desired point and then evaluate that 

interpolating function at the desired point.

If continuity of the derivatives is not taken into account, linear interpolation may be used. 

Otherwise, some other interpolation methods should be applied which consider the 

continuity of the derivatives. In this work we used cubic spline interpolation. The goal of 

the cubic spline interpolation is to get a cubic polynomial interpolation formula that is 

smooth in the first derivative, and continuous in the second derivative, both within an 

interval and at its boundaries.

The cubic spline formula is defined as (Press et al., 1992): 

,xxxif(x)s

xxxif(x)s
xxxif(x)s

S(x)

n1n1n

322

211

         (26) 
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where si is the third degree polynomial defined by 

iiiiiiii dxxcxxbxxaxs )()()()( 23 i= 1, 2, …, n-1 .   (27) 

To find values of the coefficients in equation 27 we consider cubic spline assumptions: 

1. The piecewise function S(x) will interpolate all data points. 

2. S(x) will be continuous on the interval [x1,xn].

3. S’(x) will be continuous on the interval [x1,xn].

4. S”(x) will be continuous on the interval [x1,xn].

If we perform substitution of h=xi+1-xi and Mi=si”(xi) and apply above assumptions, we 

end up with the following equations for coefficients: 

.yd
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i

i
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i1i
i

           (28) 

Now the problem is reduced to find the second derivatives of data points. If we use 

continuity for the first derivative, we will have n-2 equations to find n unknown 

derivatives. Therefore the system of equation is under-determined. For a unique solution 

we need to specify two further conditions. If we assume that the second derivative at x1

and xn are 0, then the system of equations is complete. This method is called natural cubic 

splines.

This interpolation is only one dimensional. For our purpose we need to interpolate in two 

dimensions, v(x,y). One option is using two dimensional spline interpolation called bicubic 

spline interpolation. However, this method of calculation is quite complicated and time-

consuming. As an alternative, we applied a simpler method which consists of two one 

dimensional spline interpolations instead of two dimensional spline interpolation. First n
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one dimensional spline interpolation were performed across the rows of velocity values 

and velocities at [(x,yj), j = 1 ,…, n] were determined. Then, one additional one 

dimensional spline interpolation was performed across the newly created column (X=x)

and the velocity at (x,y) was determined.  

3-1-4 Travel time tomography inversion 

Once ray tracing is performed for a cross well survey and ray paths are determined, 

tomography inversion is applied to determine the velocity either in a continuous medium 

or in a divided medium into the homogenous cells. For each ray path in a continuous 

medium, travel time can be calculated from: 

Ni
v

dsT
iS

i ,,1 ,        (29) 

where Ti is the travel time for ray (source-receiver combination) i; Si is the ray path; v is 

the velocity; and N is the total number of source-receiver combinations. In tomography we 

solve equation (29) for v. In some cases, e.g. global seismic tomography, there is usually a 

good initial guess of the velocity which can be used to calculate equation 29 (Nolet, 1987). 

In other cases, when no information about the velocity is available, the average velocity of 

all source-receiver combinations may be used as the initial guess. The average velocity can 

be calculated by assuming straight ray paths and using observed travel times (e.g. recorded 

by GPR during acquisition). This is the initial velocity which we use in ray tracing codes to 

calculate travel times and find the ray paths. Because we use a homogenous background 

velocity as the initial velocity in ray tracing, all ray paths are straight rays for zero 

iteration. In other words, zero iteration gives us straight ray tomography estimations. 

According to the starting model the travel time is calculated by: 

N,1,i
v
dsT

0
iS 0

0
i ,         (30) 
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where 0
iS is the ray path in the starting model. Now differences between observed travel 

times and calculated travel times can be computed by (Nolet, 1987): 

000
2
00

)11(
iiii ssSS

i ds
v
vds

vvv
ds

v
dsT ,      

 (31) 

0vvv ,          (32) 

where Ti is called time residual. Note that in equation 31 we assume that the initial 

velocity and the ray paths are close to the true velocity and true ray paths. Therefore, it is 

very important that the initial velocity is as close as possible to the true velocity. Equations 

31 are called tomography equations. The only unknown in tomography equations is 

velocity, since time residuals and ray paths are determined as part of the ray tracing. 

Usually, we subdivide the medium into small cells. In this case, tomography equations are 

expressed in discrete form as: 

M,,1,kN,1,i,v
v
lT

k
k2

k

ik
i       

 (33) 

Here lik is the length of ray i through the velocity cell k and the starting velocity in cell k is 

denoted by vk. Equation 33 can be written in matrix form as: 

T = L V.          (34) 

For real data, the equations can be extended to account for small errors in the source and 

receiver locations (Keers et al., 2000); this is obviously not necessary for the inversion of 

synthetic models. In matrix form the new system of equations can be written as: 
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VLT ~~ ,          (35)

where

SR LLLL~ ,

S

R

V
V
V

V~ ,

where L is a coefficient matrix consisting of the parameters in equation (33); RL  and 

SL are the matrices of 0’s and 1’s depending on whether the source/receiver is active; RV

and SV  represent source and receiver statics. Here, statics are the time shifts associated 

with small errors in the source and receiver locations.

Equation 35 is usually an ill-conditioned equation. An equation is ill-conditioned if small 

changes in the coefficients of the solution have drastic effects on the results. To ensure 

physically reasonable results, this equation can be stabilized by adding two terms to 

minimize a combination of velocity variation (damping) and velocity gradients 

(smoothing). The final system of equations in the matrix form is: 

S

R

L

SR

SR

SR

V
V
V

00D
00I
LLL

0
0
T

~~
2

1 ,        (36) 

where 1 is the damping factor; 2 is the smoothing parameter; I is the M by M identity 

matrix; 0R and 0S are zero matrices; and D is the smoothing operator. The damping 

parameter keeps the model close to the initial one and the smoothing parameter reduces the 

velocity gradient in adjacent cells. They are empirically determined scaling constants. The 

smoothing operator, D, is a non square matrix of size Mnn  given by: 

otherwise0
lofneighbordesiredm1

lm1
Dlm         

where nn is the number of neighbors for each cell.  
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In equation 36 most of the elements of matrix L
~~  are zero since each ray only passes few 

cells from source to receiver antenna. L
~~  is a sparse matrix and, therefore, it can be solved 

efficiently using the LSQR algorithm (Paige and Saunders, 1982). We use this algorithm to 

solve equation 36 iteratively. Velocities obtained in one iteration are used as the starting 

velocities for the next iteration. Other popular algorithms to solve equation 36 are algebraic 

reconstruction technique (ART) and simultaneous iterative reconstruction technique 

(SIRT).

3-2 Estimation of water content from velocity tomograms 

The tomogram gives a spatial velocity distribution of the medium between the source and 

receiver wells. We apply the conventional assumption that the EM-velocity of the medium, 

v, is described by: 

acv ,           (37) 

where ca is the velocity of an EM wave through the air and  is the relative dielectric 

permittivity of the medium (Davis and Annan, 1989). Note that at high frequencies, the 

dielectric permittivity of the medium is independent of frequency and dispersion does not 

occur. For example West et al. (2003) showed that the dielectric permittivity of the 

Sherwood Sandstone aquifer in the UK, having different lithology from medium-grained 

sandstone with very little clay to fine-grained sandstone up to 5% clay, does not show 

dispersion in the frequency range from 350 MHz to 1000 MHz. Below 350 MHZ (down to 

75 MHZ), dielectric permittivity of the clean sandstone is independent of frequency. 

However, clay minerals introduce dispersion for the frequencies below 350 MHz. The 

central frequency used in our study is 475 MHz. 

The water content in the medium can be estimated from its dielectric permittivity using a 

soil-physics relationship. If it is applicable, it is worth to derive site specific soil-physics 

relationship. However, deriving this relationship is a demanding task and usually needs 

many precise laboratory tests on the soil samples from the site. An alternative option is 

using one of the widely used soil-physics relationships. Topp’s model (Topp et al., 1980) 
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and the Complex Refractive Index Model (CRIM) (Wharton et al., 1980) are the most 

popular models to estimate volumetric soil water content from EM wave velocity. CRIM is 

a physical model and Topp’s model is an experimental model. CRIM relates the dielectric 

permittivity of the medium to the dielectric permittivity of its components as: 

1

awwws )S(1S)(1 ,      (38) 

Here a , s and w are the relative dielectric permittivity of air, soil material and water, 

respectively;  is the porosity;  is an exponent parameter; and wS  is the water saturation 

which is related to volumetric soil water content by: 

wS .     (39)

 is theoretically assumed to be 0.5 for an isotropic soil (e.g. Alharthi and Lange, 1987). 

Laboratory tests performed by Yu et al. (1997) confirmed the value of 0.5 for isotropic 

soils. Roth et al. (1990) obtained the value of 0.46 for  in the laboratory using large soil 

samples from eleven different field sites. Even though CRIM is mainly based on physical 

assumptions and therefore, in theory, seems to be a good model to use, difficulties to 

measure s  and  prohibited us to use it. Therefore, in this study Topp’s empirical model 

was used. For a range of sediments (from clay to sandy loam), Topp et al. (1980) found a 

general experimental relationship between volumetric soil water content and apparent 

permittivity: 

3
a

2
aa dcba ,        (40) 

where

6422 104.3d,105.5c,102.92b,105.3a .
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They also introduced separate relationships for different types of soils. Since the vadose 

zone at our research field site consists mainly of sand, Topp’s model for sandy loam was 

used in this study: 

6422 109.634d,107.44c,103.09b,105.75a .

According to Topp et al. (1980) the uncertainty in the values of  in equation (5) is about 

Topp= 0.0089. For low-loss materials a and, therefore, can be determined from the 

velocity using equations 37 and 40. The applicability of Topp’s model to sandy soil was 

proven by Ponizovsky et al. (1999).

In addition to Topp’s model and CRIM, there are some other rock physics models which 

can potentially be used. For example Yu et al. (1997) introduced an empirical relationship 

between the dielectric permittivity and volumetric soil water content for sand using 

laboratory tests. However, we found that Yu’s model overestimates the volumetric soil 

water content in our field site. Persson et al. (2002) used artificial neural networks to 

predict the relationship between dielectric permittivity and water content. Alumbaugh et al.

(2002) derived a linear site specific relationship between volumetric soil water content and 

dielectric permittivity.  

3-3 Forward flow modeling 

Water flow in a heterogeneous variably saturated porous medium is modeled by Richards’ 

equation (Richards, 1931; Comsol Multiphysics, 2004). Richards’ equation is a non-linear 

partial differential equation which is obtained by combining Darcy’s law and requirement 

for continuity of mass. To derive Richard’s equation, we assume a porous medium with 

volume x, y and z in x, y and z direction, respectively (figure 1).

For this medium flow in the x, y and z direction are respectively given by: 

x) y z
x
v(vq

y zvq

x
xxout

xxin
   ,        (41) 

y) x z
y
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y
yyout

yyin

   ,        (42) 
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Figure 1. Porous medium 

z) x y
z
v(vq

x yvq

z
zzout

zzin
   ,        (43) 

where qxin, qyin and qzin are influx into the medium; qxout, qyout and qzout are outflux of the 

medium; and vx, vy and vz are velocity in x, y and z direction, respectively. From continuity 

of mass, we have: 

x y z
t

qq outin .        (44) 

If we combine equations 41 to 44 we find: 

tz
v

y
v

x
v zyx .        (45) 

According to Darcy’s law: 

x

y

z

x
y

z
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,          (46) 

where K is the hydraulic conductivity and h is the hydraulic head. Hydraulic conductivity 

is a function of the properties of the porous medium and the properties of the fluid: 

gkk
K rfs ,          (47) 

z
g

pzh
f

,         (48) 

where ks is the intrinsic or absolute permeability;  is the fluid viscosity; kr is the relative 

permeability; f is the density of water; g is the gravitational acceleration; z is the 

gravitational head which is positive upward;  is the pressure head; and p is the pressure. 

Now by combining equations 45 to 48, Richard’s equation is derived: 

0gzpkk.
t fr

s .        (49) 

Equation 49 is not mathematically tractable because two dependent variables p and  are 

present. However, by using the specific capacity function, C, one of these variables can be 

eliminated. The specific capacity function is defined as: 

p
C .          (50) 

If we choose p as the dependent variable and add a source or sink term, Qs, and storage 

coefficient, Ss, to Richard’s equation, we have: 
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se Qgzpkk.
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pSSC ,      (51) 

where Se is the effective saturation. Ss is related to the compression and expansion of the 

pore space and the water. Richards’ equation is highly nonlinear in the vadose zone 

because , Se, C, and kr vary as a function of water saturation. For these parameters 

constitutive relations are needed. Two widely used constitutive relations are Brooks and 

Corey (Brooks and Corey, 1966) and van Genuchten (van Genuchten, 1980) relations. 

Brooks and Corey (1966) relations are: 

rser S ,         (52) 
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and van Genuchten (1980) relations are: 
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where r is the residual water content; and s is the maximum water content. , m, n, and L

are parameters which characterize the porous medium. In this study van Genuchten 

constitutive relations were used. 

A unique solution of equation 51 requires boundary conditions. It also requires initial 

conditions for transient problems. The boundary conditions used in this study are as 

follows: 

0pp ,           (60) 

0p ,           (61) 

0gzpkk
fr

sn ,         (62) 

0fr
s Ngzpkkn  ,        (63) 
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f2r2

s2
f1r1

s1n ,      (64) 

where n is the vector normal to the boundary. Equation 60 is used to define the known 

distribution of pressure at boundary. For example, if the bottom boundary of the flow 

model is below the groundwater table, pressure is known. At groundwater table, the 

pressure is zero which can be defined as the boundary condition using equation 61. Zero 

flux across the boundary can be defined using equation 62. In this study, we define sides’ 

boundaries of our models as impervious boundaries. If there is inward or outward flux to 

the model through a boundary, it can be defined using equation 63. Finally, we condition 

an interior boundary using equation 64 which implies the continuity across the boundary.

We solve Richards’ equation using the finite element code FEMLAB3.1 (Comsol 

Multiphysics, 2004). 

3-4 Inverse flow modeling 

The theory of inverse modeling is described in a variety of textbooks for applied 

mathematics and mathematical statistics (e.g. Stengel, 1994; Björk, 1996). However, 
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because water flow in the vadose zone is a non-linear complex function of the flow 

parameters, formulation of the inverse problem and minimization of the objective function 

is still the main challenge for the hydrogeophysical community. One of the classical series 

of papers about implementing the inverse modeling in the field of hydrology is given by 

Carrera and Neuman (1986a,b,c).  

The major steps of the inverse modeling of flow parameters can be summarized as follows 

(Finsterle, 2000): 

1- Building a model which represents the hydrogeological system under test 

conditions (conceptual model). In this step, the geometry of the flow model, the 

boundary conditions and numerical method which is used to solve the Richards’ 

equation are defined. The model should be able to capture the general features of 

the system of interest. 

2- Selecting the parameters that should be estimated (parameters selection). In this 

step, we define a vector p of length n containing the flow parameters to be 

estimated by inverse flow modeling. This is a trade off in the inverse flow 

modeling. If too many parameters are defined to be estimated, then the flow model 

becomes large and unstable. On the other hand, if very few parameters are defined 

to be estimated, then the model may not be a representative model for the system of 

interest.  

3- Selecting the initial values for the parameters (initial values). An initial guess has to 

be assigned to each element of p. This forms the vector of initial guess p0. The 

initial guess can be the prior information vector p*. However, p0 and p* must be 

distinguished from each other. p* might also be used to constrain or regularize the 

inverse problem. In other words, p* might contribute in the objective function. It is 

worth to perform several inversions with different initial guesses to detect if the 

optimization algorithm has found the global minimum. 

4- Selecting the calibration data in time and space (calibration data). The availability 

of high quality observed data is the key requirement for reliably estimating model 

parameters. Vector z* of length m holds the observed data in time and space. The 

observed data can be any kind of data which can be directly or indirectly calculated 

from the response of the flow model. However, the selected types of data should be 

sensitive enough to the variations of the flow parameters which are estimated. The 
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difference between the observed, z*, and calculated, z, system response are 

summarized in the residual vector r of length m:

r = z* - z.         (65) 

5- Assignment of weights to the calibration data (weights). The observation vector 

includes data that can be of different type, magnitude and accuracy. Therefore, each 

residual should be weighted before the value of the objective function can be 

calculated. In the classical inverse flow modeling, residuals are weighted with the 

inverse of the observation covariance matrix Czz.

6- Calculation of the model (forward modeling). A simulation is performed using the 

current value of the parameter vector p to obtain the calculated system response 

z(p). This simulation is repeated during the inverse flow modeling with updated 

parameters suggested by the optimization algorithm. 

7- Comparison of the calculated and observed data (objective function). The objective 

function, O, is a function which is used to mathematically measure the misfit 

between observed and calculated data. If a distributional assumption about the 

residuals is made, the objective function can be derived from maximum likelihood 

considerations. If residuals are normally distributed, minimizing the weighted least 

squares objective function leads to maximum likelihood estimates: 

m
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rO .         (66) 

8- Updating the parameters to obtain a better fit between calculated and observed data 

(optimization algorithm). Since the model output, z(p), depends on the parameters 

to be estimated, the fit can be improved by changing the elements of parameter 

vector p. There are different algorithms which can be used to iteratively find 

smaller values of the objective functions.
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9- Iteration of steps 6 to 8 until no better fit can be obtained (convergence criteria). 

Once the decrease in the objective function is less than our criteria, the iterative 

optimization procedure is terminated. 

10- Analysis of the residual and estimation of uncertainty (error analyses). 
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4 FUTURE OUTLOOK 

As many other PhD works, because of limited time available and lack of further human 

and technical resources, many doors stayed open for further analyses and improvements. 

Some suggestions are presented below for future possible works:

- Travel time tomography: It would be useful to include anisotropy in travel time 

tomography. Anisotropic velocities may be used to obtain more informative data from the 

tomograms. Anisotropic velocity can be presented as (Watanabe et al., 1996): 

cos2dm vvv ,         (67) 

where

minmaxm

2
1 vvv ,         (68) 

minmaxd

2
1 vvv ,         (69) 

,          (70) 

 is the angle of maximum velocity with x axis and  is the angle of ray with x axis. By 

combining equations 67 and 70 we have: 

cos2dm
ray vvv  .        (71) 

This is the formula of anisotropic velocity. We subdivide the medium to small cells. The 

tomographic equation is: 
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Here lik is the length of ray i through the velocity cell k and the starting velocity in cell k

for each iteration is denoted by vik. vik is the velocity update for each cell which can be 

obtained from equation 71: 
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d
kikk

d
k

m
kik sin2sin2cos2cos2 vvvv  .     (73) 

Therefore, based on equations 72 and 73 the unknown parameters and their coefficients are 

respectively: 

k
d
kk

d
k

m
kk sin2,cos2, vvvv        (74) 

ik2
ik

ik
ik2

ik

ik
2
ik

ik
ik sin2l,cos2l,lA

vvv
       (75) 

After solving the tomographic equation, vd
k and k can simply be obtained from: 

2
k

d
k

2
k

d
k

d
k sin2cos2 vvv        (76) 

k
d
k

k
d
k1

k cos2
sin2tan

2
1

v
v         (77) 

Some attempts were done in this work to use anisotropic directions to define the geological 

interfaces more accurately. Even though the preliminary results were promising, more 

work needs to be done to develop our tomographic codes for the accurate anisotropic 

computations and this was left for future studies. Another thought is that it might be 

possible to link anisotropy in EM-velocity to anisotropy in intrinsic permeability. 

However, we did not do any attempt to test this possibility. 

- Error propagation analysis for the final estimates of the flow parameters from the inverse 

flow modeling: Standard deviations of the final estimates of the flow parameters were 
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calculated with the assumption of normality and linearity. To have a better estimation of 

the uncertainty more advanced error propagation analysis is needed. 

- Inverse flow modeling using joint geophysical and hydrological data: This is our last 

attempt which is presented in the third paper. However, more studies need to be done to be 

able to use joint geophysical and hydrological data more efficiently in the inverse flow 

modeling. The main challenge is perhaps to define the weights of different types of data in 

a way that the final flow estimates can produce all types of data within acceptable range of 

uncertainties.  
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6 SUMMARY OF PAPERS 

Paper I 

Time Lapse GPR Tomography of Unsaturated Water Flow in an Ice-Contact Delta 

M. Bagher Farmani, Henk Keers, Nils-Otto Kitterød  

In this paper volumetric soil water content distribution in the vadose zone is estimated 

using tomography and a petrophysical relationship. 

Cross well Ground Penetrating Radar (GPR) data sets were collected in the vadose zone 

of an ice-contact delta near Oslo’s Gardermoen airport (Norway) before, during and after 

snowmelt in 2005. The observed travel times were inverted using curved ray travel time 

tomography. The tomograms are in good agreement with the local geological structure of 

the delta. The tomographic results are confirmed independently by surface GPR reflection 

data and X-ray images of core samples. In addition to structure, the GPR tomograms also 

show a strong time dependency due to the snowmelt. The time lapse tomograms were used 

to estimate volumetric soil water content using Topp’s equation. The geological structure 

and water content estimates obtained from the GPR tomography are used in the inverse 

flow modeling presented in the second paper. In this paper, the water balance in the vadose 

zone was also calculated using snow accumulation data, precipitation data, porosity 

estimates and observed changes in the groundwater table. The amount of water stored in 

the vadose zone obtained from the water balance was consistent with the amount estimated 

using GPR tomography.  

Paper II 

Inverse Modeling of Unsaturated Flow Parameters Using Dynamic Geological 

Structure Conditioned by GPR Tomography 

M. Bagher Farmani, Nils-Otto Kitterød, Henk Keers 

This paper is the core of this study. In this paper, an inverse flow modeling method is 

presented to estimate the flow parameters and calibrate the geological structure of the 
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vadose zone conditioned on volumetric soil water content distribution. Volumetric soil 

water content is estimated using the method presented in the first paper and is used as 

constraints in the flow inversion. The influence of the tomographic artifacts on the flow 

inversion is minimized by assigning weights that are proportional to the ray coverage. The 

geological structure is defined using a set of control points, the positions of which can be 

modified during the inversion. After the inversion, the final geological and flow model are 

used to compute GPR travel times to check the consistency between these computed travel 

times and the observed travel times.  

The method is first tested on two synthetic models (a steady state and a transient flow 

models). Subsequently, the method is applied to characterize the vadose zone at Oslo’s 

Gardermoen Airport, in Norway during the snowmelt of 2005. The flow inversion method 

is applied to locate and quantify the main geological layers at the site. In particular the 

inversion method identifies and estimates the location and properties of thin dipping layers 

with relatively low-permeability. The flow model is cross validated using an independent 

infiltration event.  

Paper III 

Estimation of Unsaturated Flow Parameters using GPR Tomography and 

Groundwater Table Data  

M. Bagher Farmani, Nils-Otto Kitterød, Henk Keers 

In this paper the method presented in the second paper is extended to include the 

groundwater water table data as constrains in the flow inversion. 

Flow parameters in the vadose zone of an ice-contact delta near Oslo’s Gardermoen 

airport (Norway) are estimated by combining time-lapse Ground Penetrating Radar (GPR) 

travel time tomography; groundwater table data, and inverse flow modeling. Natural water 

infiltration into the vadose zone from the snowmelt in 2006 is used to estimate the flow 

parameters. 

The inverse flow modeling is done by conditioning on different data sets: (1) time-lapse 

GPR travel time tomography; (2) groundwater table; (3) time-lapse GPR travel time 
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tomography and groundwater table: (4) #2, but with using an extended search space for the 

intrinsic permeability and van Genuchten parameter .

The flow parameters estimated by inversion #1 capture development of the wet front, 

but fail to simulate the groundwater table. The flow parameters estimated by inversion #2 

does not simulate the wet front correctly, but decrease the objective function better than 

inversion #1. When inversion is conditioned on both types of data (#3), the final estimates 

of the flow parameters are close to the estimates from the inversion conditioned on only 

groundwater table data. This happens because much denser groundwater table data are 

available in time than the GPR data. Finally we do forward flow modeling with the 

estimated parameter sets and compare the results with an independent tracer experiment 

performed at the field site in 1999. The results show that anisotropy in the intrinsic 

permeability is an important parameter which should be taken into account to be able to 

simulate the water paths. However, volumetric soil water content distribution is not 

strongly related to the anisotropy of intrinsic permeability. Therefore, anisotropy can not 

be correctly estimated by inverse flow modeling conditioned on volumetric soil water 

content only. 
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