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ABSTRACT 

A succession of crater infill sediments is preserved within the Ritland impact structure. 

Ritland is good example of a small depositional basin where a range of processes from debris 

flows to turbiditic currents and finally suspension fall-out took place within a very restricted 

area. Immediately after impact slumps/slides, and mass flows dominated, later to be replaced 

by running water activities in much calmer basin environment, like fine-grained 

sedimentation. The sedimentary successions of this small crater, which most likely was a 

terrestrial impact structure, reveal a shifting depositional environment. Just after the impact 

accommodation space for sediments was created in an extremely short period. The post-

impact breccias covering the crater floor were most likely deposited by rock avalanches, 

triggered by collapse of crater rim. Breccia deposits interfingering with melt rocks (suevite) 

and ejecta, which were formed and deposited seconds after impact. The overlying lacustrine 

sediments, around the center of the crater, suggesting that a temporary lake was present at 

some time after the impact. Probably groundwater seepage, through the crushed basement, 

filled the structure to some level and initiated sediment deposition in water reservoir. The 

succeeding conglomeratic and sandy sequence characterizes local thickness variation. This 

sequence was deposited by various catastrophic sediment gravity flows, such as turbidity 

currents, debris flows, slides and slumps, likely triggered by the resurging water, during the 

Cambrian marine transgression. The resurging water breached the crater rim, which caused its 

collapse, producing series of rock avalanches. The crater was finally covered by sea and 

previous rapid depositional procceses switched into deep water sedimentation processes 

(probably not very deep – epicontinental sea). Shales covering gravity flow deposits represent 

the reestablishment of quiet conditions.   

1. Introduction 

The Ritland structure is located in the community of Hjelmeland, county of Rogaland 

(south-western Norway) and represents the eroded remnant of an (likely) early Cambrian 

impact crater (Fig. 1). The crater formed when an approximately 100 m large rock (small 

asteroid?) collided with Earth and within seconds or minutes excavated a 2.5 km wide and 

350 m deep hole (Riis et al., 2009). This study will focus on the distribution and depositional 

history of the crater infill sediments. The sediment infill of the structure is a complicated 

mosaic of various facies of several sedimentary depositional processes. Some of them were 

rapid (rock avalanches, landslides etc.) and some spanned extensive periods of time (e.g. 
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shallow sea sedimentation). Studying sedimentary facies is important in understanding the 

different depositional environments and associated processes after impact. 

 
Figure 1.  Geographic location (left) and geological map of the southern part of Norway (right) shows two 
impact structures (yellow symbols): the Gardnos Crater and the Ritland Crater. Grey colour represents South-
western gneiss province (900-1700 Ma), blue colour represents Scandinavian Caledonides (400-700 Ma), red 
colour is rocks within the Oslo rift (volcanic rocks from 250-300 Ma and Cambro-Silurian sediments from 540-
400?) and orange indicates volcanic rocks from the Paleoproterozoic (2500-1600 million years ago). 

This master thesis is a part of a project on the Ritland impact structure, funded by the 

Research Council of Norway (NFR). The project is headed by professor Henning Dypvik 

(UiO) and Fridtjof Riis (NPD), and includes one post-doc, one ph.D. and several masters 

students. The project will try to answer questions like: 

 Time of impact (?), 

 Environment of impact (terrestrial or marine?), 

 Initial shape and size of crater (immediately post-impact?), 

 Properties of the extraterrestrial impactor (?), 

 Energy of impact and mechanisms of basement deformation (?), 
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 Comparison of the Ritland and Gardnos structures (?) etc. 

The aim of this master thesis is to describe and discuss sedimentary successions of the 

Ritland impact structure (mainly from the Svodene Hill in the central-to-southern part of the 

structure) and explain the processes of deposition within. The Ritland project is still in an 

early stage of investigation. Comparing the observations from Ritland with published data 

from similar structures like Gardnos (Hallingdal, Norway) or the Crate Lake (Oregon, the 

United States), I will try to illustrate the possible sedimentary processes that took place and 

how they developed through time in the Ritland structure. 

2. Impact geology 

Scientists expressed first concerns over impact structures in perspective of lunar 

exploration. The astronauts who trained in the Ries crater in Germany before going to the 

moon, wanted to know what sorts of rocks they should expect (equvalents of the lunar 

regolith) (Margolin, 2000). Much more scientific investigations (Shoemaker, 1963; Grieve et 

al., 1981; Stöffler et al., 1988; Grieve and Pesonen, 1991), conerning aspects of geology of 

impact structures, were undertaken when scientists have discovered that the collision of the 

extraterrestrial object with the Earth could be the reason of the mass extinctions in the history 

of the planet (Alvarez et al., 1980). 

2.1 The origin and formation of impact structures 

An impact structure is a depression in topography caused by the hypervelocity impact of 

a solid body from space. These bodies are asteroids and comets of different type and size. 

Small objects (with diameters smaller than ~50-100 m) frequently collide with the Earth, 

usually not hit the ground as a single body (Brown et al., 2002). Very large objects (a few 

kilometers in diameter) are rare, but their impacts can form craters hundreds kilometers in 

diameter (Atkinson et al., 2000). These enormous impacts may have caused some of the 

world’s big extinction events, but only one has so far been proven. The big mass extinction 

between the Cretaceous and Paleogene periods (around 65 million years ago) were first 

proven to coincide with an iridium anomaly at the K-P boundary1 all over the world and an 

extraterrestrial explanation suggested (Alvarez et al., 1980). Later the Chicxulub impact 

                                                 
1 K-P boundary – K is the abbreviation for the Cretaceous period, and P is the abbreviation for the Paleogene 
period. It is a thin band of sediments contain a very high concentration of iridium (Alvarez et al., 1980). This is a 
proof of an extraterrestial reason of the mass extinction. 
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structure (more then 180 km in diamter) was discovered linked to the mass extinction event 

(Hildebrand et al., 1991).  

Impact cratering is an important geological process. We can distiguish two main types 

of impact structure: simple and complex structures. Generally the smaller craters has a simple 

form and the large ones are complex, i.e. they may have an uplifted center (very big craters,  

which have diameter of hundreds kilometres, may have multi ring structures) (French, 1998). 

The Ritland impact structure is a simple crater2 (Riis et al., 2009), and therefore this thesis 

introduction will concentrate on such type of crater. The Ritland structure is a rather small 

such structure on the Earth (comparing to the Vredefort Crater in Africa, the Ritland structure 

is 100 times smaller) (from the Earth Impact Database, 2010). Even so, the impact in Ritland 

involved a lot of energy (it is comperable to the San Francisco earthquake in 1906 of 

magnitude 8,4)3. 

There are three stages of crater’s development (Gault et al., 1968; Melosh, 1989; Fig. 2): 

1) Contact/compression stage, 

2) Excavation stage, 

3) Modification stage 

The contact/compression stage (Fig. 2a-2b) is very rapid and starts when the bolide impact 

the ground surface. Target rocks absorb impact forces of the projectile. The projectile 

penetrates no more than 1-2x its own diameter (French, 1998). The kinetic energy transforms 

during the impact, into heat, consequently the vast volume of rock is melted and vaporized. 

The excavation stage (Fig. 2c-2d) lasts longer then the contact/compression stage. During this 

stage an open cavity is formed due to the expanding shock waves in the target rock, in 

addition the crater rim uplift develope. The fractured and shattered material is drive by these 

complex processes outward from the impact point. In the upper levels of target rock, material 

moves upward and outward. At lower levels, target material moves downward and outward 

(French, 1998). These movements in symetrical pattern form a bowl-shaped depression (the 

transient crater) in the target rocks (Maxwell, 1977; Grieve at al., 1977; Grieve and Cintala, 

1981; Melosh, 1989). During the last stage, the modification stage (Fig. 2e-2f), the transient 

crater is reaching its maximum size (French, 1998). Gravity processes take control in the 

structure (mass movements). Material from the crater rim is transferred to the center of the 

                                                 
2 Simple craters occur as a bowl-shaped depression less than a few kilometers across (Melosh, 1989, p.129) and 
a structurally upraised rim. 
3 Estimation based on the Earth Impact Effects Program: http://impact.ese.ic.ac.uk/ImpactEffects/ 
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structure and finally deposited. These changes in the crater last for less than a minute for 

small structure, a few for a large one (Melosh, 1989). 

Figure 2.  Development of a simple 
impact structure. Series of cross-section 
diagrams showing progressive 
development of a small, bowl-shaped 
simple impact structure in a horizontally 
layered target: (a) contact/compression 
stage: initial penetration of projectile, 
outward radiation of shock waves; (b) 
start of excavation stage: continued 
expansion of shock wave into target; 
development of tensional wave 
(rarefaction or release wave) behind 
shock wave as the near-surface part of 
original shock wave is reflected 
downward from ground surface; 
interaction of rarefaction wave with 
ground surface to accelerate near-surface 
material upward and outward; (c) middle 
of excavation stage: continued expansion 
of shock wave and rarefaction wave; 
development of melt lining in expanding 

transient cavity; well-developed outward 
ejecta flow (ejecta curtain) from the 
opening crater; (d) end of excavation 
stage: transient cavity reaches maximum 
extent to form melt-lined transient crater; 
near-surface ejecta curtain reaches 
maximum extent, and uplifted crater rim 
develops; (e) start 6 of modification 
stage: oversteepened walls of transient 
crater collapse back into cavity, 
accompanied by nearcrater ejecta, to 
form deposit of mixed breccia (breccia 
lens) within crater; (f ) final simple 
crater: a bowl-shaped depression, 
partially filled with complex breccias 
and bodies of impact melt. Times 
involved are a few seconds to form the 
transient crater (a)–(d), and minutes to 
hours for the final crater (e)–(f ). 
Subsequent changes reflect the normal 
geological processes of erosion and 
infilling (Figures and Figure text from 
French, 1998). 
 
 

2.2 Terrestrial impact structures  

Only 19 % of the total number 176 confirmed impact structures are structures formed 

before the end of the Cambrian period (around 488 Ma)4. These old craters often are poorly 

                                                 
4 Estimation based on data from the Earth Impact Database: www.unb.ca/passc/ImpactDatabase/ 
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preserved on Earth and remain undiscovered. In spite of a high unclear of impact at the time a 

low number has been found. The target rocks for these impacts were in most cases basement 

rocks. The discovered impact structures are located in the relatively geological stable cratonic 

areas of North America, Scandinavia, west Russia and Australia. These conditions favor good 

preservation of terrestrial impact structures (Grieve et al., 1997). The crater infills, some of 

these structures, have been excavated due to erosional processes.  

The hypothesis that the Ritland structure might be an impact structure was first 

suggested by Riis (2002), based on geological mapping of the structure. The first samples 

with clearcut shock deformed grains of quartz were found in the crater in 2007 (Riis et al., 

2009), and during summer of 2009 the Ritland project group found additional exposures of 

melt rocks. Samples gathered from this location carried large numbers of quartz grains with 

characteristic shock features – PDF (Koeberl, 2006; Fig. 3). The PDFs are clear evidence for 

impact origin of the Ritland structure (Shoemaker, 1963; Langenhorst and Deutsch, 1993).  

 
Figure 3.  PDFs features of one shocked quartz grain found in the Ritland Crater, in 2009, sample RITT-10-3-09; 
the thin section image provided by Elin Kalleson (UiO) 
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3. Geological setting 

The Ritland impact structure represents a simple impact structure; 2,5 km in diameter 

and about 350 metres deep (Riis, 2009). The age of the Ritland structure is not certain, but 

shales deposited in the crater contain fossils dated to the middle Cambrian – making it certain 

that the impact occurred before that time (Henningsmoen 1952, Bruton and Harper 2000), 

therefore, Riis et al. (2009) estimated the age of the crater between 500 and 600 million years 

ago. The formation suffered several events of uplift, erosion and finally the Pleistocene 

glaciations. The last postglacial events helped to uncover the sedimentry crater infill and 

create a three-dimensional surface depression (Riis et al., 2009). Minor amount of impact melt 

rock, crater infill sediments, Cambrian shales and overlying sandstone are presently formed 

within the structure, covered by remnants of Caledonian thrust nappes (Fig. 4). 
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Figure 4.  Top: the geological map of the Ritland structure, the Svodene Hill, study area of this thesis, is marked 
by dashed line ellipse; Bottom: the panoramic photo with the sedimentary succession description (modified from 
Riis et al., 2009). 

3.1 Target rocks – the sub-Cambrian peneplain 
 

The meteorite impacted into the sub-Cambrian peneplain which was composed of 

Precambrian gneissic rocks (Riis et al., 2009). The sub-Cambrian peneplain is today exposed 

as a conspicuous flat to slightly undulating surface in the mountainous areas of southern 
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Norway and also 2-5 km east of Ritland (Fig. 5). Target rocks in the area are dated from 1750 

to 900 million years. The Precambrian evolution of southern Norway culminated with the 

Sveconorwegian oregony 1130-900 million years ago, when mostly granitic rock were folded, 

strongly deformed and metamorphosed (Nordgulen and Andresen, 2008).  

The Sveconorwegian orogeny was induced by collision between the Laurentia-

Fennoscandia margin and the Amazonia indenter (Bingen et al., 2008). The plate 

amalgamation created the continent, Rodinia. When the supercontinent had started to break up 

about 850 million years ago, the old rocks from the Fennoscandian shield were exposed to 

erosion. At that time the new plate/continent, Baltica was born, Norway was a part of Baltica, 

which replaced Fennoscandia. The basement rocks were eroded during the Varangerian 

glaciations, around 700 million years ago. Later tropical climate during the Ediacaran Period 

(630-542 years ago) caused deep weathering of the basement (Ramberg eds., 2008). The 

eroded surface, the sub-Cambrian peneplain, represents a hiatus which idicates the boundary 

between Precambrian metamorfic and igneous rocks and overlying Cambro-Silurian deposits 

(Riis et al., 2009). In Scandinavia the peneplain often marks a morphological surface (e.g. 

Lidmar-Bergström and Näslund 2002). 

 
Figure 5.  The exhumated sub-Cambrian peneplain (from Riis et al., 2009). 
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3.2 The impact event 

When the meteorite impacted the sub-Cambrian peneplain, Ritland was probably located 

at the Baltoscandia margin, on the north-western rim of Baltica (500-600 Ma) (Meert and 

Torsvik, 2004). In addition to excavating a crater, the rocks beneath the crater floor were 

fractured and brecciated. The basement rocks exposed along the crater walls today are 

intensely fractured and brecciated, commonly with a characteristic dark grey to black fracture 

fill. The quartz and feldspar grains typically have dark grey to black colour and individual 

quartz grains commonly display a mosaic fracture pattern and strongly undulating extinction 

(Riis et al., 2009). 

Three meteorite impact crater have so far been recognised in Norway. Two of them are 

located on land: the Gardnos structure (French et al., 1997; Kalleson et al., 2008) and the 

Ritland structure (Riis et al., 2009). The third structure is located in the Barents Sea, the 

Mjølnir structure (Dypvik and Jansa, 2003; Dypvik et al., 2004; Dypvik et al. 2006). The first 

two formations have similar features: comparable age of crater formation (the late 

Precambrian), the location in front of the Caledonian overthrust rocks (Fig. 1), the target rock 

(the Precambrian basement). Probably meteorites fell on land (the Ritland structure; Riis et al., 

2009) or into shallow sea (the Gardnos structure; French et al., 1997) in late 

Precambrian/early Cambrian, when Norway was located on the north-western rim of Baltica 

at the time (Meert and Torvik, 2004). During last glaciations younger strata were eroded from 

the sub-Cambrian peneplain, and the Gardnos strucuture and the Ritland structure have been 

excavated.  

3.3 Post impact – the Cambrian transgression and the Caledonian orogeny 

Within the crater, the crushed basement rocks are covered by sedimentary, post-impact 

breccias with fragments reaching up to 2-3 m. In the deeper part of the crater depression, the 

sedimentary breccia is intercalated with crossbedded sandstones, deposited in water. 

Overlying coarse-grained deposits form wedges of variable thickness along the margin of the 

structure. The maximum stratigraphic thickness observed is almost 200 m along the rim of the 

crater (Fig. 13) (Riis et al., 2008). 

At the end of Precambrian Baltica began to fracture and spli in two continents: the 

Baltica and Laurentia. A huge rifting zone separated these continents and gave the start to a 

new ocean, Iapetus (Worsley and Nakrem, 2008). The water level rose resulting in flooding, 

and vast areas of Baltica were transgressed. During an early Cambrian marine transgression 
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the crater was dominated by fine-grained sedimentation, in the field seen as shales onlapping 

the crater walls (Fig. 4 and 13). 

On the peneplain east of the Ritland Crater, a fine grained, bioturbated sandstone bed is 

found. This thin unit (up to 10-20 m) was widely distributed during the Cambrian marine 

transgression, and it covers Cambrian shales in the Ritland structure (Fig. 13) (Riis et al., 

2008).  

The whole impact structure was covered by thrust nappes of the Caledonian Orogen in 

the Silurian-Devonian times. The crust was detached and moved hundreds of kilometres from 

northwest to southeast at the time (Fossen et al., 2008). These overlying nappes partly 

protected the crater from post Caledonian erosion. 

4. Methods 

Several different methods were applied to study the sediments at Ritland. Classical field 

logging and observations in combination with Lidar data acquisition represent the macroscale 

observations. The mineralogical and petrographical analysis (thin section and XRD) revealed 

details in micro scale. 

4.1 Field logging and sampling 

The field logging was performed from 11th to 20th, on August 2009, in the Ritland 

structure. This work focused on mainly one area, the Svodene hill, in the southern part of the 

structure (Fig. 4). The Svodene hill is a large continuous outcrop (maximum 90 m in height 

and 350 m in width) which offers three dimensional exposures of the crater’s infill. Three 

sections have been logged: RITF-1 (around 18 m; Fig. 9), RITF-3 (around 48 m; Fig. 10), 

RITF-4 (around 22 m; Fig. 11). It was difficult to log the section between RITF-1 and RITF-3, 

as had been planned, due to a very hard working conditions there (too steep cliff). The 

sections were logged on logging sheets in the scale of 1:50. The rock exposures were 

investigated with the aid of hand-lens, ruler, hammer, compass, grain-size scale, camera etc. 

The Lidar (altitude) and GPS (position) measurments were used to correlate all logs. The 

author was logging under the supervision of Professor Henning Dypvik, and with the 

assistance of Abdus Samad Azad.   

A total number of 26 samples were taken from each section. There were no fixed 

intervals between the samples, but the sampling aimed at getting representative lithologies 

and facies, and consequently sampling intervals were dependent on changes in facies, i.e. 

denser sampling in parts where there were rapid changes of depositional style. The samples 
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were named according to a fixed style to ensure secure sample identification, referring to area, 

section number, sample number and year of sampling (Fig. 6). In addition photo 

documentation was prepared and measurments of structures present ripples were taken (lenght, 

strike and dip etc.). 

 
Figure 6. Schematic description of the sample naming. 

4.2 Mineralogical and petrographical analysis 

The mineralogical and petrographical analysis has been performed using both thin 

sections and X-ray diffraction (XRD) analysis. The matrix analyses were in. Samples which 

contained only clasts were omitted. 

Sedimentary facies has been identified using field logs, pictures and thin sections to 

determine lithology, texture and structures. Each facies have been grouped into different 

facies associations. 

4.2.1 Thin sections 

Thin sections were prepared by “Anszlif” company (Krakow, Poland).  Rock samples 

were polished down to 30 μm thickness in two stages: 1 – prepolishing on chromium oxide 

(NH4)2Cr2O7, 2 – then polishing on diamond suspension, the Struers brand. The final products 

were glued to a 2,8 cm x 4,6 cm glass slide. 

21 thin sections were selected for study under a petrographic microscope. The 

microscopic observations were done in plain polarized and cross polarized light. Thin sections 

were studied (in addition to getting petrological introduction) to support data from logging, to 

improve a lithologic column, to get to know relations between beddings, facies, facies 

associations etc. Different attributes were chosen to describe origin and transport of sediments: 

 Average grain size, 

 Maximum grain size, 

 Sorting, 

 Roundness, 
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 Grain contact , 

 Compaction etc. 

All results from thin sections investigation are summarized in Appendix 4.  

In order to get the mineral content point counting has been performed using a Swift 

automatic counter (see Appendix 3). An average number of counts were around 400. In order 

to get an overall impression of the petrographic properties of the crater’s infill succesion a 

representative selection of 18 thin sections were picked out (Tab. 1). 

Table 1.  Analysed samples from the Ritland impact structure. Mineralogical, petrographical and 

sedimentological analyses have been performed (), and in some few cases only qualitative observations (). 

Sample name 
Point 

counting 
XRD Sample name 

Point 

counting 
XRD 

RITF-1-1-09   RITF-3-2-09   
RITF-1-2-09   RITF-3-3-09   
RITF-1-3-09   RITF-3-4-09   
RITF-1-4-09   RITF-3-5-09   
RITF-1-5-09   RITF-3-6-09   
RITF-1-6-09   RITF-4-1-09   
RITF-1-7-09   RITF-4-2-09   
RITF-1-8-09   RITF-4-3-09   

RITF-1A-1-09   RITF-4-4-09   
RITF-1A-2-09   RITF-4-5-09   
RITF-1A-3-09   RITF-4-6-09   
RITF-2-1-09   RITF-4-7-09   
RITF-3-1-09   RITF-4-8-09   

 

4.2.2 XRD analysis 

X-ray diffraction (XRD) provides an estimation of the mineral composition of a bulk 

sample based on the crystal structure of individual components. The presence of particular 

components is detected through a visual recognition of characteristic peak positions 

(Bolewski and Żabiński eds., 1988). XRD determines particular phases in a bulk, in addition, 

a special software (e.g. Macdiff) can estimate percentage of individual phases. Macdiff can 

serve well for the preliminary quantitative analysis, however, the software's database is too 

small to give precise results in qualitative analysis. 

The quantitative analysis by X-ray diffraction is complicated, and have to be determined 

as semi-quantitative. For the bulk analysis the quantitative analysis was conducted by using 
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the maximum intensities for the respective mineral reflections. The targeted peaks are shown 

in Table 2.  

Table 2.  D-values used in XRD analysis. 

Mineral d-value (Å) Range 

Stilpnomelane 12,1 0,2 

Biotite + Muscovite 10 0,2 

Chlorite 7 0,1 

Quartz 4,26 0,02 

K-feldspar 3,24 0,01 

Plagioclase 3,19 0,012 

Calcite 3,03 0,02 

Actinolite 2,96 0,01 

Dolomite 2,89 0,01 

Siderite 2,79 0,03 

Pyrite 2,71 0,03 

 

In order to get a detailed knowledge of the mineralogical composition of the 26 bulk 

samples were analyzed by XRD using a Philips X’Pert MPD, at the University of Oslo. XRD-

analyses have been carried out to get both qualitative and semi-quantitative results. All results 

from the XRD analyses are summarized in Appendix 2 

The samples were hand crushed by mortar and pestle, and powdered for 5 minutes using 

a “a steel slinging mill”. The samples were packed into XRD sample holders to retain random 

orientation.  

The XRD data were processed digitally using MacDiff software (version 4.2.5) to 

establish a baseline of intensity, correct peak positions (relative to quartz), calculate peak 

intensities and peak areas, and to identified different minerals (Petschick, 2001). 

4.2.3 Lidar survey 

The well exposed sediments at the Svodene Hill were examinated by Lidar acquisition – 

laser scanning (Fig. 7 and 8) (Bellian et al., 2005; Buckley, 2010). Lidar survey was executed 

by Simon Buckley from the Centre for Integrated Petroleum Reaserch (CIPR, Univ. of 

Bergen) from 12th to 13th August 2009. The purpose of the acqusition of detailed outcrop data 

was mapping of sedimentary and structural features. A Lidar scanner Riegl LMS Z420 (Fig. 7) 

was applied with a set-up as described in Buckley et al. (2008a). During processing and 
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analysis both RiSCAN Pro (ver 1.5.1b17) and Lime (ver 0.3) software were applied (Buckley, 

2009). 

 
Figure 7.  A Riegl LMS-Z420i, showing mounted camera, GPS antenna, power supply and laptop interface. The 
total setup weighs around 60 kg, and is moderately portable in the field (the figure description from Buckley et 
al.2008a). 
 

Laser scanning is an active measurement technique based on the time that takes for a 

single laser beam to travel a distance between the instrument and a surface (time-of-flight). 

This information is sufficient to calculate distances between the sensor and a topographic 

surface. The scanned surface represents a cloud of high resolution 3D data points (Fig. 8, left). 

This cloud is formed by rapid horizontal and vertical deflection of the laser beam (Buckley, 

2010). During processing the unorganized and noisy 3D data points is tranform into a 2-

manifold triangular mesh of a flat plane pointed towards the target surface implied by the 

LiDAR points (Fig. 8, center) (Sahillioglu, 2009). Digital photographs 5  are additionally 

required to interpret features, which cannot be identified in the point cloud. These provide 

colour and texture information which are used later in the processing (Fig. 8, right) (Buckley, 

2010). 

In the point clouds a large amount of vegetation is presence, disturbing the obervations 

of the 3D model. Presence of vegetation can degrade meshing and texturing results, 

consequently vegetated areas have been removed from the final results (Buckley, 2010). 

Because lidar operates in the visible and near-infrared wavelenghts, its signal is affected by 

                                                 
5 in this case the Nikon D200 camera and the Nikon 18-55 mm lens were used 
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atmospheric conditions (Mather, 2004). Another difficulties for a Lidar acquisition is water on 

a rock surface. The Lidar-derived image appears darker in the place where water was sipping 

(Fig. 37 and 38), as the water reflect a laser beam.  

 

Figure 8.  Detailed view of point cloud (left), triangle mesh (centre) and textured outcrop (right) (from Buckley 
et al., 2008a). Such small area like in the figure, contains over 100 000 points in the point cloud, but after 
processing a few thousand triangles has left. Finally, the texture, derived from photos taken by camera, is put on 
a triangular mesh of a flat planes. 

5. Sedimentological description 

The master thesis is based mainly on log description, supported by Lidar analyses, 

mineralogical and petrographical analyses. During field work three sections were logged in 

details at the Svodene hill.   

5.1 Sedimentological logs 
 

The Svodene hill provides very good three dimensional  exposures of the sedimentary 

rocks filling the southern part of the impact structure. Three sections (Fig. 10, 11 and 12) 

were picked out in order to obtain a good understanding of the post-impact sediments filling 

in the area (Fig. 9). The log RITF-4 (Fig. 12) begins from the suevite and follows sediments 

up to conglomerate units interfering with sandstones. The next logs RITF-1 (Fig. 10) and 

RITF-3 (Fig. 11) are located on steep west slope of the Svodene hill. Finally, the three 

sections have been associated together, showing the stratigraphic relation between logs. It 

helped to compose the crater infill (Fig. 13). 
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Figure 9.  Overview of Ritland strucure (the souther part), with approximate location of scanned outcrop 
sections (red lines: Ritland_N, Ritland_W and Ritland_E) and scanner positions (yellow dots).  In this thesis 
Lidar images from only one outcrop (Ritland_W) will be described. Three sections (yellow squares) were picked 
out in the Svodene hill. The melt rocks (red square) are exposed within a small area, central in the structure.  
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Figure 10.  The detailed log RITF-1 from the lowermost section of the Svodene hill (location shown in Fig. 9), 
with the sample and photo names (the level they were taken at). This section consists of mostly sandstone units.  
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Figure 11.  The detailed log RITF-3 (location shown in Fig. 9) with the sample and photo names (the level they 
were taken at).  This section consists of only breccias. The section has been split up two logs. 
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Figure 12.  The detailed log RITF-4 which follows sediments across the suevite and conglomerate, the western 
side of the Svodene Hill (Fig. 9), with the sample and photo names (the level they were taken at).
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Figure 13.  The figure shows the crater infill, based on the stratigraphical relation between the three sections. The three logs has been  related together using data from: the 
GPS (horizontal position), the Lidar instrument (vertical position) and other methods used in the field. The suevite “patches” (blue)  are covered by breccia at the base (red). 
Subsequently the crater center is with sandstone (yellow), which interfingering with sedimentary breccia (red) at crater margins. Everything is covered by shale (green).
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5.2 Facies description 
 

Facies is a distinctive rock unit that forms under certain conditions of sedmentations, e.g. a 

sedimentation on the beach (Reading, 1996). Facies has been identified using field logs, pictures 

and thin sections to determine lithology, texture and structures. Finally, particular facies have 

been grouped into different facies associations, representing certain depositional environments (as 

described in Chapter 6.3) (Fig. 15). Boundaries between facies associations were distinguished by 

abrupt change in deposition environment (e.g. the boundary between the conglomerate – a mass 

flow, and a laminated sandstone – static conditions in a relatively deep-water reservoir; Fig. 18C 

and 25).  

The clastic sedimentary rocks has been classified on the basis of their grain size, using 

the Wentworth grain-size scale (Wentworth, 1922). The siltstone is a rock with the grain size 
1/256 – 1/16 mm, and the sandstone with the grains size 1/16 – 2 mm. In addition the sedimentary 

rocks with particles bigger then 2 mm (>10% in the rock) are classified as conglomerate or 

breccia, according to sediment facies recognized in the deep sea (modified from Stow, 1985; 

Pickering and Stow et al., 1986).  

 
Figure 14.  Triangular diagrams of: (left): gravel, sand and mud; (right): sand, silt and clay (from Folk, 1974). 

Several rock types has been recognized in the crater infill. The the base for the 

classification of sediments were the triangular diagrams (Folk, 1974)  : 

 Breccia – is a rock composed of angular to subangular clasts (>20% the volume 

of a rock) in a matrix. The sizes of clasts are usually larger than cobbles (64 mm 

– 256 mm). Depending on the amount of a matrix breccias can be subdivided 

into clasts supported (clasts are in distinct contact with each other, supports each 

other) and matrix supported (clasts are floating in matrix); 
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 Conglomerate – sedimentary rocks (there are matrix and grain/clast supported 

types) that contain a substantional fraction (at least 30 %) of gravel size (>2 mm) 

particles (Boggs, 2006). Clast have rounded shapes within fine-grained matrix; 

 Conglomeratic sandstone – this rock contains 5-30 % gravel to sand and 90-

100 % sand to mud; 

 Sandstone – the sedimentary rock contains 0-1 % gravel to sand and 90-100 % 

sand to mud;. 

 Suevite – is an allochthonous breccia, where angular rock fragments of different 

sizes and lithologies are floating in a fine-grained clastic matrix (French et al., 

1997). Dark fragments of melted rocks (up to few centimeters) occurs in the 

suevite. 

12 facies has been recognized (Tab. 1) by using the logs and other additional 

observations (thin sections, photographs etc.). These facies will be described in details in the 

following chapter. 
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Table 1.  Summarization of sedimentary facies in all three sections from the Svodene hill. 

 

Facies 

No. 
Facies Grain size Structures 

Presence in 

the log 
Depth (m) Figures 

I Conglomerate 
Medium sand to 

cobbles 

Poorly sorted, matrix 

supported, subrounded clasts 

within laminated sand-size 

matrix 

RITF-3 
18,55 – 17,00; 

10,00 – 7,35;  
- 

RITF-4 
20,10 – 19,40; 

16,60 – 16,00 

18A; 18C, 

23 

IIa 
Sedimentary 

breccia 

Medium sand to 

boulders 

Clast supported, angular clasts, 

some matrix (medium sand) 

around clasts 

RITF-3 

43,40 – 18,55; 

17,00 – 10,00; 

3,00 – 0,00 

21B 

IIb 
Sedimentary 

breccia 

Medium sand to 

cobbles  

Matrix supported, subangular 

clasts, fine layering by matrix 

RITF-3 
45,35 – 43,40; 

7,35 – 3,00 

20A; 20B; 

20C; 21C 

RITF-1 
18,25 – 14,80;  

< 0,00 
- 

RITF-4 11,00 – 7,20 19C? 

III 

Soft sediment 

deformed 

sandstone 

Fine sand 
Homogenous sandstone, 

convolute lamination 
RITF-4 

21,70 – 21,25; 

18,65 – 18,30 
18B 

IV 
Conglomeratic 

sandstone 

Fine sand to 

pebbles 

Parallel laminated sandstone, 

with decresing number of clasts 

towards the top, around clasts 

presence of sediment 

deformation, ripples 

RITF-4 

21,25 – 20,10; 

19,40 – 18,65; 

17,65 – 16,60 

18A 

V 
Massive 

sandstone 

Fine sand to 

medium sand 
Parallel laminated sandstone 

RITF-4 
18,30 – 17,65; 

16,00 – 11,00 
19A 

RITF-1 
14,80 – 8,80; 

7,70 – 5,70 
16C 

VI 

Low angle 

cross-stratified 

sandstone 

Fine sand 

Carbonate cemented sandstone, 

low angle cross-stratification 

(~90) 

RITF-1 8,80 – 7,70 16B, 22 

VII 

Parallel-

bedded 

sandstone 

Silt to medium 

sand 

The alternation of parallel 

laminated sandstone: from 

coarsening upwards to fining 

upwards sequences, mudflakes 

(1-3 mm thickness), ripples, 

scour and fill 

RITF-1 5,70 – 0,00 
16D, 17A, 

17B, 17C 

VIII 
Breccia at the 

base 

Coarse sand to 

boulders 

Clast supported, angular to 

subangular clasts 
RITF-4 7,20 – 0,00 19C 

IX Suevite 
Very fine sand 

to pebbles 

Melted particles, angular lithic 

fragments (pebble-size), within 

matrix 

RITF-4 < 0,00 19D, 19C 
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Facies description: 

I        Conglomerate – the facies occur in the log RITF-4 (Fig. 12), two conglomerate 

units (levels in Tab. 1) and two units in the log RITF-3 (Tab. 1 and Fig. 11) 

with bright colour of a matrix. The clasts floating in a sandy matrix have 

more rounded shape then these in the RITF-3. The conglomerate beds have a 

deposition inclination of 20-22 degrees. The conglomerates units interfinger 

and have visible erosional contact with surrounding sandstone units (Fig. 

18A and 23). The facies forms channel-like structures (few meters wide, with 

thickness up to 60 cm), from W to E along the strike of the beds (Fig. 26). 

Large angular, clasts (up to 30 cm) sit on the top of these conglomerates, 

sticked together (Fig. 23). The clasts are granite-gneissic rock fragments. The 

clasts are usually medium- to coarse-foliated and largely recrystallized, 

consist of quartz, feldspar and minor amount of micas, chlorite;  

IIa         Sedimentary breccia (polymictic, homogenous) – twelve intervals have been 

recognized in the log RITF-3 (Tab. 1 and Fig. 11) as clasts supported breccia 

with angular clast in size up to boulders (some of them have more then 2 m). 

The clasts are densly packed. The breccia units commonly are fining 

upwards, larger clasts are at the base of unit (Fig. 20A), no more internal 

strucures have been seen. The clasts are granite-gneissic rock fragments and 

exhibit jigsaw puzzle patterns. The clasts consist of quartz, feldspar and 

minor amount of micas, chlorite (Fig. 20C). The breccias form wedge-shape 

beds interfinger with sandstone (Fig. 13). The breccia beds have depositional 

inclination up to 25 degrees, gradually decreasing to the crater center; 

IIb          Sedimentary breccia (polymictic, homogenous) –  matrix-supported  breccia 

with clast-size up to 70 cm. A larger amount of matrix (Fig. 21B). The 

breccias form wedge-shape beds interfinger with sandstone (Fig. 13). The 

breccia beds have depositional inclination up to 25 degrees, gradually 

decreasing to the crater center. Lamination within a matrix have been 

recognized (Fig. 43). The matrix has a grey to pink colour (Fig. 42 and 43). 

Two intervals of this facies have been recognized in the log RITF-3 (Tab. 1 

and Fig. 11), one interval in the log RITF-1 (Fig. 10) in a contact with a 

sandstone and the last interval in the log RITF-4 (Fig. 12) between a 

sandstone and the breccia at the base. The clasts are granite-gneissic rock 
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fragments, and are usually medium- to coarse-foliated and largely 

recrystallized, consist of quartz, feldspar and minor amount of micas, chlorite;   

III       Soft sediment deformed sandstone – fine grained laminated sandstone (laminae 

from 0,6 cm to 0,8 cm in thickness) where horizons with convolute 

lamination occurs (Fig. 18B). There are two 0,5 m thick intervals of this 

sandstone in the log RITF-4 (Tab. 1 and Fig. 12) where the erosional 

surfaces occurs, at the base and top (Fig. 18B); 

IV       Conglomeratic sandstone – this facies represents fine-grained, laminated 

sandstone (laminae thickness from 0,6 cm to 0,9 cm) with some clasts (up to 

pebble-size) at the bottom of units (Fig. 23, a conglomeratic sandstone overly 

the conglomerate unit). The clasts are granite/gneissic rock fragments. The 

conglomeratic sandstone occurs in the log RITF-4 (Fig. 12). There are three 

visible intervals (levels in Tab. 1), which cover the conglomerates (facies I). 

The conglomeratic sandstone beds have depositional inclination of 20 

degrees, gradually decreasing to the structure center. The sheet like beds 

interfinger with sandstone located below. Erosional base is characteristic for 

this facies. Observed sedimentary structures include convolute lamination 

and ripples (Fig. 23; directions of transport – Fig. 26). 

V         Massive sandstone  –   the massive sandstone units with fain lamination (Fig. 

19A). Grain-size is from fine sand to medium sand. This facies occurs in the 

log RITF-4 (Tab. 1 and Fig. 12) and RITF-1 (Tab. 1 and Fig. 10). It is hard 

to see any other structure; 

VI      Low angle cross-stratified sandstone – this facies is fine-grained sandstone 

which contains carbonate cement. Small-scale trough cross-bedding occurs 

in this facies (Fig. 16B and 22). Erosional surfaces are visible at the bottom 

and top of units (Fig. 22). This facies is located in section one, visible in the 

log RITF-1 (Tab. 1 and Fig. 10). The facies has thickness of 1 m, and the 

unit pinch-out to the crater rim (Fig. 22);  

VII        Parallel-bedded sandstone – this facies has been recognized in the RITF-1 

(Tab. 1 and Fig. 10) as very well laminated sandstone (laminae thickness 

from 0,2 cm to 0,8 cm; Fig. 17C). The sandstone beds have a deposition 

inclination of 10-15 degrees. Grain-size is from silt to medium sand. We can 

differentiated two internal units: one is coarsening upwards (5,70 m – 2,65 

m), from silt to very fine grain-size, and the other is fining upwards (2,65 m 



 

 30

– 0,00 m), fine sand to medium sand. In both occur ripples, scour and fill 

(directions of flow – Fig. 26) and mud-flakes layers (1-3 mm thickness). 

VIII      Breccia at the base  –  facies  represents  clasts-supported  breccia. The breccias 

form wedge-shape beds interfinger with the melt rocks (Fig. 27). The breccia 

beds have depositional inclination much smaler then the sedimentary 

breccias (IIa and IIb) up to 10-12 degrees, gradually decreasing to the crater 

center. The sizes of the largest clasts are smaller than the largest clasts in 

breccias of facies IIa, and does not exceed 50 cm. The clasts have angular to 

subangular shapes. The clasts are of the same lithologies as the basement 

gneisses (Riis et al., 2009). They are usually medium- to coarse-foliated and 

largely recrystallized, consist of quartz, feldspar and minor amount of micas, 

chlorite. The clasts exhibit jigsaw puzzle patterns (Fig. 19C). There is very 

little amount of matrix (dark colour) between clasts (less then 15%). This 

facies occurs in the log RITF-4 (Fig. 12) where it overlies the suevitic rocks; 

IX        Suevite – occurs in the log RITF-4 (Tab. 1 and Fig. 12). This facies follows on 

top of crushed basement, but the basement contact has so far not been 

located. The melt rocks form lens-shape beds. The suevites (melt rocks) are 

dark grey to black and fine-grained. Characteristical by twisted and 

elongated melt fragments and angular clasts occur within the very fine-

grained matrix (Fig. 19D). The melt-bearing impactites are exposed within a 

small area, central in the structure (Fig. 9). Within this area the outcrops 

indicate a rather thin (few meters), but at least for some distance (less than 

200 meters), continuous unit (Kalleson, 2010). At the top of this facies there 

is a thin layer of darker material with black matrix. The suevite is eroded at 

the contact with the overlying breccias (Fig. 27, right).     

5.3 Facies associations 

Facies which are environmentally related have been grouped into facies associations. 

The relation between facies associations, as well as facies themselves, will help in building 

depositional models. The subdivisons in facies associations are based on stratigraphical position 

(Fig. 15). 

 Facies association 1 – Sedimentary breccia (IIa), Sedimentary breccia (IIb), 

conglomerate (I), Soft sediment deformed sandstone (III), Conglomeratic 

sandstone (IV); 
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 Facies association 2 – Massive sandstone (V), Low angle or cross-stratified 

sandstone (VI), Parallel-bedded sandstone (VII); 

 Facies association 3 – Suevite (IX), Breccia at the base (VIII). 

 
Figure 15.  The simplified column showing the stratigraphical relation between the facies and the three facies 
associations of the Svodene hill. The main facies are: suevite (melt rocks), breccias at the base, sandstone units 
(parallel-bedded sandstone, low angle cross-stratified sandstone, massive sandstone), conglomerate and 
sandstone units (conglomerate, conglomeratic sandstone, soft sediment deformed sandstone), sedimentary 
breccias (interfingering beds of clast and matrix supported). The maximum stratigraphic thickness observed is 
almost 200 m along the rim of the crater (Riis et al., 2008).   
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Figure 16.  Photos from section (RITF-1). A) massive sandstone with faint lamination (below red, dash line) 
overly by sedimentary matrix-supported breccia (above re, dash line); B) Low angle cross-stratifed sandstone 
within laminated sandstone, with visible basal erosion (see more in Fig. 22); C) a big clast of diameter 50 cm, in 
the sandstone bed; D) scour and fill structure (marked by red arrows) in coaresening-upwards sandstone unit. 



 

 33

 
Figure 17.  Photos from section (RITF-1). A) ripples (marked by red arrows) in a coaresening-upwards unit.; B) 
strings of mudflake (marked by red arrows) in fining-upwards unit; C) fining-upwards sandstone with faint 
parallel lamination. 
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Figure 18.  Photos from section (RITF-4). A) a conglomerate unit (hammer position) between sandstone beds. 
Larger clasts sit on conglomerate bed. Basal erosion visible between each unit; B) convolute lamination (red 
arrow) in stratified sandstone unit; the erosional surface visible (yellow dash line); C) conglomerate eroding into 
sandstone (see also Fig. 25). 
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Figure 19.  Photos from section (RITF-4). A) sandstone with visible faint lamination; B) clast supported breccia, 
with minor amount of matrix; C) weathered surface of suevite exhibit the stratified flow pattern (red arrow); D) 
the suevite with several melt slivers. 
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Figure 20.  Photos of section (RITF-3). A) grain supported, course breccia; B) angular grains of matrix of clast 
supported breccia (photo taken through hand lens); C) clast supported breccia. 
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Figure 21.  Photos of section (RITF-3). A) matrix supported breccia at the top of the Svodene hill; B) matrix 
supported breccia. A few clasts have been eroded from the rock face, appearing as open pits; C) clast supported 
breccia. 
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Figure 22.  Low angle (9 degrees) cross-stratifed, calcite cemented sandstone in the RITF-1 (see in Fig. 9 and 10). In 
upper-right photo erosional base (red, dash line), cross-stratification (yellow lines) are visible, with possible transport 
direction.  

 
Figure 23.  Conglomerate units in the RITF-4 (Fig. 9 and 12), between sandstone beds. Upper photo is a panoramic 
photo of debris flows channels, and a simplified sketch of the photo below. Larger clasts are situated on the top of 
conglomerates. The lamination of sandstone surrounding the conglomerate units is parrallel, but also can be disturbed.  
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5.3.1 Facies association 1 

This association consists of two facies which cover the crushed basement, along the 

crater floor: suevite and breccias at the base (Fig. 12 and 15). The suevite is exposed in the 

central are of the structure (Fig. 9). Within this area the outcrops indicate a rather thin (few 

meters), but at least for some distance (less than 200 meters), continuous unit (Kalleson, 

2010). The outcrop appears as dark, greyish brown colour at weathered surface. The partly 

bedded pattern of melt fragments appears at weathered suevite surfaces. The clast-supported 

breccia appears as one thick bed (about 7 m thick in the RITF-4) where clast-size does not 

exceed one meter. The suevite is found in patches along the crater floor. It has been hard to 

localize the transition zone between suevite and overlying breccia. One site has been found 

where clast supported breccia directly cover melt rocks (Fig. 24, right). The top part of the 

melt rocks unit is eroded and reworked.  In the other place, 1-2 meters below, suevite is seen 

mixed in the breccia (Fig. 24, left). The contact between suevite or breccia at the base and 

crushed basement has not been seen in the field. There are some sedimentary structures in 

these facies e.g. flow structure in the suevite (Fig. 19C). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24.  Photo (left) shows the boundary (yellow, dash line) between suevite (above yelllow line) and 
postimpact sedimets (below yellow line). Characteristic flow structures in suevite above the hammer head, and 
slightly wavy shape of the boundary between the two facies are visible.. Photo (right) indicates another border 
(red, dash line) between suevite (below red line) and braccias (above red line). This two places on photos are 
separated by 1 m in stratigraphic column. The positions of  photos are marked in Figure 9 and 12, in the RITF-4. 
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5.3.2 Facies association 2 

 
The facies association includes the sandstone units in the RITF-1 and the RITF-4, with 

total thickness of 15 metres in both cases (Fig. 15). The massive sandstone (RITF-4: 18,30 m 

– 17,65 m; 16,00 m – 11,00 m and RITF-1: 14,80 m – 8,80 m; 7,70 m – 5,70 m) displays an 

erosional contact with breccia/conglomerate (facies association 1) above (Fig. 26 and 27). The 

individual beds represent thick, laminated sandstone units. Average grain-size is medium sand. 

A large clast (~30  cm in diameter) was found in one of the sandstone beds (RITF-1: 7,00 m – 

7,35 m; see Fig. 16C). The low angle, cross-stratified sandstone (RITF-1: 8,80 m – 7,70 m) is 

well carbonate cemented. The carbonate cemented sandstone pinch-out to the crater rim and is 

increasing in thickness towards the crater center (Fig. 22). The parallel-bedded sandstone 

displays coarsening upwards development (RITF-1: 5,70 m – 3,30 m) and fining upwards 

development (RITF-1: 3,30 m – 0,00 m). The fining upwards units have grain-size from silt to 

very fine sand, and the coarsening upwards units have grain-sie from fine sand to medium 

sand. Ripples (Fig. 17A), mudflakes (Fig. 17B), scour and fill (Fig. 16D) are present in both. 

Strikes from different sandstone beds and sedimentary structures, from facies association 1 

and 2, are presented in Figure 25 and Appendix 1. The conglomerate beds and sandstone beds 

in the RITF-4 have strike lines along the W-S axis. The sedimentary structures in the RITF-4 

have slightly different trend, with strikes from 2600 to 2900. The sandstone beds in the RITF-1 

have strikes from 2100 to 2300. Strikes of the sedimentary structures range from 2300 to 2500, 

and some have strike 2800-2900. 
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Figure 25.  An aerial photo with crater margins marked by yellow circle. Red dots show places where 
measurments of strikes have been taken (26 - the total number of measurments, see Appendix 1). Below the 
photo rose diagrams with measurments taken from the RITF-1 and RITF-4. 

5.3.3 Facies association 3 

Thick packages of breccia, conglomerates and sandstones from the upper succession of 

the Svodene hill (Fig. 15). The top most part is covered by three matrix supported breccia 

beds (between 43,30 m and 47,85m) which overlie clast supported breccia (Fig. 11 and 21). 

The two conglomerate beds was recognized in the RITF-3 (18,55 m – 17,00 m; 10,00 m – 

7,00 m). They are typically preluded by units of matrix supported breccia. The thickness of 

the breccia beds varies from one meter up to five-six metres. Beds dip (around 24 degrees) 

downslope towards the crater center. Matrix of the conglomerate is brighter grey  than the 

matrix within breccia. In both matrix-supported breccia and conglomerates from the RITF-3 

matrix lamination occur. A transition zone between matrix-supported breccia into sandstone is 

indicated in the log RITF-1 (at 14,75 m depth; Fig. 10). 

Another unit in this facies association consists of intercalated conglomerate and 

sandstone beds (see the log RITF-4, Fig. 12). The two conglomerate beds (20,10 m – 19,40 m; 
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16,60 m – 16,00 m; in the RITF-4) each have thicknesses of 50 cm. The layers contain 

typically subangular clasts within fine-grained matrix. Matrix has very bright grey colour. 

Large clasts (up to 30 cm) sit on these beds (Fig. 23). Conglomerates are surronded by 

conglomeratic sandstone beds  (21,25 m – 20,10 m; 19,40 m – 18,65 m; 17,65 m – 16,60 m). 

The boundaries between them are sharp (erosive). The sandstone is finally laminated and 

convolute lamination occurs along the base of each bed. There are thin beds of soft sediment 

deformed sandstone (21,70 m – 21,25 m; 18,65 m – 18,30 m). All of these beds are 

characterized by erosional surfaces. This sequence ends up at place where conglomerate is 

dipping into the sandstone. This transition zone starts another facies association (No. 2). 

 

 

Figure 26. Left: The breccia (above line)-sandstone 
(below line) contact zone marked by the author (red, 
dash line). This is the boundary between facies 
association 2 and facies association 3 (see also Fig. 
10 and 15) 
 

 

 

 

Figure 27. Right: The conglomerate (above line)-
sandstone (below line) zone marked by red dash line, 
an erosional surface. The sandstone bed gently 
deeping (10 degrees) towards the crater center, and 
overlying conglomerate eroding into this sandstone 
(dip-22 degrees). This is the boundary between facies 
association 2 and facies association 3 (see also Fig. 12 
and 15) 
 

6. Mineralogical and petrographical description 

In the following chapter mineralogical and petrographical descriptions are presented, 

based on thin section studies and bulk mineral analysis by XRD. 

6.1 Thin section analysis 

This chapter will present results from basic approaches to the quantitative analysis of 

thin sections: visual comparison of petrographical properties and point counting (the results 

from point counting of minerals are presented in Appendix 3), and their petrographical 
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properties. A complete sample list of thin sections with description and the results of point 

counting are presented in Appendix 4, and their position within the stratigraphic succession 

(logs) are in Figure 10, 11 and 12. 

6.1.1 Thin section analysis of samples from facies association 1 

 
Three thin sections from this facies association have been studied. The samples taken 

from suevite (the samples: RITF-4-2-09 and RITF-4-4-09) and are characterized by angular 

clasts of quartz, plagioclase and gneissic rock fragments within very fine-grained matrix (Fig. 

28B). The matrix colour is light grey but from the sample from uppermost part of suevite is of 

black colour (black matrix). The brownish shard shape particles of alterated melt (glassy or 

recrystallized particles, 0,2 mm – 0,8 mm in size) are floating within the matrix (Fig. 28B). 

The samples taken from the melt rocks display the flow texture. The biotite flakes and fine-

grained aggregates are partially replaced by chlorite (from green to blue colour). A minor 

amount of calcite cement occurs in the sample (RITF-4-2-09, see Appendix 3). Some 

accessory minerals have been found (zirkon, epidote). 

The thin section of breccia (the sample RITF-4-1-09) contains angular to subangular 

grains (up to 4-5 mm in size) of quartz, plagioclase and gneissic rock fragments (Fig. 28A). 

There is a small amount of very fine-grained matrix between clasts. A brownish melted 

particle has been found (Fig. 28A; the type as in the suevite). In the thin sections of the 

breccias significant amount of calcite cement are visible (almost 8 %). Just a few heavy 

minerals were observed. The metamorphic mineral occurs in several samples (chlorite, 

actinolite). Actinolite needles are up to 2 mm long.  



 

 44

 
Figure 28.  Thin section photos from facies association 1: A) plane polarized light view (left) and crossed 
polarizers view (right) of breccia at the base (the sample RITF-4-1-09). Red arrows indicate the brownish shard 
shape particles (melt?); B) plane polarized light view of the sample RITF-4-2-09. The suevite consists of matrix 
(Mx), shard shape particles of alterated melt (M), the rock fragments (C). 

6.1.2 Thin section analysis of samples from facies association 2 

Eight thin sections from this facies association (FA2) was studied. The fining upwards 

sandstone developments (the samples: RITF-1-1-09 and RITF-1-2-09) have angular grains in 
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sizes from silt to very fine sand (0,04 – 0,1 mm). Smaller grains are elongated. The grain 

contacts seem to be regular. Grains are tightly compacted with clay cement between. The 

sandstone is well sorted. Distinct parallel lamination is visually apparent (thickness of 

laminae 2 mm) (Fig. 31A). There is larger amounts of quartz in this sandstone than in 

coarsening-upwards successions, in this facies association (quartz/feldspar ratio is 0,5). The 

quartz grains are mostly monocrystalline. Biotite is the most abundant of the micas, but 

muscovite is also present. Some of the biotite flakes has been replaced by chlorite. 

The coarsening upwards sandstone developments (the samples: RITF-1-6-09 and RITF-

1-7-09) is seen in the thin sections as a fine laminated sand (Fig. 30B). The sample can be 

subdivided into two layers (Fig. 29). Layer 2 represents a very fine sand laminae (<1-2 mm) 

and consists of a thin, from fine- to medium- size sand beds (>5-8 mm), sometimes 

alternating with mud laminae. A few mm of cross-lamination is developed in layer 1. Larger 

grains in layer 1 are floating within a matrix. In both layers the sorting is good. The 

quartz/feldspar ratio is 0,35. 

 
Figure 29.  Sample from the coarsening upwards sandstone development (the sample RITF-1-6-09) with ripple 
drift lamination. 

The two samples from the low angle cross-stratified sandstone (the samples: RITF-1-3-

09 and RITF-1-4-09) are different from the rest. Mainly due to a very high calcite cement 

content. Microscopically, this rock is composed of sparitic calcite cementing (45–52 % of 

total), feldspar (plagioclase and K-feldspar – 28-34 % of total) and quartz (10-14 % of total). 

Subrounded clasts of mainly monocrystalline quartz and feldspar occur. The sandstones are 

fine to very fine in average size (~0,15 mm) and moderately sorted. The framework grains 

display a floating grain-fabric, indicating an early stage of cementation or a non-prevalence of 

deep burial (Pettijohn et al., 1987). Significant amount of biotite occur in the sample (8 % of 

total). The biotite grains are elongated and have preferential orientation, perpendicular to 
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calcite fractures (Fig. 31A). The same pattern is seen in other mineral grains such as quartz. 

The biotite flakes are partially replaced by chlorite. Calcite fracture filling structures appear in 

the sample (Fig. 30C). Grains are deformed by these structures. No fossil fragments have 

been observed. 

The thin sections of the massive sandstone beds (the samples: RITF-1-5-09 and RITF-

1A-1-09) display grain-supported texture. The grains have angular to subangular shape, with 

an average grain-size of medium sand (~0,25 mm). The biggest grains have size 0,85 mm. 

This sandstone is poorly sorted and has good/moderate porosity (Fig. 30D). Minor patches of 

calcite cement occur in one sample (Fig. 32/B1). Carbonates are connected with open 

fractures, presently not filled with cement, although in the other sample, from the same facies, 

fractures are filled with calcite (Fig. 31/B2). Minor amount of accessory minerals (e.g. zirkon) 

have been found (<1 % of total). 
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Figure 30.  Thin section photos from facies association 2: A) the sample RITF-1, the fining upwards sandstone 
development exhibit very fine laminae (plane polarized light view); B) plane polarized light view of the sample 
RITF-1-6-09, the coarsening upwards sandstone development; C) crossed polarizers view of the sample RITF-1-
3-09, the calcite cemented sandstone, the two parallel fractures filled with calcite are visible; D) the sample 
RITF-1A-1-09 of the massive sandstone. 
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Figure 31.  Thin section photos from facies association 2: A) crossed polarizers view of the calcite cemented  
sandstone (the sample RITF-1-4-09). The elongated grains exhibit preferential orientation; B1) crossed 
polarizers view of the sample RITF-1A-1-09. The massive sandstone with areas of calcite cement (indicated by 
the white, dash line; B2) the sample RITF-1-5-09 of the massive sandstone. The fracture is filled with calcite.  

6.1.3 Thin section analysis of samples from facies association 3 

Nine of the studied thin sections belong to facies association 3. Four samples studied 

from the RITF-3 (the samples: RITF-3-2-09, RITF-3-3-09, RITF-3-4-09 and RITF-3-6-09) 

have angular to subangular shape of clasts and poor sorting. The matrix is characterized by 

angular grains and moderate to good sorting. The matrix grains are from medium sand to 

coarse sand. In thin sections grains of quartz (mostly monocrystalline), plagioclase, 

microcline and gneisic rock fragments were found. Fractures occur in larger clasts/grains and 

some minor fragments have been detached (Fig. 32/A2). In the sample RITF-3-3-09 

significant amounts of calcite cement occur (11% of total; see Fig. 32/A1). Larger biotite 

flakes are visible in the thin section. These are bent and deformed between other clastic grains. 

Sericite aggregates have replaced plagioclase during sericitization (Fig. 32C). Some accessory 
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minerals have been found (e.g. zirkon, epidote). Low-grade metamorphic minerals occur in 

minor amount (<5 % of total): chlorite, actinolite, stilphnomelane.   

The conglomerate from facies association 3 (the sample RITF-4-8-09) consist of 

subangular grains within moderate sorted matrix. The matrix is laminated with fining upwards 

development (Fig. 33B). Average grain-size is 0,1-0,18 mm. The abundance of feldspar is 

much larger than quartz; the quartz/feldspar ratio is 0,25. Significant amount of biotite occur 

in the conglomerate units (up to 20 % of total). Biotite flakes are elongated and oriented 

parallel to the bedding plane. The mineral characteristics indicate the greenschist facies 

(chlorite, actinolite). Sericite has replaced plagioclase. 

The conglomeratic sandstone beds (the sample RITF-4-7-09) consist of grains with 

average size of 0,2 mm. The grains have angular to subangular shape. It is a grain supported 

sandstone with angular clasts (Fig. 33A). The grains are 0,2 mm in size and poorly sorted. 

Strong compaction occur. Minor amount of carbonate cement was found in the sample. 

Biotite flakes occur in big number (12 % of the total). Some of them have gradually replaced 

by chlorite. The quartz grains are normally monocrystalline.  

The sandstone beds, where convolute lamination occur (the sample RITF-4-6-09), 

display elongated with grain-size of 0,15-0,2 mm. The sorting is very good (Fig. 33C). Matrix 

has brown colour. There is significant amount of biotite/chlorite in the sample (22 % of total). 

Actinolite needles occur (up to 3 mm). The quartz abundance is relatively high compared to 

the other samples in facies association 3 (quartz/feldspar ratio ~0,7) and quartz grains are 

mostly monocrystalline. 
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Figure 32.  Thin section photos from facies association 3: A1) crossed polarizers view of the sedimentary 
breccia (the sample RITF-3-3-09); A2) plane polarized light view of the sample RITF-3-3-09. The smaller 
fragments (a) are detached from the fractured, bigger fragment of the rock (A); B) crossed polarizers view of the 
sample RITF-3-6-09. The matrix supported breccia. The two layers with different grain-sizes: medium sand 
(below white, dash line) and fine sand (above white, dash line); C) plane polarized light view of the sample 
RITF-3-2-09 from the sedimentary breccia. The two bigger clasts at the top of the photo within the matrix. The 
feldspar grains in the clasts are partially replecated by sericite (the strings cavities in the clast – in the upper left 
corner). 
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Figure 33.  Thin section photos from facies association 3: A) crossed polarizers view of the conglomeratic 
sandstone, poorly sorted (the sample RITF-4-7-09); B) crossed polarizers view of the conglomerate (the sample 
RITF-4-8-09), with moderate sorting; C) plane polarized light view of the sample RITF-4-6-09, the soft 
sediment deformed sandstone with good sorting. 

6.2. X-ray diffraction analysis 

X-ray diffraction analysis (XRD) was used to qualitatively and semi-quantitatively 

determine the mineral content in the bulk. The semi-quantification is based on the bulk runs 

and the contents on selected peaks. The peak area derives from summing the counts above the 

background within the interval determined by peak borderlines. A complete sample list of of 
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XRD bulk data is presented in Appendix 2 and Figure 35. In addition, their position within the 

stratigraphic succession (logs) are indicated in the sections: RITF-1 (Fig. 10), RITF-3 (Fig. 11) 

and RITF-4 (Fig. 12). 

6.2.1    Facies association 1 

Two rock types with different properties: breccia and suevite have been grouped  in FA3, 

this great difference in composition is reflected in the XRD analysis. The sample taken from 

the breccia (the XRD sample RITF-4-1-09) consists of feldspar, which is the most abundant 

mineral in the bulk 65 XRD%, calcite 8,5 XRD%, chlorite 7,5 XRD% and quartz 7 XRD%.  

The XRD results from melt rocks analyses (the XRD samples: RITF-4-2-09 and RITF-

4-4-09) are totally different from all the others (Fig. 37).  The quartz/felsdpar ratio stand at the 

level of 0,41 (Fig. 34). A significant content of dolomite 5,5-8,5 XRD% has been detected. 

Calcite is also present in one sample – 5,5 XRD%. The biotite and chlorite content is varying 

between 4-17 XRD% (biotite) and 1-7 XRD% (chlorite). 

6.2.2   Facies association 2 

Four different types of sandstones (see Fig. 15) will be disscused in this chapter: fining 

upwards sandstone (the XRD samples: RITF-1-1-09 and RITF-1-2-09), coursening upwards 

sandstone (the XRD samples: RITF-1-6-09 and RITF-1-7-09), the low angle cross-stratified 

sandstone (the XRD samples: RITF-1-3-09 and RITF-1-4-09) and the massive sandstone (the 

XRD samples: RITF-1-5-09, RITF-1A-1-09 and RITF-1A-2-09). 

The quartz content in the fining upwards sandstone units is even higher than in 

coarsening-upwards one. The quartz contributs to 13-15 XRD% of the total. It is the highest 

amounts of quartz in all samples studied (Fig. 37). Feldspar is still dominating with an 

average 58 XRD%. Biotite display low contribute (1-3 XRD%) but chlorite content is 

significant varying between 6-13,5 XRD%. Actinolite is also active with an average 5 XRD% 

of the total. 

The quartz content, in the sample from coarsening upwards sandstone, is from 6 to 11 

XRD%. In these samples felsdpar is the most abundant mineral, contributing with from 68 to 

82 XRD%. High values of actinolite (an average 4 XRD%) and chlorite (5 XRD%) are 

present. Calcite content is very low compare to adjoining beds – below 1 XRD%. 

The low angle cross-stratified sandstone has a different composition. In the samples 

calcite is the dominating mineral with value of 65 and 49 XRD% (Fig. 37). Feldspar 
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contribute with 23 and 35 XRD%, while the quartz content is 3 XRD%. Mica (mostly biotite) 

is making up 4,5 XRD%.  

Feldspar is dominating in the massive sandstone, an average content of 77 XRD% of the 

total (Fig. 37). Quartz contribute with an average 7 XRD%. The chlorite content in these 

analyses is about 7 XRD%.  

6.2.3     Facies association 3 

The XRD values of sample from the conglomerate (the XRD sample RITF-4-8-09 of the 

section RITF-4) are different. In this sample feldspar content is similar 72 XRD%, but with 

different proportion between K-feldspar and plagioclase (respectively 35 and 37 XRD%). The 

calcite content is making up 11 XRD% of the total. The quartz content contribute 4,5 % 

XRD%. 

The two samples taken from conglomeratic sandstones (the samples: RITF-4-3-09 and 

RITF-4-7-09) contain an average feldspar content of 80 XRD% of the total (Fig. 37). Quartz 

contribute on the average 4 XRD%. From metamorphic minerals chlorite is dominating with 

an average 7,5 XRD% (Fig. 36).  

The main two minerals in the soft sediment deformed sandstone (the XRD sample 

RITF-4-6-09) are feldspar (68 XRD%) and quartz (10 XRD%). Biotite contributes 4,5 XRD% 

of the total and chlorite twice as much. 

The XRD results from the sedimentary breccias (the XRD samples: RITF-3-1-09, RITF-

3-2-09, RITF-3-3-09, RITF-3-4-09 and RITF-3-5-09 of the section RITF-3) are different due 

to clasts content in the bulk. The most abundant mineral is feldspar. Samples have average 

feldspar content of 74 XRD% of the total (Fig. 37). Biotite content is varying between 28 

XRD% (matrix poor sample) and 3 XRD% (matrix rich sample). Quartz is also varying 

between 9 XRD% (more matrix in breccia) and 4 % (less matrix in breccia). In one of the 

samples calcite is contribute with 13 XRD% of the total (more matrix in sample). The rest of 

samples do not display significant amount of this mineral. 

In the matrix supported breccia (the XRD sample RITF-3-6-09) on the top of the 

succession of the section RITF-3 K-felsdpar dominate almost 57 XRD%. The second most 

abundant mineral in the bulk is plagioclase which has 21 % XRD of the total. The quartz 

contribute with 11 XRD% of the total. The mica content in this sample is very low, less then 

0,5 XRD%). The same with calcite which contribute with 1 % of the total. Metamorphic 

minerals are abundant in the sample but only actinolite has significant amount 5 XRD% (Fig. 

36).  
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In the samples analyzed from this facies association pyrite contribute with low value 

(less then 0,5 XRD%). The feldspars dominate in all analysed samples. Chlorite content is 

highest in the samples from deeper in stratigraphic column. In the two samples (sedimentary 

breccia – RITF-3-3-09 and conglomerate – RITF-4-8-09) significant calcite content appear 

(~10 XRD% of the total). 

The quartz/feldspar ratios have been calculated from both results of XRD analyses and 

thin sections point counting. The blue curve (XRD analyses) follows the trends of the red 

curve (point counting) but they display different values/levels. Several factors influence on 

this among others: 

 in the XRD analyses not the highest intensity of quartz was used (35 % - in this 

peak mineral phase onlaping does not occure); 

 samples taken for XRD analysis contained more clasts (enlarge number of 

feldspar); 

 in the X-ray diffraction method the quantitative information of the feldspar 

content in the bulk is highly disturbed by different minerals peaks onlaping; 

 in thin section some of feldspar twinning could be recognized as quartz grain; 

 the matrix composition cannot easily be recognized by microscopic investigation 

of a thin section due to optical resolution. 

Quartz/feldspar ratios show some variable trends in the facies associations (Fig. 34). The 

trend in the FA3 is slightly varying to constant (seen in XRD analyses). The FA1 and FA2 

show the upwards decreasing quartz/feldspar ratio (seem in both XRD analyses and thin 

section point counting). On the boundaries between facies associations abrupt changes in the 

quartz/feldspar ratios are visible. According to the XRD analyses the quartz/feldspar ratio 

reach the highest value in the suevite and the lowest in the conglomeratic sandstone, 

conglomerate and breccia (all from the facies association 1). Point counting shows the higest 

quartz/feldspar ratio in the soft sediment deformed sandstone (facies association 1) and 

suevite (facies association 3). The lowest values for this method are in the massive sandstone 

(FA2) and conglomerate (FA1). 

In all samples the XRD analyses show the metamorphic minerals (chlorite, actinolite 

and stilpnomelane) content is upwards decreasing in the stratigraphical column (Fig. 36).  The 

quartz content reveal the same trend in the stratigraphical column, but the biotite content is 

upwards increasing (Fig. 37). 
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Figure 34.  The graph shows quartz/feldspar ratios calculated from both results of XRD analyses and thin 
sections point counting. The vertical column with facies is a composite simplified stratigraphical column. The 
red arrow between the sample names indicates an interval. 
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 Figure 35.  All minerals from bulk analysis (from all three sections: RITF-1, RITF-2 and RITF-3). 
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Figure 36.  Blue curve: the total amount of the metamorphic minerals (chlorite, actinolite and stilpnomelane) of 
all samples (XRD%). Red line: a trend line (the average amount of the metamorphic minerals in the bulk). The 
x-axis represents a stratigraphical column (from left to right). 
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Figure 37.  The amounts of minerals of different lithologies in a stratigrapical column (XRD% of total). The 
facies are grouped into facies associations (red, dash line marks border between FA). The feldspar is K-feldspar 
and plagioclase, and other minerals represent stilpnomelane, siderite, pyrite, chlorite, quartz, dolomite and 
actinolite. 
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7     Lidar acquisition data 

Lidar image visualization and interpretation was performed by applying the 3D 

visualization software (Buckley, 2008). 

The Lidar image covers most of the outcrop of the west face of the Svodene hill (Fig. 9 

and 38). The 3D model is a composition of the measured Lidar points (proccesed by software) 

and photo (taken by a camera) (Fig. 38). Due to shifting weather conditions, solar radiation at 

different angles of incidence, and wet rock walls the image consists of areas with different 

contrast indicating differences in composition. One of the most striking observations is that 

the upper part of outcrop (Fig. 39; above red, dash line) has weathered surface and the lower 

part (below red, dash line) is smooth. On the weathered surface breccia beds are visible but it 

is difficult to follow each bed laterally. There are bands on the wall crossing breccia beds at a 

low angle (red, dash lines). The bands are tens of centimeters to tens of metres in width. The 

bands occur only on weathered surface. Closer investigation of the 3D model brought more 

details about breccia deposits. In Figure 39 we can see poorly sorted sediment.   

 
Figure 38.  The 3D model of part of the outcrop (the Svodene hill). It is a mosaic of the plane of the rock 
outcrop (bright grey area) and photos. The surface model is constructed by applying a skin (photos taken by 
camera) over the Lidar points. The model shows weathered surface (coarse surface visible on the bright grey 
plane), and breccia beds (pointed in Fig. 39). Vegetation has green colour in the 3D model. Most of vegetation 
was cut out during processing (black area). 
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Figure 39.  The 3D model (up) of the west face of the Svodene hill (see Fig. 9). The sediment beds are visible (dip direction – yellow, dash lines) and the bands (dip direction 
– red, dash lines). The weathered rock surface (lower left corner) and the smooth rock surface (lower right corner) both show poorly sorted breccia deposits.  
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8     Discussion of data and deposition models 

The post-impact deposits in the Ritland impact structure refer to different sedimentation 

processes. Steep crater walls and large amounts of impact material favor gravity controlled 

sedimentation during during the so-called impact modification stage. Subsequently, 

suspension deposition of fine-grained material took place, when water filled the crater. 

 In this study, gravity flows are classified according to Mulder and Alexander (2001), 

who took physical flow properties and sediment-support mechanism into consideration. Gani 

(2004) developed a classification based on four parameters: 1) sediment concentration, 2) 

sediment-support mechanism, 3) flow state and 4) rheology. According to this classification 

the gravite (all gravity controlled sedimentation processes) are subdivided to: debrite, densite 

and turbidite (Fig. 40).  This classification will also help to describe different sedimentation 

processes, which took place in the Ritland structure.  

 
Figure 40.  The lithologic models for gravity flows deposits: (A): cohesive debrite; (B-C): non-cohesive debrites; 
(D-F): densites; (G): turbidite (Bouma sequence); (H): turbidite (deposit of hyperpycnal flow) (Gani, 2004). 

 

In description an discussion of post-impact sedimentation it is important to define the 

impact location on land or in water. The Ritland crater was most likely a terrestrial impact 

structure (Riis et al., 2009). In the case of a marine impact we would expexted larger amount 

of clay or marine fossils. Discussions of several other marine impact structures, such as 

Mjölnir crater, Norway (Dypvik and Jansa, 2003; Dypvik et al., 2004; Dypvik et al., 2006); 

Kärdla crater, Estonia (Puura and Suuroja, 1991; Suuroja et al., 2001); Flynn Creek crater, 

USA (Schieber and Over, 2005) and Lockne crater, Sweden (Dalwigk and Ormö, 2001), 

include such evidences. No indentifications of clay/shales or fossils have been founded in 

impactite samples from the Ritland crater.  

In case of marine impact a possible resurge of seawater should in short time after impact 

break through the uplifted rim wall of the crater, trap and incorporat fractured lithologies from 
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the sea-floor (Dalwigk and Ormö, 2001). Such events favor extreme turbulence allowing for 

short term suspension transport of pebble-size particles (Nicols, 1999). Turbulence allow the 

coarser particles to settle early, and fine-grained material settled last (Boggs, 2006), we 

should expect graded top of breccia (Schieber and Over 2005) in the facies association 1, but 

it does not occure. The flash water flood should had left another imprint as resurged gullies6 

cut accros the rim (Dypvik and Jansa, 2003). During the last fieldwork and previous (Riis et 

al., 2009) such erosional features were not found. Luck of these evidences makes the marine 

impact origin of the Ritland structure less likely. This needs more investigation.  

8.1    Lower succession – suevite and breccia at the base 

The lower succession is deposited in the early stage of post-impact sedimentation, 

seconds after impact. This succesion represents the facies association 1. 

8.1.1     Suevite 

The suevite consists of melt fragments, angular-shaped clasts (gneissic rock fragments) 

within fine-grained matrix. The newly excavated rock fragments were trapped in melt 

material before its solidification. It indicates short and rapid process of deposition, mixing 

melts with material derived from crushed basement. The brownish shard shape particles of 

alterated melt (Fig. 28B), recrystallized minerals and shock quartz Fig. 3) indicate the target 

rocks experienced very high temperature and pressure due to the impact (Koeberl, 2006). The 

suevite contains relatively large amount of quartz in rock samples (Fig. 37), reflecting high 

temperature and high pressure alteration of rocks during impact (Grieve et al., 1996). Quartz 

is more resistant mineral to such extreme conditions than feldspar. This reflect relatively high 

quartz/feldspar ratio of suevite (Fig. 34). 

The stratified flow patterns of melted rocks in the Ritland structure clearly appear at 

weathered suevite surface (Fig. 19D). The impact melt deposits on crater floor could be 

distributed as (1) smooth dark pools of material perched on terrace ledges and (2) lavalike 

flows with and without well-drained channels and levees (Kessler and Bedard, 2000). It is 

difficult to see these structures in the Ritland crater. Macroscopic flow features in the suevite 

indicate that the material was molten and behaved in a fluid manner at the time of 

emplacement (Howard and Wilshire, 1975). In cratering events decompresion during the 

excavation stage, may allow opening of fractures within the crater floor and walls (Dressler 

and Sharpton, 1997), consequently molten material can use these fractures as channels or/and 

                                                 
6 The resurged gullies are erosional features cause by the erosional force of the resurging sea water after the 
impact.   
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small depresions along with. Ballistically ejected material (melt rocks, rock fragments) from 

the crater along with material displaced by plastic flow towards the crater center may move 

like epiclastic volcanic debrites (Kessler and Bedard, 2000). Often impact melt rocks occur as 

bodies of rock crystallized from melt material in the form os sheet-like masses, in the crater 

center and on the crater terraces. This could refer to the Ritland structure where the melt rocks 

was found in few places as lenses of melt rock body (Fig. 44/1). 

The suevite was eroded and reworked (at the top of the unit) by the overlying breccia 

(Fig. 27, right). Consequently the collapse time of the crater rim is short, compared to the rate 

of sediment accumulation (Settle and Head, 1979; Melosh and Ivanov, 1999). In other sites 

the boundary between suevite and post-impact sediments is unlear (Fig. 27, left). Impact melt 

solidification is a complex process (Koeberl, 2006). The studies of the Manicouagan melt 

sheet was aiming at better understanding of character and way of deposition of melt rocks 

(Onorato et al., 1978). According to this investigation the temperature drops down to liquidus 

in about 100 seconds. Thereafter impact melt viscosity increases, explaining why larger clasts 

may be trapped before they reach the melt pool base (Melosh and Ivanov, 1999). This how it 

looks like in the field, in the Ritland structure (Fig. 27, left). This phase of formation may 

define a reasonable time limit for crater collapse. From numerical calculations and laboratory 

experiments Melosh and Ivanov (1999) estimated time of gravity collapse to range from 10 to 

30 seconds (for craters in diameter range 10 to 100 km). Comparing this estimate to time for 

melt solidification, it can be seen that the crater rim will have enough time to collapse. The 

absolute time of melt solidification is probably much longer – Melosh and Ivanov (1999) 

suggest several minutes. This information may be reflected field work observations in the 

Ritland structure, but additional suevite outcrops have to be found, in order to recontruct the 

complete early post-impact processes of deposition. This can be problematic to resolve in 

Ritland, both sure points of the suvite can be covered by lakes, and that most of the facies was 

eroded. Suevite is less resistant to erosion than the Precambrian target rocks (Dressler and 

Sharpton, 1997). 

8.1.2    Breccia at the base 

An allochthonous, clast supported breccia at the base represents the very first 

silliciclastic deposits in the Ritland impact structure. The dominance of angular, poorly sorted 

clasts of local origin and a relative high feldspar content relative reflects the short transport 

(Fig. 19C). In addition absence of clay minerals reflect freshly crushed and unweathered 

rocks making up the breccia at the base. Clasts composition in breccias of facies VIIIa is 
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comparable to the crushed basement composition, showing that the main sediment source for 

these gravity flows deposits were the fractured bedrock (Fig. 37). The steepest part of the rim 

which collapsed into the crater bowl produces lenses of crushed rock (Fig. 44/2). Deposition 

of this facies most likely took place during subaerial conditions. The absence of red iron oxide 

staining in sediments, is integreted to be the result of rapid deposition from avalanches. The 

sediments were not exposed to weathering for a long time. 

Most likely a few seconds after impact the steepest part of the rim collapsed into the 

crater, producing lenses of crushed rock (Melosh and Ivanov, 1999). The failure of the crater 

rim happened due to mechanical instability of the cavity walls under the influence of gravity 

(Quaide et al., 1965; Gault et al., 1975; Melosh, 1977). The cater rim slid down along owned 

failure surfaces, approximately parallel to the initial cavity rim (Settle and Head, 1979). The 

initial product of  impact is a cicular, bowl-shaped cavity with a depth/diameter ratio in the 

range from 1:5 to 1:4 (Melosh and Ivanov, 1999). Due to gravitional instability and collapse 

the crater suffered further modifications. These may include slumping of the crater walls as 

landslides, rock avalanches etc. Melosh and Ivanov (1999) claim wall slumping to be the 

main modification process for simple crater. According to Kessler and  Bédard (2000) the 

rock avalanches are large rock masses moving rapidly downslope, generating poorly sorted 

deposits, of angular-shaped particles, a mixture of megablocks, boulders, gravel and cobble-

size fragments. Smaller particles like sand and mud are present minor amount in these 

mixture. The field observations of the breccia at the base match to these characteristics.   

This sedimentary breccia unit of material which moved in several direction, inward and 

outward, reflects sediment mixture of rock fragments and melt rocks. The suevite appears as 

minor patches in the terrain, and not covering whole crater floor (Fig. 13). In the Ritland 

structure suevite is interfingering with breccias at the base (Fig. 27). Melt rock may cover the 

crater basement and even fill fissure, cracks, pockets etc. Rock slides and avalanches may 

have eroded part of the melt, even before it has completely solidified. Reworked melt 

particles habe been found in the breccia at the base (Fig. 28A). The reworked melt material 

distribution in the breccia lens suggests it being formed at the early stage during the crater rim 

failure (Grieve et al., 1977). The crater rim collapse produced several rock slides and rock 

avalanches prograding along crater floor and eroding the newly formed melt rock deposits. It 

can also indicates that the crater rim failure happened very fast after the impact, in order to 

mix breccia at the base with melted rocks.  

The maximum clast-size of the breccia at the base (<50 cm; facies association 1, see Fig. 

15) is smaller than the maximum clast-size of the sedimentary breccia (<2 m; facies 
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association 3, see Fig. 15). It may be explained by shock wave propagation in the target rocks 

after impact. Kinetic energy is spent ejecting material and forming accomodiation space. The 

energy is transformed to the rock causing its melting and vaporizing (Melosh and Ivanov, 

1999). Ejected material will fall down and even into the crater and its surroundings. In the 

field crushed basement looks heavily cracked. The energy of the shock waves decreases into 

basement and outwards away from the crater rim (French, 1996), therefore intensity of cracks 

increasing up to crater rim (Fig. 41). The most cracked part of crater rim collapse immediately. 

Moreover, there is a minor amount of matrix between clasts in the breccia at the base (Fig. 

19C). This breccias (FA1) is displaced over wider areas than sedimentary breccia (FA1), and 

consequently the clasts are reworked to a larger degree.  

 
Figure 41.  A simplified sketch presents a fragment of the crater basement. The basement is subdivided into to 
units. Unit 1, closer to crater rim, has larger amount of fractures, cracks than unit 2. The first crater rim failure 
happened seconds after impact (unit 1). Subsequently several crater wall failures happened, over longer period of 
time than the first  one. It is difficult to estimate dimension of each unit. Further investigation in needed.  
 

In the Ritland impact structure hydrotermal alteration affected sediments to various 

degrees (Fig. 36). The highest value is seen in facies association 1 (suevie and breccia at the 

base). Biotite has been replaced by chlorite. The plagioclase is mostly strongly altered 

(sericitised). Some of the sediments have much carbonate in their matrices. It may be 

evidence that relatively warm fluids were percolating within the sediments (hydrotermal 

alteration). Many similar observations from impact structures have been described: the 

Gardnos crater in Norway (French et al., 1997); the Ries crater in Germany (Engelhardt, 
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1990); the Rochechouart structure in France (Bischoff and Oskierski, 1987); and others (e.g. 

Boer et al., 1996; McCarville and Crossey, 1996 In Dressler and Sharpton, 1997). Suevite 

exhibit signs of post-breccation recrystalization. Such minerals like: epidot, actinolite, chlorite, 

stilpnomelane are characteristic for the low-graded metamorphism, so-called the greenschist 

facies. Greenschist facies results from low temperature, moderate pressure metamorphism. 

The trend in the post-impact succession of the Ritland structure is upwards decreasing (Fig. 

36). It reflect a burial depth (temperature is higher with depth) and also the rock porosity 

(percolating water influences metamorphism; Chamberlain, 1989).  

8.2    Middle succession – sandstone sub-unit 

The middle succesion is build-up of the suspended sediment distribution in aquatic 

environment. This succesion represents the facies association 2. 

8.2.1     Parallel-bedded sandstone 

Facies VII is represented by several fining- and coarsening-upwards sandstone units. 

Grain sizes ranging from silt to medium grained. Arkosic sandstones are typically present in 

this facies, like most of the fine-grained deposits in the Ritland structure. The parallel bedding 

and parallel lamination, as well as ripple drift lamination indicate suspension flows. These 

features have been seen in the field and under a microscope (Fig. 17C, 29, 30A and 30B). 

Sandstone beds of facies VII are characterized by thin clay and silt laminae interfingering 

with the sand units. This shows short and quiet intervals of sedimentation out of suspension. 

Such sediments succession may represent turbidity current deposits (Stow and Shanmugan, 

1980), however a complete Bouma sequences have not been observed. Repetitions of these 

sequences result in successions dominated by thick silt or sand laminae and thin silt or mud 

laminae. This is comparable to the facies distribution by turbidites, and analogous to the 

distribution of partial Bouma sequences described by Walker (1967) and others (Stow and 

Shanmugan, 1980).  

The sedimentary structures (e.g. ripples, see Fig. 17A), internal lamination and 

migrating ripple lamination in the facies VII indicate periods of tractional movement during 

deposition of the coarser silt grains out of these suspension flows. The structures were 

controlled in part by the nature of flow deceleration (Banerjee, 1977). 

The Ritland impact structure was a small sedimentation basin (~2 km in diameter). A 

space for development of the turbidity current was limited, but there are some examples of 

small depositional basins with fine-grained deposit. Turbidity deposits can be result of 

catastrophic events (e.g. the water resurge), example is known from Swiss lakes (Sturm and 
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Matter, 1978; Kelts and Hsü, 1980; Lambert and Giovanoli, 1988). The hyperpycnal 

turbidities deposited by quasi-steady turbidity currents (Alexander and Mulder, 2001) may 

develop on the steep crater lake margins. It could be continuity of the dense flow (the 

concentrated density flow). The quasi-steady hyperpycnal turbidity currents often develop in 

lakes (reported by Forel, 1885, 1892 in Lake Léman In Mulder and Alexander, 2001). This 

could happen in the Ritland crater filled with water. 

The concentrated density flows travelled downslope in the Ritland structure along 

channels, soon after it past the somewhat depleted the base-of-slope the flow, continued as a 

true turbulent suspension flow (Mulder et al., 1998). Sediments then may have been deposited 

and preserved as coarsening-upwards sequences (Kneller, 1995). The coarsening-upwards 

succesions of facies VII may be related to the progradation of fan lobes and gradual channel 

filling and abandonment (Reading and Richards, 1994) The mineralogical content of the 

upward coarsening sandstones are similar to the upward fining sandstones (Fig. 37), with the 

exception of slightly higher quartz content in the fining-upwards succesion, reflecting further 

reworking of material. It most likely show that these two deposits (both facies VII) were 

derived from the same source. The transition from the concentrated density flows into 

turbidity currents may have taken place on the crater lake margins.  

In one of the samples from the parallel-bedded sandstone of facies VII the ripple drift 

cross-lamination have been observed (Fig. 29). These structures are similar to the low-relief 

bedforms produced experimentally in sands (McBride et al., 1975). They have been termed 

“fading ripples” since they fade out laterally into muddy troughs. Migration of the coarse silt 

ripples over the muddy troughs have produced a somewhat irregular or lenticular 

interlamination of silt and mud. When the flow velocity decreased climbing ripples developed. 

Climbing ripples are common sedimentary structures of hyperpycnal turbidities (Mulder and 

Alexander, 2001). Low-relief, long-wavelength ripples are a third type of cross-lamination 

present. The appears as thinly interlaminated and slightly inclined mud/silt layers (Fig. 29). 

This is similar to the lamination produced experimentally by McBride et al. (1975) in sands, 

although the mechanism may not be the same.  

Crater Lake (USA) may represent a depositional analogue of a impact structure with 

approximate diameter 10 km. Nelson et al. (1986) described thin, fine-grained sediments on 

the crater floor. These turbidites deposits on the basin floor were suggested to have developed 

from debris flows, flowing down the steep rim of crater lake. Many debris flows chutes 

cutting through the Crater Lake rim. These channels are supplied and partially covered by 

unsorted material from rockfalls and debris flows. Underwater investigations showed these 
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subaerial channels to continue below water as pathways for sediment-gravity flows. These 

observations may also explain a shift in depositional processes in the Ritland structure, from 

debris flow into turbidity current. Conglomerate units of facies I (Fig. 23) could be a 

downslope-migrating debris flows which transformed into density flow or/and turbiditic 

current. Mulder and Alexander (2001) theoretically, and Hampton (1972) experimentally, 

described such transformations of density flows into turbidity currents. Facies I most likely 

represents sediments deposited when the water broke through the crater rim. Then water-

saturated sediments started to flow down-slope, as they entered water level of lake the flow 

was disrupted and become turbulent (Middleton, 1966). Hampton (1972) described debris 

flow generating turbidity currents. He claimed the transition from debris flow to turbidity-

current flow to take place by dilution of sediments from the front of the debris flow. The 

sediments are thrown into turbulent suspension, and mix with water to form a turbidity 

current. This may also have been the case at Ritland, where conglomerate units of facies I are 

found close to the steep crater rim (RITF-4, see Fig. 13), while closer to the crater base, fine-

grained sediments were seen. The conglomerate units (RITF-4, see Fig. 23) strikes and strikes 

of other sedimentary structures, e.g. ripple (Fig. 26) indicate the direction of the flow towards 

the place where fine-grained sediments were deposited (RITF-1, see. Fig. 13).  

The mud flakes conglomerates seen in some of sandstone beds (Fig. 17B) may have 

several explanation e.g.: (1) row of mud flakes, probably remnants of the eroded mudstone 

division; (2) synersis cracks, which are shrinkage crack formed under the water in clayey 

sediments (Tanner, 2003); (3) the interstratal cracking; (4) cracking caused by earthquakes.  

Other sedimentaty structures are seen in this facies e.g. a scour and fill structures formed 

as a result of scour by currents and subsequent backfilling as current velocity decreases 

(Shepard, 1969). Covolute lamination is most common in turbiditity current deposits 

(Hampton, 1972), but in the sandstones of facies VII convolute lamination does not occure. 

8.2.2     Low angle cross-stratified sandstone 

The low angle cross-stratifed sandstone are different than surrounding sediments, in 

respect of both mineral composition and sedimentary structures. Low angle (in this case 9 

degrees) cross-stratification could be formed during high-water, where the edges of sandflats 

may be reworked by wave action, resulting in redeposition of low angle cross-stratified sandy 

sediments along coastal areas of the lake (Goldring and Bridges, 1973). Horizontal lamination 

and very low angle cross bedding, which is not burrowed, are common features of the back 

shore, beach crest, and fore shore deposits (Bernard et al., 1958). Evidence of basal erosion 
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(Fig. 22) may indicate changing water level (low- and high-stand) or erosion caused by the 

sedimentological processes activity. 

 Samples from the cross-stratified sandstone contain close to 50% of calcite (Fig. 37). 

The origin of the large amounts of the carbonate cement is problematic. Almost 50% of 

calcite in the rock samples may suggest early diagenese.  

The cross-stratified sandstone with calcite cement may represents a cemented carbonate 

beach (Binkley et al., 1980). Calcite is the most commonest lacustrine carbonate mineral 

(Reading, 1996). Deposition of chemically formed sediments is particularly common in 

closed lakes (Binkley, 1964). The newly formed Ritland crater was most likely an isolated 

lacustrine environment. The pH lake depends on factors such as: a contribution from 

drainage-basin run-off, aerosols and the balance between evaporation and precipitation (Kelts, 

1988). Relatively high pH conditions can be achieved by evaporative concentration of waters 

derived from the chemical weathering of many common rock types (after Eugster, 1970; 

Livingstone and Melack, 1984). White et al. (1999) experimentally proved that vital amounts 

of calcite can be expelled from the fresh granitic rocks due to weathering. One of the example 

is Lake Chad in Africa. Dissolved ions are derived from the weathering of granitic rocks 

(Maglione, 1980). This may favor the beach sediment cementation. 

Many authors (e.g. Binkley and Wilkinson, 1980; Vieira, Sial and De Ros, ????) 

describe a beachrock cementation. They proposed few mechanisms favor such cementation: 

evaporation of ground water in arid climates (Ginsburg, 1953; Russel, 1962) or degassing of 

carbone dioxide from ground water (Hanor, 1978 In Binkley and Wilkinson, 1980). 

Carbonate precipitation may also be caused by heating lake water, leading to carbonate 

supersaturation (Brunskill, 1969). Guerra and Sial (????) claim “High temperatures and rates 

of evaporation on the beach evidently create ideal environments for inorganic carbonate 

precipitation just below the sediment/water interface”.  

Beach rock cementation demand special conditions both geochemical and 

sedimentological. The clastic sediments supply has to be low, then chemical processes 

predominate. Carbonates precipitation may takes place. A rapid and constant sedimentation in 

the first phase of deposition, where steep crater walls and large amount of newly excavated 

impact material favor gravity-controlled sedimentation, prevented chemical processes in the 

Ritland structure. 

In the massive sandstone (facies V), overlying the calcite cemented sandstone (see Fig. 

10), fractures filled with calcite were found (Fig. 31/B2). Carbonates have also been found in 

other facies (in suevite – Fig. 28A, in sedimentary breccia Fig. 32/A1), but in minor amounts 
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(Fig. 37). Calcite cementation may take place during all stages of lithification from early to 

late once and deep burial. To achieve this e.g. pore water highly oversaturated in calcium 

carbonate, preferable high porosity and permeability successions, increase in temperature, and 

decrease in carbon dioxide partial pressure (Friedman, 1964). Carbonate cement from the 

burial alteration consists of coarse mosaics of calcite and bladed prismatic calcite (Boggs, 

2006). It reflects the petrographical properites of samples from the facies VI (Fig. 31A). In the 

Ritland case the carbonates source could be younger sediments, deposited above (e.g. 

Silurian-Devonian). A large amount of carbonates were deposited in shallow seas covering 

“Norway” during the Camro-Silurian, when life on the Earth has exploded (Ramberg eds., 

2008). During burial history calcite from the Silurian-Devonian sedimentary rocks was 

dissolved, subsequently migrating through fracture networks to the rocks burried below.  

A further detailed petrographic and isotopic analysis of the sandstone with calcite 

cement has to be done to determine the origin of these deposits and to identify processes 

responsible for their early? diagenetic alteration. 

8.2.3 Massive sandstone 

The massive beds are well laminated sandstone (Fig. 19A). These beds are massive and 

very thick, compering to the others (RITF-4, see Fig. 12). The massive sandstones appear 

comparable to the dense flows deposits (Gani, 2004). The dense flows (after Allen, 1997) are 

intermediate flow types between debris flow and turbidity current. Various flow names have 

been proposed in explaining the depositional mechanism of dense flow deposits (Fig. 42). 

Mulder and Alexander (2001) described them as the concentrated density flows, where flow is 

sufficient to allow particle fall-out within the flow, in order to sort sediment during the flow. 

These flows are more diluted than the hyperconcentrated flows (grain flow). Mulder and 

Alexander (2001) emphasize that it is difficult to differenciate the deposits of 

hyperconcentrated and concentrated density flow (dense flow according to Gani, 2004). They 

should be different, but one may evolve into the other with distance and height. According to 

Mulder and Alexander (2001) the concentrated density flows may be subdivided into surge, 

surge-like and quasi-steady concentrated density flows. The quasi-steady density current 

(dense flow according to Gani, 2004) is a term used by Kneller and Branney (1995). The 

quasi-stedy density flows deposits characterize thick divisions of massive (unstratified) sand, 

generally lacking normal grading. In these massive beds the traction structures does not 

occure (Kneller and Branney, 1995). The description of concentrated density flows deposits 

fits well with the thick and massive sandstone beds of facies V in the Ritland structure. 
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Succesion of gravity flows were carrying downslope the Ritland crater a huge amount of 

sediments into the crater lake. The concentrated density flow impacted into a fresh water body 

forming a dense underflow current (a hyperpycnal current). The rapid flow expansion and 

convection of fresh water (low-density) resulted fast decline in transport and rapid sediment 

deposition (Kneller and Branney, 1995; Mulder and Alexander, 2001). These currents have 

short run-out distances from the stream mouth, but their deposits can be thicker than the 

current length (Kneller and Branney, 1995). The massive sandstone units found in the Ritland 

structure may represent deposit of such currents. A rapid current deposition leads to forming 

water escape structures (Kneller and Branney, 1995). The structures were not found in the 

massive sandstone in Ritland. 

 
Figure 42.  Classification of sediment gravity flows with a nomenclature for the flow types and their deposits. 
Direction of increasing fluid content reflects the down-slope development of sediment gravity flows (Figure 
from Gani, 2004).  

A large object, boulder is present in one of the bed of facies V (Fig. 16C). In debris 

flows large clasts may be pushed along by density flow (Johnson, 1970). Such process may 

explain the position of the large clast, stuck within the sandstone unit of facies V. This 

boulder was found along the strike of the conglomerate channel, consequently Johnson’s 

description may be answer the problem of this isolated boulder within the sandstone. Another 

explenation is a large, single clast may slides downslope, from e.g. rock avalanche talus into 

fine-grained deposit, being preserved as olistolith, isolated within basinal sandstone (e.g. 

Anadon, Cabrera et al., 1991; Tiercelin, Soreghan et al., 1992; Renaut and Tiercelin, 1994). 
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The steep crater slope favor rapid transfer sediments to the basin floor. The large boulder is 

located quite steep at the rim, not far from rock avalanche deposits above. 

 

The middle sedimentaty succesion is associated with the upper succession. 

Quartz/feldspar ratios show some variable trends in the facies associations (Fig. 34). The 

trend in the FA3 is slightly varying to constant and FA2 show the upwards decreasing 

quartz/feldspar ratio (seem in both XRD analyses and thin section point counting). This 

changes reflect transition of rock avalanches (sedimentary breccia) into debris flows 

(conglomerate) in the Ritland structure (Hampton, 1972). Fine-graine, laminated sandstones 

from the middle succesion were generated by conglomerates (Mulder and Alexander, 

2001)(Fig. 44/3). Material was subsequently reworked during succession of differen gravity 

flows. More resistant to erosion quartz has higher amount further from crater margin, in fine-

grained sediment deposited from suspension. 

8.3   Upper succession – conglomerate sub-unit and sedimentary breccia 

The upper succesion is build-up of the rock slides and rock avalanches in topograpically 

high elevations along the crater rim. This succesion represents the facies association 3. 

8.3.1    Conglomerate 

Conglomerates which contains subrounded cobbles in laminated matrix (Fig. 18A and 

18C). The clasts within matrix have subrounded shape. This facies contains 5 % of a matrix 

(Appendix 3). Conglomerates display erosional contact towards underlying sandstone units 

(Fig. 25).  

This facies is characterized by poor sorting with rare, if any, coarse-tail grading, sharp 

upper boundary and boulder projecting through the top (Fig. 18A and 23). In the field the 

conglomerate units look like “frozen” packages of poorly sorted clasts within the matrix (Fig. 

23). The conglomerates correspond to deposition description of cohesive debris flow (Mulder 

and Alexander, 2001; Gani, 2004). Debris flow are controled by frictional force which is 

connected to a pore pressure. The frictional flow needs sufficient amount of clay or steeper 

slope to generete flow. Conglomerate of facies association 3 contains minor amount of clay 

minerals (Fig. 35), but a surprisingly small amount of clay, less then 10 % of the total solids, 

is sufficent for complete support of sand-size material in a debris flow (Hampton, 1970, 1972). 

In addition granular solids within the flow collide with one another producing a dispersive 

pressure (Bagnold, 1956 In Hampton, 1972). All these factors help to support grains, in order 
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to keep debris flow movement. During debris flow progradation the shear stress decreases 

against the yield strenght of the base of the flow due to the gravity force. The mass stops and 

“freezes” (Mulder and Alexander, 2001).  

Large angular, clasts (up to 30 cm) sit on the top of conglomerates, sticked together (Fig. 

23). The clasts are granite-gneissic rock fragments. Due to the cohesive behavior of the flow 

these clasts could ‘ride’ on a debris flow carpet (Kalleson et al., 2008). Another explanation is 

the physics of debris flow. The front of debris flow proceeds in “rolling” motion (Iverson, 

1997). Large clasts within debris flow are transported in front due to increase of frictional 

strenght (Mulder and Alexander, 2001). Larger clasts “stucked” in the front could be uplifted 

and settle on the top of the flowing debris flow (Fig. 43). Jahns (1949) and Johnson (1970) 

performed similar observations.  

 
Figure 43.  The figure shows how larger clasts within debris flow behave. Due to increase of frictional strenght 
the front of debris flow proceeds in rolling motion (A). Larger clasts are “pushed” into the front (B), 
subsequently uplifted at the debris flow “back” (C). 

Samples taken from the conglomerates of facies mineralogical composition reflecting  

the local bedrock (Fig. 35), in addition course-grained particles of feldspar and quartz have 

angular shape indicating short transport distance for these particles.  
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According to Iverson (1997) “debris flows occur when masses of poorly-sorted 

sediment, agitated and saturated with water, surge down slopes in response to gravitational 

attraction”.  

During transgression the incoming water ran down the crater rim, causing further 

collapse. Flash water may erode gullies in the crater wall. Continous flow of water into the 

crater could widen and deepen these inlets, leading to repeated rim collapse and renewed 

activity in the gullies. Enormous amount of debris spread out downslope, farther to the crater 

center (Kalleson et al., 2008).  

8.3.2   Conglomeratic sandstone 

The conglomeratic sandstone characterizes lack of grain size grading (Fig. 33A) or bed 

forms, convolute lamination was found at the contact with conglomerate bed (Fig. 23). The 

conglomerate sandstone units consist of grains in average size of 0,2 mm. Grains have angular 

to subangular shape, weakly sorted.  This facies has higher content of matrix (10 %) than 

conglomerate of facies I (Appendix 3). The shift from matrix supported conglomerates (facies 

I) to the conglomeratic sandstones (facies IV) may correspond to change from cohesive to 

noncohesive flow (Gani, 2004). This textural description of conglomeratic sandstone in 

Ritland matches to the sediments carried/deposited by hyperconcentrated density flows – non-

cohesive flow (Mulder and Alexander, 2001; Gani, 2004). 

In hyperconcentrated flows convolute lamination occures in the conglomeratic 

sandstones. Facies IV is associated with conglomerate beds (Fig. 13 and 23). The sandstone 

of facies III could be deposited by the density flow, tranformed earlier from debris flow.  

Hyperconcentrated density flows deposits represent none-graded or normally graded 

gravel or gravelly sand or thick stratified sand deposits (cf. Pierson and Scott, 1985; Best 

1992), possibly containing collapse and deformation structures (Lowe and Guy, 2000). This 

descriptions fit well to the conglomeratic sandstone of facies IV.  

8.3.3    Soft sediment deformed sandstone 

The soft sediment deformed sandstone is stratified sandstone, waning flow deposit (Fig. 

12 and 18B). This medium grained sandstone display a convolute lamination. When coarse-

grained material of the debris flows settle down, a stream flow may continue from upper part 

of the debris flow deposits, partly reworked the upper part.  

The convolute lamination may be caused by plastic deformation of partially liquefied 

sediment soon after deposition (e.g. Siebe, Komorowski and Sheridan, 1992). This may 
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formed a convolute lamination in newly deposited package of sediments. Boggs (2006) 

suggested “the axes of some convoluted folds have a preferred orientation which commonly 

coincides with the paleocurrent direction, suggesting that the process that produces 

convultions occurs during deposition”. The axes of the convoluted fold in sandstone of facies 

III (2250) is different then the axes of overlying conglomerate units (265-2700) (Fig. 26). It 

may be represented by many separate depositional systems with differen direction of 

deposition in the Ritland structure. 

8.3.4    Matrix supported sedimentary breccia 

The matrix supported breccia (facies IIb) is composed of subangular to subrounded  

grains derived from the crystalline basement, with higer content of matrix than clast supported 

breccias (facies IIa). This change occurs as the result of the apparent mechanical formation of 

matrix due to clast crushing and grinding of angular granitic boulders during downslope 

avalanche movement (Kessler and Bédard, 2000). Prograding rock fall not only slide or fall 

but also flow (Heim, 1932). Many authors describe process of transition from rock avalanche 

into debris flow (Hsü, 1975; Kessler and Bédard, 2000; Hungr and Evans, 2004). Facies IIa 

represents shift from rock avalanche into debris flow. 

In both matrix- and clast-supported breccia matrix lamination occur (Fig. 32B). Water 

filling the structure during transgression carried fine-grained material, perculating porous rock 

avalanche deposits. A rockslide mass may desintegrate and develop to become a rock 

avalanche, with initial volume increase (Hungr and Evans, 2004). The volume increase could 

range from 7 % to 26 % (Hungr, 1981). The newly created pore space could then be filled up 

by subsequent mass flows deposits. The microscopic investigation of matrix sample from the 

rock avalanche deposits reveals features indicating specific flow pattern in the matrix (Fig. 

32B). The incoming water during transgression favor the sheet flood transport sediment in 

suspension and as bedload. This could trigger debris flows and turibidity currents (Rahn, 

1967). The loose rock debris of the rock avalanche deposits were infilled by fine-grained 

material, and form discrete lobe, a so-called sieve deposit (Hooke, 1967). Such lobes can have 

sharply defined downstream margins, as well tend to develop during the earliest stages of a 

transgression (Wasson, 1974). 

8.3.5 Clast supported sedimentary breccia 

Breccias of facies IIa have angular matrix grains and subangular to subrounded clasts, 

with minor amount of matrix. It indicates a short-distance transport. The clasts consist of the 
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as the basement lithologies. These breccias have similar composition and morphology to the 

breccia at the base (facies VIII). 

The absence of clay minerals shows that breccia at the base is freshly crushed and 

consists of unweathered rock. Deposition of this facies took place most likely in subaerial 

conditions. Absence of an iron oxides in the result of rapid deposition of the rock avalanche 

deposits. The rock avalanches according to Kessler and Bédard (2000) are a large rock masses 

moving rapidly downslope, generating poorly sorted deposits. The clasts are angular-shaped 

particles as a mixture of megablocks, boulders, cobble-size fragments and gravel. Clast 

supported breccia may represents rock avalanche deposit. Breccias of facies IIb could be 

formed during transgression, when vast amount of water put presence on the uplifted crater 

rim, causing its collapse. The wide distribution of avalanche depostit reflects several local 

avalanches, developing a moreover continuous apron (Kalleson, 2008).   

 

Quartz/feldspar ratios in the FA3 is slightly varying to constant. Rock avalanche 

deposits built up the upper succession. Clast supported breccia interfinger with matrix 

supported breccia. These two facies are differenciated in the XRD analisys data (Fig.37). 

Breccias with larger amount of matrix contain more biotite (samples: RITF-3-5-09 and RITF-

3-3-09). The 3D models show succession of these two different breccias in the Svodene hill, 

in Ritland (Fig. 38 and 39). In upper part of outcrop clast supported breccia seems to have 

weathered surface. The matrix supported breccia have smooth surface, seen in outcrop. It can 

be related to diferent matrix cementation. These breccia beds dipping at angle 24 degrees, 

towards crater center. 

 

The deposition model of complete post-impact sedimentation in the Ritland structure is 

presented in Figure 44.  
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Figure 44.  The deposition model of post-impact sedimentation in the Ritland structure reveals a shifting 
depositional enviroments. 1) During the excavation stage development of melt took place, at the crushed 
basement. Seconds after impact the newly excavated material was moving outwards and inwards from the crater. 
At the end of stage transient cavity reached maximum extent, and uplifted crater rim was developed; 2) At the 
begin of the modification stage steep crater walls collapsed along failure planes – red, dash lines (up to 100 sec 
when it happened) producing rock slides and rock avalanches; 3) Crater lake formation, successive rim failures 
produced more rock avalanches, generating conglomerates. Cohesive flows along crater rim were transformed 
into non-cohesive flows in aquatic enviroment, as a result sediments from suspension were deposited; 4) Water 
covered whole structure during transgression. Incoming water triggered crater rim collapses. Rock avalanche 
succession was repeated, with the next generation of other gravity flows (e.g. debris flow). Sand-enriched 
density flows then dominated in the water-filled crater basin; 5) Shales, representing the reestablishment of quite 
conditions, were depositing. Single rock avalanches eroded into the fine-grained sediment; 6) The water level 
may slightly drop. A package of shallow marine sandstone was deposited; 7) Crater infill suffered several uplifts. 
During Caledonian orogeny thrust nappes covered sediments in the structure. Finally, due to glaciations part of 
crater infill was eroded by glacier. 
 

9     Conclusions 

A fresh imact structure forms an extreme depositional succession. The sedimentary 

succession in the Ritland structure reveals a shifting depositional enviroments.  Enormous 

amount of excavated impact rocks have been transported and deposited by various deposition 

processes. In the impact process the accomodation space was created in seconds. Just after a 

bolid 100 metres in diameter hit the peneplain the kinetic energy was transferred into the 

basement. This stage of impacte structure development is called the contact/compression 

stage.  

During the successive stage, the excavation stage, development of melt took place at the 

crushed basement. Seconds after impact the newly excavated material was moving outwards 

and inwards from the crater. At the end of this stage transient crater reached maximum extent, 

and uplifted crater rim was developed.  

At the begin of the last stage of crater-forming – the modification stage – steep crater 

walls collapsed after approximately 100 seconds after impact, producing rock slides and rock 

avalanches. “Pyroclastic rain” and rim collapse were the first processes which fed the crater 

space. Material stored on and along a slope was moving down due to gravity. Steep crater 

walls favor gravity-controlled sedimentation. The very first gravity-controlled sedimentary 

processes like rock avalanches, were triggered by the crater rim failure. This marks the start of 

the crater fill. Gravity-flow deposits were mixing with melt rocks and ejecta falling into the 

crater. 

After a relatively long period of time (years, dozens of years) the crater lake was formed 

due to precipitation and groundwater percolation from the crushed basement. Low angle 
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cross-stratification may form during high-water, where the edges of sandflats were reworked 

by wave action, resulting in redeposition of low angle cross-stratified sandy sediments along 

coastal areas of the lake. Successive rim failures produced rock avalanches generating 

conglomerates. Cohesive flows (debris flows) along crater rim were transformed into non-

cohesive flows in an aquatic enviroment, as a result sediment were deposited from suspension. 

Turbidity currents generated by debris flow were present in the small basin, in the Ritland 

impact structure. 

During the Cambrian transgression the crater was filled up with sea water. Incoming 

water breached the crater wall, initiating series of rock avalanches and debris flows. Sand-

enriched density flows then dominated in the water-filled crater basin.  

Shales, representing the reestablishment of quite conditions, were deposited in the 

Ritland crater. Single rock avalanches eroded into the fine-grained sediment. The water level 

may slightly drop, then a package of shallow marine sandstone was deposited overlying shale 

succession.  

During burial history the sedimentary infill of the crater was affected by a low-grade 

metamorphic conditions. Products of low-grade alteration are present in sediments in Ritland 

(e.g. actinolite, chlorite). Most likely carbonates present in crater infill have late diagenetic 

origin. The source of carbonates could be in younger sediments (e.g. Silurian-Devonian). 

During burial history carbonates from the Silurian-Devonian sedimentary rocks were 

dissolved, subsequently migrate through fracture networks to the rocks burried below.  

Since Paleozoic times, crater infill has suffered several uplifts. During Caledonian 

orogeny thrust nappes covered crater infill. Finally, due to glaciations part of crater infill was 

eroded by glaciers. 
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APPENDICES 
 

 

Appendix 1.  The strike measurement of beds and structures from the RITF-1 and RITF-4. 

RITF-1 RITF-4 

no. bed/structure strike no. bed/structure strike 

1 ripple 216 1 bed 288 
2 channel 230 2 bed 10 
3 channel 240 3 ripple 294 
4 bed 243 4 bed 288 
5 ripple 248 5 ripple 275 
6 ripple 250 6 ripple 272 
7 bed 251 7 bed 280 
8 ripple 255 8 ripple 265 
9 ripple 255 9 bed 286 

10 bed 261 10 ripple 270 
11 ripple 279 11 ripple 268 
12 ripple 279 12 ripple 262 
13 trought 358 13 ripple 257 
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Appendix 2.  The mineral estimation from X-ray diffraction (XRD). 

Facies 
association 

Sample name Stilpnomelane % Siderite % Pyrite % Chlorite %
Muscovite + 

Biotite % 
Quartz %

K-
felsdspar %

Plagioclase % Calcite % Dolomite % Actinolite % 

FA3 

RITF-3-6-09 0,00 0,44 0,92 1,72 0,34 11,31 56,82 21,08 1,29 0,77 5,32 
RITF-3-5-09 0,00 1,69 0,88 0,66 28,56 3,43 28,61 33,17 0,49 0,49 2,01 
RITF-3-4-09 0,00 0,54 0,30 0,47 2,53 8,72 69,31 12,59 0,97 3,00 1,57 
RITF-3-3-09 0,00 0,30 0,00 0,49 10,44 3,99 31,52 36,24 12,96 1,18 2,88 
RITF-3-2-09 1,13 0,64 0,63 4,51 2,86 5,81 38,54 40,62 0,31 2,00 2,96 
RITF-3-1-09 0,42 0,60 0,00 1,79 2,87 6,88 23,82 58,04 0,59 1,76 3,24 
RITF-4-8-09 0,54 0,46 0,00 3,33 3,65 4,61 35,04 37,76 11,03 1,28 2,30 
RITF-4-7-09 0,90 0,82 0,09 5,67 4,03 5,36 30,22 48,86 0,42 1,27 2,35 
RITF-4-6-09 1,51 0,95 0,21 7,79 4,50 10,03 30,27 37,98 0,73 2,11 3,92 
RITF-4-3-09 0,60 0,53 0,00 8,95 1,01 3,52 32,08 48,99 1,54 1,20 1,57 

RITF-1A-3-09 1,02 0,57 0,00 2,29 4,39 5,44 41,90 37,79 1,39 1,87 3,34 

FA2 

RITF-1A-2-09 0,39 0,80 0,13 9,73 3,90 7,54 27,13 44,12 0,46 1,27 4,51 
RITF-1A-1-09 0,00 1,07 0,00 4,98 0,27 7,49 34,17 44,32 2,02 2,08 3,59 
RITF-1-5-09 0,00 0,92 0,00 8,80 0,35 6,90 31,03 45,80 1,37 1,91 2,93 
RITF-1-3-09 0,00 0,51 0,15 0,63 4,45 2,81 12,32 11,17 65,65 0,88 1,44 
RITF-1-4-09 0,00 0,75 0,26 1,95 4,73 4,48 15,61 20,18 48,83 1,24 1,97 
RITF-1-6-09 0,32 2,14 0,56 6,26 1,75 11,49 34,21 33,25 0,96 3,52 5,53 
RITF-1-7-09 1,29 0,79 0,28 3,46 0,72 6,21 45,23 37,80 0,64 1,44 2,13 
RITF-1-2-09 0,00 1,90 0,00 6,00 0,67 13,33 34,36 31,86 3,68 3,08 5,12 
RITF-1-1-09 1,11 1,45 0,00 13,46 3,41 15,25 31,97 22,61 1,89 3,59 5,24 
RITF-1-8-09 0,00 0,90 0,00 6,96 0,65 7,13 39,54 38,78 0,50 2,14 3,39 

FA1 

RITF-4-5-09 0,00 0,24 0,00 17,16 5,88 8,13 25,90 37,57 0,44 2,08 2,59 
RITF-4-1-09 3,09 1,33 0,07 0,83 7,41 6,85 31,63 34,38 8,49 2,62 3,31 
RITF-4-4-09 2,10 2,65 0,39 1,21 17,29 12,77 28,72 18,61 5,55 5,43 5,29 
RITF-4-2-09 0,00 5,53 0,00 6,99 3,78 20,86 39,11 11,51 0,00 8,66 3,56 
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Appendix 3.  The mineral counting in thin sections. 

 

Facies 
association 

Sample 
name 

Mono-
quartz % 

Poly-
quartz % 

Feldspar % Chlorite % Carbonates % Actinolite %
Heavy 

minerals % 
Biotite % Muscovite % Matrix %

Rock 
fragments %

Pyrite % Serycite % 

FA3 

RITF-3-6-09 11,48 0,00 52,15 0,96 0,00 3,59 0,48 12,68 0,24 6,94 10,77 0,00 0,81 
RITF-3-3-09 12,85 0,00 25,23 0,47 10,98 0,00 0,70 7,01 0,93 14,95 25,66 0,00 1,21 
RITF-3-2-09 4,47 0,00 32,27 6,71 0,32 2,24 0,64 3,51 0,32 5,75 42,98 0,00 0,79 
RITF-4-8-09 9,98 0,00 42,93 1,71 6,59 0,24 0,24 3,90 0,24 4,88 29,51 0,00 0,00 
RITF-4-7-09 10,28 0,00 28,01 0,00 0,00 0,00 0,00 6,38 0,00 10,28 45,04 0,00 0,00 
RITF-4-6-09 26,91 1,20 38,74 3,15 0,00 3,39 0,97 18,89 0,24 7,26 0,24 0,00 0,00 
RITF-4-3-09 14,22 0,90 50,63 4,62 15,13 0,00 0,21 5,25 0,00 0,21 8,82 0,00 0,00 

FA2 

RITF-1-5-09 14,29 0,00 72,18 7,27 0,00 0,75 0,50 1,00 0,00 4,01 0,00 0,00 0,00 
RITF-1-4-09 11,82 0,00 32,82 0,00 47,70 0,00 0,00 7,22 0,44 0,00 0,00 0,00 0,00 
RITF-1-6-09 20,34 0,00 57,44 1,47 0,00 0,21 1,05 4,19 1,47 13,84 0,00 0,00 0,00 
RITF-1-2-09 26,75 0,00 51,38 2,76 0,00 1,27 2,97 10,62 1,06 3,18 0,00 0,00 0,00 
RITF-1-1-09 25,54 1,60 60,00 3,17 0,49 3,17 1,22 3,66 1,22 1,46 0,73 0,00 0,73 

FA1 
RITF-4-5-09 20,25 0,00 50,62 5,68 0,00 0,99 1,48 6,91 0,00 13,83 0,25 0,00 0,00 
RITF-4-1-09 8,01 0,12 16,03 1,07 7,91 4,70 0,85 0,64 0,00 16,45 44,23 0,00 0,00 
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Appendix 4.  The thin section description (part 1). 

Facies 
association 

Sample name Lithology Compaction
Predominant 

structures 
Average 

grain size 
Most common 

grain shape 
Sorting Remarks 

FA3 

RITF-3-6-09 breccia strong parallel lamination fine sand subangular good 
Biotite flakes have 
preferred direction. 

Fining upwards. 

RITF-3-3-09 breccia weak - medium sand angular poor 
Clast are filled with 
calcite. Large biotite 

flakes. 

RITF-3-2-09 breccia moderate - medium sand angular moderate - 

RITF-3-1-09 breccia moderate parallel lamination fine sand angular poor 
Fining upwards fine 

sand. 

RITF-4-8-09 conglomerate moderate - fine sand subangular good - 

RITF-4-7-09 
conglomeratic 

sandstone 
moderate parallel lamination medium sand angular poor - 

RITF-4-6-09 sandstone moderate parallel lamination fine sand subangular good 
Homogenous fine 

sand. 

RITF-4-3-09 
conglomeratic 

sandstone 
strong parallel lamination fine sand subangular moderate - 
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\ Appendix 4.  The thin section description (part 2). 

Facies 
association 

Sample name Lithology Compaction
Predominant 

structures 
Average 

grain size
Most common 

grain shape 
Sorting Remarks 

FA2 

RITF-1A-2-09 sandstone moderate - fine sand subangular moderate Well cemented fine sand. 

RITF-1A-1-09 sandstone weak - 
medium 

sand 
angular poor 

Local calcite cement 
concentration. 

RITF-1-5-09 sandstone strong fractures 
medium 

sand 
angular moderate Fractures filled with calcite. 

RITF-1-3-09 sandstone weak fractures fine sand subangular moderate

Elongated grains have preferred 
direction. Well calcite 

cemented fine sand. Fractures 
filled with calcite. 

RITF-1-4-09 sandstone weak - fine sand subangular moderate
Elongated grains have preferred 

direction. Well calcite 
cemented fine sand. 

RITF-1-6-09 sandstone moderate 
parallel 

lamination 
medium 

sand 
angular moderate

Alternating very fine sand and 
upwards coarsening medium 

sand layers. 

RITF-1-2-09 sandstone strong 
parallel 

lamination 
very fine 

sand 
angular moderate

Elongated grains follow the 
bedding. Fining upwards. 

RITF-1-1-09 sandstone strong 
parallel 

lamination 
very fine 

sand 
angular good 

Alternating silt and upwards 
fining very fine sand layers 

FA1 

RITF-4-5-09 breccia moderate - fine sand subangular poor Homogenous fine sand. 

RITF-4-1-09 breccia moderate - 
coarse 
sand 

angular poor 
Brown shards (melt?) in a 

matrix. 

RITF-4-4-09 suevite moderate - 
very fine 

sand 
angular moderate Fining upwards fine sand. 

RITF-4-2-09 suevite moderate melt particles fine sand angular poor 
Clasts and brown shards of 
alterated melt rocks within 

matrix. 
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