
Automatic extraction of potential 
impact structures from geospatial 
data – examples from Finnmark, 

Northern Norway 
 

 

Svein Olav Krøgli 

 

 
 

 

Dissertation for the degree of Philosophiae Doctor (Ph.D.) 

 

Department of Geosciences 

Faculty of Mathematics and Natural Sciences 

University of Oslo 

 

2010 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
© Svein Olav Krøgli, 2010 
 
 
Series of dissertations submitted to the  
Faculty of Mathematics and Natural Sciences, University of Oslo 
No. 948 
 
ISSN 1501-7710 
 
 
All rights reserved. No part of this publication may be  
reproduced or transmitted, in any form or by any means, without permission.   
 
 
 
 
 
 
 
 
Cover: Inger Sandved Anfinsen. 
Printed in Norway: AiT e-dit AS.   
 
Produced in co-operation with Unipub.  
The thesis is produced by Unipub merely in connection with the  
thesis defence. Kindly direct all inquiries regarding the thesis to the copyright  
holder or the unit which grants the doctorate.   



i 
 

Preface 
 

 

This work constitute my Ph.D. study that started with the working title “Automatic and semi-

automatic detection of meteorite impact structures in the Fennoscandian shield using pattern 

recognition of spatial data”. The study area was constrained to Finnmark, Northern Norway, 

due to data accessibility. The thesis presents results from my three year employment as a 

Ph.D. research fellow at the Department of Geosciences, University of Oslo (2006 – 2009), 

with supervisors Professor Henning Dypvik and Professor Bernd Etzelmüller. It consists of a 

summary, three papers and two peer reviewed extended abstracts describing different 

automatic search techniques. Sometimes a description of the novel Beyond Sleep by W. F. 

Hermans fits the study: “A classic of post-war European literature, this is the tale of a man at 

the limits of physical and mental endurance beyond the end of the civilised world”, where the 

limits of physical and mental endurance is crater search and the end of the civilised world is 

Finnmarksvidda.    

This project is part of an international program between (groups from) the Universities 

of Oslo and Helsinki, the European Space Research and Technology Centre (ESA/ESTEC), 

and the Geological Surveys of Norway and Finland (data supply) (Chicarro et al. 2007; 

Dayioglu et al. 2006). The program is titled “The search of meteorite impact structures in the 

Fennoscandian Shield – a novel technique”. The program outline is to develop workable 

automatic or semi-automatic search algorithms to discover new impact structures in 

Fennoscandia. The idea comes from the Finnish discoveries of several impact structures 

during the nineties using digital maps (Abels et al. 1997a; Abels et al. 1997b).  
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Abstract 
 

 

Impact cratering is a fundamental process in the Solar System, and on solid planetary bodies 

like Mars and the Moon, impact cratering may be the most prominent landforming process. 

On the Earth several processes compete in shaping the surface. Consequently, the impact 

structures on Earth are often poorly preserved, difficult to spot and found in limited numbers 

(only 176 terrestrial impact structures are confirmed). Potential terrestrial impact structures 

waiting to be found are therefore expected to be partly masked by erosion and depositional 

processes. This makes detection more difficult than on solid planetary bodies and requires the 

use of multiple techniques and multiple datasets. The findings of new impact structures would 

contribute information to scientific questions such as better understanding of impact processes 

and their importance in the Earth’s geological history. 

The impact crater formation process results in a circular shape of fresh craters, except 

for impacts at low angles. This circularity is found in e.g. morphology, the distribution of 

impact rocks and in geophysical anomalies. The analytical choice is then to use the circular 

shape as a feature descriptor in search approaches. This thesis describes a new technique, 

established techniques and an existing tool, all applied to automatic extract circular features 

from appropriate geospatial datasets, i.e. to locate potential impact structures. The data cover 

parts of Finnmark county, Northern Norway, and include digital elevation models, 

geophysical potential field data and multispectral images. The presented techniques deal with 

circular depressions, circular borders and circular symmetry, and the results show them 

suitable to identify various circular features. 

Remote sensing or image analysis methodologies can only detect potential impact 

structures, the most promising structures for further field studies. Evidence must later come 

from sampled rocks. The methods are semi-automatic since the researcher needs to set 

thresholds appropriate for the different regions, and thereafter inspect the detected features to 

prioritize and select the sites to be visited in the field. An impact structure search should not 

be based on a single technique or a single dataset because of the diverse impact crater catalog, 

but rather a combination of several techniques applied on various data, utilizing data fusion to 

improve the detection process. Interesting patterns first found by automatic detections and 

then evaluated by the researcher can prove rewarding, possibly emphasizing structures that 
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would not have been considered without the automatic step. Unlike previous terrestrial search 

approaches of purely visual analysis of data or the use of automatic techniques relevant to 

only a limited set of data, the presented methodology (collection of techniques) offers a 

framework to search large regions and several types of data to extract promising structures 

prior to the visual inspection. The sites at the researcher’s disposal are all exhaustive and 

objectively extracted based on circularity. 
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Sammendrag 
 

 

Asteroide- og kometnedslag med påfølgende dannelse av nedslagskratre (ofte kalt 

meteorittkratre) er fundamentale prosesser i vårt solsystem, inkludert utformingen av jorda, 

fra dens dannelse til i dag. Resultat av nedslag kan tydelig ses på planetære overflater som 

månen og Mars, der kratre ofte er den mest dominerende landformen. På jorda er det mange 

prosesser som former overflaten (erosjon, platetektonikk og sedimentasjon), og dette gjør at 

nedslagskratre forringes over tid eller forsvinner helt. Det har bare blitt funnet et fåtall 

bekreftede nedslagsstrukturer på jorda sammenlignet med andre terrestriske planeter (ca. 

176). Mulige nye nedslagskratre er forventet å være dårlig bevart og delvis fjernet av erosjon 

eller skjult av sedimentære prosesser. Dermed blir deteksjon av meteorittkratre vanskeligere 

på jorda enn på mange andre planeter og måner, og det vil kreve bruk av flere teknikker og 

datasett. Funn av nye nedslagskratre kan gi svar på vitenskapelige spørsmål som fører til økt 

forståelse av nedslagsprosesser og kraterdannelse, og deres viktighet gjennom jordas 

geologiske historie.    

 Selve nedslagprosessen resulterer i at ferske kratre ender opp som sirkulære 

fordypninger (elliptiske hvis nedslagsvinkelen er under ti grader fra horisontal). I tillegg til 

sirkulære topografiske mønstre er den sirkulære formen også typisk blant nedslagsbergartenes 

oppsprekking og oppknusing, samt de resulterende geofysiske anomaliene. Den sirkulære 

formen ble derfor valgt som egenskapsbeskrivelse og analysekriterium i utviklingen av 

søketeknikker for å finne potensielle nedslagsstrukturer. Formen er et minste felles multiplum 

for alle kratre, men det en stor forenkling. En enkel modell gjør imidlertid at algoritmene kan 

benyttes på flere datatyper. Denne avhandlingen beskriver en nyutviklet teknikk, etablerte 

teknikker og et eksisterende verktøy, alle benyttet for automatisk ekstraksjon av sirkulære 

strukturer eller rester av sirkulære strukturer fra relevante digitale regionale datasett. Dataene 

dekker et område i Finnmark fylke (Nord-Norge) og inkluderer blant annet digitale 

høydemodeller, geofysiske anomalikart (tyngde, magnetisme) og multispektrale bilder. De 

presenterte teknikkene dekker forskjellige sirkulære aspekter; sirkulære groper, sirkulære 

grenser og sirkulær symmetri. Resultatene viser at teknikkene er egnet til å detektere 

varierende sirkulære former.    
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 Form alene er imidlertid langt fra nok til å si at man har et nedslagskrater. Metoder 

innen fjernanalyse og bildeanalyse kan kun detektere potensielle nedslagsstrukturer. For 

eventuelt å bevise et nedslagsopphav må det foretas detaljerte feltundersøkelser av de mest 

lovende automatisk detekterte strukturene. Metodene er halvautomatiske siden operatøren må 

sette terskelverdier som er hensiktsmessige for hvert område, og deretter inspisere resultatene 

for å prioritere hvilke steder som bør besøkes i felt. Leting etter nye nedslagskratre bør ikke 

basere seg på en enkelt teknikk eller datatasett, fordi strukturene er så forskjellige på jorda. En 

fusjon (sammensetting) av resultater basert på flere teknikker anvendt på topografisk, 

geologisk, geofysisk og satellittbilde informasjon vil forbedre deteksjonsprosessen. Dette gir 

likeledes et kostnadseffektivt verktøy for en første identifisering av sirkulære objekter i 

romlige data. Interessante mønstre som først er funnet med automatiske metoder og deretter 

evaluert av operatøren, gir muligheter for å fremheve strukturer som ellers kanskje ikke ville 

ha blitt vurdert. Den presenterte metoden (samling av teknikker) gir et rammeverk for å søke i 

store områder og i flere typer data, i forhold til tidligere søketeknikker på jorda som har 

omhandlet visuell analyse av data, eller bruk av automatiske teknikker relevante for få 

bestemte datasett. 
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1. Introduction and objectives 
 

 

Impact cratering is a fundamental process in the Solar System, from planetary evolution to 

landscape formation. On solid planetary bodies like Mars and the Moon, impact cratering may 

be the most prominent landforming process, whereas on the Earth several processes compete 

in shaping the surface. Consequently, the impact structures on Earth are often poorly 

preserved and difficult to spot. Nonetheless, “impacts of extraterrestrial objects on the Earth, 

once regarded as an exotic but geologically insignificant process, have now been recognized as a 

major factor in the geological and biological history of the Earth” (French 1998, p. 1). Impacts 

from asteroids, comets and meteorites also act as natural hazards, possibly causing mass 

extinctions and environmental changes (climatic effects on local, regional and global scale) 

(e.g. Keller and Blodgett 2006). Craters are important in planetary analysis whereby 

numerous craters within a region is an indication of an older surface. For example, if two 

different types of Martian volcanoes are found on old crater plains or young crater plains, 

respectively, they can be relatively dated and provide information about the evolution of the 

planet from the age of processes creating the specific volcano type (e.g. Plescia and Saunders 

1979). 

On the Earth today 176 proven impact structures are known (Earth Impact Database 

2009), but “the recognition of craters on Earth’s surface is highly biased by the accessibility 

of the area and the research activity within a specific region” (Werner 2006, p. 8). In 

Fennoscandia, 21 structures are confirmed (Dypvik et al. 2008). There are probably even 

more impact structures to be found in Fennoscandia, due to the large areal extent and the 

older bedrocks that have the potential to record impact events over a long period of time. In 

Norway, research activity focused on identifying new impact structures has in addition been 

relatively low. The search for impact structures may be triggered by exploration for natural 

resources (e.g. water, ore, oil), but mainly for mapping and information contribution to 

scientific questions towards a better understanding of impact processes and their importance 

in the Earth’s geological history. 

Images of solid extraterrestrial bodies (e.g. Mars) often display craters with a clean, 

well preserved morphology due to the lack of an active lithosphere, with little to no tectonic, 

erosion or depositional processes. On Earth, these processes modify or erase the 
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morphological imprint of impact craters. Well preserved structures are predicted to be found 

in an explored area as Norway, and unidentified terrestrial impact structures are expected to 

be partly masked by erosion, making detection more difficult than on solid planetary bodies. 

In the search for new terrestrial impact structures we have to look for suspicious patterns in 

the spatial data (e.g. topography, gravity). Impact structures often display a circular shape in 

spatial data, and candidate sites may therefore be detected based on similarities to this 

signature. 

To find new possible impact structures, large areas have to be searched preferably 

using automatic methods. The sciences of geomorphometry, remote sensing and automatic 

pattern recognition have developed a multitude of digital techniques to extract specific 

features based on a regularly spaced matrix of discrete values (e.g. elevation, gravity or 

spectral reflection values). This data structure enable convenient possibilities to investigate 

spatial relations between cell values (pixels), either in close proximity or at a distance away 

from each other (DeMers 2002). A broad perspective is needed, using multiple techniques, 

multiple datasets and data fusion to improve the detection process. This is required because of 

the complexity of impact structures. They contain a wide range of modification levels and 

sizes, are found on different terrains, and in limited numbers. The methods of remote sensing 

or image analysis only allow us to detect possible impact structure candidates whereas 

additional field investigations and laboratory analyses are required to disclose their origin. 

 

The aim of this study is to develop a search methodology to detect potential impact structure 

sites. The general research aims of this thesis are to: 

1) Identify feature descriptors; impact structure characteristics as manifested by geological, 

geophysical and morphological signatures and their relation in space. 

2) Develop techniques, use established techniques or apply existing tools to extract the 

chosen feature characteristics from appropriate datasets. 

 

The underlying questions are then: If an impact structure is present, what will the spatial data 

display, and can we detect similar places automatically? 
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2. Scientific background and theory 
 
 

2.1. Impact structures 

Our Solar System consists of the Sun, eight planets, three dwarf planets and moons, asteroids 

and comets. The Earth’s Moon is covered by impact craters (Fig. 1a) due to the lack of 

atmosphere and geologic activity. Many can be seen by a normal telescope. The terrestrial 

planets, except for Earth and Venus, are all dominated by impact craters (Fig. 1b), as are 

several of the moons/satellites of planets (Fig. 1c). Even asteroids and comets have been hit 

by other asteroids, comets or meteorites resulting in crater formation (Fig. 1d). 

 

2.1.1. Crater formation, morphology and geology 

Asteroids and comets create craters when colliding with planets, moons or other asteroids and 

comets. The event is a hypervelocity impact which acts as an explosion, creating a circular 

depression (e.g. Gifford 1924; Melosh 1989). Gifford (1924) presented in 1924 an impact-

explosion analogy, claiming that the crater is not due to the impact itself, but to the explosion 

resulting from the kinetic energy, the “violent heat produced by the sudden stoppage of the 

meteor” (Gifford 1930, p. 379). Circular craters are generally produced for impact angles 

greater than 10 - 12 degrees from horizontal (Bottke et al. 2000). Lower impact angles 

produce elongated or ellipsoidal craters. Both the projectile properties (i.e. composition, 

density, size, mass, velocity, angle) and target properties (i.e. gravity, material, density, 

strength, porosity) effect the size and morphology of the resulting impact crater. A 

hypervelocity impact (typically a velocity of 10 – 30 km/s at an impact angle of 45 degrees 

from horizontal) may result in shock pressures generally reaching hundreds of GPa, possibly 

causing melting and vaporization of both projectile and target (Melosh 1989). The cratering 

process is conventionally divided into three stages (Melosh 1989; Turtle et al. 2005): i) 

Contact and compression (shock wave initiation and propagation), ii) crater excavation 

(transient crater, the drive of material out of the crater is gravity dependent), and iii) crater 

collapse and modification (final crater structure). 

The circularity of impact craters has been the subject of quantitative studies. Ronca 

and Salisbury (1966) examined the circularity of lunar craters by calculating a circularity 

index for several craters. The circularity of terrestrial features like calderas, collapse pits, ring 
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complexes, maars and tuff-rings, cinder and spatter cones, artificial explosion craters and 

meteorite craters, together with lunar features like well-preserved craters, large craters with 

flooded floors, elementary rings, small lunar craters, secondary craters and lunar calderas, 

were compared by Murray and Guest (1970), concluding that meteorite craters are more 

circular than most volcanic craters (calderas). Using quantitative expressions of circularity to 

discriminate between impact structures and other features was also shown by Pike (1977a), 

describing a difference between most impact craters and most large volcanic craters. The 

reason that calderas are not as circular as impact craters may result from the difference 

between a single explosion that form impact craters, as opposed to calderas that may derive 

from a series of explosions (Murray and Guest 1970) or by the collapse of magma chambers 

along irregular lines of weakness in the rock (Oberbeck et al. 1972). Martian craters show 

similar circularity values as terrestrial impact structures and different from indices of 

terrestrial calderas, explained by a significant difference between the mean circularity of 

meteorite craters and volcanic craters (Oberbeck et al. 1972). 

Fresh craters are circular in shape but display different morphology depending on size, 

recognized on the lunar surface: “To my eye the interiors of most craters under four miles and 

all under two miles appear as simple cups” (Gilbert 1893, p. 245). The craters may be simple 

bowl shaped, complex or multi-ringed impact basins. Crater morphology displays the same 

characteristics throughout the Solar System. On Earth, the two dominant types of impact 

structure are the 1) simple structures, with a raised rim surrounding a bowl-shaped depression, 

and the 2) complex structures, larger in diameter, with a central peak, surrounded by an 

annular trough and a slumped rim (e.g. Grieve 1990; Melosh 1989) (Fig. 2). The transition 

between simple and complex craters occur on Earth at diameters of about 2 km or 4 km, in 

sedimentary or crystalline rocks respectively (Dence 1965; Grieve 1990). Concentric peak 

rings are found for larger craters, occasionally surrounding the central peak. Even multi-ring 

craters exist, with several ring structures creating annular basins (e.g. Turtle et al. 2005). 

Resurfacing processes such as tectonics, erosion and deposition will after formation eventually 

modify or erase the surface expression. These processes are very active on Earth. 

Breccias are an important recognizable geological feature within impact craters. 

Breccias can be formed by the crushing of target rock during impact or after impact by 

(angular) fragments falling back into the crater after being thrown up in the air. Other impact 

related rocks are melt rocks, e.g. suevite and tektites. The central uplift in complex craters 

typically exposes rocks from deeper levels in the crust that are uplifted from considerably 

depth to reach the surface. The lithologies exposed in the central peak thus contrasts with the 
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surrounding stratigraphic sequence around the impact structure (Koeberl 2007). Several 

additional shock metamorphic mineral features may be found at a microscopic level. These 

differences in lithological properties may appear as anomalies relative to the surrounding area 

unaffected by impact and commonly exhibit roughly circular/symmetric patterns. 

 

 

 
 
 
Fig. 1. A compilation of impact craters as seen on different solid bodies in the Solar System. (a) The 

Earth’s Moon. (b) Mercury’s horizon as seen from the MESSENGER satellite. (c) Saturn’s icy moon 

Enceladus. (d) Asteroid Ida. All images credit NASA. 
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Fig. 2. Morphology of simple and complex craters. Image credit NASA. 

 

2.1.2. Crater chronology 

The interpretation of the geologic evolution of the planetary bodies is somewhat dependent 

upon the ability to identify impact craters and establish the best possible crater record. The 

result of planetary crater counting, either performed manually or automatically (crater 

detection algorithms), is the number of impact craters and their size. The frequency 

distribution of the diameters can be used to derive an estimate of age related to the local 

erosional history of the analyzed surface area. Generally, the more impact craters a surface 

has, the older it is. Going from relative age to absolute dating requires information about the 

bombardment flux (frequency at which bolides of a given diameters collide with planetary 

bodies), impact conditions and scaling laws for planetary crater size comparison given a fixed 

projectile size (Ivanov 2008a). 

Data sampled during the Apollo missions to the Moon have been used to establish a 

lunar crater production rate, “the number of impact craters accumulated on a unit area per unit 

of time” (Ivanov 2008a). The crater chronology is based on the number of craters as a 

function of age. The age is derived from radiometric measurements of the rocks from the 
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landing sites. The relationship can be used to calculate the age of a surface (in million of 

years) on the Moon and has also been transferred to other solid planetary bodies, e.g. Mars 

(e.g. Neukum et al. 2001; Neukum et al. 2006). Criticism of the methodology is that it only 

considers crater density as a function of time. “More generally, the terrestrial planets should 

also possess a variation in impact density with latitude” (Le Feuvre and Wieczorek 2006), 

with more hits on equator (on Earth, however, plate tectonics have changed location of 

continental plates during geologic times) (Thackrey et al. 2006). 

Gasselt et al. (2006) divides the process of age determination of a surface in three 

steps based on crater-size frequency distribution: (1) Find diameters of impact craters within a 

surface area, (2) calculate a size-frequency distribution, and (3) determine age using one of 

the techniques:  Isochrones or production function fit, combined with the application of a 

chronology model (impact flux estimates). The production function is the impact crater size-

frequency distribution line that marks the approximate saturation or equilibrium of craters on 

a surface. That is when each newly formed crater destroys one or several previously formed 

craters, and on average the line would remain about the same. The production function is a 

replica of the point not yet changed by planetary resurfacings and impact crater overlapping. 

The real frequency records may be different from the ideal production function due to surface 

processes working on the individual planetary bodies (Ivanov 2008a). The impact flux have 

changed through time, but the shape of the production function has not changed dramatically 

over the last 4 Ga (Neukum et al. 2001). This procedure transfers a crater-size frequency 

found through crater counting of a particular surface unit to a surface model age. 

 

2.1.3. The terrestrial distribution 

The Earth has been subjected approximately to the same bombardment flux by asteroids and 

comets as the Moon (Ivanov and Hartmann 2007). But there are only 176 proven impact 

structures on Earth (Earth Impact Database 2009) (Fig. 3). The term “impact structure”, as 

opposed to “crater”, is used to entitle the structures after the original impact crater shape has 

been modified and is thus the proper label for all terrestrial entities. New impact structures on 

Earth are constantly suggested and proposed. Several databases exist for impact structure 

recognition (e.g. Earth Impact Database 2009; Impact Database 2009) and they have different 

ways of registering (operating with different numbers). Regardless which database is applied, 

the number of terrestrial impact structures is very low compared to the Moon and Mars. The 

low number is mostly due to the active lithosphere, plate tectonics and geologic activity, i.e. 
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degradation over time (erosion, covering by later sediments). For example, the ocean floor is 

relative young (65 Ma on average, with a complete rejuvenation in ca. 200 Ma) and not many 

impact structures have accumulated there. The shielding effect of the atmosphere and sea 

water prevents numerous smaller craters. Additionally the late acceptance and research 

(including search) of impact craters on Earth (Koeberl 2004) has led to a too small number of 

recognized craters. The diameters of the proven impact structures vary from just a few meters 

up to 300 km (Vredefort, South Africa). Ages range from the oldest having an age of ~2.4 Ga 

(Suavjärvi, Russia) up to present day (Earth Impact Database 2009). Different levels of 

preservation, from “fresh” to buried or eroded, are found in the terrestrial record. 

Despite the differences between Earth and other planetary bodies, there should still 

remain many undetected impact structures (e.g. Trefil and Raup 1990). The distribution of 

detected impact structures on Earth’s surface is biased by the activity of impact research in a 

region and the accessibility of areas. For example, several Finnish impact structures were 

found during an active search in the nineties (e.g. Deutsch 1998). 

 

 

 
 
Fig 3. Distribution of recognized impact structures on Earth. Edited from McCall (2009). New 

structures included according to Earth Impact Database (2009). 
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2.1.4. The Fennoscandian/Norwegian distribution 

Scandinavia and the Baltic states holds about thirty confirmed impact structures (Abels et al. 

2002; Dypvik et al. 2008) (Fig. 4), of these about twenty lay on the Fennoscandian shield. 

More structures have been proposed as impact structures in the last decades (e.g. Abels et al. 

2002; Pesonen 1996). Fennoscandia is one of the most densely crater-populated terrains on 

Earth which might be due to its long existence as a continental shield, but also due to the level of 

research activity, coupled with a deterministic view of what to look for (Dypvik et al. 2008). The 

ages and diameters of the structures vary, but many are relatively small (<10 km) and mostly of 

Paleozoic age (Abels et al. 2002).  

In Norway there are three proven impact structures. The Gardnos impact structure is 5 

km in diameter, containing a roughly circular area of fractured and brecciated rocks. Zones of 

the original crater-floor and sequences of crater-fill breccias are present (French et al. 1997). 

The Mjølnir impact structure in the Barents Sea is 40 km in diameter, located in water depths 

of  350 - 400 m beneath a younger sedimentary strata of thickness 400 m (Dypvik et al. 1996). 

The Ritland impact structure in West Norway is a 2.5 km wide and 350 m deep circular 

depression, displaying crushed/fractured basement rocks and sedimentary, post impact 

breccias. Cambrian shales, sandstones and thrust nappes cover about one third of the interior 

(Riis et al. 2008). Both Gardnos (Kalleson et al. 2009) and Ritland (Riis et al. in press) are old 

(600 – 500 Ma) and eroded structures. 
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Fig. 4. A compilation of recognized impact structures in Fennoscandia (based on Abels et al. 2002; 

Dypvik et al. 2008; Henkel and Pesonen 1992). Notice the lack of structures discovered in the north. 

Courtesy Elin Kalleson. 

 

2.1.5. Proofs of impact origin 

The starting point in the search for new impact structures through automatic or semi-

automatic candidate detection is the discovery suspicious patterns. The next step is field work 

and sampling of rocks from the suspected sites. To prove an impact origin of larger impact 
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structures (only diameters larger than 0.5 - 1 km was considered in the analyses) requires the 

detection of either shock metamorphic effects in minerals and rocks, and/or the presence of a 

meteoritic component in these rocks (e.g. French 1998, p. 99). Shock metamorphic effects 

are, for example, shatter cones on the macroscopic scale and planar deformation features 

(PDFs) in quartz at the microscopic scale. PDFs are created at extreme pressures in which the 

resulting characteristic microscopic pattern display many thin straight parallel lines close 

together, occurring as several sets with distinct orientations relative to the quartz crystal axis. 

The presence of extraterrestrial (meteoritic) components in impact target rocks, melt rocks, 

breccias or ejecta must be confirmed by geochemical analysis which search for traces of 

meteoritic material mixed in the rocks, typically deriving from the platinum group elements 

(e.g. iridium, osmium, platinium). These elements are more abundant in extraterrestrial rocks 

than on the surface of the Earth (Koeberl 2007).  

 

 

2.2. Geomorphometry 

Digital terrain analysis or geomorphometry is the science of the quantitative representation of 

topography and the quantitative description and measurements of landforms (Dehn et al. 

2001; Pike 2002). It deals with the study of features connected to geometrical shapes, 

material, the morphological history and topography of landforms (Schmidt and Dikau 1999). 

Landforms may be considered as containing a structured form rather than chaotic due to the 

geologic history and the geomorphologic processes that have produced the present landform 

(Dehn et al. 2001). This implies a connection between the quantitative description and the 

landforming process. The terrain may be quantified based upon different perspectives (Pike 

1995), in which distinctions are made between specific and general geomorphometry (Evans 

1972). Specific geomorphometry consider discrete specific landform types or objects while 

general geomorphometry describes and analyze continuous surfaces. A geomorphometrical 

object is a clearly defined landform unit (Schmidt and Dikau 1999), e.g. a river channel, a 

catchment area, V-shaped valleys, glacial cirques (Evans 2009), sand dunes (Guth 2009), 

talus slopes, rock glaciers or, on most planetary surfaces, impact craters. 

On planetary surfaces, craters are often a dominant landform (Lowman 1997). A 

geomorphometrical study of these features belongs in the category of specific 

geomorphometry which includes more common terrestrial landforms like valleys, slopes and 

peaks. However, impact structures are not that distinct on Earth and thus whether specific 
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geometry applies is up for discussion. Only a few of the terrestrial impact structures are 

preserved well enough to be distinguishable as a separate discrete landform; as is the case for 

Barringer crater (Meteor crater). Many of the terrestrial impact structures blend in with other 

geomorphological shapes. 

The z value of a surface (x,y,z) is not restricted to altitude, but may consist of 

continuously varying attributes or regionalized variables (Burrough and McDonnell 1998) 

like temperature, annual precipitation, radiation, population density, pollutants in soil and 

geophysical fields values. In this thesis, various surfaces will be used in the search for impact 

structures. “Combining ideas from image analysis and geomorphometry can be a fruitful way 

of developing new parameters and gaining a better understanding of the information in the 

DEM” (Olaya 2009, p. 146). This is probably true for other surfaces as well, motivating the 

testing and developing of techniques on various spatial data types. 

 

 

2.3. Remote sensing and geomorphometry in crater search 

 

2.3.1. Planetary crater detection 

When the aim is to detect craters on solid planetary bodies (except the Earth) the desired 

result is often impact crater counting (e.g. Plesko et al. 2006). The resulting diameter 

frequency reflects the local erosional history of the surface area, and can be used for age 

estimation. In such methods “a robust methodology should produce no false detections while 

detecting all the craters present in the image” (Bandeira et al. 2006). The template matching 

technique has been used as part of the detection process (e.g. Bandeira et al. 2007; Barata et 

al. 2004), but often the circular Hough transform is introduced as one of the detection steps. 

Kim et al. (2005) presents a stepwise algorithm (including a thinning step) and exemplifies it 

on data from the Mars Orbiter Camera (MOC), Mars Orbiter Laser Altimeter (MOLA) and 

High Resolution Stereo Camera (HRSC), resulting in relatively good detection quality. Using 

MOLA digital elevation models, Bue and Stepinski (2007) describes an algorithm applied to 

topographic data of 500 m resolution. Their comparison between image and DEM crater 

detection ultimately favored DEMs due to their increasing accessibility and resolution. Their 

algorithm detected edges using the profile curvature, then divide the DEM into smaller 

fragments using a “flood” technique in order to perform a morphological closing and thinning 
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of each fragment where then a circular Hough transform can be applied to detect candidates. 

After, a confirmation algorithm is applied based on a set of criteria to detect or reject the 

candidates. Sawabe et al. (2006) presented a multiple approach that consist of four detection 

algorithms (including a fuzzy Hough transform) combined into one lunar crater detection 

algorithm, and reported to detect craters of all sizes and shapes. Both the Hough transform 

and template matching were used by Kim et al. (2004), in which the algorithm first detects 

crater edges in optical images and DEMs, then locates optimal ellipses using a Hough 

transform, before finally applying the template matching technique to verify detections. 

Mathematical morphology techniques have been used in planetary crater detection approaches 

by e.g. Urbach (2007). In that case a pre-processing step detected bright and dark (shadow) 

parts of craters in an image and decided if two parts belonged to the same crater based on 

different criteria. For a comprehensive list of crater detection algorithms (CDAs) see 

Salamuniccar and Loncaric (2008). 

 

2.3.2. Terrestrial crater detection 

The major difference between planetary and terrestrial impact crater detection is the low 

number of known impact structures on Earth (176), i.e. the absence of a large test data set. 

The proven impact structures are distributed over a large time span, found in different rocks, 

and they exhibit a large degree of variation, making the automatic detection of potential 

impact structures challenging. The structures are too few and varied to make a proper 

classification scheme, but can be used to investigate what kind of signs we are looking for in 

automatic detection routines. An advantage on Earth is the opportunity to conduct field work 

on impact structures in order to determine the details of their shape, geology and formation. 

Search strategies may be based on the following: Morphology (e.g. circular outline, rim 

structure, central structure), geophysical anomalies (e.g. gravity, magnetic, seismic) and 

geology, mineralogy and geochemistry (e.g. brecciation, shock metamorphism, traces of 

meteoritic material). 

Remote sensing of impact structures on Earth has mostly been to study single, already 

proven or suspicious impact structures. For example, Zumsprekel and Bischoff (2005) 

analysed Landsat Enhanced Thematic Mapper (Landsat ETM), DEM, European Remote 

Sensing satellite (ERS) radar, radiometric (gamma ray) and airborne magnetic data to 

investigate the Strangway impact structure in Australia. Reimold et al. (2006) enhanced 

features in Landsat Thematic Mapper (Lansdat TM) and Shuttle Radar Topography Mission 
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(SRTM) data, while Almeida-Filho et al. (2005) enhanced features using Advanced 

Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and a DEM to 

investigate the Serra da Cangalha impact structure in Brazil. Garvin et al. (1992) describe 

remote sensing characteristics of the impact structures Barringer, Bosumtwi and Zhamanshin. 

Radar images work well in aeolian terrains where the long wavelengths can penetrate deeper 

revealing structures in sandy places (McHone et al. 2002). A lithological supervised 

classification from field collected spectral measurements was conducted for the Gosses Bluff 

impact structure and environments by Prinz (1996), implying that information can be gained 

by such methods. Volcanic structures (calderas) display similarities in morphology to impact 

structures and approaches applied there may be transferred to impact studies, e.g. Kouli and 

Seymour (2006) investigated Landsat, DEM and SPOT images for radial faults, and Szèkely 

and Karàtson (2004) describe techniques applied to DEMs to enhance radial ridge patterns of 

degraded volcanic landforms.  

Detection of new impact structures through remote sensing or image analysis 

techniques have mostly been by visual analysis of data (e.g. Di Achille 2005), sometimes 

integrating several datasets within a Geographic Information System (GIS) software (e.g. 

Abels et al. 1997a). Before visual inspection, various image enhancement techniques are 

commonly applied to highlight contrast, linear or circular features. Araujo et al. (2001) 

presented an automatic processing chain to identify circular forms, impact and volcano craters 

in satellite remote sensing images (Landsat 5). The methodology consisted of several steps 

including pre-processing techniques to capture edge pixels and the Hough transform. A 

circular feature was detected, but the study only showed results for a small region. Though the 

circular Hough transform is the most frequently used, another algorithm called “the radial 

consistency algorithm” (calculates symmetry) has been applied in a few detection approaches. 

Earl et al. (2005) presented this technique together with a prototype tool, the Impact Crater 

Discovery (ICDY) tool (Chicarro et al. 2009), that incorporates the algorithm. Results were 

shown from applying and combining SAR, Landsat and Shuttle Radar Topographic Mission 

(SRTM) data for the Brent crater in Canada. The tool is applied in this thesis. Bruzzone et al. 

(2004) presented the same algorithm with results from several impact structures, though not 

over larger regions.  

A regional approach searching new impact structures was performed in Canada in the 

1950s and 1960s. The approach evolved from the fact that even though there was high human 

activity in and around the Brent crater, it remained undiscovered until detected on aerial 

photographs. This led to a systematic study of aerial photographs, hoping that other craters 
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might be found in that way. The study, starting out with the Canadian Shield as the area of 

search, revealed several craters or crater-like objects, and some of these structures were later 

proved to have an impact origin (Beals et al. 1956a; Beals et al. 1956b). 

The best performance regarding impact structure search by remote sensing or image 

analysis is to detect candidates, the most promising structures for further field studies 

(Koeberl 2004). Remote sensing methods can tell us where to look, but proof must later come 

from sampled rocks. 

 

 

2.4. Relevant datasets 

Combining several types of relevant data increase the amount of information and may 

improve the analysis. The succeeding sections describe different datasets that apply to impact 

search studies. 

 

2.4.1. Digital elevation models (DEM) 

Digital elevation models (DEM) represent the surface and hence the topography/morphology 

of an area. The elevation models may consist of contour lines (lines of equal elevation) or 

TINs (set of adjacent, non-overlapping triangles with x, y coordinates and z vertical 

elevations for their vertices), but the most common representation for analysis is the raster 

data model. The raster model is a set of regularly spaced points/cells (altitude matrix), made 

from elevation points interpolated to a continuous pixilated surface. The elevation points may 

come from field measurements, digitized contours from aerial or satellite photogrammetry, 

interferometry of radar data, or laser altimetry.  

Elevation models have been used to investigate morphology and geometry of craters; 

for example the size and relations of rim height, central peak height, crater depth and crater 

diameter (e.g. Pike 1977b). Digital elevation data “provide a good means to investigate crater 

morphology” and various structural elements (Reimold et al. 2006). It is possible to extract 

profiles across a structure, usually exaggerating the elevation axis to visually enhance features 

and possibly to separate the different parts of the structure. Shaded relief models, also based 

upon DEMs, can be used for visual interpretation. Erosion and depositions covering the 

craters make elevation models less appropriate for Earth impact structure search studies. 

However, one reason to still apply DEMs is due to possible differential erosion of rocks, e.g. 
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the Gardnos and Ritland impact structures have both been covered by kilometres of sediments 

and thrust nappes through geological time, and then eroded so the structures became re-

exposed. Their partly circular appearance could reflect the shape of the underlying bedrock or 

the preferential erosion of weaker crater infill rocks. An old impact event may consequently 

still influence present landforms. 

   

2.4.2. Geophysical data 

Geophysical surveys measure “the variation of some physical quantity, with respect either to 

position or to time” (Kearey et al. 2002, p. 8). Our goal is to search local anomalies that may 

be caused by visually concealed geologic features, e.g. resulting from an impact. Target areas 

that has been subject to impact and related processes (explosion, excavation, etc.), will differ 

from their surrounding. The resulting changes in the geophysical properties can be described 

as impact related geophysical signatures. Gravity and aeromagnetic data often display such 

signatures. These signatures can be used to search undiscovered impact structures. The shape 

and size of the Chicxulub impact structure was revealed by circular features in gravity and 

magnetic fields in which drill cores provided the proof (Hildebrand et al. 1991). The erosional 

effects on geophysical anomalies could lead to a spatial offset compared to the morphological 

feature (e.g. Hawke 2003). Still circularity often closely coincides with the structural 

boundaries (French 1998). 

Electric resistivity data (e.g. Henkel 1992) and seismic data (e.g. French 1998) may 

also display impact characteristic patterns. Some main reviews of impact structures and 

geophysical signatures are found in Grieve and Pilkington (1996), Pilkington and Grieve 

(1992), Henkel (1992) and Pesonen (1996). 

 

Gravity signatures 

A gravity low is commonly associated with impact structures (Fig. 5). Such negative density 

anomalies are typically circular (Henkel 1992; Pilkington and Grieve 1992), e.g. the 

Wanapitei impact structure has a circular Bouguer gravity low (L'Heureux et al. 2005). 

Fracturing and brecciation of the target rocks creates space/porosity and consequently less 

dense material. In addition, low-density sedimentary infill will contribute to a gravity low 

(Grieve and Pilkington 1996). Even if fractured to large depths, a gravity signature may still 

be present in an eroded structure. However, the effect is smaller at deeper erosion levels and 

the impact effects on gravity distribution may be minor as compared to gravity differences 
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caused by the original lithological distribution in target area (Henkel 1992). In complex 

impact structures, an exposure of rocks uplifted from considerable depth contrasts with the 

surrounding (Koeberl 2007) and may lead to a positive anomaly at the central uplift (e.g. 

Pilkington and Grieve 1992). This uplift is often more resistant to erosion than the rest of the 

impact structure, and it may be the only remnant that can be identified in old eroded structures 

(Chicarro et al. 2009). Positive anomalies are thus also important in impact structure 

detection. 

 

 
Fig. 5. Bouguer residual gravity anomaly maps and profiles. (a) The simple Wolfe Creek impact 

structure. (b) The complex Manicouagan impact structure. Residual gravity anomaly profiles are 

scaled to crater diameter and maximum gravity anomaly value. Arrows indicate crater rim (Pilkington 

and Grieve 1992). Black lines in maps correspond to possible position of profiles. (Map credits: 

www.impact-structures.com). 

 

Magnetic signatures 

There is a lack of consistency between magnetic signatures and impact structures. The 

magnetic character may contain large variations with both positive and negative anomalies 

occurring, where circularity also may be present (French 1998; Pilkington and Grieve 1992). 

The Manicouagan impact structure (Canada) has a relatively subdued positive circular 

magnetic anomaly over the central uplift (Cowan and Cooper 2005) while the Acraman 

impact structure in South Australia exhibits a circular magnetic low (Williams et al. 1996); 

the most common impact generated magnetic signature. This may be caused by reduction in 

susceptibility from contributions of fractured target rocks, brecciation and alteration (Grieve 
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and Pilkington 1996; Pilkington and Grieve 1992), and post-impact nonmagnetic sedimentary 

infill (Grieve and Pilkington 1996; Scott et al. 1997). A central magnetic anomaly could in 

some cases be the result of mafic basement rocks uplifted to the surface and shock re-

magnetised by the impact (Pilkington and Grieve 1992). Large impact structures may have 

magnetic contributions from a combination of regional magnetic trends disrupted by shock 

and/or thermal demagnetization and high amplitude, short wavelength magnetic anomalies 

primarily produced by natural remanent magnetization of impact melt rocks, breccias and 

rocks below the crater floor. The latter is related to thermal alteration (Ugalde et al. 2005). 

Short-wavelength, intense magnetic anomalies have been described by both Hawke (2003) 

and Hildebrand et al. (1991). Hawke (2003) show that a short wavelength circular anomaly 

coincide with the position of the Wolfe Creek crater and correlates with the crater rim and 

present day inner walls. The magnetic response was slightly offset to the north due to the 

dipolar nature of the magnetic field. The discovery of high magnitude, but small in size, 

magnetic anomalies should lead to further attention, especially if other data display impact 

related features close to the same locality. 

 

The inverse problem in geophysics 

In geophysics, a circular anomaly may be the result of several processes. Impact structures 

may be represented by circular anomalies, but circular anomalies do not necessarily represent 

impact structures as “any given anomaly could be caused by an infinite number of possible 

sources” (Kearey et al. 2002, p. 139). This “non-uniqueness in the conclusions that can be 

drawn” (Kearey et al. 2002, p. 6) is the geophysical inverse problem. In Finnmark, circular 

anomalies may come from hinges, faults, fractures, domes, basin folds, dykes, large intrusive 

bodies, etc. One approach to reduce this problem is to analyse various data types to determine 

if the circular feature is located at or near impact supporting features in several datasets, 

thereby reducing the ambiguity.   

 

2.4.3. Multispectral images and images 

Multispectral and panchromatic images derive from passive sensor systems (e.g. satellites) 

that capture the reflected solar radiation of the surface. When the reflectance is measured in 

different wavelengths (spectral bands), the result is a multispectral image. Unlike digital 

elevation models and geophysical field models, image conditions like cloud coverage and 

illumination are crucial components that must be considered. When detecting craters on 
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planetary surfaces it is common to use panchromatic images; i.e. images that capture the 

reflectance over the entire visible spectrum (ordinary images). There is a huge library of 

digital image processing and analysis techniques available for such images. Crater detection 

and measurements in images are limited by the signal to noise ratio, the optical point-spread 

function, illumination geometry, target background roughness and (crater) shape deviation 

from a simple circle or ellipse (Ivanov et al. 2008).  

There is no specific multispectral signature that can distinguish all impact structures 

from their surroundings, like the Landsat Thematic Mapper (TM) band ratio TM3/TM5 for 

glacier enhancement or the Normalized Difference Vegetation Index (NDVI) for vegetation 

enhancement. This is because impacts structures are both created and found in different 

environments, such as crystalline rocks, sedimentary successions, in the ocean, on land, in 

deserts and in highly vegetated regions, etc.  

 

2.4.4. Radar images 

Radar images are not explored in the present papers. A radar image is the result of an active 

imaging radar system, capturing backscatter of surface material in the microwave spectrum. 

Synthetic Aperture Radar (SAR) images may, in particular, prove useful for crater detection 

because of the higher resolution than ordinary radar images due to the system configuration 

acting as an aperture antenna; e.g. Envisat Advanced Synthetic Aperture Radar (ASAR) of 

150 m or 30 m spatial resolution. Chicarro et al. (2003) presents several terrestrial impact 

structures and their SAR images, while McHone et al. (2002) display radar results of ten 

impact structures. Radar images would probably be difficult to use in techniques requiring 

edge detection due to the speckle effect, but filters may minimize this effect (e.g. Lee, Frost, 

Gamma, Kuan, Local Sigma and enhanced versions of the mentioned). The filters preserve 

image sharpness and suppress the noise. SAR images of different polarization and captured at 

various times (temporal) may detect differences in dielectric properties through the year. 

Some of these differences may be triggered by impact related structures.  

 

2.4.5. Drainage patterns 

Drainage patterns often reflect the underlying rocks and structures. Mihàlyi et al. (2008) 

provide an overview of drainage patterns of four complex impact structures, concluding that 

they have characteristic patterns despite being later modified. The recognition of these 
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features can be an important first step of discovering new sites. Reimold et al. (2006) studied 

the drainage pattern at the Serra da Cangalha impact crater in Brazil. They found the structure 

to be characterized by a strong concentric drainage pattern extending outwards from the crater 

rim. L´Heureux et al. (2005) mention that the circular shape of Lake Wanapitei was a first 

clue towards indication of an impact origin. Dence and Popelar (1972) used the drainage 

pattern of the lake to support the presence of an impact structure, describing a concentric 

pattern of streams and smaller lakes within 5 km of the Wanapitei impact crater. The use of 

lake data can be to detect circular lakes or circular combinations of lakes, while network data 

can be used to determine if a local drainage pattern is distincly different from the larger 

regional pattern. 

 

2.4.6. Fracture patterns 

Radial or concentric patterns of fractures, faults, folds and transpression ridges are often 

connected with impact structures (Kenkmann 2002; Kenkmann and Dalwigk 2000). Such 

features may indicate a potential impact structure if the local pattern varies from the regional 

pattern. L´Heureux et al. (2005) mention that concentric joint and fracture patterns peripheral 

to the lake were observed early in the study of the Wanapitei impact structure. Kenkmann et 

al. (2005) report that radial folds and concentric stacking of imbricated thrust slices are 

among the prominent deformation features in Upheaval Dome impact crater, Utah. Data of 

fractures and faults may be accessible as geodata files (e.g. lineaments), or found using 

satellite images, e.g. Gabrielsen and Ramberg (1979) found circular features in Landsat 

images during a lineament study of Norway.  

 

2.4.7. Other datasets 

Data of lithology distributions is already classified, but a detection of circular features may 

explain detections in other data, or shed light on a feature. Geochemical distribution data, if 

available as raster data models, can be used in the same way as the lithologic data. 

Bathymetry data can, and have been used to detect circular depressions (Webb et al. 2009). 

The Smith and Sandwell (1997) global digital bathymetric map of the oceans (horizontal 

resolution of 1 to 12 km) represents a possibility for global ocean floor analyses. The 

geographic information software, Google Earth, and the web mapping service, Google Maps, 
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can also be used to detect suspicious circular structures. The ICDY tool has the potential to 

operate on such data whenever a reasonable method to include it in the software is developed. 

 

2.4.8. Pre-processing of data 

Several possibilities exist to enhance data prior to use in automatic procedures. Conventional 

data processing techniques are image transformations (e.g. principal component analysis, 

RGB to HIS, NDVI, contrast stretching), band rationing and noise removal (e.g. by median or 

mean filters). A classification of remotely-sensed multispectral images may be performed to 

detect common textures through a supervised or unsupervised classification. This can either 

be for geological mapping or the enhancement of lithologic boundaries. Data can also be 

resampled to fit other data in an analysis or to fit the analytical scale of the analysis, e.g. 

detection of large features do not need a high resolution. 

Among the pre-processing techniques, separation of the different wavelengths 

(deconvolution) in the models may prove useful (Cowan and Cooper 2005). The geophysical 

potential fields can be considered the sum of features operating at different frequencies. The 

separation of such frequencies is possible, performing filter operations in the frequency 

domain. Short or long frequency anomaly enhancements are commonly performed by 

deconvolving a model into regional-residual and local-residual models. A discrete Fourier 

transform, computed using the Fast Fourier transform (FFT) algorithm, converts the models 

into the frequency domain. Convolving with Butterworth designed high- and low-pass filters, 

focusing only on the magnitude of the frequency response of the gravity and aeromagnetic 

intensity data, will emphasize small or large scale features, respectively sharpening or 

smoothing the model. The latter may be rewarding regarding large scale impact structures 

because a low-pass filter reduces small “spikes”, noise and “spurious” effects. The opposite 

may also be rewarding, removing regional wavelengths, trends larger than the features of 

interest. Uncertainties comes in selecting filter parameters and “there are many considerations 

to be made in the way you select, and the manner in which frequency components are retained 

or excluded” (Nixon and Aguado 2002, p. 64). 
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3. Setting 
 

 

Norway comprises the western part of the Scandinavian Peninsula. The bedrock geology of 

Norway is dominated by Precambrian basement rocks and Caledonian successions (e.g. 

metamorphic Cambro-Silurian sediments stacked in nappe units). Limited areas of Devonian 

to Permian sediments and volcanics are also present. The larger part of the bedrock is, 

however, covered by various Quaternary formations of mainly marine, glacial and fluvial 

origin. Geomorphologically, the present topography of Norway is governed by peneplanation 

and stripping of marine strata during the Mesozoic (Lidmar-Bergstrøm et al. 2000; Peulvast 

1985), the Tertiary uplift (Gjessing 1967; Strøm 1948) and related fluvial-dominated 

landscape formation in a warmer and partly drier climate than today (Gjessing 1967; Lidmar-

Bergstrøm et al. 2000; Strøm 1948), followed by numerous Quaternary glaciations (Kleman 

and Borgström 1994). The latter accentuated the Tertiary fluvial valley pattern, while areas in 

central and northern mountainous areas underwent little or no erosion due to the thermal 

conditions of the ice sheets (Lidmar-Bergstrøm et al. 2000; Sollid and Sørbel 1994).  

The search area of this thesis is located in Finnmark county (specifically 

Finnmarksvidda), Northern Norway (Fig. 6). The search area is situated on a plateau 

(Finnmarksvidda) 300 – 500 m a.s.l. and has a relative low relief, except for the large river 

valleys. The Finnmark geology is dominated by large areas of eroded Precambrian bedrock. It 

is composed of Archaean gneiss complexes acting as basement for early Proterozoic 

greenstone belts (supracrustal sequences), partially covered by Caledonian formations (Olesen 

and Sandstad 1993). The landscape is covered by thick and widespread Quaternary glacial 

deposits, making it difficult to locate outcrops over large areas. Interpretation of regional 

geophysical data has therefore been crucial for the geological understanding of the area (e.g. 

Midtun 1988; Olesen et al. 1992; Olesen and Sandstad 1993; Sindre et al. 1983). It is thus an 

area of fairly good gravity and aeromagnetic coverage. 

The search area is part of the Fennoscandian Precambrian Shield, displaying a very 

long geological history (Henkel and Pesonen 1992). The Precambrian gneisses and meta-

sediments are normally hard and have good preservation potential, with descent chances of 

displaying impact structures. However, in a non-sedimentary setting such as the crystalline 

rocks of the Canadian Shield, the identification of impact structures is difficult because of the 
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lack of prominent marker horizons in geophysical datasets, often reducing diagnostic 

approaches to analysis of potential field data (L'Heureux et al. 2005). Crystalline target rocks 

may in addition be too poorly stratified for a significant contrast between uplifted rocks 

(central peak) and the surrounding, often not sufficient to provide remote sensing signatures 

based upon differences in spectral properties or erosional resistance (Abels et al. 2000).  

The Caledonian orogeny may have altered possible earlier structures and the last 

glaciations in Scandinavia likely both eroded and covered possible pre-Quaternary impact 

structures. Earlier geological researches on Finnmarksvidda have, in addition to general 

mapping, mostly been focused on studying locations for ore occurrences. These are 

commonly found along the border of the greenstone belts, which possibly resulted from rift 

developments (Olesen and Sandstad 1993). As of today, Finnmark area has no proven impact 

structures. It does, however, belong to a part of the Fennoscandian shield which holds several 

proven impact structures. Finland has, in particular, had a very high success rate in detecting 

possible impact structures through the use of detailed geophysical surveys. 

Finnmark is a promising place to search for undiscovered impact structures because it 

is an area of old bedrocks (long exposed) with high competence, large areal extent and good 

data availability (including DEMs, gravity and aeromagnetic potential field data). The 

possibility of success in Northern Norway may therefore be promising. 
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Fig. 6. Recognized impact structures in Fennoscandia (see Fig. 4 for names). Grey square marks 

location of search area. The search area is part of Finnmark county, covering the municipalities of 

Kautokeino and Karasjok (white borders on inset map). To get an impression of the topography, the 

search area is displayed as a shaded relief map. 

 

 

On Earth, the number of impact structures found is a combination between the production rate 

and the erosion rate. Is it statistically reasonable to find any impact structures in our search 

area, and what would the expected number of impact structures be? Such questions need to 

address the age and areal extent of the area, together with impact flux, distribution (if a 

random process), degradation (erosion, obliteration) and the size of impact structures. A 

rough estimate of the exposed age of the search area is 2.1 Ga. The Precambrian bedrock with 

an approximately mean age of 2.4 Ga, has a complex history and has been covered by a total 
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cover duration of about 300 Ma (e.g. by Caledonian nappe units). The search area covers ca. 

25.000 km2. 

Two approaches have been conducted to determine the number of expected structures 

in the search area. The first is based on Ivanov (2008b, p. 109), who present a table of the 

cumulative number of impacts for the Earth’s continents (Fig. 7). If the line of 1 Ga is used, to 

be conservative, the number of craters with diameter larger than 2 km on the surface of the 

Earth should be 100.000. The Earth’s total surface is ca. 510.072.000 km2. This results in an 

estimate of ca. 5 impact structures for the search area in Finnmarksvidda.   

A “production function may be used to interpolate crater counts obtained on surfaces 

of various ages” (Ivanov 2008a). The techniques of crater chronologies and production 

functions are not directly applicable to Earth because the terrestrial record is not extensive 

enough. Despite this, the second method use the software “Craterstats” (Michael and Neukum 

2007) to estimate the number of expected structures based on the already known distribution 

of Fennoscandian impact structures. Craterstats apply the methodology of the production 

function fit combined with the application of a chronology model. From the size of the 

Fennoscandian surface unit (ca. 1.411.911 km2) and the record of proven impact structures 

(17), the crater-size frequency distribution and the surface unit modeled age are calculated 

within the software. A crater production function for the Moon and a chronology function for 

Earth, both Neukum (1983), were used to estimate an age. The resulting age was 707 +- 250 

Ma (Fig. 8), an underestimate indicating the lack of impact structures in the area compared to 

other planetary surfaces. Insetting a 2.1 Ga chronology function display that a bit more than 

10-4 craters larger than 2 km per km2 should be present, that is ca. 3 craters for the study area. 

The approaches are highly approximate and erosion has not been accounted for. The 

overall picture is that not many impact structures can be expected in our search area, though a 

couple might be reasonable based on the above. 
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Fig. 7. Cumulative number of craters for the whole Earth surface (Ivanov 2008b, p 109). Red vertical 

line denote the intersect between impact diameter larger than 2 km for a surface of 1 Ga. Red 

horizontal line intersect with the cumulative number of craters (larger than 2 km in diameter), given 1 

Ga. 
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Fig. 8. The software “Craterstats” (Michael and Neukum 2007) was applied on the 17 proven impact 

structures in Fennoscandia in order to estimate an age of the region based on the impact crater 

distribution. The crater production function parameters of “Moon, Neukum 1983” and the chronology 

function parameters of “Earth, Neukum 1983” were used in the analysis. The chronology function is 

an equation of the form N(1) = A(eBt - 1) + Ct, where A, B, C are constants; 4.15E-14, 6.93E0 and 

6.39E-4 for “Earth, Neukum 1983”, respectively. “Moon, Neukum 1983” includes the coefficients of a 

twelfth-order polynomial that describes the production function (Neukum 1983). (Craterstats: 

http://hrscview.fu-berlin.de/craterstats.html). 
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4. Data 
 

 

Two DEMs from the Norwegian Mapping Authority are used in the analysis, one with 25 m 

spatial resolution and another with 100 m spatial resolution. The Geological Survey of 

Norway (NGU) provided access to regional gravity and aeromagnetic data (e.g. Olesen and 

Sandstad 1993). The gravity data has a spatial resolution of 1500 m, while the two 

aeromagnetic datasets have spatial resolutions of 1000 m and 100 m. They are available as 

raster data models interpolated from ground stations (gravity) or flight measurements 

(aeromagnetic). In the detection algorithms, the data are treated as surfaces with intensity (z) 

values as mGal or nT. The gravity Bouguer values range from -51.23 mGal to -3.02 mGal, 

and the magnetic field values range from -1267.11 nT to 7093.42 nT. Bouguer corrected 

gravity anomalies have been reduced for variations in the Earth’s gravitational field that do 

not result from the density differences of the underlying rocks (e.g. latitude, elevation and 

terrain) (Kearey et al. 2002). The International Geomagnetic Reference Field (IGRF) is used 

to remove a theoretical undisturbed Earth surface magnetic field from the aeromagnetic data 

(Kearey et al. 2002). This has been applied, but the aeromagnetic data have not been reduced 

to the pole (RTP) due to the high latitude of search area. Both gravity and aeromagnetic data 

are thus of a residual format since large regional fields are removed.  

This study used multispectral images from the Landsat Enhanced Thematic Mapper 

Plus (ETM+) sensor, orthorectified by the Global Land Cover Facility (GLCF 2009). Data of 

lake distributions are available as vector data from the Norwegian Mapping Authority (N250 

and N50 series), and vector data of lithology distributions (N250 series) are available from the 

Geological Survey of Norway (NGU). All vector data were converted to a raster data structure 

before analysis. 

The data must be georeferenced and co-registered into consistent datum and reference 

coordinate systems in order to be combined (Fig. 9). In these analyses the datum for all the 

data are within the World Geodetic System from 1984 (WGS84) in a Universal Transverse 

Mercator (UTM) projection and coordinate system (Zones 32N, 33N, 34N and 35N). 
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Fig. 9. Various datasets are used in the analyses to improve detection (see Fig. 6 for location and 

scale). From below; Landsat satellite image (ETM+), digital elevation model, gravity and 

aeromagnetic data. The municipalities of Kautokeino and Karasjok are displayed with black borders, 

and the vertical lines pass through the villages Kautokeino (left) and Karasjok (right). 
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5. Methods 
 

 

In a first attempt to detect potential impact structures (Dypvik et al. 2006) we explored the 

simple idea; are there places that look like an impact crater in Norway? This was evaluated 

through a template matching technique performed on DEMs (Paper I). The circular Hough 

transform technique was tested on aeromagnetic data (section 5.2.2) and a shaded relief model 

(Peer reviewed extended abstract I), but the technique was ineffective for terrestrial data due 

to the edge detection step that makes it difficult to extract both subtle and strong anomalies. 

Paper II describes the circular outline algorithm applied to DEMs and geophysical data, an 

algorithm that searches for circular rims independent of the strength of the anomalies. Paper 

III evolved from the possibility to include multispectral images and to apply an already 

developed tool, the Impact Crater Discovery (ICDY) tool. An example of a filter technique 

that can be used to reduce the number of detected features from analysis on DEMs and 

potential field data is presented in Peer reviewed extended abstract II. The methodology 

sketch then consist of different techniques applied to a variety of datasets (Table 1), 

combination of results (data fusion) and possible post-processing steps, before conduction of 

field analysis (Fig. 10).  
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Table 1. Overview of technique and data combinations presented. The template matching technique 

may apply geophysical data, but it is not straight forward to make proper templates. Converted vector 

to raster data may be bedrock, lake, drainage patterns and lineament data. 

 

               Data 
 
 
Techniques 

Digital elevation 
models (DEM)  

Geophysical 
potential field 
data  

Remotely-
sensed images  

Converted 
vector data  

Template matching  Paper I    

Circular Hough 
transform  Ext.abs. I Ext.abs. I   

Circular outline 
algorithm  Paper II 

 
Paper II 

   

ICDY Paper III Paper III Paper III Paper III 

 
 



32 
 

 
 

Fig. 10. Methodological sketch of the search for new impact structures. The automatic and manual 

parts are connected. A terrestrial impact structure can not be proven without field work, and in the 

presented search model the sites to visit in field are based on automatic detections. The flow chart 

emphasize that several data types and techniques should be used to get the most out of the automatic 

procedures. 
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5.1. Detection characteristics 

Detection of spatial objects requires defining feature characteristics or feature descriptors that 

describes the object. This is often the essential object features without details, however, the 

number of false detections usually increase with simplicity of the description. Impact crater 

formation typically results in circular shaped craters, except when impacts occur from low 

angles (< 10�). The circularity is found both in morphology (Fig. 11) and in the distribution of 

impact rocks (e.g. breccias) for all crater sizes. Other features related to impact structures 

could also be connected to circularity, e.g. “the circular shape of lake Wanatapei was one of 

the first and most obvious clues indicating its origin” (L'Heureux et al. 2005). Numerical 

simulations display circular impact features, and shows that oblique impacts in water (e.g. 45 

degrees) starts as asymmetrical (elliptical) though ends up as a symmetric (circular) feature 

after a short time (e.g. Gisler et al. 2003). Geophysical signatures also display circularity 

which may be found even if the structure is less apparent morphologically, or even eroded. 

The choice of detection descriptor or classifier is a tradeoff between being either too 

specific or too generalized. The analytical choice for terrestrial impact structure search is to 

use a simple characteristic, the circular shape. Too specific characteristics will lead to no 

feature detections at all. The original circular appearance of impact structures on Earth has 

been through many processes and, in addition to possible deviation from a circle, maybe just 

a part of the circularity is still present. The applied search methods should find the structures 

even if the circularity is only covering half the structure or found in broken forms.  

The analyses is here operating on a regional level, aiming at relative large-scale 

structures. Of the 176 proven terrestrial impact structures, 160 have a diameter of 40 km or 

less (Earth Impact Database 2009). In order to keep the resulting amount of data on a 

practicable level and to detect reasonable sized structures to visit in the field, the search 

interval diameters are set from 500 m to 40 km or from 1 km to 40 km in the present analyses 

depending on algorithms and geospatial data resolutions. 
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Fig. 11. Two almost perfect circular terrestrial impact structures. (a) Tenoumer impact structure 

(Mauritania), 1.9 km in diameter, ca. 0.0214 Ma. Landsat Thematic Mapper image. Credit: Earth 

Impact Database (2009). (b) Lonar impact structure (India), 1.83 km in diameter, ca. 0.052 Ma. 

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image. Credit: NASA. 

 

 

5.2. Techniques/algorithms 

A visual inspection of data is here classified as a separate technique, where several of the data 

pre-processing techniques may be applied. It may prove useful to visually enhance or 

highlight structural information in data to possibly discover features not seen before. Such 

enhancements can involve making colour images, shaded relief images, high/low pass 

filtering (sharpening or smoothing), first and second order surface derivatives (e.g. slope, 

curvature), horizontal profiles, image transformations (e.g. RGB to IHS, principal component 

analysis), colour composites and gradient images. Cooper (2005) demonstrated a method 

analysing aeromagnetic and gravity datasets from South Africa based on a visibility 

algorithm, where a calculation of viewshed enhanced details. Usually, multiple techniques or 

combinations of techniques are required to enhance the desired features.  

There is a difference between enhancing features (e.g. edge enhancement) and 

extracting features (e.g. circular structures). We seek techniques that automatically extract 

impact structure candidates. These techniques should strive to be scale independent, 

operational for both 1 m and 1000 m spatial resolution models. With spatial data, x and y 
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coordinates represent the location of an intensity value z (e.g. height or gravity) or a binary 

value (e.g. a lake or not a lake). The presented techniques evaluate if these values are arranged 

(x,y,z) in a circular way, interesting for impact structure search.  

 

5.2.1. Template matching 

The template matching technique and results are presented in Paper I (Krøgli et al. 2007b). 

Template matching involves correlating a template and an image over a moving window, 

resulting in an image of correlation values or similarity (matches). Paper I used template 

matching to locate crater shape similarities in the topography (DEMs), followed by an 

approach to reduce the number of localities. Template matching has also been used in locating 

kimberlite pipes. Keating (1995) compute first-order regressions over a moving window 

between a typical magnetic kimberlite anomaly and regional aeromagnetic data. In the same 

manner, Keating and Sailhac (2004) calculate correlations between the analytical signal of a 

magnetic field and typical kimberlite target anomalies. A similar approach for gravity 

signatures and impact structures is possible, but it is difficult to make proper templates. In 

archaeology, detection of circular features (possible cultural remains) are attempted using 

DEMs, template matching, and Hough techniques (Risbøl et al. 2007; Risbøl et al. 2008). 

  Matching techniques have been incorporated in several planetary detection algorithms 

(Bandeira et al. 2007; Kim and Muller 2003; Michael 2003). Bandeira et al. (2007) describes 

a method using template matching of binary images, where rims are extracted first within a 

candidate selection phase. Their binary templates (not greyscale as in Paper I) consist of a 

circular white crown (rim) on a black square background in which several radii are defined by 

different templates. This leads to a probability volume where regional maximums are found 

using morphological operators. The approach reported to have good quality results. On solid 

planetary bodies, the craters are often uniform, while on Earth, the topography is more varied 

thus low correlation coefficient thresholds must be set to produce any matches (there are few 

places that actually looks like the templates). This will often result in the findings of too many 

structures. The Gardnos impact structure shape of a hanging valley was found by the template 

matching technique (Fig. 12), however, there are hundreds of additional structures with 

comparable correlations in Norway. 
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Fig. 12. The template matching technique detects the Gardnos impact structure using a crater model of 

5 km diameter. At the same time hundreds of other ca. 5 km in diameter features are detected in 

Norway. This is a high number, but the detected depressions can be used in later analysis for 

comparison. Yellow circles mark the approximate borders of the high correlated areas (yellow 

polygons). Contour interval is 100 m. 

 

5.2.2. The circular Hough transform 

The original Hough transformation technique, introduced by Hough (1962), has been adapted 

for image shape analysis, detecting first linear features in images (Duda and Hart 1972), and 

thereafter extended to detect other shapes like circles and ellipses. The circular Hough 

transform has a variety of applications; some examples include automatic fruit recognition 

robots (Jiménes et al. 1999), finding circular gas seepage locations on images (van der Werff 

et al. 2006) and in medicine to localize cell nuclei of cytological smears (Smereka and Duleba 

2008). Cooper (2006) demonstrates the use of the Hough transform on aeromagnetic and 
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gravity datasets from South Africa. He extends it to work on spherical global geoscientific 

datasets. Cooper and Cowan (2004) use the Hough transform to detect circular anomalies in 

irregular spaced data as opposed to gridded data using an aeromagnetic dataset. They apply 

this approach because large flight line separation during sampling as compared to flight 

direction sampling may distort features, resulting in information loss by the gridding process. 

The circular Hough transform is a voting technique, accumulating a parameter space 

that must be followed by peak detection (e.g. global or local thresholds, cluster methods) to 

locate objects. The transform is usually applied to binary images consisting of edge pixels 

(result of edge detection). It calculates the possibility that such edge pixels are lying on a 

circle. For each edge pixel, it locates possible circle centres; all pixels a distance r (radius) 

away from the considered edge pixel. These potential circle centres are stored in a three-

dimensional accumulator matrix, the size of radii interval and input image (rmin-rmax; xmin-xmax; 

ymin-ymax). This procedure is performed for all edge pixels and all interesting radii, 

accumulating possible circle centers in the matrix. The frequency of the accumulated values 

correspond to the probability of several edge pixels belonging to the same circle (Gonzalez 

and Woods 1993; Sonka et al. 1999), as displayed in Fig. 1 of Peer reviewed extended 

abstract I (Krøgli et al. 2007a). High values in the accumulation matrix indicate the presence 

of a circle in the original image. If some of the edge pixels along a circle in the original image 

are missing (as is often the case) the algorithm will result in a lower value in the accumulation 

matrix, though it may still be high enough for detecting the circle.  

The circular Hough transform was applied on a shaded relief model in Peer reviewed 

extended abstract I and on aeromagnetic data (Fig. 13), using a simple code from Nixon and 

Aguado (2002). The results showed high dependency on the number and location of the edge 

pixels. Paper II (Krøgli and Dypvik 2010) presented some of the difficulties of localizing 

edge pixels (edge detection).  
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Fig. 13. (a) Circular features (black circles) detected by a circular Hough transform in regional 

aeromagnetic field data from the search area (100 m spatial resolution). (b) Edge pixels found by 

Sobel edge operator and a global threshold. The two distinct circular features in (a) are detected where 

a circular pattern of the edge pixels are seen (red squares). A more “chaotic” pattern of edge pixels 

lead to the detection of several circles (green rectangles). It requires a lower threshold to detect the 

subtle half circular feature in lower central of image (a) (purple square), but this will lead to more edge 

pixels in the image and probably more examples of “chaotic” patterns. 

 

Edge detection 

“An edge is the boundary between two regions with relatively distinct grey-level properties” 

(though also used with other contrast/intensity properties like in colour images and DEMs), 

most often assuming “that the regions in question are sufficiently homogeneous so that the 

transition between two regions can be determined on the basis of grey-level discontinuities 

alone” (Gonzalez and Woods 1993, p. 416). The Hough transform is dependent on finding 

edge pixels (edge points) in an image. This usually involves gradient calculation (ordinary 

thresholding and thinning also work) followed by extraction of edge pixels from this gradient 

image. The result is dependent upon the quality of these steps. The human brain can evaluate 
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if an edge in an image is meaningful. Edge detection operators like the Sobel or Roberts 

techniques (Nixon and Aguado 2002; Roberts 1965; Sobel 1970) enhance edges in images, 

but the edges are not necessarily meaningful. Edge pixels are localised from the resulting 

gradient magnitude image (edge enhanced image). The final result of the operation is a binary 

image displaying edge pixels and non edges pixels. The result are dependent on the choice of 

edge operator and binarization method (Albregtsen 1993; Trier 1995). Binarization methods 

are typically global and local (adaptive) threshold techniques (Fig. 1 in Paper II). There are 

problems of using only threshold techniques at this step because of possible diffuse 

boundaries, noise that can produce high gradients, and the possibility of a thick band of pixels 

in an edge map (Efford 2000). The process of binarization or extracting edge pixels may 

result in information loss when inappropriate thresholds are used. Edge-based segmentation 

works well in images with high contrast between object and background, but have 

disadvantages on images with smooth transitions and low contrast. 

The circular Hough transform is a common step in several crater detection algorithms. 

On solid planetary bodies, craters are commonly clearly visible with reasonable contrast to the 

surroundings. This is not the case for terrestrial data. Bruzzone et al. (2004) showed that the 

circular Hough transform did not give satisfactory results if the structures where not clearly 

visible in the images. Boschetti (2005) described an edge detection technique using gradients, 

specifically made for high and low amplitude geophysical fields. Nonetheless, to cope with 

the difficulties of making reliable edge detections, an approach without requiring the 

localisation of edge pixels are sought in the next section. 

 

5.2.3. The circular outline algorithm 

This technique is developed in order to bypass the difficulties of edge detection and is 

presented in Paper II (Krøgli and Dypvik 2010). It is primarily made for use on regional 

geophysical potential field data but can also operate on DEMs. In geophysical potential field 

data “it is almost impossible in practice to achieve satisfactory results when anomalies of 

widely varying sizes are present” (Cooper 2005). The algorithm differs from the more 

common circular Hough transform in that edge detection is not a prior requirement. If there is 

not a large enough difference (gradient) between adjacent pixels, edge enhancement might be 

difficult. In such cases subtle circular anomalies (small gradients) might be difficult to extract. 

These subtle circular anomalies are considered to be as important in an impact structure 

search as strong circular anomalies (Fig. 14). Therefore, the algorithm is constructed to 
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operate on even the smallest numerical differences between an anomaly and its surrounding. 

The algorithm searches for a circular “contour” around a point and determines how complete 

it is by calculating the number of pixels that have a gradient direction (aspect) in the direction 

of the centre pixel. A tolerance of the direction angle may be set. Different radii are analysed 

and only pixels along the outline of the circle are considered. The inside of the circular outline 

may then consist of any values. An accumulation matrix (similar in size to a corresponding 

Hough transform accumulation matrix) records the values where a high value indicates the 

detection of a circular outline. The pixels on the circular outline can be of various intensities 

because the aspect value is relative (the same aspect value can be at e.g. different elevations), 

and there can also be various edge magnitudes around the circle, e.g. weak on one side and 

strong on the other side. Both downslope and upslope attitudes towards a centre pixel can be 

evaluated (negative and positive anomalies). 

 

 

 
 

Fig. 14. The left and right feature features are considered equally valuable in the analysis. The right 

feature has a steeper gradient, but it is the shape, not the gradient magnitude that is important. 

 

Aspect 

A digital terrain model (DTM) is a “general model of the landscape that includes other 

parameters such as slope and aspect” (Burrough and McDonnell 1998) which are related to a 

topographic surface (Florinsky 1998). The method of Horn (1981) use eight neighbouring 

cells to calculate the aspect of a kernel pixel. This method is considered high in quality by 

Jones (1998) and was used for calculating aspect. Hodgson (1995) demonstrated that 

calculating slope or aspect for an elevation model of a certain grid-cell size, yields a result 

that better depicts a surface of 1.6 to 2 times the grid-cells. This has a minor effect as 

elevation and parameter data are not directly compared in these analyses (as would be the case 

in cartographic modelling).  

A gradient vector has 2 components, magnitude and direction. In geographical 

information analysis, a pixel in a DEM (or other surface) has slope and aspect, where aspect 
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(0 to 360 degrees) is the direction of slope (directional component of the gradient vector). 

Figure 15 display some well exposed craters on Mars. At first glance, the corresponding 

aspect image may seem chaotic, even for these craters, but a closer look reveals the presence 

of a pattern that can separate craters from their surroundings. 

 

 
 
 
Fig. 15. (a) Martian impact craters displayed using a shaded relief model (based on MOLA data, 463 

m spatial resolution). (b) Aspect values (0 – 360 degree gradient directions) calculated from the DEM 

that was the source of the shaded relief model in (a). Notice how the aspect values display a pattern 

that coincidence with the craters. 

 

5.2.4. Impact Crater Discovery (ICDY) tool 

The Impact Crater Discovery (ICDY) tool and results are presented in Paper III (Krøgli et al. 

in prep). The tool is based on the radial consistency algorithm (Bruzzone et al. 2004; Earl et 

al. 2005) that calculates the amount of circular symmetry about a point. This technique is 

applicable to a broad range of data, including remotely-sensed satellite images. In addition to 

Landsat ETM+ images it was applied to DEMs, geophysical data, data of geological 

boundaries and lake distributions. The advantage of the tool is the multi-source possibilities 

and, as the circular outline algorithm, that it operates without prior edge detection. 



42 
 

The radial consistency algorithm is a moving window operation evaluating differences 

in pixel values along and between profiles (16 default profiles) radiating from a centre pixel 

(Bruzzone et al. 2004). An area of circular symmetry has altogether larger pixel contrast 

differences along radial profiles than between adjacent profiles. A value (A-B)-(A-C) is 

calculated, where the considered pixel is A, the next outward pixel is B and the pixel on 

profile to the right, but on the same level as A is C (Fig. 2 in Paper III). The resulting values 

are summarized for all pixels on profiles in the window, before moving the window to the 

next step. At each step, the value is modified to make the calculation more dependent upon 

geometry rather than contrast differences, e.g. black or grey circles on a white background 

would receive similar values. Results from multiple data sources should be comparable due to 

this modifying step. The result is a crater likelihood image (CLI). A high value indicates that 

the pixel is the centre of a region of circular symmetry. Such pixels are isolated by peak 

detection (global threshold). Then, the most probable radius of each site is found, the radius 

that contributed most to the CLI value. This means that the CLI value "depends on 

contributions from all specified radius values about a point, while the preferred radius 

depends on finding the radius providing the maximum contribution to the overall measure" 

(Bruzzone et al. 2004).  

The algorithm only looks at the intensity differences between adjacent pixels, it does 

not evaluate the pixel values background. It is the contrast that is important and highlighting 

the spectral contrast of surface features in an image may prove useful. An example of this is 

to enhance vegetation to detect spectral anomalies that may reflect the lithology, either 

directly by nutrients or indirectly by topography. It is less desirable to use pre-processing 

steps that reduces dimensionality to fewer bands (e.g. principal component analysis) since it is 

preferred to utilize as much information as possible, and ICDY can be applied on several 

bands simultaneously. 
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6. Martian crater detection/comparative results 
 

 

In order to compare the performance of the Impact Crater Discovery (ICDY) tool on different 

planetary surfaces, it was applied to Martian and terrestrial DEMs (Fig. 16) (Krøgli et al. 

2009a). The Martian DEM (463 m spatial resolution) is based on altimetry data acquired by 

the Mars Orbiter Laser Altimeter (MOLA) and cover a region known as Southern Thaumasia, 

a region of diverse topography including a rift system (Grott et al. 2007). The terrestrial DEM 

(100 m spatial resolution) covers the search area in Finnmark, Northern Norway. The ICDY 

tool has shown promising results with planetary data (Earl et al. 2005). We compared 

automatic and manually detected craters on Mars to find the best global crater likelihood 

(CLI) threshold for use in crater counting. Results showed that a threshold of 2.2 seems 

reasonable for a broad range of Martian topographies, being a compromise between detecting 

too many false positives and leaving too many craters undetected. Although resolution of 

models and sizes of detected circular features are different, some tendencies are apparent in 

Figure 16. Most of the craters present on the Mars test-site were detected and there were in 

addition two false positives (black arrows in Fig. 16). A similar CLI threshold on the 

terrestrial data extracts more varied structures than on Mars. None of the terrestrial structures 

resembles the shape of the Martian craters, and the findings suggest that the aim of such 

methods on Earth would be to detect circular depressions or partly circular structures for 

comparison with related analysis. A stricter CLI threshold and a morphology filter (e.g. 

removal of features that include non-circular peaks) may refine the detected structures.  

The application of both the ICDY and the circular outline algorithm result in several 

overlapping features (several detections of the same crater) when applied on Martian data 

(Fig. 16, Fig. 3 in Paper II and Fig. 17). This results in lower quality when counting craters 

because false positives reduce the performance. In terrestrial impact structure search studies, 

an overlap is of minor significance because the focus is on location rather than the number of 

circles. The algorithms can be used to count craters on planetary surfaces if overlapping 

features (redundancy) are merged. ICDY uses a minimum separation value to exclude some 

of the overlapping craters; if two peaks are within this separation value the highest value is 

kept. 
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Fig. 16. Automatic detected regions of circular symmetry, CLI > 2.2. Upper image displays a region 

on Mars, while the lower image displays part of the search area in Finnmark, Northern Norway. Inset 

Finnmark map in same scale as Mars map above. 

 



45 
 

 
 
 
Fig. 17. Circular outline algorithm detections (yellow dots) on Martian MOLA data using a search 

diameter interval of 30 – 50 km and a threshold of 80 are displayed on a shaded relief model. 

Manually detected craters are displayed with grey or blue circles, where the blue circles have 

diameters between 30 km and 50 km. All but one of the craters in the search interval (blue) is detected, 

but there are also detections of larger and smaller craters (grey). There are also several detections of 

each crater (yellow dot overlap). These two factors deem the algorithm unsuitable to establish 

frequency distributions by crater counting because of incorrect diameters and numbers.  
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7. Terrestrial potential impact structures (or circular 

features) 
 

 

Papers I, II and III presented results of the different techniques. This chapter provides 

important comments about circularity, how to proceed when refining the number of automatic 

detected features and how the field work might be accomplished. 

 

 

7.1. Non-impact circular features 

On Earth, there are several kinds of natural circular features such that circularity is not 

diagnostic proof of an impact origin. Several other processes can explain a circular shape 

besides potential impact structures. Such resulting features may be: Curved valleys, cirques, 

kettle holes, pockmarks, collapsed pingos (loss of water), volcanic features (e.g. calderas, 

maars), kimberlite pipes and circular moraine features. Pockmarks are crater like structures on 

the seabed, usually explained by fluid or gas expulsions that leave circular depressions (Webb 

et al. 2009). Kimberlites have distinctive geophysical signatures and in the Canadian Shield 

their aeromagnetic signature is often circular in shape (Keating 1995). Circularity is also 

connected to concentrically intrusions, ring dikes, basement domes and fault bounded crustal 

blocks (Pesonen 1996). In addition ring structures may be caused by differential erosion 

above an intrusion or by diapirism (Reimold et al. 2006). 

 

 

7.2. Non-circular impact structures/craters 

Not all craters or impact structures have a circular shape. An elliptical and asymmetric 

appearance results if the impact incident angle is lower than 10 - 12 degrees from horizontal, 

which is the case for about 5% of craters on Mars, Venus and the Moon (Bottke et al. 2000). 

The polygonal shaped impact craters (rims composed of several straight segments) are 

common features on the surface of various planetary bodies (Öhman et al. 2008). Garvin et al. 

(1992) discusses this shape in connection with the Bosumtwi impact structure (Ghana). As 
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impact structures are affected by geological processes they may over time deviate from the 

original circular shape. 

 

 

7.3. Refining the number of features 

The number of circular or partly circular structures detected is usually high and thus are too 

many for detailed follow up field analysis (the variety of terrestrial impact structure 

expressions demand low thresholds). Three methods to refine the number of candidates are 

discussed:  

(1) The first method is to combine detected features. Paper III discussed data fusion 

and concluded that fusion at the decision level is most relevant for impact structure search 

studies. The rationale is that the different methods and data complement each other, such that 

a circular feature in a remotely sensed Landsat image is more interesting if also found as a 

depression in a DEM, or if an almost circular lake is accompanied by a geophysical anomaly, 

or if a topographic depression or peak coincidence with a geophysical anomaly without the 

appearance of an explaining circular lithological feature in the geologic map data. Common 

located features are detected if all the different results are displayed in a geographical 

information system. A visual interpretation of the overlaid features is preferred because the 

data can be slightly shifted from each other (e.g. geophysical anomalies that have different 

centres than original impact structure because of erosion), small magnetic anomalies may be 

found close to gravity anomalies, and the extent of an impact structure may be larger than the 

detected feature. Before overlaying the data, it is possible to weight the importance of the 

different data types; e.g. gravity more than magnetism. Several coincident features may be of 

great significance, but some data may be correlated to each other e.g. gravity may be 

correlated to topography (DEM).  

(2) The application of filter techniques may remove less probable candidate sites. The 

filtering could be based on a morphology test if a DEM is available and, at least on planetary 

bodies, verify if the circular feature exhibit crater morphology. On Earth, the active erosional 

and depositional surface makes a specific crater morphology test alone difficult. Peer 

reviewed extended abstract II (Krøgli et al. 2009b) presents a filter technique based on the 

correlation between eight radial profiles in a detected circular feature. Symmetry exists if they 

are correlated in several directions, and features of non-symmetrical characteristics are 

removed. On Martian data, Bue and Stepinski (2007) found several detections of small craters 
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to represent terrain between two ridges. A separation between two ridges (e.g. a valley) and a 

possible impact structure could be obtained if symmetry is present around the complete 

circular feature or larger parts of the circle. 

A second example of a filter is to keep only detected circular features that are situated 

in a geologic homogeneous area, i.e. areas where a “clear-cut” geological explanation of the 

anomaly is lacking in the geologic digital data. This could be implemented to remove features 

appearing close to a lithologic boundary. However, this also requires caution since 

lithological maps sometimes are compiled with geophysical support in areas with poor 

exposures. 

(3) The third method is to manually compare the candidates with available maps (e.g. 

of geology or topography). An experienced analyst may remove less likely impact structures 

(Fig. 18) or highlight a selection of candidates.    

 

 

 
 
 
Fig. 18. Geophysical anomalies (black circles) from search area that can be removed, because they to 

some extent reflect the geological data (circular boundaries situated at boundaries between different 

lithologies). 
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7.4. Field work 

Field work is crucial in order to prove if a suspected structure found by automatic techniques 

is an impact crater. A detailed “ground based” geological analysis may dismiss a candidate, 

lead to more attention or even find proof of impact origin. The morphology might be the first 

target, e.g. if a circular outline, any rim, a bowl shape or a central peak is present. It may be 

hard to retrieve an infield overview of a large structure. This is also why remote sensing 

techniques can help. Further field observations should include looking for impact supporting 

features such as various degrees of brecciation, melt rocks, fractures and shatter cones, 

features which might have been missed during regional geological mapping. 

Two field excursions to Finnmark occurred during the work of this thesis in which a 

total of nine structures were visited (Fig. 19 and Table 2). The sites where chosen from the 

automatic detected structures, a closer map inspection and site accessibility (roads, etc.). The 

search area is ca. 25.000 km2 and it is far between the outcrops. Maps displaying exposures 

were kindly made available by the Geological Survey of Norway, aiding the field work. 

Several locations were visited at each site covering both external and internal outcrops related 

to the circular feature. Lithological observations were taken at each locality (possible crushed 

bedrock, fractures and brecciation), main localities sampled (for thin sections, mineralogy) 

and structural measurements recorded (foliation, bedding, bands and fractures). The main 

objectives for these observations are to study the circular feature both macroscopically and 

microscopically, and to determine if the structure varies outside and inside the circular 

boundary (Figs. 20 and 21). Microscopic analysis of rocks from the Finnmark localities was 

performed in order to characterize the rocks and search for planar features and planar 

deformation features (PFs and PDFs) in the minerals. The thin section studies did not reveal 

any PFs or PDFs. No clear-cut signs of impact supporting material have this far been found in 

any of the candidates that could legitimate more detailed field inspections of those picked. 

The structures Kautokeino, Ravdojavri and Stuorra Cadjejavri did though display some 

interesting attributes; conglomerate, a breccia zone and inhomogeneous lithology from border 

to centre of feature, respectively. The structures visited did all reveal circular structures, 

either as circular lakes or depressions, or circular combinations of lakes, ridges, hills and 

valleys, thereby confirming the algorithms ability to detect such features (Fig. 21e). 

Extensive field analyses are required if the initial field work detects impact supporting 

material. The Ritland structure was proposed as an impact structure based on geological 

mapping of the circular structure and the deformed basement (Riis 2002). The first 

systematic, detailed field work with focus on the crater structure were carried out in 2006. As 
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a proposed, but not confirmed impact structure at that time, it is well suited as an example of 

the detailed field techniques and methods required to prove an impact structure. The field 

work and succeeding laboratory analysis are presented in Riis et al. (in press). The work 

entailed general geological mapping with detailed analysis of several sections of the 

sedimentary successions (crater infill), textural measurements of bedding planes (fracture 

basement characteristics) and thin section analyses (shocked quartz grains with PFs and PDFs 

are presented in the paper). 

 

 

 
 
Fig. 19. The nine field targets visited during the field seasons of 2008 and 2009. Yellow dots represent 

visited field locations. 
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Table 2. The nine field targets with name, main lithology and diameter of detected circular boundary 

(see Fig. 19 for location). 
 

Name Main lithology Diameter (km) 

Ravdojavri Banded amphibolitic gneiss / gabbroitic gneiss with 
quartz and feltspar veins 5.4 

Suolobeasjavrrit Banded amphibolitic gneiss / granitic gneiss 3.7 

Kautokeino Conglomerate / finely bedded amphibolitic gneiss 16.9 

Anddesjavri Granitic gneiss / banded gneiss 2.9 

Duolbajavri Fine grained layered amphibolitic gneiss 1.2 

Stuorra Cadjejavri Fine laminated banded micaceous amphibolitic 
gneiss 4.8 

Saravarri Banded quartzitic gneiss with garnet 4.7 

Njahkajavri Fine laminated coarse amphibolitic gneiss / granitic 
gneiss 1.4 

Gurbavarri Banded micaceous gneiss with amphibolitic and 
quartzitic bands / amphibolitic gneiss / phyllite 17.7 

 
 
 

 
Fig. 20. The maps display the localities of the two field targets Njahkajavri and Stuorra Cadjejavri (see 

Fig. 19 for location). In the Njahkajavri structure (a) no significant lithological variations were 

observed from the outside to the inside of the circular outline. In the Stuorra Cadjejavri structure (b), 

localities 7 and 8 have different lithological appearance compared to the other localities of the area 

(Fig. 21). Contour interval is 50 m.  
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Fig. 21. The fractures (cross) and foliation/bedding (square) of the Njahkajavri (a) and Stuorra 

Cadjejavri (b) structures displayed in stereographic projection, both for localities inside the detected 

circle (red) and outside the detected circle (green). The plots display no patterns that indicate 

differences between the external and internal appearance of the detected circular features. However, 

while the lithology of Njahkajavri were homogeneous, the lithology of Stuorra Cadjejavri showed 

variation from fine laminated amphibolitic gneiss of bottle green colour, with occasionally light 
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coloured schlieren of quartz or feldspar (c) (in localities 1 – 6 and 9, see Fig. 20), to banded gneiss, 

deformed and fragmented (d) (in localities 7 and 8, see Fig. 20). (e) In field the Njahkajavri structure 

turned up as a partly circular lake with a three quarter circumference of ridges in a circular pattern. 
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8. Paper summary 
 

 

8.1. Paper I 
 

Krøgli, S.O., Dypvik, H., Etzelmüller, B. 2007. Automatic detection of circular depressions in 

digital elevation data in the search for potential Norwegian impact structures. Norwegian 

Journal of Geology 87, 157-166. 

 

Technique: Template matching 

Data: Digital elevation models 

 

Template matching is a simple technique, but it is an obvious technique to test and a natural 

place to start when searching for possible impact structures. It addresses the shape of a feature 

and search similarities. The technique was applied for the whole of Norway and this paper 

presents selected results from Finnmark. In order to find potential impact crater structures, 

crater templates and topography were compared by correlation. The templates (models) 

represent the shape of impact craters with spatial relations based on scale and size 

characteristics from the Moon and Earth. The topography was represented by digital elevation 

models (DEM). A good match (correlation) between a template and DEMs is resembled by a 

high value at the specific location. The methodology is non-scalable and static, so templates 

for several crater sizes needed to be analysed. The study resulted in detection of a number of 

circular and partly-circular depressions. There are, however, many features which have the 

shape of partly circular depressions, e.g. curving valleys and valley intersections, and the 

many detected circular features must consequently be further evaluated. The technique with 

DEM as input were together not distinct enough to detect really promising impact structure 

candidate sites, but the detected circular depressions may be important for comparison with 

results from other techniques and data. 
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8.2. Paper II 
 

Krøgli, S.O., Dypvik, H. 2010. Automatic detection of circular outlines in regional gravity 

and aeromagnetic data in the search for impact structure candidates. Computers & 

Geosciences 36, 477-488. 

 

Technique: Circular outline algorithm 

Data: Gravity, aeromagnetics, digital elevation models 

 

This paper utilize geophysical data; magnetic and gravimetric data in particular. These data 

may display signatures in relations with impact structures. Circular gravity and magnetic 

anomalies are common. The geophysical signatures are preserved longer than surface 

expressions, which is a great advantage when searching in old terrestrial terrain. An algorithm 

were developed to detect circular anomalies in gravimetric and magnetic potential field data, 

and the analysis were carried out on a part of Finnmarksvidda were regional gravity and 

aeromagnetic data are available. The algorithm counts the number of pixels on the boundary 

of a circle (given a radius) that have a gradient vector which points (within a tolerance) to the 

circle centre. This approach is possible when the geophysical potential fields are treated as 

surfaces. Both negative and positive circular anomaly outlines may be found. A few sites 

were chosen based on detections of the algorithm and the comparing of those sites to geologic 

and topographic maps. The sites were examined in the field without finding major impact 

supporting material. 
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8.3. Paper III 
 

Krøgli, S.O., Dypvik, H., Chicarro, A.F., Rossi, A.P., Pesonen, L.J., Etzelmüller, B. The 

Impact Crater Discovery (ICDY) tool applied to geospatial data from Finnmark, Northern 

Norway. Submitted to Canadian Journal of Remote Sensing. 

 

Technique: Impact Crater Discovery (ICDY) tool 

Data: Landsat ETM+ images, digital elevation models, gravity, aeromagnetics, geology, lakes 

 

The ICDY tool was developed by the European Space Agency (ESA) and LogicaCMG UK. It 

can be used on a broad range of data, including remotely-sensed multispectral images which 

had not yet been explored by our group at that time. The ICDY tool detects rotational 

symmetry (radial consistency) using the pixel values and their context to each other. 

Symmetry is calculated from the whole circle, not only evaluating the border as the circular 

outline algorithm did (Paper II). It may be several reasons for the possible symmetry, and one 

explanation might be that the circular symmetric feature is the result of an impact. Compared 

to the often used circular Hough transform, the radial consistency approach needs no prior 

edge detection, making it more applicable to terrestrial data. The tool was applied to several 

datasets and the paper also includes some ideas regarding pre- and post-processing of data. 

The high contrasts between lakes and their surroundings in Landsat Enhanced Thematic 

Mapper Plus (ETM+) data made circular lakes among the most prominent detected features 

during these experiments. Five sites were chosen as promising for field analysis based on the 

comparison of detected symmetric features from the different input data. The sites were 

examined in the field without finding impact supporting material. 
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8.4. Peer reviewed extended abstract I 
 

Krøgli, S.O., Dypvik, H., Etzelmüller, B., 2007. Automatic and semi-automatic detection of 

possible meteorite impact structures in the Fennoscandian shield using pattern recognition of 

spatial data, In: ScanGIS'2007: The 11th Scandinavian Research Conference on 

Geographical Information Science, Ås, Norway, 227-235. 

 

Techniques: Template matching, circular Hough transform 

Data: Digital elevation model, shaded relief model 

 

A template matching algorithm and a circular Hough transform algorithm were applied on 

data covering the same area. The matching technique used a digital elevation model (DEM), 

while the Hough analysis was performed on a gray level (8 bit) shaded relief model, 

calculated from the digital elevation model. A shaded relief model imitates how the 

topography is affected by an artificial light source, creating light and shadow effects. The 

resulting model will have similarities to images of e.g. craters from solid planetary bodies 

(optical images also capture light effects). Gradient pixels to be used in the Hough transform 

were found using the Sobel edge detection operator. A radius interval between 20 and 60 

pixels (ca. 5 - 10 km) was set prior to the analyses. The Hough transform is position, scale 

and rotation invariant, while template matching only is invariant of position and rotation 

(rotation due to circularity). Several template sizes must consequently be evaluated. Circular 

shaped templates (depressions) of fixed diameters (5 – 10 km) were correlated with the DEM, 

resulting in several structures partly matching the templates. A variety of structures were 

found, including circular depressions, but also valley intersections. The results showed the 

Hough transform to be dependent on extracting enough edge pixels to capture a structure. 

Using the applied edge detector and thresholds, structures of poor contrast were not found by 

the Hough transform. 
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8.5. Peer reviewed extended abstract II 
 

Krøgli, S.O., Dypvik, H., Etzelmüller, B., 2009. Correlation of radial profiles extracted from 

automatic detected circular features, in the search for impact structure candidates, In: 

Geomorphometry 2009, Zurich, Switzerland, 50-54. 

 

Technique: A possible filter to refine the number of detected features 

Data: Detected features and their source data 

 

The techniques presented in Paper I-III and Peer reviewed extended abstract I detect features 

with different degrees of circularity. The number of detected features depends on the choice of 

threshold, but is usually large and requires further manual or automatic analysis to refine the 

number before field investigations. This extended abstract presented an approach to reduce the 

number of candidate sites, using a filter technique that removes candidates based on non-

symmetrical characteristics. 

The symmetry measurement is based on correlation coefficients between radial 

profiles in the already automatic detected circular features. For each circular feature the 

algorithm extracts eight profiles from the source data (e.g. DEM or geophysical surface), 

radiating from centre to the length of the radius. It is the profile shapes that are correlated, 

indicating that the profiles might be located at different intensities/heights. First only a part, the 

first three pixels, of each profile is included in the correlation coefficient calculations. That is, 

the first three pixels when counting from the circular outline towards centre. A profile is 

marked if it does not correlate with any of the other profiles. Then the next pixel towards 

centre is added to each profile. Again a correlation coefficient calculation between profiles is 

performed, this time without the marked profiles. This continues until all profiles have been 

marked (i.e. no more correlation between profiles) or the end of profiles is reached (i.e. all 

pixels added). Two profiles may then correlate the whole distance to the centre, even if 

situated at opposite sides. The number of pixels included in profiles that correlate, compared 

to the total number of pixels in profiles, is saved as a percentage value. This can be thought of 

as recording the total length of correlating profiles. The reasoning behind equalizing two 

features having similar total correlating profile distances is to keep features that have few but long 

correlation profiles, e.g. in just a corner or half of the circle. They may represent impact structures 

where only part of the earlier circularity is present. 
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9. General discussion 
 

 

9.1. Techniques 

The techniques applied are based on the detection of circular features and have been operated 

on a variety of data. The template matching technique detected many circular depressions in 

digital elevation models. The circular Hough transform is faster, works with occluded objects 

and on several types of data but is highly dependent on the quality of the edge detection. The 

circular outline algorithm is independent of edge detection. Avoiding edge detection is 

advantageous since edges pixels capturing both subtle and strong anomalies in, for example, 

gravity and magnetic data are difficult to locate and incorporate in an automated algorithm. 

Using aspect as part of the methodology makes the algorithm robust enough to apply to 

various circular shapes and intensities which may be important since the signatures are not 

always text book examples. This algorithm does not consider the interior pixels inside a 

circular boundary but rather only the border pixels. The Impact Crater Discovery (ICDY) tool 

applies a technique that evaluates the symmetry of a feature, applicable to diverse datasets.  

The circular Hough transform was not found satisfactory for terrestrial impact 

structure search studies, due to the edge detection step. Of the remaining three techniques 

presented in this thesis (papers I, II and III), one looks for circular depressions (I), one looks 

for circular borders (II), and the third looks for circular symmetry inside the entire feature 

(III). The techniques do have some common detected features, but several features were 

detected exclusively by each technique (Fig. 22). This implies that multiple techniques should 

be used to capture the variety of circular features and that the three approaches complement 

each other. This further means that combining results is beneficial. 

In all of the techniques, thresholds are defined to distinguish promising from less 

promising sites. A cluster analysis could replace local and global thresholds to detect medium 

peaks in an accumulation matrix if they are situated in a cluster. They may represent 

irregularity in the circularity of a feature. Nevertheless, the results show that threshold values 

should vary between large and small features within the same dataset; large features must be 

given lower thresholds to be detected. 
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Fig. 22. Results of the three techniques performed on the same DEM (100 m spatial resolution). Black 

circles denote the circular outline algorithm detections, red circles denote ICDY detections and areas 

of high correlation from the template matching are displayed with yellow borders. All techniques 

searched for circular features of about 5 km in diameter. The map display all possible combinations of 

detection, i.e. a location where all three overlap (black square), locations where two and two overlap 

(black dashed squares) and locations detected by only one of the techniques. A colourmap from light 

brown to dark brown to grey has been included to emphasize elevation differences. 

 

 

9.2. Data 

The focus of this thesis is on the application of different techniques but also on the use of 

different data to search impact structure candidates. Each of the three techniques have their 

main data input, the data that contain the most significant results; for example; DEMs for 

template matching, geophysical field data for the circular outline algorithm and multispectral 

images for the ICDY tool. These datasets also complement each other in an impact structure 

search, addressing topography, geophysical anomalies and surface spectral properties, 

respectively. Data fusion is used to detect locations of circularity present in several datasets. 

Paper III discusses data fusion at various levels and concludes that fusion at the decision level 

(combining results of the different techniques applied on various data), is most relevant. In 
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section 7.3 it is argued that this fusion should be evaluated manually. In this study, the most 

promising data types for a remote-sensed impact structure search study have been used. 

However, radar images, drainage networks and fracture patterns should be considered in 

future detection studies. 

Data derived from ground measurements or remote sensing measurements can be 

prepared in different ways though must be in a raster (grid) data structure for use in the 

presented analyses. This interpolation creates continuous surfaces from data points but the 

surface models are still a simplified version of the real world. Different interpolation 

techniques yield different models and thereby may result in detection of different circular 

features. In addition may the flight line spacing as compared to the higher sampling interval 

in flight direction of for example aeromagnetic surveys have altered the shapes in the 

interpolated data. The oval shape of the expected circular magnetic anomaly of the Serra da 

Cangalha impact structure was explained by the large flight line spacing during acquisition 

(Adepelumi et al. 2005). 

To compare and evaluate automatic planetary crater detection algorithms, catalogues 

of craters and their sizes have been established. However, ground studies searching for proof 

of impact origin of structures on e.g. Mars are impossible, and thus it is the surveyor and his 

knowledge that is the basis for the manual detection. Based on this, the accuracy of 

algorithms may be calculated. On Earth, the lack of a large training and test data catalogue 

(only ca. 176 proven impacts structures) makes it difficult to verify or evaluate the quality of 

the algorithms. The search area (Finnmarksvidda) does not include any proven impact 

structures, but Fennoscandia, and in particular Finland, may provide such data for future 

studies. However, the data would only contain a minor number of proven impact structures 

and their expressions or signatures may be to variable to gain valuable information from 

accuracy evaluations. 

 

 

9.3. Scale 

Various data resolutions (scale) are appropriate to investigate different processes, thus must 

be considered in an analysis. The spatial resolutions reflect the size of features possible to 

detect. In addition, resolution may alter the shape or context of the structure. For example, 

L´Heureux et al. (2005) found an increased sampling rate to show the shape of the studied 
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anomaly being concordant to a regional geologic framework rather than a simple circular 

feature. 

The information to be extracted (i.e. the size of objects to be detected) determine the 

proper scale of an analysis. A detailed geophysical investigation of a single structure (e.g. 

Pesonen et al. 2003) is for example not possible by the low resolution of the gravity and 

aeromagnetic data. Such analysis would usually require highly sampled profiles or traverses. 

In the 100 m resolution data only variations in the regional pattern may be detected. The 

spatial resolution of the applied gravity data (1500 m) is in particular coarse and too low to 

detect impact structures in the lower range of the 1 – 40 km diameter interval, but the 

presented methodology may be applied on higher resolution gravity data in future studies. It 

is important to select an appropriate scale for a particular application and perform analysis 

within that scale in order to account for scale effects (Woodcock and Strahler 1987). The 

spatial resolutions of the data in this study vary between 25 m and 1500 m. A circle must 

contain enough pixels to receive a proper shape. Using spatial resolutions of 30 m (Landsat) 

and 25 m (DEM) seeking structures from 500 m in diameter (17 - 20 pixel diameter), and 

using 100 m (aeromagnetic and DEM) data seeking structures from 1 km in diameter (10 

pixel diameter) seems reasonable, although in the gravity data (1500 m spatial resolution) 

structures down to 7.5 km were found (5 pixel diameter). 

The resolution is important, but it is the data value precision that determines how 

small differences the algorithms can detect. Impact generated geophysical anomalies may be 

too small to be detected on regional data, using for example the circular outline algorithm. 

 

 

9.4. (Semi-) automatic methods 

O´Sullivan and Unwin (2003, p. 362) raise the question: “Can we use (cheap) computer 

power in place of (expensive) brain power to help us discover patterns in geospatial data?” In 

other words: Is a visual inspection of data the best way to detect candidates? Do we need 

automatic methods? Linear and circular structures may be seen by simple data inspection. 

Several impact structures can be discovered by simply visualizing the data. Ideally the 

machine vision would detect the same structures as a visual analysis, and in addition 

structures that the human eye would not see that easily? The techniques proposed in this 

thesis will probably miss some features that the eye can see, but more important is it if they 

find something that the human eye cannot see. Circular moraine features have been found on 
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the Varanger Peninsula, Northern Norway (Ebert and Kleman 2004) and can be seen in 

images. They are used here as a thought experiment. If the aim is to calculate statistics of the 

distribution of circular moraines in an area, almost all should be found and incorporated 

within the statistics. Then, a visual inspection of the data by a professional is required. If the 

aim is to check the performance of a “circular moraine detection algorithm”, one needs to 

find all features by a visual inspection in order to compare “ground truth” and algorithm 

results. But if the aim is to find new moraines, which can be features that only partly 

resembles a circular moraine or fragments of a circular moraine, automatic methods might see 

geometric patterns not clearly visible, either because the value difference are too small to be 

captured by the human eye or that it can be hard to see that parts could represent sections of a 

common circle. In the last case, interesting sites can be detected by automatic methods. 

There are few impact structures on Earth and we do not expect to find many new ones 

in a restricted area like Finnmark. Interesting patterns first found by automatic detections and 

then evaluated by the researcher can prove rewarding, possibly emphasizing structures that 

would not have been considerer without the automatic step. The methods are semi-automatic 

since the researcher needs to set thresholds appropriate for the different regions, and 

thereafter inspect the detected features to prioritize the sites to be visited in the field. 

Compared to a purely visual analysis of data, the sites at the researcher’s disposal are all 

exhaustive and objectively extracted based on circularity. Unlike previous terrestrial search 

approaches of pure visual data inspection with possible data enhancement or data integration 

steps, or of automatic techniques relevant to only a limited type of datasets, the presented 

methodology (collection of techniques) offers a framework to search large regions and 

several types of data to extract promising structures prior to the visual inspection.   

 

 

9.5. Outlook 

The methodology and techniques presented in this thesis are created with interests toward 

impact structures, specialized to detect impact structure characteristics in consideration of the 

datasets available. The datasets are all chosen because of their relevance for impact structure 

search studies. The use of similar techniques and ideas can be used to capture other features, 

especially those close in shape to impact structures. Structure detection in geosciences that 

can benefit from the specific techniques derived in this thesis are; kimberlite pipes in 

geophysical data, circular moraines in images, calderas and cirques in DEMs or pockmarks in 
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bathymetric data; all circular in shape. Polygonal patterns seen in images from permafrost 

areas could probably be extracted by some modifications of the presented techniques. The 

analyses indicated that integrating and combining multisource spatial data can improve 

extraction of landforms. Example scenarios are: i) Extraction of V-shaped valleys using 

DEMs and drainage network data (e.g. to locate start positions for valley extraction). ii) 

Extraction of large moraine ridges from DEMs could be aided by vegetation data (e.g. 

remotely-sensed images) due to possible local vegetation differences on and around the 

moraines. iii) Combining DEM and bathymetric data to extract island (volcanic) arcs, an 

elliptic distribution of islands close to a deep sea trough in global scale DEM and bathymetric 

data, respectively. Once landforms have been extracted, measures like shape, size, position, 

orientation and volume can be calculated to include within spatial distribution analysis. The 

overall methodology to extract a landform is first to identify feature descriptions (could vary 

for different data), then use or design techniques to find these characteristics. 
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10. Conclusions 
 

 

The impact structure search-strategy presented is made for a terrestrial environment and has 

been demonstrated to require other approaches than planetary crater detection. One can 

discuss if a methodology that detects impact structure candidates in every terrestrial scene is 

as useless as a methodology that do not find any craters at all in planetary scenes. However, 

due to the low number of new impact structures expected in a certain area and the high degree 

of modification of the ones found on Earth, many candidates extracted from terrestrial data 

must probably be considered before a new impact structure will be found. 

 

From this study the following main conclusions can be drawn: 

 

- The presented detection techniques seem suitable to identify various circular features, 

essential since impact structures are associated with circular features that appear in 

different datasets. 

- The techniques provide a powerful and inexpensive tool for a first assessment of circular-

shaped features. 

- Two existing techniques, the pattern matching algorithm and the circular Hough 

transform, were found to be inadequate for locating terrestrial impact structures. 

- Two new and original techniques, the Circular outline algorithm and the Radial profile 

correlation algorithm, were developed to improve the search for terrestrial impact 

structures. 

- The analyst should inspect the automatic detected features to pick the most promising 

sites for field inspection, since an impact structure origin can not be verified by the 

algorithms applied. 

- The field work verified in all cases circular detections of the algorithms. 

- None of the nine candidate sites visited in the Finnmark study area proved to be a valid 

impact structure. However, this negative result almost certainly lies within the error 

bounds of the expected likelihood of impact structures in the area. 

- An impact structure search should not be based on a single technique or a single dataset, 

but rather a combination of several techniques applied on various data, performing data 
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fusion at the decision level (combining results). The techniques can be used to extract 

promising sites in areas with a reasonable coverage of relevant spatial data and 

resolutions, and may emphasize candidates that would not have been found without these 

efforts. 
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Appendix: List of impact structures 
 

 

Impact structures mentioned in the thesis and their parameters according to Earth Impact 

Database (2009). 

 
 

Crater name Location Diameter (km) Age (Ma) Target Rock 

Acraman South Australia, 
Australia 90 ~ 590 C 

Barringer Arizona, U.S.A. 1.186 0.049 ± 
0.003 S 

Bosumtwi Ghana 10.5 1.07 C-Ms 
Brent Ontario, Canada 3.8 396 ± 20 C 

Gardnos Norway 5 500 ± 10 C 

Gosses Bluff Northern Territory, 
Australia 22 142.5 ± 0.8 S 

Lappajärvi Finland 23 73.3 ± 5.3 M 

Lonar India 1.83 0.052 ± 
0.006 C 

Manicouagan Quebec, Canada 100 214 ± 1 M 
Mjølnir Norway 40 142.0 ± 2.6 S 
Ritland* Norway 2.5 600-500? C 

Serra da Cangalha Brazil 12 < 300 S 

Strangways Northern Territory, 
Australia 25 646 ± 42 M 

Suavjärvi Russia 16 ~ 2400 C-Ms 

Tenoumer Mauritania 1.9 0.0214 ± 
0.0097 M 

Upheaval Dome Utah, U.S.A. 10 < 170 S 
Vredefort South Africa 300 2023 ± 4 M 
Wanapitei Ontario, Canada 7.5 37.2 ± 1.2 C 

Wolfe Creek Western Australia, 
Australia 0.875 < 0.3 S 

Zhamanshin Kazakhstan 14 0.9 ± 0.1 M 
 
Abbreviations: C - Crystalline Target; C-Ms - Metasedimetary Target; M - Mixed Target (i.e. sedimentary strata 
overlying crystalline basement); S - sedimentary target (i.e. no crystalline rocks affected by the impact event). 
*Ritland is not yet part of the Earth Impact Database. 
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Automatic detection of circular depressions in digital 
elevation data in the search for potential Norwegian 
impact structures

Svein Olav Krøgli, Henning Dypvik & Bernd Etzelmüller

Krøgli, S.O., Dypvik, H. & Etzelmüller, B.: Automatic detection of circular depressions in digital elevation data in the search for potential Nor-
wegian impact structures. Norwegian Journal of Geology, Vol. 87, pp. 157-166.Trondheim 2007. ISSN 029-196X.  

Presently, 174 impact craters are proven on Earth, and of these 10 are located in Finland, 6 in Sweden and only 2 in Norway (Gardnos and Mjølnir). 
A pattern matching algorithm (correlation) based on 100 m digital elevation data was used in a regional study to discover circular depressions in 
the search for possible new Norwegian impact structures. By applying this technique to detect depressions of 5 – 10 km diameter in Finnmark, 
northern Norway, about 23 large circular structures were found in a 14,000 km2 area of Precambrian rocks. Circular features are clearly displayed in 
the detected structures. The large number of candidates in this area, however, makes field inspection inconvenient and time consuming, and sup-
plementary screening methods should be considered to help reduce the number. 

Krøgli, S.O., Dypvik, H., Etzelmüller, B., Department of Geosciences, University of Oslo, P.O. Box 1047 Blindern, No - 0316 Oslo, Norway. E-mail: 
s.o.krogli@geo.uio.no , henning.dypvik@geo.uio.no, bernd.etzelmuller@geo.uio.no  

Introduction
Impact structures are formed by collisions of comets and 
asteroids with planets or moons, and these crater struc-
tures may be preserved for millions of years. The general 
understanding of impact cratering and its significance 
for the Earth’s development has increased dramatically 
during last decades. This is a result of intensive explora-
tion of our solar system and the geological structure of 
planets. Planetary surface analysis shows that most of 
the planets have geomorphologies strongly influenced by 
impact cratering (Lowman 1997). Today we know that 
impact processes and crater formation have been (and 
will be) important processes for the development of our 
solar system (Melosh 1989; Montanari & Koeberl 2000). 

On Earth 174 impact structures have been found so 
far (Earth Impact Database 2006). These craters seem 
unevenly distributed, partly the result of observations 
being focused on populated areas, rather than on less 
accessible locations. In Fennoscandia eighteen proven 
structures (Earth Impact Database 2006) have been 
found; ten in Finland, six in Sweden and only two in 
Norway (Gardnos and Mjølnir) (Fig. 1). The number of 
suggested ones is much higher (Abels et al. 2002), and in 
Norway we have a new, very promising candidate in the 
Ritland structure (Rogaland) (Fig. 1). Due to the varied 
surface geology and its areal extent it is difficult to cal-
culate the expected number of impact structures of 5 
– 10 km diameter in Norway. In this experiment we have 
searched for 5 – 10 km diameter structures in a 14,000 
km2 area of Precambrian rocks in Finnmark (Fig. 2).

When attempting to detect impact craters a simple but 
appropriate question might be: What do impact cra-
ters look like, and are such structures present in Nor-
way? Normally the crater itself and its circular shape 
are regarded as important arguments for impact identi-
fication, in addition to structural and mineral evidence 
(Montanari & Koeberl 2000). The first possible registra-
tion of a crater is therefore often related to the identifica-
tion of a circular surface structure. As the proven struc-
tures have large diameters (0,015 - 300 km (Earth Impact 
Database 2006)) and are dispersed over large areas, aerial 
photos, optical- and radar satellite images (e.g. Araujo et 
al. 2001; Chicarro et al. 2003; Earl et al. 2005) and coarse 
digital elevation models (DEM) (e.g. Portugal et al. 2004) 
have been commonly used in screening surveys. 

There are mainly two important families used in pat-
tern recognition of impact structures (Di Stadio et al. 
2002); a) voted methods like the circular Hough Trans-
form (e.g. Matsumoto et al. 2005; Portugal et al. 2004) 
and b) matching methods (e.g. Magee et al. 2003). In the 
approach presented below we used a digital matching 
technique, known from image analysis (e.g. Efford 2000; 
Gonzalez & Woods 1993) and automatic photogrammet-
ric elevation generation (e.g. Heipke 1997; Schenk 1999).

The objective of this study was to develop an automatic 
technique to identify potential impact structures on the 
basis of morphometric analyses of a continuous topo-
graphic surface. Based on elevation data the aim was 
to find impact structure candidates, with a geometric 
shape matching the shape of a typical terrestrial impact 
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crater of 5 – 10 km diameter. Analyses of the formation 
mechanics of the candidates must be evaluated by subse-
quent field inspections and laboratory analysis.  

Geological setting 
Norway comprises the western part of the Scandinavian 
Peninsula. The bedrock geology of Norway is dominated 
by Precambrian basement rocks (e.g. granites, gneisses, 
amphibolites and meta-sediments) and Caledonian suc-
cessions (mostly Precambrian rocks and metamorphic 
Cambro-Silurian sediments stacked in nappe units). 
Limited areas of Devonian to Permian sediments and 
volcanics are also present (Fig. 2). The larger part of 
the bedrock is, however, covered by various Quaternary 
formations of mainly marine, glacial and fluvial origin. 
Geomorphologically the present topography of Norway 
is governed by peneplanation and stripping of marine 
strata during the Mesozoic (Lidmar-Bergstrøm et al. 
2000; Peulvast 1985), a Tertiary uplift (Gjessing 1967; 
Strøm 1948) and related fluvial-dominated landscape 
formation in a warmer and partly drier climate than 
today (Gjessing 1967; Lidmar-Bergstrøm et al. 2000; 
Strøm 1948), followed by numerous Quaternary glacia-
tions (Kleman & Borgström 1994). The latter accentu-
ated the Tertiary fluvial valley pattern, while areas in cen-
tral and northerly mountainous areas underwent little or 

no erosion due to the thermal conditions of the ice sheets 
(Lidmar-Bergstrøm et al. 2000, Sollid & Sørbel 1994).  

Impact structures can be expected in all kinds of terrain, 
but with varying preservation potential. The oldest rocks, 
e.g. Precambrian gneisses and meta-sediments, are nor-
mally the hardest and may therefore have a good chance 
of displaying impact structures, due both to high age and 
competence. In contrast, the younger Cambro-Silurian 
formations, less consolidated sedimentary rocks and 
loose sediments will, as target rocks, not preserve impact 
structures as well. The Caledonian orogeny may also have 
altered possible earlier structures. The last glaciations in 
Scandinavia both eroded and covered (by sedimentation) 
possible pre-Quaternary impact structures. Based on this 
information, Finnmark appears as a suitable test area for 
further impact studies (Fig. 2).  

Impact crater morphology
When celestial bodies (asteroids and comets) collide 
with planets or moons, the shape of the resulting cra-
ter is dependent on target material and the size, velocity 
and angle of the impacting body. The shapes and sizes of 
impact structures change with crater diameter, and fresh-
appearing impact structures on the Moon illustrate this 
size-morphology relationship (Melosh 1989). The small-
est impact craters have a simple bowl-shaped appear-
ance, and as crater diameter increases, rim terracing and 
central peaks are more common. Crater morphology dis-
plays the same progression throughout the solar system, 
including the Earth, but the less well preserved terrestrial 
impact structures make them more challenging to clas-
sify (Earth Impact Database 2006). On Earth, the three 
basic types of impact structure are 1) simple structures, 
with a raised rim surrounding a bowl-shaped depres-
sion, 2) complex structures, larger in diameter, with a 
central peak, surrounded by an annular trough and a 
slumped rim (e.g. Grieve 1990; Melosh 1989) and 3) the 
even larger and more rare peak ring craters, consisting of 
a central peak (possibly with a depression) and possibly 
several ring structures creating annular basins (e.g. Turtle 
et al. 2005). The transition between simple and complex 
craters occur at diameters of about 2 km or 4 km, in sedi-
mentary or crystalline rocks respectively (Grieve 1990). 
 
Global processes acting on the surface of the Earth will 
eventually leave more poorly preserved impact structures 
(Turtle et al. 2005), which can be hard to distinguish 
from their surroundings. Their appearance then reflects 
geologic activity and post-impact physical processes (e.g. 
erosion, subduction). Fresh looking craters (e.g. Barrin-
ger crater, Arizona, USA) are easily recognized, but older 
impact structures may be eroded and filled with sedi-
ments. High velocity impacts produce circular craters, 
even at angles of low incidence (Melosh 1989). The pres-
ence of a circular-shaped depression is characteristic for 

Fig. 1. The distribution of confirmed and proposed impact structures 
in Fennoscandia (Norway: 42 Gardnos, 73 Mjølnir, 91 Ritland). The 
figure is modified from Abels (2006). 
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fresh impact structures and provides important informa-
tion for use in the following analyses. 

The geologically active Earth causes terrestrial impact 
structures to exhibit a high degree of variation as regards 
morphological characteristics and few fresh examples are 
left (Earl et al. 2005; Turtle et al. 2005). Still, some size 
characteristics are needed in order to construct a proper 
template. When searching for impact structures between 
5 and 10 km in diameter, size-morphology relations 
for plausible impact structure depths, as presented in 

Grieve & Pesonen (1992), were used in the analysis. They 
divide the final morphology of complex terrestrial cra-
ters according to whether the target rocks are sedimen-
tary or crystalline. This is due to the strength differences 
between the two. Complex craters are shallower when 
formed in sedimentary target material than in crystalline 
target material. In this analysis the equation (1) for sedi-
mentary targets is used (Grieve & Pesonen 1992).

                        (1)

Fig. 2. A simplified geological overview map of Norway. 
The map is based on Skjeseth (1979). Area analysed in 
Finnmark is marked in the figure.
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where d
a
 is apparent depth (km), and D is diameter (km) 

(Fig. 3). The sedimentary target rock equation is chosen 
because this gives a shallower depth than the crystalline 
equation and may fit better the possibly new Norwegian 
impact structures after years of erosion.

A relation between crater diameter and floor diameter 
(2) based on lunar statistics (Pike 1977) is used to deter-
mine the size of a flat crater floor in the model.

         (2)

where D
f
 is the crater floor diameter, and D

r
 is the rim-

crest diameter. It does not apply to craters less than 5 km 
in diameter (Pike 1977). The use of a rim-crest diameter 
in this equation and a probably apparent diameter in 
equation (1), implies that the crater floor diameter may 
be a bit undersized.  

Data and methods
Digital elevation data

This study is based on digital elevation data in the com-
puter represented as regular square grid models or arrays 
of elevation values. Such digital representation of the 
topographic surface is static and scale dependent since 
the size of the cells (pixels) building the terrain model 
is unchangeable (Burrough & McDonnel 1998). The 
matrix structure will allow programming of relatively 
complex algorithms, which can be easily used for digital 
elevation model (DEM) manipulation. Thus, this type 
of grid structure provides good possibilities for model-
ling any type of surface, and to investigate spatial inter-
actions of features, being close or remote from the pro-
cessed location (DeMers 2002). The resolution (scale) of 
the grid data is the relation between pixel size and size 
of the cell on the ground (Burrough & McDonnel 1998). 
When using grid-based DEMs to recognize landforms 
it is important to consider the resolution relative to the 
landform size (DeMers 2002). For the search of impact 
structures of 5 – 10 km diameter, we found a 100 m reso-
lution satisfactory for these first analyses. A 3 x 3 kernel 
neighbourhood mean filter was applied to the elevation 
data to reduce noise.  

Matching by local correlation

Template matching is a technique to measure the similar-
ity between an unknown image and a known image act-
ing as a feature model or template (Gonzalez & Woods 
1993). Correlation analysis was used to describe the simi-
larity between the known image (template) w(x,y) of size 
J x K within an image f(x,y) of size M x N, where it is 
assumed that J  M and K  N (Fig. 4). The result of each 
correlation analysis is an image, the size of image f(x,y), 
where each pixel consists of a correlation value. The cal-
culations are performed in the image region where w and 
f overlap, and high values of correlation indicate a match 
between w(x,y) and f(x,y) (Gonzalez & Woods 1993). 
Near the edges of image f, there will be no full overlap 
with w, and hence along the borders of the image f(x,y) 
there will be an area, half the size of w, where no correla-
tion calculations are performed. 

In our study we used spatial domain methods, where the 
procedures operate directly on the pixel values, while fre-
quency domain methods operate on the results of a Fou-
rier transform. The algorithm presented is based on a spa-
tial domain matching procedure for calculating correlation 
coefficients (Gonzalez & Woods 1993), equation (3):

 (3)

where s= 0, 1, 2, …, M - 1, t= 0, 1, 2, …, N - 1, w is the 
average value of the pixels in w(x,y) (computed only 

Fig. 3. Characteristic crater dimensions (diameter, apparent depth and 
floor diameter) displayed on a topographic profile. Modified from Pike 
(1977).

Fig. 4. Image and template arrangement for obtaining the correlation 
of respectively f(x,y) of size M x N  and w(x,y) of size J x K at points 
(s,t), according to equation (3). The origin of f(x,y) is at  its top left and 
the origin of w(x,y) at its centre. For any value of (s,t) inside f(x,y), 
the application will yield one correlation value. As s and t vary, w(x,y) 
moves around the image area (Gonzalez & Woods 1993). 
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once), f(x,y) is the average value of f(x,y) in the region 
coincident with the current location of w, and the sum-
mations are taken over the image coordinates (pixels) 
common to both f and w. The correlation coefficient 
y(s,t) is scaled (normalised with respect to both image 
and template) in the range -1 to 1, independent of scale 
changes in the amplitude of f(x,y) and w(x,y) (Gonza-
lez & Woods 1993). Correlation analysis works well only 
if the size and orientation of the feature of interest are 
known and this information is used to design an appro-
priate template. If the size and orientation of the feature 
varies, a range of templates needs to be generated and 
each of them correlated with the image (Efford 2000). 
The automatic detection algorithm calculates the cor-
relation between two datasets with a grid structure. It is 
a combination of C++ code and Arc Macro Language 
(AML). Input to the algorithm are an elevation data grid, 
f(x,y), where the search for impact structures will take 
place, and a template grid, w(x,y), smaller in size and rep-
resenting the circular depressions to be found. Output 
of the algorithm is a map consisting of a similarity value 
(correlation coefficient) between the image and the tem-
plate for every pixel position y(s,t) (Fig. 4). 

Impact structure templates 

In the correlation analysis performed, the unknown 
image represents the topography of the study area, in 
this case a part of Norway and consists of a DEM, while 
the template is a smaller DEM representing a theoreti-
cally defined impact crater. The general crater mor-
phology forms the basis for creating this crater-shaped 
template (model). By using equations (1) and (2) to 
create templates and then including a degree of varia-
tion in the analysis, a match with terrestrial formations 
should be possible. Six templates of diameters 5 km, 
6 km, 7 km, 8 km, 9 km and 10 km were made, based 
on these equations. They have a circular shape and the 
crater rim-walls were given a linear outline due to their 
most likely appearance after years of erosion. The crater 
floor is stipulated flat (Fig. 5). These models were used 
as templates in the regional analysis (template match-
ing). They have the same resolution as the image, and 

the pixel values are of the same type and range as the 
pixels in the image. 

Test area

The algorithm was tested on a synthetic 2,000 km2 
flat area, including one depression and one peak. The 
depression and the peak represent opposite, but simi-
lar geometries as the 5 km diameter template. By run-
ning a correlation analysis with a 5 km template and 
the test area, the correlation matching pattern of the 
template with “itself ” is displayed. The correlation 
values show that in an ideal situation with a complete 
match, the pattern makes a circular formation with a 
correlation high of 1 and a negative correlation high of 
-1 (Fig. 6). A positive correlation as high as possible is 
preferred in the analysis, but also a value that picks out 
some candidates. The correlation coefficients tend, in a 
larger area, to be approximately normally distributed. A 
global threshold based on Niblack`s (1986) method is 
set to t = μ + w c, where μ is the mean value,  is the 
standard deviation of the correlation coefficient values, 
and w is an input weight. The threshold will divide the 
coefficient values into two classes, interesting (high val-
ues) and not interesting (low values). To keep the most 
promising candidates in each diameter size class, the 
same rule (a value of w) applies to all (5 – 10 km) cor-
relation value images. It will still be a low correlation 
coefficient (ca. 0.50 – 0.65 for w = 2 – 2.5) compared 
to more ideal statistical solutions. This is a necessity 
because of the high variability of the circular depres-
sions to be detected. 

Pixel values above the threshold and within the immedi-
ate eight-cell neighbourhood of other pixels with higher 
values than the threshold, were spatially connected into 
a region. Area and perimeter were calculated for each 
region. The attribute roundness for a region can be 
described by 4 area / perimeter2, where the value for 
a circular disk is 1, otherwise less than 1. Identified can-
didates were regions having a roundness value above the 
algorithm input-roundness parameter. 

Fig. 5. An impact crater model, a circular 
depression template, of 7 km in diame-
ter derived from equations (1) (Grieve & 
Pesonen 1992) and (2) (Pike 1977) shown 
as a shaded model with a depth contour 
interval of 20 m (above) and as a cross sec-
tion (below). The template refers to w(x,y) 
in the correlation coefficient equation (3) 
and in Fig. 4.
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Results
Figure 7 displays the various steps using the 8 km tem-
plate, parameters w = 2.3 and roundness = 0.5. These 
parameters and the range of templates (5 – 10 km) were 
applied on an area 14,000 km2 in the county of Finnmark, 
northern Norway (Fig. 2), an area of mostly Precambrian 
basement rocks. The analysis yielded 23 circular depres-
sions when not counting overlaps between the templates 
(Fig. 8). This procedure detects areas with different grades 
of circular shapes. When studying the detected structures 
in more detail, they also show hits of circular features in 
other close diameter intervals, although the templates 
was set to specific diameter values. In such cases the tem-
plate may hit and correlate with a curved feature (wall) 

which is part of a smaller or larger structure. 

102 structures were detected in a primary analysis of 
digital elevation data covering Norway with the 5 km 
diameter template, w = 2.5 (threshold then becomes 
65.98) and roundness = 0.5. This number is too large 
for realistic field investigations, but during the screen-
ing studies we still want to keep a relative high number 
of structures for further analysis. The Gardnos impact 
structure, now seen as a circumform hanging valley, 
is located between the villages Gol and Nesbyen. In the 
regional analysis it gave the following maximum correla-
tion coefficient values inside its boundaries: 0.52 (5 km), 
0.47 (6 km), 0.41 (7 km), 0.35 (8 km), 0.37 (9 km) and 
0.41 (10 km). Even if it turns up with a relative high cor-

Fig. 6. The test area (abowe) is 
constructed as a flat surface bro-
ken by a peak and a depression 
with similar geometry as the 5 km 
diameter template. Correlation 
values (below) are only calculated 
in non flat areas, showing a circu-
lar pattern in an ideal correlation 
situation.
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relation coefficient in the 5 km case, this is partly due to 
coincidences of later landscape formation, which may to 
some extent reflect the impact event.

Discussion 
The geometrical analyses display several circular fea-
tures, partially matching the pre-described structure, 
and thereby sites of potential impact structures. Of 
these, at the best, only very few might have impact ori-
gin, when compared to the size distribution in Finland 
(4 impact structures in the interval 5 – 10 km) and Swe-
den (2 impact structures in the interval 5 – 10 km). The 
high number of potential Norwegian structures (102 of 
approximately 5 km diameter for Norway and 23 of 5 – 
10 km diameter for a 14,000 km2 area in Finnmark) and 
consequently a large number of false candidates are not 
suitable for a time saving search method. There are ways 
to restrict or vary the method:
 
1) The crater template appearance can be based on other 

equations or models, and thereby give different repre-
sentations of impact structures (e.g. a template with 
non-linear walls). 

2) The correlation coefficient threshold is the factor that 
determines how similar to the template the potential 
areas would appear, and a higher threshold (weight) 
would leave less circular depressions. A higher round-
ness value will leave fewer candidates. 

3) The DEM and template spatial resolution will affect 
the results, and other resolutions may lead to different 
discoveries. But it is not necessarily true that a DEM 
with a finer resolution will give an increased spatial 
accuracy in terms of landform identification, since a 
finer-grained DEM may be more sensitive for other 
types of errors (DeMers 2002).

The Hough transform was developed to identify lines in 
images (Hough 1962). This technique, modified to iden-
tify circles or ellipses, and by applying different pre- and 
post-processing procedures, has shown promising results 
in detecting circular shapes in satellite images and DEMs 
of planetary bodies (e.g. Bruzzone et al. 2004; Earl et al. 
2005; Kim et al. 2004; Matsumoto et al. 2005). In the pre-
sented template matching of this paper, the use of DEMs 
as input gives us an opportunity to take advantage of the 
horizontal profile (e.g. a depression) in addition to the 
vertical profile (circular shape). The variability of terres-
trial impact structures in relation to topography requires 
a method that can handle this. The possibilities of the pre-
sented method to vary the threshold, the roundness value 
and vary the templates (e.g. topographic depression, linear 
or curved walls, flat or open crater floor), make template 
matching a convenient choice of technique. 

A drawback is the computational time. The analysis 
performed with template diameters of 5 – 10 km in the 

Fig. 7. Part of the area covered in Fig. 8, showing the steps of the algo-
rithm: A shaded elevation model of the elevation data (a), a map of 
correlation values as computed by the algorithm for the 8 km dia-
meter template (b). The correlation coefficients have values between 
-0.88 and 0.62, marked by dark to bright pixels. These values are 
divided into two classes by a threshold of 0.59 (w = 2.3), where black 
coloured pixels have higher values than the threshold and pixels of 
lower values than the threshold are not displayed (c). The black 
coloured pixels are then grouped. In this small area the result is one 
group (c). A roundness value is then calculated for the group which 
is kept, because it has a roundness value above the input parameter 
(roundness = 0.5). An inserted map in the upper left corner (c) dis-
plays a group, at the same scale but from a different location, with a 
roundness value below the input parameter and subsequently will be 
removed. 
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Finnmark area took several hours, and with larger tem-
plates it would take even longer. There is a possibility to 
compute the correlation in the frequency domain, using 
a fast Fourier transform algorithm to obtain the forward 
and inverse transforms. This is often a more effective 
solution (Gonzalez & Woods 1993). The spatial domain 
method used here is still a preferred option because of 
the convenient grid structure of the elevation data, and 
thereby an easier result interpretation. 

The correlation function was normalized for amplitude 

changes via the correlation coefficient and for orientation via 
its circular symmetry, but it can be difficult to obtain normal-
ization for changes in size. Such changes involve spatial scal-
ing, a process that requires a high amount of computation 
(Gonzalez & Woods 1993). In the presented analysis such 
normalization was not performed, but six different-sized 
templates were used to inspect the range of potential struc-
tures in the 5 – 10 km interval. An inspection of the results 
showed that the method gave hits of circular features of diam-
eter values close to the template diameters as well. In this way 
the intervals between the templates may be covered.

Fig. 8. An area of Finnmarksvidda including the municipality Karasjok and parts of Kautokeino, Alta, Porsanger and Tana, displaying detected 
circular depressions. For regional location see Fig. 2. The circular depressions are shown with circular symbols of diameters 5 – 10 km, the dia-
meter referring to the template diameter detecting the individual structure. It shows 23 depressions, not counting overlaps between templates. 
The position of Fig. 7 is shown by the inserted square. Map projection: UTM EUREF89/WGS84 zone 35.
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The diameter/depth and diameter/crater floor diameter 
relations of equations (1) and (2) were used to create the 
applied templates. It is a huge simplification to describe 
the shape of impact structures with just these two size 
morphology equations. In addition to the active surface 
processes working on the Earth and changing the crater 
appearance, the initial crater size depends on the target’s 
surface gravity conditions (e.g. Lowman 1997). The cra-
ter floor equation is based on statistics from the Moon 
and a transfer of the relationship to the Earth may intro-
duce some error. However, application of a too specified 
crater morphology can be misleading, since similarly 
sized terrestrial impact craters often exhibit contrasting 
characteristics (Earl et al. 2005). It is the template sim-
plification and a correlation threshold set to less than the 
maximum result correlation coefficient value that makes 
it possible to pick out areas in the landscape, but finally 
resulting in a large number of circular depressions.

A high match percentage means that the structure has 
approximately the same shape as the circular template, 
but it could have been formed in several ways. Equa-
tion (1) is based on data from only five craters (Grieve 
& Pesonen 1992) and equation (2) is based on lunar 
statistics. This rather confined foundation, and the high 
degree of variation of known impact structures, contrib-
utes to the analytical uncertainty. The large number of 
candidates might call for a manual inspection of the digi-
tal data before field investigations, for example to exclude 
the less promising sites based on non crater-like features. 
Another solution could be to filter the results with other 
data or additional analysis. This could involve comparing 
the theoretical circular sites with geological or geophysi-
cal information, a possible part of the automatic detec-
tion. An improved exercise would need to compute dif-
ferent time models reflecting the various environmental 
settings through geological time, presently an immense 
task. Therefore the next step to evaluate the formation 
mechanisms of the detected depressions would be field 
inspections of the various structures.

Conclusions and further studies
From this study the following conclusions can be drawn: 
a) An automatic correlation algorithm based on grid-

ded DEMs on a regional scale seems suitable to iden-
tify depressions with circular features. This is a first 
approach and represents an oversimplification regard-
ing automatic impact crater search.  

b) These morphometrical DEM analyses provide a pow-
erful and inexpensive tool for first landform assess-
ments of circular-shaped features of approximately 5 
– 10 km diameter, given the 5 – 10 km diameter tem-
plates. By combining these results with other regional 
digital information, we hope to reduce the large num-
ber of  potential impact structures.

This study represents a first screening analysis for poten-
tial impact structures in Norway. In addition to analyses 
of digital elevation data, future programs will explore 
other types of available regional digital information. 
This could be satellite data (e.g. radar) and geophysical 
data (e.g. gravity, magnetic). Geophysical characteris-
tics have been studied for many impact structures and a 
negative, often circular, gravity anomaly which changes 
density after impact, is common (Pilkington & Grieve 
1992). Magnetic anomalies display large variations across 
impact craters, but a magnetic low is often a dominant 
effect (Pilkington & Grieve 1992). The nature of the 
geophysical signatures implies that using different digi-
tal terrain and image analysis techniques (e.g. geomor-
phometry, Hough transforms), and considering just 
the circumform shape and not a depression, might be 
rewarding. Different data may be analysed separately or 
in combination in order to reduce the number of poten-
tial impact structure candidates, and hopefully to find 
new promising ones. 
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Abstract. The search for impact structures in Norway is still in its
infancy and compared to Sweden (6) and Finland (11) the number of
discovered Norwegian structures (2) is low. This initiated a systematic
search for possibly new impact structures in Norway by geographic in-
formation and image analysis on available regional geodata. Such data
might be digital elevation models (DEM), satellite data (optical, radar),
bedrock, lineaments and probably most promising, geophysical data (e.g.
gravity, aeromagnetic). A matching algorithm using a DEM and impact
crater templates has been performed, and a circular Hough transform
algorithm is tested on the same data.

1 Introduction

The search for impact structures in Norway is still in its infancy and compared
to Sweden (6) and Finland (11) the number of discovered Norwegian structures
(2) is low [1]. This initiated a systematic search for new impact structures in
Norway. Areas inhabiting impact structure characteristics, named here possible
meteorite impact structures, are searched by geographic information and image
analysis on regional geodata.

Impact structures are formed by collisions of comets and asteroids, with
planets or moons, and these crater structures may be preserved for millions of
years. Fresh impact craters are characterized by their circumform shape [8]. The
active Earth (e.g. erosion, sedimentation, subduction) will eventually leave more
poorly preserved impact structures [12], which can be hard to distinguish from
their surroundings. The circular shape, even if less apparently, makes impact
structures ideal objects for the applications of automatic detection methods.
Candidates may be detected, but field observations are needed to determine if
the structure has an impact origin (shock metamorphic features).

1.1 Joint project

The Norwegian search project is part of a cooperation program between the
European Space Agency (ESA-ESTEC), the Universities of Oslo and Helsinki
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along with the Geological Surveys of Norway and Finland. The project objectives
are to develop a workable automatic search algorithm and to discover new impact
structures in Fennoscandia.

2 Data

In order to detect candidates, available regional digital information will be ex-
plored for circular shapes. Such data might be digital elevation models (DEM),
satellite data (optical, radar), bedrock, lineaments and probably most promising,
geophysical data (e.g. gravity, aeromagnetic). Geophysical characteristics have
been studied for many impact structures and a negative, often circular, gravity
anomaly which changes density after impact, is common [9]. Magnetic anoma-
lies display large variations across impact craters, but a magnetic low is often a
dominant effect [9].

3 Methods

Two of several techniques in use to detect circular features in digital data are
matching and voting algorithms. Variations of the Hough transform voting tech-
nique are the most common in the field of planetary impact crater counting, e.g.
[2].

Using a matching algorithm, a first systematic search for possible Norwegian
impact structures was based on an automatic scan of DEMs [7]. The DEM reso-
lution applied were 100 m. Topographic crater templates (circular depressions),
representing typical impact structures in the interval 5-10 km, were made based
on depth/diameter relations from terrestrial impact structures [5] and lunar im-
pact structures [8] [10]. The circular shaped templates of fixed diameters were
cross-correlated with the DEM. The template matching output is an image the
size of the DEM, consisting of a value of similarity between the template and
the DEM in each pixel. The similarity is calculated by a correlation coefficient
[4],

γ(s, t) =

∑
x

∑
y[f(x, y) − f̄(x, y)][w(x − s, y − t) − w̄]

{∑
x

∑
y[f(x, y) − f̄(x, y)]2

∑
x

∑
y[w(x − s, y − t) − w̄]2

}1/2
, (1)

where w(x,y) is the template, f(x,y) is, in this application, the DEM and the cor-
relation is obtained at point (s,t). A post-processing step, including a threshold
to separate between low and high match pixels, grouping of high match pixels
and a group classifier will gain areas of interest, potential impact structures.

The nature of the geophysical signatures of impact structures implies con-
sidering just the circumform shape and not a circular depression (the template
matching), might be rewarding. A method that can solve this is the Hough
transform. The Hough transform was developed to identify lines in digital im-
ages [6]. This technique, modified to identify circles, and by applying different
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pre- and post-processing procedures (edge detection, result filtering), has shown
promising results in detecting impact structures on satellite images and DEMs
of planetary bodies, e.g. [2].

A circular Hough transform attend the problem of the probability that a set
of pixels (from now on called gradient pixels) lies in a circular pattern. It is often
an edge detection of an image that results in these gradient pixels. An advantage
of the Hough transform is that if the circular object itself is a bit occluded, the
transform still manages to detect the structure. It is also independent of position,
rotation and scale [11]. Given an image of gradient pixels and a radius r, potential
circle centres are calculated for each gradient pixel. The potential circle centre
are all pixels a distance r away from the gradient pixel. These potential circle
centres are accumulated in a matrix and the procedure is repeated for all gradient
pixels. If the radius is not known, the Hough transform must be calculated for
several values of radius. The circle accumulation matrix gets a dimensionality
of three, each cell in the accumulation matrix categorized by a potential circle
centre (a,b), which must be inside the original image, and a radius r, inside a
radius interval set prior to the analysis. This because a circle is parameterized
by three parameters a,b,r,

(x1 − a)2 + (x2 − b)2 = r2 , (2)

where the circle has centre (a,b) and radius r [4], [11]. The frequency of the
accumulated cells tell if several of the gradient pixels belong to the same circle.
A high value indicate that a circle probably are present in the original image
(Fig. 1).

4 Results

4.1 Template matching

A DEM covering a 7,000 km2 area of Precambrian rocks in Finnmark resulted
in 23 structures partly matching the templates, using a correlation coefficient of
36. They display different varieties of circular shapes (Fig. 2), and most likely
have several different origins. The results detects more structures than what is
the expected number of impact structures of this diameter interval in an area of
this size.

4.2 Circular Hough transform

The analyses is performed on a gray level (8 bit) image, a shaded elevation
model calculated from a part of the digital elevation model used in the template
matching. The image is smoothed using a low pass filter and gradient pixels are
found using the Sobel edge detection operator and a threshold of 80. A radius
interval from 20 to 60 pixels (ca. 5-10 km) was set prior to the analyses and a
threshold of 60 was applied to the accumulation matrix (Fig. 3 and 4).
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a b

c

Fig. 1. A shaded elevation model of a synthetic circular depression made for the tem-
plate matching analyses a), having a radius of approximately 45 pixels. b) displays a
thresholded (threshold = 100) gradient image (white pixels are gradient pixels), and
the results of a Hough transform with radius 20 and 45 pixels are shown in c) and d)
respectively. The peak in Fig. d) have a larger value than the peaks in c), indicating
that this peak is a probably circle centre.
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Fig. 2. An area of Finnmarksvidda displaying detected circular depressions [7]. The
circular depressions are shown with circular symbols of diameters 5-10 km, the diam-
eter referring to the template diameter detecting the individual structure. It shows 23
depressions, not counting overlaps between templates. The position of Fig. 3 and 4 is
shown by the square. Map projection: UTM EUREF89/WGS84 zone 35.
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Fig. 3. A gradient image of part of the area of Finnmarksvidda displayed in (Fig. 2)
calculated by the Sobel operator is shown in a), and results after a threshold of 80
on this image b). c) displays detected circular centres having a from 20 to 60 pixels,
approximately 5-10 km in this resolution.
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Fig. 4. Circles with radius r from circle centres (Fig. 3c). The clearly visible half circular
structure in north east (Fig. 3c) is found by most radiuses, indicating that a stricter
accumulation threshold could have been used, but on the expense of loosing some of
the other structures.
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5 Discussion

The template matching detects a high number of possible meteorite impact struc-
tures, exceeding what could have been expected. The use of a higher correlation
coefficient would have reduced this number, but the variability of the topography
and impact structures defend such a low value.

The Hough transform enforce some decisions to be made, e.g. how to find
proper gradient pixels (in addition to edge detection methods, terrain parameters
like slope and curvature might be explored) and how to decide a threshold for
the gradient image and the accumulation matrix. The thresholds in this Hough
analyses was based on visual inspection. Global thresholds were used, but there
exists locally adaptive threshold methods that might improve the results. Enough
gradient pixels to capture structures are needed, but not to many. The threshold
of the accumulation matrix settle whether a cell is a potentially circle centre
or not. If a circle is occluded it will lead to a lesser cell value of that (a,b,r)
combination, still it may be a high enough value to detect the circle. Gradient
pixels of an uneven or noisy circle accumulate not only to a specific cell, but
rather a cluster of cells, where the cluster mass centre may represent the circle
centre.

The Hough transform analyses was performed on a gray level image, but a
digital elevation intensity image might also be used, leading to other decisions
and results. Generalized Hough transforms are developed to deal with more
complex shapes, e.g. circles not exactly circular, and could be a future direction
of the impact structure detection analyses.

Crater detection on e.g. Mars deals with more clearly visible structures. The
Hough transform analysis showed that structures not clearly visible in the origi-
nal image might not be detected. Applying this technique to terrestrial environ-
ments may force minor adjustments, but also enable the possibility to perform
the analysis on a broad set of geodata. These results suggests further analysis, in-
cluding incorporation of other methods, fusion of different data and combination
of results.
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1. Introduction 
Impact cratering is a common geological process in the Solar System and most 
planetary bodies display geomorphologies strongly influenced by impacts (Lowman  
1997). Fresh impact craters are normally characterized by a circular morphology 
(Melosh  1989). This surface expression is modified on Earth by active geological 
processes. The variation of terrestrial impact structure expressions suggests a simple 
characteristic to use in automatic detection, usually the circular shape. Automatic
techniques may detect candidates in regional data, but field and laboratory analysis are 
required to possibly confirm an impact origin by finding shock metamorphic effects or 
traces of meteorites (Koeberl  2004).

A first approach to detect candidates was conducted comparing typical impact 
crater morphologies and topography (Krøgli et al.  2007). Size-dependency scaling 
characteristics, e.g. relations of crater diameter, crater floor diameter and crater depth, 
have been established for heavily cratered areas like the Moon (Pike  1977). On Earth 
the catalog presently consists of 176 proven impact structures (Earth Impact Database  
2009). Despite the low number, size-dependencies have also been established for 
terrestrial impact structures (e.g. Grieve and Pesonen  1992). To search crater-like 
circular depressions Krøgli et al. (2007) calculated correlations between circular 
templates, based on terrestrial and lunar size relations, and digital elevation models.

The geophysical properties of impacted target areas may also change during impact 
and can be found as anomalies in e.g. gravity and magnetic potential field data. 
Fracturing and brecciation of target rocks and the presence of low-density sedimentary 
infill cause a circular gravity low, while a central uplift of heavier rocks from deeper 
crustal levels may cause a circular gravity high (e.g. Grieve and Pilkington  1996).
There has not been found a one to one relationship between shapes of magnetic 
anomalies and impact structures, but circularity may often be present (French  1998).
An algorithm that detects circular orientations of slope values has been constructed to
search impact structure candidates, treating regional gravity and aeromagnetic data as 
surface models. The algorithm, that also works on DEMs, examines only the outline of
possible circular features.

Both methods (template matching and circular oriented slope values) detected
features with different degrees of circularity. The number of detected features depends 
on the choice of threshold, but is usually large and requires further manual or 
automatic analysis to refine the number before field investigations. Results can be 
compared to maps of e.g. geology and drainage patterns and to additional methods and 
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data (e.g. multispectral images). An approach to reduce the number of candidates is 
presented here as a filter technique, removing candidates from symmetry
measurements.

2. Symmetry in Circular Features 
The symmetry measurements are based on correlation coefficients between radial 
profiles in automatic detected circular features. For each circular feature the algorithm 
extracts eight profiles from the DEM or geophysical surface, radiating from centre to 
the length of the radius. These profiles are placed in a matrix consisting of a number of 
columns equal to the number of profiles (default eight) and a number of rows equal to 
the number of pixels in profiles (depending on radius). First only a part of the matrix, 
the first three pixels of each profile, is included in the correlation coefficient 
calculations. When counting pixels the first pixel of a profile is on the circular outline 
and the next pixel one step towards centre, and so on. A profile is marked if it does not 
correlate with any of the other profiles. The matrix then includes the pixels on the next 
step towards centre. Again a correlation coefficient calculation between profiles is 
performed, this time without marked profiles. This continues until all profiles are 
marked (no more correlation) or the end of profiles is reached (Fig. 1). Two profiles 
may then go the whole distance to the centre, even if situated at opposite sides. The 
percentage of pixels included in correlated profiles compared to total number of pixels 
in profiles is saved. 

3. Results and Discussion 
Fig. 2 displays the effect of symmetry filtering on automatic detected circular features. 
The reasoning behind equalizing two features having similar total profile distances is 
to keep features that have few but long correlation profiles, e.g. in just a corner or half 
of the circle. They may represent impact structures where only parts of the earlier 
circularity is present. Opposite, one could include a weight in order to reward if all the 
eight profiles are correlated a distance. The latter may exclude valleys, where two 
opposite ridges may have some of the characteristics of a partly circular feature. In the 
presented algorithm the profiles are extended from the rim an inwards, calculating 
correlation coefficients for each step, leaving out non-correlating profiles. This 
emphasizes the rim area and downgrades the middle area, which may be promising in 
an impact structure candidate detection. Initiating the calculations with a minor 
number of pixels could miss out profiles that would correlate at a later stage, if more 
pixels had been included. A future filter value might be calculated incorporating 
correlation results of profiles starting both from the outline and from the centre, or 
even including complete profiles. The choice of eight profiles, always with the same 
profile configuration, influence results. It is the profile shapes that are correlated, 
indicating that the profiles might be located at different elevations. Fig. 2 displays that 
the filter reduce the number of automatic detected impact structure candidate sites 
based on non-symmetrical characteristics.
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Figure 1. (Above left) Automatic detected circular feature in aeromagnetic potential 
field data (100 m spatial resolution, Finnmark, northern Norway). (Above right) 

Length of profile correlations for feature on left image. Correlation threshold 80%. Six 
profiles correlate the whole distance. The north-west profile does not correlate with 
any other. There is a gap in the circular border at that place. The south-east profile 

stops correlating after a while. (Middle) The eight profiles. The dashed (red) profile is 
the one not correlating with the others, while the dash-dotted (blue) profile stopped 

correlating at step 5. The y-axis is exaggerated. (Below) Four circles that display equal 
total profile correlation distances. If a few profiles correlate a longer distance, e.g. in a 
quarter of the circle (#3), it will get the same value as if all profiles correlate a smaller

distance (#1). Fig. 1 is marked in Fig. 2d. 
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Figure 2. Figures (b) and (d) display features with a symmetry value higher than 75%, 
and are the filtered results of the automatic detected circular features in (a) and (c). The 
circular features are found by the methods of template matching on a DEM (a) and the 
circular outline algorithm on aeromagnetic data (c). (a) and (c) display two different 

areas of Finnmark, northern Norway. Both models have a spatial resolution of 100 m. 
The location of Fig. 1 is shown in (d). 
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